1
|
Ho J, Puoplo N, Pokharel N, Hirdaramani A, Hanyaloglu AC, Cheng CW. Nutrigenomic underpinnings of intestinal stem cells in inflammatory bowel disease and colorectal cancer development. Front Genet 2024; 15:1349717. [PMID: 39280096 PMCID: PMC11393785 DOI: 10.3389/fgene.2024.1349717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 08/12/2024] [Indexed: 09/18/2024] Open
Abstract
Food-gene interaction has been identified as a leading risk factor for inflammatory bowel disease (IBD) and colorectal cancer (CRC). Accordingly, nutrigenomics emerges as a new approach to identify biomarkers and therapeutic targets for these two strongly associated gastrointestinal diseases. Recent studies in stem cell biology have further shown that diet and nutrition signal to intestinal stem cells (ISC) by altering nutrient-sensing transcriptional activities, thereby influencing barrier integrity and susceptibility to inflammation and tumorigenesis. This review recognizes the dietary factors related to both CRC and IBD and investigates their impact on the overlapping transcription factors governing stem cell activities in homeostasis and post-injury responses. Our objective is to provide a framework to study the food-gene regulatory network of disease-contributing cells and inspire new nutrigenomic approaches for detecting and treating diet-related IBD and CRC.
Collapse
Affiliation(s)
- Jennifer Ho
- Institute of Human Nutrition, Columbia University Irving Medical Center, New York City, NY, United States
- Columbia Stem Cell Initiative, Columbia University Irving Medical Center, New York City, NY, United States
| | - Nicholas Puoplo
- Columbia Stem Cell Initiative, Columbia University Irving Medical Center, New York City, NY, United States
- Division of Neonatology-Perinatology, Department of Pediatrics, Columbia University Irving Medical Center, New York City, NY, United States
| | - Namrata Pokharel
- Columbia Stem Cell Initiative, Columbia University Irving Medical Center, New York City, NY, United States
| | - Aanya Hirdaramani
- Department of Metabolism, Digestion and Reproduction, Division of Digestive Diseases, Section of Nutrition, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Aylin C Hanyaloglu
- Department of Metabolism, Digestion and Reproduction, Institute of Reproductive and Developmental Biology, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Chia-Wei Cheng
- Columbia Stem Cell Initiative, Columbia University Irving Medical Center, New York City, NY, United States
- Department of Genetics and Development, Columbia University Irving Medical Center, New York City, NY, United States
| |
Collapse
|
2
|
Zhang J, Zhang R, Chen Y, Guo X, Ren Y, Wang M, Li X, Huang Z, Zhu W, Yu K. Indole-3-aldehyde Alleviates High-Fat Diet-Induced Gut Barrier Disruption by Increasing Intestinal Stem Cell Expansion. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:18930-18941. [PMID: 39146439 DOI: 10.1021/acs.jafc.4c02381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
High-fat diet (HFD) feeding is known to cause intestinal barrier disruption, thereby triggering severe intestinal inflammatory disease. Indole-3-aldehyde (IAld) has emerged as a potential candidate for mitigating inflammatory responses and maintaining intestinal homeostasis. However, the role of IAld in the HFD-related intestinal disruption remains unclear. In this study, 48 7 week-old male C57BL/6J mice were assigned to four groups: the normal chow diet (NCD) group received a NCD; the HFD group was fed an HFD; the HFD + IAld200 group was supplemented with 200 mg/kg IAld in the HFD; and the HFD + IAld600 group was supplemented with 600 mg/kg IAld in the HFD. The results showed that dietary IAld supplementation ameliorated fat accumulation and metabolic disorders, which are associated with reduced intestinal permeability. This reduction potentially led to decreased systemic inflammation and enhanced intestinal barrier function in HFD-fed mice. Furthermore, we found that IAld promoted intestinal stem cell (ISC) proliferation by activating aryl hydrocarbon receptors (AHRs) in vivo and ex vivo. These findings suggest that IAld restores the HFD-induced intestinal barrier disruption by promoting AHR-mediated ISC proliferation.
Collapse
Affiliation(s)
- Jiaqi Zhang
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing 210095, China
| | - Ruofan Zhang
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing 210095, China
- Animal Health Inspection Institute of Suzhou, Wujiang District, Suzhou 215200, China
| | - Yahui Chen
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing 210095, China
| | - Xin Guo
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuting Ren
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing 210095, China
| | - Mengting Wang
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing 210095, China
| | - Xuan Li
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing 210095, China
| | - Zan Huang
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing 210095, China
| | - Weiyun Zhu
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing 210095, China
| | - Kaifan Yu
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
3
|
Faqerah N, Walker D, Gerasimidis K. Review article: The complex interplay between diet and Escherichia coli in inflammatory bowel disease. Aliment Pharmacol Ther 2023; 58:984-1004. [PMID: 37771255 DOI: 10.1111/apt.17720] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 12/23/2022] [Accepted: 09/05/2023] [Indexed: 09/30/2023]
Abstract
BACKGROUND Although no causative microbe has been yet identified or successfully targeted in the treatment of inflammatory bowel disease (IBD), the role of Escherichia coli in the pathogenesis of Crohn's disease has attracted considerable interest. AIM In this review, we present a literature overview of the interactions between diet and E. coli and other Proteobacteria in the aetiology, outcomes and management of IBD and suggest future research directions. METHODS An extensive literature search was performed to identify in vitro studies and research in animal models that explored mechanisms by which dietary components can interact with E. coli or Proteobacteria to initiate or propagate gut inflammation. We also explored the effect diet and dietary therapies have on the levels of E. coli or Proteobacteria in patients with IBD. RESULTS Preclinical data suggest that the Western diet and its components influence the abundance, colonisation and phenotypic behaviour of E. coli in the gut, which may in turn initiate or contribute to gut inflammation. In contrast, the Mediterranean diet and specific dietary fibres may abrogate these effects and protect from inflammation. There are limited data from clinical trials, mostly from patients with Crohn's disease during treatment with exclusive enteral nutrition, with findings often challenging observations from preclinical research. Data from patients with ulcerative colitis are sparse. CONCLUSIONS Preclinical and some clinical trial data suggest that E. coli and other Proteobacteria interact with certain dietary components to promote gut inflammation. Well-designed clinical trials are required before dietary recommendations for disease management can be made.
Collapse
Affiliation(s)
- Nojoud Faqerah
- Human Nutrition, School of Medicine, Dentistry and Life Sciences, University of Glasgow, New Lister Building, Glasgow Royal Infirmary, Glasgow, UK
- School of Infection and Immunity, University of Glasgow, Glasgow, UK
- Microbiology, Rabigh Medical College, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Daniel Walker
- School of Infection and Immunity, University of Glasgow, Glasgow, UK
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Konstantinos Gerasimidis
- Human Nutrition, School of Medicine, Dentistry and Life Sciences, University of Glasgow, New Lister Building, Glasgow Royal Infirmary, Glasgow, UK
| |
Collapse
|
4
|
Kukkar KK, Rao N, Huynh D, Shah S, Contreras-Vidal JL, Parikh PJ. Task-dependent Alteration in Delta Band Corticomuscular Coherence during Standing in Chronic Stroke Survivors. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.07.17.23292472. [PMID: 37503096 PMCID: PMC10371181 DOI: 10.1101/2023.07.17.23292472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Balance control is an important indicator of mobility and independence in activities of daily living. How the changes in functional integrity of corticospinal tract due to stroke affects the maintenance of upright stance remains to be known. We investigated the changes in functional coupling between the cortex and lower limb muscles during a challenging balance task over multiple frequency bands in chronic stroke survivors. Eleven stroke patients and nine healthy controls performed a challenging balance task. They stood on a computerized platform with/without somatosensory input distortion created by sway-referencing the support surface, thereby varying the difficulty levels of the task. We computed corticomuscular coherence between Cz (electroencephalography) and leg muscles and assessed balance performance using Berg Balance scale (BBS), Timed-up and go (TUG) and center of pressure (COP) measures. We found lower delta frequency band coherence in stroke patients when compared with healthy controls under medium difficulty condition for distal but not proximal leg muscles. For both groups, we found similar coherence at other frequency bands. On BBS and TUG, stroke patients showed poor balance. However, similar group differences were not consistently observed across COP measures. The presence of distal versus proximal effect suggests differences in the (re)organization of the corticospinal connections across the two muscles groups for balance control. We argue that the observed group difference in the delta coherence might be due to altered mechanisms for the detection of somatosensory modulation resulting from sway-referencing of the support platform for balance control.
Collapse
Affiliation(s)
- Komal K. Kukkar
- Center for Neuromotor and Biomechanics Research, Department of Health and Human Performance, University of Houston, Houston, Texas
| | - Nishant Rao
- Haskins Laboratories, Yale University, New Haven, Connecticut
| | - Diana Huynh
- Center for Neuromotor and Biomechanics Research, Department of Health and Human Performance, University of Houston, Houston, Texas
| | - Sheel Shah
- Center for Neuromotor and Biomechanics Research, Department of Health and Human Performance, University of Houston, Houston, Texas
| | - Jose L. Contreras-Vidal
- Laboratory for Noninvasive Brain-Machine Interface Systems, Department of Electrical and Computer Engineering, University of Houston, Houston, Texas
| | - Pranav J. Parikh
- Center for Neuromotor and Biomechanics Research, Department of Health and Human Performance, University of Houston, Houston, Texas
| |
Collapse
|
5
|
Nakano H, Setoguchi S, Kawano K, Miyagawa H, Sakao K, Hou DX. Effects of Amazake Produced with Different Aspergillus on Gut Barrier and Microbiota. Foods 2023; 12:2568. [PMID: 37444313 DOI: 10.3390/foods12132568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/18/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory disease of the gastrointestinal tract. To explore the preventive effects of dietary foods on IBD, we evaluated the effects of the traditional Japanese fermented beverage "Amazake" on gut barrier function in this study. Black koji Amazake (BA) derived from Aspergillus luchuensis MEM-C strain and yellow koji Amazake (YA) derived from Aspergillus oryzae were made in this study, and their nutrients were analyzed. Mice with mild gut barrier dysfunction induced by Western diet were administered with 10% of each Amazake for two months. Mice gut microbiota were analyzed by 16S rRNA gene sequencing. BA contained a higher amount of isomaltooligosaccharides, citric acid, and ferulic acid than YA. The animal data revealed that BA significantly induced the expressions of antioxidant factors and enzymes such as NF-E2-related factor 2 (Nfr2), heme oxygenase 1 (HO1), and superoxide dismutase-2 (SOD-2). The gut barrier protein, occludin, and fecal immunoglobulin A (IgA) were also significantly enhanced by BA. Furthermore, the levels of serum endotoxin and hepatic monocyte chemotactic protein-1 (MCP-1) were decreased in both the BA and YA groups. In gut microbiota, Lachnospiraceae was increased by BA while Akkermansia muciniphilia was increased by YA. Black koji Amazake contained a higher amount of isomaltooligosaccharides, citric acid, and ferulic acid than yellow koji Amazake and contributed to protecting gut barrier function to reduce endotoxin intrusion and inflammation.
Collapse
Affiliation(s)
- Hironobu Nakano
- The United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | - Sho Setoguchi
- Kirishima Shuzo Co., Ltd., 4-28-1 Shimokawahigashi, Miyazaki 885-8588, Japan
| | - Kuniaki Kawano
- Kirishima Shuzo Co., Ltd., 4-28-1 Shimokawahigashi, Miyazaki 885-8588, Japan
| | - Hiroshi Miyagawa
- Kirishima Shuzo Co., Ltd., 4-28-1 Shimokawahigashi, Miyazaki 885-8588, Japan
| | - Kozue Sakao
- The United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
- Faculty of Agriculture, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | - De-Xing Hou
- The United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
- Faculty of Agriculture, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| |
Collapse
|
6
|
da Silva KS, Abboud KY, Schiebel CS, de Oliveira NMT, Bueno LR, de Mello Braga LLV, da Silveira BC, Santos IWFD, Gomes EDS, Gois MB, Cordeiro LMC, Maria Ferreira D. Polysaccharides from Passion Fruit Peels: From an Agroindustrial By-Product to a Viable Option for 5-FU-Induced Intestinal Damage. Pharmaceuticals (Basel) 2023; 16:912. [PMID: 37513823 PMCID: PMC10383750 DOI: 10.3390/ph16070912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/14/2023] [Accepted: 06/16/2023] [Indexed: 07/30/2023] Open
Abstract
Gastrointestinal mucositis is a serious and dose-limiting toxic side effect of oncologic treatment. Interruption of cancer treatment due to gastrointestinal mucositis leads to a significant decrease in cure rates and consequently to the deterioration of a patient's quality of life. Natural polysaccharides show a variety of beneficial effects, including a gastroprotective effect. Treatment with soluble dietary fiber (SDF) from yellow passion fruit (Passiflora edulis) biomass residues protected the gastric and intestinal mucosa in models of gastrointestinal injury. In this study, we investigated the protective therapeutic effect of SDF on 5-FU-induced mucositis in male and female mice. Oral treatment of the animals with SDF did not prevent weight loss but reduced the disease activity index and preserved normal intestinal function by alleviating diarrhea and altered gastrointestinal transit. SDF preserved the length of the colon and histological damage caused by 5-FU. SDF significantly restored the oxidative stress and inflammation in the intestine and the enlargement and swelling of the spleen induced by 5-FU. In conclusion, SDF may be a promising adjuvant strategy for the prevention and treatment of intestinal mucositis induced by 5-FU.
Collapse
Affiliation(s)
- Karien Sauruk da Silva
- Faculdades Pequeno Príncipe, Programa de Pós-graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Curitiba 80250-200, Brazil
- Instituto de Pesquisa Pelé Pequeno Príncipe, Av. Silva Jardim No 1532, Curitiba 80250-200, Brazil
| | - Kahlile Youssef Abboud
- Department of Biochemistry and Molecular Biology, Federal University of Paraná, Curitiba 81531-980, Brazil
| | - Carolina Silva Schiebel
- Faculdades Pequeno Príncipe, Programa de Pós-graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Curitiba 80250-200, Brazil
- Instituto de Pesquisa Pelé Pequeno Príncipe, Av. Silva Jardim No 1532, Curitiba 80250-200, Brazil
| | - Natalia Mulinari Turin de Oliveira
- Faculdades Pequeno Príncipe, Programa de Pós-graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Curitiba 80250-200, Brazil
- Instituto de Pesquisa Pelé Pequeno Príncipe, Av. Silva Jardim No 1532, Curitiba 80250-200, Brazil
| | - Laryssa Regis Bueno
- Faculdades Pequeno Príncipe, Programa de Pós-graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Curitiba 80250-200, Brazil
- Instituto de Pesquisa Pelé Pequeno Príncipe, Av. Silva Jardim No 1532, Curitiba 80250-200, Brazil
| | - Lara Luisa Valerio de Mello Braga
- Faculdades Pequeno Príncipe, Programa de Pós-graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Curitiba 80250-200, Brazil
- Instituto de Pesquisa Pelé Pequeno Príncipe, Av. Silva Jardim No 1532, Curitiba 80250-200, Brazil
| | - Bruna Carla da Silveira
- Faculdades Pequeno Príncipe, Programa de Pós-graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Curitiba 80250-200, Brazil
- Instituto de Pesquisa Pelé Pequeno Príncipe, Av. Silva Jardim No 1532, Curitiba 80250-200, Brazil
| | - Isabella Wzorek França Dos Santos
- Faculdades Pequeno Príncipe, Programa de Pós-graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Curitiba 80250-200, Brazil
- Instituto de Pesquisa Pelé Pequeno Príncipe, Av. Silva Jardim No 1532, Curitiba 80250-200, Brazil
| | - Everton Dos Santos Gomes
- Programa de Pós-Graduação em Imunologia, Universidade Federal da Bahia, Salvador 40231-300, Brazil
- Programa de Pós-Graduação em Biociências e Saúde, Universidade Federal de Rondonópolis, Rondonópolis 78736-900, Brazil
| | - Marcelo Biondaro Gois
- Programa de Pós-Graduação em Imunologia, Universidade Federal da Bahia, Salvador 40231-300, Brazil
- Programa de Pós-Graduação em Biociências e Saúde, Universidade Federal de Rondonópolis, Rondonópolis 78736-900, Brazil
| | | | - Daniele Maria Ferreira
- Faculdades Pequeno Príncipe, Programa de Pós-graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Curitiba 80250-200, Brazil
- Instituto de Pesquisa Pelé Pequeno Príncipe, Av. Silva Jardim No 1532, Curitiba 80250-200, Brazil
| |
Collapse
|
7
|
Horowitz A, Chanez-Paredes SD, Haest X, Turner JR. Paracellular permeability and tight junction regulation in gut health and disease. Nat Rev Gastroenterol Hepatol 2023:10.1038/s41575-023-00766-3. [PMID: 37186118 PMCID: PMC10127193 DOI: 10.1038/s41575-023-00766-3] [Citation(s) in RCA: 255] [Impact Index Per Article: 127.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/03/2023] [Indexed: 05/17/2023]
Abstract
Epithelial tight junctions define the paracellular permeability of the intestinal barrier. Molecules can cross the tight junctions via two distinct size-selective and charge-selective paracellular pathways: the pore pathway and the leak pathway. These can be distinguished by their selectivities and differential regulation by immune cells. However, permeability increases measured in most studies are secondary to epithelial damage, which allows non-selective flux via the unrestricted pathway. Restoration of increased unrestricted pathway permeability requires mucosal healing. By contrast, tight junction barrier loss can be reversed by targeted interventions. Specific approaches are needed to restore pore pathway or leak pathway permeability increases. Recent studies have used preclinical disease models to demonstrate the potential of pore pathway or leak pathway barrier restoration in disease. In this Review, we focus on the two paracellular flux pathways that are dependent on the tight junction. We discuss the latest evidence that highlights tight junction components, structures and regulatory mechanisms, their impact on gut health and disease, and opportunities for therapeutic intervention.
