1
|
Arif M, Ilyas M, Adnan M, Kalsoom R, Ren M, Xu R, Li L. Molecular mechanisms and breeding strategies for enhancing wheat resilience to environmental stresses: The role of heat shock proteins and implications for food security. Int J Biol Macromol 2025; 308:142468. [PMID: 40154715 DOI: 10.1016/j.ijbiomac.2025.142468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 03/13/2025] [Accepted: 03/22/2025] [Indexed: 04/01/2025]
Abstract
Wheat is a major staple crop that plays a pivotal role in global food security. However, its productivity is increasingly compromised by environmental stresses such as heat, drought, salinity and heavy metal toxicity. The broad understanding of molecular mechanisms responsible for wheat resilience is reviewed, with a particular focus on heat shock proteins (HSPs) as key mediators of stress adjustment. HSPs play the role of molecular chaperones, whereby they stabilize proteins and prevent aggregation and oxidative stress to maintain the homeostatic function of cells in the most extreme conditions. We trained omics technologies such as genomics, transcriptomics, proteomics, and metabolomics to identify genes responsive to stress, thus boosting the breeding approach for better resilience in wheat. Now, genome editing tools such as CRISPR/Cas9 have hastened the development of climate-resilient wheat varieties, complementing traditional breeding strategies. Heavy metal toxicity disturbs the metabolic pathways; however, certain metals are micronutrients, and a balanced approach is essential to improve tolerance. Molecular breeding, precision agriculture, and sustainable soil management should be integrated into future studies to mitigate stress impacts and ensure stable yields. Our interdisciplinary approaches will drive sustainable agri-ecosystems for global food security amid climate change and degradation.
Collapse
Affiliation(s)
- Muhammad Arif
- College of Agriculture, Guizhou University, Guiyang 550025, Guizhou, China; Guizhou Sub-center of National Wheat Improvement Center, Guiyang 550025, China
| | - Muhammad Ilyas
- Department of Botany, Kohsar University Murree, Punjab, Pakistan
| | - Muhammad Adnan
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, Guizhou 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Rabia Kalsoom
- Plant Virology Section, Ayub Agriculture Research Institute, Faisalabad, Pakistan
| | - Mingjian Ren
- College of Agriculture, Guizhou University, Guiyang 550025, Guizhou, China; Guizhou Sub-center of National Wheat Improvement Center, Guiyang 550025, China
| | - Ruhong Xu
- College of Agriculture, Guizhou University, Guiyang 550025, Guizhou, China; Guizhou Sub-center of National Wheat Improvement Center, Guiyang 550025, China
| | - Luhua Li
- College of Agriculture, Guizhou University, Guiyang 550025, Guizhou, China; Guizhou Sub-center of National Wheat Improvement Center, Guiyang 550025, China.
| |
Collapse
|
2
|
Jia L, Yu G, Zhao Z, Lü L. Effects of cadmium (Cd) on photosynthetic characteristics and chlorophyll fluorescence parameters in the ornamental Plant Salvia splendens Ker-Gawl. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2025; 31:507-519. [PMID: 40256272 PMCID: PMC12006627 DOI: 10.1007/s12298-025-01584-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 03/18/2025] [Accepted: 03/22/2025] [Indexed: 04/22/2025]
Abstract
Salvia splendens Ker-Gawl. (scarlet sage), widely used in urban landscaping, it is frequently exposed to cadmium (Cd) contamination resulting from industrial and vehicular emissions. However, its tolerance and adaptability to Cd stress remain poorly understood. A soil experiment was conducted to investigate the effects of Cd on the growth and the photosynthetic performance of S. splendens by measuring photosynthetic pigments, gas exchange and chlorophyll fluorescence parameters. Four weeks-seedlings were treated with 0 (CK), 0.5, 2.5, 5, 10, 25 and 50 mg·kg-1 Cd for 60 days. Results showed significant reductions in root length and biomass of leaves, stems, and roots, with shoot and root biomass notably decreasing by up to 46.3% and 28.5% at higher Cd levels, respectively. The translocation factor remained low (TF < 1.0), and the bioaccumulation factors (BCF < 1.0) decreased when Cd higher than 5 mg·kg-1, indicating limited Cd uptake. Cd stress (> 5 mg·kg-1) caused a decrease in Chl a and Chl b content, but increased the Chl a/b ratio, thereby disrupting photosynthesis and causing significant declines in photosynthetic parameters. Cd exposure (> 2.5 mg·kg-1) significantly decreased net photosynthetic rate (Pn) by 18.94-52.91%, stomatal conductance (Gs) by 35.77-58.53%, and transpiration rate (Tr) by 24.63-48.83%, accompanied by only a slight reduction in inter-cellular CO2 concentration (Ci) of just 7.0%, indicating non-stomatal factors in Pn decline. Cd concentrations (> 5 mg·kg-1) caused a reduction in initial fluorescence (Fo) by 7.44-31.58% and maximal fluorescence (Fm) measurements by about 20%, indicating damage to photosystem II (PSII). At 50 mg·kg-1, further decreases were observed in photochemical quenching (qP) by 40.31%, the quantum yield of photochemical energy dissipation (ΦPSII) by 44.77%, and the electron transport rate (ETR) by 25.11%, while non-photochemical quenching increased by 42.66%, signifying significant PSII inhibition and enhanced photoinhibition. Decrease in ΦPSII, along with the increase in the quantum yield of regulated non-photochemical energy loss in PSII (ΦNPQ) and the quantum yield of non-regulated energy loss in PSII (ΦNO) as Cd levels rise, indicates enhanced non-photochemical energy dissipation and greater photoinhibition. S. splendens shows high sensitivity to Cd stress, with reduced growth and disrupted photosynthesis, highlighting its potential as a bioindicator for Cd contamination in urban areas.
Collapse
Affiliation(s)
- Lian Jia
- College of Chemistry and Life Science, Anshan Normal University, Anshan, 114005 China
- Liaoning Key Laboratory of Development and Utilization for Natural Products Active Molecules, Anshan Normal University, Anshan, 114005 China
| | - Guangchao Yu
- College of Chemistry and Life Science, Anshan Normal University, Anshan, 114005 China
- Liaoning Key Laboratory of Development and Utilization for Natural Products Active Molecules, Anshan Normal University, Anshan, 114005 China
| | - Zhen Zhao
- College of Chemistry and Life Science, Anshan Normal University, Anshan, 114005 China
- Liaoning Key Laboratory of Development and Utilization for Natural Products Active Molecules, Anshan Normal University, Anshan, 114005 China
| | - LinLin Lü
- College of Chemistry and Life Science, Anshan Normal University, Anshan, 114005 China
- Liaoning Key Laboratory of Development and Utilization for Natural Products Active Molecules, Anshan Normal University, Anshan, 114005 China
| |
Collapse
|
3
|
Dhara A, Dutta R. A review on sources and distribution of polycyclic aromatic hydrocarbons (PAHs) in wetland ecosystem: focusing on plant-biomonitoring and phytoremediation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:8743-8765. [PMID: 40100499 DOI: 10.1007/s11356-025-36240-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 03/04/2025] [Indexed: 03/20/2025]
Abstract
In the contemporary era, rapid global urbanization, coupled with intense industrial development, has led to a continuous influx of carcinogenic pollutants like PAHs, into the ecosystems. Owing to their long-range transportation potential, PAHs have driven their way from a regional scale to a global platform and become readily available in air, water, sediment, and biota of the most ecologically diverse ecosystems, like wetlands. The wetland ecosystems, due to their susceptibility to anthropogenic activities, face a heightened vulnerability to anthropogenic PAHs pollution. This PAHs pollution load adversely influences the unique biodiversity of wetlands. Hence, it is a pertinent to implement immediate and continuous monitoring programs to assess the present and ongoing PAHs pollution status. In this context, the use of plants for biomonitoring emerges as a potential alternative tool to the traditional monitoring process which also offers simultaneous mitigation mechanism and provides sustainability through detoxification. Therefore, sources and distribution of PAHs in wetland sediment and water are discussed in this review work to highlight the major sources of PAHs pollution and their distribution which would aid in proper strategic planning for phytoremediation the present study focuses on phytoremediation studies of wetland PAHs reported so far emphasizing its potential as a sustainable solution for addressing and mitigating PAHs pollution in wetlands. Various phytoremediation mechanisms are pointed out case to case to understand the plants' potential in bioremediation technique.
Collapse
Affiliation(s)
- Aparna Dhara
- Department of Chemical Engineering, Jadavpur University, Kolkata, 700032, India
| | - Ratna Dutta
- Department of Chemical Engineering, Jadavpur University, Kolkata, 700032, India.
| |
Collapse
|
4
|
Sari SHJ, Chien MF, Inoue C. Exploring Cd tolerance and detoxification strategies of Arabidopsis halleri ssp. gemmifera under high cadmium exposure. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2025; 27:934-940. [PMID: 39877973 DOI: 10.1080/15226514.2025.2456678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
Arabidopsis halleri ssp. gemmifera is well known as a Cd hyperaccumulator. Yet, understanding how this plant survives in a high Cd environment without appearing toxicity signs is far from complete. Therefore, this study emphasized on high level of Cd to be applied to evaluate Cd detoxification and tolerance strategies in the hyperaccumulator A. halleri ssp. gemmifera. The results showed that under 300 µM of Cd exposure in a hydroponic system for 56 days, Cd tends to be transported to the stem and leaves. The availability of more than 60% of Cd mobile fractions supported Cd translocation to leaves. EPMA at the cellular level identified Cd localization at the rim of leaf cells that might be associated with the Cd-cell wall form. The Cd soluble fraction in the leaves was found as Cd-free ion and Cd-complexed compound. Interestingly, this plant can still grow despite some inhibition, such as significantly decreasing total chlorophyll and anthocyanins content in the leaves. It was predicted that Cd-free ions were sequestered into the vacuole of leaves cells, by complexing it into organic acid compounds. Therefore, tolerance strategies in A. halleri ssp. gemmifera at high Cd is proved to be associated to compartmentalization and complexation strategies.
Collapse
Affiliation(s)
| | - Mei-Fang Chien
- Graduate School of Environmental Studies, Tohoku University, Sendai, Japan
| | - Chihiro Inoue
- Graduate School of Environmental Studies, Tohoku University, Sendai, Japan
| |
Collapse
|
5
|
Sajid M, Ahmed S, Sardar R, Ali A, Yasin NA. Role of polyethylene glycol to alleviate lead stress in Raphanus sativus. PeerJ 2025; 13:e18147. [PMID: 39802184 PMCID: PMC11725271 DOI: 10.7717/peerj.18147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 08/30/2024] [Indexed: 01/16/2025] Open
Abstract
The continuous contamination of heavy metals (HMs) in our ecosystem due to industrialization, urbanization and other anthropogenic activities has become a serious environmental constraint to successful crop production. Lead (Pb) toxicity causes ionic, oxidative and osmotic injuries which induce various morphological, physiological, metabolic and molecular abnormalities in plants. Polyethylene glycol (PEG) is widely used to elucidate drought stress induction and alleviation mechanisms in treated plants. Some recent studies have unveiled the potential of PEG in regulating plant growth and developmental procedures including seed germination, root and shoot growth and alleviating the detrimental impacts of abiotic stresses in plants. Therefore, the current study aimed to assess the effects of seed priming with various concentrations (10%, 20%, 30% and 40%) of PEG on the growth and development of radish plants growing under Pb stress (75 mg/kg soil). Lead toxicity reduced root growth (32.89%), shoot growth (32.81%), total chlorophyll (56.25%) and protein content (58.66%) in treated plants. Similarly, plants showed reduced biomass production of root (35.48%) and shoot (31.25%) under Pb stress, while 30% PEG seed priming enhanced biomass production of root (28.57%) and shoot (35.29%) under Pb contaminated regimes. On the other hand, seedlings obtained from 30% PEG priming demonstrated a notable augmentation in the concentrations of photosynthetic pigments, antioxidative activity and biomass accumulation of the plants. PEG-treated plants showed modulations in the enzymatic activities of peroxidase (PO), catalase (CAT) and superoxide dismutase (SOD). These changes collectively played a role in mitigating the adverse effects of Pb on plant physiology. Our data revealed that PEG interceded stress extenuation encompasses numerous regulatory mechanisms including scavenging of ROS through antioxidant and non-antioxidants, improved photosynthetic activity and appropriate nutrition. Hence, it becomes necessary to elucidate the beneficial role of PEG in developing approaches for improving plant growth and stress tolerance.
Collapse
Affiliation(s)
- Muhammad Sajid
- Institute of Botany, University of the Punjab, Lahore, Punjab, Pakistan
| | - Shakil Ahmed
- Institute of Botany, University of the Punjab, Lahore, Punjab, Pakistan
| | - Rehana Sardar
- Department of Botany, Emerson University, Multan, Pakistan
| | - Aamir Ali
- Department of Botany, University of Sargodha,, Sargodha, Punjab, Pakistan
| | - Nasim Ahmad Yasin
- Faculty of Agricultural Sciences, University of the Punjab, Lahore, Punjab, Pakistan
| |
Collapse
|
6
|
Naqqash T, Aziz A, Baber M, Shahid M, Sajid M, Emanuele R, Gaafar ARZ, Hodhod MS, Haider G. Metal-tolerant morganella morganii isolates can potentially mediate nickel stress tolerance in Arabidopsis by upregulating antioxidative enzyme activities. PLANT SIGNALING & BEHAVIOR 2024; 19:2318513. [PMID: 38526224 DOI: 10.1080/15592324.2024.2318513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 02/08/2024] [Indexed: 03/26/2024]
Abstract
Plant growth-promoting rhizobacteria (PGPRs) have been utilized to immobilize heavy metals, limiting their translocation in metal contaminated settings. However, studies on the mechanisms and interactions that elucidate how PGPRs mediate Nickel (Ni) tolerance in plants are rare. Thus, in this study we investigated how two pre-characterized heavy metal tolerant isolates of Morganella morganii (ABT9 and ABT3) improve Ni stress tolerance in Arabidopsis while enhancing its growth and yield. Arabidopsis seedlings were grown for five weeks in control/Ni contaminated (control, 1.5 mM and 2.5 mM) potted soil, in the presence or absence of PGPRs. Plant growth characteristics, quantum yield, and antioxidative enzymatic activities were analyzed to assess the influence of PGPRs on plant physiology. Oxidative stress tolerance was quantified by measuring MDA accumulation in Arabidopsis plants. As expected, Ni stress substantially reduced plant growth (shoot and root fresh weight by 53.25% and 58.77%, dry weight by 49.80% and 57.41% and length by 47.16% and 64.63% over control), chlorophyll content and quantum yield (by 40.21% and 54.37% over control). It also increased MDA content by 84.28% at higher (2.5 mM) Ni concentrations. In contrast, inoculation with M. morganii led to significant improvements in leaf chlorophyll, quantum yield, and Arabidopsis biomass production. The mitigation of adverse effects of Ni stress on biomass observed in M. morganii-inoculated plants was attributed to the enhancement of antioxidative enzyme activities compared to Ni-treated plants. This upregulation of the antioxidative defense mechanism mitigated Ni-induced oxidative stress, leading to improved performance of the photosynthetic machinery, which, in turn, enhanced chlorophyll content and quantum yield. Understanding the underlying mechanisms of these tolerance-inducing processes will help to complete the picture of PGPRs-mediated defense signaling. Thus, it suggests that M. morganii PGPRs candidate can potentially be utilized for plant growth promotion by reducing oxidative stress via upregulating antioxidant defense systems in Ni-contaminated soils and reducing Ni metal uptake.
Collapse
Affiliation(s)
- Tahir Naqqash
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, Multan, Pakistan
| | - Aeman Aziz
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, Multan, Pakistan
| | - Muhammad Baber
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, Multan, Pakistan
| | - Muhammad Shahid
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Muhammad Sajid
- Department of Biotechnology, University of Okara, Okara, Pakistan
| | - Radicetti Emanuele
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy
| | - Abdel-Rhman Z Gaafar
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed S Hodhod
- Faculty of Biotechnology, October University for Modern Sciences & Arts, 6th October City, Egypt
| | - Ghulam Haider
- Department of Plant Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| |
Collapse
|
7
|
Niedrite E, Klavins L, Dobkevica L, Purmalis O, Ievinsh G, Klavins M. Sustainable control of invasive plants: Compost production, quality and effects on wheat germination. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 371:123149. [PMID: 39486297 DOI: 10.1016/j.jenvman.2024.123149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/29/2024] [Accepted: 10/29/2024] [Indexed: 11/04/2024]
Abstract
Invasive plant species pose significant ecological threats worldwide, affecting the stability and biodiversity of local ecosystems. As a result of their control, a considerable amount of plant biomass is produced, which can be used to produce various value-added products. Five different composts were prepared from three invasive plant species found in Latvia - Reynoutria japonica, Solidago canadensis, Lupinus polyphyllus. The stages of composting have been investigated and recommendations for process optimization have been made based on the quality characterization of the final compost. The quality of the prepared invasive plant biomass composts has been evaluated based on the main plant nutrient concentration, humic substance concentration, and mineral contents. The allelopathic lupin alkaloid concentration throughout the composting process has been evaluated and shows a consistent reduction. Obtained compost quality complies with the EU regulations for fertilizing products and soil amendments thus it can be considered equivalent to industrially produced compost and vermicompost. Seed germination tests confirm that compost prepared from invasive plants is suitable for plant growth and comparable to commercial composts. Based on pilot-scale composting results, recommendations for invasive plant composting have been suggested.
