1
|
Asif S, Yingkun D, Meng C. Unlocking the secrets of Feline calicivirus: advances in structural and nonstructural proteins and its role as a key model for other Caliciviruses. Virol J 2025; 22:152. [PMID: 40399981 PMCID: PMC12096530 DOI: 10.1186/s12985-025-02750-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Accepted: 04/21/2025] [Indexed: 05/23/2025] Open
Abstract
Feline calicivirus (FCV) is a highly contagious pathogen responsible for respiratory infections, lingual ulceration, oral ulcers and systemic diseases in cats, posing a significant risk to feline family worldwide. Virus enters via nasal oral and conjunctival routes. Oropharynx is primary site of replication, induces epithelial necrosis. After recovery from acute disease most cats clear virus within 30 days. Some lifelong carriers via colonization of tonsillar and other tissues. Understanding the structural and nonstructural proteins of FCV is essential to know viral replication process, its pathogenesis and interaction with host immune system. This manuscript outlines the recent progress made on the characterization of FCV proteins with respect to their involvement in viral assembly, entry, immune evasion, and replication. Although structural proteins such as capsid have received most attention regarding viral attachment and host specificity, but nonstructural proteins are emerging as key players in influencing host cell activities and viral RNA synthesis. This review highlights the requirement for advanced structural research methods, large-scale antiviral screening, and thorough investigations into FCV-host interactions. These studies will not only enable us fully understand FCV, but also promote the progress of more universally applicable virological research and drug development.
Collapse
Affiliation(s)
- Sana Asif
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 518 Ziyue Road, Shanghai, 200241, P. R. China
| | - Deng Yingkun
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 518 Ziyue Road, Shanghai, 200241, P. R. China
| | - Chunchun Meng
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 518 Ziyue Road, Shanghai, 200241, P. R. China.
| |
Collapse
|
2
|
Fukuda Y, Ishikawa A, Ishiyama R, Takai‐Todaka R, Haga K, Someya Y, Kimura‐Someya T, Katayama K. Establishment of a Novel Caco-2-Based Cell Culture System for Human Sapovirus Propagation. Genes Cells 2025; 30:e70007. [PMID: 40001267 PMCID: PMC11861566 DOI: 10.1111/gtc.70007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/27/2025] [Accepted: 02/09/2025] [Indexed: 02/27/2025]
Abstract
Human sapovirus (HuSaV), first identified in the 1970s, is a significant cause of acute gastroenteritis, particularly in young children. Despite its clinical significance, research on HuSaV has been limited due to the absence of a reliable cell culture system. In 2020, a breakthrough study reported that HuSaV GI.1 and GII.3 strains could be cultured and serially propagated using HuTu80 cells in the presence of bile acids. However, in 2024, a subsequent study reported that effective replication in HuTu80 cells requires specialized cells that have undergone over 100 passages. In this study, we sought to identify an alternative cell culture system for HuSaV. HuSaV GI.1 can replicate and be serially propagated using Caco-2 cells under bile acid supplementation. Importantly, the Caco-2 cells were freshly sourced from the American Type Culture Collection, ensuring reproducibility for laboratories worldwide. Furthermore, Caco-2MC cells were established via single-cell cloning from in-house Caco-2/Cas9 cells with 91.5% HuSaV-susceptible. HuSaV strains GI.1, GI.2, GI.3, GII.1, GII.3, and GV.1 were successfully propagated using Caco-2MC cells, with RNA copy numbers increasing up to 4.4 log10-fold within 5 days post-infection. This efficient HuSaV cell culture system represents a significant advancement in HuSaV research.
Collapse
Affiliation(s)
- Yuya Fukuda
- Laboratory of Viral Infection Control, Department of Infection Control and Immunology, Ōmura Satoshi Memorial Institute & Graduate School of Infection Control SciencesKitasato UniversityTokyoJapan
- Department of PediatricsSapporo Medical University School of MedicineSapporoJapan
| | - Azusa Ishikawa
- Laboratory of Viral Infection Control, Department of Infection Control and Immunology, Ōmura Satoshi Memorial Institute & Graduate School of Infection Control SciencesKitasato UniversityTokyoJapan
| | - Ryoka Ishiyama
- Laboratory of Viral Infection Control, Department of Infection Control and Immunology, Ōmura Satoshi Memorial Institute & Graduate School of Infection Control SciencesKitasato UniversityTokyoJapan
| | - Reiko Takai‐Todaka
- Laboratory of Viral Infection Control, Department of Infection Control and Immunology, Ōmura Satoshi Memorial Institute & Graduate School of Infection Control SciencesKitasato UniversityTokyoJapan
| | - Kei Haga
- Laboratory of Viral Infection Control, Department of Infection Control and Immunology, Ōmura Satoshi Memorial Institute & Graduate School of Infection Control SciencesKitasato UniversityTokyoJapan
| | - Yuichi Someya
- Department of Virology IINational Institute of Infectious DiseasesTokyoJapan
| | - Tomomi Kimura‐Someya
- Department of Biochemistry and Cell BiologyNational Institute of Infectious DiseasesTokyoJapan
| | - Kazuhiko Katayama
- Laboratory of Viral Infection Control, Department of Infection Control and Immunology, Ōmura Satoshi Memorial Institute & Graduate School of Infection Control SciencesKitasato UniversityTokyoJapan
| |
Collapse
|
3
|
Nyblade C, Yuan L. Virus Shedding and Diarrhea: A Review of Human Norovirus Genogroup II Infection in Gnotobiotic Pigs. Viruses 2024; 16:1432. [PMID: 39339908 PMCID: PMC11437449 DOI: 10.3390/v16091432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/01/2024] [Accepted: 09/04/2024] [Indexed: 09/30/2024] Open
Abstract
For nearly twenty years, gnotobiotic (Gn) pigs have been used as a model of human norovirus (HuNoV) infection and disease. Unique in their ability to develop diarrhea and shed virus post oral challenge, Gn pigs have since been used to evaluate the infectivity of several genogroup II HuNoV strains. Nearly all major pandemic GII.4 variants have been tested in Gn pigs, with varying rates of infectivity. Some induce an asymptomatic state despite being shed in large quantities in stool, and others induce high incidence of both diarrhea and virus shedding. Non-GII.4 strains, including GII.12 and GII.6, have also been evaluated in Gn pigs. Again, rates of diarrhea and virus shedding tend to vary between studies. Several factors may influence these findings, including age, dosage, biological host factors, or bacterial presence. The impact of these factors is nuanced and requires further evaluation to elucidate the exact mechanisms behind increases or decreases in infection rates. Regardless, the value of Gn pig models in HuNoV research cannot be understated, and the model will surely continue to contribute to the field in years to come.
Collapse
Affiliation(s)
| | - Lijuan Yuan
- Department of Biomedical Sciences and Pathobiology, Virginia Polytechnic and State University, Blacksburg, VA 24061, USA;
| |
Collapse
|
4
|
Hayashi T, Kobayashi S, Hirano J, Murakami K. Human norovirus cultivation systems and their use in antiviral research. J Virol 2024; 98:e0166323. [PMID: 38470106 PMCID: PMC11019851 DOI: 10.1128/jvi.01663-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024] Open
Abstract
Human norovirus (HuNoV) is a major cause of acute gastroenteritis and foodborne diseases, affecting all age groups. Despite its clinical needs, no approved antiviral therapies are available. Since the discovery of HuNoV in 1972, studies on anti-norovirals, mechanism of HuNoV infection, viral inactivation, etc., have been hampered by the lack of a robust laboratory-based cultivation system for HuNoV. A recent breakthrough in the development of HuNoV cultivation systems has opened opportunities for researchers to investigate HuNoV biology in the context of de novo HuNoV infections. A tissue stem cell-derived human intestinal organoid/enteroid (HIO) culture system is one of those that supports HuNoV replication reproducibly and, to our knowledge, is most widely distributed to laboratories worldwide to study HuNoV and develop therapeutic strategies. This review summarizes recently developed HuNoV cultivation systems, including HIO, and their use in antiviral studies.
Collapse
Affiliation(s)
- Tsuyoshi Hayashi
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Sakura Kobayashi
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Junki Hirano
- Laboratory of Virus Control, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Kosuke Murakami
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
- Center for Emergency Preparedness and Response, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
5
|
Kaushik R, Kumar N, Yadav P, Sircar S, Shete-Aich A, Singh A, Tomar S, Launey T, Malik YS. Comprehensive Genomics Investigation of Neboviruses Reveals Distinct Codon Usage Patterns and Host Specificity. Microorganisms 2024; 12:696. [PMID: 38674640 PMCID: PMC11052288 DOI: 10.3390/microorganisms12040696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 03/24/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
Neboviruses (NeVs) from the Caliciviridae family have been linked to enteric diseases in bovines and have been detected worldwide. As viruses rely entirely on the cellular machinery of the host for replication, their ability to thrive in a specific host is greatly impacted by the specific codon usage preferences. Here, we systematically analyzed the codon usage bias in NeVs to explore the genetic and evolutionary patterns. Relative Synonymous Codon Usage and Effective Number of Codon analyses indicated a marginally lower codon usage bias in NeVs, predominantly influenced by the nucleotide compositional constraints. Nonetheless, NeVs showed a higher codon usage bias for codons containing G/C at the third codon position. The neutrality plot analysis revealed natural selection as the primary factor that shaped the codon usage bias in both the VP1 (82%) and VP2 (57%) genes of NeVs. Furthermore, the NeVs showed a highly comparable codon usage pattern to bovines, as reflected through Codon Adaptation Index and Relative Codon Deoptimization Index analyses. Notably, yak NeVs showed considerably different nucleotide compositional constraints and mutational pressure compared to bovine NeVs, which appear to be predominantly host-driven. This study sheds light on the genetic mechanism driving NeVs' adaptability, evolution, and fitness to their host species.