Collapse
Affiliation(s)
- Arie Horowitz
- UNIROUEN, INSERM U1245, Normandy Centre for Genomic and Personalized Medicine, Normandie University, Rouen, France
| | - Sandra D Chanez-Paredes
- Laboratory of Mucosal Barrier Pathobiology, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Xenia Haest
- Laboratory of Mucosal Barrier Pathobiology, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jerrold R Turner
- Laboratory of Mucosal Barrier Pathobiology, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
8
|
Hill AA, Kim M, Zegarra-Ruiz DF, Chang LC, Norwood K, Assié A, Wu WJH, Renfroe MC, Song HW, Major AM, Samuel BS, Hyser JM, Longman RS, Diehl GE. Acute high-fat diet impairs macrophage-supported intestinal damage resolution. JCI Insight 2023; 8:e164489. [PMID: 36538527 PMCID: PMC9977439 DOI: 10.1172/jci.insight.164489] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
Chronic exposure to high-fat diets (HFD) worsens intestinal disease pathology, but acute effects of HFD in tissue damage remain unclear. Here, we used short-term HFD feeding in a model of intestinal injury and found sustained damage with increased cecal dead neutrophil accumulation, along with dietary lipid accumulation. Neutrophil depletion rescued enhanced pathology. Macrophages from HFD-treated mice showed reduced capacity to engulf dead neutrophils. Macrophage clearance of dead neutrophils activates critical barrier repair and antiinflammatory pathways, including IL-10, which was lost after acute HFD feeding and intestinal injury. IL-10 overexpression restored intestinal repair after HFD feeding and intestinal injury. Macrophage exposure to lipids from the HFD prevented tethering and uptake of apoptotic cells and Il10 induction. Milk fat globule-EGF factor 8 (MFGE8) is a bridging molecule that facilitates macrophage uptake of dead cells. MFGE8 also facilitates lipid uptake, and we demonstrate that dietary lipids interfere with MFGE8-mediated macrophage apoptotic neutrophil uptake and subsequent Il10 production. Our findings demonstrate that HFD promotes intestinal pathology by interfering with macrophage clearance of dead neutrophils, leading to unresolved tissue damage.
Collapse
Affiliation(s)
| | - Myunghoo Kim
- Alkek Center for Metagenomics and Microbiome Research and the Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Daniel F. Zegarra-Ruiz
- Immunology Program of the Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Lin-Chun Chang
- Immunology Program of the Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Kendra Norwood
- Alkek Center for Metagenomics and Microbiome Research and the Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Adrien Assié
- Alkek Center for Metagenomics and Microbiome Research and the Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Wan-Jung H. Wu
- Immunology Program of the Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Michael C. Renfroe
- Alkek Center for Metagenomics and Microbiome Research and the Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Hyo Wong Song
- Alkek Center for Metagenomics and Microbiome Research and the Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | | | - Buck S. Samuel
- Alkek Center for Metagenomics and Microbiome Research and the Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Joseph M. Hyser
- Alkek Center for Metagenomics and Microbiome Research and the Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Randy S. Longman
- Jill Roberts Institute for Research in IBD and Jill Roberts Center for IBD, Weill Cornell Medicine, New York, New York, USA
| | - Gretchen E. Diehl
- Alkek Center for Metagenomics and Microbiome Research and the Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
- Immunology Program of the Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| |
Collapse
|
9
|
Li X, Liu Q, Pan Y, Chen S, Zhao Y, Hu Y. New insights into the role of dietary triglyceride absorption in obesity and metabolic diseases. Front Pharmacol 2023; 14:1097835. [PMID: 36817150 PMCID: PMC9932209 DOI: 10.3389/fphar.2023.1097835] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 01/20/2023] [Indexed: 02/05/2023] Open
Abstract
The incidence of obesity and associated metabolic diseases is increasing globally, adversely affecting human health. Dietary fats, especially triglycerides, are an important source of energy for the body, and the intestine absorbs lipids through a series of orderly and complex steps. A long-term high-fat diet leads to intestinal dysfunction, inducing obesity and metabolic disorders. Therefore, regulating dietary triglycerides absorption is a promising therapeutic strategy. In this review, we will discuss diverse aspects of the dietary triglycerides hydrolysis, fatty acid uptake, triglycerides resynthesis, chylomicron assembly, trafficking, and secretion processes in intestinal epithelial cells, as well as potential targets in this process that may influence dietary fat-induced obesity and metabolic diseases. We also mention the possible shortcomings and deficiencies in modulating dietary lipid absorption targets to provide a better understanding of their administrability as drugs in obesity and related metabolic disorders.
Collapse
Affiliation(s)
- Xiaojing Li
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qiaohong Liu
- Institute of Clinical Pharmacology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuqing Pan
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Si Chen
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yu Zhao
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China,*Correspondence: Yu Zhao, ; Yiyang Hu,
| | - Yiyang Hu
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China,Institute of Clinical Pharmacology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China,*Correspondence: Yu Zhao, ; Yiyang Hu,
| |
Collapse
|
10
|
Dietary-Induced Bacterial Metabolites Reduce Inflammation and Inflammation-Associated Cancer via Vitamin D Pathway. Int J Mol Sci 2023; 24:ijms24031864. [PMID: 36768196 PMCID: PMC9914969 DOI: 10.3390/ijms24031864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 12/23/2022] [Accepted: 01/09/2023] [Indexed: 01/19/2023] Open
Abstract
Environmental factors, including westernised diets and alterations to the gut microbiota, are considered risk factors for inflammatory bowel diseases (IBD). The mechanisms underpinning diet-microbiota-host interactions are poorly understood in IBD. We present evidence that feeding a lard-based high-fat (HF) diet can protect mice from developing DSS-induced acute and chronic colitis and colitis-associated cancer (CAC) by significantly reducing tumour burden/incidence, immune cell infiltration, cytokine profile, and cell proliferation. We show that HF protection was associated with increased gut microbial diversity and a significant reduction in Proteobacteria and an increase in Firmicutes and Clostridium cluster XIVa abundance. Microbial functionality was modulated in terms of signalling fatty acids and bile acids (BA). Faecal secondary BAs were significantly induced to include moieties that can activate the vitamin D receptor (VDR), a nuclear receptor richly represented in the intestine and colon. Indeed, colonic VDR downstream target genes were upregulated in HF-fed mice and in combinatorial lipid-BAs-treated intestinal HT29 epithelial cells. Collectively, our data indicate that HF diet protects against colitis and CAC risk through gut microbiota and BA metabolites modulating vitamin D targeting pathways. Our data highlights the complex relationship between dietary fat-induced alterations of microbiota-host interactions in IBD/CAC pathophysiology.
Collapse
|
11
|
Jiang S, Miao Z. High-fat diet induces intestinal mucosal barrier dysfunction in ulcerative colitis: emerging mechanisms and dietary intervention perspective. Am J Transl Res 2023; 15:653-677. [PMID: 36915785 PMCID: PMC10006746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 01/09/2023] [Indexed: 03/16/2023]
Abstract
The incidence of ulcerative colitis (UC) is increasing worldwide, but its pathogenesis remains largely unclear. The intestinal mucosa is a barrier that maintains the stability of the body's internal environment, and dysfunction of this barrier leads to the occurrence and aggravation of UC. A high-fat diet (HFD) contains more animal fat and low fiber, and accumulating evidence has shown that long-term intake of an HFD is associated with UC. The mechanism linking an HFD with intestinal mucosal barrier disruption is multifactorial, and it typically involves microbiota dysbiosis and altered metabolism of fatty acids, bile acids, and tryptophan. Dysbiosis-induced metabolic changes can enhance intestinal permeability through multiple pathways. These changes modulate the programmed death of intestinal epithelial cells, inhibit the secretion of goblet cells and Paneth cells, and impair intercellular interactions. Gut metabolites can also induce intestinal immune imbalance by stimulating multiple proinflammatory signaling pathways and decreasing the effect of anti-inflammatory immune cells. In this review, we critically analyze the molecular mechanisms by which an HFD disrupts the intestinal mucosal barrier (IMB) and contributes to the development of UC. We also discuss the application and future direction of dietary intervention in the treatment of the IMB and prevention of UC.
Collapse
Affiliation(s)
- Shijing Jiang
- First Clinical Medical College, Nanjing University of Chinese Medicine Nanjing, Jiangsu, China
| | - Zhiwei Miao
- Department of Gastroenterology, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine Zhangjiagang, Suzhou, Jiangsu, China
| |
Collapse
|
12
|
Wallaeys C, Garcia‐Gonzalez N, Libert C. Paneth cells as the cornerstones of intestinal and organismal health: a primer. EMBO Mol Med 2022; 15:e16427. [PMID: 36573340 PMCID: PMC9906427 DOI: 10.15252/emmm.202216427] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/24/2022] [Accepted: 09/29/2022] [Indexed: 12/28/2022] Open
Abstract
Paneth cells are versatile secretory cells located in the crypts of Lieberkühn of the small intestine. In normal conditions, they function as the cornerstones of intestinal health by preserving homeostasis. They perform this function by providing niche factors to the intestinal stem cell compartment, regulating the composition of the microbiome through the production and secretion of antimicrobial peptides, performing phagocytosis and efferocytosis, taking up heavy metals, and preserving barrier integrity. Disturbances in one or more of these functions can lead to intestinal as well as systemic inflammatory and infectious diseases. This review discusses the multiple functions of Paneth cells, and the mechanisms and consequences of Paneth cell dysfunction. It also provides an overview of the tools available for studying Paneth cells.
Collapse
Affiliation(s)
- Charlotte Wallaeys
- Center for Inflammation Research‐VIBGhentBelgium,Department of Biomedical Molecular BiologyGhent UniversityGhentBelgium
| | - Natalia Garcia‐Gonzalez
- Center for Inflammation Research‐VIBGhentBelgium,Department of Biomedical Molecular BiologyGhent UniversityGhentBelgium
| | - Claude Libert
- Center for Inflammation Research‐VIBGhentBelgium,Department of Biomedical Molecular BiologyGhent UniversityGhentBelgium
| |
Collapse
|
13
|
Paone P, Suriano F, Jian C, Korpela K, Delzenne NM, Van Hul M, Salonen A, Cani PD. Prebiotic oligofructose protects against high-fat diet-induced obesity by changing the gut microbiota, intestinal mucus production, glycosylation and secretion. Gut Microbes 2022; 14:2152307. [PMID: 36448728 PMCID: PMC9715274 DOI: 10.1080/19490976.2022.2152307] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Obesity is a major risk factor for the development of type 2 diabetes and cardiovascular diseases, and gut microbiota plays a key role in influencing the host energy homeostasis. Moreover, obese mice have a different gut microbiota composition, associated with an alteration of the intestinal mucus layer, which represents the interface between the bacteria and the host. We previously demonstrated that prebiotic treatment with oligofructose (FOS) counteracted the effects of diet-induced obesity, together with changes in the gut microbiota composition, but it is not known if the intestinal mucus layer could be involved. In this study, we found that, in addition to preventing high-fat diet (HFD) induced obesity in mice, the treatment with FOS increased the expression of numerous genes involved in mucus production, glycosylation and secretion, the expression of both secreted and transmembrane mucins, and the differentiation and number of goblet cells. These results were associated with significant changes in the gut microbiota composition, with FOS significantly increasing the relative and absolute abundance of the bacterial genera Odoribacter, Akkermansia, two unknown Muribaculaceae and an unknown Ruminococcaceae. Interestingly, all these bacterial genera had a negative association with metabolic parameters and a positive association with markers of the mucus layer. Our study shows that FOS treatment is able to prevent HFD-induced metabolic disorders, at least in part, by acting on all the processes of the mucus production. These data suggest that targeting the mucus and the gut microbiota by using prebiotics could help to prevent or mitigate obesity and related disorders.
Collapse
Affiliation(s)
- Paola Paone
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium,Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), WELBIO Department, WEL Research Institute, Wavre, Belgium
| | - Francesco Suriano
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium,Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), WELBIO Department, WEL Research Institute, Wavre, Belgium
| | - Ching Jian
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Katri Korpela
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Nathalie M. Delzenne
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Matthias Van Hul
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium,Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), WELBIO Department, WEL Research Institute, Wavre, Belgium
| | - Anne Salonen
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Patrice D. Cani
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium,Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), WELBIO Department, WEL Research Institute, Wavre, Belgium,CONTACT Patrice D. Cani Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université Catholique de Louvain, Brussels, Belgium
| |
Collapse
|
14
|
Diet-Induced Gut Barrier Dysfunction Is Exacerbated in Mice Lacking Cannabinoid 1 Receptors in the Intestinal Epithelium. Int J Mol Sci 2022; 23:ijms231810549. [PMID: 36142461 PMCID: PMC9504303 DOI: 10.3390/ijms231810549] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/23/2022] [Accepted: 09/09/2022] [Indexed: 11/29/2022] Open
Abstract
The gut barrier provides protection from pathogens and its function is compromised in diet-induced obesity (DIO). The endocannabinoid system in the gut is dysregulated in DIO and participates in gut barrier function; however, whether its activity is protective or detrimental for gut barrier integrity is unclear. We used mice conditionally deficient in cannabinoid receptor subtype-1 (CB1R) in the intestinal epithelium (intCB1−/−) to test the hypothesis that CB1Rs in intestinal epithelial cells provide protection from diet-induced gut barrier dysfunction. Control and intCB1−/− mice were placed for eight weeks on a high-fat/sucrose Western-style diet (WD) or a low-fat/no-sucrose diet. Endocannabinoid levels and activity of their metabolic enzymes were measured in the large-intestinal epithelium (LI). Paracellular permeability was tested in vivo, and expression of genes for gut barrier components and inflammatory markers were analyzed. Mice fed WD had (i) reduced levels of endocannabinoids in the LI due to lower activity of their biosynthetic enzymes, and (ii) increased permeability that was exacerbated in intCB1−/− mice. Moreover, intCB1−/− mice fed WD had decreased expression of genes for tight junction proteins and increased expression of inflammatory markers in LI. These results suggest that CB1Rs in the intestinal epithelium serve a protective role in gut barrier function in DIO.
