1
|
Pasala C, Digwal CS, Sharma S, Wang S, Bubula A, Chiosis G. Epichaperomes: redefining chaperone biology and therapeutic strategies in complex diseases. RSC Chem Biol 2025; 6:678-698. [PMID: 40144950 PMCID: PMC11933791 DOI: 10.1039/d5cb00010f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 03/15/2025] [Indexed: 03/28/2025] Open
Abstract
The complexity of disease biology extends beyond mutations or overexpression, encompassing stress-induced mechanisms that reshape proteins into pathological assemblies. Epichaperomes, stable and disease-specific assemblies of chaperones and co-chaperones, exemplify this phenomenon. This review emphasizes the critical structural and functional distinctions between epichaperomes and canonical chaperones, highlighting their role in redefining therapeutic strategies. Epichaperomes arise under stress conditions through post-translational modifications that stabilize these assemblies, enabling them to act as scaffolding platforms that rewire protein-protein interaction networks and drive the pathological phenotypes of complex diseases such as cancer and neurodegeneration. Chemical biology has been instrumental in uncovering the unique nature of epichaperomes, with small molecules like PU-H71 elucidating their biology and demonstrating their therapeutic potential by dismantling pathological scaffolds and restoring normal protein-protein interaction networks. By targeting epichaperomes, we unlock the potential for network-level interventions and personalized medicine, offering transformative possibilities for diseases driven by protein-protein interaction network dysregulation.
Collapse
Affiliation(s)
- Chiranjeevi Pasala
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center New York NY 10065 USA
| | - Chander S Digwal
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center New York NY 10065 USA
| | - Sahil Sharma
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center New York NY 10065 USA
| | - Shujuan Wang
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center New York NY 10065 USA
| | - Alessia Bubula
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center New York NY 10065 USA
| | - Gabriela Chiosis
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center New York NY 10065 USA
- Department of Medicine, Division of Solid Tumors, Memorial Sloan Kettering Cancer Center New York NY 10065 USA
| |
Collapse
|
2
|
Fernandez-Ciruelos B, Albanese M, Adhav A, Solomin V, Ritchie-Martinez A, Taverne F, Velikova N, Jirgensons A, Marina A, Finn PW, Wells JM. Repurposing Hsp90 inhibitors as antimicrobials targeting two-component systems identifies compounds leading to loss of bacterial membrane integrity. Microbiol Spectr 2024; 12:e0014624. [PMID: 38917423 PMCID: PMC11302729 DOI: 10.1128/spectrum.00146-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 05/14/2024] [Indexed: 06/27/2024] Open
Abstract
The discovery of antimicrobials with novel mechanisms of action is crucial to tackle the foreseen global health crisis due to antimicrobial resistance. Bacterial two-component signaling systems (TCSs) are attractive targets for the discovery of novel antibacterial agents. TCS-encoding genes are found in all bacterial genomes and typically consist of a sensor histidine kinase (HK) and a response regulator. Due to the conserved Bergerat fold in the ATP-binding domain of the TCS HK and the human chaperone Hsp90, there has been much interest in repurposing inhibitors of Hsp90 as antibacterial compounds. In this study, we explore the chemical space of the known Hsp90 inhibitor scaffold 3,4-diphenylpyrazole (DPP), building on previous literature to further understand their potential for HK inhibition. Six DPP analogs inhibited HK autophosphorylation in vitro and had good antimicrobial activity against Gram-positive bacteria. However, mechanistic studies showed that their antimicrobial activity was related to damage of bacterial membranes. In addition, DPP analogs were cytotoxic to human embryonic kidney cell lines and induced the cell arrest phenotype shown for other Hsp90 inhibitors. We conclude that these DPP structures can be further optimized as specific disruptors of bacterial membranes providing binding to Hsp90 and cytotoxicity are lowered. Moreover, the X-ray crystal structure of resorcinol, a substructure of the DPP derivatives, bound to the HK CheA represents a promising starting point for the fragment-based design of novel HK inhibitors. IMPORTANCE The discovery of novel antimicrobials is of paramount importance in tackling the imminent global health crisis of antimicrobial resistance. The discovery of novel antimicrobials with novel mechanisms of actions, e.g., targeting bacterial two-component signaling systems, is crucial to bypass existing resistance mechanisms and stimulate pharmaceutical innovations. Here, we explore the possible repurposing of compounds developed in cancer research as inhibitors of two-component systems and investigate their off-target effects such as bacterial membrane disruption and toxicity. These results highlight compounds that are promising for further development of novel bacterial membrane disruptors and two-component system inhibitors.
Collapse
Affiliation(s)
- Blanca Fernandez-Ciruelos
- Host-Microbe Interactomics Group, Dept. Animal Sciences, Wageningen University & Research (WUR), Wageningen, the Netherlands
| | - Marco Albanese
- Oxford Drug Design (ODD), Oxford Centre for Innovation, Oxford, United Kingdom
- School of Computer Science, University of Buckingham, Buckingham, United Kingdom
| | - Anmol Adhav
- Macromolecular Crystallography Group, Instituto de Biomedicina de Valencia-Consejo Superior de Investigaciones Cientificas (IBV-CSIC) and CIBER de Enfermedades Raras (CIBERER), Valencia, Spain
| | - Vitalii Solomin
- Organic Synthesis Methodology Group, Latvian Institute of Organic Synthesis (LIOS), Riga, Latvia
| | - Arabela Ritchie-Martinez
- Host-Microbe Interactomics Group, Dept. Animal Sciences, Wageningen University & Research (WUR), Wageningen, the Netherlands
| | - Femke Taverne
- Host-Microbe Interactomics Group, Dept. Animal Sciences, Wageningen University & Research (WUR), Wageningen, the Netherlands
| | - Nadya Velikova
- Host-Microbe Interactomics Group, Dept. Animal Sciences, Wageningen University & Research (WUR), Wageningen, the Netherlands
| | - Aigars Jirgensons
- Organic Synthesis Methodology Group, Latvian Institute of Organic Synthesis (LIOS), Riga, Latvia
| | - Alberto Marina
- Macromolecular Crystallography Group, Instituto de Biomedicina de Valencia-Consejo Superior de Investigaciones Cientificas (IBV-CSIC) and CIBER de Enfermedades Raras (CIBERER), Valencia, Spain
| | - Paul W. Finn
- Oxford Drug Design (ODD), Oxford Centre for Innovation, Oxford, United Kingdom
- School of Computer Science, University of Buckingham, Buckingham, United Kingdom
| | - Jerry M. Wells
- Host-Microbe Interactomics Group, Dept. Animal Sciences, Wageningen University & Research (WUR), Wageningen, the Netherlands
| |
Collapse
|
3
|
Dernovšek J, Zajec Ž, Poje G, Urbančič D, Sturtzel C, Goričan T, Grissenberger S, Ciura K, Woziński M, Gedgaudas M, Zubrienė A, Grdadolnik SG, Mlinarič-Raščan I, Rajić Z, Cotman AE, Zidar N, Distel M, Tomašič T. Exploration and optimisation of structure-activity relationships of new triazole-based C-terminal Hsp90 inhibitors towards in vivo anticancer potency. Biomed Pharmacother 2024; 177:116941. [PMID: 38889640 DOI: 10.1016/j.biopha.2024.116941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/30/2024] [Accepted: 06/10/2024] [Indexed: 06/20/2024] Open
Abstract
The development of new anticancer agents is one of the most urgent topics in drug discovery. Inhibition of molecular chaperone Hsp90 stands out as an approach that affects various oncogenic proteins in different types of cancer. These proteins rely on Hsp90 to obtain their functional structure, and thus Hsp90 is indirectly involved in the pathophysiology of cancer. However, the most studied ATP-competitive inhibition of Hsp90 at the N-terminal domain has proven to be largely unsuccessful clinically. Therefore, research has shifted towards Hsp90 C-terminal domain (CTD) inhibitors, which are also the focus of this study. Our recent discovery of compound C has provided us with a starting point for exploring the structure-activity relationship and optimising this new class of triazole-based Hsp90 inhibitors. This investigation has ultimately led to a library of 33 analogues of C that have suitable physicochemical properties and several inhibit the growth of different cancer types in the low micromolar range. Inhibition of Hsp90 was confirmed by biophysical and cellular assays and the binding epitopes of selected inhibitors were studied by STD NMR. Furthermore, the most promising Hsp90 CTD inhibitor 5x was shown to induce apoptosis in breast cancer (MCF-7) and Ewing sarcoma (SK-N-MC) cells while inducing cause cell cycle arrest in MCF-7 cells. In MCF-7 cells, it caused a decrease in the levels of ERα and IGF1R, known Hsp90 client proteins. Finally, 5x was tested in zebrafish larvae xenografted with SK-N-MC tumour cells, where it limited tumour growth with no obvious adverse effects on normal zebrafish development.
