1
|
Owen MC, Zhou Y, Dudley H, Feehley T, Hahn A, Yokoyama CC, Axelrod ML, Lin CY, Wang D, Janowski AB. Novel murine model of human astrovirus infection reveals cardiovascular tropism . J Virol 2025:e0024025. [PMID: 40304490 DOI: 10.1128/jvi.00240-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Accepted: 04/10/2025] [Indexed: 05/02/2025] Open
Abstract
Astroviruses are a common cause of gastrointestinal disease in humans and have been linked to fatal cases of encephalitis. A major barrier to the study of human-infecting astroviruses is the lack of an in vivo model as previous attempts failed to identify a host that supports viral replication. We describe a novel murine model of infection using astrovirus VA1/HMO-C (VA1), an astrovirus with high seroprevalence in humans. VA1 is cardiotropic, and viral RNA levels peak in the heart tissue 7 days post-inoculation in multiple different murine genetic backgrounds. Infectious VA1 particles could be recovered from heart tissue 3 and 5 days post-inoculation. Viral capsid was detected intracellularly in the heart tissue by immunostaining, and viral RNA was detected in cardiac myocytes, endocardium, and endothelial cells based on fluorescent in situ hybridization and confocal microscopy. Histologically, we identified inflammatory infiltrates consistent with myocarditis in some mice, with viral RNA colocalizing with the infiltrates. These foci contained CD3 +T cells and CD68 +macrophages. Viral RNA levels increased by >10 fold in the heart tissue or serum samples from Rag1 or Stat1 knockout mice, demonstrating the role of both adaptive and innate immunity in the response to VA1 infection. Based on the in vivo tropisms, we tested cardiac-derived primary cells and determined that VA1 can replicate in primary human cardiac endothelial cells, suggesting a novel cardiovascular tropism in human cells. This novel in vivo model of a human-infecting astrovirus enables further characterization of the host immune response and reveals a new cardiovascular tropism of astroviruses. IMPORTANCE Astroviruses routinely cause infections in humans; however, few methods were available to study these viruses. Here, we describe the first animal system to study human-infecting astroviruses by using mice. We demonstrate that mice are susceptible to astrovirus VA1, a strain that commonly infects humans and has been linked to fatal brain infections. The virus infects the heart tissue and is associated with inflammation. When mice with impaired immune systems were infected with VA1, they were found to have higher amounts of the virus in their hearts and blood. We found that VA1 can infect cells from human blood vessels of the heart, which is associated with human health. This model will enable us to better understand how astroviruses cause disease and how the immune system responds to infection. Our findings also suggest that astroviruses could be linked to cardiovascular diseases, including in humans.
Collapse
Affiliation(s)
- Macee C Owen
- Immunology Program, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Yuefang Zhou
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Holly Dudley
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | | | - Ashley Hahn
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Christine C Yokoyama
- Department of Internal Medicine, Division of Dermatology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Margaret L Axelrod
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Chieh-Yu Lin
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - David Wang
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Andrew B Janowski
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
2
|
Yu T, Zheng F, He W, Muyldermans S, Wen Y. Single domain antibody: Development and application in biotechnology and biopharma. Immunol Rev 2024; 328:98-112. [PMID: 39166870 PMCID: PMC11659936 DOI: 10.1111/imr.13381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Heavy-chain antibodies (HCAbs) are a unique type of antibodies devoid of light chains, and comprised of two heavy chains-only that recognize their cognate antigen by virtue of a single variable domain also referred to as VHH, single domain antibody (sdAb), or nanobody (Nb). These functional HCAbs, serendipitous discovered about three decades ago, are exclusively found in camelids, comprising dromedaries, camels, llamas, and vicugnas. Nanobodies have become an essential tool in biomedical research and medicine, both in diagnostics and therapeutics due to their beneficial properties: small size, high stability, strong antigen-binding affinity, low immunogenicity, low production cost, and straightforward engineering into more potent affinity reagents. The occurrence of HCAbs in camelids remains intriguing. It is believed to be an evolutionary adaptation, equipping camelids with a robust adaptive immune defense suitable to respond to the pressure from a pathogenic invasion necessitating a more profound antigen recognition and neutralization. This evolutionary innovation led to a simplified HCAb structure, possibly supported by genetic mutations and drift, allowing adaptive mutation and diversification in the heavy chain variable gene and constant gene regions. Beyond understanding their origins, the application of nanobodies has significantly advanced over the past 30 years. Alongside expanding laboratory research, there has been a rapid increase in patent application for nanobodies. The introduction of commercial nanobody drugs such as Cablivi, Nanozora, Envafolimab, and Carvykti has boosted confidence among in their potential. This review explores the evolutionary history of HCAbs, their ontogeny, and applications in biotechnology and pharmaceuticals, focusing on approved and ongoing medical research pipelines.
Collapse
Affiliation(s)
- Ting Yu
- Center for Microbiome Research of Med‐X Institute, Shaanxi Provincial Key Laboratory of Sepsis in Critical Care Medicine, The First Affiliated HospitalXi'an Jiaotong UniversityXi'anChina
| | - Fang Zheng
- The Key Laboratory of Environment and Genes Related to Disease of Ministry of Education, Health Science CenterXi'an Jiaotong UniversityXi'anChina
| | - Wenbo He
- Center for Microbiome Research of Med‐X Institute, Shaanxi Provincial Key Laboratory of Sepsis in Critical Care Medicine, The First Affiliated HospitalXi'an Jiaotong UniversityXi'anChina
| | - Serge Muyldermans
- Laboratory of Cellular and Molecular ImmunologyVrije Universiteit BrusselBrusselsBelgium
| | - Yurong Wen
- Center for Microbiome Research of Med‐X Institute, Shaanxi Provincial Key Laboratory of Sepsis in Critical Care Medicine, The First Affiliated HospitalXi'an Jiaotong UniversityXi'anChina
- The Key Laboratory of Environment and Genes Related to Disease of Ministry of Education, Health Science CenterXi'an Jiaotong UniversityXi'anChina
| |
Collapse
|
3
|
Luo Y, Wang Y, Tang W, Wang C, Liu H, Wang X, Xie J, Wang J, Ouyang K, Chen Y, Wei Z, Qin Y, Pan Y, Huang W. Isolation and identification of a novel porcine-related recombinant mammalian orthoreovirus type 3 strain from cattle in Guangxi Province, China. Front Microbiol 2024; 15:1419691. [PMID: 39104586 PMCID: PMC11299062 DOI: 10.3389/fmicb.2024.1419691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 07/01/2024] [Indexed: 08/07/2024] Open
Abstract
The Mammalian orthoreovirus (MRV) infects various mammals, including humans, and is linked to gastrointestinal, respiratory, and neurological diseases. A recent outbreak in Liuzhou, Guangxi, China, led to the isolation of a new MRV strain, GXLZ2301, from fecal samples. This strain replicates in multiple cell lines and forms lattice-like structures. Infected cells exhibit single-cell death and syncytia formation. The virus's titers peaked at 107.2 TCID50/0.1 mL in PK-15 and BHK cells, with the lowest at 103.88 TCID50/0.1 mL in A549 cells. Electron microscopy showed no envelope with a diameter of about 70 nm. Genetic analysis revealed GXLZ2301 as a recombinant strain with gene segments from humans, cows, and pigs, similar to type 3 MRV strains from Italy (2015-2016). Pathogenicity tests indicated that while the bovine MRV strain did not cause clinical symptoms in mice, it caused significant damage to the gut, lungs, liver, kidneys, and brain. The emergence of this MRV strain may pose a threat to the health of animals and humans, and it is recommended that its epidemiology and recombination be closely monitored.