Collapse
Affiliation(s)
- Rahul Kaushik
- Biotechnology Research Center, Technology Innovation Institute, Masdar City, Abu Dhabi P.O. Box 9639, United Arab Emirates;
| | - Naveen Kumar
- Diagnostics and Vaccines Group, ICAR—National Institute of High Security Animal Diseases, Bhopal 462021, Madhya Pradesh, India;
| | - Pragya Yadav
- Maximum Containment Facility, ICMR—National Institute of Virology, Pune 411001, Maharashtra, India; (P.Y.); (A.S.-A.)
| | - Shubhankar Sircar
- Department of Animal Sciences, Washington State University, Pullman, WA 99163, USA;
| | - Anita Shete-Aich
- Maximum Containment Facility, ICMR—National Institute of Virology, Pune 411001, Maharashtra, India; (P.Y.); (A.S.-A.)
| | - Ankur Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India; (A.S.); (S.T.)
| | - Shailly Tomar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India; (A.S.); (S.T.)
| | - Thomas Launey
- Biotechnology Research Center, Technology Innovation Institute, Masdar City, Abu Dhabi P.O. Box 9639, United Arab Emirates;
| | - Yashpal Singh Malik
- College of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Science University, Ludhiana 141004, Punjab, India
| |
Collapse
|
6
|
Ma Z, Jiang Q, Quan C, Liu L, Zhang Z, Xie J, Zhao L, Zhong Q, Yao G, Ma X. The first complete genome sequence and genetic evolution analysis of bovine norovirus in Xinjiang, China. J Vet Res 2024; 68:1-8. [PMID: 39224655 PMCID: PMC11368483 DOI: 10.2478/jvetres-2024-0005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 01/25/2024] [Indexed: 09/04/2024] Open
Abstract
Introduction Viruses are among the main pathogens causing diarrhoea in calves. The current study found that bovine norovirus (BNoV) is one of the principal viruses causing diarrhoea in calves in Xinjiang, China. Material and Methods A total of 974 calf faecal samples from six regions in Xinjiang were tested for BNoV using reverse-transcriptase PCR. The genomic characteristics of BNoV and the genetic evolution of the VP1 gene, protein three-dimensional structure characteristics and amino acid variation were analysed using bioinformatics methods. Results Epidemiological survey results showed that the infection rate of BNoV was 19.82%, and all samples tested positive in five regions. The results of the genetic evolution analysis showed that BNoV strains from Tacheng of northern Xinjiang and Kashgar of southern Xinjiang both belonged to the GIII.2 genotype of BNoV but were not on the same cluster of evolutionary branches. Additionally, the amino acid variation of the VP1 protein was not observed to significantly affect its spatial structure. Conclusion This study is the first to report the genetic characteristics of the BNoV complete genome sequence in Xinjiang and provides a scientific basis for BNoV vaccine development and pathogenesis research.
Collapse
Affiliation(s)
- Zhigang Ma
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi Xinjiang, 830052, China
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animal (XJ-KLNDSCHA), Xinjiang Agricultural University, Urumqi Xinjiang, 830052, China
| | - Qian Jiang
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi Xinjiang, 830052, China
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animal (XJ-KLNDSCHA), Xinjiang Agricultural University, Urumqi Xinjiang, 830052, China
| | - Chenxi Quan
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi Xinjiang, 830052, China
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animal (XJ-KLNDSCHA), Xinjiang Agricultural University, Urumqi Xinjiang, 830052, China
| | - Lu Liu
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi Xinjiang, 830052, China
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animal (XJ-KLNDSCHA), Xinjiang Agricultural University, Urumqi Xinjiang, 830052, China
| | - Zhonghua Zhang
- Xinjiang Daolang Sunshine Agriculture and Animal Husbandry Technology Co., Ltd., Kashgar Xinjiang, 844600, China
| | - Jinxing Xie
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi Xinjiang, 830052, China
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animal (XJ-KLNDSCHA), Xinjiang Agricultural University, Urumqi Xinjiang, 830052, China
| | - Lu Zhao
- Changji Prefecture Center for Animal Disease Control and Prevention, Changji Xinjiang, 831100, China
| | - Qi Zhong
- Xinjiang Uygur Autonomous Region Animal Husbandry and Veterinary Society, Urumuqi Xinjiang, 830052China
| | - Gang Yao
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi Xinjiang, 830052, China
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animal (XJ-KLNDSCHA), Xinjiang Agricultural University, Urumqi Xinjiang, 830052, China
| | - Xuelian Ma
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi Xinjiang, 830052, China
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animal (XJ-KLNDSCHA), Xinjiang Agricultural University, Urumqi Xinjiang, 830052, China
| |
Collapse
|
7
|
Matsumoto N, Kurokawa S, Tamiya S, Nakamura Y, Sakon N, Okitsu S, Ushijima H, Yuki Y, Kiyono H, Sato S. Replication of Human Sapovirus in Human-Induced Pluripotent Stem Cell-Derived Intestinal Epithelial Cells. Viruses 2023; 15:1929. [PMID: 37766335 PMCID: PMC10536750 DOI: 10.3390/v15091929] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/06/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Sapoviruses, like noroviruses, are single-stranded positive-sense RNA viruses classified in the family Caliciviridae and are recognized as a causative pathogen of diarrhea in infants and the elderly. Like human norovirus, human sapovirus (HuSaV) has long been difficult to replicate in vitro. Recently, it has been reported that HuSaV can be replicated in vitro by using intestinal epithelial cells (IECs) derived from human tissues and cell lines derived from testicular and duodenal cancers. In this study, we report that multiple genotypes of HuSaV can sufficiently infect and replicate in human-induced pluripotent stem cell-derived IECs. We also show that this HuSaV replication system can be used to investigate the conditions for inactivation of HuSaV by heat and alcohol, and the effects of virus neutralization of antisera obtained by immunization with vaccine antigens, under conditions closer to the living environment. The results of this study confirm that HuSaV can also infect and replicate in human normal IECs regardless of their origin and are expected to contribute to future virological studies.
Collapse
Affiliation(s)
- Naomi Matsumoto
- Department of Virology, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Shiho Kurokawa
- Department of Human Mucosal Vaccinology, Chiba University Hospital, Chiba 260-8670, Japan
| | - Shigeyuki Tamiya
- Department of Microbiology and Immunology, School of Pharmaceutical Sciences, Wakayama Medical University, Wakayama 640-8156, Japan
| | - Yutaka Nakamura
- Department of Microbiology and Immunology, School of Pharmaceutical Sciences, Wakayama Medical University, Wakayama 640-8156, Japan
| | - Naomi Sakon
- Department of Microbiology, Osaka Institute of Public Health, Osaka 537-0025, Japan
| | - Shoko Okitsu
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo 173-8610, Japan
| | - Hiroshi Ushijima
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo 173-8610, Japan
| | - Yoshikazu Yuki
- Department of Human Mucosal Vaccinology, Chiba University Hospital, Chiba 260-8670, Japan
| | - Hiroshi Kiyono
- Department of Human Mucosal Vaccinology, Chiba University Hospital, Chiba 260-8670, Japan
- Future Medicine Education and Research Organization, Chiba University, Chiba 263-8522, Japan
- CU-UCSD Center for Mucosal Immunology, Allergy, and Vaccines (cMAV), Departments of Medicine and Pathology, University of California, San Diego, CA 92093-0956, USA
| | - Shintaro Sato
- Department of Virology, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
- Department of Microbiology and Immunology, School of Pharmaceutical Sciences, Wakayama Medical University, Wakayama 640-8156, Japan
| |
Collapse
|
8
|
Euller-Nicolas G, Le Mennec C, Schaeffer J, Zeng XL, Ettayebi K, Atmar RL, Le Guyader FS, Estes MK, Desdouits M. Human Sapovirus Replication in Human Intestinal Enteroids. J Virol 2023; 97:e0038323. [PMID: 37039654 PMCID: PMC10134857 DOI: 10.1128/jvi.00383-23] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 03/15/2023] [Indexed: 04/12/2023] Open
Abstract
Human sapoviruses (HuSaVs), like human noroviruses (HuNoV), belong to the Caliciviridae family and cause acute gastroenteritis in humans. Since their discovery in 1976, numerous attempts to grow HuSaVs in vitro were unsuccessful until 2020, when these viruses were reported to replicate in a duodenal cancer cell-derived line. Physiological cellular models allowing viral replication are essential to investigate HuSaV biology and replication mechanisms such as genetic susceptibility, restriction factors, and immune responses to infection. In this study, we demonstrate replication of two HuSaV strains in human intestinal enteroids (HIEs) known to support the replication of HuNoV and other human enteric viruses. HuSaVs replicated in differentiated HIEs originating from jejunum, duodenum and ileum, but not from the colon, and bile acids were required. Between 2h and 3 to 6 days postinfection, viral RNA levels increased up from 0.5 to 1.8 log10-fold. Importantly, HuSaVs were able to replicate in HIEs independent of their secretor status and histo-blood group antigen expression. The HIE model supports HuSaV replication and allows a better understanding of host-pathogen mechanisms such as cellular tropism and mechanisms of viral replication. IMPORTANCE Human sapoviruses (HuSaVs) are a frequent but overlooked cause of acute gastroenteritis, especially in children. Little is known about this pathogen, whose successful in vitro cultivation was reported only recently, in a cancer cell-derived line. Here, we assessed the replication of HuSaV in human intestinal enteroids (HIEs), which are nontransformed cultures originally derived from human intestinal stem cells that can be grown in vitro and are known to allow the replication of other enteric viruses. Successful infection of HIEs with two strains belonging to different genotypes of the virus allowed discovery that the tropism of these HuSaVs is restricted to the small intestine, does not occur in the colon, and replication requires bile acid but is independent of the expression of histo-blood group antigens. Thus, HIEs represent a physiologically relevant model to further investigate HuSaV biology and a suitable platform for the future development of vaccines and antivirals.
