1
|
Johnson ER, Kennedy NW, Mills CE, Liang S, Chandrasekar S, Nichols TM, Rybnicky GA, Tullman-Ercek D. Signal sequences target enzymes and structural proteins to bacterial microcompartments and are critical for microcompartment formation. mSphere 2025; 10:e0096224. [PMID: 40237445 PMCID: PMC12108088 DOI: 10.1128/msphere.00962-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 03/14/2025] [Indexed: 04/18/2025] Open
Abstract
Spatial organization of pathway enzymes has emerged as a promising tool to address several challenges in metabolic engineering, such as flux imbalances and off-target product formation. Bacterial microcompartments (MCPs) are a spatial organization strategy used natively by many bacteria to encapsulate metabolic pathways that produce toxic, volatile intermediates. Several recent studies have focused on engineering MCPs to encapsulate heterologous pathways of interest, but how this engineering affects MCP assembly and function is poorly understood. In this study, we investigated the role of signal sequences, short domains that target proteins to the MCP core, in the assembly of 1,2-propanediol utilization (Pdu) MCPs. We characterized two novel Pdu signal sequences on the structural proteins PduM and PduB, which constitute the first report of metabolosome signal sequences on structural proteins rather than enzymes. We then explored the role of enzymatic and structural Pdu signal sequences on MCP assembly by deleting their encoding sequences from the genome alone and in combination. Deleting enzymatic signal sequences decreased the MCP formation, but this defect could be recovered in some cases by overexpressing genes encoding the knocked-out signal sequence fused to a heterologous protein. By contrast, deleting structural signal sequences caused similar defects to knocking out the genes encoding the full-length PduM and PduB proteins. Our results contribute to a growing understanding of how MCPs form and function in bacteria and provide strategies to mitigate assembly disruption when encapsulating heterologous pathways in MCPs.IMPORTANCESpatially organizing biosynthetic pathway enzymes is a promising strategy to increase pathway throughput and yield. Bacterial microcompartments (MCPs) are proteinaceous organelles that many bacteria natively use as a spatial organization strategy to encapsulate niche metabolic pathways, providing significant metabolic benefits. Encapsulating heterologous pathways of interest in MCPs could confer these benefits to industrially relevant pathways. Here, we investigate the role of signal sequences, short domains that target proteins for encapsulation in MCPs, in the assembly of 1,2-propanediol utilization (Pdu) MCPs. We characterize two novel signal sequences on structural proteins, constituting the first Pdu signal sequences found on structural proteins rather than enzymes, and perform knockout studies to compare the impacts of enzymatic and structural signal sequences on MCP assembly. Our results demonstrate that enzymatic and structural signal sequences play critical but distinct roles in Pdu MCP assembly and provide design rules for engineering MCPs while minimizing disruption to MCP assembly.
Collapse
Affiliation(s)
- Elizabeth R. Johnson
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois, USA
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois, USA
| | - Nolan W. Kennedy
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois, USA
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois, USA
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, Illinois, USA
| | - Carolyn E. Mills
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois, USA
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois, USA
| | - Shiqi Liang
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois, USA
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, Illinois, USA
| | - Swetha Chandrasekar
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois, USA
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, Illinois, USA
| | - Taylor M. Nichols
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois, USA
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois, USA
| | - Grant A. Rybnicky
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois, USA
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, Illinois, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois, USA
| | - Danielle Tullman-Ercek
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois, USA
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois, USA
| |
Collapse
|
2
|
Johnson ER, Kennedy NW, Mills CE, Liang S, Chandrasekar S, Nichols TM, Rybnicky GA, Tullman-Ercek D. Signal sequences target enzymes and structural proteins to bacterial microcompartments and are critical for microcompartment formation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.25.615066. [PMID: 39386669 PMCID: PMC11463388 DOI: 10.1101/2024.09.25.615066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Spatial organization of pathway enzymes has emerged as a promising tool to address several challenges in metabolic engineering, such as flux imbalances and off-target product formation. Bacterial microcompartments (MCPs) are a spatial organization strategy used natively by many bacteria to encapsulate metabolic pathways that produce toxic, volatile intermediates. Several recent studies have focused on engineering MCPs to encapsulate heterologous pathways of interest, but how this engineering affects MCP assembly and function is poorly understood. In this study, we investigated the role of signal sequences, short domains that target proteins to the MCP core, in the assembly of 1,2-propanediol utilization (Pdu) MCPs. We characterized two novel Pdu signal sequences on the structural proteins PduM and PduB, which constitutes the first report of metabolosome signal sequences on structural proteins rather than enzymes. We then explored the role of enzymatic and structural Pdu signal sequences on MCP assembly by deleting their encoding sequences from the genome alone and in combination. Deleting enzymatic signal sequences decreased MCP formation, but this defect could be recovered in some cases by overexpressing genes encoding the knocked-out signal sequence fused to a heterologous protein. By contrast, deleting structural signal sequences caused similar defects to knocking out the genes encoding the full length PduM and PduB proteins. Our results contribute to a growing understanding of how MCPs form and function in bacteria and provide strategies to mitigate assembly disruption when encapsulating heterologous pathways in MCPs.
Collapse
Affiliation(s)
- Elizabeth R. Johnson
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois, USA
| | - Nolan W. Kennedy
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, Illinois, USA
| | - Carolyn. E. Mills
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois, USA
| | - Shiqi Liang
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, Illinois, USA
| | - Swetha Chandrasekar
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, Illinois, USA
| | - Taylor M. Nichols
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois, USA
| | - Grant A Rybnicky
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, Illinois, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois, USA
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois, USA
| | - Danielle Tullman-Ercek
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois, USA
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois, USA
| |
Collapse
|
3
|
Waltmann C, Shrestha A, Olvera de la Cruz M. Patterning of multicomponent elastic shells by gaussian curvature. Phys Rev E 2024; 109:054409. [PMID: 38907410 DOI: 10.1103/physreve.109.054409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 04/19/2024] [Indexed: 06/24/2024]
Abstract
Recent findings suggest that shell protein distribution and the morphology of bacterial microcompartments regulate the chemical fluxes facilitating reactions which dictate their biological function. We explore how the morphology and component patterning are coupled through the competition of mean and gaussian bending energies in multicomponent elastic shells that form three-component irregular polyhedra. We observe two softer components with lower bending rigidities allocated on the edges and vertices while the harder component occupies the faces. When subjected to a nonzero interfacial line tension, the two softer components further separate and pattern into subdomains that are mediated by the gaussian curvature. We find that this degree of fractionation is maximized when there is a weaker line tension and when the ratio of bending rigidities between the two softer domains ≈2. Our results reveal a patterning mechanism in multicomponent shells that can capture the observed morphologies of bacterial microcompartments, and moreover, can be realized in synthetic vesicles.