Collapse
Affiliation(s)
- Evelina Niedrite
- Department of Environmental Science, University of Latvia, Raina Blvd. 19, Riga, LV-1586, Latvia.
| | - Linards Klavins
- Department of Environmental Science, University of Latvia, Raina Blvd. 19, Riga, LV-1586, Latvia.
| | - Linda Dobkevica
- Department of Environmental Science, University of Latvia, Raina Blvd. 19, Riga, LV-1586, Latvia.
| | - Oskars Purmalis
- Department of Environmental Science, University of Latvia, Raina Blvd. 19, Riga, LV-1586, Latvia.
| | - Gederts Ievinsh
- Faculty of Biology, University of Latvia, Raina Blvd. 19, Riga, LV-1586, Latvia.
| | - Maris Klavins
- Department of Environmental Science, University of Latvia, Raina Blvd. 19, Riga, LV-1586, Latvia.
| |
Collapse
|
8
|
Xin J, Ma S, Tian R. Responses of glyoxalase system, ascorbate-glutathione cycle, and antioxidant enzymes in Pontederia cordata to lead stress and its capacity to remove lead. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2024; 27:390-399. [PMID: 39513277 DOI: 10.1080/15226514.2024.2421362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
A hydroponic experiment was conducted to investigate the variations in membrane permeabilities, chlorophyll contents, antioxidase activities, the ascorbic acid (AsA)-glutathione (GSH) cycle, and the glyoxalase system in the leaves of Pontederia cordata with 0 ∼ 15.0 mg L-1 lead ion (Pb2+) exposure. The concentrations of Pb2+ accumulated in the plant roots, stems, and leaves were also evaluated. After 7 days of exposure, the plants maintained normal growth, and there was a significant increase in ascorbate peroxidase and dehydroascorbate reductase activities. With 5.0 mg L-1 Pb2+ exposure for 28 days, nearly 66.36% of Pb2+ accumulated in the roots, while excess Pb2+ immobilized in the leaves was not observed. Exposure to 10.0 and 15.0 mg L-1 Pb2+ for 28 days significantly increased Pb2+ contents in the leaves. This led to decrease in chlorophyll a, b, and carotenoid contents, and to increase in the methylglyoxal content in the leaves. With 10 and 15 mg L-1 Pb2+ exposure, NPT and PCs contents in leaves increased. however, the glyoxalase system did not function well in the plant tolerant to Pb2+ at higher concentrations. The AsA-GSH cycle did not cooperate with the glyoxalase system in the plant defense against Pb2+ exposure in the present investigation.
Collapse
Affiliation(s)
- Jianpan Xin
- College of Landscape Architecture, Nanjing Forestry University, China Nanjing Jiangsu
| | - Sisi Ma
- College of Landscape Architecture, Nanjing Forestry University, China Nanjing Jiangsu
| | - Runan Tian
- College of Landscape Architecture, Nanjing Forestry University, China Nanjing Jiangsu
| |
Collapse
|
9
|
Bayuo J, Rwiza MJ, Choi JW, Njau KN, Mtei KM. Recent and sustainable advances in phytoremediation of heavy metals from wastewater using aquatic plant species: Green approach. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122523. [PMID: 39305882 DOI: 10.1016/j.jenvman.2024.122523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/30/2024] [Accepted: 09/12/2024] [Indexed: 11/17/2024]
Abstract
A key component in a nation's economic progress is industrialization, however, hazardous heavy metals that are detrimental to living things are typically present in the wastewater produced from various industries. Therefore, before wastewater is released into the environment, it must be treated to reduce the concentrations of the various heavy metals to maximum acceptable levels. Even though several biological, physical, and chemical remediation techniques are found to be efficient for the removal of heavy metals from wastewater, these techniques are costly and create more toxic secondary pollutants. However, phytoremediation is inexpensive, environmentally friendly, and simple to be applied as a green technology for heavy metal detoxification in wastewater. The present study provides a thorough comprehensive review of the mechanisms of phytoremediation, with an emphasis on the possible utilization of plant species for the treatment of wastewater containing heavy metals. We have discussed the concept, its applications, advantages, challenges, and independent variables that determine how successful and efficient phytoremediation could be in the decontamination of heavy metals from wastewater. Additionally, we argue that the standards for choosing aquatic plant species for target heavy metal removal ought to be taken into account, as they influence various aspects of phytoremediation efficiency. Following the comprehensive and critical analysis of relevant literature, aquatic plant species are promising for sustainable remediation of heavy metals. However, several knowledge gaps identified from the review need to be taken into consideration and possibly addressed. Therefore, the review provides perspectives that indicate research needs and future directions on the application of plant species in heavy metal remediation.
Collapse
Affiliation(s)
- Jonas Bayuo
- School of Science, Mathematics, and Technology Education (SoSMTE), C. K. Tedam University of Technology and Applied Sciences (CKT-UTAS), Ghana; School of Materials, Energy, Water, and Environmental Sciences (MEWES), The Nelson Mandela African Institution of Science and Technology (NM-AIST), Tanzania; Graduate School of International Agricultural Technology, Seoul National University, South Korea.
| | - Mwemezi J Rwiza
- School of Materials, Energy, Water, and Environmental Sciences (MEWES), The Nelson Mandela African Institution of Science and Technology (NM-AIST), Tanzania
| | - Joon Weon Choi
- Graduate School of International Agricultural Technology, Seoul National University, South Korea
| | - Karoli Nicholas Njau
- School of Materials, Energy, Water, and Environmental Sciences (MEWES), The Nelson Mandela African Institution of Science and Technology (NM-AIST), Tanzania
| | - Kelvin Mark Mtei
- School of Materials, Energy, Water, and Environmental Sciences (MEWES), The Nelson Mandela African Institution of Science and Technology (NM-AIST), Tanzania
| |
Collapse
|
10
|
Hassan MU, Guoqin H, Ahmad N, Khan TA, Nawaz M, Shah AN, Rasheed A, Asseri TAY, Ercisli S. Multifaceted roles of zinc nanoparticles in alleviating heavy metal toxicity in plants: a comprehensive review and future perspectives. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:61356-61376. [PMID: 39424645 DOI: 10.1007/s11356-024-35018-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 09/13/2024] [Indexed: 10/21/2024]
Abstract
Heavy metal (HM) toxicity is a serious concern across the globe owing to their harmful impacts on plants, animals, and humans. Zinc oxide nanoparticles (ZnO-NPs) have gained appreciable attention in mitigating the adverse effects of abiotic stresses. The exogenous application of ZnO-NPs induces tolerance against HMs by improving plant physiological, metabolic, and molecular responses. They also interact with potential osmolytes and phyto-hormones to regulate the plant performance under HM stress. Moreover, ZnO-NPs also work synergistically with microbes and gene expression which helps to withstand HM toxicity. Additionally, ZnO-NPs also restrict the uptake and accumulation of HMs in plants which improves the plant performance. This review highlights the promising role of ZnO-NPs in mitigating the adverse impacts of HMs in plants. In this review, we explained the different mechanisms mediated by ZnO-NPs to counter the toxic effects of HMs. We also discussed the interactions of ZnO-NPs with osmolytes, phytohormones, and microbes in mitigating the toxic effects of HMs in plants. This review will help to learn more about the role of ZnO-NPs to mitigate HM toxicity in plants. Therefore, it will provide new insights to ensure sustainable and safer production with ZnO-NPs in HM-polluted soils.
Collapse
Affiliation(s)
- Muhammad Umair Hassan
- Research Center On Ecological Sciences, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Huang Guoqin
- Research Center On Ecological Sciences, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Naeem Ahmad
- College of Agronomy, Key Laboratory of Crop Physi-Ecology and Tillage Science in Northwestern Loess Plateau, Ministry of Agriculture, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Tahir Abbas Khan
- Research Center On Ecological Sciences, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Muhammad Nawaz
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, 64200, Pakistan
| | - Adnan Noor Shah
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, 64200, Pakistan.
- Jiangxi Provincial Key Laboratory of Ex Situ Plant Conservation and Utilization, Lushan Botanical Garden, Jiangxi Province and Chinese Academy of Sciences, Jiujiang, 332900, China.
| | - Adnan Rasheed
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
| | - Tahani A Y Asseri
- College of Science, Department of Biology, King Khalid University, 61413, Abha, Saudi Arabia
| | - Sezai Ercisli
- Department of Horticulture, Faculty of Agriculture Ataturk University, 25240, Erzurum, Turkey
- HGF Agro, Ata Teknokent, TR-25240, Erzurum, Turkey
| |
Collapse
|
11
|
Nawrot N, Kowal P, Wojciechowska E, Pazdro K, Walkusz-Miotk J, Ciesielski S, Tack FMG. Impact of abiotic stressors on nutrient removal and rhizomicrobiome composition in floating treatment wetland with Equisetum hyemale. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174468. [PMID: 38969136 DOI: 10.1016/j.scitotenv.2024.174468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/25/2024] [Accepted: 07/01/2024] [Indexed: 07/07/2024]
Abstract
Floating treatment wetlands (FTW) are receiving growing interest as a phyto-technology. However, there are significant research gaps regarding the actual role of plant species and plant-microbiome interactions. In this study, the nutrient uptake of Equisetum hyemale was examined in FTW microcosms under the influence of abiotic stressors: As (3 mg/L) and Pb (3 mg/L) as well as Cl- (300 and 800 mg/L) in reference to a control during a short screening experiment. High removal efficiency of nutrients in water solutions, up to 88 % for TN and 93 % for PO4-P, was observed. However, PO4-P removal was inhibited in the As reactor, with a maximum efficiency of only 11 %. Lead and As were removed with high efficiency, reaching 98 % and 79 % respectively. At the same time only Pb was effectively bound to root biomass, reaching up to 51 %. Limited As accumulation of 0.5 % in plant roots suggests that microbial processes play a major role in its reduction. The development and structure of microbiome in the microcosms was analysed by means of 16S rRNA gene amplicon sequencing, proving that Pb was the most influential factor in terms of selection pressure on specified bacterial groups. In the As treatment, the emergence of a Serratia subpopulation was observed, while the Cl- treatment preserved a rhizobiome composition most closely resembling the control. This study indicates that E. hyemale is a suitable species for use in FTWs treating Pb polluted water that at the same time is capable to withstand periodic increases in salinity. E. hyemale exhibits low As binding in biomass; however, extended exposure might amplify this effect because of the slow-acting, but beneficial, mechanism of As uptake by roots and shoots. Microbiome analysis complements insights into mechanisms of FTW performance and impact of stress factors on bacterial structure and functions.
Collapse
Affiliation(s)
- Nicole Nawrot
- Gdansk University of Technology, Faculty of Civil and Environmental Engineering, Narutowicza 11/12, 80-233 Gdansk, Poland.
| | - Przemysław Kowal
- Gdansk University of Technology, Faculty of Civil and Environmental Engineering, Narutowicza 11/12, 80-233 Gdansk, Poland
| | - Ewa Wojciechowska
- Gdansk University of Technology, Faculty of Civil and Environmental Engineering, Narutowicza 11/12, 80-233 Gdansk, Poland
| | - Ksenia Pazdro
- Institute of Oceanology of the Polish Academy of Sciences, Marine Geotoxicology Laboratory, Powstancow Warszawy 55, 81-712 Sopot, Poland
| | - Jolanta Walkusz-Miotk
- Institute of Oceanology of the Polish Academy of Sciences, Marine Geotoxicology Laboratory, Powstancow Warszawy 55, 81-712 Sopot, Poland
| | - Sławomir Ciesielski
- University of Warmia and Mazury in Olsztyn, Department of Environmental Biotechnology, Sloneczna 45G, 10-917 Olsztyn, Poland
| | - Filip M G Tack
- Ghent University, Faculty of Bioscience Engineering, Department of Green Chemistry and Technology, B-9050 Ghent, Belgium
| |
Collapse
|
12
|
Ansari AA, Akhatar J, Sharma S, Banga SS, Atri C. Integrating multiple statistical indices to measure the stability of photosynthetic pigment content and composition in Brassica juncea (L.) Czern germplasm under varying environmental conditions. PHOTOSYNTHESIS RESEARCH 2024; 162:63-74. [PMID: 39133366 DOI: 10.1007/s11120-024-01116-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 07/30/2024] [Indexed: 08/13/2024]
Abstract
Understanding the stability of photosynthetic pigments is crucial for developing crop cultivars with high productivity and resilience to the environmental stresses. This study leveraged GGE biplot, WAASB, and MTSI indices to assess the stability of content and composition of photosynthetic pigments in leaves and siliques of 286 Brassica juncea (L.) Czern. genotypes across three environments. The GGE biplot analysis identified NRCQR-9901 as the best genotype in terms of chlorophyll 'a' under conditions of high irradiance and long days (E1). For chlorophyll 'b' and total chlorophyll, NC-533728 performed the best. AJ-2 and NPJ-208 had the maximum total carotenoids levels in leaves. RLC-2 was characterized by maximum values for chlorophyll a, chlorophyll b, and total chlorophyll in the siliques. The low irradiance, short days, and moderate to high temperatures (E2) seemed perfect for the synthesis of photosynthetic pigments. NPJ-182 shows the maximum concentrations of chlorophyll 'a', total chlorophyll, and total carotenoids in leaves. Conversely, IC-597869, RE-389, and IC-597894 exhibited the highest concentrations of chlorophyll 'b' under an environment characterized by low light intensity, shorter daylights, and low temperatures (E3) during flowering and siliqua formation stages. The combined analysis found NPJ-182, NC-533728, CN-105233, RLC-2, CN-101846, JA-96, PBR-357, JM-3, and DTM-34 as top performers with high stability. Comparative transcriptome analysis with two stable and high-performing genotypes (PBR-357 and DTM-34) and two average performers revealed upregulation of critical photosynthesis-related genes (ELIP1, CAB3.1, ELIP1.5, and LHCB5) in top performers. This study identified promising trait donors for use in breeding programs aimed at improving the mustard crop's photosynthetic efficiency, productivity, and stability.
Collapse
Affiliation(s)
- Aaftab Alam Ansari
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
| | - Javed Akhatar
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
| | - Sanjula Sharma
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
| | - Surinder Singh Banga
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
| | - Chhaya Atri
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India.
| |
Collapse
|
13
|
Mishra V, Tripathi DK, Rai P, Sharma S, Singh VP. Regulation of arsenate stress by nitric oxide and hydrogen sulfide in Oryza sativa seedlings: Implication of sulfur assimilation, glutathione biosynthesis, and the ascorbate-glutathione cycle and its genes. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 215:109001. [PMID: 39213945 DOI: 10.1016/j.plaphy.2024.109001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/14/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024]
Abstract
Seed priming by nitric oxide (NO) and hydrogen sulphide (H2S) in combating against abiotic stress in plants is well documented. However, knowledge of fundamental mechanisms of their crosstalk is scrambled. Therefore, the reported study examined the probable role of NO and H2S in the mitigation of arsenate toxicity (As(V)) in rice seedlings and whether their potential signalling routes crossover. Results report that As(V) toxicity limited shoot and root length growth with more As accumulation in roots. As(V) further caused elevated reactive oxygen species levels, inhibited ascorbate-glutathione cycle enzymes and relative gene expression of its enzymes and thus, causing lipid and protein oxidation. These results correlate with reduced nitric oxide synthase-like and L-cysteine desulfhydrase activity along with endogenous NO and H2S. While, L-NAME or PAG augmented As(V) toxicity, and addition of SNP or NaHS effectively reversed their respective effects. Furthermore, SNP under PAG or NaHS under L-NAME were able to pacify As(V) stress, implicating that endogenous NO and H2S efficiently ameliorate As(V) toxicity but without their shared signaling in rice seedlings.
Collapse
Affiliation(s)
- Vipul Mishra
- Plant Physiology Laboratory, Department of Botany, C.M.P. Degree College, A Constituent Post Graduate College of University of Allahabad, Prayagraj, 211002, India
| | - Durgesh Kumar Tripathi
- Crop Nanobiology and Molecular Stress Physiology Lab, Amity Institute of Organic Agriculture, Amity University Uttar Pradesh, Sector-125, Noida, 201313, India
| | - Padmaja Rai
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, 211004, India
| | - Shivesh Sharma
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, 211004, India
| | - Vijay Pratap Singh
- Plant Physiology Laboratory, Department of Botany, C.M.P. Degree College, A Constituent Post Graduate College of University of Allahabad, Prayagraj, 211002, India.
| |
Collapse
|
14
|
Zarrabi A, Ghasemi-Fasaei R, Ronaghi A, Zeinali S, Safarzadeh S. Application of synthesized metal-trimesic acid frameworks for the remediation of a multi-metal polluted soil and investigation of quinoa responses. PLoS One 2024; 19:e0310054. [PMID: 39240855 PMCID: PMC11379216 DOI: 10.1371/journal.pone.0310054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 08/16/2024] [Indexed: 09/08/2024] Open
Abstract
Metal-organic frameworks (MOFs) are structures with high surface area that can be used to remove heavy metals (HMs) efficiently from the environment. The effect of MOFs on HMs removal from contaminated soils has not been already investigated. Monometallic MOFs are easier to synthesize with high efficiency, and it is also important to compare their structures. In the present study, Zn-BTC, Cu-BTC, and Fe-BTC as three metal-trimesic acid MOFs were synthesized from the combination of zinc (Zn), copper (Cu), and iron (Fe) nitrates with benzene-1,3,5-tricarboxylic acid (H3BTC) by solvothermal method. BET analysis showed that the specific surface areas of the Zn-BTC, Cu-BTC, and Fe-BTC were 502.63, 768.39 and 92.4 m2g-1, respectively. The synthesized MOFs were added at the rates of 0.5 and 1% by weight to the soils contaminated with 100 mgkg-1 of Zn, nickel (Ni), lead (Pb), and cadmium (Cd). Then quinoa seeds were sown in the treated soils. According to the results, the uptakes of all four HMs by quinoa were the lowest in the Cu-BTC 1% treated pots and the lowest uptakes were observed for Pb in shoot and root (4.87 and 0.39, μgpot-1, respectively). The lowest concentration of metal extracted with EDTA in the post-harvest soils was for Pb (11.86 mgkg-1) in the Cu-BTC 1% treatment. The lowest metal pollution indices were observed after the application of Cu-BTC 1%, which were 20.29 and 11.53 for shoot and root, respectively. With equal molar ratios, highly porous and honeycomb-shaped structure, the most crystallized and the smallest constituent particle size (34.64 nm) were obtained only from the combination of Cu ions with H3BTC. The lowest porosity, crystallinity, and a semi-gel like feature was found for the Fe-BTC. The synthesized Cu-BTC showed the highest capacity of stabilizing HMs, especially Pb in the soil compared to the Zn-BTC and the Fe-BTC. The highly porous characteristic of the Cu-BTC can make the application of this MOF as a suitable environmental solution for the remediation of high Pb-contaminated soils.