Collapse
Affiliation(s)
| | - Cécile Le Mennec
- MASAE Microbiologie Aliment Santé Environnement, Ifremer, Nantes, France
| | - Julien Schaeffer
- MASAE Microbiologie Aliment Santé Environnement, Ifremer, Nantes, France
| | - Xi-Lei Zeng
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Khalil Ettayebi
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Robert L. Atmar
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
- Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | | | - Mary K. Estes
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
- Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Marion Desdouits
- MASAE Microbiologie Aliment Santé Environnement, Ifremer, Nantes, France
| |
Collapse
|
9
|
Gebert JT, Scribano F, Engevik KA, Perry JL, Hyser JM. Gastrointestinal organoids in the study of viral infections. Am J Physiol Gastrointest Liver Physiol 2023; 324:G51-G59. [PMID: 36414538 PMCID: PMC9799139 DOI: 10.1152/ajpgi.00152.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 11/04/2022] [Accepted: 11/14/2022] [Indexed: 11/24/2022]
Abstract
Viruses are among the most prevalent enteric pathogens. Although virologists historically relied on cell lines and animal models, human intestinal organoids (HIOs) continue to grow in popularity. HIOs are nontransformed, stem cell-derived, ex vivo cell cultures that maintain the cell type diversity of the intestinal epithelium. They offer higher throughput than standard animal models while more accurately mimicking the native tissue of infection than transformed cell lines. Here, we review recent literature that highlights virological advances facilitated by HIOs. We discuss the variations and limitations of HIOs, how HIOs have allowed for the cultivation of previously uncultivatable viruses, and how they have offered insight into tropism, entry, replication kinetics, and host-pathogen interactions. In each case, we discuss exemplary viruses and archetypal studies. We discuss how the speed and flexibility of HIO-based studies contributed to our knowledge of SARS-CoV-2 and antiviral therapeutics. Finally, we discuss the current limitations of HIOs and future directions to overcome these.
Collapse
Affiliation(s)
- J Thomas Gebert
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas
| | - Francesca Scribano
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas
| | - Kristen A Engevik
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas
| | - Jacob L Perry
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas
| | - Joseph M Hyser
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas
- Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
10
|
A New Synergistic Strategy for Virus and Bacteria Eradication: Towards Universal Disinfectants. Pharmaceutics 2022; 14:pharmaceutics14122791. [PMID: 36559284 PMCID: PMC9782051 DOI: 10.3390/pharmaceutics14122791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/03/2022] [Accepted: 12/08/2022] [Indexed: 12/15/2022] Open
Abstract
In response to the COVID-19 and monkeypox outbreaks, we present the development of a universal disinfectant to avoid the spread of infectious viral diseases through contact with contaminated surfaces. The sanitizer, based on didecyldimethylammonium chloride (DDAC), N,N-bis(3-aminopropyl)dodecylamine (APDA) and γ-cyclodextrin (γ-CD), shows synergistic effects against non-enveloped viruses (poliovirus type 1 and murine norovirus) according to the EN 14476 standard (≥99.99% reduction of virus titer). When a disinfectant product is effective against them, it can be considered that it will be effective against all types of viruses, including enveloped viruses. Consequently, "general virucidal activity" can be claimed. Moreover, we have extended this synergistic action to bacteria (P. aeruginosa, EN 13727). Based on physicochemical investigations, we have proposed two independent mechanisms of action against bacteria and non-enveloped viruses, operating at sub- and super-micellar concentrations, respectively. This synergistic mixture could then be highly helpful as a universal disinfectant to avoid the spread of infectious viral or bacterial diseases in community settings, including COVID-19 and monkeypox (caused by enveloped viruses).
Collapse
|
11
|
Armanious A, Mezzenga R. A Roadmap for Building Waterborne Virus Traps. JACS AU 2022; 2:2205-2221. [PMID: 36311831 PMCID: PMC9597599 DOI: 10.1021/jacsau.2c00377] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/18/2022] [Accepted: 09/07/2022] [Indexed: 06/16/2023]
Abstract
Outbreaks of waterborne viruses pose a massive threat to human health, claiming the lives of hundreds of thousands of people every year. Adsorption-based filtration offers a promising facile and environmentally friendly approach to help provide safe drinking water to a world population of almost 8 billion people, particularly in communities that lack the infrastructure for large-scale facilities. The search for a material that can effectively trap viruses has been mainly driven by a top-down approach, in which old and new materials have been tested for this purpose. Despite substantial advances, finding a material that achieves this crucial goal and meets all associated challenges remains elusive. We suggest that the road forward should strongly rely on a complementary bottom-up approach based on our fundamental understanding of virus interactions at interfaces. We review the state-of-the-art physicochemical knowledge of the forces that drive the adsorption of viruses at solid-water interfaces. Compared to other nanometric colloids, viruses have heterogeneous surface chemistry and diverse morphologies. We advocate that advancing our understanding of virus interactions would require describing their physicochemical properties using novel descriptors that reflect their heterogeneity and diversity. Several other related topics are also addressed, including the effect of coadsorbates on virus adsorption, virus inactivation at interfaces, and experimental considerations to ensure well-grounded research results. We finally conclude with selected examples of materials that made notable advances in the field.
Collapse
Affiliation(s)
- Antonius Armanious
- Department
of Health Sciences and Technology, ETH Zurich, Zurich8092, Switzerland
| | - Raffaele Mezzenga
- Department
of Health Sciences and Technology, ETH Zurich, Zurich8092, Switzerland
- Department
of Materials, ETH Zurich, Zurich8093, Switzerland
| |
Collapse
|
12
|
Characterization of a Human Sapovirus Genotype GII.3 Strain Generated by a Reverse Genetics System: VP2 Is a Minor Structural Protein of the Virion. Viruses 2022; 14:v14081649. [PMID: 36016271 PMCID: PMC9414370 DOI: 10.3390/v14081649] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/22/2022] [Accepted: 07/25/2022] [Indexed: 11/17/2022] Open
Abstract
We devised a reverse genetics system to generate an infectious human sapovirus (HuSaV) GII.3 virus. Capped/uncapped full-length RNAs derived from HuSaV GII.3 AK11 strain generated by in vitro transcription were used to transfect HuTu80 human duodenum carcinoma cells; infectious viruses were recovered from the capped RNA-transfected cells and passaged in the cells. Genome-wide analyses indicated no nucleotide sequence change in the virus genomes in the cell-culture supernatants recovered from the transfection or those from the subsequent infection. No virus growth was detected in the uncapped RNA-transfected cells, suggesting that the 5′-cap structure is essential for the virus’ generation and replication. Two types of virus particles were purified from the cell-culture supernatant. The complete particles were 39.2-nm-dia., at 1.350 g/cm3 density; the empty particles were 42.2-nm-dia. at 1.286 g/cm3. Two proteins (58-kDa p58 and 17-kDa p17) were detected from the purified particles; their molecular weight were similar to those of VP1 (~60-kDa) and VP2 (~16-kDa) of AK11 strain deduced from their amino acids (aa) sequences. Protein p58 interacted with HuSaV GII.3-VP1-specific antiserum, suggesting that p58 is HuSaV VP1. A total of 94 (57%) aa of p17 were identified by mass spectrometry; the sequences were identical to those of VP2, indicating that the p17 is the VP2 of AK11. Our new method produced infectious HuSaVs and demonstrated that VP2 is the minor protein of the virion, suggested to be involved in the HuSaV assembly.
Collapse
|
13
|
Nolan LS, Baldridge MT. Advances in understanding interferon-mediated immune responses to enteric viruses in intestinal organoids. Front Immunol 2022; 13:943334. [PMID: 35935957 PMCID: PMC9354881 DOI: 10.3389/fimmu.2022.943334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 06/30/2022] [Indexed: 11/16/2022] Open
Abstract
Interferons (IFN) are antiviral cytokines with critical roles in regulating pathogens at epithelial barriers, but their capacity to restrict human enteric viruses has been incompletely characterized in part due to challenges in cultivating some viruses in vitro, particularly human norovirus. Accordingly, advancements in the development of antiviral therapies and vaccine strategies for enteric viral infections have been similarly constrained. Currently emerging is the use of human intestinal enteroids (HIEs) to investigate mechanisms of human enteric viral pathogenesis. HIEs provide a unique opportunity to investigate host-virus interactions using an in vitro system that recapitulates the cellular complexity of the in vivo gastrointestinal epithelium. This approach permits the exploration of intestinal epithelial cell interactions with enteric viruses as well as the innate immune responses mediated by IFNs and IFN-stimulated genes. Here, we describe recent findings related to the production, signaling, and function of IFNs in the response to enteric viral infections, which will ultimately help to reveal important aspects of pathogenesis and facilitate the future development of therapeutics and vaccines.
Collapse
Affiliation(s)
- Lila S. Nolan
- Department of Pediatrics, Division of Newborn Medicine, Washington University School of Medicine, St. Louis Children’s Hospital, St. Louis, MO, United States
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, United States
| | - Megan T. Baldridge
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, United States
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
14
|
Pohl C, Szczepankiewicz G, Liebert UG. Analysis and optimization of a Caco-2 cell culture model for infection with human norovirus. Arch Virol 2022; 167:1421-1431. [PMID: 35415782 PMCID: PMC9123034 DOI: 10.1007/s00705-022-05437-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 03/05/2022] [Indexed: 11/25/2022]
Abstract
Human noroviruses (hNoVs) are an important cause of acute gastroenteritis worldwide. However, the lack of a reproducible in vitro cell culture system has impaired research and the development of preventive measures, therapeutic drugs, and vaccines. The aim of this study was to analyze and optimize a suitable cell line for in vitro cultivation of hNoV. The Caco-2 cell line, which is of colorectal origin and differentiates spontaneously into intestinal enterocyte-like cells, was chosen as a model. It was found that differentiated cells were more susceptible to infection with hNoV, resulting in a higher virus yield. This was accompanied by an increase in H type 1 antigen in the cell membrane during differentiation, which functions as an attachment factor for hNoV. Induced overexpression of H type 1 antigen in undifferentiated Caco-2 cells resulted in an increase in viral output to a level similar to that in differentiated cells. However, the relatively low level of viral output, which contrasts with what is observed in vivo, shows that the viral replication cycle is restricted in this model. The results indicate that there is a block at the level of viral release.