Collapse
Affiliation(s)
- Jaka Dernovšek
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, Ljubljana 1000, Slovenia
| | - Živa Zajec
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, Ljubljana 1000, Slovenia
| | - Goran Poje
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Ante Kovačića 1, Zagreb 10000, Croatia
| | - Dunja Urbančič
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, Ljubljana 1000, Slovenia
| | - Caterina Sturtzel
- St. Anna Children's Cancer Research Institute, Zimmermannplatz 10, Vienna 1090, Austria
| | - Tjaša Goričan
- Laboratory for Molecular Structural Dynamics, Theory Department, National Institute of Chemistry, Hajdrihova 19, Ljubljana 1001, Slovenia
| | - Sarah Grissenberger
- St. Anna Children's Cancer Research Institute, Zimmermannplatz 10, Vienna 1090, Austria
| | - Krzesimir Ciura
- Department of Physical Chemistry, Medical University of Gdańsk, Gdańsk 80-416, Poland
| | - Mateusz Woziński
- Department of Physical Chemistry, Medical University of Gdańsk, Gdańsk 80-416, Poland
| | - Marius Gedgaudas
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio al. 7, Vilnius LT-10257, Lithuania
| | - Asta Zubrienė
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio al. 7, Vilnius LT-10257, Lithuania
| | - Simona Golič Grdadolnik
- Laboratory for Molecular Structural Dynamics, Theory Department, National Institute of Chemistry, Hajdrihova 19, Ljubljana 1001, Slovenia
| | - Irena Mlinarič-Raščan
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, Ljubljana 1000, Slovenia
| | - Zrinka Rajić
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Ante Kovačića 1, Zagreb 10000, Croatia
| | - Andrej Emanuel Cotman
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, Ljubljana 1000, Slovenia
| | - Nace Zidar
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, Ljubljana 1000, Slovenia
| | - Martin Distel
- St. Anna Children's Cancer Research Institute, Zimmermannplatz 10, Vienna 1090, Austria
| | - Tihomir Tomašič
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, Ljubljana 1000, Slovenia.
| |
Collapse
|
4
|
Gedgaudas M, Kaziukonytė P, Kairys V, Mickevičiūtė A, Zubrienė A, Brukštus A, Matulis D, Kazlauskas E. Comprehensive analysis of resorcinyl-imidazole Hsp90 inhibitor design. Eur J Med Chem 2024; 273:116505. [PMID: 38788300 DOI: 10.1016/j.ejmech.2024.116505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/07/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024]
Abstract
Human Hsp90 chaperones are implicated in various aspects of cancer. Due to this, Hsp90 has been explored as potential target in cancer treatment. Initial attempts to use Hsp90 inhibitors in drug trials failed due to toxicity and inefficacy. The next generation of drugs were less toxic but still insufficiently effective in a clinical setting. Recently, a lot of effort is being put into understanding the consequences of Hsp90 isoform selective inhibition, expecting that this might hold the key in targeting Hsp90 for disease treatment. Here we investigate a series of compounds containing the aryl-resorcinol scaffold with a 5-membered ring as a promising class of new human Hsp90 inhibitors, reaching nanomolar affinity. We compare how the replacement of 5-membered ring, from thiadiazole to imidazole, as well as a variety of their substituents, influences the potency of these inhibitors for Hsp90 alpha and beta isoforms. To further elucidate the dissimilarity in ligand selectivity between the isoforms, a mutant protein was constructed and tested against the ligand library. In addition, we performed a series of molecular dynamics (MD) and docking simulations to further explain our experimental findings as well as evaluated key compounds in cell assays. Our results deepen the understanding of Hsp90 isoform ligand selectivity and serve as an informative base for further Hsp90 inhibitor optimization.
Collapse
Affiliation(s)
- Marius Gedgaudas
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio 7, 10257, Vilnius, Lithuania
| | - Paulina Kaziukonytė
- Department of Organic Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko 24, 03225, Vilnius, Lithuania
| | - Visvaldas Kairys
- Department of Bioinformatics, Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio 7, 10257, Vilnius, Lithuania
| | - Aurelija Mickevičiūtė
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio 7, 10257, Vilnius, Lithuania
| | - Asta Zubrienė
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio 7, 10257, Vilnius, Lithuania
| | - Algirdas Brukštus
- Department of Organic Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko 24, 03225, Vilnius, Lithuania
| | - Daumantas Matulis
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio 7, 10257, Vilnius, Lithuania
| | - Egidijus Kazlauskas
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio 7, 10257, Vilnius, Lithuania.