Collapse
Affiliation(s)
- Yuhang Luo
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China
- Guangxi Vocational University of Agriculture, Nanning, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning, China
| | - Yanglin Wang
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning, China
| | - Wenfei Tang
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning, China
| | - Cui Wang
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning, China
- Liuzhou Center for Animal Disease Control and Prevention, Liuzhou, China
| | - Huanghao Liu
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning, China
| | - Xiaoling Wang
- Guangxi Vocational University of Agriculture, Nanning, China
| | - Jiang Xie
- Guangxi Vocational University of Agriculture, Nanning, China
| | - Jie Wang
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning, China
| | - Kang Ouyang
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning, China
| | - Ying Chen
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning, China
| | - Zuzhang Wei
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning, China
| | - Yifeng Qin
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning, China
| | - Yan Pan
- Guangxi Vocational University of Agriculture, Nanning, China
| | - Weijian Huang
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning, China
| |
Collapse
|
4
|
Alraddadi Y, Hashem A, Azhar E, Tolah A. Circulation of Non-Middle East Respiratory Syndrome (MERS) Coronaviruses in Imported Camels in Saudi Arabia. Cureus 2024; 16:e63351. [PMID: 39077303 PMCID: PMC11283925 DOI: 10.7759/cureus.63351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2024] [Indexed: 07/31/2024] Open
Abstract
Background Coronaviruses (CoVs) pose significant health risks to humans, with recent outbreaks like severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory syndrome coronavirus (MERS-CoV), and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) underscoring their zoonotic potential. Dromedary camels (Camelus dromedarius) have been implicated as intermediate hosts for MERS-CoV, prompting heightened surveillance efforts. This study aims to identify non-MERS-CoV CoVs in imported camels at the Jeddah seaport, Saudi Arabia, using molecular techniques. Methods Camel nasal swabs (n = 337) were collected from imported dromedary camels arriving at the Jeddah Islamic seaport from Sudan and Djibouti. Samples were tested for CoVs using real-time real-time reverse transcription polymerase chain reaction (RT-PCR) targeting the RNA-dependent RNA polymerase gene. Positive samples were confirmed by conventional RT-PCR and Sanger sequencing. Selected samples underwent RNA sequencing to identify viral genomes. The study underscores the importance of molecular surveillance in camels to mitigate zoonotic risks. Results Out of 337 camel samples tested, 28 (8.30%) were positive for CoVs, predominantly from camels imported from Djibouti, compared to Sudan (13.39% vs. 5.78%). Sequence analysis confirmed the presence of non-MERS CoVs, including camel alpha-coronavirus and human CoV-229E-related strains. These findings highlight potential viral diversity and transmission risks in imported camel populations. Conclusion This study identifies diverse CoVs circulating in imported dromedary camels at the Jeddah Islamic seaport, Saudi Arabia, underscoring their potential role in zoonotic transmission. Enhanced surveillance and collaborative efforts are essential to mitigate public health risks associated with novel coronavirus strains from camel populations.
Collapse
Affiliation(s)
- Yasser Alraddadi
- Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah, SAU
- Special Infectious Agent Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, SAU
| | - Anwar Hashem
- Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah, SAU
- Special Infectious Agent Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, SAU
| | - Esam Azhar
- Special Infectious Agent Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, SAU
| | - Ahmed Tolah
- Special Infectious Agent Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, SAU
| |
Collapse
|
5
|
Ali MM, Fathelrahman E, El Awad AI, Eltahir YM, Osman R, El-Khatib Y, AlRifai RH, El Sadig M, Khalafalla AI, Reeves A. Epidemiology and Scenario Simulations of the Middle East Respiratory Syndrome Corona Virus (MERS-CoV) Disease Spread and Control for Dromedary Camels in United Arab Emirates (UAE). Animals (Basel) 2024; 14:362. [PMID: 38338005 PMCID: PMC10854904 DOI: 10.3390/ani14030362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 01/13/2024] [Accepted: 01/17/2024] [Indexed: 02/12/2024] Open
Abstract
Middle East Respiratory Syndrome (MERS-CoV) is a coronavirus-caused viral respiratory infection initially detected in Saudi Arabia in 2012. In UAE, high seroprevalence (97.1) of MERS-CoV in camels was reported in several Emirate of Abu Dhabi studies, including camels in zoos, public escorts, and slaughterhouses. The objectives of this research include simulation of MERS-CoV spread using a customized animal disease spread model (i.e., customized stochastic model for the UAE; analyzing the MERS-CoV spread and prevalence based on camels age groups and identifying the optimum control MERS-CoV strategy. This study found that controlling animal mobility is the best management technique for minimizing epidemic length and the number of affected farms. This study also found that disease dissemination differs amongst camels of three ages: camel kids under the age of one, young camels aged one to four, and adult camels aged four and up; because of their immunological state, kids, as well as adults, had greater infection rates. To save immunization costs, it is advised that certain age groups be targeted and that intense ad hoc unexpected vaccinations be avoided. According to the study, choosing the best technique must consider both efficacy and cost.
Collapse
Affiliation(s)
- Magdi Mohamed Ali
- UAE Ministry of Climate Change and Environment, Dubai 1509, United Arab Emirates;
| | - Eihab Fathelrahman
- Department of Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab Emirates University (UAEU), Al Ain 1551, United Arab Emirates; (A.I.E.A.); (R.O.)
| | - Adil I. El Awad
- Department of Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab Emirates University (UAEU), Al Ain 1551, United Arab Emirates; (A.I.E.A.); (R.O.)
| | - Yassir M. Eltahir
- Abu Dhabi Agricultural and Food Safety Authority ADAFSA, Abu Dhabi 52150, United Arab Emirates; (Y.M.E.); (A.I.K.)
| | - Raeda Osman
- Department of Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab Emirates University (UAEU), Al Ain 1551, United Arab Emirates; (A.I.E.A.); (R.O.)
| | - Youssef El-Khatib
- Department of Mathematical Sciences, College of Science, United Arab Emirates University (UAEU), Al Ain 1551, United Arab Emirates;
| | - Rami H. AlRifai
- Institute of Public Health, College of Medicine, and Health Sciences (UAEU), Al Ain 1551, United Arab Emirates; (R.H.A.); (M.E.S.)
| | - Mohamed El Sadig
- Institute of Public Health, College of Medicine, and Health Sciences (UAEU), Al Ain 1551, United Arab Emirates; (R.H.A.); (M.E.S.)
| | | | - Aaron Reeves
- Center for Public Health Surveillance and Technology, RTI International, Research Triangle Park, Raleigh, NC 27709, USA;
| |
Collapse
|
6
|
Wang L, Zheng B, Shen Z, Nath ND, Li Y, Walsh T, Li Y, Mitchell WJ, He D, Lee J, Moore S, Tong S, Zhang S, Ma W. Isolation and characterization of mammalian orthoreovirus from bats in the United States. J Med Virol 2023; 95:e28492. [PMID: 36633204 DOI: 10.1002/jmv.28492] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 01/08/2023] [Accepted: 01/09/2023] [Indexed: 01/13/2023]
Abstract
Mammalian orthoreovirus (MRV) infects many mammalian species including humans, bats, and domestic animals. To determine the prevalence of MRV in bats in the United States, we screened more than 900 bats of different species collected during 2015-2019 by a real-time reverse-transcription polymerase chain reaction assay; 4.4% bats tested MRV-positive and 13 MRVs were isolated. Sequence and phylogenetic analysis revealed that these isolates belonged to four different strains/genotypes of viruses in Serotypes 1 or 2, which contain genes similar to those of MRVs detected in humans, bats, bovine, and deer. Further characterization showed that these four MRV strains replicated efficiently on human, canine, monkey, ferret, and swine cell lines. The 40/Bat/USA/2018 strain belonging to the Serotype 1 demonstrated the ability to infect and transmit in pigs without prior adaptation. Taken together, this is evidence for different genotypes and serotypes of MRVs circulating in US bats, which can be a mixing vessel of MRVs that may spread to other species, including humans, resulting in cross-species infections.