Collapse
Affiliation(s)
- Clara Pohl
- Department of Virology, University of Leipzig, Johannisallee 30, 04103, Leipzig, Germany
| | - Grit Szczepankiewicz
- Department of Virology, University of Leipzig, Johannisallee 30, 04103, Leipzig, Germany
| | - Uwe Gerd Liebert
- Department of Virology, University of Leipzig, Johannisallee 30, 04103, Leipzig, Germany.
| |
Collapse
|
15
|
Davidson I, Stamelou E, Giantsis IA, Papageorgiou KV, Petridou E, Kritas SK. The Complexity of Swine Caliciviruses. A Mini Review on Genomic Diversity, Infection Diagnostics, World Prevalence and Pathogenicity. Pathogens 2022; 11:pathogens11040413. [PMID: 35456088 PMCID: PMC9030053 DOI: 10.3390/pathogens11040413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/25/2022] [Accepted: 03/26/2022] [Indexed: 02/01/2023] Open
Abstract
Caliciviruses are single stranded RNA viruses, non-enveloped structurally, that are implicated in the non-bacterial gastroenteritis in various mammal species. Particularly in swine, viral gastroenteritis represents a major problem worldwide, responsible for significant economic losses for the pig industry. Among the wide range of viruses that are the proven or suspected etiological agents of gastroenteritis, the pathogenicity of the members of Caliciviridae family is among the less well understood. In this context, the present review presents and discusses the current knowledge of two genera belonging to this family, namely the Norovirus and the Sapovirus, in relation to swine. Aspects such as pathogenicity, clinical evidence, symptoms, epidemiology and worldwide prevalence, genomic diversity, identification tools as well as interchanging hosts are not only reviewed but also critically evaluated. Generally, although often asymptomatic in pigs, the prevalence of those microbes in pig farms exhibits a worldwide substantial increasing trend. It should be mentioned, however, that the factors influencing the symptomatology of these viruses are still far from well established. Interestingly, both these viruses are also characterized by high genetic diversity. These high levels of molecular diversity in Caliciviridae family are more likely a result of recombination rather than evolutionary or selective adaptation via mutational steps. Thus, molecular markers for their detection are mostly based on conserved regions such as the RdRp region. Finally, it should be emphasized that Norovirus and the Sapovirus may also infect other domestic, farm and wild animals, including humans, and therefore their surveillance and clarification role in diseases such as diarrhea is a matter of public health importance as well.
Collapse
Affiliation(s)
- Irit Davidson
- Division of Avian Diseases, Kimron Veterinary Institute, Bet Dagan 50250, Israel;
| | - Efthymia Stamelou
- Department of Microbiology and Infectious Diseases, Faculty of Veterinary Medicine, School of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (E.S.); (K.V.P.); (E.P.); (S.K.K.)
| | - Ioannis A. Giantsis
- Department of Animal Science, Faculty of Agricultural Sciences, University of Western Macedonia, 53100 Florina, Greece
- Correspondence:
| | - Konstantinos V. Papageorgiou
- Department of Microbiology and Infectious Diseases, Faculty of Veterinary Medicine, School of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (E.S.); (K.V.P.); (E.P.); (S.K.K.)
| | - Evanthia Petridou
- Department of Microbiology and Infectious Diseases, Faculty of Veterinary Medicine, School of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (E.S.); (K.V.P.); (E.P.); (S.K.K.)
| | - Spyridon K. Kritas
- Department of Microbiology and Infectious Diseases, Faculty of Veterinary Medicine, School of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (E.S.); (K.V.P.); (E.P.); (S.K.K.)
| |
Collapse
|
16
|
Mariita RM, Davis JH, Randive RV. Illuminating Human Norovirus: A Perspective on Disinfection of Water and Surfaces Using UVC, Norovirus Model Organisms, and Radiation Safety Considerations. Pathogens 2022; 11:226. [PMID: 35215169 PMCID: PMC8879714 DOI: 10.3390/pathogens11020226] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/22/2022] [Accepted: 02/03/2022] [Indexed: 02/04/2023] Open
Abstract
Human noroviruses (HuNoVs) are a major cause of gastroenteritis and are associated with high morbidity because of their ability to survive in the environment and small inoculum size required for infection. Norovirus is transmitted through water, food, high touch-surfaces, and human-to-human contact. Ultraviolet Subtype C (UVC) light-emitting diodes (LEDs) can disrupt the norovirus transmission chain for water, food, and surfaces. Here, we illuminate considerations to be adhered to when picking norovirus surrogates for disinfection studies and shine light on effective use of UVC for norovirus infection control in water and air and validation for such systems and explore the blind spot of radiation safety considerations when using UVC disinfection strategies. This perspective also discusses the promise of UVC for norovirus mitigation to save and ease life.
Collapse
Affiliation(s)
- Richard M. Mariita
- Crystal IS Inc., an Asahi Kasei Company, 70 Cohoes Avenue, Green Island, NY 12183, USA; (J.H.D.); (R.V.R.)
| | | | | |
Collapse
|
17
|
Raman spectroscopy for virus detection and the implementation of unorthodox food safety. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.08.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
18
|
Current and Future Antiviral Strategies to Tackle Gastrointestinal Viral Infections. Microorganisms 2021; 9:microorganisms9081599. [PMID: 34442677 PMCID: PMC8399003 DOI: 10.3390/microorganisms9081599] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/21/2021] [Accepted: 07/21/2021] [Indexed: 01/16/2023] Open
Abstract
Acute gastroenteritis caused by virus has a major impact on public health worldwide in terms of morbidity, mortality, and economic burden. The main culprits are rotaviruses, noroviruses, sapoviruses, astroviruses, and enteric adenoviruses. Currently, there are no antiviral drugs available for the prevention or treatment of viral gastroenteritis. Here, we describe the antivirals that were identified as having in vitro and/or in vivo activity against these viruses, originating from in silico design or library screening, natural sources or being repurposed drugs. We also highlight recent advances in model systems available for this (hard to cultivate) group of viruses, such as organoid technologies, and that will facilitate antiviral studies as well as fill some of current knowledge gaps that hamper the development of highly efficient therapies against gastroenteric viruses.
Collapse
|
19
|
Abstract
PURPOSE OF REVIEW Sapovirus, a genus in the Caliciviridae family alongside norovirus, is increasingly recognized as an important cause of childhood diarrhea. Some challenges exist in our ability to better understand sapovirus infections, including the inability to grow sapovirus in cell culture, which has hindered diagnosis and studies of immunity. Another challenge is that individuals with sapovirus infection are commonly coinfected with other enteric pathogens, complicating our ability to attribute the diarrhea episode to a single pathogen. RECENT FINDINGS Development of molecular methods for sapovirus detection has increased our ability to measure disease prevalence. The prevalence of sapovirus varies between 1 and 17% of diarrhea episodes worldwide, with the highest burden in young children and older adults. Further, epidemiological studies have used novel approaches to account for the presence of coinfections with other enteric pathogens; one multisite cohort study of children under two years of age found that sapovirus had the second-highest attributable incidence among all diarrheal pathogens studied. SUMMARY Especially in settings where rotavirus vaccines have been introduced, efforts to reduce the overall burden of childhood diarrhea should focus on the reduction of sapovirus transmission and disease burden.
Collapse
|
20
|
Aggarwal S, Hassan E, Baldridge MT. Experimental Methods to Study the Pathogenesis of Human Enteric RNA Viruses. Viruses 2021; 13:975. [PMID: 34070283 PMCID: PMC8225081 DOI: 10.3390/v13060975] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/18/2021] [Accepted: 05/20/2021] [Indexed: 12/16/2022] Open
Abstract
Every year, millions of children are infected with viruses that target the gastrointestinal tract, causing acute gastroenteritis and diarrheal illness. Indeed, approximately 700 million episodes of diarrhea occur in children under five annually, with RNA viruses norovirus, rotavirus, and astrovirus serving as major causative pathogens. Numerous methodological advancements in recent years, including the establishment of novel cultivation systems using enteroids as well as the development of murine and other animal models of infection, have helped provide insight into many features of viral pathogenesis. However, many aspects of enteric viral infections remain elusive, demanding further study. Here, we describe the different in vitro and in vivo tools available to explore different pathophysiological attributes of human enteric RNA viruses, highlighting their advantages and limitations depending upon the question being explored. In addition, we discuss key areas and opportunities that would benefit from further methodological progress.
Collapse
Affiliation(s)
- Somya Aggarwal
- Division of Infectious Diseases, Department of Medicine, Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA; (S.A.); (E.H.)
| | - Ebrahim Hassan
- Division of Infectious Diseases, Department of Medicine, Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA; (S.A.); (E.H.)
| | - Megan T. Baldridge
- Division of Infectious Diseases, Department of Medicine, Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA; (S.A.); (E.H.)