| |
Collapse
|
5
|
Chandel S, Bhattacharya A, Gautam A, Zeng W, Alka O, Sachsenberg T, Gupta GD, Narang RK, Ravichandiran V, Singh R. Investigation of the anti-cancer potential of epoxyazadiradione in neuroblastoma: experimental assays and molecular analysis. J Biomol Struct Dyn 2023; 42:11377-11395. [PMID: 37753734 DOI: 10.1080/07391102.2023.2262593] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 09/15/2023] [Indexed: 09/28/2023]
Abstract
Neuroblastoma, the most common childhood solid tumor, originates from primitive sympathetic nervous system cells. Epoxyazadiradione (EAD) is a limonoid derived from Azadirachta indica, belonging to the family Meliaceae. In this study, we isolated the EAD from Azadirachta indica seed and studied the anti-cancer potential against neuroblastoma. Herein, EAD demonstrated significant efficacy against neuroblastoma by suppressing cell proliferation, enhancing the rate of apoptosis and cycle arrest at the SubG0 and G2/M phases. EAD enhanced the pro-apoptotic Caspase 3 and Caspase 9 and inhibited the NF-kβ translocation in a dose-dependent manner. In order to identify the specific EAD target, a gel-free quantitative proteomics study on SH-SY5Y cells using Liquid Chromatography with tandem mass spectrometry was done in a dose-dependent manner, followed by detailed bioinformatics analysis to identify effects on protein. Proteomics data identified that Enolase1 and HSP90 were up-regulated in neuroblastoma. EAD inhibited the expression of Enolase1 and HSP90, validated by mRNA expression, immunoblotting, Enolase1 and HSP90 kit and flow-cytometry based bioassay. Molecular docking study, Molecular dynamic simulation, and along with molecular mechanics/Poisson-Boltzmann surface area analysis also suggested that EAD binds at the active site of the proteins and were stable throughout the 100 ns Molecular dynamic simulation study. Overall, this study suggested EAD exhibited anti-cancer activity against neuroblastoma by targeting Enolase1 and HSP90 pathways.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Shivani Chandel
- Department of Pharmacognosy, ISF College of Pharmacy, Moga, Punjab, India
| | - Arka Bhattacharya
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, Punjab, India
| | - Anupam Gautam
- Institute for Bioinformatics and Medical Informatics, University of Tübingen, Tübingen, Germany
- International Max Planck Research School "From Molecules to Organisms", Max Planck Institute for Biology Tübingen, Tübingen, Germany
- Cluster of Excellence: EXC 2124: Controlling Microbes to Fight Infection, University of Tübingen, Tübingen, Germany
| | - Wenhuan Zeng
- Institute for Bioinformatics and Medical Informatics, University of Tübingen, Tübingen, Germany
| | - Oliver Alka
- Institute for Bioinformatics and Medical Informatics, University of Tübingen, Tübingen, Germany
| | - Timo Sachsenberg
- Institute for Bioinformatics and Medical Informatics, University of Tübingen, Tübingen, Germany
- Department of Computer Science, Applied Bioinformatics, University of Tübingen, Tübingen, Germany
| | - G D Gupta
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab, India
| | - Raj Kumar Narang
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab, India
| | - V Ravichandiran
- Department of Natural Products, National Institute of Pharmaceutical Education and Research, Kolkata, India
| | - Rajveer Singh
- Department of Pharmacognosy, ISF College of Pharmacy, Moga, Punjab, India
| |
Collapse
|
6
|
Munezero D, Aliff H, Salido E, Saravanan T, Sanzhaeva U, Guan T, Ramamurthy V. HSP90α is needed for the survival of rod photoreceptors and regulates the expression of rod PDE6 subunits. J Biol Chem 2023; 299:104809. [PMID: 37172722 PMCID: PMC10250166 DOI: 10.1016/j.jbc.2023.104809] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
Heat shock protein 90 (HSP90) is an abundant molecular chaperone that regulates the stability of a small set of proteins essential in various cellular pathways. Cytosolic HSP90 has two closely related paralogs: HSP90α and HSP90β. Due to the structural and sequence similarities of cytosolic HSP90 paralogs, identifying the unique functions and substrates in the cell remains challenging. In this article, we assessed the role of HSP90α in the retina using a novel HSP90α murine knockout model. Our findings show that HSP90α is essential for rod photoreceptor function but was dispensable in cone photoreceptors. In the absence of HSP90α, photoreceptors developed normally. We observed rod dysfunction in HSP90α knockout at 2 months with the accumulation of vacuolar structures, apoptotic nuclei, and abnormalities in the outer segments. The decline in rod function was accompanied by progressive degeneration of rod photoreceptors that was complete at 6 months. The deterioration in cone function and health was a "bystander effect" that followed the degeneration of rods. Tandem mass tag proteomics showed that HSP90α regulates the expression levels of <1% of the retinal proteome. More importantly, HSP90α was vital in maintaining rod PDE6 and AIPL1 cochaperone levels in rod photoreceptor cells. Interestingly, cone PDE6 levels were unaffected. The robust expression of HSP90β paralog in cones likely compensates for the loss of HSP90α. Overall, our study demonstrated the critical need for HSP90α chaperone in the maintenance of rod photoreceptors and showed potential substrates regulated by HSP90α in the retina.
Collapse
Affiliation(s)
- Daniella Munezero
- Department of Pharmaceutical and Pharmacological Sciences, West Virginia University, Morgantown, West Virginia, USA; Ophthalmology and Visual Sciences, West Virginia University, Morgantown, West Virginia, USA
| | - Hunter Aliff
- Ophthalmology and Visual Sciences, West Virginia University, Morgantown, West Virginia, USA; Biochemistry and Molecular Medicine, West Virginia University, Morgantown, West Virginia, USA
| | - Ezequiel Salido
- Ophthalmology and Visual Sciences, West Virginia University, Morgantown, West Virginia, USA; Biochemistry and Molecular Medicine, West Virginia University, Morgantown, West Virginia, USA
| | - Thamaraiselvi Saravanan
- Ophthalmology and Visual Sciences, West Virginia University, Morgantown, West Virginia, USA; Biochemistry and Molecular Medicine, West Virginia University, Morgantown, West Virginia, USA
| | - Urikhan Sanzhaeva
- Ophthalmology and Visual Sciences, West Virginia University, Morgantown, West Virginia, USA; Biochemistry and Molecular Medicine, West Virginia University, Morgantown, West Virginia, USA
| | - Tongju Guan
- Ophthalmology and Visual Sciences, West Virginia University, Morgantown, West Virginia, USA; Biochemistry and Molecular Medicine, West Virginia University, Morgantown, West Virginia, USA
| | - Visvanathan Ramamurthy
- Department of Pharmaceutical and Pharmacological Sciences, West Virginia University, Morgantown, West Virginia, USA; Ophthalmology and Visual Sciences, West Virginia University, Morgantown, West Virginia, USA; Biochemistry and Molecular Medicine, West Virginia University, Morgantown, West Virginia, USA.
| |
Collapse
|
7
|
Mercier R, Yama D, LaPointe P, Johnson JL. Hsp90 mutants with distinct defects provide novel insights into cochaperone regulation of the folding cycle. PLoS Genet 2023; 19:e1010772. [PMID: 37228112 PMCID: PMC10246838 DOI: 10.1371/journal.pgen.1010772] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 06/07/2023] [Accepted: 05/05/2023] [Indexed: 05/27/2023] Open
Abstract
Molecular chaperones play a key role in maintaining proteostasis and cellular health. The abundant, essential, cytosolic Hsp90 (Heat shock protein, 90 kDa) facilitates the folding and activation of hundreds of newly synthesized or misfolded client proteins in an ATP-dependent folding pathway. In a simplified model, Hsp70 first helps load client onto Hsp90, ATP binding results in conformational changes in Hsp90 that result in the closed complex, and then less defined events result in nucleotide hydrolysis, client release and return to the open state. Cochaperones bind and assist Hsp90 during this process. We previously identified a series of yeast Hsp90 mutants that appear to disrupt either the 'loading', 'closing' or 'reopening' events, and showed that the mutants had differing effects on activity of some clients. Here we used those mutants to dissect Hsp90 and cochaperone interactions. Overexpression or deletion of HCH1 had dramatically opposing effects on the growth of cells expressing different mutants, with a phenotypic shift coinciding with formation of the closed conformation. Hch1 appears to destabilize Hsp90-nucleotide interaction, hindering formation of the closed conformation, whereas Cpr6 counters the effects of Hch1 by stabilizing the closed conformation. Hch1 and the homologous Aha1 share some functions, but the role of Hch1 in inhibiting progression through the early stages of the folding cycle is unique. Sensitivity to the Hsp90 inhibitor NVP-AUY922 also correlates with the conformational cycle, with mutants defective in the loading phase being most sensitive and those defective in the reopening phase being most resistant to the drug. Overall, our results indicate that the timing of transition into and out of the closed conformation is tightly regulated by cochaperones. Further analysis will help elucidate additional steps required for progression through the Hsp90 folding cycle and may lead to new strategies for modulating Hsp90 function.