Collapse
Affiliation(s)
- Liping Wang
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA.,Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, Missouri, USA
| | - Baoliang Zheng
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, Kansas, USA
| | - Zhenyu Shen
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA.,Veterinary Medical Diagnostic Laboratory, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA
| | - Nirmalendu Deb Nath
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, Kansas, USA
| | - Yonghai Li
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, Kansas, USA
| | - Timothy Walsh
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, Kansas, USA
| | - Yan Li
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - William J Mitchell
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA.,Veterinary Medical Diagnostic Laboratory, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA
| | - Dongchang He
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, Kansas, USA
| | - Jinhwa Lee
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, Kansas, USA
| | - Susan Moore
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, Kansas, USA.,Veterinary Medical Diagnostic Laboratory, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA
| | - Suxiang Tong
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Shuping Zhang
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA.,Veterinary Medical Diagnostic Laboratory, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA
| | - Wenjun Ma
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA.,Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
7
|
Shawaf T, Schuberth HJ, Hussen J. Immune cell composition of the bronchoalveolar lavage fluid in healthy and respiratory diseased dromedary camels. BMC Vet Res 2022; 18:353. [PMID: 36131278 PMCID: PMC9490690 DOI: 10.1186/s12917-022-03446-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 09/12/2022] [Indexed: 11/23/2022] Open
Abstract
Background Respiratory diseases are among the most common and expensive to treat diseases in camels with a great economic impact on camel health, welfare, and production. Bronchoalveolar lavage fluid (BALF) has been proven as a valuable sample for investigating the leukocyte populations in the respiratory tract of several species. In the present study, fluorescent antibody labeling and flow cytometry were used to study the immune cell composition of BALF in dromedary camels. Animals with clinical respiratory diseases (n = seven) were compared with apparently healthy animals (n = 10). In addition, blood leukocytes from the same animals were stained in parallel with the same antibodies and analyzed by flow cytometry. Results Camel BALF macrophages, granulocytes, monocytes, and lymphocytes were identified based on their forward and side scatter properties. The expression pattern of the cell markers CD172a, CD14, CD163, and MHCII molecules on BALF cells indicates a similar phenotype for camel, bovine, and porcine BALF myeloid cells. The comparison between camels with respiratory disease and healthy camels regarding cellular composition in their BALF revealed a higher total cell count, a higher fraction of granulocytes, and a lower fraction of macrophages in diseased than healthy camels. Within the lymphocyte population, the percentages of helper T cells and B cells were also higher in diseased than healthy camels. The elevated expression of the activation marker CD11a on helper T cells of diseased camels is an indication of the expansion of helper T cells population due to infection and exposure to respiratory pathogens. The higher abundance of MHCII molecules on BALF macrophages from diseased camels indicates a polarization toward an inflammatory macrophage phenotype (M1) in respiratory diseased camels. No significant differences were observed in the systemic leukogram between healthy and diseased animals. Conclusions Collectively, the current study represents the first report on flow cytometric analysis of immune cell composition of bronchoalveolar lavage fluid (BALF) in dromedary camels.
Collapse
Affiliation(s)
- Turke Shawaf
- Department of Clinical Sciences, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Hans-Joachim Schuberth
- Institute for Immunology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Jamal Hussen
- Department of Microbiology, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia.
| |
Collapse
|
8
|
Khan SA, Imtiaz MA, Islam MM, Tanzin AZ, Islam A, Hassan MM. Major bat-borne zoonotic viral epidemics in Asia and Africa: A systematic review and meta-analysis. Vet Med Sci 2022; 8:1787-1801. [PMID: 35537080 PMCID: PMC9297750 DOI: 10.1002/vms3.835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Bats are the natural reservoir host for many pathogenic and non-pathogenic viruses, potentially spilling over to humans and domestic animals directly or via an intermediate host. The ongoing COVID-19 pandemic is the continuation of virus spillover events that have taken place over the last few decades, particularly in Asia and Africa. Therefore, these bat-associated epidemics provide a significant number of hints, including respiratory cellular tropism, more intense susceptibility to these cell types, and overall likely to become a pandemic for the next spillover. In this systematic review, we analysed data to insight, through bat-originated spillover in Asia and Africa. We used STATA/IC-13 software for descriptive statistics and meta-analysis. The random effect of meta-analysis showed that the pooled estimates of case fatality rates of bat-originated viral zoonotic diseases were higher in Africa (61.06%, 95%CI: 50.26 to 71.85, l2 % = 97.3, p < 0.001). Moreover, estimates of case fatality rates were higher in Ebola (61.06%; 95%CI: 50.26 to 71.85, l2 % = 97.3, p < 0.001) followed by Nipah (55.19%; 95%CI: 39.29 to 71.09, l2 % = 94.2, p < 0.001), MERS (18.49%; 95%CI: 8.19 to 28.76, l2 % = 95.4, p < 0.001) and SARS (10.86%; 95%CI: 6.02 to 15.71, l2 % = 85.7, p < 0.001) with the overall case fatality rates of 29.86 (95%CI: 29.97 to 48.58, l2 % = 99.0, p < 0.001). Bat-originated viruses have caused several outbreaks of deadly diseases, including Nipah, Ebola, SARS and MERS in Asia and Africa in a sequential fashion. Nipah virus emerged first in Malaysia, but later, periodic outbreaks were noticed in Bangladesh and India. Similarly, the Ebola virus was detected in the African continent with neurological disorders in humans, like Nipah, seen in the Asian region. Two important coronaviruses, MERS and SARS, were introduced, both with the potential to infect respiratory passages. This paper explores the dimension of spillover events within and/or between bat-human and the epidemiological risk factors, which may lead to another pandemic occurring. Further, these processes enhance the bat-originated virus, which utilises an intermediate host to jump into human species.
Collapse
Affiliation(s)
- Shahneaz Ali Khan
- Department of Physiology, Biochemistry and PharmacologyFaculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences UniversityKhulshiChattogramBangladesh
| | - Mohammed Ashif Imtiaz
- Department of Physiology, Biochemistry and PharmacologyFaculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences UniversityKhulshiChattogramBangladesh
| | | | - Abu Zubayer Tanzin
- Department of Physiology, Biochemistry and PharmacologyFaculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences UniversityKhulshiChattogramBangladesh
| | - Ariful Islam
- EcoHealth AllianceNew YorkNew York
- Centre for Integrative EcologyDeakin UniversityGeelong CampusVictoriaAustralia
| | - Mohammad Mahmudul Hassan
- Department of Physiology, Biochemistry and PharmacologyFaculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences UniversityKhulshiChattogramBangladesh
- Queensland Alliance for One Health SciencesSchool of Veterinary ScienceThe University of QueenslandQueenslandAustralia
| |
Collapse
|
9
|
Teng JLL, Wernery U, Lee HH, Fung J, Joseph S, Li KSM, Elizabeth SK, Fong JYH, Chan KH, Chen H, Lau SKP, Woo PCY. Co-circulation of a Novel Dromedary Camel Parainfluenza Virus 3 and Middle East Respiratory Syndrome Coronavirus in a Dromedary Herd With Respiratory Tract Infections. Front Microbiol 2021; 12:739779. [PMID: 34956112 PMCID: PMC8705932 DOI: 10.3389/fmicb.2021.739779] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 11/05/2021] [Indexed: 11/13/2022] Open
Abstract
Since the emergence of Middle East Respiratory Syndrome (MERS) in 2012, there have been a surge in the discovery and evolutionary studies of viruses in dromedaries. Here, we investigated a herd of nine dromedary calves from Umm Al Quwain, the United Arab Emirates that developed respiratory signs. Viral culture of the nasal swabs from the nine calves on Vero cells showed two different types of cytopathic effects (CPEs), suggesting the presence of two different viruses. Three samples showed typical CPEs of Middle East respiratory syndrome (MERS) coronavirus (MERS-CoV) in Vero cells, which was confirmed by partial RdRp gene sequencing. Complete genome sequencing of the three MERS-CoV strains showed that they belonged to clade B3, most closely related to another dromedary MERS-CoV isolate previously detected in Dubai. They also showed evidence of recombination between lineages B4 and B5 in ORF1ab. Another three samples showed non-typical CPEs of MERS-CoV with cell rounding, progressive degeneration, and detachment. Electron microscopy revealed spherical viral particles with peplomers and diameter of about 170nm. High-throughput sequencing and metagenomic analysis showed that the genome organization (3'-N-P-M-F-HN-L-5') was typical of paramyxovirus. They possessed typical genome features similar to other viruses of the genus Respirovirus, including a conserved motif 323FAPGNYALSYAM336 in the N protein, RNA editing sites 5'-717AAAAAAGGG725-3', and 5'-1038AGAAGAAAGAAAGG1051-3' (mRNA sense) in the P gene with multiple polypeptides coding capacity, a nuclear localization signal sequence 245KVGRMYSVEYCKQKIEK261 in the M protein, a conserved sialic acid binding motif 252NRKSCS257 in the HN protein, conserved lengths of the leader (55nt) and trailer (51nt) sequences, total coding percentages (92.6–93.4%), gene-start (AGGANNAAAG), gene-end (NANNANNAAAAA), and trinucleotide intergenic sequences (CTT, mRNA sense). Phylogenetic analysis of their complete genomes showed that they were most closely related to bovine parainfluenza virus 3 (PIV3) genotype C strains. In the phylogenetic tree constructed using the complete L protein, the branch length between dromedary camel PIV3 (DcPIV3) and the nearest node is 0.04, which is >0.03, the definition used for species demarcation in the family Paramyxoviridae. Therefore, we show that DcPIV3 is a novel species of the genus Respirovirus that co-circulated with MERS-CoV in a dromedary herd in the Middle East.