Collapse
|
15
|
Luo Q, Jahangir A, He J, Huang C, Xia Y, Jia L, Wei X, Pan T, Du Y, Mu B, Gong H, Liu W, Ur-Rehman S, Pan K, Chen Z. Ameliorating Effects of TRIM67 against Intestinal Inflammation and Barrier Dysfunction Induced by High Fat Diet in Obese Mice. Int J Mol Sci 2022; 23:7650. [PMID: 35887011 PMCID: PMC9317707 DOI: 10.3390/ijms23147650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/28/2022] [Accepted: 07/06/2022] [Indexed: 12/10/2022] Open
Abstract
Tripartite Motif 67 (TRIM67) is an important member of TRIM family proteins, which participates in different cellular processes including immune response, proliferation, differentiation, carcinogenesis, and apoptosis. In recent years, a high fat diet (HFD) has remained one of the main causes of different metabolic diseases and increases in intestinal permeability as well as inducing intestinal inflammation. The current study investigated the protective effects of TRIM67 in the ileum and colon of obese mice. 4-week-old wild-type (WT) C57BL/6N mice and TRIM67 knockout (KO) C57BL/6N mice were selected and randomly divided into four sub-groups, which were fed with control diet (CTR) or HFD for 14 weeks. Samples were collected at the age of 18 weeks for analysis. To construct an in vitro obesity model, over-expressed IPEC-J2 cells (porcine intestinal cells) with Myc-TRIM67 were stimulated with palmitic acid (PA), and its effects on the expression level of TRM67, inflammatory cytokines, and barrier function were evaluated. The KO mice showed pathological lesions in the ileum and colon and this effect was more obvious in KO mice fed with HFD. In addition, KO mice fed with a HFD or CTR diet had increased intestinal inflammation, intestinal permeability, and oxidative stress compared to that WT mice fed with these diets, respectively. Moreover, IPEC-J2 cells were transfected with TRIM67 plasmid to perform the same experiments after stimulation with PA, and the results were found consistent with the in vivo evaluations. Taken together, our study proved for the first time that HFD and TRIM67 KO mice have synergistic damaging effects on the intestine, while TRIM67 plays an important protective role in HFD-induced intestinal damage.
Collapse
Affiliation(s)
- Qihui Luo
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Q.L.); (A.J.); (J.H.); (Y.X.); (L.J.); (X.W.); (T.P.); (Y.D.); (B.M.); (H.G.); (W.L.)
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China;
| | - Asad Jahangir
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Q.L.); (A.J.); (J.H.); (Y.X.); (L.J.); (X.W.); (T.P.); (Y.D.); (B.M.); (H.G.); (W.L.)
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China;
| | - Junbo He
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Q.L.); (A.J.); (J.H.); (Y.X.); (L.J.); (X.W.); (T.P.); (Y.D.); (B.M.); (H.G.); (W.L.)
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China;
| | - Chao Huang
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Q.L.); (A.J.); (J.H.); (Y.X.); (L.J.); (X.W.); (T.P.); (Y.D.); (B.M.); (H.G.); (W.L.)
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China;
| | - Yu Xia
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Q.L.); (A.J.); (J.H.); (Y.X.); (L.J.); (X.W.); (T.P.); (Y.D.); (B.M.); (H.G.); (W.L.)
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China;
| | - Lanlan Jia
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Q.L.); (A.J.); (J.H.); (Y.X.); (L.J.); (X.W.); (T.P.); (Y.D.); (B.M.); (H.G.); (W.L.)
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China;
| | - Xiaoli Wei
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Q.L.); (A.J.); (J.H.); (Y.X.); (L.J.); (X.W.); (T.P.); (Y.D.); (B.M.); (H.G.); (W.L.)
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China;
| | - Ting Pan
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Q.L.); (A.J.); (J.H.); (Y.X.); (L.J.); (X.W.); (T.P.); (Y.D.); (B.M.); (H.G.); (W.L.)
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China;
| | - Yanni Du
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Q.L.); (A.J.); (J.H.); (Y.X.); (L.J.); (X.W.); (T.P.); (Y.D.); (B.M.); (H.G.); (W.L.)
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China;
| | - Bin Mu
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Q.L.); (A.J.); (J.H.); (Y.X.); (L.J.); (X.W.); (T.P.); (Y.D.); (B.M.); (H.G.); (W.L.)
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China;
| | - Huan Gong
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Q.L.); (A.J.); (J.H.); (Y.X.); (L.J.); (X.W.); (T.P.); (Y.D.); (B.M.); (H.G.); (W.L.)
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China;
| | - Wentao Liu
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Q.L.); (A.J.); (J.H.); (Y.X.); (L.J.); (X.W.); (T.P.); (Y.D.); (B.M.); (H.G.); (W.L.)
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China;
| | - Saif Ur-Rehman
- Department of Parasitology and Microbiology, FV&AS, PMAS Arid Agriculture University, Rawalpindi 46300, Pakistan;
| | - Kangcheng Pan
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China;
| | - Zhengli Chen
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Q.L.); (A.J.); (J.H.); (Y.X.); (L.J.); (X.W.); (T.P.); (Y.D.); (B.M.); (H.G.); (W.L.)
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China;
| |
Collapse
|
16
|
Zhang M, Liu J, Li C, Gao J, Xu C, Wu X, Xu T, Cui C, Wei H, Peng J, Zheng R. Functional Fiber Reduces Mice Obesity by Regulating Intestinal Microbiota. Nutrients 2022; 14:nu14132676. [PMID: 35807856 PMCID: PMC9268532 DOI: 10.3390/nu14132676] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/19/2022] [Accepted: 06/23/2022] [Indexed: 12/10/2022] Open
Abstract
Obesity may cause metabolic syndrome and has become a global public health problem, and dietary fibers (DF) could alleviate obesity and metabolic syndrome by regulating intestinal microbiota. We developed a functional fiber (FF) with a synthetic mixture of polysaccharides, high viscosity, water-binding capacity, swelling capacity, and fermentability. This study aimed to investigate the effect of FF on obesity and to determine its prevention of obesity by modulating the gut microbiota. Physiological, histological, and biochemical parameters, and gut microbiota composition were investigated in the following six groups: control group (Con), high-fat diet group (HFD), low-fat diet group (LFD, conversion of HFD to LFD), high-fat +8% FF group (8% FF), high-fat +12% FF group (12% FF), and high-fat +12% FF + antibiotic group (12% FF + AB). The results demonstrated that 12% FF could promote a reduction in body weight and epididymal adipocyte area, augment insulin sensitivity, and stimulate heat production from brown adipose tissue (BAT) (p < 0.05). Compared with the HFD, 12% FF could also significantly improve the intestinal morphological integrity, attenuate systemic inflammation, promote intestinal microbiota homeostasis, and stabilize the production of short-chain fatty acids (SCFAs) (p < 0.05). Consistent with the results of 12% FF, the LFD could significantly reduce the body weight and epididymal adipocyte area relative to the HFD (p < 0.05), but the LFD and HFD showed no significant difference (p > 0.05) in the level of inflammation and SCFAs. Meanwhile, 12% FF supplementation showed an increase (p < 0.05) in the abundance of the Bifidobacterium, Lactococcus, and Coprococcus genus in the intestine, which had a negative correlation with obesity and insulin resistance. Additionally, the treatment with antibiotics (12% FF + AB) could inhibit the effect of FF in the HFD. The Kyoto Encyclopedia of Genes and Genomes (KEGG) function prediction revealed that 12% FF could significantly inhibit the cyanogenic amino acid metabolic pathway and decrease the serum succinate concentration relative to the HFD group. The overall results indicate that 12% FF has the potential to reduce obesity through the beneficial regulation of the gut microbiota and metabolites.
Collapse
Affiliation(s)
- Mengdi Zhang
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (M.Z.); (J.L.); (C.L.); (J.G.); (T.X.)
| | - Jianhua Liu
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (M.Z.); (J.L.); (C.L.); (J.G.); (T.X.)
| | - Chen Li
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (M.Z.); (J.L.); (C.L.); (J.G.); (T.X.)
| | - Jianwei Gao
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (M.Z.); (J.L.); (C.L.); (J.G.); (T.X.)
| | - Chuanhui Xu
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (C.X.); (X.W.); (C.C.); (H.W.); (J.P.)
| | - Xiaoyu Wu
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (C.X.); (X.W.); (C.C.); (H.W.); (J.P.)
| | - Tiesheng Xu
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (M.Z.); (J.L.); (C.L.); (J.G.); (T.X.)
| | - Chenbin Cui
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (C.X.); (X.W.); (C.C.); (H.W.); (J.P.)
| | - Hongkui Wei
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (C.X.); (X.W.); (C.C.); (H.W.); (J.P.)
| | - Jian Peng
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (C.X.); (X.W.); (C.C.); (H.W.); (J.P.)
- The Cooperative Innovation Centre for Sustainable Pig Production, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Rong Zheng
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (M.Z.); (J.L.); (C.L.); (J.G.); (T.X.)
- Correspondence: ; Tel.: +86-134-1952-7039
| |
Collapse
|
17
|
Krela-Kaźmierczak I, Zakerska-Banaszak O, Skrzypczak-Zielińska M, Łykowska-Szuber L, Szymczak-Tomczak A, Zawada A, Rychter AM, Ratajczak AE, Skoracka K, Skrzypczak D, Marcinkowska E, Słomski R, Dobrowolska A. Where Do We Stand in the Behavioral Pathogenesis of Inflammatory Bowel Disease? The Western Dietary Pattern and Microbiota-A Narrative Review. Nutrients 2022; 14:nu14122520. [PMID: 35745251 PMCID: PMC9230670 DOI: 10.3390/nu14122520] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/13/2022] [Accepted: 06/15/2022] [Indexed: 02/06/2023] Open
Abstract
Despite the increasing knowledge with regard to IBD (inflammatory bowel disease), including ulcerative colitis (UC) and Crohn’s disease (CD), the etiology of these conditions is still not fully understood. Apart from immunological, environmental and nutritional factors, which have already been well documented, it is worthwhile to look at the possible impact of genetic factors, as well as the composition of the microbiota in patients suffering from IBD. New technologies in biochemistry allow to obtain information that can add to the current state of knowledge in IBD etiology.
Collapse
Affiliation(s)
- Iwona Krela-Kaźmierczak
- Department of Gastroenterology, Dietetics and Internal Medicine, Poznan University of Medical Sciences, 60-355 Poznań, Poland; (L.Ł.-S.); (A.S.-T.); (A.Z.); (A.M.R.); (A.E.R.); (K.S.); (E.M.); (A.D.)
- Correspondence: (I.K.-K.); (O.Z.-B.); (D.S.)
| | - Oliwia Zakerska-Banaszak
- Institute of Human Genetics, Polish Academy of Sciences, 60-479 Poznań, Poland; (M.S.-Z.); (R.S.)
- Correspondence: (I.K.-K.); (O.Z.-B.); (D.S.)
| | | | - Liliana Łykowska-Szuber
- Department of Gastroenterology, Dietetics and Internal Medicine, Poznan University of Medical Sciences, 60-355 Poznań, Poland; (L.Ł.-S.); (A.S.-T.); (A.Z.); (A.M.R.); (A.E.R.); (K.S.); (E.M.); (A.D.)
| | - Aleksandra Szymczak-Tomczak
- Department of Gastroenterology, Dietetics and Internal Medicine, Poznan University of Medical Sciences, 60-355 Poznań, Poland; (L.Ł.-S.); (A.S.-T.); (A.Z.); (A.M.R.); (A.E.R.); (K.S.); (E.M.); (A.D.)
| | - Agnieszka Zawada
- Department of Gastroenterology, Dietetics and Internal Medicine, Poznan University of Medical Sciences, 60-355 Poznań, Poland; (L.Ł.-S.); (A.S.-T.); (A.Z.); (A.M.R.); (A.E.R.); (K.S.); (E.M.); (A.D.)
| | - Anna Maria Rychter
- Department of Gastroenterology, Dietetics and Internal Medicine, Poznan University of Medical Sciences, 60-355 Poznań, Poland; (L.Ł.-S.); (A.S.-T.); (A.Z.); (A.M.R.); (A.E.R.); (K.S.); (E.M.); (A.D.)
- Doctoral School, Poznan University of Medical Sciences, 61-701 Poznań, Poland
| | - Alicja Ewa Ratajczak
- Department of Gastroenterology, Dietetics and Internal Medicine, Poznan University of Medical Sciences, 60-355 Poznań, Poland; (L.Ł.-S.); (A.S.-T.); (A.Z.); (A.M.R.); (A.E.R.); (K.S.); (E.M.); (A.D.)
- Doctoral School, Poznan University of Medical Sciences, 61-701 Poznań, Poland
| | - Kinga Skoracka
- Department of Gastroenterology, Dietetics and Internal Medicine, Poznan University of Medical Sciences, 60-355 Poznań, Poland; (L.Ł.-S.); (A.S.-T.); (A.Z.); (A.M.R.); (A.E.R.); (K.S.); (E.M.); (A.D.)
- Doctoral School, Poznan University of Medical Sciences, 61-701 Poznań, Poland
| | - Dorota Skrzypczak
- Department of Gastroenterology, Dietetics and Internal Medicine, Poznan University of Medical Sciences, 60-355 Poznań, Poland; (L.Ł.-S.); (A.S.-T.); (A.Z.); (A.M.R.); (A.E.R.); (K.S.); (E.M.); (A.D.)
- Correspondence: (I.K.-K.); (O.Z.-B.); (D.S.)
| | - Emilia Marcinkowska
- Department of Gastroenterology, Dietetics and Internal Medicine, Poznan University of Medical Sciences, 60-355 Poznań, Poland; (L.Ł.-S.); (A.S.-T.); (A.Z.); (A.M.R.); (A.E.R.); (K.S.); (E.M.); (A.D.)
| | - Ryszard Słomski
- Institute of Human Genetics, Polish Academy of Sciences, 60-479 Poznań, Poland; (M.S.-Z.); (R.S.)
| | - Agnieszka Dobrowolska
- Department of Gastroenterology, Dietetics and Internal Medicine, Poznan University of Medical Sciences, 60-355 Poznań, Poland; (L.Ł.-S.); (A.S.-T.); (A.Z.); (A.M.R.); (A.E.R.); (K.S.); (E.M.); (A.D.)
| |
Collapse
|
18
|
Hormati A, Arezoumand A, Dokhanchi H, Pezeshgi Modarres M, Ahmadpour S. Inflammatory Bowel Disease Management during the COVID-19 Pandemic: A Literature Review. Middle East J Dig Dis 2022; 14:155-166. [PMID: 36619145 PMCID: PMC9489314 DOI: 10.34172/mejdd.2022.269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 03/02/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND: Coronavirus disease 2019 (COVID-19) caused a global pandemic. Since its start, widespread safety measures have been adopted by nations worldwide. Crohn's disease (CD) and ulcerative colitis are two forms of inflammatory bowel disease (IBD). IBD is a common inflammatory illness with a high worldwide incidence. Its clinical symptoms include stomach discomfort, diarrhea, anorexia, and weight loss. Genetics, microbes, cigarette smoking, appendectomy, lack of personal hygiene, using anti-inflammatory agents, vitamin D deficiency, and stress are the main risk factors for IBD. COVID-19 pandemic raised concerns about the exacerbation of COVID clinical manifestations in patients with IBD and increasing the risk of mortality. During COVID-19 pandemic, intestinal inflammation, and promoting adherence need to be controlled using medications and vaccinations as a primary goal. In this review, we reviewed unique concerns about IBD risk in the population as well as management of the disease, and the effectiveness of vaccination during COVID-19 pandemic.