Collapse
Affiliation(s)
- Rebecca Mercier
- Department of Cell Biology, Faculty of Medicine and Dentistry, the University of Alberta, Edmonton, Alberta, Canada
| | - Danielle Yama
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
| | - Paul LaPointe
- Department of Cell Biology, Faculty of Medicine and Dentistry, the University of Alberta, Edmonton, Alberta, Canada
| | - Jill L. Johnson
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
| |
Collapse
|
8
|
Abstract
The Hsp70/Hsp90 organising protein (Hop, also known as stress-inducible protein 1/STI1/STIP1) has received considerable attention for diverse cellular functions in both healthy and diseased states. There is extensive evidence that intracellular Hop is a co-chaperone of the major chaperones Hsp70 and Hsp90, playing an important role in the productive folding of Hsp90 client proteins, although recent evidence suggests that eukaryotic Hop is regulatory within chaperone complexes rather than essential. Consequently, Hop is implicated in many key signalling pathways, including aberrant pathways leading to cancer. Hop is also secreted, and it is now well established that Hop interacts with the prion protein, PrPC, to mediate multiple signalling events. The intracellular and extracellular forms of Hop most likely represent two different isoforms, although the molecular determinants of these divergent functions are yet to be identified. There is also a growing body of research that reports the involvement of Hop in cellular activities that appear independent of either chaperones or PrPC. While the various cellular functions of Hop have been described, its biological function remains elusive. However, recent knockout studies in mammals suggest that Hop has an important role in embryonic development. This review provides a critical overview of the latest molecular, cellular and biological research on Hop, critically evaluating its function in healthy systems and how this function is adapted in diseased states.
Collapse
|
9
|
Bhattacharya S, Bhattacharya K, Xavier VJ, Ziarati A, Picard D, Bürgi T. The Atomically Precise Gold/Captopril Nanocluster Au 25(Capt) 18 Gains Anticancer Activity by Inhibiting Mitochondrial Oxidative Phosphorylation. ACS APPLIED MATERIALS & INTERFACES 2022; 14:29521-29536. [PMID: 35729793 PMCID: PMC9266621 DOI: 10.1021/acsami.2c05054] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Atomically precise gold nanoclusters (AuNCs) are an emerging class of quantum-sized nanomaterials with well-defined molecular structures and unique biophysical properties, rendering them highly attractive for biological applications. We set out to study the impact of different ligand shells of atomically similar nanoclusters on cellular recognition and response. To understand the effects of atomically precise nanoclusters with identical composition on cells, we selected two different water-soluble gold nanoclusters protected with captopril (Capt) and glutathione (GSH): Au25(Capt)18 (CNC) and Au25(GSH)18 (GNC), respectively. We demonstrated that a change of the ligand of the cluster completely changes its biological functions. Whereas both nanoclusters are capable of internalization, only CNC exhibits remarkable cytotoxicity, more specifically on cancer cells. CNC shows enhanced cytotoxicity by inhibiting the OXPHOS of mitochondria, possibly by inhibiting the ATP synthase complex of the electron transport chain (ETC), and by initiating the leakage of electrons into the mitochondrial lumen. The resulting increase in both mitochondrial and total cellular ROS triggers cell death indicated by the appearance of cellular markers of apoptosis. Remarkably, this effect of nanoclusters is independent of any external light source excitation. Our findings point to the prevailing importance of the ligand shell for applications of atomically precise nanoclusters in biology and medicine.
Collapse
Affiliation(s)
- Sarita
Roy Bhattacharya
- Department
of Physical Chemistry, University of Geneva, Quai Ernest-Ansermet 30, 1211 Geneva, Switzerland
| | - Kaushik Bhattacharya
- Department
of Molecular and Cellular Biology, University
of Geneva, Sciences III, Geneva 1205, Switzerland
| | - Vanessa Joanne Xavier
- Department
of Molecular and Cellular Biology, University
of Geneva, Sciences III, Geneva 1205, Switzerland
| | - Abolfazl Ziarati
- Department
of Physical Chemistry, University of Geneva, Quai Ernest-Ansermet 30, 1211 Geneva, Switzerland
| | - Didier Picard
- Department
of Molecular and Cellular Biology, University
of Geneva, Sciences III, Geneva 1205, Switzerland
| | - Thomas Bürgi
- Department
of Physical Chemistry, University of Geneva, Quai Ernest-Ansermet 30, 1211 Geneva, Switzerland
| |
Collapse
|
10
|
Bonanni D, Citarella A, Moi D, Pinzi L, Bergamini E, Rastelli G. Dual Targeting Strategies On Histone Deacetylase 6 (HDAC6) And Heat Shock Protein 90 (Hsp90). Curr Med Chem 2021; 29:1474-1502. [PMID: 34477503 DOI: 10.2174/0929867328666210902145102] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 07/08/2021] [Accepted: 07/23/2021] [Indexed: 11/22/2022]
Abstract
The design of multi-target drugs acting simultaneously on multiple signaling pathways is a growing field in medicinal chemistry, especially for the treatment of complex diseases such as cancer. Histone deacetylase 6 (HDAC6) is an established anticancer drug target involved in tumor cells transformation. Being an epigenetic enzyme at the interplay of many biological processes, HDAC6 has become an attractive target for polypharmacology studies aimed at improving therapeutic efficacy of anticancer drugs. For example, the molecular chaperone Heat shock protein 90 (Hsp90) is a substrate of HDAC6 deacetylation, and several lines of evidence demonstrate that simultaneous inhibition of HDAC6 and Hsp90 promote synergistic antitumor effects on different cancer cell lines, highlighting the potential benefits of developing a single molecule endowed with multi-target activity. This review will summarize the complex interplay between HDAC6 and Hsp90, providing also useful hints for multi-target drug design and discovery approaches in this field. To this end, crystallographic structures of HDAC6 and Hsp90 complexes will be extensively reviewed in the light of discussing binding pockets features and pharmacophore requirements and providing useful guidelines for the design of dual inhibitors. The few examples of multi-target inhibitors obtained so far, mostly based on chimeric approaches, will be summarized and put into context. Finally, the main features of HDAC6 and Hsp90 inhibitors will be compared, and ligand- and structure-based strategies potentially useful for the development of small molecular weight dual inhibitors will be proposed and discussed.
Collapse
Affiliation(s)
- Davide Bonanni
- Department of Life Sciences, University of Modena and Reggio Emilia Via Campi 183, 41125 Modena, Italy
| | - Andrea Citarella
- Department of Life Sciences, University of Modena and Reggio Emilia Via Campi 183, 41125 Modena, Italy
| | - Davide Moi
- Department of Life Sciences, University of Modena and Reggio Emilia Via Campi 183, 41125 Modena, Italy
| | - Luca Pinzi
- Department of Life Sciences, University of Modena and Reggio Emilia Via Campi 183, 41125 Modena, Italy
| | - Elisa Bergamini
- Department of Life Sciences, University of Modena and Reggio Emilia Via Campi 183, 41125 Modena, Italy
| | - Giulio Rastelli
- Department of Life Sciences, University of Modena and Reggio Emilia Via Campi 183, 41125 Modena, Italy
| |
Collapse
|
11
|
Maurizy C, Abeza C, Lemmers B, Gabola M, Longobardi C, Pinet V, Ferrand M, Paul C, Bremond J, Langa F, Gerbe F, Jay P, Verheggen C, Tinari N, Helmlinger D, Lattanzio R, Bertrand E, Hahne M, Pradet-Balade B. The HSP90/R2TP assembly chaperone promotes cell proliferation in the intestinal epithelium. Nat Commun 2021; 12:4810. [PMID: 34376666 PMCID: PMC8355188 DOI: 10.1038/s41467-021-24792-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 07/05/2021] [Indexed: 02/07/2023] Open
Abstract
The R2TP chaperone cooperates with HSP90 to integrate newly synthesized proteins into multi-subunit complexes, yet its role in tissue homeostasis is unknown. Here, we generated conditional, inducible knock-out mice for Rpap3 to inactivate this core component of R2TP in the intestinal epithelium. In adult mice, Rpap3 invalidation caused destruction of the small intestinal epithelium and death within 10 days. Levels of R2TP substrates decreased, with strong effects on mTOR, ATM and ATR. Proliferative stem cells and progenitors deficient for Rpap3 failed to import RNA polymerase II into the nucleus and they induced p53, cell cycle arrest and apoptosis. Post-mitotic, differentiated cells did not display these alterations, suggesting that R2TP clients are preferentially built in actively proliferating cells. In addition, high RPAP3 levels in colorectal tumors from patients correlate with bad prognosis. Here, we show that, in the intestine, the R2TP chaperone plays essential roles in normal and tumoral proliferation.
