1
|
van den Berg S, Sun T. Describing Elephants: An Update on the Immunopathology of Multisystem Inflammatory Syndrome in Children. Immunol Invest 2024; 53:962-974. [PMID: 38847319 DOI: 10.1080/08820139.2024.2363833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
First described in 2020, multi-system inflammatory syndrome in children (MIS-C) is an, initially life-threatening, disease characterised by severe inflammation and following exposure to SARS-CoV-2. The immunopathology of MIS-C involves a hyperinflammation characterised by a cytokine storm and activation of both the innate and adaptive immune system, eventually leading to multi-organ failure. Several etiological theories are described in literature. Firstly, it is suggested that the gut plays an important role in the translocation of microbial products to the systemic circulation. Additionally, the production of autoantibodies that develop after the initial infection with SARS-CoV-2 might lead to many of its broad clinical symptoms. Finally, the superantigen theory where non-specific binding of the SARS-CoV-2 spike glycoprotein to the T-cell receptor leads to a subsequent activation of T cells, generating a powerful immune response. Despite the sudden outbreak of MIS-C and alarming messages, as of 2024, cases have declined drastically and subsequently show a less severe clinical spectrum. However, subacute cases not meeting current diagnostic criteria might be overlooked even though they represent a valuable research population. In the future, research should focus on adjusting these criteria to better understand the broad pathophysiology of MIS-C, aiding early detection, therapy, and prediction.
Collapse
Affiliation(s)
- Sarah van den Berg
- Peadiatric Intensive Care Unit, Amsterdam Universitair Medische Centra, Amsterdam, Netherlands
| | - Thomas Sun
- Peadiatrics, Guy's and St. Thomas NHS Foundation Trust, London, UK
| |
Collapse
|
2
|
Evans JP, Liu SL. Challenges and Prospects in Developing Future SARS-CoV-2 Vaccines: Overcoming Original Antigenic Sin and Inducing Broadly Neutralizing Antibodies. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:1459-1467. [PMID: 37931210 DOI: 10.4049/jimmunol.2300315] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 06/27/2023] [Indexed: 11/08/2023]
Abstract
The impacts of the COVID-19 pandemic led to the development of several effective SARS-CoV-2 vaccines. However, waning vaccine efficacy as well as the antigenic drift of SARS-CoV-2 variants has diminished vaccine efficacy against SARS-CoV-2 infection and may threaten public health. Increasing interest has been given to the development of a next generation of SARS-CoV-2 vaccines with increased breadth and effectiveness against SARS-CoV-2 infection. In this Brief Review, we discuss recent work on the development of these next-generation vaccines and on the nature of the immune response to SARS-CoV-2. We examine recent work to develop pan-coronavirus vaccines as well as to develop mucosal vaccines. We further discuss challenges associated with the development of novel vaccines including the need to overcome "original antigenic sin" and highlight areas requiring further investigation. We place this work in the context of SARS-CoV-2 evolution to inform how the implementation of future vaccine platforms may impact human health.