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
21
|
Chan JC, Mohammad KN, Zhang LY, Wong SH, Chan MCW. Targeted Profiling of Immunological Genes during Norovirus Replication in Human Intestinal Enteroids. Viruses 2021; 13:v13020155. [PMID: 33494515 PMCID: PMC7910953 DOI: 10.3390/v13020155] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 01/14/2021] [Accepted: 01/18/2021] [Indexed: 12/18/2022] Open
Abstract
Norovirus is the leading cause of acute gastroenteritis worldwide. The pathogenesis of norovirus and the induced immune response remain poorly understood due to the lack of a robust virus culture system. The monolayers of two secretor-positive Chinese human intestinal enteroid (HIE) lines were challenged with two norovirus pandemic GII.4 Sydney strains. Norovirus RNA replication in supernatants and cell lysates were quantified by RT-qPCR. RNA expression levels of immune-related genes were profiled using PCR arrays. The secreted protein levels of shortlisted upregulated genes were measured in supernatants using analyte-specific enzyme-linked immunosorbent assay (ELISA). Productive norovirus replications were achieved in three (75%) out of four inoculations. The two most upregulated immune-related genes were CXCL10 (93-folds) and IFI44L (580-folds). Gene expressions of CXCL10 and IFI44L were positively correlated with the level of norovirus RNA replication (CXCL10: Spearman’s r = 0.779, p < 0.05; IFI44L: r = 0.881, p < 0.01). The higher level of secreted CXCL10 and IFI44L proteins confirmed their elevated gene expression. The two genes have been reported to be upregulated in norovirus volunteer challenges and natural human infections by other viruses. Our data suggested that HIE could mimic the innate immune response elicited in natural norovirus infection and, therefore, could serve as an experimental model for future virus-host interaction and antiviral studies.
Collapse
Affiliation(s)
- Jenny C.M. Chan
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China; (J.C.M.C.); (K.N.M.); (L.-Y.Z.)
| | - Kirran N. Mohammad
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China; (J.C.M.C.); (K.N.M.); (L.-Y.Z.)
| | - Lin-Yao Zhang
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China; (J.C.M.C.); (K.N.M.); (L.-Y.Z.)
| | - Sunny H. Wong
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China;
- Department of Medicine and Therapeutics, Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Martin Chi-Wai Chan
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China; (J.C.M.C.); (K.N.M.); (L.-Y.Z.)
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China;
- Correspondence:
| |
Collapse
|
22
|
Shirasaki N, Matsushita T, Matsui Y, Koriki S. Suitability of pepper mild mottle virus as a human enteric virus surrogate for assessing the efficacy of thermal or free-chlorine disinfection processes by using infectivity assays and enhanced viability PCR. WATER RESEARCH 2020; 186:116409. [PMID: 32942179 DOI: 10.1016/j.watres.2020.116409] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 09/02/2020] [Accepted: 09/06/2020] [Indexed: 05/05/2023]
Abstract
Evaluating the efficacy of disinfection processes to inactivate human enteric viruses is important for the prevention and control of waterborne diseases caused by exposure to those viruses via drinking water. Here, we evaluated the inactivation of two representative human enteric viruses (adenovirus type 40 [AdV] and coxsackievirus B5 [CV]) by thermal or free-chlorine disinfection. In addition, we compared the infectivity reduction ratio of a plant virus (pepper mild mottle virus [PMMoV], a recently proposed novel surrogate for human enteric viruses for the assessment of virus removal by coagulation‒rapid sand filtration and membrane filtration) with that of the two human enteric viruses to assess the suitability of PMMoV as a human enteric virus surrogate for use in thermal and free-chlorine disinfection processes. Finally, we examined whether conventional or enhanced viability polymerase chain reaction (PCR) analysis using propidium monoazide (PMA) or improved PMA (PMAxx) with or without an enhancer could be used as alternatives to infectivity assays (i.e., plaque-forming unit method for AdV and CV; local lesion count assay for PMMoV) for evaluating virus inactivation by disinfection processes. We found that PMMoV was more resistant to heat treatment than AdV and CV, suggesting that PMMoV is a potential surrogate for these two enteric viruses with regard to thermal disinfection processes. However, PMMoV was much more resistant to chlorine treatment compared with AdV and CV (which is chlorine-resistant) (CT value for 4-log10 inactivation: PMMoV, 84.5 mg-Cl2·min/L; CV, 1.15-1.19 mg-Cl2·min/L), suggesting that PMMoV is not useful as a surrogate for these enteric viruses with regard to free-chlorine disinfection processes. For thermal disinfection, the magnitude of the signal reduction observed with PMAxx-Enhancer-PCR was comparable with the magnitude of reduction in infectivity, indicating that PMAxx-Enhancer-PCR is a potential alternative to infectivity assay. However, for free-chlorine disinfection, the magnitude of the signal reduction observed with PMAxx-Enhancer-PCR was smaller than the magnitude of the reduction in infectivity, indicating that PMAxx-Enhancer-PCR underestimated the efficacy of virus inactivation (i.e., overestimated the infectious virus concentration) by chlorine treatment. Nevertheless, among the PCR approaches examined in the present study (PCR alone, PMA-PCR or PMAxx-PCR either with or without enhancer), PMAxx-Enhancer-PCR provided the most accurate assessment of the efficacy of virus inactivation by thermal or free chlorine disinfection processes.
Collapse
Affiliation(s)
- N Shirasaki
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, N13W8, Sapporo, 060-8628, Japan.
| | - T Matsushita
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, N13W8, Sapporo, 060-8628, Japan
| | - Y Matsui
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, N13W8, Sapporo, 060-8628, Japan
| | - S Koriki
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, N13W8, Sapporo, 060-8628, Japan
| |
Collapse
|
23
|
Molina-Chavarria A, Félix-Valenzuela L, Silva-Campa E, Mata-Haro V. Evaluation of gamma irradiation for human norovirus inactivation and its effect on strawberry cells. Int J Food Microbiol 2020; 330:108695. [DOI: 10.1016/j.ijfoodmicro.2020.108695] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 03/10/2020] [Accepted: 05/27/2020] [Indexed: 02/02/2023]
|
24
|
Enteric Viral Co-Infections: Pathogenesis and Perspective. Viruses 2020; 12:v12080904. [PMID: 32824880 PMCID: PMC7472086 DOI: 10.3390/v12080904] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/10/2020] [Accepted: 08/14/2020] [Indexed: 02/06/2023] Open
Abstract
Enteric viral co-infections, infections involving more than one virus, have been reported for a diverse group of etiological agents, including rotavirus, norovirus, astrovirus, adenovirus, and enteroviruses. These pathogens are causative agents for acute gastroenteritis and diarrheal disease in immunocompetent and immunocompromised individuals of all ages globally. Despite virus–virus co-infection events in the intestine being increasingly detected, little is known about their impact on disease outcomes or human health. Here, we review what is currently known about the clinical prevalence of virus–virus co-infections and how co-infections may influence vaccine responses. While experimental investigations into enteric virus co-infections have been limited, we highlight in vivo and in vitro models with exciting potential to investigate viral co-infections. Many features of virus–virus co-infection mechanisms in the intestine remain unclear, and further research will be critical.
Collapse
|
25
|
Cates JE, Vinjé J, Parashar U, Hall AJ. Recent advances in human norovirus research and implications for candidate vaccines. Expert Rev Vaccines 2020; 19:539-548. [PMID: 32500763 PMCID: PMC10760411 DOI: 10.1080/14760584.2020.1777860] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 06/01/2020] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Noroviruses are a leading cause of acute gastroenteritis worldwide. An estimated 21 million illnesses in the United States and upwards of 684 million illnesses worldwide are attributed to norovirus infection. There are no licensed vaccines to prevent norovirus, but several candidates are in development. AREAS COVERED We review recent advances in molecular epidemiology of noroviruses, immunology, and in-vitro cultivation of noroviruses using human intestinal enteroids. We also provide an update on the status of norovirus vaccine candidates. EXPERT OPINION Molecular epidemiological studies confirm the tremendous genetic diversity of noroviruses, the continuous emergence of new recombinant strains, and the predominance of GII.4 viruses worldwide. Duration of immunity, extent of cross protection between different genotypes, and differences in strain distribution for young children compared with adults remain key knowledge gaps. Recent discoveries regarding which epitopes are targeted by neutralizing antibodies using the novel in vitro culture of human noroviruses in human intestinal enteroids are enhancing our understanding of mechanisms of protection and providing guidance for vaccine development. A future norovirus vaccine has the potential to substantially reduce the burden of illnesses due to this ubiquitous virus.
Collapse
Affiliation(s)
- Jordan E Cates
- Division of Viral Diseases, Centers for Disease Control and Prevention , Atlanta, GA, USA
- Epidemic Intelligence Service, Centers for Disease Control and Prevention , Atlanta, GA, USA
| | - Jan Vinjé
- Division of Viral Diseases, Centers for Disease Control and Prevention , Atlanta, GA, USA
| | - Umesh Parashar
- Division of Viral Diseases, Centers for Disease Control and Prevention , Atlanta, GA, USA
| | - Aron J Hall
- Division of Viral Diseases, Centers for Disease Control and Prevention , Atlanta, GA, USA
| |
Collapse
|
26
|
King JF, Szczuka A, Zhang Z, Mitch WA. Efficacy of ozone for removal of pesticides, metals and indicator virus from reverse osmosis concentrates generated during potable reuse of municipal wastewaters. WATER RESEARCH 2020; 176:115744. [PMID: 32251944 DOI: 10.1016/j.watres.2020.115744] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 03/15/2020] [Accepted: 03/20/2020] [Indexed: 05/05/2023]
Abstract
This study evaluated ozone treatment to address concerns regarding the discharge to marine waters of chemical contaminants and pathogens in reverse osmosis (RO) concentrates generated during the potable reuse of municipal wastewaters. Previous studies indicated that contaminants can be sorted into five groups based on their reaction rate constants with ozone and hydroxyl radical to predict degradation of chemical contaminants during ozonation of municipal effluents. Spiking representatives of each group into five RO concentrate samples, this study demonstrated that the same contaminant grouping scheme could be used to predict contaminant degradation during ozonation of RO concentrates, despite the higher concentrations of ozone and hydroxyl radical scavengers. The predictive capability of the contaminant grouping scheme was further validated for four contaminants of concern in RO concentrates, including the pesticides fipronil and imidacloprid, and the metal chelates Ni-EDTA and Cu-EDTA. After measuring their ozone and hydroxyl radical reaction rate constants, these compounds were assigned to contaminant groups, and their degradation during ozonation matched predictions. Addition of 300 mg/L CaO at pH 11 achieved partial removal of the native nickel and copper by precipitation. Ozone pretreatment further enhanced precipitation of nickel, but not copper. Ozonation achieved 5-log inactivation of MS2 in all five concentrate samples at 1.18 mg O3/mg DOC. Ozonation at 0.9 mg O3/mg DOC formed 139-451 μg/L bromate. Pretreatment of RO concentrates with chlorine and ammonia reduced bromate formation by a maximum of 48% but increased total halogenated DBP concentrations from 20 μg/L to 36 μg/L. Regardless, neither bromate nor trihalomethane concentrations exceeded threshold concentrations of concern for discharge to marine waters.