Collapse
Affiliation(s)
- Chloé Maurizy
- IGMM, Univ Montpellier, CNRS, Montpellier, France
- Equipe labélisée Ligue Nationale Contre le Cancer, Paris, France
| | - Claire Abeza
- IGMM, Univ Montpellier, CNRS, Montpellier, France
- Equipe labélisée Ligue Nationale Contre le Cancer, Paris, France
| | | | | | | | | | | | | | | | - Francina Langa
- Centre d'Ingénierie Génétique Murine, Institut Pasteur, Paris, France
| | - François Gerbe
- Equipe labélisée Ligue Nationale Contre le Cancer, Paris, France
- IGF, Univ Montpellier, CNRS, INSERM, Montpellier, France
| | - Philippe Jay
- Equipe labélisée Ligue Nationale Contre le Cancer, Paris, France
- IGF, Univ Montpellier, CNRS, INSERM, Montpellier, France
| | - Céline Verheggen
- IGMM, Univ Montpellier, CNRS, Montpellier, France
- Equipe labélisée Ligue Nationale Contre le Cancer, Paris, France
- IGH, Univ Montpellier, CNRS, Montpellier, France
| | - Nicola Tinari
- Department of Medical, Oral and Biotechnological Sciences, Center for Advanced Studies and Technology (CAST), 'G. d'Annunzio' University of Chieti-Pescara, Chieti, Italy
| | | | - Rossano Lattanzio
- Department of Innovative Technologies in Medicine & Dentistry, Center for Advanced Studies and Technology (CAST), 'G. d'Annunzio' University of Chieti-Pescara, Chieti, Italy
| | - Edouard Bertrand
- IGMM, Univ Montpellier, CNRS, Montpellier, France.
- Equipe labélisée Ligue Nationale Contre le Cancer, Paris, France.
- IGH, Univ Montpellier, CNRS, Montpellier, France.
| | | | - Bérengère Pradet-Balade
- Equipe labélisée Ligue Nationale Contre le Cancer, Paris, France.
- CRBM, Univ Montpellier, CNRS, Montpellier, France.
| |
Collapse
|
12
|
The Hsp70-Hsp90 go-between Hop/Stip1/Sti1 is a proteostatic switch and may be a drug target in cancer and neurodegeneration. Cell Mol Life Sci 2021; 78:7257-7273. [PMID: 34677645 PMCID: PMC8629791 DOI: 10.1007/s00018-021-03962-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 08/24/2021] [Accepted: 09/24/2021] [Indexed: 01/17/2023]
Abstract
The Hsp70 and Hsp90 molecular chaperone systems are critical regulators of protein homeostasis (proteostasis) in eukaryotes under normal and stressed conditions. The Hsp70 and Hsp90 systems physically and functionally interact to ensure cellular proteostasis. Co-chaperones interact with Hsp70 and Hsp90 to regulate and to promote their molecular chaperone functions. Mammalian Hop, also called Stip1, and its budding yeast ortholog Sti1 are eukaryote-specific co-chaperones, which have been thought to be essential for substrate ("client") transfer from Hsp70 to Hsp90. Substrate transfer is facilitated by the ability of Hop to interact simultaneously with Hsp70 and Hsp90 as part of a ternary complex. Intriguingly, in prokaryotes, which lack a Hop ortholog, the Hsp70 and Hsp90 orthologs interact directly. Recent evidence shows that eukaryotic Hsp70 and Hsp90 can also form a prokaryote-like binary chaperone complex in the absence of Hop, and that this binary complex displays enhanced protein folding and anti-aggregation activities. The canonical Hsp70-Hop-Hsp90 ternary chaperone complex is essential for optimal maturation and stability of a small subset of clients, including the glucocorticoid receptor, the tyrosine kinase v-Src, and the 26S/30S proteasome. Whereas many cancers have increased levels of Hop, the levels of Hop decrease in the aging human brain. Since Hop is not essential in all eukaryotic cells and organisms, tuning Hop levels or activity might be beneficial for the treatment of cancer and neurodegeneration.
Collapse
|
13
|
Edkins AL, Boshoff A. General Structural and Functional Features of Molecular Chaperones. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1340:11-73. [PMID: 34569020 DOI: 10.1007/978-3-030-78397-6_2] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Molecular chaperones are a group of structurally diverse and highly conserved ubiquitous proteins. They play crucial roles in facilitating the correct folding of proteins in vivo by preventing protein aggregation or facilitating the appropriate folding and assembly of proteins. Heat shock proteins form the major class of molecular chaperones that are responsible for protein folding events in the cell. This is achieved by ATP-dependent (folding machines) or ATP-independent mechanisms (holders). Heat shock proteins are induced by a variety of stresses, besides heat shock. The large and varied heat shock protein class is categorised into several subfamilies based on their sizes in kDa namely, small Hsps (HSPB), J domain proteins (Hsp40/DNAJ), Hsp60 (HSPD/E; Chaperonins), Hsp70 (HSPA), Hsp90 (HSPC), and Hsp100. Heat shock proteins are localised to different compartments in the cell to carry out tasks specific to their environment. Most heat shock proteins form large oligomeric structures, and their functions are usually regulated by a variety of cochaperones and cofactors. Heat shock proteins do not function in isolation but are rather part of the chaperone network in the cell. The general structural and functional features of the major heat shock protein families are discussed, including their roles in human disease. Their function is particularly important in disease due to increased stress in the cell. Vector-borne parasites affecting human health encounter stress during transmission between invertebrate vectors and mammalian hosts. Members of the main classes of heat shock proteins are all represented in Plasmodium falciparum, the causative agent of cerebral malaria, and they play specific functions in differentiation, cytoprotection, signal transduction, and virulence.
Collapse
Affiliation(s)
- Adrienne Lesley Edkins
- Biomedical Biotechnology Research Unit (BioBRU), Department of Biochemistry and Microbiology, Rhodes University, Makhanda/Grahamstown, South Africa.
- Rhodes University, Makhanda/Grahamstown, South Africa.
| | - Aileen Boshoff
- Rhodes University, Makhanda/Grahamstown, South Africa.