Collapse
Affiliation(s)
- Ahmad Hormati
- Gastroenterology and Hepatology Diseases Research Center, Qom University of Medical Sciences, Qom, Iran,Assistant Professor of Gastroenterology and Hepatology, Department of Internal Medicine, School of Medicine, Gastrointestinal and Liver Diseases Research Center, Colorectal Research Center, Hazrat-e Rasool General Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Alireza Arezoumand
- Student Research Committee, Faculty of Medicine, Qom University of Medical Sciences, Qom, Iran
| | - Hadi Dokhanchi
- Student Research Committee, Faculty of Medicine, Qom University of Medical Sciences, Qom, Iran
| | - Mehdi Pezeshgi Modarres
- Gastroenterology and Hepatology Diseases Research Center, Qom University of Medical Sciences, Qom, Iran
| | - Sajjad Ahmadpour
- Gastroenterology and Hepatology Diseases Research Center, Qom University of Medical Sciences, Qom, Iran,Corresponding Author: Sajjad Ahmadpour, PhD Gastroenterology and Hepatology Diseases Research Center, Qom University of Medical Sciences, Qom, Iran. Tel:+ 98 2538105062 Fax:+ 98 2538105062
| |
Collapse
|
19
|
He P, Yu L, Tian F, Zhang H, Chen W, Zhai Q. Dietary Patterns and Gut Microbiota: The Crucial Actors in Inflammatory Bowel Disease. Adv Nutr 2022; 13:1628-1651. [PMID: 35348593 PMCID: PMC9526834 DOI: 10.1093/advances/nmac029] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/25/2022] [Accepted: 03/22/2022] [Indexed: 02/06/2023] Open
Abstract
It is widely believed that diet and the gut microbiota are strongly related to the occurrence and progression of inflammatory bowel disease (IBD), but the effects of the interaction between dietary patterns and the gut microbiota on IBD have not been well elucidated. In this article, we aim to explore the complex relation between dietary patterns, gut microbiota, and IBD. We first comprehensively summarized the dietary patterns associated with IBD and found that dietary patterns can modulate the occurrence and progression of IBD through various signaling pathways, including mammalian target of rapamycin (mTOR), mitogen-activated protein kinases (MAPKs), signal transducer and activator of transcription 3 (STAT3), and NF-κB. Besides, the gut microbiota performs a vital role in the progression of IBD, which can affect the expression of IBD susceptibility genes, such as dual oxidase 2 (DUOX2) and APOA-1 , the intestinal barrier (in particular, the expression of tight junction proteins), immune function (especially the homeostasis between effector and regulatory T cells) and the physiological metabolism, in particular, SCFAs, bile acids (BAs), and tryptophan metabolism. Finally, we reviewed the current knowledge on the interaction between dietary patterns and the gut microbiota in IBD and found that dietary patterns modulate the onset and progression of IBD, which is partly attributed to the regulation of the gut microbiota (especially SCFAs-producing bacteria and Escherichia coli). Faecalibacteria as "microbiomarkers" of IBD could be used as a target for dietary interventions to alleviate IBD. A comprehensive understanding of the interplay between dietary intake, gut microbiota, and IBD will facilitate the development of personalized dietary strategies based on the regulation of the gut microbiota in IBD and expedite the era of precision nutritional interventions for IBD.
Collapse
Affiliation(s)
- Pandi He
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Leilei Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Fengwei Tian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, China,Wuxi Translational Medicine Research Center, Jiangsu Translational Medicine Research Institute Wuxi Branch, Wuxi, Jiangsu, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, China
| | | |
Collapse
|
20
|
Ericsson AC, Bains M, McAdams Z, Daniels J, Busi SB, Waschek JA, Dorsam GP. The G Protein-Coupled Receptor, VPAC1, Mediates Vasoactive Intestinal Peptide-Dependent Functional Homeostasis of the Gut Microbiota. GASTRO HEP ADVANCES 2022; 1:253-264. [PMID: 36910129 PMCID: PMC9997614 DOI: 10.1016/j.gastha.2021.11.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND AND AIMS Vasoactive intestinal peptide (VIP) is a neuropeptide involved in the regulation of feeding behavior and circadian rhythms, metabolism, and immunity. Previous studies revealed the homeostatic effects of VIP signaling on the gut microbiota. VIP-deficient mice demonstrate a gut microbiota dysbiosis characterized by reduced α-diversity and decreased relative abundance (RA) of Gram-positive Firmicutes. However, the mechanism by which VIP signaling affects changes in the microbiota is unknown. METHODS To investigate the role of the 2 cognate G protein-coupled receptors for VIP (VPAC1 and VPAC2) in VIP-mediated homeostasis of the microbiota, fecal samples from VPAC1- and VPAC2-deficient, heterozygous, and wild-type littermate mice were assessed via targeted amplicon sequencing. Their microbiota profiles were additionally compared with microbiota from VIP-deficient, heterozygous, and wild-type littermates, where genotype-dependent changes in the composition and predicted function of each cohort were compared. RESULTS While wild-type mice in each line differed in α-diversity and β-diversity, consistent changes in both metrics were observed in VIP-deficient and VPAC1-deficient mice. This includes a dramatic reduction in α-diversity, increased RA of Proteobacteria and Bacteroidetes, and decreased RA of Lachnospiraceae, Ruminococcaceae, Muribaculaceae, and Rikenellaceae. Specific amplicon sequence variants and predicted functions found to differ significantly based on VIP or VPAC1 genotype were concordant in their directions of change. Multiplatform predicted functional profiling suggested a defective VIP-VPAC1 axis was associated with reduced amino acid degradation along with reduced quinol and quinone biosynthesis. Furthermore, alterations in predicted functions include increased sugar degradation, nitrate reduction, and fatty acid biosynthetic pathways, among other changes. CONCLUSION We conclude that VIP signaling through VPAC1 is critical for the maintenance of normal function of the gut microbiota.
Collapse
Affiliation(s)
- Aaron C. Ericsson
- Department of Veterinary Pathobiology, University of Missouri Metagenomics Center, College of Veterinary Medicine, University of Missouri, Columbia, Missouri
| | - Manpreet Bains
- Department of Microbiological Sciences, College of Agriculture, Food Systems and Natural Resources, North Dakota State University, Fargo, North Dakota
| | - Zachary McAdams
- Department of Veterinary Pathobiology, University of Missouri Metagenomics Center, College of Veterinary Medicine, University of Missouri, Columbia, Missouri
| | - Justin Daniels
- Department of Microbiological Sciences, College of Agriculture, Food Systems and Natural Resources, North Dakota State University, Fargo, North Dakota
| | - Susheel B. Busi
- Department of Systems Ecology, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - James A. Waschek
- Department of Psychiatry and Biobehavioral Sciences, Intellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience and Human Behavior/Neuropsychiatric Institute, University of California, Los Angeles, Los Angeles, California
| | - Glenn P. Dorsam
- Department of Microbiological Sciences, College of Agriculture, Food Systems and Natural Resources, North Dakota State University, Fargo, North Dakota
| |
Collapse
|
21
|
Papoutsis D, da Rocha SDC, Herfindal AM, Bøhn SK, Carlsen H. A High-Fat Western Diet Attenuates Intestinal Changes in Mice with DSS-Induced Low-Grade Inflammation. J Nutr 2021; 152:758-769. [PMID: 34865102 PMCID: PMC8891187 DOI: 10.1093/jn/nxab401] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/22/2021] [Accepted: 11/22/2021] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND A Western diet (WD) is associated with increased inflammation in the large intestine, which is often ascribed to the high dietary fat content. Intestinal inflammation in rodents can be induced by oral administration of dextran sodium sulfate (DSS). However, most studies investigating effects of WD and DSS have not used appropriate low-fat diets (LFDs) as control. OBJECTIVES To compare the effects of a WD with those of an LFD on colon health in a DSS-induced low-grade colonic inflammation mouse model. METHODS Six-week-old male C57BL/6JRj mice were fed an LFD (fat = 10.3% energy, n = 24) or a WD (fat = 41.2% energy, n = 24) for 15 wk [Experiment 1 (Exp.1)]. Half the mice on each diet (n = 12) then received 1% DSS in water for 6 d with the remainder (n = 12 in each diet) administered water. Disease activity, proinflammatory genes, inflammatory biomarkers, and fecal microbiota (16S rRNA) were assessed (Exp.1). Follow-up experiments (Exp.2 and Exp.3) were performed to investigate whether fat source (milk or lard; Exp.2) affected outcomes and whether a shift from LFD to WD 1 d prior to 1% DSS exposure caused an immediate effect on DSS-induced inflammation (Exp.3). RESULTS In Exp.1, 1% DSS treatment significantly increased disease score in the LFD group compared with the WD group (2.7 compared with 0.8; P < 0.001). Higher concentrations of fecal lipocalin (11-fold; P < 0.001), proinflammatory gene expression (≤82-fold), and Proteobacteria were observed in LFD-fed mice compared with the WD group. The 2 fat sources in WDs (Exp.2) revealed the same low inflammation in WD+DSS mice compared with LFD+DSS mice. Finally, the switch from LFD to WD just before DSS exposure resulted in reduced colonic inflammation (Exp.3). CONCLUSIONS Herein, WDs (with milk or lard) protected mice against DSS-induced colonic inflammation compared with LFD-fed mice. Whether fat intake induces protective mechanisms against DSS-mediated inflammation or inhibits establishment of the DSS-induced colitis model is unclear.
Collapse
Affiliation(s)
- Dimitrios Papoutsis
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | | | - Anne Mari Herfindal
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Siv Kjølsrud Bøhn
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | | |
Collapse
|
22
|
GuanXinNing Tablet Attenuates Alzheimer's Disease via Improving Gut Microbiota, Host Metabolites, and Neuronal Apoptosis in Rabbits. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:9253281. [PMID: 34745305 PMCID: PMC8568547 DOI: 10.1155/2021/9253281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/22/2021] [Accepted: 10/04/2021] [Indexed: 01/27/2023]
Abstract
Based on accumulating evidence, Alzheimer's disease (AD) is related to hypercholesterolemia, gut microbiota, and host metabolites. GuanXinNing Tablet (GXN) is an oral compound preparation composed of two Chinese herbs, Salvia miltiorrhiza Bge. and Ligusticum chuanxiong Hort., both of which exert neuroprotective effects. Nevertheless, the effect of GXN on AD is unknown. In the present study, we investigated whether GXN alters cholesterol, amyloid-beta (Aβ), gut microbiota, serum metabolites, oxidative stress, neuronal metabolism activities, and apoptosis in an AD model rabbit fed a 2% cholesterol diet. Our results suggested that the GXN treatment significantly reduced cholesterol levels and Aβ deposition and improved memory and behaviors in AD rabbits. The 16S rRNA analysis showed that GXN ameliorated the changes in the gut microbiota, decreased the Firmicutes/Bacteroidetes ratio, and improved the abundances of Akkermansia and dgA-11_gut_group. 1H-NMR metabolomics found that GXN regulated 12 different serum metabolites, such as low-density lipoprotein (LDL), trimethylamine N-oxide (TMAO), and glutamate (Glu). In addition, the 1H-MRS examination showed that GXN remarkably increased N-acetyl aspartate (NAA) and Glu levels while reducing myo-inositol (mI) and choline (Cho) levels in AD rabbits, consequently enhancing neuronal metabolism activities. Furthermore, GXN significantly inhibited oxidative stress and neuronal apoptosis. Taken together, these results indicate that GXN attenuates AD via improving gut microbiota, host metabolites, and neuronal apoptosis.
Collapse
|
23
|
Effects of Live and Pasteurized Forms of Akkermansia from the Human Gut on Obesity and Metabolic Dysregulation. Microorganisms 2021; 9:microorganisms9102039. [PMID: 34683361 PMCID: PMC8538271 DOI: 10.3390/microorganisms9102039] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/14/2021] [Accepted: 09/18/2021] [Indexed: 01/08/2023] Open
Abstract
Akkermansia muciniphila (A. muciniphila) is a promising probiotic candidate owing to its health-promoting properties. A previous study reported that the pasteurized form of A. muciniphila strains isolated from human stool samples had a beneficial impact on high-fat diet-induced obese mice. On the other hand, the differences in the probiotic effects between live and pasteurized A. muciniphila on the metabolism and immune system of the host are still inconclusive. This study examines the differences between the live and pasteurized forms of A. muciniphila strains on the lipid and glucose metabolism and on regulating the inflammatory immune responses using a HFD-fed obese mouse model. The animals were administered the live and pasteurized forms of two A. muciniphila strains five times per week for the entire study period of 12 weeks. Both forms of the bacterial strains improved the HFD-induced obesity and metabolic dysregulation in the mice by preventing body-weight gains after one week. In addition, they cause a decrease in the weights of the major adipose tissues, adipogenesis/lipogenesis and serum TC levels, improvement in glucose homeostasis and suppression of inflammatory insults. Furthermore, these treatments restored the damaged gut architecture and integrity and improved the hepatic structure and function in HFD-induced animals. On the other hand, for both bacterial strains, the pasteurized form was more potent in improving glucose tolerance than the live form. Moreover, specific A. muciniphila preparations with either live or pasteurized bacteria decreased the number and population (%) of splenic Treg cells (CD4+ Foxp3+) significantly in the HFD-fed animals, further supporting the anti-inflammatory properties of these bacteria.
Collapse
|
24
|
Marion-Letellier R, Leboutte M, Amamou A, Raman M, Savoye G, Ghosh S. Diet in Intestinal Fibrosis: A Double-Edged Sword. Nutrients 2021; 13:nu13093148. [PMID: 34579023 PMCID: PMC8470259 DOI: 10.3390/nu13093148] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/07/2021] [Accepted: 09/07/2021] [Indexed: 11/30/2022] Open
Abstract
The natural history of inflammatory bowel diseases, especially Crohn’s disease, is frequently complicated by intestinal fibrosis. Because of the lack of effective treatments for intestinal fibrosis, there is an urgent need to develop new therapies. Factors promoting intestinal fibrosis are currently unclear, but diet is a potential culprit. Diet may influence predisposition to develop intestinal fibrosis or alter its natural history by modification of both the host immune response and intestinal microbial composition. Few studies have documented the effects of dietary factors in modulating IBD-induced intestinal fibrosis. As the mechanisms behind fibrogenesis in the gut are believed to be broadly similar to those from extra-intestinal organs, it may be relevant to investigate which dietary components can inhibit or promote fibrosis factors such as myofibroblasts progenitor activation in other fibrotic diseases.
Collapse
Affiliation(s)
- Rachel Marion-Letellier
- UNIROUEN, INSERM UMR 1073 Nutrition, Inflammation and Gut-Brain Axis, Normandie University, 76183 Rouen, France; (M.L.); (G.S.)
- Institute for Research and Innovation in Biomedicine (IRIB), UNIROUEN, 76183 Rouen, France
- Correspondence:
| | - Mathilde Leboutte
- UNIROUEN, INSERM UMR 1073 Nutrition, Inflammation and Gut-Brain Axis, Normandie University, 76183 Rouen, France; (M.L.); (G.S.)
- Institute for Research and Innovation in Biomedicine (IRIB), UNIROUEN, 76183 Rouen, France
| | - Asma Amamou
- APC Microbiome Ireland, Biosciences Building, University College Cork, Cork, Ireland; (A.A.); (S.G.)
| | - Maitreyi Raman
- Division of Gastroenterology, University of Calgary, Calgary, AB T2N 4N1, Canada;
- Department of Community Health Sciences, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Guillaume Savoye
- UNIROUEN, INSERM UMR 1073 Nutrition, Inflammation and Gut-Brain Axis, Normandie University, 76183 Rouen, France; (M.L.); (G.S.)