Collapse
Affiliation(s)
- Jacob F King
- Department of Civil and Environmental Engineering, Stanford University, 473 Via Ortega, Stanford, CA, 94305, United States
| | - Aleksandra Szczuka
- Department of Civil and Environmental Engineering, Stanford University, 473 Via Ortega, Stanford, CA, 94305, United States
| | - Zhong Zhang
- Department of Civil and Environmental Engineering, Stanford University, 473 Via Ortega, Stanford, CA, 94305, United States
| | - William A Mitch
- Department of Civil and Environmental Engineering, Stanford University, 473 Via Ortega, Stanford, CA, 94305, United States.
| |
Collapse
|
27
|
Todd KV, Tripp RA. Vero Cells as a Mammalian Cell Substrate for Human Norovirus. Viruses 2020; 12:E439. [PMID: 32295124 PMCID: PMC7232407 DOI: 10.3390/v12040439] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/06/2020] [Accepted: 04/11/2020] [Indexed: 12/13/2022] Open
Abstract
Human norovirus (HuNoV) is a principal cause of acute gastroenteritis worldwide, particularly in developing countries. Its global prevalence is underscored by more serious morbidity and some mortality in the young (<5 years) and the elderly. To date, there are no licensed vaccines or approved therapeutics for HuNoV, mostly because there are limited cell culture systems and small animal models available. Recently described cell culture systems are not ideal substrates for HuNoV vaccine development because they are not clonal or only support a single strain. In this study, we show Vero cell-based replication of two pandemic GII.4 HuNoV strains and one GII.3 strain and confirm exosome-mediated HuNoV infection in Vero cells. Lastly, we show that trypsin addition to virus cultures or disruption of Vero cell host genes can modestly increase HuNoV replication. These data provide support for Vero cells as a cell culture model for HuNoV.
Collapse
Affiliation(s)
| | - Ralph A. Tripp
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
28
|
Hannemann H. Viral replicons as valuable tools for drug discovery. Drug Discov Today 2020; 25:1026-1033. [PMID: 32272194 PMCID: PMC7136885 DOI: 10.1016/j.drudis.2020.03.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 02/28/2020] [Accepted: 03/13/2020] [Indexed: 12/15/2022]
Abstract
RNA viruses can cause severe diseases such as dengue, Lassa, chikungunya and Ebola. Many of these viruses can only be propagated under high containment levels, necessitating the development of low containment surrogate systems such as subgenomic replicons and minigenome systems. Replicons are self-amplifying recombinant RNA molecules expressing proteins sufficient for their own replication but which do not produce infectious virions. Replicons can persist in cells and are passed on during cell division, enabling quick, efficient and high-throughput testing of drug candidates that act on viral transcription, translation and replication. This review will explore the history and potential for drug discovery of hepatitis C virus, dengue virus, respiratory syncytial virus, Ebola virus and norovirus replicon and minigenome systems.
Collapse
Affiliation(s)
- Holger Hannemann
- The Native Antigen Company, Langford Locks, Kidlington OX5 1LH, UK.
| |
Collapse
|
29
|
Jung K, Vasquez-Lee M, Saif LJ. Replicative capacity of porcine deltacoronavirus and porcine epidemic diarrhea virus in primary bovine mesenchymal cells. Vet Microbiol 2020; 244:108660. [PMID: 32402338 PMCID: PMC7194928 DOI: 10.1016/j.vetmic.2020.108660] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/23/2020] [Accepted: 03/24/2020] [Indexed: 12/24/2022]
Abstract
Gnotobiotic (Gn) calves were susceptible to infection with PDCoV, but not with PEDV. Cytopathic effects (CPE) were identified in two primary bovine mesenchymal cell types inoculated with PDCoV or PEDV. High PDCoV or PEDV RNA titers and PDCoV or PEDV antigens were also detected in inoculated cells. The in vitro observations only partially coincided with the corresponding in vivo data from Gn calves.
Unlike porcine epidemic diarrhea virus (PEDV) that infects only pigs, porcine deltacoronavirus (PDCoV) has the capacity to infect different animal species. In vivo gnotobiotic calves were previously confirmed to be susceptible to infection with PDCoV, but not with PEDV. We next investigated in vitro whether primary bovine cells are susceptible to PDCoV or PEDV infection. We conducted quantification of viral RNA in cell culture supernatants and immunofluorescent staining for the detection of PDCoV or PEDV antigen in two primary bovine cell types inoculated with the PDCoV strain OH-FD22 or PEDV strain PC22-P40 grown in LLC-PK or Vero cells, respectively, and supplemented with 1.25∼5 μg/mL of trypsin in the cell culture medium. The primary cells were isolated from the kidney or heart of a gnotobiotic calf, and both cell types were vimentin-positive, but E-Cadherin-negative, resembling mesenchymal cells. Similar to the previous in vivo observation, cytopathic effects (CPE) that consisted of enlarged and rounded cells, followed by cell shrinkage and detachment, were identified in the two primary cell types inoculated with PDCoV. Unexpectedly, similar CPE was also identified in the two cell types inoculated with PEDV. High PDCoV or PEDV RNA titers and PDCoV or PEDV antigens were detected in the cell culture supernatants and CPE-positive cells, respectively. Our study revealed that primary bovine mesenchymal cells are susceptible to infection with PDCoV and PEDV. The in vitro observation partially coincided with the corresponding in vivo data from gnotobiotic calves.
Collapse
Affiliation(s)
- Kwonil Jung
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, College of Food, Agricultural, and Environmental Sciences, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, OH, USA.
| | - Marcia Vasquez-Lee
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, College of Food, Agricultural, and Environmental Sciences, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, OH, USA
| | - Linda J Saif
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, College of Food, Agricultural, and Environmental Sciences, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, OH, USA.
| |
Collapse
|
30
|
Müller-Hermes C, Creutznacher R, Mallagaray A. Complete assignment of Ala, Ile, Leu ProS, Met and Val ProS methyl groups of the protruding domain from human norovirus GII.4 Saga. BIOMOLECULAR NMR ASSIGNMENTS 2020; 14:123-130. [PMID: 31993958 PMCID: PMC7069894 DOI: 10.1007/s12104-020-09932-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 01/16/2020] [Indexed: 05/05/2023]
Abstract
Attachment of human noroviruses to histo blood group antigens (HBGAs) is thought to be essential for infection, although how this binding event promotes infection is unknown. Recent studies have shown that 60% of all GII.4 epidemic strains may undergo a spontaneous post-translational modification (PTM) in an amino acid located adjacent to the binding pocket for HBGAs. This transformation proceeds with an estimated half-life of 1-2 days under physiological conditions, dramatically affecting HBGA recognition. The surface-exposed position of this PTM and its sequence conservation suggests a relevant role in immune escape and host-cell recognition. As a first step towards the understanding of the biological implications of this PTM at atomic resolution, we report the complete assignment of methyl resonances of a MILProSVProSA methyl-labeled sample of a 72 kDa protruding domain from a GII.4 Saga human norovirus strain. Assignments were obtained from methyl-methyl NOESY experiments combined with site-directed mutagenesis and automated assignment. This data provides the basis for a detailed characterization of the PTM-driven modulation of immune recognition in human norovirus on a molecular level.
Collapse
Affiliation(s)
- Christoph Müller-Hermes
- Center of Structural and Cell Biology in Medicine (CSCM), Institute of Chemistry and Metabolomics, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany
| | - Robert Creutznacher
- Center of Structural and Cell Biology in Medicine (CSCM), Institute of Chemistry and Metabolomics, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany
| | - Alvaro Mallagaray
- Center of Structural and Cell Biology in Medicine (CSCM), Institute of Chemistry and Metabolomics, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany.
| |
Collapse
|
31
|
Creutznacher R, Schulze E, Wallmann G, Peters T, Stein M, Mallagaray A. Chemical-Shift Perturbations Reflect Bile Acid Binding to Norovirus Coat Protein: Recognition Comes in Different Flavors. Chembiochem 2020; 21:1007-1021. [PMID: 31644826 PMCID: PMC7186840 DOI: 10.1002/cbic.201900572] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Indexed: 12/31/2022]
Abstract
Bile acids have been reported as important cofactors promoting human and murine norovirus (NoV) infections in cell culture. The underlying mechanisms are not resolved. Through the use of chemical shift perturbation (CSP) NMR experiments, we identified a low-affinity bile acid binding site of a human GII.4 NoV strain. Long-timescale MD simulations reveal the formation of a ligand-accessible binding pocket of flexible shape, allowing the formation of stable viral coat protein-bile acid complexes in agreement with experimental CSP data. CSP NMR experiments also show that this mode of bile acid binding has a minor influence on the binding of histo-blood group antigens and vice versa. STD NMR experiments probing the binding of bile acids to virus-like particles of seven different strains suggest that low-affinity bile acid binding is a common feature of human NoV and should therefore be important for understanding the role of bile acids as cofactors in NoV infection.