Collapse
Affiliation(s)
- John P Evans
- Center for Retrovirus Research, The Ohio State University, Columbus, OH
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH
- Molecular, Cellular, and Developmental Biology Program, The Ohio State University, Columbus, OH
| | - Shan-Lu Liu
- Center for Retrovirus Research, The Ohio State University, Columbus, OH
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH
- Viruses and Emerging Pathogens Program, Infectious Diseases Institute, The Ohio State University, Columbus, OH
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH
| |
Collapse
|
3
|
Jeong AY, Lee P, Lee MS, Kim DJ. Pre-existing Immunity to Endemic Human Coronaviruses Does Not Affect the Immune Response to SARS-CoV-2 Spike in a Murine Vaccination Model. Immune Netw 2023; 23:e19. [PMID: 37179748 PMCID: PMC10166660 DOI: 10.4110/in.2023.23.e19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 02/19/2023] [Accepted: 03/07/2023] [Indexed: 05/15/2023] Open
Abstract
Endemic human coronaviruses (HCoVs) have been evidenced to be cross-reactive to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Although a correlation exists between the immunological memory to HCoVs and coronavirus disease 2019 (COVID-19) severity, there is little experimental evidence for the effects of HCoV memory on the efficacy of COVID-19 vaccines. Here, we investigated the Ag-specific immune response to COVID-19 vaccines in the presence or absence of immunological memory against HCoV spike Ags in a mouse model. Pre-existing immunity against HCoV did not affect the COVID-19 vaccine-mediated humoral response with regard to Ag-specific total IgG and neutralizing Ab levels. The specific T cell response to the COVID-19 vaccine Ag was also unaltered, regardless of pre-exposure to HCoV spike Ags. Taken together, our data suggest that COVID-19 vaccines elicit comparable immunity regardless of immunological memory to spike of endemic HCoVs in a mouse model.
Collapse
Affiliation(s)
- Ahn Young Jeong
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea
- Department of Bioscience, University of Science and Technology (UST), Daejeon 34113, Korea
| | - Pureum Lee
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea
- Department of Bioscience, University of Science and Technology (UST), Daejeon 34113, Korea
| | - Moo-Seung Lee
- Department of Bioscience, University of Science and Technology (UST), Daejeon 34113, Korea
- Environmental Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea
| | - Doo-Jin Kim
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea
- Department of Bioscience, University of Science and Technology (UST), Daejeon 34113, Korea
- Department of Biochemistry, Chungnam National University, Daejeon 34134, Korea
| |
Collapse
|
4
|
Serum Fc-Mediated Monocyte Phagocytosis Activity Is Stable for Several Months after SARS-CoV-2 Asymptomatic and Mildly Symptomatic Infection. Microbiol Spectr 2022; 10:e0183722. [PMID: 36374040 PMCID: PMC9769986 DOI: 10.1128/spectrum.01837-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
We investigated the temporal profile of multiple components of the serological response after asymptomatic or mildly symptomatic SARS-CoV-2 infection, in a cohort of 67 previously SARS-CoV-2 naive young adults, up to 8.5 months after infection. We found a significant decrease of spike IgG and neutralization antibody titers from early (11 to 56 days) to late (4 to 8.5 months) time points postinfection. Over the study period, S1-specific IgG levels declined significantly faster than that of the S2-specific IgG. Further, serum antibodies from PCR-confirmed participants cross-recognized S2, but not S1, of the betacoronaviruses HKU1 and OC43, suggesting a greater degree of cross-reactivity of S2 among betacoronaviruses. Antibody-Dependent Natural Killer cell Activation (ADNKA) was detected at the early time point but significantly decreased at the late time point. Induction of serum Antibody-Dependent Monocyte Phagocytosis (ADMP) was detected in all the infected participants, and its levels remained stable over time. Additionally, a reduced percentage of participants had detectable neutralizing activity against the Beta (50%), Gamma (61 to 67%), and Delta (90 to 94%) variants, both early and late postinfection, compared to the ancestral strain (100%). Antibody binding to S1 and RBD of Beta, Gamma, Delta (1.7 to 2.3-fold decrease), and Omicron (10 to 16-fold decrease) variants was also significantly reduced compared to the ancestral SARS-CoV-2 strain. Overall, we found variable temporal profiles of specific components and functionality of the serological response to SARS-CoV-2 in young adults, which is characterized by lasting, but decreased, neutralizing activity and antibody binding to S1, stable ADMP activity, and relatively stable S2-specific IgG levels. IMPORTANCE Adaptive immunity mediated by antibodies is important for controlling SARS-CoV-2 infection. While vaccines against COVID-19 are currently widely distributed, a high proportion of the global population is still unvaccinated. Therefore, understanding the dynamics and maintenance of the naive humoral immune response to SARS-CoV-2 is of great importance. In addition, long-term responses after asymptomatic infection are not well-characterized, given the challenges in identifying such cases. Here, we investigated the longitudinal humoral profile in a well-characterized cohort of young adults with documented asymptomatic or mildly symptomatic SARS-CoV-2 infection. By analyzing samples collected preinfection, early after infection and during late convalescence, we found that, while neutralizing activity decreased over time, high levels of serum S2 IgG and Antibody-Dependent Monocyte Phagocytosis (ADMP) activity were maintained up to 8.5 months after infection. This suggests that a subset of antibodies with specific functions could contribute to long-term protection against SARS-CoV-2 in convalescent unvaccinated individuals.