Collapse
Affiliation(s)
| | | | - Monica Olvera de la Cruz
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, USA
- Center for Computation and Theory of Soft Materials, Northwestern University, Evanston, Illinois 60208, USA
- Department of Physics and Astronomy, Northwestern University, Evanston, Illinois 60208, USA
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA
| |
Collapse
|
4
|
Česle EEL, Ta Rs K, Jansons J, Kalniņš G. Modulation of Hybrid GRM2-type Bacterial Microcompartment Shells through BMC-H Shell Protein Fusion and Incorporation of Non-native BMC-T Shell Proteins. ACS Synth Biol 2023; 12:3275-3286. [PMID: 37937366 DOI: 10.1021/acssynbio.3c00281] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
Bacterial microcompartments (BMCs) are organelle-like structures in bacteria that facilitate a wide range of enzymatic reactions. The microcompartment shell contains an encapsulated enzymatic core and, in contrast to phospholipid-based eukaryotic organelle membranes, has a pseudoicosahedral shape composed of BMC-H, BMC-T, and BMC-P proteins with conserved structures. This semipermeable microcompartment shell delineates the enzymatic core assemblies and the intermediates from the rest of the cell. It is also thought to function as a barrier against toxic intermediates as well as to increase the reaction rate. These properties of BMCs have made them intriguing candidates for biotechnological applications, for which it is important to explore the potential scope of the BMC shell modulation possibilities. In this work, we explore two BMC shell modulation mechanisms: first, confirming the incorporation of three trimeric BMC-T shell proteins and two truncated BMC-T shell proteins into Klebsiella pneumoniae GRM2-type BMC protein shells containing no representatives of this group, and second, producing BMC particles from double- and triple-fused hexameric BMC-H shell proteins. These results reveal the potential for "mix and match" synthetic BMC shell formation to ensure shell properties specifically suited to the encapsulated cargo and show for the first time the involvement of an essentially dimeric pseudohexameric shell protein in BMC shell formation.
Collapse
Affiliation(s)
- Eva Emi Lija Česle
- Latvian Biomedical Research and Study Centre, Ratsupites 1 k-1, Riga LV-1067, Latvia
| | - Kaspars Ta Rs
- Latvian Biomedical Research and Study Centre, Ratsupites 1 k-1, Riga LV-1067, Latvia
- University of Latvia, Jelgavas 1, Riga 1004, Latvia
| | - Juris Jansons
- Latvian Biomedical Research and Study Centre, Ratsupites 1 k-1, Riga LV-1067, Latvia
| | - Gints Kalniņš
- Latvian Biomedical Research and Study Centre, Ratsupites 1 k-1, Riga LV-1067, Latvia
| |
Collapse
|
5
|
Waltmann C, Kennedy NW, Mills CE, Roth EW, Ikonomova SP, Tullman-Ercek D, Olvera de la Cruz M. Kinetic Growth of Multicomponent Microcompartment Shells. ACS NANO 2023; 17:15751-15762. [PMID: 37552700 DOI: 10.1021/acsnano.3c03353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
An important goal of systems and synthetic biology is to produce high value chemical species in large quantities. Microcompartments, which are protein nanoshells encapsulating catalytic enzyme cargo, could potentially function as tunable nanobioreactors inside and outside cells to generate these high value species. Modifying the morphology of microcompartments through genetic engineering of shell proteins is one viable strategy to tune cofactor and metabolite access to encapsulated enzymes. However, this is a difficult task without understanding how changing interactions between the many different types of shell proteins and enzymes affect microcompartment assembly and shape. Here, we use multiscale molecular dynamics and experimental data to describe assembly pathways available to microcompartments composed of multiple types of shell proteins with varied interactions. As the average interaction between the enzyme cargo and the multiple types of shell proteins is weakened, the shell assembly pathway transitions from (i) nucleating on the enzyme cargo to (ii) nucleating in the bulk and then binding the cargo as it grows to (iii) an empty shell. Atomistic simulations and experiments using the 1,2-propanediol utilization microcompartment system demonstrate that shell protein interactions are highly varied and consistent with our multicomponent, coarse-grained model. Furthermore, our results suggest that intrinsic bending angles control the size of these microcompartments. Overall, our simulations and experiments provide guidance to control microcomparmtent size and assembly by modulating the interactions between shell proteins.
Collapse
Affiliation(s)
- Curt Waltmann
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Nolan W Kennedy
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, Illinois 60208, United States
| | - Carolyn E Mills
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Eric W Roth
- Northwestern University Atomic and Nanoscale Characterization Experimentation Center, Northwestern University, Evanston, Illinois 60208, United States
| | - Svetlana P Ikonomova
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Danielle Tullman-Ercek
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Monica Olvera de la Cruz
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
6
|
Ferlez BH, Kirst H, Greber BJ, Nogales E, Sutter M, Kerfeld CA. Heterologous Assembly of Pleomorphic Bacterial Microcompartment Shell Architectures Spanning the Nano- to Microscale. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2212065. [PMID: 36932732 PMCID: PMC10330516 DOI: 10.1002/adma.202212065] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/09/2023] [Indexed: 06/09/2023]
Abstract
Many bacteria use protein-based organelles known as bacterial microcompartments (BMCs) to organize and sequester sequential enzymatic reactions. Regardless of their specialized metabolic function, all BMCs are delimited by a shell made of multiple structurally redundant, yet functionally diverse, hexameric (BMC-H), pseudohexameric/trimeric (BMC-T), or pentameric (BMC-P) shell protein paralogs. When expressed without their native cargo, shell proteins have been shown to self-assemble into 2D sheets, open-ended nanotubes, and closed shells of ≈40 nm diameter that are being developed as scaffolds and nanocontainers for applications in biotechnology. Here, by leveraging a strategy for affinity-based purification, it is demonstrated that a wide range of empty synthetic shells, many differing in end-cap structures, can be derived from a glycyl radical enzyme-associated microcompartment. The range of pleomorphic shells observed, which span ≈2 orders of magnitude in size from ≈25 nm to ≈1.8 µm, reveal the remarkable plasticity of BMC-based biomaterials. In addition, new capped nanotube and nanocone morphologies are observed that are consistent with a multicomponent geometric model in which architectural principles are shared among asymmetric carbon, viral protein, and BMC-based structures.