Collapse
Affiliation(s)
- Robert Creutznacher
- University of Lübeck, Center of Structural and Cell Biology in Medicine (CSCM)Institute of Chemistry and MetabolomicsRatzeburger Allee 16023562LübeckGermany
| | - Eric Schulze
- Max Planck Institute for Dynamics of Complex Technical SystemsMolecular Simulations and Design GroupSandtorstrasse 139106MagdeburgGermany
| | - Georg Wallmann
- University of Lübeck, Center of Structural and Cell Biology in Medicine (CSCM)Institute of Chemistry and MetabolomicsRatzeburger Allee 16023562LübeckGermany
| | - Thomas Peters
- University of Lübeck, Center of Structural and Cell Biology in Medicine (CSCM)Institute of Chemistry and MetabolomicsRatzeburger Allee 16023562LübeckGermany
| | - Matthias Stein
- Max Planck Institute for Dynamics of Complex Technical SystemsMolecular Simulations and Design GroupSandtorstrasse 139106MagdeburgGermany
| | - Alvaro Mallagaray
- University of Lübeck, Center of Structural and Cell Biology in Medicine (CSCM)Institute of Chemistry and MetabolomicsRatzeburger Allee 16023562LübeckGermany
| |
Collapse
|
32
|
Norovirus infection results in eIF2α independent host translation shut-off and remodels the G3BP1 interactome evading stress granule formation. PLoS Pathog 2020; 16:e1008250. [PMID: 31905230 PMCID: PMC6964919 DOI: 10.1371/journal.ppat.1008250] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 01/16/2020] [Accepted: 12/04/2019] [Indexed: 12/14/2022] Open
Abstract
Viral infections impose major stress on the host cell. In response, stress pathways can rapidly deploy defence mechanisms by shutting off the protein synthesis machinery and triggering the accumulation of mRNAs into stress granules to limit the use of energy and nutrients. Because this threatens viral gene expression, viruses need to evade these pathways to propagate. Human norovirus is responsible for gastroenteritis outbreaks worldwide. Here we examined how norovirus interacts with the eIF2α signaling axis controlling translation and stress granules. While norovirus infection represses host cell translation, our mechanistic analyses revealed that eIF2α signaling mediated by the stress kinase GCN2 is uncoupled from translational stalling. Moreover, infection results in a redistribution of the RNA-binding protein G3BP1 to replication complexes and remodelling of its interacting partners, allowing the avoidance from canonical stress granules. These results define novel strategies by which norovirus undergo efficient replication whilst avoiding the host stress response and manipulating the G3BP1 interactome. Viruses have evolved elegant strategies to evade host responses that restrict viral propagation by targeting the protein synthesis machinery and stress granules, which are membrane-less RNA granules with antiviral properties. Previous studies have unravelled how viruses, including norovirus the leading cause of gastroenteritis, regulate the activity of translation factors to affect the antiviral response. Furthermore, stress granules evasion strategies have been linked to targeting the scaffolding protein G3BP1. Here we dissect how murine norovirus, the main model for norovirus, evades the cellular stress responses. Our work challenges the dogma that translational control during infection is mainly mediated by eIF2α and demonstrate that norovirus evades this stress pathway. We further show that norovirus evades the stress granule response in a novel way by isolating and characterising the G3BP1 interactome for the first time in the context of a viral infection. We conclude that norovirus infection results in a redistribution of G3BP1 and its cellular partners to replication complexes, thereby preventing the assembly of stress granules. Overall, we define a novel evasion strategy by which norovirus escapes stress granule formation by rewiring the G3BP1 interactome.
Collapse
|
33
|
Wang Y, Yue H, Tang C. Prevalence and complete genome of bovine norovirus with novel VP1 genotype in calves in China. Sci Rep 2019; 9:12023. [PMID: 31427703 PMCID: PMC6700072 DOI: 10.1038/s41598-019-48569-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 08/07/2019] [Indexed: 12/21/2022] Open
Abstract
Bovine norovirus (BNoV) is a diarrhea-causing pathogen of calves. In this study, 211 diarrheic fecal samples were collected from 25 farms across six provinces in China, between November 2017 and September 2018. 20.4% of the samples were detected as BNoV-positive by RT-PCR. Phylogenetic analyses based on RdRp, VP1, and VP2 fragments revealed these BNoV strains had unique evolutionary characteristics. The complete genome of strain Bo/BET-17/18/CH was successfully sequenced. It was 7321 nucleotides (nt) in length, shared 79.4-80.9% nt identity with all five BNoV genomes, clustered on a separate branch of the phylogenetic tree, suggesting that strain Bo/BET-17/18/CH could represent a novel BNoV strain. Two interesting characteristics were found in the genome: (i) the VP1 sequence differed greatly from known BNoV VP1 sequences; (ii) a recombination event is predicted within the ORF1-ORF2 overlap. Moreover 16.3% (7/43) of the BNoV were identified as the novel VP1 genotype, which were distributed on four farms across two provinces, indicating that the novel VP1 genotype strain has spread. To our knowledge, this is first description of the molecular and genomic characteristics of BNoV in China. These findings extend our understanding of the genetic evolution and epidemics of BNoV.
Collapse
Affiliation(s)
- Yuelin Wang
- College of Life Science and Technology, Southwest Minzu University, Chengdu, China
| | - Hua Yue
- College of Life Science and Technology, Southwest Minzu University, Chengdu, China. .,Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu, China.
| | - Cheng Tang
- College of Life Science and Technology, Southwest Minzu University, Chengdu, China. .,Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu, China.
| |
Collapse
|
34
|
Ibrahim C, Hammami S, Chérif N, Mejri S, Pothier P, Hassen A. Detection of Sapoviruses in two biological lines of Tunisian hospital wastewater treatment. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2019; 29:400-413. [PMID: 30474395 DOI: 10.1080/09603123.2018.1546835] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The efficiency of rotating biodisks and natural oxidizing lagoon procedures is investigated at a Tunisian semi-industrial pilot plant, El Menzeh I, where the wastewater is mainly provided by three different neighbouring hospital clinics. Throughout 2011, 102 wastewater samples were collected from the two mentioned wastewater treatment procedures. Results showed that the Sapovirus (SaV) frequency was approximately 29.4% using the real-time reverse transcription polymerase chain reaction (RT-PCR) technique, and about 16.6% using the conventional RT-PCR. Also, the SaV genogroups and genotypes were identified and genotyping revealed that all of the four Tunisian SaV strains obtained belonged to the two genogroups GIV.1 and GGI.3. In addition, two new genotypes, D and C, were detected. A moderate decrease in the SaV frequencies was observed at the exit of the two treatment processes and the SaV removal rate was around 90% in the natural oxidizing lagoons and 94% in the rotating biodisks procedure showing the temperate sensitivity of these viruses to the implemented biological wastewater. Therefore, an urgent disinfection process should be implemented downstream of the two biological treatment procedures for safe release of treated effluent in the different natural environments. Abbreviations: NoV: Noroviruses; SaV: Sapoviruses; EC: Electrical Conductivity; COD: Chemical Oxygen Demand; BOD5: Biological Oxygen Demand; SS: Suspended Solids; NH4-N: Ammonium Nitrogen; P-PO4: Ortho-Phosphate; AlCl3: aluminum chloride.
Collapse
Affiliation(s)
- Chourouk Ibrahim
- a Faculty of Mathematical, Physical and Natural Sciences of Tunis , University of Tunis El Manar , Tunis , Tunisia
- b Laboratory of Treatment and Wastewater Valorization, Centre of Research and Water Technologies (CERTE) , Techno Park of Borj-Cedria 8020 , Tunis , Tunisia
| | - Salah Hammami
- c National School of Veterinary Medicine at Sidi-Thabet , University of Manouba, Institution of Agricultural Research and Higher Education (IRESA) , Tunis , Tunisia
| | - Nadia Chérif
- d Unit Virology of Marine organisms, Aquaculture Laboratory , National Institute of Sea Science and Technologies , Tunis , Tunisia
| | - Selma Mejri
- e Veterinary Research Institute of Tunisia, Laboratory of Virology , University of Tunis El Manar, Institution of Agricultural Research and Higher Education (IRESA), La Rabta , Tunis , Tunisia
| | - Pierre Pothier
- f National Reference Centre for Enteric Viruses, Laboratory of Virology , University Hospital of Dijon , Dijon , France
| | - Abdennaceur Hassen
- a Faculty of Mathematical, Physical and Natural Sciences of Tunis , University of Tunis El Manar , Tunis , Tunisia
| |
Collapse
|
35
|
Capsid Integrity qPCR—An Azo-Dye Based and Culture-Independent Approach to Estimate Adenovirus Infectivity after Disinfection and in the Aquatic Environment. WATER 2019. [DOI: 10.3390/w11061196] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Recreational, reclaimed and drinking source waters worldwide are under increasing anthropogenic pressure, and often contain waterborne enteric bacterial, protozoan, and viral pathogens originating from non-point source fecal contamination. Recently, the capsid integrity (ci)-qPCR, utilizing the azo-dyes propidium monoazide (PMA) or ethidium monoazide (EMA), has been shown to reduce false-positive signals under laboratory conditions as well as in food safety applications, thus improving the qPCR estimation of virions of public health significance. The compatibility of two widely used human adenovirus (HAdV) qPCR protocols was evaluated with the addition of a PMA/EMA pretreatment using a range of spiked and environmental samples. Stock suspensions of HAdV were inactivated using heat, UV, and chlorine before being quantified by cell culture, qPCR, and ci-qPCR. Apparent inactivation of virions was detected for heat and chlorine treated HAdV while there was no significant difference between ci-qPCR and qPCR protocols after disinfection by UV. In a follow-up comparative analysis under more complex matrix conditions, 51 surface and 24 wastewater samples pre/post UV treatment were assessed for enteric waterborne HAdV to evaluate the ability of ci-qPCR to reduce the number of false-positive results when compared to conventional qPCR and cell culture. Azo-dye pretreatment of non-UV inactivated samples was shown to improve the ability of molecular HAdV quantification by reducing signals from virions with an accessible genome, thereby increasing the relevance of qPCR results for public health purposes, particularly suited to resource-limited low and middle-income settings.