Collapse
|
5
|
Sharma S, Vercruysse T, Sanchez-Felipe L, Kerstens W, Rasulova M, Bervoets L, De Keyzer C, Abdelnabi R, Foo CS, Lemmens V, Van Looveren D, Maes P, Baele G, Weynand B, Lemey P, Neyts J, Thibaut HJ, Dallmeier K. Updated vaccine protects against SARS-CoV-2 variants including Omicron (B.1.1.529) and prevents transmission in hamsters. Nat Commun 2022; 13:6644. [PMID: 36333374 PMCID: PMC9636174 DOI: 10.1038/s41467-022-34439-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022] Open
Abstract
Current COVID-19 vaccines are based on prototypic spike sequences from ancestral 2019 SARS-CoV-2 strains. However, the ongoing pandemic is fueled by variants of concern (VOC) escaping vaccine-mediated protection. Here we demonstrate how immunization in hamsters using prototypic spike expressed from yellow fever 17D (YF17D) as vector blocks ancestral virus (B lineage) and VOC Alpha (B.1.1.7) yet fails to fully protect from Beta (B.1.351). However, the same YF17D vectored vaccine candidate with an evolved antigen induced considerably improved neutralizing antibody responses against VOCs Beta, Gamma (P.1) and the recently predominant Omicron (B.1.1.529), while maintaining immunogenicity against ancestral virus and VOC Delta (B.1.617.2). Thus vaccinated animals resisted challenge by all VOCs, including vigorous high titre exposure to the most difficult to cover Beta, Delta and Omicron variants, eliminating detectable virus and markedly improving lung pathology. Finally, vaccinated hamsters did not transmit Delta variant to non-vaccinated cage mates. Overall, our data illustrate how current first-generation COVID-19 vaccines may need to be updated to maintain efficacy against emerging VOCs and their spread at community level.
Collapse
Affiliation(s)
- Sapna Sharma
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology, Molecular Vaccinology and Vaccine Discovery, BE-3000, Leuven, Belgium
| | - Thomas Vercruysse
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Translational Platform Virology and Chemotherapy, BE-3000, Leuven, Belgium
| | - Lorena Sanchez-Felipe
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology, Molecular Vaccinology and Vaccine Discovery, BE-3000, Leuven, Belgium
| | - Winnie Kerstens
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Translational Platform Virology and Chemotherapy, BE-3000, Leuven, Belgium
| | - Madina Rasulova
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Translational Platform Virology and Chemotherapy, BE-3000, Leuven, Belgium
| | - Lindsey Bervoets
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology, Molecular Vaccinology and Vaccine Discovery, BE-3000, Leuven, Belgium
| | - Carolien De Keyzer
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology, Molecular Vaccinology and Vaccine Discovery, BE-3000, Leuven, Belgium
| | - Rana Abdelnabi
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology, Molecular Vaccinology and Vaccine Discovery, BE-3000, Leuven, Belgium
| | - Caroline S Foo
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology, Molecular Vaccinology and Vaccine Discovery, BE-3000, Leuven, Belgium
| | - Viktor Lemmens
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology, Molecular Vaccinology and Vaccine Discovery, BE-3000, Leuven, Belgium
| | - Dominique Van Looveren
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Translational Platform Virology and Chemotherapy, BE-3000, Leuven, Belgium
| | - Piet Maes
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Clinical and Epidemiological Virology, Zoonotic Infectious Diseases Unit, BE-3000, Leuven, Belgium
| | - Guy Baele
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Clinical and Epidemiological Virology, Evolutionary and Computational Virology, BE-3000, Leuven, Belgium
| | - Birgit Weynand
- KU Leuven Department of Imaging and Pathology, Translational Cell and Tissue Research, BE-3000, Leuven, Belgium
| | - Philippe Lemey
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Clinical and Epidemiological Virology, Evolutionary and Computational Virology, BE-3000, Leuven, Belgium
| | - Johan Neyts
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology, Molecular Vaccinology and Vaccine Discovery, BE-3000, Leuven, Belgium
- Global Virus Network (GVN), Baltimore, MD, USA
| | - Hendrik Jan Thibaut
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Translational Platform Virology and Chemotherapy, BE-3000, Leuven, Belgium
| | - Kai Dallmeier
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology, Molecular Vaccinology and Vaccine Discovery, BE-3000, Leuven, Belgium.