Collapse
Affiliation(s)
- Amir Zarrabi
- Department of Soil Science, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Reza Ghasemi-Fasaei
- Department of Soil Science, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Abdolmajid Ronaghi
- Department of Soil Science, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Sedigheh Zeinali
- Department of Nanochemical Engineering Faculty of Advanced Technology, Shiraz University, Shiraz, Iran
| | - Sedigheh Safarzadeh
- Department of Soil Science, School of Agriculture, Shiraz University, Shiraz, Iran
| |
Collapse
|
15
|
Zhang B, Li Z, Feng Y, Qaharaduqin S, Liu W, Yan Y. Impact of Cd and Pb on the photosynthetic and antioxidant systems of Hemerocallis citrina Baroni as revealed by physiological and transcriptomic analyses. PLANT CELL REPORTS 2024; 43:226. [PMID: 39227493 DOI: 10.1007/s00299-024-03312-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 08/22/2024] [Indexed: 09/05/2024]
Abstract
KEY MESSAGE Cd induces photosynthetic inhibition and oxidative stress damage in H. citrina, which mobilizes the antioxidant system and regulates the expression of corresponding genes to adapt to Cd and Pb stress. Cd and Pb are heavy metals that cause severe pollution and are highly hazardous to organisms. Physiological measurements and transcriptomic analysis were combined to investigate the effect of 5 mM Cd or Pb on Hemerocallis citrina Baroni. Cd significantly inhibited H. citrina growth, while Pb had a minimal impact. Both Cd and Pb suppressed the expression levels of key chlorophyll synthesis genes, resulting in decreased chlorophyll content. At the same time, Cd accelerated chlorophyll degradation. It reduced the maximum photochemical efficiency of photosystem (PS) II, damaging the oxygen-evolving complex and leading to thylakoid dissociation. In contrast, no such phenomena were observed under Pb stress. Cd also inhibited the Calvin cycle by down-regulating the expression of Rubisco and SBPase genes, ultimately disrupting the photosynthetic process. Cd impacted the light reaction processes by damaging the antenna proteins, PS II and PS I activities, and electron transfer rate, while the impact of Pb was weaker. Cd significantly increased reactive oxygen species and malondialdehyde accumulation, and inhibited the activities of antioxidant enzymes and the expression levels of the corresponding genes. However, H. citrina adapted to Pb stress by the recruitment of antioxidant enzymes and the up-regulation of their corresponding genes. In summary, Cd and Pb inhibited chlorophyll synthesis and hindered the light capture and electron transfer processes, with Cd exerting great toxicity than Pb. These results elucidate the physiological and molecular mechanisms by which H. citrina responds to Cd and Pb stress and provide a solid basis for the potential utilization of H. citrina in the greening of heavy metal-polluted lands.
Collapse
Affiliation(s)
- Boxue Zhang
- School of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Zebin Li
- School of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Yuwei Feng
- School of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Sunara Qaharaduqin
- School of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Wei Liu
- School of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China.
| | - Yongqing Yan
- School of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
16
|
Nosratabadi S, Kavousi HR, Sarcheshmehpour M, Mansouri M. Assessment of the Cu phytoremediation potential of Chrysanthemum indicum L. and Tagetes erecta L. using analysis of growth and physiological characteristics. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:42445-42460. [PMID: 38872040 DOI: 10.1007/s11356-024-33941-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 06/04/2024] [Indexed: 06/15/2024]
Abstract
In the current study, the Cu phytoremediation ability of two ornamental plants, Chrysanthemum indicum L. and Tagetes erecta L., was tracked concerning the growth and physiological responses. Plants were subjected to varying concentrations of Cu (0, 100, 200, and 400 mg/kg) under the pot experiment for 8 weeks. The results showed that the measured growth and physiological characteristics declined in T. erecta shoots and roots at all tested treatments compared with the control. However, in C. indicum at 100 mg/kg, shoot biomass, shoot total soluble protein, and leaves number remained equal to that of the control and then reduced by rising Cu concentrations, compared with the control. Also, results indicated that in C. indicum, after 56 days of exposure to Cu, the chlorophyll pigments content markedly increased and reached a maximum level at 100 mg/kg dose and gradually declined with enhancing Cu concentrations, compared with the control. Other measured growth and physiological parameters decreased in both tissues of C. indicum in response to Cu usage in the growth medium. The carotenoid content of T. erecta decreased in all studied Cu levels in comparison to the control, but in C. indicum remained unaffected up to 200 mg/kg Cu in comparison to the control and then enhanced with increasing Cu level. The augmentation of antioxidant enzyme activity in two species, especially in roots, reflected the incident of Cu stress as demonstrated by elevated MDA and ion leakage levels. Data concerning copper accumulation in tissues, TF, and BAF showed T. erecta is a weak Cu accumulator and seems not to be an appropriate candidate for Cu phytoremediation. However, the Cu content in shoots and roots of C. indicum increased significantly with an increment in applied Cu level. Also, C. indicum accumulated higher Cu concentrations in the roots than in shoots and exhibited TF < 1, 0.1 < BAF root < 1, and can be considered as a Cu excluder by the phytostabilization mechanism.
Collapse
Affiliation(s)
- Sina Nosratabadi
- Department of Biotechnology, College of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Hamid Reza Kavousi
- Department of Biotechnology, College of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran.
| | - Mehdi Sarcheshmehpour
- Department of Soil Science Engineering, College of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Mehdi Mansouri
- Department of Biotechnology, College of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran
| |
Collapse
|
17
|
Zhou R, Xu J, Li L, Yin Y, Xue B, Li J, Sun F. Exploration of the Effects of Cadmium Stress on Photosynthesis in Oenanthe javanica (Blume) DC. TOXICS 2024; 12:307. [PMID: 38787086 PMCID: PMC11125355 DOI: 10.3390/toxics12050307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/20/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024]
Abstract
Cadmium ion (Cd2+) stress is a major abiotic stressor affecting plant photosynthesis. However, the impact of sustained high-concentration Cd stress on the photosynthetic electron transport chain of aquatic plants is currently unclear. Here, prompt fluorescence (PF), delayed fluorescence (DF), and P700 signals were simultaneously measured to investigate the effect of Cd stress on photosynthesis in water dropwort [Oenanthe javanica (Blume) DC.]. We aimed to elucidate how Cd stress continuously affects the electron transport chain in this species. The PF analysis showed that with prolonged Cd stress, the FJ, FI and FP steadily decreased, accompanied by a positive shift in the K-band and L-band. Moreover, JIP-test parameters, including TRO/ABS, ABS/CSO, TRO/CSO and PIABS, were significantly reduced. The P700 signals showed that exposure to Cd stress hindered both the fast decrease and slow increase phases of the MR transient, ultimately resulting in a gradual reduction in both VPSI and VPSII-PSI. The DF analysis showed a gradual decrease in the I1 and I2 values as the duration of stress from Cd increased. The above results suggested that Cd stress affected the photosynthetic electron transport in water dropwort by influencing the amount of active PSII and PSI, primarily affecting PSII RCs in the early to mid-stages and PSI reductive activity in the later stage.
Collapse
Affiliation(s)
- Ronghua Zhou
- Suzhou Academy of Agricultural Sciences, Institute of Agricultural Sciences in Taihu Lake Region of Jiangsu, Suzhou 215105, China; (R.Z.); (J.X.); (B.X.); (J.L.)
| | - Jun Xu
- Suzhou Academy of Agricultural Sciences, Institute of Agricultural Sciences in Taihu Lake Region of Jiangsu, Suzhou 215105, China; (R.Z.); (J.X.); (B.X.); (J.L.)
| | - Liangjun Li
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China;
| | - Yulai Yin
- Suzhou Academy of Agricultural Sciences, Institute of Agricultural Sciences in Taihu Lake Region of Jiangsu, Suzhou 215105, China; (R.Z.); (J.X.); (B.X.); (J.L.)
| | - Bowen Xue
- Suzhou Academy of Agricultural Sciences, Institute of Agricultural Sciences in Taihu Lake Region of Jiangsu, Suzhou 215105, China; (R.Z.); (J.X.); (B.X.); (J.L.)
| | - Jingjing Li
- Suzhou Academy of Agricultural Sciences, Institute of Agricultural Sciences in Taihu Lake Region of Jiangsu, Suzhou 215105, China; (R.Z.); (J.X.); (B.X.); (J.L.)
| | - Fangfang Sun
- Suzhou Academy of Agricultural Sciences, Institute of Agricultural Sciences in Taihu Lake Region of Jiangsu, Suzhou 215105, China; (R.Z.); (J.X.); (B.X.); (J.L.)
| |
Collapse
|
18
|
Shomali A, Das S, Sarraf M, Johnson R, Janeeshma E, Kumar V, Aliniaeifard S, Puthur JT, Hasanuzzaman M. Modulation of plant photosynthetic processes during metal and metalloid stress, and strategies for manipulating photosynthesis-related traits. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 206:108211. [PMID: 38029618 DOI: 10.1016/j.plaphy.2023.108211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 11/02/2023] [Accepted: 11/19/2023] [Indexed: 12/01/2023]
Abstract
Metals constitute vital elements for plant metabolism and survival, acting as essential co-factors in cellular processes which are indispensable for plant growth and survival. Excess or deficient provision of metal/metalloids puts plant's life and survival at risk, thus considered a potent stress for plants. Chloroplasts as an organelle with a high metal demand form a pivotal site within the metal homeostasis network. Therefore, the metal-mediated electron transport chain (ETC) in chloroplasts is a primary target site of metal/metalloid-induced stresses. Both excess and deficient availability of metal/metalloids threatens plant's photosynthesis in several ways. Energy demands from the photosynthetic carbon reactions should be in balance with energy output of ETC. Malfunctioning of ETC components as a result of metal/metalloid stress initiates photoinhiition. A feedback inhibition from carbon fixation process also impedes the ETC. Metal stress impairs antioxidant enzyme activity, pigment biosynthesis, and stomatal function. However, genetic manipulations, nutrient management, keeping photostasis, and application of phytohormones are among strategies for coping with metal stress. Consequently, a comprehensive understanding of the underlying mechanisms of metal/metalloid stress, as well as the exploration of potential strategies to mitigate its impact on plants are imperative. This review offers a mechanistic insight into the disruption of photosynthesis regulation by metal/metalloids and highlights adaptive approaches to ameliorate their effects on plants. Focus was made on photostasis, nutrient interactions, phytohormones, and genetic interventions for mitigating metal/metalloid stresses.
Collapse
Affiliation(s)
- Aida Shomali
- Photosynthesis Laboratory, Department of Horticulture, College of Agricultural Technology (Aburaihan), University of Tehran, Tehran, Iran; Controlled Environment Agriculture Center, College of Agricultural and Natural Sciences, University of Tehran, Iran
| | - Susmita Das
- Agricultural and Ecological Research Unit, Indian Statistical Institute, Kolkata 700108, India
| | - Mohammad Sarraf
- Department of Horticultural Science, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Riya Johnson
- Plant Physiology and Biochemistry Division, Department of Botany, University of Calicut, C.U. Campus P.O, Kerala 673635, India
| | - Edappayil Janeeshma
- Department of Botany, MES KEVEEYAM College, Valanchery, Malappuram, Kerala, India
| | - Vinod Kumar
- Department of Botany, Government College for Women Gandhi Nagar, Jammu 180004, Jammu and Kashmir, India
| | - Sasan Aliniaeifard
- Photosynthesis Laboratory, Department of Horticulture, College of Agricultural Technology (Aburaihan), University of Tehran, Tehran, Iran.
| | - Jos T Puthur
- Plant Physiology and Biochemistry Division, Department of Botany, University of Calicut, C.U. Campus P.O, Kerala 673635, India
| | - Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh; Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea.
| |
Collapse
|
19
|
Zhu C, Jiang R, Wen S, Xia T, Zhu S, Hou X. Foliar spraying of indoleacetic acid (IAA) enhances the phytostabilization of Pb in naturally tolerant ryegrass by limiting the root-to-shoot transfer of Pb and improving plant growth. PeerJ 2023; 11:e16560. [PMID: 38111653 PMCID: PMC10726742 DOI: 10.7717/peerj.16560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 11/10/2023] [Indexed: 12/20/2023] Open
Abstract
Exogenous addition of IAA has the potential to improve the metal tolerance and phytostabilization of plants, but these effects have not been systematically investigated in naturally tolerant plants. Ryegrass (Lolium perenne L.) is a typical indigenous plant in the Lanping Pb/Zn mining area with high adaptability. This study investigated the phytostabilization ability and Pb tolerance mechanism of ryegrass in response to Pb, with or without foliar spraying of 0.1 mmol L-1 IAA. The results indicated that appropriate IAA treatment could be used to enhance the phytostabilization efficiency of naturally tolerant plants. Foliar spraying of IAA increased the aboveground and belowground biomass of ryegrass and improved root Pb phytostabilization. Compared to Pb-treated plants without exogenous IAA addition, Pb concentration in the shoots of ryegrass significantly decreased, then increased in the roots after the foliar spraying of IAA. In the 1,000 mg kg-1 Pb-treated plants, Pb concentration in the shoots decreased by 69.9% and increased by 79.1% in the roots after IAA treatment. IAA improved plant growth, especially in soils with higher Pb concentration. Foliar spraying of IAA increased shoot biomass by 35.9% and root biomass by 109.4% in 1,000 mg kg-1 Pb-treated plants, and increased shoot biomass by 196.5% and root biomass by 71.5% in 2,000 mg kg-1 Pb-treated plants. In addition, Pb stress significantly decreased the content of photosynthetic pigments and anti-oxidase activities in ryegrass, while foliar spraying of IAA remedied these negative impacts. In summary, foliar spraying of IAA could increase the biomass and improve the Pb tolerance of ryegrass.
Collapse
Affiliation(s)
| | | | | | | | - Saiyong Zhu
- Zhejiang Ecological Civilization Academy, Huzhou, China
- College of Environmental & Resource Sciences of Zhejiang University, Hangzhou, China
| | | |
Collapse
|
20
|
Ilyas MZ, Sa KJ, Ali MW, Lee JK. Toxic effects of lead on plants: integrating multi-omics with bioinformatics to develop Pb-tolerant crops. PLANTA 2023; 259:18. [PMID: 38085368 DOI: 10.1007/s00425-023-04296-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 11/15/2023] [Indexed: 12/18/2023]
Abstract
MAIN CONCLUSION Lead disrupts plant metabolic homeostasis and key structural elements. Utilizing modern biotechnology tools, it's feasible to develop Pb-tolerant varieties by discovering biological players regulating plant metabolic pathways under stress. Lead (Pb) has been used for a variety of purposes since antiquity despite its toxic nature. After arsenic, lead is the most hazardous heavy metal without any known beneficial role in the biological system. It is a crucial inorganic pollutant that affects plant biochemical and morpho-physiological attributes. Lead toxicity harms plants throughout their life cycle and the extent of damage depends on the concentration and duration of exposure. Higher levels of lead exposure disrupt numerous key metabolic activities of plants including oxygen-evolving complex, organelles integrity, photosystem II connectivity, and electron transport chain. This review summarizes the detrimental effects of lead toxicity on seed germination, crop growth, and yield, oxidative and ultra-structural alterations, as well as nutrient absorption, transport, and assimilation. Further, it discusses the Pb-induced toxic modulation of stomatal conductance, photosynthesis, respiration, metabolic-enzymatic activity, osmolytes accumulation, and antioxidant activity. It is a comprehensive review that reports on omics-based studies along with morpho-physiological and biochemical modifications caused by lead stress. With advances in DNA sequencing technologies, genomics and transcriptomics are gradually becoming popular for studying Pb stress effects in plants. Proteomics and metabolomics are still underrated and there is a scarcity of published data, and this review highlights both their technical and research gaps. Besides, there is also a discussion on how the integration of omics with bioinformatics and the use of the latest biotechnological tools can aid in developing Pb-tolerant crops. The review concludes with core challenges and research directions that need to be addressed soon.