- Institute for Research and Innovation in Biomedicine (IRIB), UNIROUEN, 76183 Rouen, France
- Department of Gastroenterology, Rouen University Hospital, 76031 Rouen, France
| | - Subrata Ghosh
- APC Microbiome Ireland, Biosciences Building, University College Cork, Cork, Ireland; (A.A.); (S.G.)
| |
Collapse
|
25
|
Li X, Li X. Obesity Promotes Experimental Colitis by Increasing Oxidative Stress and Mitochondrial Dysfunction in the Colon. Inflammation 2021; 43:1884-1892. [PMID: 32495128 DOI: 10.1007/s10753-020-01261-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Although obesity is associated with inflammatory bowel disease (IBD), the underlying molecular mechanism still remains unclear. In this study, we evaluated the effects of high-fat diet (HFD)-induced obesity on the development of experimental colitis in mice. The C57BL/6 mice were fed with a HFD for 12 weeks to develop obesity. The concentrations of free fatty acids (FFA), triglycerides, and cholesterol in plasma were significantly increased in HFD-fed mice compared to low-fat diet (LFD)-fed mice. We found that HFD-induced obesity could exacerbate 2,4,6-trinitro-benzene-sulfonic acid (TNBS)-induced experimental colitis in mice resembling Crohn's disease (CD). HFD-fed mice showed shorter colon length, higher clinical scores and histological scores, more production of mucosal tumor necrosis factor-α (TNF-α), and greater destruction of colonic epithelial barrier than LFD-fed mice after TNBS induction. HFD feeding also promoted reactive oxygen species (ROS) production in colonic epithelial cells, thus activating the pro-apoptotic pathway to damage colonic epithelial barrier induced by TNBS. After HCT116 cells were treated with palmitate acid (PA) and/or TNF-α for 24 h, the combination of PA and TNF-α increased ROS production, promoted mitochondrial dysfunction, and activated the pro-apoptotic pathway, but these effects were markedly attenuated by a ROS inhibitor. Taken together, these observations suggest that HFD-induced obesity promotes experimental colitis by increasing oxidative stress and mitochondrial dysfunction, which triggers the activation of pro-apoptotic pathway in the colon.
Collapse
Affiliation(s)
- Xue Li
- Institute of Health Sciences, China Medical University, Shenyang, 110122, China
| | - Xin Li
- Department of Chemistry, School of Fundamental Sciences, China Medical University, Shenyang, 110122, China.
| |
Collapse
|
26
|
Hussain M, Umair Ijaz M, Ahmad MI, Khan IA, Bukhary SUF, Khan W, Hussain S, Hashmi MS, Li C. Gut inflammation exacerbates hepatic injury in C57BL/6J mice via gut-vascular barrier dysfunction with high-fat-incorporated meat protein diets. Food Funct 2021; 11:9168-9176. [PMID: 33026380 DOI: 10.1039/d0fo02153a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
AIM Meat and its derivatives provide nutrients essential for human health. However, meat consumption, along with excessive fat intake, has been associated with gut inflammation, intestinal barrier dysfunction and alterations in gut microbiota. Herein, we investigated whether and how these changes in the intestinal barrier system affect the gut liver axis and hepatic injury and eventually lead to the progression of liver syndrome such as NAFLD. METHODS Mice were fed with high fat (60% kcal) or low fat (12% kcal) along with soybean (control), chicken and pork proteins (HFCH, HFP, LFCH, and LFP) for 12 weeks. The biomarkers for liver injury were investigated after meat protein intake along with the high fat. FINDINGS Greater amount of fat vacuoles visible in the H&E staining increased the inflammatory cell infiltration and disorganized liver structures were observed in the HFP-fed mice. Oil Red O staining revealed that the HFP-fed and HFCH-fed mice showed more lipid droplets, confirming the increased hepatic lipid accumulation. Potential serum markers for NAFLD, ALT and AST were increased in the HF meat diet groups. Key genes responsible for hepatic inflammation and lipogenesis, such as MCP-1, IL1-β and TNF-α were upregulated. HF meat protein diet-fed mice exhibited signs of compromised liver with increased levels of endotoxin in the liver and its binding protein in serum, upregulation of TLRs in the liver, and significant increase in TG, TC, LDL-C and HDL-C concentrations. SIGNIFICANCE Intestinal inflammation and barrier dysfunction aggravate liver injury and fibrosis due to the intake of HF meat protein diets in mice, which may contribute to the progress of liver injury and associated complications. Gut inflammation may directly contribute to the development of NAFLD, especially of the gut vascular barricade dysfunction.
Collapse
Affiliation(s)
- Muzahir Hussain
- Key Laboratory of Meat Processing and Quality Control, MOE; Key Laboratory of Meat Processing, MARA; Jiangsu Collaborative Innovation Centre of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, PR China. and Department of Horticulture, Abdul Wali Khan University Mardan, KPK, Pakistan and Department of Food Science and Technology, The University of Agriculture Peshawar, Peshawar, KPK 26000, Pakistan
| | - Muhammad Umair Ijaz
- Key Laboratory of Meat Processing and Quality Control, MOE; Key Laboratory of Meat Processing, MARA; Jiangsu Collaborative Innovation Centre of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, PR China.
| | - Muhammad Ijaz Ahmad
- Key Laboratory of Meat Processing and Quality Control, MOE; Key Laboratory of Meat Processing, MARA; Jiangsu Collaborative Innovation Centre of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, PR China.
| | - Iftikhar Ali Khan
- Key Laboratory of Meat Processing and Quality Control, MOE; Key Laboratory of Meat Processing, MARA; Jiangsu Collaborative Innovation Centre of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, PR China.
| | - Syed Umar Farooq Bukhary
- Key Laboratory of Meat Processing and Quality Control, MOE; Key Laboratory of Meat Processing, MARA; Jiangsu Collaborative Innovation Centre of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, PR China.
| | - Waqar Khan
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Sayed Hussain
- Department of Horticulture, Abdul Wali Khan University Mardan, KPK, Pakistan
| | - Majid Suhail Hashmi
- Department of Food Science and Technology, The University of Agriculture Peshawar, Peshawar, KPK 26000, Pakistan
| | - Chunbao Li
- Key Laboratory of Meat Processing and Quality Control, MOE; Key Laboratory of Meat Processing, MARA; Jiangsu Collaborative Innovation Centre of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, PR China.
| |
Collapse
|
27
|
Sferra R, Pompili S, Cappariello A, Gaudio E, Latella G, Vetuschi A. Prolonged Chronic Consumption of a High Fat with Sucrose Diet Alters the Morphology of the Small Intestine. Int J Mol Sci 2021; 22:ijms22147280. [PMID: 34298894 PMCID: PMC8303301 DOI: 10.3390/ijms22147280] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/02/2021] [Accepted: 07/05/2021] [Indexed: 02/07/2023] Open
Abstract
(1) The high-fat diet (HFD) of western countries has dramatic effect on the health of several organs, including the digestive tract, leading to the accumulation of fats that can also trigger a chronic inflammatory process, such as that which occurs in non-alcohol steatohepatitis. The effects of a HFD on the small intestine, the organ involved in the absorption of this class of nutrients, are still poorly investigated. (2) To address this aspect, we administered a combined HFD with sucrose (HFD w/Suc, fat: 58% Kcal) regimen (18 months) to mice and investigated the morphological and molecular changes that occurred in the wall of proximal tract of the small intestine compared to the intestine of mice fed with a standard diet (SD) (fat: 18% Kcal). (3) We found an accumulation of lipid droplets in the mucosa of HFD w/Suc-fed mice that led to a disarrangement of mucosa architecture. Furthermore, we assessed the expression of several key players involved in lipid metabolism and inflammation, such as perilipin, leptin, leptin receptor, PI3K, p-mTOR, p-Akt, and TNF-α. All these molecules were increased in HFD mice compared to the SD group. We also evaluated anti-inflammatory molecules like adiponectin, adiponectin receptor, and PPAR-γ, and observed their significant reduction in the HFD w/Suc group compared to the control. Our data are in line with the knowledge that improper eating habits present a primary harmful assault on the bowel and the entire body's health. (4) These results represent a promising starting point for future studies, helping to better understand the complex and not fully elucidated spectrum of intestinal alterations induced by the overconsumption of fat.
Collapse
Affiliation(s)
- Roberta Sferra
- Department of Biotechnological and Applied Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (S.P.); (A.C.); (A.V.)
- Correspondence: ; Tel.: +39-0862-433504
| | - Simona Pompili
- Department of Biotechnological and Applied Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (S.P.); (A.C.); (A.V.)
| | - Alfredo Cappariello
- Department of Biotechnological and Applied Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (S.P.); (A.C.); (A.V.)
| | - Eugenio Gaudio
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, Sapienza University of Rome, 00161 Rome, Italy;
| | - Giovanni Latella
- Department of Life, Health and Environmental Sciences, Division of Gastroenterology, Hepatology, and Nutrition, University of L’Aquila, 67100 L’Aquila, Italy;
| | - Antonella Vetuschi
- Department of Biotechnological and Applied Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (S.P.); (A.C.); (A.V.)
| |
Collapse
|
28
|
Fan-Jiang PY, Lee PS, Nagabhushanam K, Ho CT, Pan MH. Pterostilbene Attenuates High-Fat Diet and Dextran Sulfate Sodium-Induced Colitis via Suppressing Inflammation and Intestinal Fibrosis in Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:7093-7103. [PMID: 34152136 DOI: 10.1021/acs.jafc.1c02783] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The worldwide prevalence of obesity has significantly increased over the past few decades. It is currently believed that obesity is a risk factor for developing inflammatory bowel disease. Pterostilbene (PTS), a naturally occurring stilbene from blueberries, is known to have anticancer, anti-inflammation, antifibrosis, and antiobesity effects. The preventive effect of PTS on the susceptibility of high-fat diet (HFD) to dextran sulfate sodium (DSS)-induced colitis in mice was investigated. Beginning at 5 weeks of age, C57BL/6J mice were fed a normal diet, 50% HFD alone, or containing PTS, and DSS (2.5%, w/v) was given in drinking water at week 9 and week 11. The results demonstrated that PTS significantly attenuated HFD and DSS-induced plasma interleukin-6 accumulation. Moreover, PTS suppressed HFD/DSS-induced formation of aberrant crypt foci and reduced the colon weight-to-length ratio in HFD/DSS-induced colitis mice. Furthermore, PTS inhibited interleukin-1β (IL-1β), the C/EBP homologous protein (CHOP), cyclooxygenase-2, and transforming growth factor beta-1 (TGF-β1)/mothers against decapentaplegic homolog 2 expression and maintained mucin2 (Muc2) and E-cadherin expressions. In addition, post-treatment with PTS also decreased the colon weight-to-length ratio and loss of Muc2. Moreover, the CHOP, IL-1β, matrix metalloproteinase-2, and TGF-β1 expressions were significantly decreased in HFD/DSS-induced colitis mice after post-treatment with PTS. In conclusion, the results of the present study suggest that PTS is of significant interest for the prevention of HFD/DSS-induced colitis in C57BL/6J mice.
Collapse
Affiliation(s)
- Ping-Yun Fan-Jiang
- Institute of Food Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Pei-Sheng Lee
- Institute of Food Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | | | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, New Jersey 08520, United States
| | - Min-Hsiung Pan
- Institute of Food Science and Technology, National Taiwan University, Taipei 10617, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan
- Department of Health and Nutrition Biotechnology, Asia University, Taichung 41354, Taiwan
| |
Collapse
|
29
|
Arora P, Andersen D, Moll JM, Danneskiold-Samsøe NB, Xu L, Zhou B, Kladis G, Rausch P, Workman CT, Kristiansen K, Brix S. Small Intestinal Tuft Cell Activity Associates With Energy Metabolism in Diet-Induced Obesity. Front Immunol 2021; 12:629391. [PMID: 34122403 PMCID: PMC8195285 DOI: 10.3389/fimmu.2021.629391] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 04/26/2021] [Indexed: 01/06/2023] Open
Abstract
Little is known about the involvement of type 2 immune response-promoting intestinal tuft cells in metabolic regulation. We here examined the temporal changes in small intestinal tuft cell number and activity in response to high-fat diet-induced obesity in mice and investigated the relation to whole-body energy metabolism and the immune phenotype of the small intestine and epididymal white adipose tissue. Intake of high fat diet resulted in a reduction in overall numbers of small intestinal epithelial and tuft cells and reduced expression of the intestinal type 2 tuft cell markers Il25 and Tslp. Amongst >1,700 diet-regulated transcripts in tuft cells, we observed an early association between body mass expansion and increased expression of the gene encoding the serine protease inhibitor neuroserpin. By contrast, tuft cell expression of genes encoding gamma aminobutyric acid (GABA)-receptors was coupled to Tslp and Il25 and reduced body mass gain. Combined, our results point to a possible role for small intestinal tuft cells in energy metabolism via coupled regulation of tuft cell type 2 markers and GABA signaling receptors, while being independent of type 2 immune cell involvement. These results pave the way for further studies into interventions that elicit anti-obesogenic circuits via small intestinal tuft cells.
Collapse
Affiliation(s)
- Pankaj Arora
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Daniel Andersen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Janne Marie Moll
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | | | - Liqin Xu
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
- BGI-Shenzhen, Shenzhen, China
| | | | - Georgios Kladis
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Philipp Rausch
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Christopher T. Workman
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Karsten Kristiansen
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Copenhagen, Denmark
- BGI-Shenzhen, Shenzhen, China
| | - Susanne Brix
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
30
|
Internal connections between dietary intake and gut microbiota homeostasis in disease progression of ulcerative colitis: a review. FOOD SCIENCE AND HUMAN WELLNESS 2021. [DOI: 10.1016/j.fshw.2021.02.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
31
|
Carroll-Portillo A, Lin HC. Exploring Mucin as Adjunct to Phage Therapy. Microorganisms 2021; 9:microorganisms9030509. [PMID: 33670927 PMCID: PMC7997181 DOI: 10.3390/microorganisms9030509] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/23/2021] [Accepted: 02/25/2021] [Indexed: 12/21/2022] Open
Abstract
Conventional phage therapy using bacteriophages (phages) for specific targeting of pathogenic bacteria is not always useful as a therapeutic for gastrointestinal (GI) dysfunction. Complex dysbiotic GI disorders such as small intestinal bowel overgrowth (SIBO), ulcerative colitis (UC), or Crohn’s disease (CD) are even more difficult to treat as these conditions have shifts in multiple populations of bacteria within the microbiome. Such community-level structural changes in the gut microbiota may require an alternative to conventional phage therapy such as fecal virome transfer or a phage cocktail capable of targeting multiple bacterial species. Additionally, manipulation of the GI microenvironment may enhance beneficial bacteria–phage interactions during treatment. Mucin, produced along the entire length of the GI tract to protect the underlying mucosa, is a prominent contributor to the GI microenvironment and may facilitate bacteria–phage interactions in multiple ways, potentially serving as an adjunct during phage therapy. In this review, we will describe what is known about the role of mucin within the GI tract and how its facilitation of bacteria–phage interactions should be considered in any effort directed at optimizing effectiveness of a phage therapy for gastrointestinal dysbiosis.
Collapse
Affiliation(s)
- Amanda Carroll-Portillo
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of New Mexico, Albuquerque, NM 87131, USA;
| | - Henry C. Lin
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of New Mexico, Albuquerque, NM 87131, USA;
- Medicine Service, New Mexico VA Health Care System, Albuquerque, NM 87108, USA
- Correspondence: ; Tel.: +1-505-265-1711 (ext. 4552)
| |
Collapse
|
32
|
Basson AR, Chen C, Sagl F, Trotter A, Bederman I, Gomez-Nguyen A, Sundrud MS, Ilic S, Cominelli F, Rodriguez-Palacios A. Regulation of Intestinal Inflammation by Dietary Fats. Front Immunol 2021; 11:604989. [PMID: 33603741 PMCID: PMC7884479 DOI: 10.3389/fimmu.2020.604989] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 12/11/2020] [Indexed: 12/12/2022] Open
Abstract
With the epidemic of human obesity, dietary fats have increasingly become a focal point of biomedical research. Epidemiological studies indicate that high-fat diets (HFDs), especially those rich in long-chain saturated fatty acids (e.g., Western Diet, National Health Examination survey; NHANES 'What We Eat in America' report) have multi-organ pro-inflammatory effects. Experimental studies have confirmed some of these disease associations, and have begun to elaborate mechanisms of disease induction. However, many of the observed effects from epidemiological studies appear to be an over-simplification of the mechanistic complexity that depends on dynamic interactions between the host, the particular fatty acid, and the rather personalized genetics and variability of the gut microbiota. Of interest, experimental studies have shown that certain saturated fats (e.g., lauric and myristic fatty acid-rich coconut oil) could exert the opposite effect; that is, desirable anti-inflammatory and protective mechanisms promoting gut health by unanticipated pathways. Owing to the experimental advantages of laboratory animals for the study of mechanisms under well-controlled dietary settings, we focus this review on the current understanding of how dietary fatty acids impact intestinal biology. We center this discussion on studies from mice and rats, with validation in cell culture systems or human studies. We provide a scoping overview of the most studied diseases mechanisms associated with the induction or prevention of Inflammatory Bowel Disease in rodent models relevant to Crohn's Disease and Ulcerative Colitis after feeding either high-fat diet (HFD) or feed containing specific fatty acid or other target dietary molecule. Finally, we provide a general outlook on areas that have been largely or scarcely studied, and assess the effects of HFDs on acute and chronic forms of intestinal inflammation.