Collapse
Affiliation(s)
- Jade Lee Lee Teng
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Ulrich Wernery
- Central Veterinary Research Laboratory, Dubai, United Arab Emirates
| | - Hwei Huih Lee
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Joshua Fung
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Sunitha Joseph
- Central Veterinary Research Laboratory, Dubai, United Arab Emirates
| | - Kenneth Sze Ming Li
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | | | - Jordan Yik Hei Fong
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Kwok-Hung Chan
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Honglin Chen
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Susanna Kar Pui Lau
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Patrick Chiu Yat Woo
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| |
Collapse
|
10
|
Peros CS, Dasgupta R, Kumar P, Johnson BA. Bushmeat, wet markets, and the risks of pandemics: Exploring the nexus through systematic review of scientific disclosures. ENVIRONMENTAL SCIENCE & POLICY 2021; 124:1-11. [PMID: 36536884 PMCID: PMC9751798 DOI: 10.1016/j.envsci.2021.05.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 04/19/2021] [Accepted: 05/27/2021] [Indexed: 06/16/2023]
Abstract
The novel coronavirus (SARS-CoV-2) is the third coronavirus this century to threaten human health, killing more than two million people globally. Like previous coronaviruses, SARS-CoV-2 is suspected to have wildlife origins and was possibly transmitted to humans via wet markets selling bushmeat (aka harvested wild meat). Thus, an interdisciplinary framework is vital to address the nexus between bushmeat, wet markets, and disease. We reviewed the contemporary scientific literature to: (1) assess disease surveillance efforts within the bushmeat trade and wet markets globally by compiling zoonotic health risks based on primarily serological examinations; and (2) gauge perceptions of health risks associated with bushmeat and wet markets. Of the 58 species of bushmeat investigated across 15 countries in the 52 articles that we analyzed,one or more pathogens (totaling 60 genera of pathogens) were reported in 48 species, while no zoonotic pathogens were reported in 10 species based on serology. Burden of disease data was nearly absent from the articles resulting from our Scopus search, and therefore was not included in our analyses. We also found that perceived health risks associated with bushmeat was low, though we could not perform statistical analyses due to the lack of quantitative perception-based studies. After screening the literature, our results showed that the global distribution of reported bushmeat studies were biased towards Africa, revealing data deficiencies across Asia and South America despite the prevalence of the bushmeat trade across the Global South. Studies targeting implications of the bushmeat trade on human health can help address these data deficiencies across Asia and South America. We further illustrate the need to address the nexus between bushmeat, wet markets, and disease to help prevent future outbreaks of zoonotic diseases under the previously proposed "One Health Framework", which integrates human, animal, and environmental health. By tackling these three pillars, we discuss the current policy gaps and recommend suitable measures to prevent future disease outbreaks.
Collapse
Affiliation(s)
- Colin Scott Peros
- Organization for Programs in Environmental Sciences, University of Tokyo, Japan
- Nature Resources and Ecosystem Services, Institute for Global Environmental Strategies (IGES), Japan
| | - Rajarshi Dasgupta
- Nature Resources and Ecosystem Services, Institute for Global Environmental Strategies (IGES), Japan
| | - Pankaj Kumar
- Nature Resources and Ecosystem Services, Institute for Global Environmental Strategies (IGES), Japan
| | - Brian Alan Johnson
- Nature Resources and Ecosystem Services, Institute for Global Environmental Strategies (IGES), Japan
| |
Collapse
|
11
|
Castells M, Colina R. Viral Enteritis in Cattle: To Well Known Viruses and Beyond. MICROBIOLOGY RESEARCH 2021; 12:663-682. [DOI: 10.3390/microbiolres12030048] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025] Open
Abstract
Livestock products supply about 13 percent of energy and 28 percent of protein in diets consumed worldwide. Diarrhea is a leading cause of sickness and death of beef and dairy calves in their first month of life and also affecting adult cattle, resulting in large economic losses and a negative impact on animal welfare. Despite the usual multifactorial origin, viruses are generally involved, being among the most important causes of diarrhea. There are several viruses that have been confirmed as etiological agents (i.e., rotavirus and coronavirus), and some viruses that are not yet confirmed as etiological agents. This review summarizes the viruses that have been detected in the enteric tract of cattle and tries to deepen and gather knowledge about them.
Collapse
Affiliation(s)
- Matías Castells
- Centro Universitario Regional Litoral Norte, Laboratorio de Virología Molecular, Universidad de la República, Salto 50000, Uruguay
| | - Rodney Colina
- Centro Universitario Regional Litoral Norte, Laboratorio de Virología Molecular, Universidad de la República, Salto 50000, Uruguay
| |
Collapse
|
12
|
Shawaf T, Almubarak A, Alhumam N, Almathen F, Hussen J. Cytological analysis of tracheal wash and bronchoalveolar lavage fluid in health and respiratory disease in dromedary camels. PeerJ 2021; 9:e11723. [PMID: 34249521 PMCID: PMC8256809 DOI: 10.7717/peerj.11723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 06/14/2021] [Indexed: 11/20/2022] Open
Abstract
Background Tracheal wash (TW) and bronchoalveolar lavage (BAL) have proven to be useful tools for the identification of disease-associated changes in the respiratory tract in human and different animal species. In the dromedary camel, little is known about cytological analysis of TW and BAL in health and disease. The aim of the present study was to evaluate the cytological composition of TW and BAL in health and respiratory disease in dromedary camels. Methods TW and BAL samples were collected from dromedary camels and cytological analysis was performed by microscopic examination of prepared smears. Camels with clinical respiratory disease (n = 18) were compared with apparently healthy (control) camels (n = 9). Results In the apparently healthy camels, differential cytological analysis of TW samples identified macrophages and neutrophils as the main cell populations with lesser proportions of lymphocytes and epithelial cells and very rare abundance of eosinophils and mast cells. In the TW of camels with respiratory disease, neutrophils were the most abundant cells followed by macrophages and lymphocytes. In the BAL of healthy camels, macrophages represented the main cell type followed by lymphocytes and neutrophils. In respiratory-diseased camels, BAL samples contained higher percentages of neutrophils with reduced percentages of macrophages and lymphocytes in comparison to camels from the control group. Collectively, the results of the current study revealed higher abundance of neutrophils in the TW and BAL from dromedary camels than many other veterinary species. The cytological patterns of TW and BAL from camels with respiratory diseases were characterized by increased proportion of neutrophils and decreased proportion of macrophages in comparison to healthy camels. The proportion of lymphocytes was also decreased in TW samples from diseased camels.
Collapse
Affiliation(s)
- Turke Shawaf
- Department of Clinical Sciences, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Abdullah Almubarak
- Department of Microbiology, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Naser Alhumam
- Department of Microbiology, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Faisal Almathen
- Department of Public Health, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia.,The Camel Research Center, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Jamal Hussen
- Department of Microbiology, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
| |
Collapse
|
13
|
Wang L, Li Y, Walsh T, Shen Z, Li Y, Deb Nath N, Lee J, Zheng B, Tao Y, Paden CR, Queen K, Zhang S, Tong S, Ma W. Isolation and characterization of novel reassortant mammalian orthoreovirus from pigs in the United States. Emerg Microbes Infect 2021; 10:1137-1147. [PMID: 34018466 PMCID: PMC8205024 DOI: 10.1080/22221751.2021.1933608] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Mammalian orthoreovirus (MRV) infects multiple mammalian species including humans. A United States Midwest swine farm with approximately one thousand 3-month-old pigs experienced an event, in which more than 300 pigs showed neurological signs, like "down and peddling", with approximately 40% mortality. A novel MRV was isolated from the diseased pigs. Sequence and phylogenetic analysis revealed that the isolate was a reassortant virus containing viral gene segments from three MRV serotypes that infect human, bovine and swine. The M2 and S1 segment of the isolate showed 94% and 92% nucleotide similarity to the M2 of the MRV2 D5/Jones and the S1 of the MRV1 C/bovine/Indiana/MRV00304/2014, respectively; the remaining eight segments displayed 93%-95% nucleotide similarity to those of the MRV3 FS-03/Porcine/USA/2014. Pig studies showed that both MRV-infected and native contact pigs displayed fever, diarrhoea and nasal discharge. MRV RNA was detected in different intestinal locations of both infected and contact pigs, indicating that the MRV isolate is pathogenic and transmissible in pigs. Seroconversion was also observed in experimentally infected pigs. A prevalence study on more than 180 swine serum samples collected from two states without disease revealed 40%-52% positive to MRV. All results warrant the necessity to monitor MRV epidemiology and reassortment as the MRV could be an important pathogen for the swine industry and a novel MRV might emerge to threaten animal and public health.