Collapse
Affiliation(s)
- Muhammad Zahaib Ilyas
- Department of Applied Plant Sciences, College of Bio-Resource Sciences, Kangwon National University, Chuncheon, 24341, South Korea
| | - Kyu Jin Sa
- Department of Crop Science, College of Ecology & Environmental Sciences, Kyungpook National University, Sangju, 37224, Korea
| | - Muhammad Waqas Ali
- School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
- Department of Crop Genetics, John Innes Center, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Ju Kyong Lee
- Department of Applied Plant Sciences, College of Bio-Resource Sciences, Kangwon National University, Chuncheon, 24341, South Korea.
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, South Korea.
| |
Collapse
|
21
|
Novák M, Zemanová V, Lhotská M, Pavlík M, Klement A, Hnilička F, Pavlíková D. Response of Carrot ( Daucus carota L.) to Multi-Contaminated Soil from Historic Mining and Smelting Activities. Int J Mol Sci 2023; 24:17345. [PMID: 38139174 PMCID: PMC10744065 DOI: 10.3390/ijms242417345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/07/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023] Open
Abstract
A pot experiment was undertaken to investigate the effect of Cd, Pb and Zn multi-contamination on the physiological and metabolic response of carrot (Daucus carota L.) after 98 days of growth under greenhouse conditions. Multi-contamination had a higher negative influence on leaves (the highest Cd and Zn accumulation) compared to the roots, which showed no visible change in terms of anatomy and morphology. The results showed the following: (i) significantly higher accumulation of Cd, Zn, and Pb in the multi-contaminated variant (Multi) compared to the control; (ii) significant metabolic responses-an increase in the malondialdehyde content of the Multi variant compared to the control in the roots (by 20%), as well as in the leaves (by 53%); carotenoid content in roots decreased by 31% in the Multi variant compared with the control; and changes in free amino acids, especially those related to plant stress responses. The determination of hydroxyproline and sarcosine may reflect the higher sensitivity of carrot leaves to multi-contamination in comparison to roots. A similar trend was observed for the content of free methionine (significant increase of 31% only in leaves); (iii) physiological responses (significant decreases in biomass, changes in gas-exchange parameters and chlorophyll a); and (iv) significant changes in enzymatic activities (chitinase, alanine aminopeptidase, acid phosphatase) in the root zone.
Collapse
Affiliation(s)
- Milan Novák
- Department of Agroenvironmental Chemistry and Plant Nutrition, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 16500 Prague, Czech Republic; (M.N.)
| | - Veronika Zemanová
- Department of Agroenvironmental Chemistry and Plant Nutrition, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 16500 Prague, Czech Republic; (M.N.)
| | - Marie Lhotská
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 16500 Prague, Czech Republic; (M.L.); (F.H.)
| | - Milan Pavlík
- Department of Agroenvironmental Chemistry and Plant Nutrition, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 16500 Prague, Czech Republic; (M.N.)
| | - Aleš Klement
- Department of Soil Science and Soil Protection, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 16500 Prague, Czech Republic;
| | - František Hnilička
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 16500 Prague, Czech Republic; (M.L.); (F.H.)
| | - Daniela Pavlíková
- Department of Agroenvironmental Chemistry and Plant Nutrition, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 16500 Prague, Czech Republic; (M.N.)
| |
Collapse
|
22
|
Krasavtseva E, Maksimova V, Slukovskaya M, Ivanova T, Mosendz I, Elizarova I. Accumulation and Translocation of Rare Trace Elements in Plants near the Rare Metal Enterprise in the Subarctic. TOXICS 2023; 11:898. [PMID: 37999550 PMCID: PMC10674527 DOI: 10.3390/toxics11110898] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/26/2023] [Accepted: 10/31/2023] [Indexed: 11/25/2023]
Abstract
Mining activities create disturbed and polluted areas in which revegetation is complicated, especially in northern areas. For the first time, the state of the ecosystems in the impact zone of tailings formed during the processing of rare earth element deposits in the Subarctic have been studied. This work aimed to reveal aspects of accumulation and translocation of trace and biogenic elements in plants (Avenella flexuosa (L.) Drejer, Salix sp., and Betula pubescens Ehrh.) that are predominantly found in primary ecosystems on the tailings of loparite ores processing. The chemical composition of soil, initial and washed plant samples was analyzed using inductively coupled plasma mass spectrometry. Factor analysis revealed that anthropogenic and biogenic factors affected the plants' chemical composition. A deficiency of nutrients (Ca, Mg, Mn) in plants growing on tailings was found. The absorption of REE (Ce, La, Sm, Nd) by A. flexuosa roots correlated with the soil content of these elements and was maximal in the hydromorphic, which had a high content of organic matter. The content of these elements in leaves in the same site was minimal; the coefficient of REE bioaccumulation was two orders of magnitude less than in the other two sites. The high efficiency of dust capturing and the low translocation coefficient of trace elements allow us to advise A. flexuosa for remediation of REE-contained tailings and soils.
Collapse
Affiliation(s)
- Eugenia Krasavtseva
- Laboratory of Nature-Inspired Technologies and Environmental Safety of the Arctic Region, Kola Science Centre, Russian Academy of Sciences, Fersmana St., 14, 184209 Apatity, Russia; (V.M.); (M.S.); (T.I.); (I.M.)
- Institute of North Industrial Ecology Problems, Kola Science Centre, Russian Academy of Sciences, Fersmana St., 14a, 184209 Apatity, Russia;
| | - Victoria Maksimova
- Laboratory of Nature-Inspired Technologies and Environmental Safety of the Arctic Region, Kola Science Centre, Russian Academy of Sciences, Fersmana St., 14, 184209 Apatity, Russia; (V.M.); (M.S.); (T.I.); (I.M.)
- Institute of North Industrial Ecology Problems, Kola Science Centre, Russian Academy of Sciences, Fersmana St., 14a, 184209 Apatity, Russia;
| | - Marina Slukovskaya
- Laboratory of Nature-Inspired Technologies and Environmental Safety of the Arctic Region, Kola Science Centre, Russian Academy of Sciences, Fersmana St., 14, 184209 Apatity, Russia; (V.M.); (M.S.); (T.I.); (I.M.)
- I.V. Tananaev Institute of Chemistry and Technology of Rare Elements and Mineral Raw Materials, Kola Science Centre, Russian Academy of Sciences, Fersmana St., 26a, 184209 Apatity, Russia
| | - Tatiana Ivanova
- Laboratory of Nature-Inspired Technologies and Environmental Safety of the Arctic Region, Kola Science Centre, Russian Academy of Sciences, Fersmana St., 14, 184209 Apatity, Russia; (V.M.); (M.S.); (T.I.); (I.M.)
- I.V. Tananaev Institute of Chemistry and Technology of Rare Elements and Mineral Raw Materials, Kola Science Centre, Russian Academy of Sciences, Fersmana St., 26a, 184209 Apatity, Russia
| | - Irina Mosendz
- Laboratory of Nature-Inspired Technologies and Environmental Safety of the Arctic Region, Kola Science Centre, Russian Academy of Sciences, Fersmana St., 14, 184209 Apatity, Russia; (V.M.); (M.S.); (T.I.); (I.M.)
- I.V. Tananaev Institute of Chemistry and Technology of Rare Elements and Mineral Raw Materials, Kola Science Centre, Russian Academy of Sciences, Fersmana St., 26a, 184209 Apatity, Russia
| | - Irina Elizarova
- Institute of North Industrial Ecology Problems, Kola Science Centre, Russian Academy of Sciences, Fersmana St., 14a, 184209 Apatity, Russia;
| |
Collapse
|
23
|
Jalil S, Nazir MM, Ali Q, Zulfiqar F, Moosa A, Altaf MA, Zaid A, Nafees M, Yong JWH, Jin X. Zinc and nano zinc mediated alleviation of heavy metals and metalloids in plants: an overview. FUNCTIONAL PLANT BIOLOGY : FPB 2023; 50:870-888. [PMID: 37598713 DOI: 10.1071/fp23021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 07/30/2023] [Indexed: 08/22/2023]
Abstract
Heavy metals and metalloids (HMs) contamination in the environment has heightened recently due to increasing global concern for food safety and human livability. Zinc (Zn2+ ) is an important nutrient required for the normal development of plants. It is an essential cofactor for the vital enzymes involved in various biological mechanisms of plants. Interestingly, Zn2+ has an additional role in the detoxification of HMs in plants due to its unique biochemical-mediating role in several soil and plant processes. During any exposure to high levels of HMs, the application of Zn2+ would confer greater plant resilience by decreasing oxidative stress, maintaining uptake of nutrients, photosynthesis productivity and optimising osmolytes concentration. Zn2+ also has an important role in ameliorating HMs toxicity by regulating metal uptake through the expression of certain metal transporter genes, targeted chelation and translocation from roots to shoots. This review examined the vital roles of Zn2+ and nano Zn in plants and described their involvement in alleviating HMs toxicity in plants. Moving forward, a broad understanding of uptake, transport, signalling and tolerance mechanisms of Zn2+ /zinc and its nanoparticles in alleviating HMs toxicity of plants will be the first step towards a wider incorporation of Zn2+ into agricultural practices.
Collapse
Affiliation(s)
- Sanaullah Jalil
- The Key Laboratory for Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | | | - Qurban Ali
- Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, Punjab University, Lahore 54590, Pakistan
| | - Faisal Zulfiqar
- Department of Horticultural Sciences, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Anam Moosa
- Department of Plant Pathology, Faculty of Agricultural and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | | | - Abbu Zaid
- Department of Botany, Government Gandhi Memorial Science College, Jammu, India
| | - Muhammad Nafees
- Department of Horticultural Sciences, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Jean Wan Hong Yong
- Department of Biosystems and Technology, Swedish University of Agricultural Sciences, Alnarp 23456, Sweden
| | - Xiaoli Jin
- The Key Laboratory for Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
24
|
Buendía-Valverde MDLL, Gómez-Merino FC, Corona-Torres T, Mateos-Nava RA, Trejo-Téllez LI. Effects of Cadmium, Thallium, and Vanadium on Photosynthetic Parameters of Three Chili Pepper ( Capsicum annuum L.) Varieties. PLANTS (BASEL, SWITZERLAND) 2023; 12:3563. [PMID: 37896025 PMCID: PMC10609808 DOI: 10.3390/plants12203563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/06/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023]
Abstract
Photosynthesis is a crucial process supporting life on Earth. However, unfavorable environmental conditions including toxic metals may limit the photosynthetic efficiency of plants, and the responses to those challenges may vary among genotypes. In this study, we evaluated photosynthetic parameters of the chili pepper varieties Jalapeño, Poblano, and Serrano exposed to Cd (0, 5, 10 µM), Tl (0, 6, 12 nM), and V (0, 0.75, 1.5 µM). Metals were added to the nutrient solution for 60 days. Stomatal conductance (Gs), transpiration rate (Tr), net photosynthetic rate (Pn), intercellular CO2 concentration (Ci), instantaneous carboxylation efficiency (Pn/Ci), instantaneous water use efficiency (instWUE), and intrinsic water use efficiency (iWUE) were recorded. Mean Pn increased with 12 nM Tl in Serrano and with 0.75 µM V in Poblano. Tl and V increased mean Tr in all three cultivars, while Cd reduced it in Jalapeño and Serrano. Gs was reduced in Jalapeño and Poblano with 5 µM Cd, and 0.75 µM V increased it in Serrano. Ci increased in Poblano with 6 nM Tl, while 12 nM Tl reduced it in Serrano. Mean instWUE increased in Poblano with 10 µM Cd and 0.75 µM V, and in Serrano with 12 nM Tl, while 6 nM Tl reduced it in Poblano and Serrano. Mean iWUE increased in Jalapeño and Poblano with 5 µM Cd, in Serrano with 12 nM Tl, and in Jalapeño with 1.5 µM V; it was reduced with 6 nM Tl in Poblano and Serrano. Pn/Ci increased in Serrano with 5 µM Cd, in Jalapeño with 6 nM Tl, and in Poblano with 0.75 µM V. Interestingly, Tl stimulated six and inhibited five of the seven photosynthetic variables measured, while Cd enhanced three and decreased two variables, and V stimulated five variables, with none inhibited, all as compared to the respective controls. We conclude that Cd, Tl, and V may inhibit or stimulate photosynthetic parameters depending on the genotype and the doses applied.
Collapse
Affiliation(s)
- María de la Luz Buendía-Valverde
- Laboratory of Plant Nutrition, Department of Soil Science, College of Postgraduates in Agricultural Sciences, Campus Montecillo, Montecillo, Texcoco 56264, Mexico
| | - Fernando C Gómez-Merino
- Department of Genetic Resources and Productivity-Plant Physiology, College of Postgraduates in Agricultural Sciences, Campus Montecillo, Montecillo, Texcoco 56264, Mexico
- Laboratory of Plant Tissue Culture, Department of Sustainable Agri-Food Innovation, Collaborative Research Group at College of Postgraduates in Agricultural Sciences, Campus Córdoba, Manuel León, Amatlán de los Reyes 94953, Mexico
| | - Tarsicio Corona-Torres
- Department of Genetic Resources and Productivity-Genetics, College of Postgraduates in Agricultural Sciences, Campus Montecillo, Montecillo, Texcoco 56264, Mexico
| | - Rodrigo Aníbal Mateos-Nava
- Research Unit in Genetics and Environmental Toxicology (UIGTA), Multidisciplinary Experimental Research Unit (UMIE-ZAP 9-020), L5 PA Laboratory, Faculty of Higher Studies-Zaragoza, National Autonomous University of Mexico, Campus II, Mexico City 15000, Mexico
| | - Libia I Trejo-Téllez
- Laboratory of Plant Nutrition, Department of Soil Science, College of Postgraduates in Agricultural Sciences, Campus Montecillo, Montecillo, Texcoco 56264, Mexico
- Department of Genetic Resources and Productivity-Plant Physiology, College of Postgraduates in Agricultural Sciences, Campus Montecillo, Montecillo, Texcoco 56264, Mexico
| |
Collapse
|
25
|
Kitavi M, Gemenet DC, Wood JC, Hamilton JP, Wu S, Fei Z, Khan A, Buell CR. Identification of genes associated with abiotic stress tolerance in sweetpotato using weighted gene co-expression network analysis. PLANT DIRECT 2023; 7:e532. [PMID: 37794882 PMCID: PMC10546384 DOI: 10.1002/pld3.532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 04/22/2023] [Accepted: 08/31/2023] [Indexed: 10/06/2023]
Abstract
Sweetpotato, Ipomoea batatas (L.), a key food security crop, is negatively impacted by heat, drought, and salinity stress. The orange-fleshed sweetpotato cultivar "Beauregard" was exposed to heat, salt, and drought treatments for 24 and 48 h to identify genes responding to each stress condition in leaves. Analysis revealed both common (35 up regulated, 259 down regulated genes in the three stress conditions) and unique sets of up regulated (1337 genes by drought, 516 genes by heat, and 97 genes by salt stress) and down regulated (2445 genes by drought, 678 genes by heat, and 204 genes by salt stress) differentially expressed genes (DEGs) suggesting common, yet stress-specific transcriptional responses to these three abiotic stressors. Gene Ontology analysis of down regulated DEGs common to both heat and salt stress revealed enrichment of terms associated with "cell population proliferation" suggestive of an impact on the cell cycle by the two stress conditions. To identify shared and unique gene co-expression networks under multiple abiotic stress conditions, weighted gene co-expression network analysis was performed using gene expression profiles from heat, salt, and drought stress treated 'Beauregard' leaves yielding 18 co-expression modules. One module was enriched for "response to water deprivation," "response to abscisic acid," and "nitrate transport" indicating synergetic crosstalk between nitrogen, water, and phytohormones with genes encoding osmotin, cell expansion, and cell wall modification proteins present as key hub genes in this drought-associated module. This research lays the groundwork for exploring to a further degree, mechanisms for abiotic stress tolerance in sweetpotato.
Collapse
Affiliation(s)
- Mercy Kitavi
- Research Technology Support Facility (RTSF)Michigan State UniversityEast LansingMichiganUSA
- Center for Applied Genetic TechnologiesUniversity of GeorgiaAthensGeorgiaUSA
| | - Dorcus C. Gemenet
- International Potato CenterLimaPeru
- International Maize and Wheat Improvement Center (CIMMYT), ICRAF HouseNairobiKenya
| | - Joshua C. Wood
- Center for Applied Genetic TechnologiesUniversity of GeorgiaAthensGeorgiaUSA
| | - John P. Hamilton
- Center for Applied Genetic TechnologiesUniversity of GeorgiaAthensGeorgiaUSA
- Department of Crop & Soil SciencesUniversity of GeorgiaAthensGeorgiaUSA
| | - Shan Wu
- Boyce Thompson InstituteCornell UniversityIthacaNew YorkUSA
| | - Zhangjun Fei
- Boyce Thompson InstituteCornell UniversityIthacaNew YorkUSA
| | - Awais Khan
- International Potato CenterLimaPeru
- Present address:
Plant Pathology and Plant‐Microbe Biology Section, School of Integrative Plant ScienceCornell UniversityGenevaNew YorkUSA
| | - C. Robin Buell
- Center for Applied Genetic TechnologiesUniversity of GeorgiaAthensGeorgiaUSA
- Department of Crop & Soil SciencesUniversity of GeorgiaAthensGeorgiaUSA
- Institute of Plant Breeding, Genetics, & GenomicsUniversity of GeorgiaAthensGeorgiaUSA
| |
Collapse
|
26
|
Hasanović M, Čakar J, Ahatović Hajro A, Murtić S, Subašić M, Bajrović K, Durmić-Pašić A. Geranium robertianum L. tolerates various soil types burdened with heavy metals. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:93830-93845. [PMID: 37525079 DOI: 10.1007/s11356-023-28952-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 07/19/2023] [Indexed: 08/02/2023]
Abstract
Many heavy metals (HMs) are essential micronutrients for the growth and development of plants. However, human activities such as mining, smelting, waste disposal, and industrial processes have led to toxic levels of HMs in soil. Fortunately, many plant species have developed incredible adaptive mechanisms to survive and thrive in such harsh environments. As a widespread and ruderal species, Geranium robertianum L. inhabits versatile soil types, both polluted and unpolluted. Considering the ubiquity of G. robertianum, the study aimed to determine whether geographically distant populations can tolerate HMs. We collected soil and plant samples from serpentine, an anthropogenic heavy metal contaminated, and a non-metalliferous site to study the physiological state of G. robertianum. HMs in soil and plants were determined using flame atomic absorption spectrometry. Spectrophotometric methods were used to measure the total content of chlorophylls a and b, total phenolics, phenolic acids, flavonoids, and proline. Principal component analysis (PCA) was used to investigate the potential correlation between HMs concentrations gathered from various soil types and plant samples and biochemical data acquired for plant material. A statistically significant difference was observed for all localities regarding secondary metabolite parameters. A positive correlation between Ni and Zn in soil and Ni and Zn in plant matter was observed (p<0.0005) indicating higher absorption. Regardless of high concentrations of heavy metals in investigated soils, G. robertianum displayed resilience and was capable of thriving. These results may be ascribed to several protective mechanisms that allow G. robertianum to express normal growth and development and act as a pioneer species.