Collapse
Affiliation(s)
- Abigail R. Basson
- Division of Gastroenterology and Liver Diseases, School of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, United States
- Digestive Health Research Institute, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
- Cleveland Digestive Diseases Research Core, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
- Digestive Health Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, United States
| | - Christy Chen
- Digestive Health Research Institute, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Filip Sagl
- Digestive Health Research Institute, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Ashley Trotter
- Division of Gastroenterology and Liver Diseases, School of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, United States
- Digestive Health Research Institute, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
- Department of Hospital Medicine, Pritzker School of Medicine, NorthShore University Health System, Chicago, IL, United States
| | - Ilya Bederman
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, United States
| | - Adrian Gomez-Nguyen
- Division of Gastroenterology and Liver Diseases, School of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, United States
- Digestive Health Research Institute, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
- Cleveland Digestive Diseases Research Core, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Mark S. Sundrud
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL, United States
| | - Sanja Ilic
- Department of Human Sciences, Human Nutrition, College of Education and Human Ecology, The Ohio State University, Columbus, OH, United States
| | - Fabio Cominelli
- Division of Gastroenterology and Liver Diseases, School of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, United States
- Digestive Health Research Institute, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
- Cleveland Digestive Diseases Research Core, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
- Digestive Health Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, United States
| | - Alex Rodriguez-Palacios
- Division of Gastroenterology and Liver Diseases, School of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, United States
- Digestive Health Research Institute, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
- Cleveland Digestive Diseases Research Core, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
- Digestive Health Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, United States
- University Hospitals Research and Education Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, United States
| |
Collapse
|
33
|
Gheorghe CE, Ritz NL, Martin JA, Wardill HR, Cryan JF, Clarke G. Investigating causality with fecal microbiota transplantation in rodents: applications, recommendations and pitfalls. Gut Microbes 2021; 13:1941711. [PMID: 34328058 PMCID: PMC8331043 DOI: 10.1080/19490976.2021.1941711] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 06/02/2021] [Accepted: 06/04/2021] [Indexed: 02/04/2023] Open
Abstract
In recent years, studies investigating the role of the gut microbiota in health and diseases have increased enormously - making it essential to deepen and question the research methodology employed. Fecal microbiota transplantation (FMT) in rodent studies (either from human or animal donors) allows us to better understand the causal role of the intestinal microbiota across multiple fields. However, this technique lacks standardization and requires careful experimental design in order to obtain optimal results. By comparing several studies in which rodents are the final recipients of FMT, we summarize the common practices employed. In this review, we document the limitations of this method and highlight different parameters to be considered while designing FMT Studies. Standardizing this method is challenging, as it differs according to the research topic, but avoiding common pitfalls is feasible. Several methodological questions remain unanswered to this day and we offer a discussion on issues to be explored in future studies.
Collapse
Affiliation(s)
- Cassandra E. Gheorghe
- Department of Psychiatry and Neurobehavioral Science, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Nathaniel L. Ritz
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Jason A. Martin
- Department of Psychiatry and Neurobehavioral Science, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Hannah R. Wardill
- Precision Medicine, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, Australia
- Adelaide Medical School, the University of Adelaide, Adelaide, Australia
| | - John F. Cryan
- Department of Psychiatry and Neurobehavioral Science, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Gerard Clarke
- Department of Psychiatry and Neurobehavioral Science, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- INFANT Research Centre, University College Cork, Cork, Ireland
| |
Collapse
|
34
|
Gao Y, Xu A, Shen Q, Xie Y, Liu S, Wang X. Graphene oxide aggravated dextran sulfate sodium-induced colitis through intestinal epithelial cells autophagy dysfunction. J Toxicol Sci 2021; 46:43-55. [PMID: 33408300 DOI: 10.2131/jts.46.43] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Graphene oxide (GO) is one of the most promising nanomaterials used in biomedicine. However, studies about its adverse effects on the intestine in state of inflammation remain limited. This study aimed to explore the underlying effects of GO on intestinal epithelial cells (IECs) in vitro and colitis in vivo. We found that GO could exert toxic effects on NCM460 cells in a dose- and time-dependent manner and promote inflammation. Furthermore, GO caused lysosomal dysfunction and then blockaded autophagy flux. Moreover, pharmacological autophagy inhibitor 3-Methyladenine could reverse GO-induced LC3B and p62 expression levels, reduce expression levels of IL-6, IL-8, TLR4, and CXCL2, and increase the level of IL-10. In vivo, C57BL/6 mice were treated with 2.5% dextran sulfate sodium (DSS) in drinking water for five consecutive days to induce colitis. Then, GO at 60 mg/kg dose was administered through the oral route every two days from day 2 to day 8. These results showed that GO aggravated DSS-induced colitis, characterized by shortening of the colon and severe pathological changes, and induced autophagy. In conclusion, GO caused the abnormal autophagy in IECs and exacerbated DSS-induced colitis in mice. Our research indicated that GO may contribute to the development of intestinal inflammation by inducing IECs autophagy dysfunction.
Collapse
Affiliation(s)
- Yanfei Gao
- Department of Gastroenterology, Zhujiang Hospital, Southern Medical University, China
| | - Angao Xu
- Huizhou Medicine Institute, China
| | - Qiong Shen
- Department of Gastroenterology, Zhujiang Hospital, Southern Medical University, China
| | - Yue Xie
- Department of Gastroenterology, Zhujiang Hospital, Southern Medical University, China
| | - Siliang Liu
- Department of Gastroenterology, Zhujiang Hospital, Southern Medical University, China
| | - Xinying Wang
- Department of Gastroenterology, Zhujiang Hospital, Southern Medical University, China
| |
Collapse
|
35
|
Zhou H, Zhou SY, Gillilland M, Li JY, Lee A, Gao J, Zhang G, Xu X, Owyang C. Bile acid toxicity in Paneth cells contributes to gut dysbiosis induced by high-fat feeding. JCI Insight 2020; 5:138881. [PMID: 33055426 PMCID: PMC7605541 DOI: 10.1172/jci.insight.138881] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 09/09/2020] [Indexed: 12/12/2022] Open
Abstract
High-fat feeding (HFF) leads to gut dysbiosis through unclear mechanisms. We hypothesize that bile acids secreted in response to high-fat diets (HFDs) may act on intestinal Paneth cells, leading to gut dysbiosis. We found that HFF resulted in widespread taxonomic shifts in the bacteria of the ileal mucosa, characterized by depletion of Lactobacillus and enrichment of Akkermansia muciniphila, Clostridium XIVa, Ruminococcaceae, and Lachnospiraceae, which were prevented by the bile acid binder cholestyramine. Immunohistochemistry and in situ hybridization studies showed that G protein-coupled bile acid receptor (TGR5) expressed in Paneth cells was upregulated in the rats fed HFD or normal chow supplemented with cholic acid. This was accompanied by decreased lysozyme+ Paneth cells and α-defensin 5 and 6 and increased expression of XBP-1. Pretreatment with ER stress inhibitor 4PBA or with cholestyramine prevented these changes. Ileal explants incubated with deoxycholic acid or cholic acid caused a decrease in α-defensin 5 and 6 and an increase in XBP-1, which was prevented by TGR5 antibody or 4PBA. In conclusion, this is the first demonstration to our knowledge that TGR5 is expressed in Paneth cells. HFF resulted in increased bile acid secretion and upregulation of TGR5 expression in Paneth cells. Bile acid toxicity in Paneth cells contributes to gut dysbiosis induced by HFF.
Collapse
Affiliation(s)
- Hui Zhou
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, Michigan, USA.,Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shi-Yi Zhou
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, Michigan, USA
| | - Merritt Gillilland
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, Michigan, USA
| | | | - Allen Lee
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, Michigan, USA
| | - Jun Gao
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, Michigan, USA
| | - Guanpo Zhang
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, Michigan, USA.,Department of Gastroenterology, 900 Hospital of the Joint Logistics Team, Fuzhou, China
| | - Xianjun Xu
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chung Owyang
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, Michigan, USA
| |
Collapse
|
36
|
Thomas SS, Cha YS, Kim KA. Effect of vegetable oils with different fatty acid composition on high-fat diet-induced obesity and colon inflammation. Nutr Res Pract 2020; 14:425-437. [PMID: 33029284 PMCID: PMC7520558 DOI: 10.4162/nrp.2020.14.5.425] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 03/30/2020] [Accepted: 05/04/2020] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND/OBJECTIVES Different fatty acids exert different health benefits. This study investigated the potential protective effects of perilla, olive, and safflower oils on high-fat diet-induced obesity and colon inflammation. MATERIALS/METHODS Five-week old, C57BL/6J mice were assigned to 5 groups: low-fat diet (LFD), high-fat diet (HFD) and high-fat diet supplemented with-perilla oil (HPO), olive oil (HOO), and safflower oil (HSO). After 16 weeks of the experimental period, the mice were sacrificed, and blood and tissues were collected. The serum was analyzed for obesity- and inflammation-related biomarkers. Gene expression of the biomarkers in the liver, adipose tissue, and colon tissue was analyzed. Micro-computed tomography (CT) analysis was performed one week before sacrifice. RESULTS Treatment with all the three oils significantly improved obesity-induced increases in body weight, liver weight, and epididymal fat weight as well as serum triglyceride and leptin levels. Treatment with perilla oil (PO) and safflower oil (SO) increased adiponectin levels. The micro-CT analysis revealed that PO and SO reduced abdominal fat volume considerably. The mRNA expression of lipogenic genes was reduced in all the three oil-supplemented groups and PO upregulated lipid oxidation in the liver. Supplementation of oils improved macroscopic score, increased colon length, and decreased serum endotoxin and proinflammatory cytokine levels in the colon. The abundance of Bifidobacteria was increased and that of Enterobacteriaceae was reduced in the PO-supplemented group. All three oils reduced proinflammatory cytokine levels, as indicated by the mRNA expression. In addition, PO increased the expression of tight junction proteins. CONCLUSIONS Taken together, our data indicate that the three oils exert similar anti-obesity effects. Interestingly, compared with olive oil and SO, PO provides better protection against high-fat diet-induced colon inflammation, suggesting that PO consumption helps manage inflammation-related diseases and provides omega-3 fatty acids needed by the body.
Collapse
Affiliation(s)
- Shalom Sara Thomas
- Department of Food Science and Human Nutrition, Jeonbuk National University, Jeonju 54896, Korea
| | - Youn-Soo Cha
- Department of Food Science and Human Nutrition, Jeonbuk National University, Jeonju 54896, Korea.,Obesity Research Center, Jeonbuk National University, Jeonju 54896, Korea
| | - Kyung-Ah Kim
- Department of Food and Nutrition, Chungnam National University, Daejeon 34134, Korea
| |
Collapse
|
37
|
Shah BM, Palakurthi SS, Khare T, Khare S, Palakurthi S. Natural proteins and polysaccharides in the development of micro/nano delivery systems for the treatment of inflammatory bowel disease. Int J Biol Macromol 2020; 165:722-737. [PMID: 33010274 DOI: 10.1016/j.ijbiomac.2020.09.214] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 09/18/2020] [Accepted: 09/23/2020] [Indexed: 12/12/2022]
Abstract
Treatments for inflammatory bowel disease (IBD) are typically immunosuppressive. Despite a range of treatment options, limited efficacy, systemic toxicities like bone marrow suppression, infections and malignancy are their serious setbacks. There exists an unmet medical need for novel therapeutic agents without safety concerns resulting from chronic, systemic immunosuppression. Of late, several natural agents with better therapeutic potential have been reported. It is very likely that restricting the release of the active molecules to the intestine would further improve their clinical efficacy and safety. To this end, novel polymer-based micro/nano formulations protect the drug from gastric environment and slowly release the drug in the colon. However, cost and side-effects associated to synthetic polymers have led to the development of biocompatible, economic and pharmaceutically well-accepted biomacromolecules in exploring their potential in IBD. Since last few years, biological proteins, polysaccharides and their combinations have shown great efficacy in colitis induced animal models. In this review, micro/nano formulations developed using biomacromolecules like chitosan, zein, pectin, casein, alginate, dextran, glucomannan and hyaluronic acid have been reviewed focusing on their potential in protecting active cargo, avoiding premature release, distal colon targeting along with their impact on reshaping the altered gut microbiota and how it can ameliorate the colitis conditions.
Collapse
Affiliation(s)
- Brijesh M Shah
- Department of Pharmaceutical Sciences, Rangel College of Pharmacy, Texas A&M University, Kingsville, TX 78363, USA
| | - Sushesh Srivatsa Palakurthi
- Department of Pharmaceutical Sciences, Rangel College of Pharmacy, Texas A&M University, Kingsville, TX 78363, USA
| | - Tripti Khare
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Sharad Khare
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Missouri, Columbia, MO 65212, USA; Harry S. Truman Veterans Hospital, Columbia, MO 65201, USA
| | - Srinath Palakurthi
- Department of Pharmaceutical Sciences, Rangel College of Pharmacy, Texas A&M University, Kingsville, TX 78363, USA.
| |
Collapse
|
38
|
Yang M, Bose S, Lim S, Seo J, Shin J, Lee D, Chung WH, Song EJ, Nam YD, Kim H. Beneficial Effects of Newly Isolated Akkermansia muciniphila Strains from the Human Gut on Obesity and Metabolic Dysregulation. Microorganisms 2020; 8:E1413. [PMID: 32937828 PMCID: PMC7564497 DOI: 10.3390/microorganisms8091413] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/08/2020] [Accepted: 09/09/2020] [Indexed: 12/25/2022] Open
Abstract
The identification of new probiotics with anti-obesity properties has attracted considerable interest. In the present study, the anti-obesity activities of Akkermansia muciniphila (A. muciniphila) strains isolated from human stool samples and their relationship with the gut microbiota were evaluated using a high fat-diet (HFD)-fed mice model. Three strains of A. muciniphila were chosen from 27 isolates selected based on their anti-lipogenic activity in 3T3-L1 cells. The anti-lipogenic, anti-adipogenic and anti-obesity properties of these three strains were evaluated further in HFD-induced obese mice. The animals were administered these strains six times per week for 12 weeks. The treatment improved the HFD-induced metabolic disorders in mice in terms of the prevention of body weight gain, caloric intake and reduction in the weights of the major adipose tissues and total fat. In addition, it improved glucose homeostasis and insulin sensitivity. These effects were also associated with the inhibition of low-grade intestinal inflammation and restoration of damaged gut integrity, prevention of liver steatosis and improvement of hepatic function. These results revealed a difference in the distribution pattern of the gut microbial communities between groups. Therefore, the gut microbial population modulation, at least in part, might contribute to the beneficial impact of the selected A. muciniphila strains against metabolic disorders.