- Biotechnology Innovation Centre, Rhodes University, Makhanda/Grahamstown, South Africa.
| |
Collapse
|
14
|
Bhattacharya K, Weidenauer L, Luengo TM, Pieters EC, Echeverría PC, Bernasconi L, Wider D, Sadian Y, Koopman MB, Villemin M, Bauer C, Rüdiger SGD, Quadroni M, Picard D. The Hsp70-Hsp90 co-chaperone Hop/Stip1 shifts the proteostatic balance from folding towards degradation. Nat Commun 2020; 11:5975. [PMID: 33239621 PMCID: PMC7688965 DOI: 10.1038/s41467-020-19783-w] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 10/30/2020] [Indexed: 02/06/2023] Open
Abstract
Hop/Stip1/Sti1 is thought to be essential as a co-chaperone to facilitate substrate transfer between the Hsp70 and Hsp90 molecular chaperones. Despite this proposed key function for protein folding and maturation, it is not essential in a number of eukaryotes and bacteria lack an ortholog. We set out to identify and to characterize its eukaryote-specific function. Human cell lines and the budding yeast with deletions of the Hop/Sti1 gene display reduced proteasome activity due to inefficient capping of the core particle with regulatory particles. Unexpectedly, knock-out cells are more proficient at preventing protein aggregation and at promoting protein refolding. Without the restraint by Hop, a more efficient folding activity of the prokaryote-like Hsp70-Hsp90 complex, which can also be demonstrated in vitro, compensates for the proteasomal defect and ensures the proteostatic equilibrium. Thus, cells may act on the level and/or activity of Hop to shift the proteostatic balance between folding and degradation. Hop, also known as Stip1 or Sti1, facilitates substrate transfer between the Hsp70 and Hsp90 molecular chaperones. Characterization of proteostasis-related pathways in STIP1 knock-out cell lines reveals that in eukaryotes Stip1 modulates the balance between protein folding and degradation.
Collapse
Affiliation(s)
- Kaushik Bhattacharya
- Département de Biologie Cellulaire, Université de Genève, Sciences III, 1211, Genève 4, Switzerland
| | - Lorenz Weidenauer
- Protein Analysis Facility, Center for Integrative Genomics, Université de Lausanne, 1015, Lausanne, Switzerland
| | - Tania Morán Luengo
- Cellular Protein Chemistry, Bijvoet Center for Biomolecular Research, Utrecht University, 3584, CH, Utrecht, The Netherlands.,Science for Life, Utrecht University, 3584, CH, Utrecht, The Netherlands
| | - Ellis C Pieters
- Cellular Protein Chemistry, Bijvoet Center for Biomolecular Research, Utrecht University, 3584, CH, Utrecht, The Netherlands.,Science for Life, Utrecht University, 3584, CH, Utrecht, The Netherlands
| | - Pablo C Echeverría
- Département de Biologie Cellulaire, Université de Genève, Sciences III, 1211, Genève 4, Switzerland.,European Association for the Study of the Liver, 1203, Genève, Switzerland
| | - Lilia Bernasconi
- Département de Biologie Cellulaire, Université de Genève, Sciences III, 1211, Genève 4, Switzerland
| | - Diana Wider
- Département de Biologie Cellulaire, Université de Genève, Sciences III, 1211, Genève 4, Switzerland
| | - Yashar Sadian
- Bioimaging Center, Université de Genève, Sciences II, 1211, Genève 4, Switzerland
| | - Margreet B Koopman
- Cellular Protein Chemistry, Bijvoet Center for Biomolecular Research, Utrecht University, 3584, CH, Utrecht, The Netherlands.,Science for Life, Utrecht University, 3584, CH, Utrecht, The Netherlands
| | - Matthieu Villemin
- Département de Biologie Cellulaire, Université de Genève, Sciences III, 1211, Genève 4, Switzerland
| | - Christoph Bauer
- Bioimaging Center, Université de Genève, Sciences II, 1211, Genève 4, Switzerland
| | - Stefan G D Rüdiger
- Cellular Protein Chemistry, Bijvoet Center for Biomolecular Research, Utrecht University, 3584, CH, Utrecht, The Netherlands.,Science for Life, Utrecht University, 3584, CH, Utrecht, The Netherlands
| | - Manfredo Quadroni
- Protein Analysis Facility, Center for Integrative Genomics, Université de Lausanne, 1015, Lausanne, Switzerland
| | - Didier Picard
- Département de Biologie Cellulaire, Université de Genève, Sciences III, 1211, Genève 4, Switzerland.
| |
Collapse
|
15
|
Dutta Gupta S, Pan CH. Recent update on discovery and development of Hsp90 inhibitors as senolytic agents. Int J Biol Macromol 2020; 161:1086-1098. [DOI: 10.1016/j.ijbiomac.2020.06.115] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/22/2020] [Accepted: 06/11/2020] [Indexed: 02/06/2023]
|
16
|
Antonova A, Hummel B, Khavaran A, Redhaber DM, Aprile-Garcia F, Rawat P, Gundel K, Schneck M, Hansen EC, Mitschke J, Mittler G, Miething C, Sawarkar R. Heat-Shock Protein 90 Controls the Expression of Cell-Cycle Genes by Stabilizing Metazoan-Specific Host-Cell Factor HCFC1. Cell Rep 2020; 29:1645-1659.e9. [PMID: 31693902 DOI: 10.1016/j.celrep.2019.09.084] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 08/06/2019] [Accepted: 09/27/2019] [Indexed: 12/18/2022] Open
Abstract
Molecular chaperones such as heat-shock proteins (HSPs) help in protein folding. Their function in the cytosol has been well studied. Notably, chaperones are also present in the nucleus, a compartment where proteins enter after completing de novo folding in the cytosol, and this raises an important question about chaperone function in the nucleus. We performed a systematic analysis of the nuclear pool of heat-shock protein 90. Three orthogonal and independent analyses led us to the core functional interactome of HSP90. Computational and biochemical analyses identify host cell factor C1 (HCFC1) as a transcriptional regulator that depends on HSP90 for its stability. HSP90 was required to maintain the expression of HCFC1-targeted cell-cycle genes. The regulatory nexus between HSP90 and the HCFC1 module identified in this study sheds light on the relevance of chaperones in the transcription of cell-cycle genes. Our study also suggests a therapeutic avenue of combining chaperone and transcription inhibitors for cancer treatment.
Collapse
Affiliation(s)
- Aneliya Antonova
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany; Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Barbara Hummel
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Ashkan Khavaran
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany; Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Desiree M Redhaber
- German Consortium for Translational Cancer Research (DKTK), Partner Site Freiburg and German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Hematology, Oncology and Stem Cell Transplantation, Faculty of Medicine, Medical Center - University of Freiburg, Freiburg, Germany; Faculty of Biology, University of Freiburg, Freiburg, Germany
| | | | - Prashant Rawat
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany; Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Kathrin Gundel
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Megan Schneck
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Erik C Hansen
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Jan Mitschke
- Department of Hematology, Oncology and Stem Cell Transplantation, Faculty of Medicine, Medical Center - University of Freiburg, Freiburg, Germany
| | - Gerhard Mittler
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Cornelius Miething
- German Consortium for Translational Cancer Research (DKTK), Partner Site Freiburg and German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Hematology, Oncology and Stem Cell Transplantation, Faculty of Medicine, Medical Center - University of Freiburg, Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Ritwick Sawarkar
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany; CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany; MRC Toxicology Unit, University of Cambridge, Cambridge, UK.