Collapse
Affiliation(s)
- Bryan H. Ferlez
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA; Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Henning Kirst
- Environmental Genomics and Systems Biology and Molecular Biophysics and Integrative Bioimaging Divisions, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
| | - Basil J. Greber
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, California 94720, USA; Molecular Biophysics and Integrative Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Eva Nogales
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, California 94720, USA; Molecular Biophysics and Integrative Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Howard Hughes Medical Institute, University of California, Berkeley, California 94720, USA; Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Markus Sutter
- Environmental Genomics and Systems Biology and Molecular Biophysics and Integrative Bioimaging Divisions, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
| | - Cheryl A. Kerfeld
- Environmental Genomics and Systems Biology and Molecular Biophysics and Integrative Bioimaging Divisions, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA; Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
7
|
Trettel DS, Winkler WC. In Vitro Analysis of Bacterial Microcompartments and Shell Protein Superstructures by Confocal Microscopy. Microbiol Spectr 2023; 11:e0335722. [PMID: 36786617 PMCID: PMC10100840 DOI: 10.1128/spectrum.03357-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 01/18/2023] [Indexed: 02/15/2023] Open
Abstract
The shell proteins that comprise bacterial microcompartments (BMCs) can self-assemble into an array of superstructures such as nanotubes, flat sheets, and icosahedra. The physical characterization of BMCs and these superstructures typically relies on electron microscopy, which decouples samples from their solution context. We hypothesize that an investigation of fluorescently tagged BMCs and shell protein superstructures in vitro using high-resolution confocal microscopy will lead to new insights into the solution behavior of these entities. We find that confocal imaging is able to capture nanotubes and sheets previously reported by transmission electron microscopy (TEM). Using a combination of fluorescent tags, we present qualitative evidence that these structures intermix with one another in a hetero- and homotypic fashion. Complete BMCs are also able to accomplish intermixing as evidenced by colocalization data. Finally, a simple colocalization experiment suggests that fluorescently modified encapsulation peptides (EPs) may prefer certain shell protein binding partners. Together, these data demonstrate that high-resolution confocal microscopy is a powerful tool for investigating microcompartment-related structures in vitro, particularly for colocalization analyses. These results also support the notion that BMCs may intermix protein components, presumably from the outer shell. IMPORTANCE Microcompartments are large, organelle-like structures that help bacteria catabolize targeted metabolites while also protecting the cytosol against highly reactive metabolic intermediates. Their protein shell self-assembles into a polyhedral structure of approximately 100 to 200 nm in diameter. Inside the shell are thousands of copies of cargo enzymes, which are responsible for a specific metabolic pathway. While different approaches have revealed high-resolution structures of individual microcompartment proteins, it is less clear how these factors self-assemble to form the full native structure. In this study, we show that laser scanning confocal microscopy can be used to study microcompartment proteins. We find that this approach allows researchers to investigate the interactions and potential exchange of shell protein subunits in solution. From this, we conclude that confocal microscopy offers advantages for studying the in vitro structures of other microcompartments as well as carboxysomes and other bacterial organelles.
Collapse
Affiliation(s)
- Daniel S. Trettel
- Department of Chemistry and Biochemistry, The University of Maryland, College Park, College Park, Maryland, USA
| | - Wade C. Winkler
- Department of Chemistry and Biochemistry, The University of Maryland, College Park, College Park, Maryland, USA
- Department of Cell Biology and Molecular Genetics, The University of Maryland, College Park, College Park, Maryland, USA
| |
Collapse
|
8
|
Otoničar J, Hostnik M, Grundner M, Kostanjšek R, Gredar T, Garvas M, Arsov Z, Podlesek Z, Gostinčar C, Jakše J, Busby SJW, Butala M. A method for targeting a specified segment of DNA to a bacterial microorganelle. Nucleic Acids Res 2022; 50:e113. [PMID: 36029110 DOI: 10.1093/nar/gkac714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 07/28/2022] [Accepted: 08/09/2022] [Indexed: 11/14/2022] Open
Abstract
Encapsulation of a selected DNA molecule in a cell has important implications for bionanotechnology. Non-viral proteins that can be used as nucleic acid containers include proteinaceous subcellular bacterial microcompartments (MCPs) that self-assemble into a selectively permeable protein shell containing an enzymatic core. Here, we adapted a propanediol utilization (Pdu) MCP into a synthetic protein cage to package a specified DNA segment in vivo, thereby enabling subsequent affinity purification. To this end, we engineered the LacI transcription repressor to be routed, together with target DNA, into the lumen of a Strep-tagged Pdu shell. Sequencing of extracted DNA from the affinity-isolated MCPs shows that our strategy results in packaging of a DNA segment carrying multiple LacI binding sites, but not the flanking regions. Furthermore, we used LacI to drive the encapsulation of a DNA segment containing operators for LacI and for a second transcription factor.
Collapse
Affiliation(s)
- Jan Otoničar
- Department of Biology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Maja Hostnik
- Department of Biology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Maja Grundner
- Department of Biology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Rok Kostanjšek
- Department of Biology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Tajda Gredar
- Department of Biology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Maja Garvas
- Jožef Stefan Institute, Condensed Matter Physics Department, 1000 Ljubljana, Slovenia
| | - Zoran Arsov
- Jožef Stefan Institute, Condensed Matter Physics Department, 1000 Ljubljana, Slovenia
| | - Zdravko Podlesek
- Department of Biology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Cene Gostinčar
- Department of Biology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Jernej Jakše
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Stephen J W Busby
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Matej Butala
- Department of Biology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| |
Collapse
|
9
|
Mills CE, Waltmann C, Archer AG, Kennedy NW, Abrahamson CH, Jackson AD, Roth EW, Shirman S, Jewett MC, Mangan NM, Olvera de la Cruz M, Tullman-Ercek D. Vertex protein PduN tunes encapsulated pathway performance by dictating bacterial metabolosome morphology. Nat Commun 2022; 13:3746. [PMID: 35768404 PMCID: PMC9243111 DOI: 10.1038/s41467-022-31279-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 06/09/2022] [Indexed: 11/09/2022] Open
Abstract
Engineering subcellular organization in microbes shows great promise in addressing bottlenecks in metabolic engineering efforts; however, rules guiding selection of an organization strategy or platform are lacking. Here, we study compartment morphology as a factor in mediating encapsulated pathway performance. Using the 1,2-propanediol utilization microcompartment (Pdu MCP) system from Salmonella enterica serovar Typhimurium LT2, we find that we can shift the morphology of this protein nanoreactor from polyhedral to tubular by removing vertex protein PduN. Analysis of the metabolic function between these Pdu microtubes (MTs) shows that they provide a diffusional barrier capable of shielding the cytosol from a toxic pathway intermediate, similar to native MCPs. However, kinetic modeling suggests that the different surface area to volume ratios of MCP and MT structures alters encapsulated pathway performance. Finally, we report a microscopy-based assay that permits rapid assessment of Pdu MT formation to enable future engineering efforts on these structures.