Collapse
Affiliation(s)
- Mujo Hasanović
- Institute for Genetic Engineering and Biotechnology, University of Sarajevo, Zmaja od Bosne 8, Sarajevo, Bosnia and Herzegovina.
| | - Jasmina Čakar
- Institute for Genetic Engineering and Biotechnology, University of Sarajevo, Zmaja od Bosne 8, Sarajevo, Bosnia and Herzegovina
| | - Anesa Ahatović Hajro
- Institute for Genetic Engineering and Biotechnology, University of Sarajevo, Zmaja od Bosne 8, Sarajevo, Bosnia and Herzegovina
| | - Senad Murtić
- Faculty of Agriculture and Food Science, University of Sarajevo, Zmaja od Bosne 8, Sarajevo, Bosnia and Herzegovina
| | - Mirel Subašić
- Faculty of Forestry, University of Sarajevo, Zagrebacka 20, Sarajevo, Bosnia and Herzegovina
| | - Kasim Bajrović
- Institute for Genetic Engineering and Biotechnology, University of Sarajevo, Zmaja od Bosne 8, Sarajevo, Bosnia and Herzegovina
| | - Adaleta Durmić-Pašić
- Institute for Genetic Engineering and Biotechnology, University of Sarajevo, Zmaja od Bosne 8, Sarajevo, Bosnia and Herzegovina
| |
Collapse
|
27
|
Abbas S, Basit F, Tanwir K, Zhu X, Hu J, Guan Y, Hu W, Sheteiwy MS, Yang H, El-Keblawy A, El-Tarabily KA, AbuQamar SF, Lou J. Exogenously applied sodium nitroprusside alleviates nickel toxicity in maize by regulating antioxidant activities and defense-related gene expression. PHYSIOLOGIA PLANTARUM 2023; 175:e13985. [PMID: 37616000 DOI: 10.1111/ppl.13985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 06/17/2023] [Accepted: 07/27/2023] [Indexed: 08/25/2023]
Abstract
Nickel (Ni) stress adversely affects plant growth and biomass accumulation, posturing severe menace to crop production and food security. The current study aimed to determine the putative role of sodium nitroprusside (SNP) in mitigating Ni-induced phytotoxicity and identify the underlying defense mechanisms in maize, which are poorly understood. Our findings showed that SNP significantly augmented plant growth, biomass, and photosynthesis-related attributes (Fv/Fm, Fm, qP ETR, and ΦPSII) through diminishing Ni uptake and translocation in root and shoot tissues of maize under Ni stress conditions. In parallel, exogenous SNP substantially relieved maize seedlings from Ni-induced stress by enhancing enzymatic (SOD, CAT, and GPX) and non-enzymatic (phenol and flavonoids) antioxidant defenses and reducing oxidative stress indicators (MDA and H2 O2 ). The results revealed that SNP treatment increased the content of organic osmolyte glycine betaine and the activity of GST, concomitantly with ATP and ionic exchange capacity (including Ca2+ -ATPase and Mg2+ -ATPase), advocating its sufficiency to promote plant growth and avert Ni-induced stress in maize plants. The only exception was the production of organic acids (citric, oxalic, malic, and formic acids), which was reduced as SNP treatment relieved maize seedlings from Ni-induced oxidative damage. The application of SNP also displayed higher expression of defense- and detoxifying-related genes than in control treatments. Together, our data highlighted the mechanism involved in the amelioration of Ni toxicity by SNP; thus, suggesting a potential role of SNP in mitigating the adverse effects of Ni-contaminated soils to boost growth and yield of crop plants, that is, maize.
Collapse
Affiliation(s)
- Saghir Abbas
- Department of Botany, Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Farwa Basit
- Hainan Research Institute, Zhejiang University, Sanya, China
- Seed Science Center, The Advanced Seed Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Kashif Tanwir
- Department of Botany, Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Xiaobo Zhu
- Hainan Research Institute, Zhejiang University, Sanya, China
- Seed Science Center, The Advanced Seed Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Jin Hu
- Hainan Research Institute, Zhejiang University, Sanya, China
- Seed Science Center, The Advanced Seed Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Yajing Guan
- Hainan Research Institute, Zhejiang University, Sanya, China
- Seed Science Center, The Advanced Seed Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Weimin Hu
- Hainan Research Institute, Zhejiang University, Sanya, China
- Seed Science Center, The Advanced Seed Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Mohamed S Sheteiwy
- Department of Applied Biology, Faculty of Science, University of Sharjah, Sharjah, United Arab Emirates
- Department of Agronomy, Faculty of Agriculture, Mansoura University, Mansoura, Egypt
| | - Haishui Yang
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Ali El-Keblawy
- Department of Applied Biology, Faculty of Science, University of Sharjah, Sharjah, United Arab Emirates
| | - Khaled A El-Tarabily
- Harry Butler Institute, Murdoch University, Murdoch, Western Australia, Australia
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Synan F AbuQamar
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Jianfeng Lou
- Shanghai Agro-Technology Extension Service Center, Shanghai, China
| |
Collapse
|
28
|
Aloo BN, Dessureault-Rompré J, Tripathi V, Nyongesa BO, Were BA. Signaling and crosstalk of rhizobacterial and plant hormones that mediate abiotic stress tolerance in plants. Front Microbiol 2023; 14:1171104. [PMID: 37455718 PMCID: PMC10347528 DOI: 10.3389/fmicb.2023.1171104] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 06/15/2023] [Indexed: 07/18/2023] Open
Abstract
Agricultural areas exhibiting numerous abiotic stressors, such as elevated water stress, temperatures, and salinity, have grown as a result of climate change. As such, abiotic stresses are some of the most pressing issues in contemporary agricultural production. Understanding plant responses to abiotic stressors is important for global food security, climate change adaptation, and improving crop resilience for sustainable agriculture, Over the decades, explorations have been made concerning plant tolerance to these environmental stresses. Plant growth-promoting rhizobacteria (PGPR) and their phytohormones are some of the players involved in developing resistance to abiotic stress in plants. Several studies have investigated the part of phytohormones in the ability of plants to withstand and adapt to non-living environmental factors, but very few have focused on rhizobacterial hormonal signaling and crosstalk that mediate abiotic stress tolerance in plants. The main objective of this review is to evaluate the functions of PGPR phytohormones in plant abiotic stress tolerance and outline the current research on rhizobacterial hormonal communication and crosstalk that govern plant abiotic stress responses. The review also includes the gene networks and regulation under diverse abiotic stressors. The review is important for understanding plant responses to abiotic stresses using PGPR phytohormones and hormonal signaling. It is envisaged that PGPR offer a useful approach to increasing plant tolerance to various abiotic stresses. However, further studies can reveal the unclear patterns of hormonal interactions between plants and rhizobacteria that mediate abiotic stress tolerance.
Collapse
Affiliation(s)
- B. N. Aloo
- Department of Biological Sciences, University of Eldoret, Eldoret, Kenya
| | | | - V. Tripathi
- Department of Biotechnology, Graphic Era (Deemed to be University), Dehradun, Uttarakhand, India
| | - B. O. Nyongesa
- Department of Biological Sciences, University of Eldoret, Eldoret, Kenya
| | - B. A. Were
- Department of Biological Sciences, University of Eldoret, Eldoret, Kenya
| |
Collapse
|
29
|
Krzyżak J, Rusinowski S, Sitko K, Szada-Borzyszkowska A, Stec R, Janota P, Jensen E, Kiesel A, Pogrzeba M. The effect of combined drought and trace metal elements stress on the physiological response of three Miscanthus hybrids. Sci Rep 2023; 13:10452. [PMID: 37380788 DOI: 10.1038/s41598-023-37564-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 06/23/2023] [Indexed: 06/30/2023] Open
Abstract
Drought is a serious threat worldwide and has a significant impact on agricultural production and soil health. It can pose an even greater threat when it involves land contaminated with trace metal element (TMEs). To prevent desertification, such land should be properly managed and growing Miscanthus for energy or raw material purposes could be a solution. The effects of drought and TMEs were studied in a pot experiment on three different Miscanthus hybrids (conventional Miscanthus × giganteus, TV1 and GNT10) considering growth parameters, photosynthetic parameters and elemental composition of roots, rhizomes and shoots. GNT10 was characterised by the weakest gas exchange among the hybrids, which was compensated by the highest number of leaves and biomass. The strongest correlations between the studied parameters were found for TV1, which might indicate a high sensitivity to TME stress. For M × g and GNT10, the main mechanisms for coping with stress seem to be biomass management through number of shoots and leaves and gas exchange. The main factor determining the extent of accumulation of TMEs was the amount of water applied in the experimental treatment, which was related to the location of the plant in the aniso-isohydric continuum. GNT10 was the most resistant plant to combined stress, while it responded similarly to TV1 when drought and trace metal elements were applied separately.
Collapse
Affiliation(s)
- Jacek Krzyżak
- Institute for Ecology of Industrial Areas, 6 Kossutha Street, 40-844, Katowice, Poland
| | - Szymon Rusinowski
- Institute for Ecology of Industrial Areas, 6 Kossutha Street, 40-844, Katowice, Poland
| | - Krzysztof Sitko
- Institute for Ecology of Industrial Areas, 6 Kossutha Street, 40-844, Katowice, Poland
- Plant Ecophysiology Team, University of Silesia in Katowice, 28 Jagiellońska Street, 40-032, Katowice, Poland
| | | | - Radosław Stec
- Institute for Ecology of Industrial Areas, 6 Kossutha Street, 40-844, Katowice, Poland
| | - Paulina Janota
- Institute for Ecology of Industrial Areas, 6 Kossutha Street, 40-844, Katowice, Poland
| | - Elaine Jensen
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Plas Gogerddan, Aberystwyth, SY23 3EB, UK
| | - Andreas Kiesel
- Biobased Resources in the Bioeconomy (340B), Institute of Crop Science, University of Hohenheim, Stuttgart, Germany
| | - Marta Pogrzeba
- Institute for Ecology of Industrial Areas, 6 Kossutha Street, 40-844, Katowice, Poland.
| |
Collapse
|
30
|
Sumalan RL, Nescu V, Berbecea A, Sumalan RM, Crisan M, Negrea P, Ciulca S. The Impact of Heavy Metal Accumulation on Some Physiological Parameters in Silphium perfoliatum L. Plants Grown in Hydroponic Systems. PLANTS (BASEL, SWITZERLAND) 2023; 12:1718. [PMID: 37111941 PMCID: PMC10146597 DOI: 10.3390/plants12081718] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/06/2023] [Accepted: 04/13/2023] [Indexed: 06/19/2023]
Abstract
Heavy metals like cadmium (Cd), copper (Cu), lead (Pb), and zinc (Zn), resulting from anthropogenic activities, are elements with high persistence in nature, being able to accumulate in soils, water, and plants with significant impact to human and animal health. This study investigates the phytoremediation capacity of Silphium perfoliatum L. as a specific heavy metal hyperaccumulator and the effects of Cu, Zn, Cd, and Pb on some physiological and biochemical indices by growing plants under floating hydroponic systems in nutrient solutions under the presence of heavy metals. One-year-old plants of S. perfoliatum grown for 20 days in Hoagland solution with the addition of (ppm) Cu-400, Zn-1200, Cd-20, Pb-400, and Cu+Zn+Cd+Pb (400/1200/20/400) were investigated with respect to the control. The level of phytoremediation, manifested by the ability of heavy metal absorption and accumulation, was assessed. In addition, the impact of stress on the proline content, photosynthetic pigments, and enzymatic activity, as being key components of metabolism, was determined. The obtained results revealed a good absorption and selective accumulation capacity of S. perfoliatum plants for the studied heavy metals. Therefore, Cu and Zn mainly accumulate in the stems, Cd in the roots and stems, while Pb mainly accumulates in the roots. The proline tended to increase under stress conditions, depending on the pollutant and its concentration, with higher values in leaves and stems under the associated stress of the four metals and individually for Pb and Cd. In addition, the enzymatic activity recorded different values depending on the plant organ, its type, and the metal concentration on its substrate. The obtained results indicate a strong correlation between the metal type, concentration, and the mechanisms of absorption/accumulation of S. perfoliatum species, as well as the specific reactions of metabolic response.
Collapse
Affiliation(s)
- Radu Liviu Sumalan
- Faculty of Engineering and Applied Technologies, University of Life Sciences “King Mihai I” from Timisoara, 119 Calea Aradului, 300645 Timisoara, Romania; (V.N.); (R.M.S.)
| | - Vlad Nescu
- Faculty of Engineering and Applied Technologies, University of Life Sciences “King Mihai I” from Timisoara, 119 Calea Aradului, 300645 Timisoara, Romania; (V.N.); (R.M.S.)
| | - Adina Berbecea
- Faculty of Agriculture, 119 Calea Aradului, University of Life Sciences “King Mihai I” from Timisoara, 300645 Timisoara, Romania;
| | - Renata Maria Sumalan
- Faculty of Engineering and Applied Technologies, University of Life Sciences “King Mihai I” from Timisoara, 119 Calea Aradului, 300645 Timisoara, Romania; (V.N.); (R.M.S.)
| | - Manuela Crisan
- “Coriolan Dragulescu” Institute of Chemistry, 24 Mihai Viteazul Blvd., 300223 Timisoara, Romania;
| | - Petru Negrea
- Faculty of Industrial Chemistry and Environmental Engineering, Politehnica University Timisoara, 6 Bv. Vasile Parvan, 300223 Timisoara, Romania;
| | - Sorin Ciulca
- Faculty of Engineering and Applied Technologies, University of Life Sciences “King Mihai I” from Timisoara, 119 Calea Aradului, 300645 Timisoara, Romania; (V.N.); (R.M.S.)
| |
Collapse
|
31
|
Ai Y, Wang Y, Song L, Hong W, Zhang Z, Li X, Zhou S, Zhou J. Effects of biochar on the physiology and heavy metal enrichment of Vetiveria zizanioides in contaminated soil in mining areas. JOURNAL OF HAZARDOUS MATERIALS 2023; 448:130965. [PMID: 36860049 DOI: 10.1016/j.jhazmat.2023.130965] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/20/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
The effects of biochar addition on the physiological and biochemical characteristics of Vetiveria zizanioides, and the enrichment of heavy metals, were studied herein. The aim was to provide a theoretical reference for biochar to regulate the growth of V. zizanioides in the heavy metal-contaminated soil of mining areas and the enrichment capacity of Cu, Cd, and Pb. The results showed that the addition of biochar significantly increased the contents of various pigments in the middle and late growth stages of V. zizanioides, reduced the contents of malondialdehyde (MDA) and proline (Pro) in each growth period, weakened the peroxidase (POD) activity during the entire growth period; superoxide dismutase (SOD) activity decreased in the initial stages and substantially increased in the middle and late stages. The addition of biochar reduced the enrichment of Cu in the roots and leaves of V. zizanioides, while the enrichment of Cd and Pb increased. In conclusion, it was found that biochar could reduce the toxicity of heavy metals in contaminated soil in the mining area, affect the growth of V. zizanioides and its accumulation of Cd and Pb, and is, therefore, beneficial to the restoration of contaminated soil and the overall ecological restoration of the mining area.