| |
Collapse
|
17
|
Backe SJ, Sager RA, Woodford MR, Makedon AM, Mollapour M. Post-translational modifications of Hsp90 and translating the chaperone code. J Biol Chem 2020; 295:11099-11117. [PMID: 32527727 DOI: 10.1074/jbc.rev120.011833] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/11/2020] [Indexed: 12/12/2022] Open
Abstract
Cells have a remarkable ability to synthesize large amounts of protein in a very short period of time. Under these conditions, many hydrophobic surfaces on proteins may be transiently exposed, and the likelihood of deleterious interactions is quite high. To counter this threat to cell viability, molecular chaperones have evolved to help nascent polypeptides fold correctly and multimeric protein complexes assemble productively, while minimizing the danger of protein aggregation. Heat shock protein 90 (Hsp90) is an evolutionarily conserved molecular chaperone that is involved in the stability and activation of at least 300 proteins, also known as clients, under normal cellular conditions. The Hsp90 clients participate in the full breadth of cellular processes, including cell growth and cell cycle control, signal transduction, DNA repair, transcription, and many others. Hsp90 chaperone function is coupled to its ability to bind and hydrolyze ATP, which is tightly regulated both by co-chaperone proteins and post-translational modifications (PTMs). Many reported PTMs of Hsp90 alter chaperone function and consequently affect myriad cellular processes. Here, we review the contributions of PTMs, such as phosphorylation, acetylation, SUMOylation, methylation, O-GlcNAcylation, ubiquitination, and others, toward regulation of Hsp90 function. We also discuss how the Hsp90 modification state affects cellular sensitivity to Hsp90-targeted therapeutics that specifically bind and inhibit its chaperone activity. The ultimate challenge is to decipher the comprehensive and combinatorial array of PTMs that modulate Hsp90 chaperone function, a phenomenon termed the "chaperone code."
Collapse
Affiliation(s)
- Sarah J Backe
- Department of Urology, SUNY Upstate Medical University, Syracuse, New York, USA.,Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York, USA.,Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Rebecca A Sager
- Department of Urology, SUNY Upstate Medical University, Syracuse, New York, USA.,Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York, USA.,Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, New York, USA.,College of Medicine, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Mark R Woodford
- Department of Urology, SUNY Upstate Medical University, Syracuse, New York, USA.,Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York, USA.,Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Alan M Makedon
- Department of Urology, SUNY Upstate Medical University, Syracuse, New York, USA.,Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Mehdi Mollapour
- Department of Urology, SUNY Upstate Medical University, Syracuse, New York, USA .,Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York, USA.,Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, New York, USA
| |
Collapse
|
18
|
Uddin MA, Kubra KT, Sonju JJ, Akhter MS, Seetharama J, Barabutis N. Effects of Heat Shock Protein 90 Inhibition In the Lungs. MEDICINE IN DRUG DISCOVERY 2020; 6. [PMID: 32728665 PMCID: PMC7390472 DOI: 10.1016/j.medidd.2020.100046] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Inhibition of Hsp90 is associated with anti-inflammatory effects. We employed human lung microvascular endothelial cells to investigate the effects of the Hsp90 inhibitors 17-AAG, AUY-922 and 17-DMAG in the unfolded protein response (UPR) and viability of lung cells. Our observations indicate that moderate doses of those compounds trigger the activation of the UPR without inducing lethal effects in vitro. Indeed, AUY-922 triggered UPR activation in the lungs of C57BL/6 mice. UPR has been previously involved in the enhancement of the lung endothelial barrier function. Thus, the present study suggests that the barrier protective effects of Hsp90 inhibition in the lung microvasculature are highly probable to be associated with the activation of the UPR. Hence, the development of novel compounds which stochastically capacitate the repairing elements of UPR, may deliver new therapeutic possibilities against the severities of the acute respiratory distress syndrome.
Collapse
Affiliation(s)
- Mohammad A Uddin
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, USA
| | - Khadeja-Tul Kubra
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, USA
| | - Jafrin Jobayer Sonju
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, USA
| | - Mohammad S Akhter
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, USA
| | - Jois Seetharama
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, USA
| | - Nektarios Barabutis
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, USA
| |
Collapse
|
19
|
Joshi A, Dai L, Liu Y, Lee J, Ghahhari NM, Segala G, Beebe K, Jenkins LM, Lyons GC, Bernasconi L, Tsai FTF, Agard DA, Neckers L, Picard D. The mitochondrial HSP90 paralog TRAP1 forms an OXPHOS-regulated tetramer and is involved in mitochondrial metabolic homeostasis. BMC Biol 2020; 18:10. [PMID: 31987035 PMCID: PMC6986101 DOI: 10.1186/s12915-020-0740-7] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 01/16/2020] [Indexed: 01/01/2023] Open
Abstract
Background The molecular chaperone TRAP1, the mitochondrial isoform of cytosolic HSP90, remains poorly understood with respect to its pivotal role in the regulation of mitochondrial metabolism. Most studies have found it to be an inhibitor of mitochondrial oxidative phosphorylation (OXPHOS) and an inducer of the Warburg phenotype of cancer cells. However, others have reported the opposite, and there is no consensus on the relevant TRAP1 interactors. This calls for a more comprehensive analysis of the TRAP1 interactome and of how TRAP1 and mitochondrial metabolism mutually affect each other. Results We show that the disruption of the gene for TRAP1 in a panel of cell lines dysregulates OXPHOS by a metabolic rewiring that induces the anaplerotic utilization of glutamine metabolism to replenish TCA cycle intermediates. Restoration of wild-type levels of OXPHOS requires full-length TRAP1. Whereas the TRAP1 ATPase activity is dispensable for this function, it modulates the interactions of TRAP1 with various mitochondrial proteins. Quantitatively by far, the major interactors of TRAP1 are the mitochondrial chaperones mtHSP70 and HSP60. However, we find that the most stable stoichiometric TRAP1 complex is a TRAP1 tetramer, whose levels change in response to both a decline and an increase in OXPHOS. Conclusions Our work provides a roadmap for further investigations of how TRAP1 and its interactors such as the ATP synthase regulate cellular energy metabolism. Our results highlight that TRAP1 function in metabolism and cancer cannot be understood without a focus on TRAP1 tetramers as potentially the most relevant functional entity.
Collapse
Affiliation(s)
- Abhinav Joshi
- Département de Biologie Cellulaire, Université de Genève, Sciences III, 30, quai Ernest-Ansermet, CH-1211, Geneva 4, Switzerland.,Urologic Oncology Branch, Center for Cancer Research, NCI, Bethesda, MD, 20892, USA
| | - Li Dai
- Urologic Oncology Branch, Center for Cancer Research, NCI, Bethesda, MD, 20892, USA
| | - Yanxin Liu
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, 94143, USA
| | - Jungsoon Lee
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, 77030, USA.,Present address: Department of Pediatrics, Tropical Medicine, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Nastaran Mohammadi Ghahhari
- Département de Biologie Cellulaire, Université de Genève, Sciences III, 30, quai Ernest-Ansermet, CH-1211, Geneva 4, Switzerland
| | - Gregory Segala
- Département de Biologie Cellulaire, Université de Genève, Sciences III, 30, quai Ernest-Ansermet, CH-1211, Geneva 4, Switzerland
| | - Kristin Beebe
- Urologic Oncology Branch, Center for Cancer Research, NCI, Bethesda, MD, 20892, USA
| | - Lisa M Jenkins
- Laboratory of Cell Biology, Center for Cancer Research, NCI, Bethesda, MD, 20892, USA
| | - Gaelyn C Lyons
- Laboratory of Cell Biology, Center for Cancer Research, NCI, Bethesda, MD, 20892, USA
| | - Lilia Bernasconi
- Département de Biologie Cellulaire, Université de Genève, Sciences III, 30, quai Ernest-Ansermet, CH-1211, Geneva 4, Switzerland
| | - Francis T F Tsai
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, 77030, USA.,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA.,Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - David A Agard
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, 94143, USA
| | - Len Neckers
- Urologic Oncology Branch, Center for Cancer Research, NCI, Bethesda, MD, 20892, USA
| | - Didier Picard
- Département de Biologie Cellulaire, Université de Genève, Sciences III, 30, quai Ernest-Ansermet, CH-1211, Geneva 4, Switzerland.