Collapse
Affiliation(s)
- Carolyn E Mills
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA
| | - Curt Waltmann
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA
| | - Andre G Archer
- Department of Engineering Sciences and Applied Mathematics, Northwestern University, Evanston, IL, USA
| | - Nolan W Kennedy
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, IL, USA
| | - Charlotte H Abrahamson
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA
| | - Alexander D Jackson
- Master of Science in Biotechnology Program, Northwestern University, Evanston, IL, USA
| | - Eric W Roth
- Northwestern University Atomic and Nanoscale Characterization Experimental Center, Evanston, IL, USA
| | - Sasha Shirman
- Department of Engineering Sciences and Applied Mathematics, Northwestern University, Evanston, IL, USA
| | - Michael C Jewett
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL, USA
| | - Niall M Mangan
- Department of Engineering Sciences and Applied Mathematics, Northwestern University, Evanston, IL, USA
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, IL, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL, USA
| | - Monica Olvera de la Cruz
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL, USA
- Department of Chemistry, Northwestern University, Evanston, IL, USA
| | - Danielle Tullman-Ercek
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA.
- Center for Synthetic Biology, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
10
|
Linking the Salmonella enterica 1,2-Propanediol Utilization Bacterial Microcompartment Shell to the Enzymatic Core via the Shell Protein PduB. J Bacteriol 2022; 204:e0057621. [PMID: 35575582 DOI: 10.1128/jb.00576-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Bacterial microcompartments (MCPs) are protein-based organelles that house the enzymatic machinery for metabolism of niche carbon sources, allowing enteric pathogens to outcompete native microbiota during host colonization. While much progress has been made toward understanding MCP biogenesis, questions still remain regarding the mechanism by which core MCP enzymes are enveloped within the MCP protein shell. Here, we explore the hypothesis that the shell protein PduB is responsible for linking the shell of the 1,2-propanediol utilization (Pdu) MCP from Salmonella enterica serovar Typhimurium LT2 to its enzymatic core. Using fluorescent reporters, we demonstrate that all members of the Pdu enzymatic core are encapsulated in Pdu MCPs. We also demonstrate that PduB is critical for linking the entire Pdu enzyme core to the MCP shell. Using MCP purifications, transmission electron microscopy, and fluorescence microscopy, we find that shell assembly can be decoupled from the enzymatic core, as apparently empty MCPs are formed in Salmonella strains lacking PduB. Mutagenesis studies reveal that PduB is incorporated into the Pdu MCP shell via a conserved, lysine-mediated hydrogen bonding mechanism. Finally, growth assays and system-level pathway modeling reveal that unencapsulated pathway performance is strongly impacted by enzyme concentration, highlighting the importance of minimizing polar effects when conducting these functional assays. Together, these results provide insight into the mechanism of enzyme encapsulation within Pdu MCPs and demonstrate that the process of enzyme encapsulation and shell assembly are separate processes in this system, a finding that will aid future efforts to understand MCP biogenesis. IMPORTANCE MCPs are unique, genetically encoded organelles used by many bacteria to survive in resource-limited environments. There is significant interest in understanding the biogenesis and function of these organelles, both as potential antibiotic targets in enteric pathogens and also as useful tools for overcoming metabolic engineering bottlenecks. However, the mechanism by which these organelles are formed natively is still not completely understood. Here, we provide evidence of a potential mechanism in S. enterica by which a single protein, PduB, links the MCP shell and metabolic core. This finding is critical for those seeking to disrupt MCPs during pathogenic infections or for those seeking to harness MCPs as nanobioreactors in industrial settings.
Collapse
|
11
|
Trettel DS, Resager W, Ueberheide BM, Jenkins CC, Winkler WC. Chemical probing provides insight into the native assembly state of a bacterial microcompartment. Structure 2022; 30:537-550.e5. [PMID: 35216657 PMCID: PMC8995372 DOI: 10.1016/j.str.2022.02.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/08/2021] [Accepted: 01/28/2022] [Indexed: 11/28/2022]
Abstract
Bacterial microcompartments (BMCs) are widespread in bacteria and are used for a variety of metabolic purposes, including catabolism of host metabolites. A suite of proteins self-assembles into the shell and cargo layers of BMCs. However, the native assembly state of these large complexes remains to be elucidated. Herein, chemical probes were used to observe structural features of a native BMC. While the exterior could be demarcated with fluorophores, the interior was unexpectedly permeable, suggesting that the shell layer may be more dynamic than previously thought. This allowed access to cross-linking chemical probes, which were analyzed to uncover the protein interactome. These cross-links revealed a complex multivalent network among cargo proteins that contained encapsulation peptides and demonstrated that the shell layer follows discrete rules in its assembly. These results are consistent overall with a model in which biomolecular condensation drives interactions of cargo proteins before envelopment by shell layer proteins.