| |
Collapse
|
6
|
McCarthy MW. Original antigen sin and COVID-19: implications for seasonal vaccination. Expert Opin Biol Ther 2022; 22:1353-1358. [PMID: 36243027 DOI: 10.1080/14712598.2022.2137402] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Original antigenic sin describes the phenomenon in which immunity against pathogens or antigens is shaped by the host's first exposure to a related pathogen or antigen. AREAS COVERED When primary immunity is boosted not by the homologous but by a cross-reacting vaccine, the newly formed antibodies may react better with the primary antigen than with the antigen actually eliciting the response. This form of immune imprinting, which has been observed with influenza, dengue, human immunodeficiency virus, and other pathogens, has profound implications for the approach to seasonal vaccination against a variety of diseases, including COVID-19. EXPERT OPINION Public health agencies and regulatory bodies have consistently recommended repeated vaccination every few months as a way to protect against COVID-19. However, the risks and benefits of this approach requires scrutiny given the concern for original antigenic sin in response to SARS-CoV-2. This manuscript examines what is known about immune imprinting and looks ahead to explore how this phenomenon may impact seasonal vaccination against emerging SARS-CoV-2 subvariants such as BA.4, BA.5, and BA.5.1, which have been associated increased transmissibility due to enhanced immune escape.
Collapse
|
7
|
Bellusci L, Grubbs G, Zahra FT, Forgacs D, Golding H, Ross TM, Khurana S. Antibody affinity and cross-variant neutralization of SARS-CoV-2 Omicron BA.1, BA.2 and BA.3 following third mRNA vaccination. Nat Commun 2022; 13:4617. [PMID: 35941152 PMCID: PMC9358642 DOI: 10.1038/s41467-022-32298-w] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 07/25/2022] [Indexed: 11/11/2022] Open
Abstract
There is limited knowledge on durability of neutralization capacity and antibody affinity maturation generated following two versus three doses of SARS-CoV-2 mRNA vaccines in naïve versus convalescent individuals (hybrid immunity) against the highly transmissible Omicron BA.1, BA.2 and BA.3 subvariants. Virus neutralization titers against the vaccine-homologous strain (WA1) and Omicron sublineages are measured in a pseudovirus neutralization assay (PsVNA). In addition, antibody binding and antibody affinity against spike proteins from WA1, BA.1, and BA.2 is determined using surface plasmon resonance (SPR). The convalescent individuals who after SARS-CoV-2 infection got vaccinated develop hybrid immunity that shows broader neutralization activity and cross-reactive antibody affinity maturation against the Omicron BA.1 and BA.2 after either second or third vaccination compared with naïve individuals. Neutralization activity correlates with antibody affinity against Omicron subvariants BA.1 and BA.2 spikes. Importantly, at four months post-third vaccination the neutralization activity and antibody affinity against the Omicron subvariants is maintained and trended higher for the individuals with hybrid immunity compared with naïve adults. These findings about hybrid immunity resulting in superior immune kinetics, breadth, and durable high affinity antibodies support the need for booster vaccinations to provide effective protection from emerging SARS-CoV-2 variants like the rapidly spreading Omicron subvariants. Here the authors show that a third SARS-CoV-2 vaccination significantly boosts neutralizing antibodies against Omicron subvariants and that hybrid immunity (infection and vaccination) results in broader neutralization activity and cross-reactive antibody affinity maturation.