Collapse
Affiliation(s)
- Yanmei Ai
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
| | - Yang Wang
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
| | - Lanping Song
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
| | - Wanyue Hong
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
| | - Zekun Zhang
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
| | - Xiaoping Li
- Collaborative Innovation Center of Southern Modern Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Shoubiao Zhou
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
| | - Jihai Zhou
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China; Collaborative Innovation Center of Southern Modern Forestry, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
32
|
Syed A, Elgorban AM, Bahkali AH, Eswaramoorthy R, Iqbal RK, Danish S. Metal-tolerant and siderophore producing Pseudomonas fluorescence and Trichoderma spp. improved the growth, biochemical features and yield attributes of chickpea by lowering Cd uptake. Sci Rep 2023; 13:4471. [PMID: 36934106 PMCID: PMC10024765 DOI: 10.1038/s41598-023-31330-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 03/09/2023] [Indexed: 03/20/2023] Open
Abstract
Industrialization and human urbanization have led to an increase in heavy metal (HM) pollution which often cause negative/toxic effect on agricultural crops. The soil-HMs cannot be degraded biologically however, microbe-mediated detoxification of toxic HMs into lesser toxic forms are reported. Considering the potentiality of HMs-tolerant soil microbes in metal detoxification, Pseudomonas fluorescence PGPR-7 and Trichoderma sp. T-4 were recovered from HM-affected areas. Under both normal and cadmium stress, the ability of both microorganisms to produce different plant hormones and biologically active enzymes was examined. Strains PGPR-7 and T-4 tolerated cadmium (Cd) an up-to 1800 and 2000 µg mL-1, respectively, and produced various plant growth regulating substances (IAA, siderophore, ACC deaminase ammonia and HCN) in Cd-stressed condition. The growth promoting and metal detoxifying ability of both strains were evaluated (either singly/combined) by applying them in chickpea (Cicer arietinum L.) plants endogenously contaminated with different Cd levels (0-400 µg kg-1 soils). The higher Cd concentration (400 µg kg-1 soils) negatively influenced the plant parameters which, however, improved following single/combined inoculation of P. fluorescence PGPR-7 and Trichoderma sp. T-4. Both microbial strains increased the growth of Cd-treated chickpeas however, their combined inoculation (PGPR-7 + T-4) caused the most positive effect. For instance, 25 µg Cd Kg-1 + PGPR-7 + T4 treatment caused maximum increase in germination percentage (10%), root dry biomass (71.4%) and vigour index (33%), chl-a (38%), chl-b (41%) and carotenoid content (52%). Furthermore, combined inoculation of P. fluorescence PGPR-7 and Trichoderma sp. T-4 maximally decreased the proline, MDA content, POD and CAT activities by 50%, 43% and 62%, respectively following their application in 25 µg Cd kg-1 soils-treated chickpea. Additionally, microbial strains lowered the plant uptake of Cd. For example, Cd-uptake in root tissues was decreased by 42 and 34% when 25 µg Cd Kg-1- treated chickpea plants were inoculated with P. fluorescence PGPR-7, Trichoderma sp. T-4 and co-inoculation (PGPR-7 + T4) of both strains, respectively. Therefore, from the current observation, it is suggested that dual inoculation of metal tolerant P. fluorescence and Trichoderma sp. may potentially be used in detoxification and reclamation of metal-contaminated soils.
Collapse
Affiliation(s)
- Asad Syed
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh, 11451, Saudi Arabia
| | - Abdallah M Elgorban
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh, 11451, Saudi Arabia
| | - Ali H Bahkali
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh, 11451, Saudi Arabia
| | - Rajalakshmanan Eswaramoorthy
- Department of Prosthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, 600 077, India.
| | - Rana Khalid Iqbal
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, Multan, Punjab, Pakistan
- Department of Biology, University of Padova, Padua, Italy
| | - Subhan Danish
- Department of Soil Science, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan, Punjab, Pakistan.
| |
Collapse
|
33
|
Li Y, Cheng X, Feng C, Huang X. Interaction of Lead and Cadmium Reduced Cadmium Toxicity in Ficus parvifolia Seedlings. TOXICS 2023; 11:toxics11030271. [PMID: 36977036 PMCID: PMC10054560 DOI: 10.3390/toxics11030271] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/28/2023] [Accepted: 03/14/2023] [Indexed: 05/23/2023]
Abstract
Potentially toxic elements (PTEs) pollution occurs widely in soils due to various anthropogenic activities. Lead (Pb) and cadmium (Cd) coexist in soil frequently, threatening plant growth. To explore the interaction effect between Pb and Cd in Ficus parvifolia and the response of plant physiological characteristics to Pb and Cd stress, we designed a soil culture experiment. The experiment demonstrated that Pb stress improved leaf photosynthesis ability, while Cd stress inhibited it. Furthermore, Pb or Cd stress increased malonaldehyde (MDA) content, but plants were able to reduce it by increasing antioxidant enzyme activities. The presence of Pb could alleviate Cd phytotoxicity in plants by inhibiting Cd uptake and accumulation as well as increasing leaf photosynthesis and antioxidant ability. Pearson correlation analysis illustrated that the variability of Cd uptake and accumulation between Pb and Cd stress was related to plant biomass and antioxidant enzyme activities. This research will offer a new perspective on alleviating Cd phytotoxicity in plants.
Collapse
|
34
|
Shukla P, Kidwai M, Narayan S, Shirke PA, Pandey KD, Misra P, Chakrabarty D. Phytoremediation potential of Solanum viarum Dunal and functional aspects of their capitate glandular trichomes in lead, cadmium, and zinc detoxification. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:41878-41899. [PMID: 36640234 DOI: 10.1007/s11356-023-25174-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 01/02/2023] [Indexed: 01/15/2023]
Abstract
In the present scenario, remediation of heavy metals (HMs) contaminated soil has become an important work to be done for the well-being of human and their environment. Phytoremediation can be regarded as an excellent method in environmental technologies. The present contemporary research explores the Solanum viarum Dunal function as a potential accumulator of hazardous HMs viz. lead (Pb), cadmium (Cd), zinc (Zn), and their combination (CHM). On toxic concentrations of Pb, Cd, Zn, and their synergistic exposure, seeds had better germination percentage and their 90d old aerial tissues accumulated Pb, Cd, and Zn concentrations ranging from 44.53, 84.06, and 147.29 mg kg-1 DW, respectively. Pattern of accumulation in roots was as Zn 70.08 > Pb 48.55 > Cd 42.21 mg kg-1DW. Under HMs treatment, positive modulation in physiological performances, antioxidant activities suggested an enhanced tolerance along with higher membrane stability due to increased levels of lignin, proline, and sugar. Phenotypic variations were recorded in prickles and roots of 120 d old HM stressed plants, which are directly correlated with better acclimation. Interestingly, trichomes of the plant also showed HM accumulation. Later, SEM-EDX microanalysis suggested involvement of S. viarum capitate glandular trichomes as excretory organs for Cd and Zn. Thus, the present study provides an understanding of the mechanism that makes S. viarum to function as potent accumulator and provides information to generate plants to be used for phytoremediation.
Collapse
Affiliation(s)
- Pragya Shukla
- Biotechnology and Molecular Biology Division, CSIR-National Botanical Research Institute, Lucknow, 226001, India
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Maria Kidwai
- Biotechnology and Molecular Biology Division, CSIR-National Botanical Research Institute, Lucknow, 226001, India
- Department of Plant Physiology, Umeå Plant Science Centre, 90187, Umeå, Sweden
| | - Shiv Narayan
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Plant Physiology Laboratory, CSIR-National Botanical Research Institute, Lucknow, 226001, India
| | - Pramod Arvind Shirke
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Plant Physiology Laboratory, CSIR-National Botanical Research Institute, Lucknow, 226001, India
| | - Kapil Deo Pandey
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Pratibha Misra
- Biotechnology and Molecular Biology Division, CSIR-National Botanical Research Institute, Lucknow, 226001, India.
- 291, Eldeco Greens, Gomti Nagar, Lucknow, 226010, India.
| | - Debasis Chakrabarty
- Biotechnology and Molecular Biology Division, CSIR-National Botanical Research Institute, Lucknow, 226001, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
35
|
Priarone S, Romeo S, Di Piazza S, Rosatto S, Zotti M, Mariotti M, Roccotiello E. Effects of Bacterial and Fungal Inocula on Biomass, Ecophysiology, and Uptake of Metals of Alyssoides utriculata (L.) Medik. PLANTS (BASEL, SWITZERLAND) 2023; 12:554. [PMID: 36771637 PMCID: PMC9921704 DOI: 10.3390/plants12030554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/20/2023] [Accepted: 01/22/2023] [Indexed: 06/18/2023]
Abstract
The inoculation of plants with plant-growth-promoting microorganisms (PGPM) (i.e., bacterial and fungal strains) is an emerging approach that helps plants cope with abiotic and biotic stresses. However, knowledge regarding their synergic effects on plants growing in metal-rich soils is limited. Consequently, the aim of this study was to investigate the biomass, ecophysiology, and metal accumulation of the facultative Ni-hyperaccumulator Alyssoides utriculata (L.) Medik. inoculated with single or mixed plant-growth-promoting (PGP) bacterial strain Pseudomonas fluorescens Migula 1895 (SERP1) and PGP fungal strain Penicillium ochrochloron Biourge (SERP03 S) on native serpentine soil (n = 20 for each treatment). Photosynthetic efficiency (Fv/Fm) and performance indicators (PI) had the same trends with no significant differences among groups, with Fv/Fms > 1 and PI up to 12. However, the aboveground biomass increased 4-5-fold for single and mixed inoculated plants. The aboveground/belowground dry biomass ratio was higher for plants inoculated with fungi (30), mixed (21), and bacteria (17). The ICP-MS highlighted that single and mixed inocula were able to double the aboveground biomass' P content. Mn metal accumulation significantly increased with both single and mixed PGP inocula, and Zn accumulation increased only with single PGP inocula, whereas Cu accumulation increased twofold only with mixed PGP inocula, but with a low content. Only Ni metal accumulation approached the hyperaccumulation level (Ni > 1000 mg/kg DW) with all treatments. This study demonstrated the ability of selected single and combined PGP strains to significantly increase plant biomass and plant tolerance of metals present in the substrate, resulting in a higher capacity for Ni accumulation in shoots.
Collapse
Affiliation(s)
- Silvia Priarone
- Dipartimento di Scienze della Terra, dell’Ambiente e della Vita, Università degli Studi di Genova, Corso Europa 26, 16132 Genova, Italy
| | - Sara Romeo
- Dipartimento di Scienze della Terra, dell’Ambiente e della Vita, Università degli Studi di Genova, Corso Europa 26, 16132 Genova, Italy
| | - Simone Di Piazza
- Dipartimento di Scienze della Terra, dell’Ambiente e della Vita, Università degli Studi di Genova, Corso Europa 26, 16132 Genova, Italy
| | - Stefano Rosatto
- Agenzia Regionale Protezione dell’Ambiente Ligure, Via Bombrini 8, 16149 Genova, Italy
| | - Mirca Zotti
- Dipartimento di Scienze della Terra, dell’Ambiente e della Vita, Università degli Studi di Genova, Corso Europa 26, 16132 Genova, Italy
| | - Mauro Mariotti
- Dipartimento di Scienze della Terra, dell’Ambiente e della Vita, Università degli Studi di Genova, Corso Europa 26, 16132 Genova, Italy
| | - Enrica Roccotiello
- Dipartimento di Scienze della Terra, dell’Ambiente e della Vita, Università degli Studi di Genova, Corso Europa 26, 16132 Genova, Italy
| |
Collapse
|
36
|
Liang Z, Liu T, Chen X, Xu W, Dong T, Liu Q, Xu X. Twigs of dove tree in high-latitude region tend to increase biomass accumulation in vegetative organs but decrease it in reproductive organs. FRONTIERS IN PLANT SCIENCE 2023; 13:1088955. [PMID: 36714716 PMCID: PMC9880204 DOI: 10.3389/fpls.2022.1088955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 12/22/2022] [Indexed: 06/18/2023]
Abstract
Adaptive traits are an important dimension for studying the interactions between rare plants and environment. Although the endangered mechanism of rare plants has been reported in many studies, how their twigs adapt to heterogeneous environments associated with latitude is still poorly known. Dove tree (Davidia involucrata Baill.), a monotypic rare species in China, was employed as a model species in our study, and the differences in functional traits, growth relationships and resource allocation among components of annual twig were investigated in three latitudinal regions (32°19' N, 30°08' and 27°55') in the Sichuan, Southwest China. Compared with low- and middle-latitude regions, the twig diameter in high-latitude region decreased by 36% and 26%, and dry mass decreased by 32% and 35%, respectively. Moreover, there existed an allometric growth between flower mass and stem mass or leaf mass in high-latitude region but an isometric growth in low- and middle-latitude regions. At the flower level, an isometric growth between bract area and flower stalk mass was detected among in three latitudinal regions, and the flower stalk mass in the low-latitude region was higher than in the middle- and high-latitude regions for a given bract area and flower mass. At the leaf level, the growth rate of petiole mass was significantly higher than those of leaf area, lamina mass and leaf mass among three latitudinal regions, and the petiole mass in the low-latitude region was higher than in the other two regions for a given leaf mass. Our research demonstrated that the twigs of dove tree in high-latitude region tend to become smaller, and resource input increase in stems and leaves but decrease in flowers, which reflects that dove tree can adapt to the environmental changes across different latitudes by adjusting phenotypic traits growth and biomass allocation of twigs.
Collapse
Affiliation(s)
- Zhengchuan Liang
- College of Life Science, China West Normal University, Nanchong, Sichuan, China
| | - Tingting Liu
- Scientific Research and Testing Unit, Sichuan Mabian Dafengding National Nature Reserve Protection Center, Leshan, Sichuan, China
| | - Xiaoyan Chen
- College of Life Science, China West Normal University, Nanchong, Sichuan, China
| | - Wenjuan Xu
- College of Life Science, China West Normal University, Nanchong, Sichuan, China
- Key Laboratory of Southwest China Wildlife Resources Conservation (China West Normal University), Ministry of Education, Nanchong, Sichuan, China
| | - Tingfa Dong
- College of Life Science, China West Normal University, Nanchong, Sichuan, China
- Key Laboratory of Southwest China Wildlife Resources Conservation (China West Normal University), Ministry of Education, Nanchong, Sichuan, China
| | - Qinsong Liu
- College of Life Science, China West Normal University, Nanchong, Sichuan, China
- Key Laboratory of Southwest China Wildlife Resources Conservation (China West Normal University), Ministry of Education, Nanchong, Sichuan, China
| | - Xiao Xu
- College of Life Science, China West Normal University, Nanchong, Sichuan, China
- Key Laboratory of Southwest China Wildlife Resources Conservation (China West Normal University), Ministry of Education, Nanchong, Sichuan, China
| |
Collapse
|
37
|
Bolaños-Suaréz V, Villalobos-Osnaya A, García-García JA, De León-Hernández A, Sánchez-Pérez C, Espinosa-García AM. Validation of 3D-Printed Swabs for Sampling in SARS-CoV-2 Detection: A Pilot Study. Ann Biomed Eng 2023; 51:527-537. [PMID: 36094762 PMCID: PMC9466338 DOI: 10.1007/s10439-022-03057-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 08/15/2022] [Indexed: 11/29/2022]
Abstract
In this pilot study, we characterize and evaluate 3D-printed swabs for the collection of nasopharyngeal and oropharyngeal secretion samples for the SARS-CoV-2 detection. Swabs are made with the fused deposition modeling technique using the biopolymer polylactic acid (PLA) which is a medical-grade, biodegradable and low-cost material. We evaluated six swabs with mechanical tests in a laboratory and in an Adult Human Simulator performed by healthcare professionals. We proved the adequacy of the PLA swab to be used in the gold standard reverse transcriptase-polymerase chain reaction (qRT-PCR) for viral RNA detection. Then, we did in vitro validation for cell collection using the 3D-printed swabs and RNA extraction for samples from 10 healthy volunteers. The 3D-printed swabs showed good flexibility and maneuverability for sampling and at the same time robustness to pass into the posterior nasopharynx. The PLA did not interfere with the RNA extraction process and qRT-PCR test. When we evaluated the expression of the reference gene (RNase P) used in the SARS-CoV-2 detection, the 3D-printed swabs showed good reproducibility in the threshold cycle values (Ct = 23.5, range 19-26) that is comparable to control swabs (Ct = 24.7, range 20.8-32.6) with p value = 0.47. The 3D-printed swabs demonstrated to be a reliable, and an economical alternative for mass use in the detection of SARS-CoV-2.
Collapse
Affiliation(s)
- Verónica Bolaños-Suaréz
- Hospital General de México, “Dr. Eduardo Liceaga”, Servicio de Farmacología Clínica, 06720 Ciudad de Mexico, Mexico
| | - Alma Villalobos-Osnaya
- Hospital General de México, “Dr. Eduardo Liceaga”, Servicio de Farmacología Clínica, 06720 Ciudad de Mexico, Mexico
| | - José Antonio García-García
- Hospital General de México, “Dr. Eduardo Liceaga”, Dirección de Educación y Capacitación en Salud, 06720 Ciudad de Mexico, Mexico
| | - Alma De León-Hernández
- Instituto de Ciencias Aplicadas y Tecnología (ICAT), Universidad Nacional Autónoma de México (UNAM), AP 70-186, 04510 Ciudad de Mexico, Mexico
| | - Celia Sánchez-Pérez
- Instituto de Ciencias Aplicadas y Tecnología (ICAT), Universidad Nacional Autónoma de México (UNAM), AP 70-186, 04510 Ciudad de Mexico, Mexico
| | - Ana María Espinosa-García
- Hospital General de México, "Dr. Eduardo Liceaga", Servicio de Farmacología Clínica, 06720, Ciudad de Mexico, Mexico.
| |
Collapse
|
38
|
Khan ZI, Muhammad FG, Ahmad K, Alrefaei AF, Ahmad T, Ejaz A, Nadeem M, Shahzadi M, Muqaddas H, Mehmood N. Evaluation of potential ecological risk assessment of toxic metal (lead) in contaminated meadows in the vicinity of suburban city: soil vs forages vs livestock. BRAZ J BIOL 2023; 83:e272087. [PMID: 37075434 DOI: 10.1590/1519-6984.272087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 03/20/2023] [Indexed: 04/21/2023] Open
Abstract
Heavy metal toxicity is becoming an increasing concern for environmental, human and animal health. The current research analyzed the lead (Pb) contamination in the food chain under three different irrigation sources (ground, canal, and wastewater). Soil, plant and animal samples were collected from the Jhang district of Pakistan and processed with an atomic absorption spectrophotometer. Lead concentration varied in the samples as: 5.22-10.73 mg/kg in soil, 2.46-10.34 mg/kg in forages and 0.736-2.45 mg/kg in animal samples. The observed lead concentration in forage and animal blood samples was higher than the standard limits. The pollution load index (0.640-1.32) in soil showed that lead contamination mainly took place at the wastewater irrigating sites. Bio-concentration factor values (0.313-1.15) were lower than one in all samples except Zea mays, showing that lead metal was actively taken up by Zea mays tissues from the soil. Enrichment factor values ranged from 0.849-3.12, showing a moderate level of lead enrichment. Daily intake and health risk index varied between 0.004-0.020 mg/kg/day and 0.906-4.99, respectively. All the samples showed maximum lead concentration at the wastewater irrigating site compared to the ground or canal water application sites. These results recommended that consistent application of wastewater for forage irrigation must be avoided to prevent health hazards associated with lead in the animal and human food chain. Government must implement adequate strategies to protect the animal and human health from the harms of toxic heavy metals.