Collapse
Affiliation(s)
- Daniel S Trettel
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
| | - William Resager
- New York University Grossman School of Health, NYU Langone Health, New York, NY 10016, USA
| | - Beatrix M Ueberheide
- New York University Grossman School of Health, NYU Langone Health, New York, NY 10016, USA; Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA; Department of Neurology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Conor C Jenkins
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
| | - Wade C Winkler
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA; Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
12
|
Ribet SM, Murthy AA, Roth EW, Dos Reis R, Dravid VP. Making the Most of your Electrons: Challenges and Opportunities in Characterizing Hybrid Interfaces with STEM. MATERIALS TODAY (KIDLINGTON, ENGLAND) 2021; 50:100-115. [PMID: 35241968 PMCID: PMC8887695 DOI: 10.1016/j.mattod.2021.05.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Inspired by the unique architectures composed of hard and soft materials in natural and biological systems, synthetic hybrid structures and associated soft-hard interfaces have recently evoked significant interest. Soft matter is typically dominated by fluctuations even at room temperature, while hard matter (which often serves as the substrate or anchor for the soft component) is governed by rigid mechanical behavior. This dichotomy offers considerable opportunities to leverage the disparate properties offered by these components across a wide spectrum spanning from basic science to engineering insights with significant technological overtones. Such hybrid structures, which include polymer nanocomposites, DNA functionalized nanoparticle superlattices and metal organic frameworks to name a few, have delivered promising insights into the areas of catalysis, environmental remediation, optoelectronics, medicine, and beyond. The interfacial structure between these hard and soft phases exists across a variety of length scales and often strongly influence the functionality of hybrid systems. While scanning/transmission electron microscopy (S/TEM) has proven to be a valuable tool for acquiring intricate molecular and nanoscale details of these interfaces, the unusual nature of hybrid composites presents a suite of challenges that make assessing or establishing the classical structure-property relationships especially difficult. These include challenges associated with preparing electron-transparent samples and obtaining sufficient contrast to resolve the interface between dissimilar materials given the dose sensitivity of soft materials. We discuss each of these challenges and supplement a review of recent developments in the field with additional experimental investigations and simulations to present solutions for attaining a nano or atomic-level understanding of these interfaces. These solutions present a host of opportunities for investigating and understanding the role interfaces play in this unique class of functional materials.
Collapse
Affiliation(s)
- Stephanie M Ribet
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL
| | - Akshay A Murthy
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL
- International Institute of Nanotechnology, Northwestern University, Evanston, IL
| | - Eric W Roth
- The NUANCE Center, Northwestern University, Evanston, IL
| | - Roberto Dos Reis
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL
- The NUANCE Center, Northwestern University, Evanston, IL
| | - Vinayak P Dravid
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL
- International Institute of Nanotechnology, Northwestern University, Evanston, IL
- The NUANCE Center, Northwestern University, Evanston, IL
| |
Collapse
|
13
|
Huffine CA, Wheeler LC, Wing B, Cameron JC. Computational modeling and evolutionary implications of biochemical reactions in bacterial microcompartments. Curr Opin Microbiol 2021; 65:15-23. [PMID: 34717259 DOI: 10.1016/j.mib.2021.10.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 10/02/2021] [Indexed: 11/19/2022]
Abstract
Bacterial microcompartments (BMCs) are protein-encapsulated compartments found across at least 23 bacterial phyla. BMCs contain a variety of metabolic processes that share the commonality of toxic or volatile intermediates, oxygen-sensitive enzymes and cofactors, or increased substrate concentration for magnified reaction rates. These compartmentalized reactions have been computationally modeled to explore the encapsulated dynamics, ask evolutionary-based questions, and develop a more systematic understanding required for the engineering of novel BMCs. Many crucial aspects of these systems remain unknown or unmeasured, such as substrate permeabilities across the protein shell, feasibility of pH gradients, and transport rates of associated substrates into the cell. This review explores existing BMC models, dominated in the literature by cyanobacterial carboxysomes, and highlights potentially important areas for exploration.
Collapse
Affiliation(s)
- Clair A Huffine
- BioFrontiers Institute, University of Colorado Boulder, 3415 Colorado Avenue, Boulder, CO 80309, USA; Department of Biochemistry, University of Colorado, Boulder, CO 80309, USA; Renewable and Sustainable Energy Institute, University of Colorado, Boulder, CO 80309, USA; Interdisciplinary Quantitative Biology Program (IQ Biology), BioFrontiers Institute, University of Colorado, Boulder, CO 80309, USA
| | - Lucas C Wheeler
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309, USA
| | - Boswell Wing
- Department of Geological Sciences, Boulder, CO 80309, USA
| | - Jeffrey C Cameron
- Department of Biochemistry, University of Colorado, Boulder, CO 80309, USA; Renewable and Sustainable Energy Institute, University of Colorado, Boulder, CO 80309, USA; National Renewable Energy Laboratory, Golden, CO 80401, USA.
| |
Collapse
|
14
|
Kumar G, Sinha S. Biophysical approaches to understand and re-purpose bacterial microcompartments. Curr Opin Microbiol 2021; 63:43-51. [PMID: 34166983 DOI: 10.1016/j.mib.2021.05.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 04/15/2021] [Accepted: 05/17/2021] [Indexed: 11/30/2022]
Abstract
Bacterial microcompartments represent a modular class of prokaryotic organelles associated with metabolic processes. They harbor a congregation of enzymes that work in cascade within a small, confined volume. These sophisticated nano-engineered crafts of nature offer a tempting paradigm for the fabrication of biosynthetic nanoreactors. Repurposing bacterial microcompartments to develop nanostructures with desired functions requires a careful manipulation in their structural makeup and composition. This calls for a comprehensive understanding of all the interactions of the physical components which frame such molecular architectures. Over recent years, several biophysical techniques have been essential in illuminating the role played by bacterial microcompartments within cells, and have revealed crucial details regarding the morphology, physical properties and functions of their constituent proteins. This has promoted contemplation of ideas for engineering microcompartments inspired biomaterials with novel features and functions.
Collapse
Affiliation(s)
- Gaurav Kumar
- Chemical Biology Unit, Institute of Nano Science and Technology, Sector-81, Mohali (SAS Nagar), Knowledge City, Punjab 140306, India
| | - Sharmistha Sinha
- Chemical Biology Unit, Institute of Nano Science and Technology, Sector-81, Mohali (SAS Nagar), Knowledge City, Punjab 140306, India.
| |
Collapse
|
15
|
Kennedy NW, Mills CE, Nichols TM, Abrahamson CH, Tullman-Ercek D. Bacterial microcompartments: tiny organelles with big potential. Curr Opin Microbiol 2021; 63:36-42. [PMID: 34126434 DOI: 10.1016/j.mib.2021.05.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 04/13/2021] [Accepted: 05/17/2021] [Indexed: 11/28/2022]
Abstract
Organization of metabolic processes within the space of a cell is critical for the survival of many organisms. In bacteria, spatial organization is achieved via proteinaceous organelles called bacterial microcompartments, which encapsulate pathway enzymes, substrates, and co-factors to drive the safe and efficient metabolism of niche carbon sources. Microcompartments are self-assembled from shell proteins that encapsulate a core comprising various enzymes. This review discusses how recent advances in understanding microcompartment structure and assembly have informed engineering efforts to repurpose compartments and compartment-based structures for non-native functions. These advances, both in understanding of the native structure and function of compartments, as well as in the engineering of new functions, will pave the way for the use of these structures in bacterial cell factories.