Collapse
Affiliation(s)
- Liping Wang
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, USA.,Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA.,Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Yan Li
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Timothy Walsh
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, USA
| | - Zhenyu Shen
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA.,Veterinary Medical Diagnostic Laboratory, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Yonghai Li
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, USA
| | - Nirmalendu Deb Nath
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, USA
| | - Jinhwa Lee
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, USA
| | - Baoliang Zheng
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, USA
| | - Ying Tao
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Clinton R Paden
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Krista Queen
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Shuping Zhang
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA.,Veterinary Medical Diagnostic Laboratory, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Suxiang Tong
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Wenjun Ma
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, USA.,Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA.,Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, USA
| |
Collapse
|
14
|
Roach SN, Langlois RA. Intra- and Cross-Species Transmission of Astroviruses. Viruses 2021; 13:v13061127. [PMID: 34208242 PMCID: PMC8230745 DOI: 10.3390/v13061127] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/30/2021] [Accepted: 06/08/2021] [Indexed: 12/13/2022] Open
Abstract
Astroviruses are non-enveloped, single-stranded RNA viruses that infect mammalian and avian species. In humans, astrovirus infections are one of the most common causes of gastroenteritis in children. Infection has also been linked to serious neurological complications, especially in immunocompromised individuals. More extensive disease has also been characterized in non-human mammalian and avian species. To date, astroviruses have been detected in over 80 different avian and mammalian hosts. As the number of hosts continues to rise, the need to understand how astroviruses transmit within a given species as well as to new host species becomes increasingly important. Here, we review the current understanding of astrovirus transmission, the factors that influence viral spread, and the potential for cross-species transmission. Additionally, we highlight the current gaps in knowledge and areas of future research that will be key to understanding astrovirus transmission and zoonotic potential.
Collapse
Affiliation(s)
- Shanley N. Roach
- Biochemistry, Molecular Biology, and Biophysics Graduate Program, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Ryan A. Langlois
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55455, USA
- Correspondence:
| |
Collapse
|
15
|
Beyond the Gastrointestinal Tract: The Emerging and Diverse Tissue Tropisms of Astroviruses. Viruses 2021; 13:v13050732. [PMID: 33922259 PMCID: PMC8145421 DOI: 10.3390/v13050732] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/16/2021] [Accepted: 04/20/2021] [Indexed: 12/19/2022] Open
Abstract
Astroviruses are single stranded, positive-sense RNA viruses that have been historically associated with diseases of the gastrointestinal tract of vertebrates, including humans. However, there is now a multitude of evidence demonstrating the capacity of these viruses to cause extraintestinal diseases. The most striking causal relationship is neurological diseases in humans, cattle, pigs, and other mammals, caused by astrovirus infection. Astroviruses have also been associated with disseminated infections, localized disease of the liver or kidneys, and there is increasing evidence suggesting a potential tropism to the respiratory tract. This review will discuss the current understanding of the tissue tropisms for astroviruses and their emerging capacity to cause disease in multiple organ systems.
Collapse
|
16
|
Khalafalla AI, Li Y, Uehara A, Hussein NA, Zhang J, Tao Y, Bergeron E, Ibrahim IH, Al Hosani MA, Yusof MF, Alhammadi ZM, Alyammahi SM, Gasim EF, Ishag HZA, Hosani FAL, Gerber SI, Almuhairi SS, Tong S. Identification of a novel lineage of Crimean-Congo haemorrhagic fever virus in dromedary camels, United Arab Emirates. J Gen Virol 2021; 102:001473. [PMID: 33231536 PMCID: PMC8749806 DOI: 10.1099/jgv.0.001473] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 08/20/2020] [Indexed: 02/05/2023] Open
Abstract
Crimean-Congo haemorrhagic fever virus (CCHFV) is a tick-borne virus causing Crimean-Congo haemorrhagic fever (CCHF), a disease reported to have a high fatality rate in numerous countries. The virus is geographically widespread due to its vector, and numerous wild and domestic animals can develop asymptomatic infection. Serological and limited molecular evidence of CCHFV has previously been reported in Camelus dromedarius (the dromedary, or one-humped camel) in the United Arab Emirates (UAE). In this study, 238 camel samples were screened for CCHFV RNA where 16 camel samples were positive for CCHFV by RT-PCR. Analysis of full-length CCHFV genome sequences revealed a novel lineage in camels from the UAE, and potential reassortment of the M segment of the genome.
Collapse
Affiliation(s)
- Abdelmalik I. Khalafalla
- Veterinary Laboratories Division, Abu Dhabi Agriculture and Food Safety Authority, PO Box 52150, Abu Dhabi, UAE
| | - Yan Li
- Centers for Disease Control and Prevention, National Center for Immunization and Respiratory Diseases, Division of Viral Diseases, Atlanta, Georgia, USA
| | - Anna Uehara
- Centers for Disease Control and Prevention, National Center for Immunization and Respiratory Diseases, Division of Viral Diseases, Atlanta, Georgia, USA
- Oak Ridge Institute for Science Education, Oak Ridge, Tennessee, USA
| | - Nasareldien A. Hussein
- Veterinary Laboratories Division, Abu Dhabi Agriculture and Food Safety Authority, PO Box 52150, Abu Dhabi, UAE
| | - Jing Zhang
- Centers for Disease Control and Prevention, National Center for Immunization and Respiratory Diseases, Division of Viral Diseases, Atlanta, Georgia, USA
| | - Ying Tao
- Centers for Disease Control and Prevention, National Center for Immunization and Respiratory Diseases, Division of Viral Diseases, Atlanta, Georgia, USA
| | - Eric Bergeron
- Centers for Disease Control and Prevention, National Center for Emerging and Zoonotic Infectious Diseases, Division of High-Consequence Pathogens and Pathology, Atlanta, Georgia, USA
| | | | - Mohamed A. Al Hosani
- Veterinary Laboratories Division, Abu Dhabi Agriculture and Food Safety Authority, PO Box 52150, Abu Dhabi, UAE
| | - Mohd F. Yusof
- Veterinary Laboratories Division, Abu Dhabi Agriculture and Food Safety Authority, PO Box 52150, Abu Dhabi, UAE
| | - Zulaikha M. Alhammadi
- Veterinary Laboratories Division, Abu Dhabi Agriculture and Food Safety Authority, PO Box 52150, Abu Dhabi, UAE
| | - Saeed M. Alyammahi
- Veterinary Laboratories Division, Abu Dhabi Agriculture and Food Safety Authority, PO Box 52150, Abu Dhabi, UAE
| | - Esmat F. Gasim
- Veterinary Laboratories Division, Abu Dhabi Agriculture and Food Safety Authority, PO Box 52150, Abu Dhabi, UAE
| | - Hassan Z. A. Ishag
- Veterinary Laboratories Division, Abu Dhabi Agriculture and Food Safety Authority, PO Box 52150, Abu Dhabi, UAE
| | | | - Susan I. Gerber
- Centers for Disease Control and Prevention, National Center for Immunization and Respiratory Diseases, Division of Viral Diseases, Atlanta, Georgia, USA
| | - Salama S. Almuhairi
- Veterinary Laboratories Division, Abu Dhabi Agriculture and Food Safety Authority, PO Box 52150, Abu Dhabi, UAE
| | - Suxiang Tong
- Centers for Disease Control and Prevention, National Center for Immunization and Respiratory Diseases, Division of Viral Diseases, Atlanta, Georgia, USA
| |
Collapse
|
17
|
Kia GSN, Tao Y, Umoh JU, Kwaga JKP, Tong S. Identification of Coronaviruses, Paramyxoviruses, Reoviruses, and Rotaviruses among Bats in Nigeria. Am J Trop Med Hyg 2021; 104:1106-1110. [PMID: 33534762 DOI: 10.4269/ajtmh.19-0872] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 08/04/2020] [Indexed: 11/07/2022] Open
Abstract
Bats are often consumed by some ethnic groups in Nigeria despite association of bats with many important emerging viruses. More than 300 bats representing eight species were captured during 2010-2011 in eight locations of northern Nigeria. Available fecal swabs (n = 95) were screened for the presence of arenaviruses, CoVs, paramyxoviruses (PMVs), reoviruses, rhabdoviruses, and influenza viruses using generic reverse transcription-polymerase chain reaction assays. Here, we document the detection of CoVs, PMVs, reoviruses, and rotaviruses (RVs) in Nigerian bats. The Nigerian bat CoVs are grouped within other bat SARS-CoV-like viruses identified from Ghana in a sister clade next to the human SARS-CoV clade. The phylogenetic analysis indicated a broad range of RVs present in Nigerian bats, some cluster with human RVs and some represent novel species. Our study adds that continuing global surveillance for viruses in bats to understand their origin, adaptation, and evolution is important to prevent and control future zoonotic disease outbreaks.