Collapse
Affiliation(s)
- Meng Yang
- Department of Rehabilitation Medicine of Korean Medicine, Dongguk University, 814 Siksa-dong, Ilsandong-gu, Goyang-si 10326, Korea; (M.Y.); (S.B.); (S.L.)
| | - Shambhunath Bose
- Department of Rehabilitation Medicine of Korean Medicine, Dongguk University, 814 Siksa-dong, Ilsandong-gu, Goyang-si 10326, Korea; (M.Y.); (S.B.); (S.L.)
| | - Sookyoung Lim
- Department of Rehabilitation Medicine of Korean Medicine, Dongguk University, 814 Siksa-dong, Ilsandong-gu, Goyang-si 10326, Korea; (M.Y.); (S.B.); (S.L.)
| | - JaeGu Seo
- R&D Center, Enterobiome Inc., 814 Siksa-dong, Ilsandong-gu, Goyang-si 10326, Korea; (J.S.); (J.S.); (D.L.)
| | - JooHyun Shin
- R&D Center, Enterobiome Inc., 814 Siksa-dong, Ilsandong-gu, Goyang-si 10326, Korea; (J.S.); (J.S.); (D.L.)
| | - Dokyung Lee
- R&D Center, Enterobiome Inc., 814 Siksa-dong, Ilsandong-gu, Goyang-si 10326, Korea; (J.S.); (J.S.); (D.L.)
| | - Won-Hyong Chung
- Research Group of Healthcare, Korea Food Research Institute, Wanju 55365, Korea;
| | - Eun-Ji Song
- Research Group of Gut Microbiome, Korea Food Research Institute, Wanju-gun 55365, Korea;
| | - Young-Do Nam
- Research Group of Gut Microbiome, Korea Food Research Institute, Wanju-gun 55365, Korea;
| | - Hojun Kim
- Department of Rehabilitation Medicine of Korean Medicine, Dongguk University, 814 Siksa-dong, Ilsandong-gu, Goyang-si 10326, Korea; (M.Y.); (S.B.); (S.L.)
| |
Collapse
|
39
|
Xu Y, Wang N, Tan HY, Li S, Zhang C, Zhang Z, Feng Y. Panax notoginseng saponins modulate the gut microbiota to promote thermogenesis and beige adipocyte reconstruction via leptin-mediated AMPKα/STAT3 signaling in diet-induced obesity. Theranostics 2020; 10:11302-11323. [PMID: 33042284 PMCID: PMC7532683 DOI: 10.7150/thno.47746] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 09/02/2020] [Indexed: 12/18/2022] Open
Abstract
Background: Activation of the thermogenic program in white and brown adipocytes presents a promising avenue for increasing energy expenditure during the treatment of obesity. The endogenous mechanism for promoting thermogenesis in brown adipocytes or browning in white adipocytes has indicated that the gut microbiota is a crucial regulator of the host energy balance. However, whether the effects of the therapeutic intervention-induced modulation of the gut microbiota on adipocyte browning involved the regulation of leptin remains unclear. Method: The adipose features were analyzed by body composition analysis, infrared camera observations, transmission electron microscopy and H&E staining. The gene and protein expression in adipose tissue were detected by qRT-PCR, immunoblotting, immunohistochemistry and immunofluorescence staining. The gut microbiome signature was identified by 16S rRNA gene amplicon sequencing, and both mice with high-fat diet-induced obesity (DIO) and mice with antibiotics-induced microbiome depletion were subjected to fecal microbiota transplantation. Results: Treatment with Panax notoginseng saponins (PNS) shaped the murine gut microbiome by increasing the abundances of Akkermansia muciniphila and Parabacteroides distasonis, and as a result, DIO mice harbored a distal gut microbiota with a significantly increased capacity to reduce host adiposity. The PNS-induced modulation of the gut microbiota in DIO mice could increase brown adipose tissue (BAT) thermogenesis and beige adipocyte reconstruction by activating the leptin-AMPK/STAT3 signaling pathway, which results in the promotion of energy expenditure. Leptin has an essential influence on the anti-obesity effects of PNS. In cases of leptin deficiency, the PNS-induced modulation of the gut microbiota exerts negative effects on thermogenesis and browning in white adipose tissue (WAT), which indicates that PNS fail to reduce obesity in leptin gene-deficient mice. The PNS-induced modulation of the gut microbiota exerted a minimal effect on DIO mice with antibiotic-induced microbiome depletion, which confirmed the correlation between altered gut microbiota and the remodeling of adipose tissues in DIO mice. The direct influence of leptin on browning via the AMPKα/STAT3 signaling pathway in C3H101/2 cells supported our in vivo results that signalling through the leptin-AMPK/STAT3 pathway induced by the PNS-modulated gut microbiota was involved in beige adipocyte reconstruction. Conclusion: Our results revealed that leptin signaling is critical for alterations in microbiota-fat crosstalk and provide promising avenues for therapeutic intervention in the treatment of obesity.
Collapse
MESH Headings
- AMP-Activated Protein Kinases/metabolism
- Adipocytes, Beige/drug effects
- Adipocytes, Beige/metabolism
- Adipose Tissue, White/cytology
- Adipose Tissue, White/drug effects
- Adipose Tissue, White/metabolism
- Akkermansia/genetics
- Akkermansia/isolation & purification
- Animals
- Bacteroidetes/genetics
- Bacteroidetes/isolation & purification
- Body Composition
- DNA, Bacterial/isolation & purification
- Diet, High-Fat/adverse effects
- Disease Models, Animal
- Energy Metabolism/drug effects
- Gastrointestinal Microbiome/drug effects
- Gastrointestinal Microbiome/physiology
- Humans
- Leptin/metabolism
- Male
- Mice
- Mice, Obese
- Obesity/drug therapy
- Obesity/etiology
- Obesity/pathology
- Panax notoginseng/chemistry
- RNA, Ribosomal, 16S/genetics
- STAT3 Transcription Factor/metabolism
- Saponins/administration & dosage
- Signal Transduction/drug effects
- Thermogenesis/drug effects
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yibin Feng
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong
| |
Collapse
|
40
|
Kim TK, Lee JC, Im SH, Lee MS. Amelioration of Autoimmune Diabetes of NOD Mice by Immunomodulating Probiotics. Front Immunol 2020; 11:1832. [PMID: 33013834 PMCID: PMC7496355 DOI: 10.3389/fimmu.2020.01832] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 07/08/2020] [Indexed: 01/01/2023] Open
Abstract
Type 1 autoimmune diabetes is an autoimmune disease characterized by specific destruction of pancreatic β-cells producing insulin. Recent studies have shown that gut microbiota and immunity are closely linked to systemic immunity, affecting the balance between pro-inflammatory and regulatory immune responses. Altered gut microbiota may be causally related to the development of immune-mediated diseases, and probiotics have been suggested to have modulatory effects on inflammatory diseases and immune disorders. We studied whether a probiotic combination that has immunomodulatory effects on several inflammatory diseases can reduce the incidence of diabetes in non-obese diabetic (NOD) mice, a classical animal model of human T1D. When Immune Regulation and Tolerance 5 (IRT5), a probiotic combination comprising Lactobacillus acidophilus, Lactobacillus casei, Lactobacillus reuteri, Bifidobacterium bifidium, and Streptococcus thermophiles, was administered 6 times a week for 36 weeks to NOD mice, beginning at 4 weeks of age, the incidence of diabetes was significantly reduced. Insulitis score was also significantly reduced, and β-cell mass was conversely increased by IRT5 administration. IRT5 administration significantly reduced gut permeability in NOD mice. The proportion of total regulatory T cells was not changed by IRT5 administration; however, the proportion of CCR9+ regulatory T (Treg) cells expressing gut-homing receptor was significantly increased in pancreatic lymph nodes (PLNs) and lamina propria of the small intestine (SI-LP). Type 1 T helper (Th1) skewing was reduced in PLNs by IRT5 administration. IRT5 could be a candidate for an effective probiotic combination, which can be safely administered to inhibit or prevent type 1 diabetes (T1D).
Collapse
Affiliation(s)
- Tae Kang Kim
- Department of Internal Medicine, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, South Korea.,Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | | | - Sin-Hyeog Im
- ImmunoBiome. Inc., Pohang, South Korea.,Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, South Korea
| | - Myung-Shik Lee
- Department of Internal Medicine, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
41
|
Bilski J, Wojcik D, Danielak A, Mazur-Bialy A, Magierowski M, Tønnesen K, Brzozowski B, Surmiak M, Magierowska K, Pajdo R, Ptak-Belowska A, Brzozowski T. Alternative Therapy in the Prevention of Experimental and Clinical Inflammatory Bowel Disease. Impact of Regular Physical Activity, Intestinal Alkaline Phosphatase and Herbal Products. Curr Pharm Des 2020; 26:2936-2950. [DOI: 10.2174/1381612826666200427090127] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 04/18/2020] [Indexed: 02/06/2023]
Abstract
Inflammatory bowel diseases (IBD), such as ulcerative colitis and Crohn's disease, are multifactorial, chronic, disabling, and progressive diseases characterised by cyclical nature, alternating between active and quiescent states. While the aetiology of IBD is not fully understood, this complex of diseases involve a combination of factors including the genetic predisposition and changes in microbiome as well as environmental risk factors such as high-fat and low-fibre diets, reduced physical activity, air pollution and exposure to various toxins and drugs such as antibiotics. The prevalence of both IBD and obesity is increasing in parallel, undoubtedly proving the existing interactions between these risk factors common to both disorders to unravel poorly recognized cell signaling and molecular alterations leading to human IBD. Therefore, there is still a significant and unmet need for supportive and adjunctive therapy for IBD patients directed against the negative consequences of visceral obesity and bacterial dysbiosis. Among the alternative therapies, a moderate-intensity exercise can benefit the health and well-being of IBD patients and improve both the healing of human IBD and experimental animal colitis. Intestinal alkaline phosphatase (IAP) plays an essential role in the maintenance of intestinal homeostasis intestinal and the mechanism of mucosal defence. The administration of exogenous IAP could be recommended as a therapeutic strategy for the cure of diseases resulting from the intestinal barrier dysfunction such as IBD. Curcumin, a natural anti-inflammatory agent, which is capable of stimulating the synthesis of endogenous IAP, represents another alternative approach in the treatment of IBD. This review was designed to discuss potential “nonpharmacological” alternative and supplementary therapeutic approaches taking into account epidemiological and pathophysiological links between obesity and IBD, including changes in the functional parameters of the intestinal mucosa and alterations in the intestinal microbiome.
Collapse
Affiliation(s)
- Jan Bilski
- Department of Ergonomics and Exercise Physiology, Faculty of Health Sciences, Jagiellonian University Medical College, Cracow, Poland
| | - Dagmara Wojcik
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, Cracow, Poland
| | - Aleksandra Danielak
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, Cracow, Poland
| | - Agnieszka Mazur-Bialy
- Department of Ergonomics and Exercise Physiology, Faculty of Health Sciences, Jagiellonian University Medical College, Cracow, Poland
| | - Marcin Magierowski
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, Cracow, Poland
| | - Katherine Tønnesen
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, Cracow, Poland
| | - Bartosz Brzozowski
- Gastroenterology and Hepatology Clinic, Jagiellonian University Medical College, Cracow, Poland
| | - Marcin Surmiak
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, Cracow, Poland
| | - Katarzyna Magierowska
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, Cracow, Poland
| | - Robert Pajdo
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, Cracow, Poland
| | - Agata Ptak-Belowska
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, Cracow, Poland
| | - Tomasz Brzozowski
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, Cracow, Poland
| |
Collapse
|
42
|
Thomas SS, Cha YS, Kim KA. Perilla Oil Alleviates High-Fat Diet-Induced Inflammation in the Colon of Mice by Suppressing Nuclear Factor-Kappa B Activation. J Med Food 2020; 23:818-826. [PMID: 32552354 DOI: 10.1089/jmf.2019.4675] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Shalom Sara Thomas
- Department of Food Science and Human Nutrition, Jeonbuk National University, Jeonju, Republic of Korea
| | - Youn-Soo Cha
- Department of Food Science and Human Nutrition, Jeonbuk National University, Jeonju, Republic of Korea
- Obesity Research Center, Jeonbuk National University, Jeonju, Republic of Korea
| | - Kyung-Ah Kim
- Department of Food and Nutrition, Chungnam National University, Daejeon, Republic of Korea
| |
Collapse
|
43
|
Puértolas-Balint F, Schroeder BO. Does an Apple a Day Also Keep the Microbes Away? The Interplay Between Diet, Microbiota, and Host Defense Peptides at the Intestinal Mucosal Barrier. Front Immunol 2020; 11:1164. [PMID: 32655555 PMCID: PMC7325984 DOI: 10.3389/fimmu.2020.01164] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 05/12/2020] [Indexed: 12/13/2022] Open
Abstract
A crucial mechanism of intestinal defense includes the production and secretion of host defense peptides (HDPs). HDPs control pathogens and commensals at the intestinal interface by direct killing, by sequestering vital ions, or by causing bacterial cells to aggregate in the mucus layer. Accordingly, the combined activity of various HDPs neutralizes gut bacteria before reaching the mucosa and thus helps to maintain the homeostatic balance between the host and its microbes at the mucosal barrier. Defects in the mucosal barrier have been associated with various diseases that are on the rise in the Western world. These include metabolic diseases, such as obesity and type 2 diabetes, and inflammatory intestinal disorders, including ulcerative colitis and Crohn's disease, the two major entities of inflammatory bowel disease. While the etiology of these diseases is multifactorial, highly processed Western-style diet (WSD) that is rich in carbohydrates and fat and low in dietary fiber content, is considered to be a contributing lifestyle factor. As such, WSD does not only profoundly affect the resident microbes in the intestine, but can also directly alter HDP function, thereby potentially contributing to intestinal mucosal barrier dysfunction. In this review we aim to decipher the complex interaction between diet, microbiota, and HDPs. We discuss how HDP expression can be modulated by specific microbes and their metabolites as well as by dietary factors, including fibers, lipids, polyphenols and vitamins. We identify several dietary compounds that lead to reduced HDP function, but also factors that stimulate HDP production in the intestine. Furthermore, we argue that the effect of HDPs against commensal bacteria has been understudied when compared to pathogens, and that local environmental conditions also need to be considered. In addition, we discuss the known molecular mechanisms behind HDP modulation. We believe that a better understanding of the diet-microbiota-HDP interdependence will provide insights into factors underlying modern diseases and will help to identify potential dietary interventions or probiotic supplementation that can promote HDP-mediated intestinal barrier function in the Western gut.
Collapse
Affiliation(s)
- Fabiola Puértolas-Balint
- Laboratory for Molecular Infection Medicine Sweden (MIMS) -The Nordic EMBL Partnership for Molecular Medicine, Umeå University, Umeå, Sweden.,Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Bjoern O Schroeder
- Laboratory for Molecular Infection Medicine Sweden (MIMS) -The Nordic EMBL Partnership for Molecular Medicine, Umeå University, Umeå, Sweden.,Department of Molecular Biology, Umeå University, Umeå, Sweden
| |
Collapse
|
44
|
Vernocchi P, Del Chierico F, Putignani L. Gut Microbiota Metabolism and Interaction with Food Components. Int J Mol Sci 2020; 21:ijms21103688. [PMID: 32456257 PMCID: PMC7279363 DOI: 10.3390/ijms21103688] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/12/2020] [Accepted: 05/14/2020] [Indexed: 12/13/2022] Open
Abstract
The human gut contains trillions of microbes that play a central role in host biology, including the provision of key nutrients from the diet. Food is a major source of precursors for metabolite production; in fact, diet modulates the gut microbiota (GM) as the nutrients, derived from dietary intake, reach the GM, affecting both the ecosystem and microbial metabolic profile. GM metabolic ability has an impact on human nutritional status from childhood. However, there is a wide variability of dietary patterns that exist among individuals. The study of interactions with the host via GM metabolic pathways is an interesting field of research in medicine, as microbiota members produce myriads of molecules with many bioactive properties. Indeed, much evidence has demonstrated the importance of metabolites produced by the bacterial metabolism from foods at the gut level that dynamically participate in various biochemical mechanisms of a cell as a reaction to environmental stimuli. Hence, the GM modulate homeostasis at the gut level, and the alteration in their composition can concur in disease onset or progression, including immunological, inflammatory, and metabolic disorders, as well as cancer. Understanding the gut microbe–nutrient interactions will increase our knowledge of how diet affects host health and disease, thus enabling personalized therapeutics and nutrition.