Collapse
Affiliation(s)
- Nolan W Kennedy
- Interdisciplinary Biological Sciences Graduate Program, Northwestern University, 2205 Tech Drive, 2-100 Hogan Hall, Evanston, IL, 60208, USA
| | - Carolyn E Mills
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Technological Institute E136, Evanston, IL, 60208, USA
| | - Taylor M Nichols
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Technological Institute E136, Evanston, IL, 60208, USA
| | - Charlotte H Abrahamson
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Technological Institute E136, Evanston, IL, 60208, USA
| | - Danielle Tullman-Ercek
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Technological Institute E136, Evanston, IL, 60208, USA; Center for Synthetic Biology, Northwestern University, 2145 Sheridan Road, Technological Institute B486, Evanston, IL, 60208, USA.
| |
Collapse
|
16
|
Chen H, Wilson J, Ottinger S, Gan Q, Fan C. Introducing noncanonical amino acids for studying and engineering bacterial microcompartments. Curr Opin Microbiol 2021; 61:67-72. [PMID: 33813159 PMCID: PMC8169543 DOI: 10.1016/j.mib.2021.03.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 02/28/2021] [Accepted: 03/11/2021] [Indexed: 10/21/2022]
Abstract
Bacterial microcompartments (BMCs) with selectively permeable shells and encapsulated enzyme cores are well-suited candidates for nano-bioreactors because of their advantages of enhancing pathway flux and protection against toxic products. To better study and engineer protein-based BMCs, a series of protein chemistry approaches are adopted. As one of the most advanced techniques, genetic code expansion can introduce various noncanonical amino acids (ncAAs) with diverse functional groups into target proteins, thus providing powerful tools for protein studies and engineering. This review summarizes and proposes useful tools based on current development of the genetic code expansion technique towards challenges in BMC studies and engineering.
Collapse
Affiliation(s)
- Hao Chen
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR, USA
| | - Jessica Wilson
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR, USA
| | - Sara Ottinger
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR, USA
| | - Qinglei Gan
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR, USA
| | - Chenguang Fan
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR, USA; Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR, USA.
| |
Collapse
|
17
|
Recent structural insights into bacterial microcompartment shells. Curr Opin Microbiol 2021; 62:51-60. [PMID: 34058518 DOI: 10.1016/j.mib.2021.04.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/26/2021] [Accepted: 04/20/2021] [Indexed: 02/05/2023]
Abstract
Bacterial microcompartments are organelle-like structures that enhance a variety of metabolic functions in diverse bacteria. Composed entirely of proteins, thousands of homologous hexameric shell proteins tesselate to form facets while pentameric proteins form the vertices of a polyhedral shell that encapsulates various enzymes, substrates and cofactors. Recent structural data have highlighted nuanced variations in the sequence and topology of microcompartment shell proteins, emphasizing how variation and specialization enable the construction of complex molecular machines. Recent studies engineering synthetic miniaturized microcompartment shells provide additional frameworks for dissecting principles of microcompartment structure and assembly. This review updates our current understanding of bacterial microcompartment shell proteins, providing new insights and highlighting outstanding questions.
Collapse
|
18
|
Cesle EE, Filimonenko A, Tars K, Kalnins G. Variety of size and form of GRM2 bacterial microcompartment particles. Protein Sci 2021; 30:1035-1043. [PMID: 33763934 PMCID: PMC8040866 DOI: 10.1002/pro.4069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 03/23/2021] [Indexed: 12/12/2022]
Abstract
Bacterial microcompartments (BMCs) are bacterial organelles involved in enzymatic processes, such as carbon fixation, choline, ethanolamine and propanediol degradation, and others. Formed of a semi-permeable protein shell and an enzymatic core, they can enhance enzyme performance and protect the cell from harmful intermediates. With the ability to encapsulate non-native enzymes, BMCs show high potential for applied use. For this goal, a detailed look into shell form variability is significant to predict shell adaptability. Here we present four novel 3D cryo-EM maps of recombinant Klebsiella pneumoniae GRM2 BMC shell particles with the resolution in range of 9 to 22 Å and nine novel 2D classes corresponding to discrete BMC shell forms. These structures reveal icosahedral, elongated, oblate, multi-layered and polyhedral traits of BMCs, indicating considerable variation in size and form as well as adaptability during shell formation processes.
Collapse
Affiliation(s)
- Eva Emilija Cesle
- Structural Biology, Biotechnology and Virusology LaboratoryLatvian Biomedical Research and Study CentreRigaLatvia
| | - Anatolij Filimonenko
- CEITEC‐Central European Institute of TechnologyMasaryk UniversityBrnoCzech Republic
| | - Kaspars Tars
- Structural Biology, Biotechnology and Virusology LaboratoryLatvian Biomedical Research and Study CentreRigaLatvia
- Faculty of BiologyUniversity of LatviaRigaLatvia
| | - Gints Kalnins
- Structural Biology, Biotechnology and Virusology LaboratoryLatvian Biomedical Research and Study CentreRigaLatvia
| |
Collapse
|
19
|
Li Y, Kennedy NW, Li S, Mills CE, Tullman-Ercek D, Olvera de la Cruz M. Computational and Experimental Approaches to Controlling Bacterial Microcompartment Assembly. ACS CENTRAL SCIENCE 2021; 7:658-670. [PMID: 34056096 PMCID: PMC8155464 DOI: 10.1021/acscentsci.0c01699] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Indexed: 05/13/2023]
Abstract
Bacterial microcompartments compartmentalize the enzymes that aid chemical and energy production in many bacterial species. They are postulated to help bacteria survive in hostile environments. Metabolic engineers are interested in repurposing these organelles for non-native functions. Here, we use computational, theoretical, and experimental approaches to determine mechanisms that effectively control microcompartment self-assembly. We find, via multiscale modeling and mutagenesis studies, the interactions responsible for the binding of hexamer-forming proteins in a model system, the propanediol utilization bacterial microcompartments from Salmonella enterica serovar Typhimurium LT2. We determine how the changes in the microcompartment hexamer protein preferred angles and interaction strengths can modify the assembled morphologies. We demonstrate that such altered strengths and angles are achieved via amino acid mutations. A thermodynamic model provides guidelines to design microcompartments of various morphologies. These findings yield insight in controlled protein assembly and provide principles for assembling microcompartments for biochemical or energy applications as nanoreactors.