Collapse
Affiliation(s)
| | - Ying Tao
- 2Centers for Disease Control and Prevention, Atlanta, Georgia
| | | | | | - Suxiang Tong
- 2Centers for Disease Control and Prevention, Atlanta, Georgia
| |
Collapse
|
18
|
Bolatti EM, Zorec TM, Montani ME, Hošnjak L, Chouhy D, Viarengo G, Casal PE, Barquez RM, Poljak M, Giri AA. A Preliminary Study of the Virome of the South American Free-Tailed Bats ( Tadarida brasiliensis) and Identification of Two Novel Mammalian Viruses. Viruses 2020; 12:v12040422. [PMID: 32283670 PMCID: PMC7232368 DOI: 10.3390/v12040422] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/01/2020] [Accepted: 04/03/2020] [Indexed: 12/12/2022] Open
Abstract
Bats provide important ecosystem services as pollinators, seed dispersers, and/or insect controllers, but they have also been found harboring different viruses with zoonotic potential. Virome studies in bats distributed in Asia, Africa, Europe, and North America have increased dramatically over the past decade, whereas information on viruses infecting South American species is scarce. We explored the virome of Tadarida brasiliensis, an insectivorous New World bat species inhabiting a maternity colony in Rosario (Argentina), by a metagenomic approach. The analysis of five pooled oral/anal swab samples indicated the presence of 43 different taxonomic viral families infecting a wide range of hosts. By conventional nucleic acid detection techniques and/or bioinformatics approaches, the genomes of two novel viruses were completely covered clustering into the Papillomaviridae (Tadarida brasiliensis papillomavirus type 1, TbraPV1) and Genomoviridae (Tadarida brasiliensis gemykibivirus 1, TbGkyV1) families. TbraPV1 is the first papillomavirus type identified in this host and the prototype of a novel genus. TbGkyV1 is the first genomovirus reported in New World bats and constitutes a new species within the genus Gemykibivirus. Our findings extend the knowledge about oral/anal viromes of a South American bat species and contribute to understand the evolution and genetic diversity of the novel characterized viruses.
Collapse
Affiliation(s)
- Elisa M. Bolatti
- Grupo Virología Humana, Instituto de Biología Molecular y Celular de Rosario (CONICET), Suipacha 590, Rosario 2000, Argentina; (E.M.B.); (D.C.); (G.V.)
- Área Virología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario 2000, Argentina;
| | - Tomaž M. Zorec
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Zaloška 4, SI-1000 Ljubljana, Slovenia; (T.M.Z.); (L.H.)
| | - María E. Montani
- Museo Provincial de Ciencias Naturales “Dr. Ángel Gallardo”, San Lorenzo 1949, Rosario 2000, Argentina;
- Programa de Conservación de los Murciélagos de Argentina, Miguel Lillo 251, San Miguel de Tucumán 4000, Argentina;
- Programa de Investigaciones de Biodiversidad Argentina, Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucumán, Miguel Lillo 205, San Miguel de Tucumán 4000, Argentina
| | - Lea Hošnjak
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Zaloška 4, SI-1000 Ljubljana, Slovenia; (T.M.Z.); (L.H.)
| | - Diego Chouhy
- Grupo Virología Humana, Instituto de Biología Molecular y Celular de Rosario (CONICET), Suipacha 590, Rosario 2000, Argentina; (E.M.B.); (D.C.); (G.V.)
- Área Virología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario 2000, Argentina;
| | - Gastón Viarengo
- Grupo Virología Humana, Instituto de Biología Molecular y Celular de Rosario (CONICET), Suipacha 590, Rosario 2000, Argentina; (E.M.B.); (D.C.); (G.V.)
| | - Pablo E. Casal
- Área Virología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario 2000, Argentina;
| | - Rubén M. Barquez
- Programa de Conservación de los Murciélagos de Argentina, Miguel Lillo 251, San Miguel de Tucumán 4000, Argentina;
- Programa de Investigaciones de Biodiversidad Argentina, Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucumán, Miguel Lillo 205, San Miguel de Tucumán 4000, Argentina
| | - Mario Poljak
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Zaloška 4, SI-1000 Ljubljana, Slovenia; (T.M.Z.); (L.H.)
- Correspondence: (M.P.); (A.A.G.); Tel.: +386-1-543-7454 (M.P.); +54-341-435-0661 (ext. 116) (A.A.G.); Fax: +54-341-439-0465 (A.A.G.)
| | - Adriana A. Giri
- Grupo Virología Humana, Instituto de Biología Molecular y Celular de Rosario (CONICET), Suipacha 590, Rosario 2000, Argentina; (E.M.B.); (D.C.); (G.V.)
- Área Virología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario 2000, Argentina;
- Correspondence: (M.P.); (A.A.G.); Tel.: +386-1-543-7454 (M.P.); +54-341-435-0661 (ext. 116) (A.A.G.); Fax: +54-341-439-0465 (A.A.G.)
| |
Collapse
|
19
|
Global status of Middle East respiratory syndrome coronavirus in dromedary camels: a systematic review. Epidemiol Infect 2020; 147:e84. [PMID: 30869000 PMCID: PMC6518605 DOI: 10.1017/s095026881800345x] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Dromedary camels have been shown to be the main reservoir for human Middle East respiratory syndrome (MERS) infections. This systematic review aims to compile and analyse all published data on MERS-coronavirus (CoV) in the global camel population to provide an overview of current knowledge on the distribution, spread and risk factors of infections in dromedary camels. We included original research articles containing laboratory evidence of MERS-CoV infections in dromedary camels in the field from 2013 to April 2018. In general, camels only show minor clinical signs of disease after being infected with MERS-CoV. Serological evidence of MERS-CoV in camels has been found in 20 countries, with molecular evidence for virus circulation in 13 countries. The seroprevalence of MERS-CoV antibodies increases with age in camels, while the prevalence of viral shedding as determined by MERS-CoV RNA detection in nasal swabs decreases. In several studies, camels that were sampled at animal markets or quarantine facilities were seropositive more often than camels at farms as well as imported camels vs. locally bred camels. Some studies show a relatively higher seroprevalence and viral detection during the cooler winter months. Knowledge of the animal reservoir of MERS-CoV is essential to develop intervention and control measures to prevent human infections.
Collapse
|
20
|
Castells M, Bertoni E, Caffarena RD, Casaux ML, Schild C, Victoria M, Riet-Correa F, Giannitti F, Parreño V, Colina R. Bovine Astrovirus Surveillance in Uruguay Reveals High Detection Rate of a Novel Mamastrovirus Species. Viruses 2019; 12:v12010032. [PMID: 31892166 PMCID: PMC7019600 DOI: 10.3390/v12010032] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 11/15/2019] [Accepted: 11/15/2019] [Indexed: 02/07/2023] Open
Abstract
Viral infections affecting cattle lead to economic losses to the livestock industry worldwide, but little is known about the circulation, pathogenicity and genetic diversity of enteric bovine astrovirus (BoAstV) in America. The aim of this work was to describe the prevalence and genetic diversity of enteric BoAstV in dairy cattle in Uruguay. A total of 457 fecal and 43 intestinal contents from dairy calves were collected between July 2015 and May 2017 and tested by RT-PCR, followed by sequencing and phylogenetic analyses of the polymerase and capsid regions. Twenty-six percent (128/500) of the samples were positive. Three different species within the Mamastrovirus genus were identified, including Mamastrovirus 28, Mamastrovirus 33 (3 samples each) and an unclassified Mamastrovirus species (19 samples). The unclassified species was characterized as a novel Mamastrovirus species. BoAstV circulates in Uruguayan dairy cattle with a high genetic diversity. The eventual clinicopathological significance of enteric BoAstV infection in cattle needs further investigation.