Collapse
Affiliation(s)
- Z I Khan
- University of Sargodha, Department of Botany, Sargodha, Punjab, Pakistan
| | - F G Muhammad
- University of Sargodha, Department of Botany, Sargodha, Punjab, Pakistan
| | - K Ahmad
- University of Sargodha, Department of Botany, Sargodha, Punjab, Pakistan
| | - A F Alrefaei
- King Saud University, College of Science, Department of Zoology, Riyadh, Saudi Arabia
| | - T Ahmad
- Pakki Thatti R&D Farm, Toba Tek Singh, Punjab, Pakistan
| | - A Ejaz
- University of Sargodha, Department of Botany, Sargodha, Punjab, Pakistan
| | - M Nadeem
- University of Sargodha, Institute of Food Science and Nutrition, Sargodha, Punjab, Pakistan
| | - M Shahzadi
- Ghazi University, Department of Plant Breeding and Genetics, Dera Ghazi Khan, Punjab, Pakistan
| | - H Muqaddas
- The Women University Multan, Department of Zoology, Multan, Punjab, Pakistan
| | - N Mehmood
- University of Sargodha, Department of Zoology, Sargodha, Punjab, Pakistan
- University of Sassari, Department of Veterinary Medicine, Sassari, Italy
| |
Collapse
|
39
|
Kazlauskas M, Jurgelėnė Ž, Šemčuk S, Jokšas K, Kazlauskienė N, Montvydienė D. Effect of graphene oxide on the uptake, translocation and toxicity of metal mixture to Lepidium sativum L. plants: Mitigation of metal phytotoxicity due to nanosorption. CHEMOSPHERE 2023; 312:137221. [PMID: 36403815 DOI: 10.1016/j.chemosphere.2022.137221] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
Due to its unique structure and exceptional properties, graphene oxide (GO) is increasingly used in various fields of industry and therefore is inevitably released into the environment, where it interacts with different contaminants. However, the information relating to the ability of GO to affect the toxicity of contaminants is still limited. Therefore, the aim of our study was to synthesize GO, to examine the phytotoxicity of different concentrations of GO and its co-exposure with the metal mixture using garden cress (Lepidium sativum L.) as a test organism and to evaluate the potential of GO to affect toxicity of metals and their uptake by plants. The metal mixture (MIX) containing Ni (II), Zn (II), Cr (III) and Cu (II) was prepared in accordance with the maximum-permissible-concentrations (MPC) accepted for the inland waters in the EU. Additionally, the capacity of GO to adsorb metals was studied in specific conditions of the phytotoxicity test and assessed using adsorption isotherms. Our data indicate that in most cases the tested concentrations of MIX, GO and MIX + GO did not affect seed germination, root growth and biomass of roots and seedlings, however, they were found to alter photosynthesis processes, enhance production of carotenoids and H2O2 as well as to activate lipid peroxidation. Additionally, our study revealed that GO affects the accumulation of tested metals in roots and shoots of the MIX-exposed L. sativum. This is due to the capacity of GO to adsorb metals from the growth medium. Therefore, low concentrations of GO can be used for water decontamination.
Collapse
Affiliation(s)
- M Kazlauskas
- Nature Research Centre, Akademijos St. 2, LT-08412 Vilnius, Lithuania
| | - Ž Jurgelėnė
- Nature Research Centre, Akademijos St. 2, LT-08412 Vilnius, Lithuania
| | - S Šemčuk
- SRI Center for Physical Sciences and Technology, Savanorių Ave. 231, LT-02300, Vilnius, Lithuania
| | - K Jokšas
- Nature Research Centre, Akademijos St. 2, LT-08412 Vilnius, Lithuania; Vilnius University, Faculty of Chemistry and Geosciences, Naugarduko St. 24, LT-03225, Vilnius, Lithuania
| | - N Kazlauskienė
- Nature Research Centre, Akademijos St. 2, LT-08412 Vilnius, Lithuania
| | - D Montvydienė
- Nature Research Centre, Akademijos St. 2, LT-08412 Vilnius, Lithuania.
| |
Collapse
|
40
|
Ahmad J, Beg MA, Ali AA, Al-Huqail AA, Qureshi MI. Trigonella foenum-graecum (fenugreek) differentially regulates antioxidant potential, photosynthetic, and metabolic activities under arsenic stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 246:114128. [PMID: 36193587 DOI: 10.1016/j.ecoenv.2022.114128] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 09/11/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Arsenic (As) contamination is continuously increasing in the groundwaters and soils around the world causing toxicity in the plants with a detrimental effect on physiology, growth, and yield. In a hydroponic system, thirty-day-old plants of Trigonella foenum-graecum were subjected to 0, 50, or 100 µM NaHAsO40.7 H2O for 10 days. The magnitude of oxidative stress increased, whereas growth indices and photosynthetic parameters decreased in a dose-dependent manner. The efficiency of photosystem II in terms of Hill reaction activity (HRA) or chlorophyll-a was adversely affected by As stress. The antioxidant potential of plants regarding ferric reducing antioxidant power (FRAP) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) assays was enhanced, indicating the augmented resistance mechanism in plants to counter As stress. The metabolite analysis of leaf extracts revealed many As responsive metabolites including amino acids, organic acids, sugars/polyols, and others. Phenylalanine and citrulline were highly accumulated at 50 or 100 µM As, salicylic acid accumulated more at 50 µM of As while ascorbic acid notably increased at 100 µM of As. At 50 or 100 µM As, the glucose and fructose contents increased while the sucrose content decreased. At both As doses, tagatose and glucitol contents were 13 times higher than controls. Varied accumulation of metabolites could be associated with the different As doses that represent the range of tolerance in T. foenum-graecum towards As toxicity. Pathway analysis of metabolites revealed that amino acid and carbohydrate metabolism and the citrate cycle play important roles under As stress. This study helps in a better metabolomic understanding of the dose-dependent toxicity and response of As in T. foenum-graecum.
Collapse
Affiliation(s)
- Javed Ahmad
- Department of Biotechnology, Jamia Millia Islamia, New Delhi 110025, India.
| | - Md Amjad Beg
- Centre for Interdisciplinary Research in Basic Science, Jamia Millia Islamia, Jamia Nagar, New Delhi, India.
| | - Arlene A Ali
- Department of Biotechnology, Jamia Millia Islamia, New Delhi 110025, India.
| | - Asma A Al-Huqail
- Chair of Climate Change, Environmental Development and Vegetation Cover, Department of Botany and Microbiology, College of Science, King Saud University, 11451 Riyadh, Saudi Arabia.
| | - M Irfan Qureshi
- Department of Biotechnology, Jamia Millia Islamia, New Delhi 110025, India.
| |
Collapse
|
41
|
Dobrikova A, Apostolova E, Adamakis IDS, Hanć A, Sperdouli I, Moustakas M. Combined Impact of Excess Zinc and Cadmium on Elemental Uptake, Leaf Anatomy and Pigments, Antioxidant Capacity, and Function of Photosynthetic Apparatus in Clary Sage ( Salvia sclarea L.). PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11182407. [PMID: 36145808 PMCID: PMC9500708 DOI: 10.3390/plants11182407] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/03/2022] [Accepted: 09/12/2022] [Indexed: 05/12/2023]
Abstract
Clary sage (Salvia sclarea L.) is a medicinal plant that has the potential to be used for phytoextraction of zinc (Zn) and cadmium (Cd) from contaminated soils by accumulating these metals in its tissues. Additionally, it has been found to be more tolerant to excess Zn than to Cd stress alone; however, the interactive effects of the combined treatment with Zn and Cd on this medicinal herb, and the protective strategies of Zn to alleviate Cd toxicity have not yet been established in detail. In this study, clary sage plants grown hydroponically were simultaneously exposed to Zn (900 µM) and Cd (100 μM) for 8 days to obtain more detailed information about the plant responses and the role of excess Zn in mitigating Cd toxicity symptoms. The leaf anatomy, photosynthetic pigments, total phenolic and anthocyanin contents, antioxidant capacity (by DPPH and FRAP analyses), and the uptake and distribution of essential elements were investigated. The results showed that co-exposure to Zn and Cd leads to an increased leaf content of Fe and Mg compared to the control, and to increased leaf Ca, Mn, and Cu contents compared to plants treated with Cd only. This is most likely involved in the defense mechanisms of excess Zn against Cd toxicity to protect the chlorophyll content and the functions of both photosystems and the oxygen-evolving complex. The data also revealed that the leaves of clary sage plants subjected to the combined treatment have an increased antioxidant capacity attributed to the higher content of polyphenolic compounds. Furthermore, light microscopy indicated more alterations in the leaf morphology after Cd-only treatment than after the combined treatment. The present study shows that excess Zn could mitigate Cd toxicity in clary sage plants.
Collapse
Affiliation(s)
- Anelia Dobrikova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
- Correspondence:
| | - Emilia Apostolova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | | | - Anetta Hanć
- Department of Trace Analysis, Faculty of Chemistry, Adam Mickiewicz University, 61-614 Poznan, Poland
| | - Ilektra Sperdouli
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organisation–Demeter, Thermi, 57001 Thessaloniki, Greece
| | - Michael Moustakas
- Department of Botany, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
42
|
Iwaniuk P, Lozowicka B. Biochemical compounds and stress markers in lettuce upon exposure to pathogenic Botrytis cinerea and fungicides inhibiting oxidative phosphorylation. PLANTA 2022; 255:61. [PMID: 35141769 PMCID: PMC8828598 DOI: 10.1007/s00425-022-03838-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/23/2022] [Indexed: 05/02/2023]
Abstract
MAIN CONCLUSION Botrytis cinerea and fungicides interacted and influenced selected biochemical compounds. DPPH and glutathione are the first line of defence against biotic/abiotic stress. Plant metabolites are correlated with fungicides level during dissipation. Botrytis cinerea is an etiological agent of gray mould in leafy vegetables and is combated by fungicides. Fluazinam and azoxystrobin are commonly used fungicides, which inhibit oxidative phosphorylation in fungi. In this study, lettuce was (i) inoculated with B. cinerea; (ii) sprayed with azoxystrobin or fluazinam; (iii) inoculated with B. cinerea and sprayed with fungicides. This investigation confirmed that B. cinerea and fungicides affected lettuce's biochemistry and stress status. B. cinerea influenced the behaviour of fungicides reflected by shortened dissipation of azoxystrobin compared to non-inoculated plants, while prolonged degradation of fluazinam. Stress caused by B. cinerea combined with fungicides reduced level of chlorophylls (53.46%) and carotenoids (75.42%), whereas increased phenolic compounds (81%), ascorbate concentrations (32.4%), and catalase activity (116.1%). Abiotic stress caused by fungicides contributed most to the induction of carotenoids (107.68 µg g-1 on dissipation day 3-1). Diphenyl picrylhydrazyl (DPPH) radical scavenging activity and glutathione concentration peaked from the first hour of fungicides dissipation. For the first time correlation between the status of plant metabolites and fungicides during their dissipation was observed. These results indicate that non-enzymatic antioxidants could be the first-line compounds against stress factors, whereas ascorbate and antioxidant enzymes tend to mitigate stress only secondarily. The findings of this study help better understand plant biochemistry under biotic/abiotic stress conditions.
Collapse
Affiliation(s)
- Piotr Iwaniuk
- Institute of Plant Protection-National Research Institute, Chelmonskiego 22 Street, 15-195, Bialystok, Poland.
| | - Bozena Lozowicka
- Institute of Plant Protection-National Research Institute, Chelmonskiego 22 Street, 15-195, Bialystok, Poland
| |
Collapse
|
43
|
Raza A, Tabassum J, Zahid Z, Charagh S, Bashir S, Barmukh R, Khan RSA, Barbosa F, Zhang C, Chen H, Zhuang W, Varshney RK. Advances in "Omics" Approaches for Improving Toxic Metals/Metalloids Tolerance in Plants. FRONTIERS IN PLANT SCIENCE 2022; 12:794373. [PMID: 35058954 PMCID: PMC8764127 DOI: 10.3389/fpls.2021.794373] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 11/22/2021] [Indexed: 05/17/2023]
Abstract
Food safety has emerged as a high-urgency matter for sustainable agricultural production. Toxic metal contamination of soil and water significantly affects agricultural productivity, which is further aggravated by extreme anthropogenic activities and modern agricultural practices, leaving food safety and human health at risk. In addition to reducing crop production, increased metals/metalloids toxicity also disturbs plants' demand and supply equilibrium. Counterbalancing toxic metals/metalloids toxicity demands a better understanding of the complex mechanisms at physiological, biochemical, molecular, cellular, and plant level that may result in increased crop productivity. Consequently, plants have established different internal defense mechanisms to cope with the adverse effects of toxic metals/metalloids. Nevertheless, these internal defense mechanisms are not adequate to overwhelm the metals/metalloids toxicity. Plants produce several secondary messengers to trigger cell signaling, activating the numerous transcriptional responses correlated with plant defense. Therefore, the recent advances in omics approaches such as genomics, transcriptomics, proteomics, metabolomics, ionomics, miRNAomics, and phenomics have enabled the characterization of molecular regulators associated with toxic metal tolerance, which can be deployed for developing toxic metal tolerant plants. This review highlights various response strategies adopted by plants to tolerate toxic metals/metalloids toxicity, including physiological, biochemical, and molecular responses. A seven-(omics)-based design is summarized with scientific clues to reveal the stress-responsive genes, proteins, metabolites, miRNAs, trace elements, stress-inducible phenotypes, and metabolic pathways that could potentially help plants to cope up with metals/metalloids toxicity in the face of fluctuating environmental conditions. Finally, some bottlenecks and future directions have also been highlighted, which could enable sustainable agricultural production.
Collapse
Affiliation(s)
- Ali Raza
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Center of Legume Crop Genetics and Systems Biology/College of Agriculture, Oil Crops Research Institute, Fujian Agriculture and Forestry University (FAFU), Fuzhou, China
| | - Javaria Tabassum
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Hangzhou, China
| | - Zainab Zahid
- School of Civil and Environmental Engineering (SCEE), Institute of Environmental Sciences and Engineering (IESE), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Sidra Charagh
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Hangzhou, China
| | - Shanza Bashir
- School of Civil and Environmental Engineering (SCEE), Institute of Environmental Sciences and Engineering (IESE), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Rutwik Barmukh
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Rao Sohail Ahmad Khan
- Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad, Pakistan
| | - Fernando Barbosa
- Department of Clinical Analysis, Toxicology and Food Sciences, University of Sao Paulo, Ribeirão Preto, Brazil
| | - Chong Zhang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Center of Legume Crop Genetics and Systems Biology/College of Agriculture, Oil Crops Research Institute, Fujian Agriculture and Forestry University (FAFU), Fuzhou, China
| | - Hua Chen
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Center of Legume Crop Genetics and Systems Biology/College of Agriculture, Oil Crops Research Institute, Fujian Agriculture and Forestry University (FAFU), Fuzhou, China
| | - Weijian Zhuang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Center of Legume Crop Genetics and Systems Biology/College of Agriculture, Oil Crops Research Institute, Fujian Agriculture and Forestry University (FAFU), Fuzhou, China
| | - Rajeev K. Varshney
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Center of Legume Crop Genetics and Systems Biology/College of Agriculture, Oil Crops Research Institute, Fujian Agriculture and Forestry University (FAFU), Fuzhou, China
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
- State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, WA, Australia
| |
Collapse
|
44
|
Hachani C, Lamhamedi MS, Zine El Abidine A, Abassi M, Khasa DP, Béjaoui Z. Water Relations, Gas Exchange, Chlorophyll Fluorescence and Electrolyte Leakage of Ectomycorrhizal Pinus halepensis Seedlings in Response to Multi-Heavy Metal Stresses (Pb, Zn, Cd). Microorganisms 2021; 10:microorganisms10010057. [PMID: 35056506 PMCID: PMC8779289 DOI: 10.3390/microorganisms10010057] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/19/2021] [Accepted: 12/20/2021] [Indexed: 11/20/2022] Open
Abstract
The success of mine site restoration programs in arid and semi-arid areas poses a significant challenge and requires the use of high-quality seedlings capable of tolerating heavy metal stresses. The effect of ectomycorrhizal fungi on different physiological traits was investigated in Pinus halepensis seedlings grown in soil contaminated with heavy metals (Pb-Zn-Cd). Ectomycorrhizal (M) and non-ectomycorrhizal (NM) seedlings were subjected to heavy metals stress (C: contaminated, NC: control or non-contaminated) soils conditions for 12 months. Gas exchange, chlorophyll fluorescence, water relations parameters derived from pressure–volume curves and electrolyte leakage were evaluated at 4, 8 and 12 months. Ectomycorrhizal symbiosis promoted stronger resistance to heavy metals and improved gas exchange parameters and water-use efficiency compared to the non-ectomycorrhizal seedlings. The decrease in leaf osmotic potentials (Ψπ100: osmotic potential at saturation and Ψπ0: osmotic potential with loss of turgor) was higher for M-C seedling than NM-C ones, indicating that the ectomycorrhizal symbiosis promotes cellular osmotic adjustment and protects leaf membrane cell against leakage induced by Pb, Zn and Cd. Our results suggest that the use of ectomycorrhizal symbiosis is among the promising practices to improve the morphophysiological quality of seedlings produced in forest nurseries, their performance and their tolerance to multi-heavy metal stresses.