| |
Collapse
|
20
|
Chavez JD, Keller A, Zhou B, Tian R, Bruce JE. Cellular Interactome Dynamics during Paclitaxel Treatment. Cell Rep 2019; 29:2371-2383.e5. [PMID: 31747606 PMCID: PMC6910234 DOI: 10.1016/j.celrep.2019.10.063] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 09/23/2019] [Accepted: 10/15/2019] [Indexed: 12/12/2022] Open
Abstract
Cell-cycle inhibitors, including paclitaxel, are among the most widely used and effective cancer therapies. However, several challenges limit the success of paclitaxel, including drug resistance and toxic side effects. Paclitaxel is thought to act primarily by stabilizing microtubules, locking cells in a mitotic state. However, the resulting cytotoxicity and tumor shrinkage rates observed cannot be fully explained by this mechanism alone. Here we apply quantitative chemical cross-linking with mass spectrometry analysis to paclitaxel-treated cells. Our results provide large-scale measurements of relative protein levels and, perhaps more importantly, changes to protein conformations and interactions that occur upon paclitaxel treatment. Drug concentration-dependent changes are revealed in known drug targets including tubulins, as well as many other proteins and protein complexes involved in apoptotic signaling and cellular homeostasis. As such, this study provides insight into systems-level changes to protein structures and interactions that occur with paclitaxel treatment.
Collapse
Affiliation(s)
- Juan D Chavez
- Department of Genome Sciences, University of Washington, Seattle, WA 98105, USA
| | - Andrew Keller
- Department of Genome Sciences, University of Washington, Seattle, WA 98105, USA
| | - Bo Zhou
- Department of Bioengineering, University of Washington, Seattle, WA 98105, USA; Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98105, USA; Mitochondria and Metabolism Center, University of Washington, Seattle, WA 98105, USA
| | - Rong Tian
- Department of Bioengineering, University of Washington, Seattle, WA 98105, USA; Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98105, USA; Mitochondria and Metabolism Center, University of Washington, Seattle, WA 98105, USA
| | - James E Bruce
- Department of Genome Sciences, University of Washington, Seattle, WA 98105, USA.
| |
Collapse
|
21
|
Akhter MS, Uddin MA, Barabutis N. Unfolded protein response regulates P53 expression in the pulmonary endothelium. J Biochem Mol Toxicol 2019; 33:e22380. [PMID: 31339623 PMCID: PMC6787927 DOI: 10.1002/jbt.22380] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 07/08/2019] [Indexed: 12/18/2022]
Abstract
Lung endothelial barrier dysfunction leads to severe pathologies, including the lethal Acute Respiratory Distress Syndrome. P53 has been associated with anti-inflammatory activities. The current study employs a variety of unfolded protein response (UPR) activators and inhibitors to investigate the regulation of P53 by UPR in lung cells. The bovine cells that were exposed to the UPR inductors brefeldin A, dithiothreitol, and thapsigargin; demonstrated elevated expression levels of P53 compared to the vehicle-treated cells. On the contrary, the UPR inhibitors N-acetyl cysteine, kifunensine, and ATP-competitive IRE1α kinase-inhibiting RNase attenuator; produced the opposite effects. The outcomes of the present study reveal a positive regulation between UPR and P53. Since it has been shown that a mild induction of the unfolded protein response opposes inflammation, we suggest that P53 is involved in those protective activities in the lung.
Collapse
Affiliation(s)
- Mohammad S Akhter
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, Louisiana
| | - Mohammad A Uddin
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, Louisiana
| | - Nektarios Barabutis
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, Louisiana
| |
Collapse
|
22
|
P53 supports endothelial barrier function via APE1/Ref1 suppression. Immunobiology 2019; 224:532-538. [PMID: 31023490 DOI: 10.1016/j.imbio.2019.04.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 04/17/2019] [Indexed: 12/20/2022]
Abstract
The tumor suppressor protein P53 is strongly involved in orchestrating cellular defenses in the diverse variety of human tissues. Anomalies to lung endothelium permeability are streaming severe consequences towards human health, often associated with fatal outcomes. Ongoing investigations suggest that P53 exerts a prominent strategic role in crucial signaling cascades, in charge of both the maintenance and defense of pulmonary endothelium against toxic intruders. The current study employs human and bovine lung microvascular cells, as well as pharmacologic and genetic P53 modulators to demonstrate the negative regulation of APE1/Ref1 by P53. Moreover, it includes real time measurements of endothelial permeability, to reveal the disruptive role of APE1/Ref1 towards endothelial integrity. Those findings supports our efforts to elucidate the highly sophisticated regulatory network that enact endothelial adaptations under the plethora of challenging environmental factors.
Collapse
|
23
|
Gabbasov R, Benrubi ID, O’Brien SW, Krais JJ, Johnson N, Litwin S, Connolly DC. Targeted blockade of HSP90 impairs DNA-damage response proteins and increases the sensitivity of ovarian carcinoma cells to PARP inhibition. Cancer Biol Ther 2019; 20:1035-1045. [PMID: 30929564 PMCID: PMC6606007 DOI: 10.1080/15384047.2019.1595279] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Pharmacological inhibition of PARP is a promising approach in treating high grade serous ovarian carcinoma (HGSOC). PARP inhibitors (PARPi) are most active in patients with defects in DNA damage repair (DDR) mechanisms, such as alterations in expression/function of DNA repair and homologous recombination (HR) genes/proteins, including BRCA1 and BRCA2. Benefit of PARPi could be extended towards HR-proficient patients by combining PARPi with agents that functionally abrogate HR. An attractive molecular target for this purpose is heat shock protein 90 (HSP90), which mediates the maturation and stability of several key proteins required for DDR. Here, we tested the hypothesis that targeted inhibition of HSP90 with a small-molecule inhibitor ganetespib would sensitize non-BRCA mutant ovarian carcinoma (OC) cells to PARP inhibition by talazoparib. We used commercially available cell lines, along with several novel HGSOC OC cell lines established in our laboratory. Ganetespib treatment destabilized HSP90 client proteins involved in DNA damage response and cell cycle checkpoint, and disrupted γ-irradiation-induced DNA repair. The effects of the combination of ganetespib and talazoparib on OC cell viability and survival were also analyzed, and among the non-BRCA mutant cell lines analyzed, the combination was synergistic in several cell lines (OVCAR-3, OC-1, OC-16). Together, our data suggest that ganetespib-mediated inhibition of HSP90 effectively disrupts critical DDR pathway proteins and may sensitize OC cells without 'BRCAness' to PARPi. From a clinical perspective, this suggests that HSP90 inhibition has the potential to sensitize some HGSOC patients without HR pathway alterations to PARPi, and potentially other DNA-damage inducing agents.
Collapse
Affiliation(s)
- Rashid Gabbasov
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - I. Daniel Benrubi
- Division of Gynecologic Oncology, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Shane W. O’Brien
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - John J. Krais
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Neil Johnson
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Samuel Litwin
- Biostatistics and Bioinformatics Facility, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Denise C. Connolly
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA, USA,CONTACT Denise C. Connolly Molecular Therapeutics Program, 333 Cottman Ave., W310, Philadelphia, PA 19111
| |
Collapse
|