Collapse
Affiliation(s)
- Yaohua Li
- Department
of Material Science and Engineering, Northwestern
University, Evanston, Illinois 60208, United States
- Applied
Physics Program, Northwestern University, Evanston, Illinois 60208, United States
| | - Nolan W. Kennedy
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Interdisciplinary
Biological Sciences Graduate Program, Northwestern
University, Evanston, Illinois 60208, United States
| | - Siyu Li
- Department
of Material Science and Engineering, Northwestern
University, Evanston, Illinois 60208, United States
| | - Carolyn E. Mills
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Danielle Tullman-Ercek
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- E-mail:
| | - Monica Olvera de la Cruz
- Department
of Material Science and Engineering, Northwestern
University, Evanston, Illinois 60208, United States
- Applied
Physics Program, Northwestern University, Evanston, Illinois 60208, United States
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- E-mail:
| |
Collapse
|
20
|
Mohajerani F, Sayer E, Neil C, Inlow K, Hagan MF. Mechanisms of Scaffold-Mediated Microcompartment Assembly and Size Control. ACS NANO 2021; 15:4197-4212. [PMID: 33683101 PMCID: PMC8058603 DOI: 10.1021/acsnano.0c05715] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
This article describes a theoretical and computational study of the dynamical assembly of a protein shell around a complex consisting of many cargo molecules and long, flexible scaffold molecules. Our study is motivated by bacterial microcompartments, which are proteinaceous organelles that assemble around a condensed droplet of enzymes and reactants. As in many examples of cytoplasmic liquid-liquid phase separation, condensation of the microcompartment interior cargo is driven by flexible scaffold proteins that have weak multivalent interactions with the cargo. Our results predict that the shell size, amount of encapsulated cargo, and assembly pathways depend sensitively on properties of the scaffold, including its length and valency of scaffold-cargo interactions. Moreover, the ability of self-assembling protein shells to change their size to accommodate scaffold molecules of different lengths depends crucially on whether the spontaneous curvature radius of the protein shell is smaller or larger than a characteristic elastic length scale of the shell. Beyond natural microcompartments, these results have important implications for synthetic biology efforts to target alternative molecules for encapsulation by microcompartments or viral shells. More broadly, the results elucidate how cells exploit coupling between self-assembly and liquid-liquid phase separation to organize their interiors.
Collapse
Affiliation(s)
- Farzaneh Mohajerani
- Martin A. Fisher School of Physics, Brandeis University, Waltham, Massachusetts 02453, United States
| | - Evan Sayer
- Martin A. Fisher School of Physics, Brandeis University, Waltham, Massachusetts 02453, United States
| | - Christopher Neil
- Department of Biochemistry, Brandeis University, Waltham, Massachusetts 02453, United States
| | - Koe Inlow
- Department of Biochemistry, Brandeis University, Waltham, Massachusetts 02453, United States
| | - Michael F Hagan
- Martin A. Fisher School of Physics, Brandeis University, Waltham, Massachusetts 02453, United States
| |
Collapse
|
21
|
Stewart AM, Stewart KL, Yeates TO, Bobik TA. Advances in the World of Bacterial Microcompartments. Trends Biochem Sci 2021; 46:406-416. [PMID: 33446424 DOI: 10.1016/j.tibs.2020.12.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/30/2020] [Accepted: 12/02/2020] [Indexed: 12/20/2022]
Abstract
Bacterial microcompartments (MCPs) are extremely large (100-400 nm) and diverse proteinaceous organelles that compartmentalize multistep metabolic pathways, increasing their efficiency and sequestering toxic and/or volatile intermediates. This review highlights recent studies that have expanded our understanding of the diversity, structure, function, and potential biotechnological uses of MCPs. Several new types of MCPs have been identified and characterized revealing new functions and potential new associations with human disease. Recent structural studies of MCP proteins and recombinant MCP shells have provided new insights into MCP assembly and mechanisms and raised new questions about MCP structure. We also discuss recent work on biotechnology applications that use MCP principles to develop nanobioreactors, nanocontainers, and molecular scaffolds.
Collapse
Affiliation(s)
- Andrew M Stewart
- The Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, USA
| | - Katie L Stewart
- The Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, USA
| | - Todd O Yeates
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA; UCLA-DOE Institute for Genomics and Proteomics, Los Angeles, CA, USA.
| | - Thomas A Bobik
- The Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, USA.
| |
Collapse
|
22
|
Kennedy NW, Ikonomova SP, Slininger Lee M, Raeder HW, Tullman-Ercek D. Self-assembling Shell Proteins PduA and PduJ have Essential and Redundant Roles in Bacterial Microcompartment Assembly. J Mol Biol 2020; 433:166721. [PMID: 33227310 DOI: 10.1016/j.jmb.2020.11.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/17/2020] [Accepted: 11/17/2020] [Indexed: 01/21/2023]
Abstract
Protein self-assembly is a common and essential biological phenomenon, and bacterial microcompartments present a promising model system to study this process. Bacterial microcompartments are large, protein-based organelles which natively carry out processes important for carbon fixation in cyanobacteria and the survival of enteric bacteria. These structures are increasingly popular with biological engineers due to their potential utility as nanobioreactors or drug delivery vehicles. However, the limited understanding of the assembly mechanism of these bacterial microcompartments hinders efforts to repurpose them for non-native functions. Here, we comprehensively investigate proteins involved in the assembly of the 1,2-propanediol utilization bacterial microcompartment from Salmonella enterica serovar Typhimurium LT2, one of the most widely studied microcompartment systems. We first demonstrate that two shell proteins, PduA and PduJ, have a high propensity for self-assembly upon overexpression, and we provide a novel method for self-assembly quantification. Using genomic knock-outs and knock-ins, we systematically show that these two proteins play an essential and redundant role in bacterial microcompartment assembly that cannot be compensated by other shell proteins. At least one of the two proteins PduA and PduJ must be present for the bacterial microcompartment shell to assemble. We also demonstrate that assembly-deficient variants of these proteins are unable to rescue microcompartment formation, highlighting the importance of this assembly property. Our work provides insight into the assembly mechanism of these bacterial organelles and will aid downstream engineering efforts.