Collapse
|
36
|
Graziano VR, Wei J, Wilen CB. Norovirus Attachment and Entry. Viruses 2019; 11:E495. [PMID: 31151248 PMCID: PMC6630345 DOI: 10.3390/v11060495] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/24/2019] [Accepted: 05/25/2019] [Indexed: 12/19/2022] Open
Abstract
Human norovirus is a major human pathogen causing the majority of cases of viral gastroenteritis globally. Viral entry is the first step of the viral life cycle and is a significant determinant of cell tropism, host range, immune interactions, and pathogenesis. Bile salts and histo-blood group antigens are key mediators of norovirus entry; however, the molecular mechanisms by which these molecules promote infection and the identity of a potential human norovirus receptor remain unknown. Recently, there have been several important advances in norovirus entry biology including the identification of CD300lf as the receptor for murine norovirus and of the role of the minor capsid protein VP2 in viral genome release. Here, we will review the current understanding about norovirus attachment and entry and highlight important future directions.
Collapse
Affiliation(s)
- Vincent R Graziano
- Departments of Laboratory Medicine and Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA.
| | - Jin Wei
- Departments of Laboratory Medicine and Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA.
| | - Craig B Wilen
- Departments of Laboratory Medicine and Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
37
|
Animals as Reservoir for Human Norovirus. Viruses 2019; 11:v11050478. [PMID: 31130647 PMCID: PMC6563253 DOI: 10.3390/v11050478] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 05/20/2019] [Accepted: 05/21/2019] [Indexed: 01/12/2023] Open
Abstract
Norovirus is the most common cause of non-bacterial gastroenteritis and is a burden worldwide. The increasing norovirus diversity is currently categorized into at least 10 genogroups which are further classified into more than 40 genotypes. In addition to humans, norovirus can infect a broad range of hosts including livestock, pets, and wild animals, e.g., marine mammals and bats. Little is known about norovirus infections in most non-human hosts, but the close genetic relatedness between some animal and human noroviruses coupled with lack of understanding where newly appearing human norovirus genotypes and variants are emerging from has led to the hypothesis that norovirus may not be host restricted and might be able to jump the species barrier. We have systematically reviewed the literature to describe the diversity, prevalence, and geographic distribution of noroviruses found in animals, and the pathology associated with infection. We further discuss the evidence that exists for or against interspecies transmission including surveillance data and data from in vitro and in vivo experiments.
Collapse
|
38
|
Desselberger U. Caliciviridae Other Than Noroviruses. Viruses 2019; 11:v11030286. [PMID: 30901945 PMCID: PMC6466229 DOI: 10.3390/v11030286] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 03/08/2019] [Accepted: 03/11/2019] [Indexed: 12/24/2022] Open
Abstract
Besides noroviruses, the Caliciviridae family comprises four other accepted genera: Sapovirus, Lagovirus, Vesivirus, and Nebovirus. There are six new genera proposed: Recovirus, Valovirus, Bavovirus, Nacovirus, Minovirus, and Salovirus. All Caliciviridae have closely related genome structures, but are genetically and antigenically highly diverse and infect a wide range of mammalian host species including humans. Recombination in nature is not infrequent for most of the Caliciviridae, contributing to their diversity. Sapovirus infections cause diarrhoea in pigs, humans and other mammalian hosts. Lagovirus infections cause systemic haemorrhagic disease in rabbits and hares, and vesivirus infections lead to lung disease in cats, vesicular disease in swine, and exanthema and diseases of the reproductive system in large sea mammals. Neboviruses are an enteric pathogen of cattle, differing from bovine norovirus. At present, only a few selected caliciviruses can be propagated in cell culture (permanent cell lines or enteroids), and for most of the cultivatable caliciviruses helper virus-free, plasmid only-based reverse genetics systems have been established. The replication cycles of the caliciviruses are similar as far as they have been explored: viruses interact with a multitude of cell surface attachment factors (glycans) and co-receptors (proteins) for adsorption and penetration, use cellular membranes for the formation of replication complexes and have developed mechanisms to circumvent innate immune responses. Vaccines have been developed against lagoviruses and vesiviruses, and are under development against human noroviruses.
Collapse
Affiliation(s)
- Ulrich Desselberger
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK.
| |
Collapse
|
39
|
Cell Cycle Arrest is a Conserved Function of Norovirus VPg Proteins. Viruses 2019; 11:v11030217. [PMID: 30836641 PMCID: PMC6466040 DOI: 10.3390/v11030217] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 02/26/2019] [Accepted: 02/27/2019] [Indexed: 12/04/2022] Open
Abstract
Murine norovirus (MNV) viral protein genome-linked (VPg) manipulates the cell cycle to induce a G0/G1 arrest and gain a beneficial replication environment. All viruses of the norovirus genus encode a VPg protein; however, it is unknown if the G0/G1 arrest induced by MNV VPg is conserved in other members of the genus. RNA transcripts encoding a representative viral VPg from five norovirus genogroups were transfected into RAW-Blue murine macrophages, and the percentage of cells in each phase of the cell cycle was determined. A G0/G1 cell cycle arrest was observed for all norovirus VPg proteins tested, and in the wider Caliciviridae family the arrest was also conserved in rabbit hemorrhagic disease virus (RHDV) VPg and human sapovirus (HuSV) VPg. Truncation of MNV VPg shows that the first 62 amino acids are sufficient for a cell cycle arrest, and alignment of VPg sequences revealed a conserved motif in the N-terminal region of VPg. Analysis of VPg constructs with single N-terminal region point mutations, or exchange of N-terminal regions between VPg proteins, confirmed the importance of the N-terminal region for cell cycle arrest. These results provide evidence that G0/G1 cell cycle arrest is a conserved function of norovirus VPg proteins that involves the N-terminal region of these proteins.
Collapse
|
40
|
Melhem NM, Abou Hassan FF. Norovirus Correlates of Protection. NOROVIRUS 2019:157-187. [DOI: 10.1007/978-3-030-27209-8_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
41
|
Oka T, Iritani N, Yamamoto SP, Mori K, Ogawa T, Tatsumi C, Shibata S, Harada S, Wu FT. Broadly reactive real-time reverse transcription-polymerase chain reaction assay for the detection of human sapovirus genotypes. J Med Virol 2018; 91:370-377. [PMID: 30320885 DOI: 10.1002/jmv.25334] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 10/04/2018] [Indexed: 12/14/2022]
Abstract
Sapoviruses are associated with acute gastroenteritis. Human sapoviruses are classified into four distinct genogroups (GI, GII, GIV, and GV) based on their capsid gene sequences. A TaqMan probe-based real-time reverse transcription-polymerase chain reaction (RT-PCR) assay that detects the representative strains of these four genogroups is widely used for screening fecal specimens, shellfish, and environmental water samples. However, since the development of this test, more genetically diverse sapovirus strains have been reported, which are not detectable by the previously established assays. In this study, we report the development of a broader-range sapovirus real-time RT-PCR assay. The assay can detect 2.5 × 107 and 2.5 × 10 1 copies of sapovirus and therefore is as sensitive as the previous test. Analysis using clinical stool specimens or synthetic DNA revealed that the new system detected strains representative of all the 18 human sapovirus genotypes: GI.1-7, GII.1-8, GIV.1, and GV.1, 2. No cross-reactivity was observed against other representative common enteric viruses (norovirus, rotavirus, astrovirus, and adenovirus). This new assay will be useful as an improved, broadly reactive, and specific screening tool for human sapoviruses.
Collapse
Affiliation(s)
- Tomoichiro Oka
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Nobuhiro Iritani
- Division of Microbiology, Osaka Institute of Public Health, Osaka, Japan
| | - Seiji P Yamamoto
- Division of Microbiology, Osaka Institute of Public Health, Osaka, Japan
| | - Kohji Mori
- Department of Microbiology, Tokyo Metropolitan Institute of Public Health, Tokyo, Japan
| | - Tomoko Ogawa
- Division of Virology, Chiba Prefectural Institute of Public Health, Chiba, Japan
| | - Chika Tatsumi
- Division of Virology, Shimane Prefectural Institute of Public Health and Environmental Science, Shimane, Japan
| | - Shinichiro Shibata
- Microbiology Department, Nagoya City Public Health Research Institute, Aichi, Japan
| | - Seiya Harada
- Department of Microbiology, Kumamoto Prefectural Institute of Public Health and Environmental Science, Kumamoto, Japan
| | - Fang-Tzy Wu
- Center for Research, Diagnostics and Vaccine Development, Taiwan Centers for Disease Control, Taipei, Taiwan
| |
Collapse
|
42
|
Abstract
Noroviruses are highly prevalent enteric RNA viruses. Human noroviruses (HuNoVs) cause significant morbidity, mortality, and economic losses worldwide. Infections also occur in other mammalian species, including mice. Despite the discovery of the first norovirus in 1972, the viral tropism has long remained an enigma. A long-held assumption was that these viruses infect intestinal epithelial cells. Recent data support a more complex cell tropism of epithelial and nonepithelial cell types.
Collapse
|