Collapse
Affiliation(s)
- Pamela Vernocchi
- Unit of Human Microbiome, Bambino Gesù Children’s Hospital, IRCCS, Viale San Paolo 15, 00146 Rome, Italy;
- Correspondence: ; Tel.: +39-0668-594061; Fax: +39-0668-592218
| | - Federica Del Chierico
- Unit of Human Microbiome, Bambino Gesù Children’s Hospital, IRCCS, Viale San Paolo 15, 00146 Rome, Italy;
| | - Lorenza Putignani
- Unit of Parasitology and Unit of Human Microbiome, Bambino Gesù Children’s Hospital, IRCCS, Piazza Sant’ Onofrio 4, 00165 Rome, Italy;
| |
Collapse
|
45
|
Simon H, Vartanian V, Wong MH, Nakabeppu Y, Sharma P, Lloyd RS, Sampath H. OGG1 deficiency alters the intestinal microbiome and increases intestinal inflammation in a mouse model. PLoS One 2020; 15:e0227501. [PMID: 31935236 PMCID: PMC6959583 DOI: 10.1371/journal.pone.0227501] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 12/19/2019] [Indexed: 02/07/2023] Open
Abstract
OGG1-deficient (Ogg1-/-) animals display increased propensity to age-induced and diet-induced metabolic diseases, including insulin resistance and fatty liver. Since the intestinal microbiome is increasingly understood to play a role in modulating host metabolic responses, we examined gut microbial composition in Ogg1-/- mice subjected to different nutritional challenges. Interestingly, Ogg1-/- mice had a markedly altered intestinal microbiome under both control-fed and hypercaloric diet conditions. Several microbial species that were increased in Ogg1-/- animals were associated with increased energy harvest, consistent with their propensity to high-fat diet induced weight gain. In addition, several pro-inflammatory microbes were increased in Ogg1-/- mice. Consistent with this observation, Ogg1-/- mice were significantly more sensitive to intestinal inflammation induced by acute exposure to dextran sulfate sodium. Taken together, these data indicate that in addition to their proclivity to obesity and metabolic disease, Ogg1-/- mice are prone to colonic inflammation. Further, these data point to alterations in the intestinal microbiome as potential mediators of the metabolic and intestinal inflammatory response in Ogg1-/- mice.
Collapse
Affiliation(s)
- Holly Simon
- Division of Environmental and Biomolecular Systems, Institute of Environmental Health, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Vladimir Vartanian
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Melissa H. Wong
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, Oregon, United States of America
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Yusaku Nakabeppu
- Division of Neurofunctional Genomics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Fukuoka, Kyushu, Japan
| | - Priyanka Sharma
- Department of Nutritional Sciences, Rutgers, the State University of New Jersey, New Brunswick, New Jersey, United States of America
- New Jersey Institute for Food, Nutrition, and Health, Rutgers, the State University of New Jersey, New Brunswick, New Jersey, United States of America
| | - R. Stephen Lloyd
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, Oregon, United States of America
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, United States of America
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Harini Sampath
- Department of Nutritional Sciences, Rutgers, the State University of New Jersey, New Brunswick, New Jersey, United States of America
- New Jersey Institute for Food, Nutrition, and Health, Rutgers, the State University of New Jersey, New Brunswick, New Jersey, United States of America
- * E-mail:
| |
Collapse
|
46
|
Tanaka S, Nemoto Y, Takei Y, Morikawa R, Oshima S, Nagaishi T, Okamoto R, Tsuchiya K, Nakamura T, Stutte S, Watanabe M. High-fat diet-derived free fatty acids impair the intestinal immune system and increase sensitivity to intestinal epithelial damage. Biochem Biophys Res Commun 2019; 522:971-977. [PMID: 31810607 DOI: 10.1016/j.bbrc.2019.11.158] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 11/22/2019] [Indexed: 12/12/2022]
Abstract
In Japan and other Asian countries, increased fat uptake induced by a westernized diet is thought to be associated with an increased incidence of inflammatory bowel disease, colorectal cancer and food allergies; however, the mechanism for this remains unclear. High-fat diet (HFD)-fed mice are common animal models used to examine the effect of fat intake in vivo. HFDs are reported to exacerbate DSS-induced colitis and intestinal tumorigenesis, but the effect of HFDs on the intestines before disease induction is often overlooked. We found that the intestinal and gut-associated lymphoid tissue (GALT) morphology of HFD-fed mice differed from that of standard diet (SD)-fed mice. To clarify the mechanism by which fat intake increases intestinal diseases, we analyzed the morphological and immunological aspects of the intestines of HFD-fed mice as well as the molecular mechanisms and physiology. Feeding an HFD for 3 weeks induced atrophy of the small intestine, colon and GALT and reduced the number of small intestinal intraepithelial lymphocytes (IELs) and lamina propria lymphocytes (LPLs). Feeding an HFD for only one day reduced the number of small intestinal (SI)-IELs and SI-LPLs. The effect of feeding a 3-week HFD continued for 2 weeks after returning to the SD. The effect of the HFD on the intestinal immune system was independent of the gut microbes. We hypothesized that the cytotoxicity of the abundant HFD-derived free fatty acids in the intestinal lumen impairs the intestinal immune system. Both saturated and unsaturated free fatty acids were toxic to intestinal T-cells in vitro. Orally administering free fatty acids reduced the number of SI-IELs and LPLs. Using a lipase inhibitor to reduce the luminal free fatty acids attenuated the HFD-induced changes in the intestinal immune system, while using a statin to reduce the serum free fatty acids did not. Thus, HFD-induced free fatty acids damaged the intestines; this effect was termed "intestinal lipotoxicity". Because sustained reduction of SI-LPLs after HFD feeding exacerbated indomethacin-induced small intestinal damage, lipotoxicity to the human intestines incurred by consuming a westernized diet in Japan may increase intestinal diseases such as IBD, colorectal cancer or food allergies.
Collapse
Affiliation(s)
- Shohei Tanaka
- Department of Gastroenterology and Hepatology, Graduate School, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Yasuhiro Nemoto
- Department of Gastroenterology and Hepatology, Graduate School, Tokyo Medical and Dental University (TMDU), Tokyo, Japan; Department of Advanced Therapeutics for GI Diseases, TMDU, Tokyo, Japan.
| | - Yuria Takei
- Department of Gastroenterology and Hepatology, Graduate School, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Ryo Morikawa
- Department of Gastroenterology and Hepatology, Graduate School, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Shigeru Oshima
- Department of Gastroenterology and Hepatology, Graduate School, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Takashi Nagaishi
- Department of Gastroenterology and Hepatology, Graduate School, Tokyo Medical and Dental University (TMDU), Tokyo, Japan; Department of Advanced Therapeutics for GI Diseases, TMDU, Tokyo, Japan
| | - Ryuichi Okamoto
- Department of Gastroenterology and Hepatology, Graduate School, Tokyo Medical and Dental University (TMDU), Tokyo, Japan; Center for Stem Cell and Regenerative Medicine, TMDU, Tokyo, Japan
| | - Kiichiro Tsuchiya
- Department of Gastroenterology and Hepatology, Graduate School, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Tetsuya Nakamura
- Department of Gastroenterology and Hepatology, Graduate School, Tokyo Medical and Dental University (TMDU), Tokyo, Japan; Department of Advanced Therapeutics for GI Diseases, TMDU, Tokyo, Japan
| | - Susanne Stutte
- Ludwig-Maximilians-Universität München (LMU), Walter Brendel Zentrum für Experimentelle Medizin, Institute of Cardiovascular Physiology, Biomedical Center Munich, Germany
| | - Mamoru Watanabe
- Department of Gastroenterology and Hepatology, Graduate School, Tokyo Medical and Dental University (TMDU), Tokyo, Japan; Advanced Research Institute, TMDU, Tokyo, Japan
| |
Collapse
|
47
|
Bains M, Laney C, Wolfe AE, Orr M, Waschek JA, Ericsson AC, Dorsam GP. Vasoactive Intestinal Peptide Deficiency Is Associated With Altered Gut Microbiota Communities in Male and Female C57BL/6 Mice. Front Microbiol 2019; 10:2689. [PMID: 31849864 PMCID: PMC6900961 DOI: 10.3389/fmicb.2019.02689] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 11/06/2019] [Indexed: 12/13/2022] Open
Abstract
Vasoactive intestinal peptide (VIP) is crucial for gastrointestinal tract (GIT) health. VIP sustains GIT homeostasis through maintenance of the intestinal epithelial barrier and acts as a potent anti-inflammatory mediator that contributes to gut bacterial tolerance. Based on these biological functions by VIP, we hypothesized that its deficiency would alter gut microbial ecology. To this end, fecal samples from male and female VIP+/+, VIP+/-, and VIP-/- littermates (n = 47) were collected and 16S rRNA sequencing was conducted. Our data revealed significant changes in bacterial composition, biodiversity, and weight loss from VIP-/- mice compared to VIP+/+ and VIP+/- littermates, irrespective of sex. The gut bacteria compositional changes observed in VIP-/- mice was consistent with gut microbial structure changes reported for certain inflammatory and autoimmune disorders. Moreover, predicted functional changes by PICRUSt software suggested an energy surplus within the altered microbiota from VIP-/- mice. These data support that VIP plays an important role in maintaining microbiota balance, biodiversity, and GIT function, and its genetic removal results in significant gut microbiota restructuring and weight loss.
Collapse
Affiliation(s)
- Manpreet Bains
- Department of Microbiological Sciences, College of Agriculture, Food Systems and Natural Resources, North Dakota State University, Fargo, ND, United States
| | - Caleb Laney
- Department of Microbiological Sciences, College of Agriculture, Food Systems and Natural Resources, North Dakota State University, Fargo, ND, United States
| | - Annie E. Wolfe
- Metagenomics Center, Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO, United States
| | - Megan Orr
- Department of Statistics, College of Science and Math, North Dakota State University, Fargo, ND, United States
| | - James A. Waschek
- Intellectual and Developmental Disabilities Research Center, Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior/Neuropsychiatric Institute, University of California, Los Angeles, Los Angeles, CA, United States
| | - Aaron C. Ericsson
- Metagenomics Center, Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO, United States
| | - Glenn P. Dorsam
- Department of Microbiological Sciences, College of Agriculture, Food Systems and Natural Resources, North Dakota State University, Fargo, ND, United States
| |
Collapse
|
48
|
Role of Obesity, Mesenteric Adipose Tissue, and Adipokines in Inflammatory Bowel Diseases. Biomolecules 2019; 9:biom9120780. [PMID: 31779136 PMCID: PMC6995528 DOI: 10.3390/biom9120780] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/14/2019] [Accepted: 11/15/2019] [Indexed: 12/11/2022] Open
Abstract
Inflammatory bowel diseases (IBDs) are a group of disorders which include ulcerative colitis and Crohn's disease. Obesity is becoming increasingly more common among patients with inflammatory bowel disease and plays a role in the development and course of the disease. This is especially true in the case of Crohn's disease. The recent results indicate a special role of visceral adipose tissue and particularly mesenteric adipose tissue, also known as "creeping fat", in pathomechanism, leading to intestinal inflammation. The involvement of altered adipocyte function and the deregulated production of adipokines, such as leptin and adiponectin, has been suggested in pathogenesis of IBD. In this review, we discuss the epidemiology and pathophysiology of obesity in IBD, the influence of a Western diet on the course of Crohn's disease and colitis in IBD patients and animal's models, and the potential role of adipokines in these disorders. Since altered body composition, decrease of skeletal muscle mass, and development of pathologically changed mesenteric white adipose tissue are well-known features of IBD and especially of Crohn's disease, we discuss the possible crosstalk between adipokines and myokines released from skeletal muscle during exercise with moderate or forced intensity. The emerging role of microbiota and the antioxidative and anti-inflammatory enzymes such as intestinal alkaline phosphatase is also discussed, in order to open new avenues for the therapy against intestinal perturbations associated with IBD.
Collapse
|
49
|
Szilagyi A. Relationship(s) between obesity and inflammatory bowel diseases: possible intertwined pathogenic mechanisms. Clin J Gastroenterol 2019; 13:139-152. [PMID: 31452062 PMCID: PMC7101293 DOI: 10.1007/s12328-019-01037-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 08/15/2019] [Indexed: 12/17/2022]
Abstract
The inflammatory bowel diseases, Crohn's and ulcerative colitis have increased in incidence and prevalence from the mid-eighteen to the late nineteen centuries. From then to the current twenty-first century there has been a more rapid expansion of these disease to areas previously experiencing low rates. This latter expansion coincides with the current obesity pandemic which also began toward the end of the last century. Although the two diseases have radically different frequencies, there are interesting links between them. Four areas link the diseases. On an epidemiological level, IBD tends to follow a north-south gradient raising the importance of vitamin D in protection. Obesity has very weak relationship with latitude, but both diseases follow adult lactase distributions colliding in this plane. Is it possible that obesity (a low vitamin D condition with questionable response to supplements) reduces effects in IBD? On a pathogenic level, pro-inflammatory processes mark both IBD and obesity. The similarity raises the question of whether obesity could facilitate the development of IBD. Features of the metabolic syndrome occur in both, with or without obesity in IBD. The fourth interaction between the two diseases is the apparent effect of obesity on the course of IBD. There are suggestions that obesity may reduce the efficacy of biologic agents. Yet there is some suggestion also that obesity may reduce the need for hospitalization and surgery. The apparent co-expansion of both obesity and IBD suggests similar environmental changes may be involved in the promotion of both.
Collapse
Affiliation(s)
- Andrew Szilagyi
- Division of Gastroenterology, Department of Medicine, Jewish General Hospital, McGill University Medical School, 3755 Cote St Catherine Rd, Room E110, Montreal, QC, H3T 1E2, Canada.
| |
Collapse
|
50
|
Srugo SA, Bloise E, Nguyen TTTN, Connor KL. Impact of Maternal Malnutrition on Gut Barrier Defense: Implications for Pregnancy Health and Fetal Development. Nutrients 2019; 11:nu11061375. [PMID: 31248104 PMCID: PMC6628366 DOI: 10.3390/nu11061375] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 05/31/2019] [Accepted: 06/10/2019] [Indexed: 12/16/2022] Open
Abstract
Small intestinal Paneth cells, enteric glial cells (EGC), and goblet cells maintain gut mucosal integrity, homeostasis, and influence host physiology locally and through the gut-brain axis. Little is known about their roles during pregnancy, or how maternal malnutrition impacts these cells and their development. Pregnant mice were fed a control diet (CON), undernourished by 30% vs. control (UN), or fed a high fat diet (HF). At day 18.5 (term = 19), gut integrity and function were assessed by immunohistochemistry and qPCR. UN mothers displayed reduced mRNA expression of Paneth cell antimicrobial peptides (AMP; Lyz2, Reg3g) and an accumulation of villi goblet cells, while HF had reduced Reg3g and mucin (Muc2) mRNA and increased lysozyme protein. UN fetuses had increased mRNA expression of gut transcription factor Sox9, associated with reduced expression of maturation markers (Cdx2, Muc2), and increased expression of tight junctions (TJ; Cldn-7). HF fetuses had increased mRNA expression of EGC markers (S100b, Bfabp, Plp1), AMP (Lyz1, Defa1, Reg3g), and TJ (Cldn-3, Cldn-7), and reduced expression of an AMP-activator (Tlr4). Maternal malnutrition altered expression of genes that maintain maternal gut homeostasis, and altered fetal gut permeability, function, and development. This may have long-term implications for host-microbe interactions, immunity, and offspring gut-brain axis function.
Collapse
Affiliation(s)
- Sebastian A Srugo
- Department of Health Sciences, Carleton University, Ottawa, ON K1S 5B6, Canada.
| | - Enrrico Bloise
- Department of Morphology, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil.
| | | | - Kristin L Connor
- Department of Health Sciences, Carleton University, Ottawa, ON K1S 5B6, Canada.
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada.
| |
Collapse
|