Collapse
Affiliation(s)
- Nolan W Kennedy
- Interdisciplinary Biological Sciences Graduate Program, Northwestern University, Evanston, IL, United States
| | - Svetlana P Ikonomova
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, United States
| | - Marilyn Slininger Lee
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, United States; US Army Combat Capabilities Development Command Chemical Biological Center, Edgewood, MD, United States
| | - Henry W Raeder
- Molecular Biosciences Program, Weinberg College of Arts and Sciences, Northwestern University, Evanston, IL, United States
| | - Danielle Tullman-Ercek
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, United States; Center for Synthetic Biology, Northwestern University, Evanston, IL, United States.
| |
Collapse
|
23
|
Jones JA, Giessen TW. Advances in encapsulin nanocompartment biology and engineering. Biotechnol Bioeng 2020; 118:491-505. [PMID: 32918485 DOI: 10.1002/bit.27564] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/12/2020] [Accepted: 09/09/2020] [Indexed: 12/23/2022]
Abstract
Compartmentalization is an essential feature of all cells. It allows cells to segregate and coordinate physiological functions in a controlled and ordered manner. Different mechanisms of compartmentalization exist, with the most relevant to prokaryotes being encapsulation via self-assembling protein-based compartments. One widespread example of such is that of encapsulins-cage-like protein nanocompartments able to compartmentalize specific reactions, pathways, and processes in bacteria and archaea. While still relatively nascent bioengineering tools, encapsulins exhibit many promising characteristics, including a number of defined compartment sizes ranging from 24 to 42 nm, straightforward expression, the ability to self-assemble via the Hong Kong 97-like fold, marked physical robustness, and internal and external handles primed for rational genetic and molecular manipulation. Moreover, encapsulins allow for facile and specific encapsulation of native or heterologous cargo proteins via naturally or rationally fused targeting peptide sequences. Taken together, the attributes of encapsulins promise substantial customizability and broad usability. This review discusses recent advances in employing engineered encapsulins across various fields, from their use as bionanoreactors to targeted delivery systems and beyond. A special focus will be provided on the rational engineering of encapsulin systems and their potential promise as biomolecular research tools.
Collapse
Affiliation(s)
- Jesse A Jones
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Tobias W Giessen
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA.,Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
24
|
Stewart KL, Stewart AM, Bobik TA. Prokaryotic Organelles: Bacterial Microcompartments in E. coli and Salmonella. EcoSal Plus 2020; 9:10.1128/ecosalplus.ESP-0025-2019. [PMID: 33030141 PMCID: PMC7552817 DOI: 10.1128/ecosalplus.esp-0025-2019] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Indexed: 02/07/2023]
Abstract
Bacterial microcompartments (MCPs) are proteinaceous organelles consisting of a metabolic pathway encapsulated within a selectively permeable protein shell. Hundreds of species of bacteria produce MCPs of at least nine different types, and MCP metabolism is associated with enteric pathogenesis, cancer, and heart disease. This review focuses chiefly on the four types of catabolic MCPs (metabolosomes) found in Escherichia coli and Salmonella: the propanediol utilization (pdu), ethanolamine utilization (eut), choline utilization (cut), and glycyl radical propanediol (grp) MCPs. Although the great majority of work done on catabolic MCPs has been carried out with Salmonella and E. coli, research outside the group is mentioned where necessary for a comprehensive understanding. Salient characteristics found across MCPs are discussed, including enzymatic reactions and shell composition, with particular attention paid to key differences between classes of MCPs. We also highlight relevant research on the dynamic processes of MCP assembly, protein targeting, and the mechanisms that underlie selective permeability. Lastly, we discuss emerging biotechnology applications based on MCP principles and point out challenges, unanswered questions, and future directions.
Collapse
Affiliation(s)
- Katie L. Stewart
- The Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, USA 50011
| | - Andrew M. Stewart
- The Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, USA 50011
| | - Thomas A. Bobik
- The Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, USA 50011
| |
Collapse
|
25
|
Ochoa JM, Nguyen VN, Nie M, Sawaya MR, Bobik TA, Yeates TO. Symmetry breaking and structural polymorphism in a bacterial microcompartment shell protein for choline utilization. Protein Sci 2020; 29:2201-2212. [PMID: 32885887 DOI: 10.1002/pro.3941] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/28/2020] [Accepted: 09/01/2020] [Indexed: 01/02/2023]
Abstract
Bacterial microcompartments are protein-based organelles that carry out specialized metabolic functions in diverse bacteria. Their outer shells are built from several thousand protein subunits. Some of the architectural principles of bacterial microcompartments have been articulated, with lateral packing of flat hexameric BMC proteins providing the basic foundation for assembly. Nonetheless, a complete understanding has been elusive, partly owing to polymorphic mechanisms of assembly exhibited by most microcompartment types. An earlier study of one homologous BMC shell protein subfamily, EutS/PduU, revealed a profoundly bent, rather than flat, hexameric structure. The possibility of a specialized architectural role was hypothesized, but artifactual effects of crystallization could not be ruled out. Here we report a series of crystal structures of an orthologous protein, CutR, from a glycyl-radical type choline-utilizing microcompartment from the bacterium Streptococcus intermedius. Depending on crystal form, expression construct, and minor mutations, a range of novel quaternary architectures was observed, including two spiral hexagonal assemblies. A new graphical approach helps illuminate the variations in BMC hexameric structure, with results substantiating the idea that the EutS/PduU/CutR subfamily of BMC proteins may endow microcompartment shells with flexible modes of assembly.
Collapse
Affiliation(s)
- Jessica M Ochoa
- UCLA-Molecular Biology Institute, University of California, Los Angeles (UCLA), California, Los Angeles, USA
| | - Vy N Nguyen
- Department of Chemistry and Biochemistry, University of California, Los Angeles (UCLA), California, Los Angeles, USA
| | - Mengxiao Nie
- Department of Chemistry and Biochemistry, University of California, Los Angeles (UCLA), California, Los Angeles, USA
| | - Michael R Sawaya
- UCLA-DOE Institute of Genomics and Proteomics, University of California, Los Angeles (UCLA), California, Los Angeles, USA
| | - Thomas A Bobik
- Department of Biochemistry, Biophysics and Molecular Biology; Iowa State University, Ames, Iowa, USA
| | - Todd O Yeates
- UCLA-Molecular Biology Institute, University of California, Los Angeles (UCLA), California, Los Angeles, USA.,Department of Chemistry and Biochemistry, University of California, Los Angeles (UCLA), California, Los Angeles, USA.,UCLA-DOE Institute of Genomics and Proteomics, University of California, Los Angeles (UCLA), California, Los Angeles, USA
| |
Collapse
|