Collapse
Affiliation(s)
- Matías Castells
- Laboratorio de Virología Molecular, CENUR Litoral Norte, Centro Universitario de Salto, Universidad de la República, Rivera 1350, Salto, Uruguay
- Instituto Nacional de Investigación Agropecuaria (INIA), Plataforma de Investigación en Salud Animal, Ruta 50 km 11, La Estanzuela 64988, Colonia, Uruguay
- Correspondence: (M.C.); (R.C.); Tel.: +598-4734-2924 (M.C. & R.C.)
| | - Estefany Bertoni
- Laboratorio de Virología Molecular, CENUR Litoral Norte, Centro Universitario de Salto, Universidad de la República, Rivera 1350, Salto, Uruguay
| | - Rubén Darío Caffarena
- Instituto Nacional de Investigación Agropecuaria (INIA), Plataforma de Investigación en Salud Animal, Ruta 50 km 11, La Estanzuela 64988, Colonia, Uruguay
- Departamento de Patología y Clínica de Rumiantes y Suinos, Facultad de Veterinaria, Universidad de la República. Alberto Lasplaces 1620, Montevideo, Uruguay
| | - María Laura Casaux
- Instituto Nacional de Investigación Agropecuaria (INIA), Plataforma de Investigación en Salud Animal, Ruta 50 km 11, La Estanzuela 64988, Colonia, Uruguay
| | - Carlos Schild
- Instituto Nacional de Investigación Agropecuaria (INIA), Plataforma de Investigación en Salud Animal, Ruta 50 km 11, La Estanzuela 64988, Colonia, Uruguay
| | - Matías Victoria
- Laboratorio de Virología Molecular, CENUR Litoral Norte, Centro Universitario de Salto, Universidad de la República, Rivera 1350, Salto, Uruguay
| | - Franklin Riet-Correa
- Instituto Nacional de Investigación Agropecuaria (INIA), Plataforma de Investigación en Salud Animal, Ruta 50 km 11, La Estanzuela 64988, Colonia, Uruguay
| | - Federico Giannitti
- Instituto Nacional de Investigación Agropecuaria (INIA), Plataforma de Investigación en Salud Animal, Ruta 50 km 11, La Estanzuela 64988, Colonia, Uruguay
| | - Viviana Parreño
- Sección de Virus Gastroentéricos, Instituto de Virología, CICV y A, INTA Castelar, Nicolás Repetto S/N, Buenos Aires 1686, Argentina
| | - Rodney Colina
- Laboratorio de Virología Molecular, CENUR Litoral Norte, Centro Universitario de Salto, Universidad de la República, Rivera 1350, Salto, Uruguay
- Correspondence: (M.C.); (R.C.); Tel.: +598-4734-2924 (M.C. & R.C.)
| |
Collapse
|
21
|
Ramshaw RE, Letourneau ID, Hong AY, Hon J, Morgan JD, Osborne JCP, Shirude S, Van Kerkhove MD, Hay SI, Pigott DM. A database of geopositioned Middle East Respiratory Syndrome Coronavirus occurrences. Sci Data 2019; 6:318. [PMID: 31836720 PMCID: PMC6911100 DOI: 10.1038/s41597-019-0330-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 11/15/2019] [Indexed: 12/21/2022] Open
Abstract
As a World Health Organization Research and Development Blueprint priority pathogen, there is a need to better understand the geographic distribution of Middle East Respiratory Syndrome Coronavirus (MERS-CoV) and its potential to infect mammals and humans. This database documents cases of MERS-CoV globally, with specific attention paid to zoonotic transmission. An initial literature search was conducted in PubMed, Web of Science, and Scopus; after screening articles according to the inclusion/exclusion criteria, a total of 208 sources were selected for extraction and geo-positioning. Each MERS-CoV occurrence was assigned one of the following classifications based upon published contextual information: index, unspecified, secondary, mammal, environmental, or imported. In total, this database is comprised of 861 unique geo-positioned MERS-CoV occurrences. The purpose of this article is to share a collated MERS-CoV database and extraction protocol that can be utilized in future mapping efforts for both MERS-CoV and other infectious diseases. More broadly, it may also provide useful data for the development of targeted MERS-CoV surveillance, which would prove invaluable in preventing future zoonotic spillover. Measurement(s) | Middle East Respiratory Syndrome • geographic location | Technology Type(s) | digital curation | Factor Type(s) | geographic distribution of Middle East Respiratory Syndrome Coronavirus (MERS-CoV) • year | Sample Characteristic - Organism | Middle East respiratory syndrome-related coronavirus | Sample Characteristic - Location | Earth (planet) |
Machine-accessible metadata file describing the reported data: 10.6084/m9.figshare.11108801
Collapse
Affiliation(s)
- Rebecca E Ramshaw
- Institute for Health Metrics and Evaluation, University of Washington, 2301 5th Ave., Suite 600, Seattle, WA, United States
| | - Ian D Letourneau
- Institute for Health Metrics and Evaluation, University of Washington, 2301 5th Ave., Suite 600, Seattle, WA, United States
| | - Amy Y Hong
- Bloomberg School of Public Health, Johns Hopkins University, 615N Wolfe St, Baltimore, MD, 21205, United States
| | - Julia Hon
- Institute for Health Metrics and Evaluation, University of Washington, 2301 5th Ave., Suite 600, Seattle, WA, United States
| | - Julia D Morgan
- Institute for Health Metrics and Evaluation, University of Washington, 2301 5th Ave., Suite 600, Seattle, WA, United States
| | - Joshua C P Osborne
- Institute for Health Metrics and Evaluation, University of Washington, 2301 5th Ave., Suite 600, Seattle, WA, United States
| | - Shreya Shirude
- Institute for Health Metrics and Evaluation, University of Washington, 2301 5th Ave., Suite 600, Seattle, WA, United States
| | - Maria D Van Kerkhove
- Department of Infectious Hazards Management, Health Emergencies Programme, World Health Organization, Avenue Appia 20, 1211, Geneva, Switzerland
| | - Simon I Hay
- Institute for Health Metrics and Evaluation, University of Washington, 2301 5th Ave., Suite 600, Seattle, WA, United States.,Department of Health Metrics Sciences, School of Medicine, University of Washington, 2301 5th Ave., Suite 600, Seattle, WA, United States
| | - David M Pigott
- Institute for Health Metrics and Evaluation, University of Washington, 2301 5th Ave., Suite 600, Seattle, WA, United States. .,Department of Health Metrics Sciences, School of Medicine, University of Washington, 2301 5th Ave., Suite 600, Seattle, WA, United States.
| |
Collapse
|
22
|
Dighe A, Jombart T, Van Kerkhove MD, Ferguson N. A systematic review of MERS-CoV seroprevalence and RNA prevalence in dromedary camels: Implications for animal vaccination. Epidemics 2019; 29:100350. [PMID: 31201040 PMCID: PMC6899506 DOI: 10.1016/j.epidem.2019.100350] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 05/29/2019] [Accepted: 06/03/2019] [Indexed: 12/17/2022] Open
Abstract
Most adult dromedaries in Africa and the Middle East have been infected with MERS-CoV. Seroprevalence increases with age, while active infection is more common in calves. Prevalence is higher at sites where different dromedary populations mix. Further study is needed to determine if prevalence of infection varies seasonally.