Collapse
Affiliation(s)
- Chadlia Hachani
- Faculty of Sciences of Bizerte, University of Carthage, Jarzouna 7021, Tunisia;
- Laboratory of Forest Ecology (LR11INRGREF03), National Institute of Research in Rural Engineering, Water and Forests (INRGREF), University of Carthage, Hédi Elkarray Street, Elmenzah IV, BP 10, Ariana 2080, Tunisia;
| | - Mohammed S. Lamhamedi
- Centre for Forest Studies, Faculty of Forestry, Geography and Geomatics, Abitibi Price Building, Laval University, Quebec, QC G1V 0A6, Canada;
| | | | - Mejda Abassi
- Laboratory of Forest Ecology (LR11INRGREF03), National Institute of Research in Rural Engineering, Water and Forests (INRGREF), University of Carthage, Hédi Elkarray Street, Elmenzah IV, BP 10, Ariana 2080, Tunisia;
| | - Damase P. Khasa
- Centre for Forest Research and Institute for Systems and Integrative Biology, Université Laval, 1030 Avenue de la Médecine, Quebec, QC G1V 0A6, Canada;
| | - Zoubeir Béjaoui
- Faculty of Sciences of Bizerte, University of Carthage, Jarzouna 7021, Tunisia;
- Laboratory of Forest Ecology (LR11INRGREF03), National Institute of Research in Rural Engineering, Water and Forests (INRGREF), University of Carthage, Hédi Elkarray Street, Elmenzah IV, BP 10, Ariana 2080, Tunisia;
- Correspondence:
| |
Collapse
|
45
|
Feki K, Tounsi S, Mrabet M, Mhadhbi H, Brini F. Recent advances in physiological and molecular mechanisms of heavy metal accumulation in plants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:64967-64986. [PMID: 34599711 DOI: 10.1007/s11356-021-16805-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 09/24/2021] [Indexed: 05/27/2023]
Abstract
Among abiotic stress, the toxicity of metals impacts negatively on plants' growth and productivity. This toxicity promotes various perturbations in plants at different levels. To withstand stress, plants involve efficient mechanisms through the implication of various signaling pathways. These pathways enhance the expression of many target genes among them gene coding for metal transporters. Various metal transporters which are localized at the plasma membrane and/or at the tonoplast are crucial in metal stress response. Furthermore, metal detoxification is provided by metal-binding proteins like phytochelatins and metallothioneins. The understanding of the molecular basis of metal toxicities signaling pathways and tolerance mechanisms is crucial for genetic engineering to produce transgenic plants that enhance phytoremediation. This review presents an overview of the recent advances in our understanding of metal stress response. Firstly, we described the effect of metal stress on plants. Then, we highlight the mechanisms involved in metal detoxification and the importance of the regulation in the response to heavy metal stress. Finally, we mentioned the importance of genetic engineering for enhancing the phytoremediation technique. In the end, the response to heavy metal stress is complex and implicates various components. Thus, further studies are needed to better understand the mechanisms involved in response to this abiotic stress.
Collapse
Affiliation(s)
- Kaouthar Feki
- Laboratory of Legumes and Sustainable Agrosystem (L2AD), Center of Biotechnology of Borj-Cédria, BP901, 2050, Hammam-Lif, Tunisia
| | - Sana Tounsi
- Biotechnology and Plant Improvement Laboratory, Center of Biotechnology of Sfax (CBS), University of Sfax, B.P "1177", 3018, Sfax, Tunisia
| | - Moncef Mrabet
- Laboratory of Legumes and Sustainable Agrosystem (L2AD), Center of Biotechnology of Borj-Cédria, BP901, 2050, Hammam-Lif, Tunisia
| | - Haythem Mhadhbi
- Laboratory of Legumes and Sustainable Agrosystem (L2AD), Center of Biotechnology of Borj-Cédria, BP901, 2050, Hammam-Lif, Tunisia
| | - Faiçal Brini
- Biotechnology and Plant Improvement Laboratory, Center of Biotechnology of Sfax (CBS), University of Sfax, B.P "1177", 3018, Sfax, Tunisia.
| |
Collapse
|
46
|
Kumar D, Seth CS. Photosynthesis, lipid peroxidation, and antioxidative responses of Helianthus annuus L. against chromium (VI) accumulation. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2021; 24:1-10. [PMID: 34379027 DOI: 10.1080/15226514.2021.1958747] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The present study was performed to address how Cr(VI) posed its toxicities on photosynthesis, lipid peroxidation, and its retaliation by antioxidative system of Helianthus annuus L. during Cr(VI) accumulation. For this, a pot experiment was performed wherein three different concentrations viz, 15, 30, and 60 mg Cr(VI) kg-1 soil were applied to Helianthus annuus L. at the time of seeds sowing. The results revealed that Cr(VI) accumulation was two to three folds higher in roots than in shoots which suggests that root is the major site for Cr(VI) accumulation. It was observed that with increasing doses of Cr(VI), growth indices hampered significantly, along with closure of stomata and damaged guard and epidermal cells. Photosynthetic pigments (chlorophyll a, chlorophyll b, carotenoids), leaf gaseous exchange parameters (A, E, GH2O), and PSII efficiency (Fv/Fm) worsened under Cr(VI) toxicity in dose dependent manner. Cr(VI) accumulation intensified the lipid peroxidation, too by triggering the MDA and H2O2 production, however, the plant responded well against the lipid peroxidation by enhancing the coordinated action of enzymatic (SOD, APX, GR) and non-enzymatic (GSH, AsA) antioxidants. In a nutshell, Helianthus annuus L. could be used as a potential Cr(VI) accumulator because of its good tolerance strategies against Cr(VI) toxicities.NOVELTY STATEMENT The results revealed that Cr(VI) accumulation was two to three folds higher in roots than in shoots which suggests that root is the major site for Cr(VI) accumulation. Photosynthetic pigments, leaf gaseous exchange parameters, and Fv/Fm worsened under Cr(VI) toxicity. Cr(VI) accumulation intensified lipid peroxidation by triggering MDA and H2O2 production, however, the plant responded well against the lipid peroxidation by enhancing the coordinated action of enzymatic and non-enzymatic antioxidants. In a nutshell, Helianthus annuus L. could be used as a potential Cr(VI) accumulator because of its good tolerance strategies against Cr(VI) toxicities.
Collapse
|
47
|
Rodrigues LA, Cardeira M, Leonardo IC, Gaspar FB, Radojčić Redovniković I, Duarte ARC, Paiva A, Matias AA. Deep eutectic systems from betaine and polyols – Physicochemical and toxicological properties. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116201] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
48
|
Ruiz-Torres N, Flores-Naveda A, Barriga-Castro ED, Camposeco-Montejo N, Ramírez-Barrón S, Borrego-Escalante F, Niño-Medina G, Hernández-Juárez A, Garza-Alonso C, Rodríguez-Salinas P, García-López JI. Zinc Oxide Nanoparticles and Zinc Sulfate Impact Physiological Parameters and Boosts Lipid Peroxidation in Soil Grown Coriander Plants ( Coriandrum sativum). Molecules 2021; 26:1998. [PMID: 33916062 PMCID: PMC8037768 DOI: 10.3390/molecules26071998] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/22/2021] [Accepted: 03/29/2021] [Indexed: 01/31/2023] Open
Abstract
The objective of this study was to determine the oxidative stress and the physiological and antioxidant responses of coriander plants (Coriandrum sativum) grown for 58 days in soil with zinc oxide nanoparticles (ZnO NPs) and zinc sulfate (ZnSO4) at concentrations of 0, 100, 200, 300, and 400 mg of Zn/kg of soil. The results revealed that all Zn compounds increased the total chlorophyll content (CHLt) by at least 45%, compared to the control group; however, with 400 mg/kg of ZnSO4, chlorophyll accumulation decreased by 34.6%. Zn determination by induction-plasma-coupled atomic emission spectrometry (ICP-AES) showed that Zn absorption in roots and shoots occurred in plants exposed to ZnSO4 at all concentrations, which resulted in high levels of hydrogen peroxide (H2O2) and malondialdehyde (MDA). Only at 400 mg/kg of ZnSO4, a 78.6% decrease in the MDA levels was observed. According to the results, the ZnSO4 treatments were more effective than the ZnO NPs to increase the antioxidant activity of catalase (CAT), ascorbate peroxidase (APX), and peroxidases (POD). The results corroborate that phytotoxicity was higher in plants subjected to ZnSO4 compared to treatments with ZnO NPs, which suggests that the toxicity was due to Zn accumulation in the tissues by absorbing dissolved Zn++ ions.
Collapse
Affiliation(s)
- Norma Ruiz-Torres
- Centro de Capacitación y Desarrollo en Tecnología de Semillas, Departamento de Fitomejoramiento, Universidad Autónoma Agraria Antonio Narro, Saltillo C.P. 25315, Coahuila, Mexico; (N.R.-T.); (A.F.-N.); (N.C.-M.); (F.B.-E.)
| | - Antonio Flores-Naveda
- Centro de Capacitación y Desarrollo en Tecnología de Semillas, Departamento de Fitomejoramiento, Universidad Autónoma Agraria Antonio Narro, Saltillo C.P. 25315, Coahuila, Mexico; (N.R.-T.); (A.F.-N.); (N.C.-M.); (F.B.-E.)
| | - Enrique Díaz Barriga-Castro
- Centro de Investigación en Química Aplicada, Blvd. Enrique Reyna Hermosillo, Saltillo C.P. 25294, Coahuila, Mexico;
| | - Neymar Camposeco-Montejo
- Centro de Capacitación y Desarrollo en Tecnología de Semillas, Departamento de Fitomejoramiento, Universidad Autónoma Agraria Antonio Narro, Saltillo C.P. 25315, Coahuila, Mexico; (N.R.-T.); (A.F.-N.); (N.C.-M.); (F.B.-E.)
| | - Sonia Ramírez-Barrón
- Departamento de Parasitología y Ciencias Básicas, Universidad Autónoma Agraria Antonio Narro, Saltillo C.P. 25315, Coahuila, Mexico; (S.R.-B.); (A.H.-J.)
| | - Fernando Borrego-Escalante
- Centro de Capacitación y Desarrollo en Tecnología de Semillas, Departamento de Fitomejoramiento, Universidad Autónoma Agraria Antonio Narro, Saltillo C.P. 25315, Coahuila, Mexico; (N.R.-T.); (A.F.-N.); (N.C.-M.); (F.B.-E.)
| | - Guillermo Niño-Medina
- Facultad de Agronomía, Universidad Autónoma de Nuevo León, Francisco Villa S/N, Col. Ex-Hacienda el Canada, General Escobedo C.P. 66050, Nuevo León, Mexico; (G.N.-M.); (C.G.-A.)
| | - Agustín Hernández-Juárez
- Departamento de Parasitología y Ciencias Básicas, Universidad Autónoma Agraria Antonio Narro, Saltillo C.P. 25315, Coahuila, Mexico; (S.R.-B.); (A.H.-J.)
| | - Carlos Garza-Alonso
- Facultad de Agronomía, Universidad Autónoma de Nuevo León, Francisco Villa S/N, Col. Ex-Hacienda el Canada, General Escobedo C.P. 66050, Nuevo León, Mexico; (G.N.-M.); (C.G.-A.)
| | - Pablo Rodríguez-Salinas
- Departamento en Ciencias Biológicas, Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Avenida de las Ciencias S/N, Juriquilla, Querétaro C.P. 76230, Juriquilla, Mexico;
| | - Josué I. García-López
- Centro de Capacitación y Desarrollo en Tecnología de Semillas, Departamento de Fitomejoramiento, Universidad Autónoma Agraria Antonio Narro, Saltillo C.P. 25315, Coahuila, Mexico; (N.R.-T.); (A.F.-N.); (N.C.-M.); (F.B.-E.)
| |
Collapse
|
49
|
Angulo-Bejarano PI, Puente-Rivera J, Cruz-Ortega R. Metal and Metalloid Toxicity in Plants: An Overview on Molecular Aspects. PLANTS (BASEL, SWITZERLAND) 2021; 10:635. [PMID: 33801570 PMCID: PMC8066251 DOI: 10.3390/plants10040635] [Citation(s) in RCA: 117] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 12/17/2022]
Abstract
Worldwide, the effects of metal and metalloid toxicity are increasing, mainly due to anthropogenic causes. Soil contamination ranks among the most important factors, since it affects crop yield, and the metals/metalloids can enter the food chain and undergo biomagnification, having concomitant effects on human health and alterations to the environment. Plants have developed complex mechanisms to overcome these biotic and abiotic stresses during evolution. Metals and metalloids exert several effects on plants generated by elements such as Zn, Cu, Al, Pb, Cd, and As, among others. The main strategies involve hyperaccumulation, tolerance, exclusion, and chelation with organic molecules. Recent studies in the omics era have increased knowledge on the plant genome and transcriptome plasticity to defend against these stimuli. The aim of the present review is to summarize relevant findings on the mechanisms by which plants take up, accumulate, transport, tolerate, and respond to this metal/metalloid stress. We also address some of the potential applications of biotechnology to improve plant tolerance or increase accumulation.
Collapse
Affiliation(s)
- Paola I. Angulo-Bejarano
- Laboratorio de Alelopatía, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México, UNAM, 275, Ciudad Universitaria D.F. Circuito Exterior s/n Anexo al Jardín Botánico Exterior, México City 04510, Mexico; (P.I.A.-B.); (J.P.-R.)
- School of Engineering and Sciences, Centre of Bioengineering, Tecnologico de Monterrey, Queretaro 21620, Mexico
| | - Jonathan Puente-Rivera
- Laboratorio de Alelopatía, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México, UNAM, 275, Ciudad Universitaria D.F. Circuito Exterior s/n Anexo al Jardín Botánico Exterior, México City 04510, Mexico; (P.I.A.-B.); (J.P.-R.)
| | - Rocío Cruz-Ortega
- Laboratorio de Alelopatía, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México, UNAM, 275, Ciudad Universitaria D.F. Circuito Exterior s/n Anexo al Jardín Botánico Exterior, México City 04510, Mexico; (P.I.A.-B.); (J.P.-R.)
| |
Collapse
|
50
|
Karatassiou M, Giannakoula A, Tsitos D, Stefanou S. Response of Three Greek Populations of Aegilops triuncialis (Crop Wild Relative) to Serpentine Soil. PLANTS (BASEL, SWITZERLAND) 2021; 10:516. [PMID: 33801916 PMCID: PMC8001976 DOI: 10.3390/plants10030516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/06/2021] [Accepted: 03/07/2021] [Indexed: 06/12/2023]
Abstract
A common garden experiment was established to investigate the effects of serpentine soil on the photosynthetic and biochemical traits of plants from three Greek populations of Aegilops triuncialis. We measured photosynthetic and chlorophyll fluorescence parameters, proline content, and nutrient uptake of the above plants growing in serpentine and non-serpentine soil. The photochemical activity of PSII was inhibited in plants growing in the serpentine soil regardless of the population; however, this inhibition was lower in the Aetolia-Acarnania population. The uptake and the allocation of Ni, as well as that of some other essential nutrient elements (Ca, Mg, Fe, Mn), to upper parts were decreased with the lower decrease recorded in the Aetolia-Acarnania population. Our results showed that excess Ni significantly increased the synthesis of proline, an antioxidant compound that plays an important role in the protection against oxidative stress. We conclude that the reduction in the photosynthetic performance is most probably due to reduced nutrient supply to the upper plant parts. Moreover, nickel accumulation in the roots recorded in plants from all three populations seems to be a mechanism to alleviate the detrimental effects of the serpentine soil stress. In addition, our data suggest that the population from Aetolia-Acarnania could be categorized among the nickel excluders.
Collapse
Affiliation(s)
- Maria Karatassiou
- Laboratory of Rangeland Ecology (PO 286), School of Forestry and Natural Environment, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece;
| | - Anastasia Giannakoula
- Laboratory of Plant Physiology, Department of Agriculture, International Hellenic University, 54700 Sindos, Greece;
| | - Dimitrios Tsitos
- Laboratory of Rangeland Ecology (PO 286), School of Forestry and Natural Environment, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece;
| | - Stefanos Stefanou
- Laboratory of Soil Science, Department of Agriculture, International Hellenic University, 54700 Sindos, Greece;
| |
Collapse
|