Human infection with Middle East Respiratory Syndrome Coronavirus (MERS-CoV) is driven by recurring dromedary-to-human spill-over events, leading decision-makers to consider dromedary vaccination. Dromedary vaccine candidates in the development pipeline are showing hopeful results, but gaps in our understanding of the epidemiology of MERS-CoV in dromedaries must be addressed to design and evaluate potential vaccination strategies. We aim to bring together existing measures of MERS-CoV infection in dromedary camels to assess the distribution of infection, highlighting knowledge gaps and implications for animal vaccination. We systematically reviewed the published literature on MEDLINE, EMBASE and Web of Science that reported seroprevalence and/or prevalence of active MERS-CoV infection in dromedary camels from both cross-sectional and longitudinal studies. 60 studies met our eligibility criteria. Qualitative syntheses determined that MERS-CoV seroprevalence increased with age up to 80–100% in adult dromedaries supporting geographically widespread endemicity of MERS-CoV in dromedaries in both the Arabian Peninsula and countries exporting dromedaries from Africa. The high prevalence of active infection measured in juveniles and at sites where dromedary populations mix should guide further investigation – particularly of dromedary movement – and inform vaccination strategy design and evaluation through mathematical modelling.
Collapse
Affiliation(s)
- Amy Dighe
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, Medical School Building, St Mary's Hospital, Norfolk Place, London, W2 1PG, United Kingdom.
| | - Thibaut Jombart
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, Medical School Building, St Mary's Hospital, Norfolk Place, London, W2 1PG, United Kingdom; Department of Infectious Disease Epidemiology, London School of Hygiene & Tropical Medicine, Keppel St, Bloomsbury, London, WC1E 7HT, United Kingdom; UK Public Health Rapid Support Team, London School of Hygiene & Tropical Medicine, Keppel Street, London, WC1E 7HT, United Kingdom.
| | - Maria D Van Kerkhove
- Department of Global Infectious Hazards Management, Health Emergencies Program, World Health Organization, Avenue Appia 20, CH-1211, Geneva, Switzerland.
| | - Neil Ferguson
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, Medical School Building, St Mary's Hospital, Norfolk Place, London, W2 1PG, United Kingdom.
| |
Collapse
|
23
|
Wohlgemuth N, Honce R, Schultz-Cherry S. Astrovirus evolution and emergence. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2019; 69:30-37. [PMID: 30639546 PMCID: PMC7106029 DOI: 10.1016/j.meegid.2019.01.009] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 01/09/2019] [Accepted: 01/10/2019] [Indexed: 12/19/2022]
Abstract
Astroviruses are small, non-enveloped, positive-sense, single-stranded RNA viruses that belong to the Astroviridae family. Astroviruses infect diverse hosts and are typically associated with gastrointestinal illness; although disease can range from asymptomatic to encephalitis depending on the host and viral genotype. Astroviruses have high genetic variability due to an error prone polymerase and frequent recombination events between strains. Once thought to be species specific, recent evidence suggests astroviruses can spread between different host species, although the frequency with which this occurs and the restrictions that regulate the process are unknown. Recombination events can lead to drastic evolutionary changes and contribute to cross-species transmission events. This work reviews the current state of research on astrovirus evolution and emergence, especially as it relates to cross-species transmission and recombination of astroviruses.
Collapse
Affiliation(s)
- Nicholas Wohlgemuth
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105, United States
| | - Rebekah Honce
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105, United States; Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38105, United States
| | - Stacey Schultz-Cherry
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105, United States.
| |
Collapse
|
24
|
Al-Tayib OA. An Overview of the Most Significant Zoonotic Viral Pathogens Transmitted from Animal to Human in Saudi Arabia. Pathogens 2019; 8:E25. [PMID: 30813309 PMCID: PMC6471281 DOI: 10.3390/pathogens8010025] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 02/12/2019] [Accepted: 02/13/2019] [Indexed: 02/01/2023] Open
Abstract
Currently, there has been an increasing socioeconomic impact of zoonotic pathogens transmitted from animals to humans worldwide. Recently, in the Arabian Peninsula, including in Saudi Arabia, epidemiological data indicated an actual increase in the number of emerging and/or reemerging cases of several viral zoonotic diseases. Data presented in this review are very relevant because Saudi Arabia is considered the largest country in the Peninsula. We believe that zoonotic pathogens in Saudi Arabia remain an important public health problem; however, more than 10 million Muslim pilgrims from around 184 Islamic countries arrive yearly at Makkah for the Hajj season and/or for the Umrah. Therefore, for health reasons, several countries recommend vaccinations for various zoonotic diseases among preventive protocols that should be complied with before traveling to Saudi Arabia. However, there is a shortage of epidemiological data focusing on the emerging and reemerging of zoonotic pathogens transmitted from animal to humans in different densely populated cities and/or localities in Saudi Arabia. Therefore, further efforts might be needed to control the increasing impacts of zoonotic viral disease. Also, there is a need for a high collaboration to enhance the detection and determination of the prevalence, diagnosis, control, and prevention as well as intervention and reduction in outbreaks of these diseases in Saudi Arabia, particularly those from other countries. Persons in the health field including physicians and veterinarians, pet owners, pet store owners, exporters, border guards, and people involved in businesses related to animal products have adopted various preventive strategies. Some of these measures might pave the way to highly successful prevention and control results on the different transmission routes of these viral zoonotic diseases from or to Saudi Arabia. Moreover, the prevention of these viral pathogens depends on socioeconomic impacts, available data, improved diagnosis, and highly effective therapeutics or prophylaxis.
Collapse
Affiliation(s)
- Omar A Al-Tayib
- Abdullah Bagshan for Dental and Oral Rehabilitation (DOR), Dental College Research Center, King Saud University, Riyadh 12372, Saudi Arabia.
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Khartoum, Khartoum 11111, Sudan.
| |
Collapse
|
25
|
Kelly-Cirino C, Mazzola LT, Chua A, Oxenford CJ, Van Kerkhove MD. An updated roadmap for MERS-CoV research and product development: focus on diagnostics. BMJ Glob Health 2019; 4:e001105. [PMID: 30815285 PMCID: PMC6361340 DOI: 10.1136/bmjgh-2018-001105] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 10/13/2018] [Accepted: 10/23/2018] [Indexed: 01/12/2023] Open
Abstract
Diagnostics play a central role in the early detection and control of outbreaks and can enable a more nuanced understanding of the disease kinetics and risk factors for the Middle East respiratory syndrome-coronavirus (MERS-CoV), one of the high-priority pathogens identified by the WHO. In this review we identified sources for molecular and serological diagnostic tests used in MERS-CoV detection, case management and outbreak investigations, as well as surveillance for humans and animals (camels), and summarised the performance of currently available tests, diagnostic needs, and associated challenges for diagnostic test development and implementation. A more detailed understanding of the kinetics of infection of MERS-CoV is needed in order to optimise the use of existing assays. Notably, MERS-CoV point-of-care tests are needed in order to optimise supportive care and to minimise transmission risk. However, for new test development, sourcing clinical material continues to be a major challenge to achieving assay validation. Harmonisation and standardisation of laboratory methods are essential for surveillance and for a rapid and effective international response to emerging diseases. Routine external quality assessment, along with well-characterised and up-to-date proficiency panels, would provide insight into MERS-CoV diagnostic performance worldwide. A defined set of Target Product Profiles for diagnostic technologies will be developed by WHO to address these gaps in MERS-CoV outbreak management.
Collapse
Affiliation(s)
| | | | - Arlene Chua
- Department of Information, Evidence and Research, WHO, Geneva, Switzerland.,Medecins Sans Frontières, Geneva, Switzerland
| | | | | |
Collapse
|
26
|
MERS: Progress on the global response, remaining challenges and the way forward. Antiviral Res 2018; 159:35-44. [PMID: 30236531 PMCID: PMC7113883 DOI: 10.1016/j.antiviral.2018.09.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 09/04/2018] [Indexed: 01/04/2023]
Abstract
This article summarizes progress in research on Middle East Respiratory Syndrome (MERS) since a FAO-OIE-WHO Global Technical Meeting held at WHO Headquarters in Geneva on 25-27 September 2017. The meeting reviewed the latest scientific findings and identified and prioritized the global activities necessary to prevent, manage and control the disease. Critical needs for research and technical guidance identified during the meeting have been used to update the WHO R&D MERS-CoV Roadmap for diagnostics, therapeutics and vaccines and a broader public health research agenda. Since the 2017 meeting, progress has been made on several key actions in animal populations, at the animal/human interface and in human populations. This report also summarizes the latest scientific studies on MERS since 2017, including data from more than 50 research studies examining the presence of MERS-CoV infection in dromedary camels.
Collapse
|