Collapse
Affiliation(s)
- Lorenza Bellusci
- Division of Viral Products, Center for Biologics Evaluation and Research (CBER), FDA, Silver Spring, MD, 20871, USA
| | - Gabrielle Grubbs
- Division of Viral Products, Center for Biologics Evaluation and Research (CBER), FDA, Silver Spring, MD, 20871, USA
| | - Fatema Tuz Zahra
- Division of Viral Products, Center for Biologics Evaluation and Research (CBER), FDA, Silver Spring, MD, 20871, USA
| | - David Forgacs
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, 30602, USA
| | - Hana Golding
- Division of Viral Products, Center for Biologics Evaluation and Research (CBER), FDA, Silver Spring, MD, 20871, USA
| | - Ted M Ross
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, 30602, USA.,Department of Infectious Diseases, University of Georgia, Athens, GA, 30602, USA
| | - Surender Khurana
- Division of Viral Products, Center for Biologics Evaluation and Research (CBER), FDA, Silver Spring, MD, 20871, USA.
| |
Collapse
|
8
|
Ng KW, Faulkner N, Finsterbusch K, Wu M, Harvey R, Hussain S, Greco M, Liu Y, Kjaer S, Swanton C, Gandhi S, Beale R, Gamblin SJ, Cherepanov P, McCauley J, Daniels R, Howell M, Arase H, Wack A, Bauer DLV, Kassiotis G. SARS-CoV-2 S2-targeted vaccination elicits broadly neutralizing antibodies. Sci Transl Med 2022; 14:eabn3715. [PMID: 35895836 DOI: 10.1126/scitranslmed.abn3715] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Several variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have emerged during the current coronavirus disease 2019 (COVID-19) pandemic. Although antibody cross-reactivity with the spike glycoproteins (S) of diverse coronaviruses, including endemic common cold coronaviruses (HCoVs), has been documented, it remains unclear whether such antibody responses, typically targeting the conserved S2 subunit, contribute to protection when induced by infection or through vaccination. Using a mouse model, we found that prior HCoV-OC43 S-targeted immunity primes neutralizing antibody responses to otherwise subimmunogenic SARS-CoV-2 S exposure and promotes S2-targeting antibody responses. Moreover, vaccination with SARS-CoV-2 S2 elicited antibodies in mice that neutralized diverse animal and human alphacoronaviruses and betacoronaviruses in vitro and provided a degree of protection against SARS-CoV-2 challenge in vivo. Last, in mice with a history of SARS-CoV-2 Wuhan-based S vaccination, further S2 vaccination induced broader neutralizing antibody response than booster Wuhan S vaccination, suggesting that it may prevent repertoire focusing caused by repeated homologous vaccination. These data establish the protective value of an S2-targeting vaccine and support the notion that S2 vaccination may better prepare the immune system to respond to the changing nature of the S1 subunit in SARS-CoV-2 variants of concern, as well as to future coronavirus zoonoses.
Collapse
Affiliation(s)
- Kevin W Ng
- Retroviral Immunology, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Nikhil Faulkner
- Retroviral Immunology, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
- National Heart and Lung Institute, Imperial College London, London SW3 6LY, UK
| | - Katja Finsterbusch
- Immunoregulation Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Mary Wu
- High Throughput Screening STP, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Ruth Harvey
- Worldwide Influenza Centre, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Saira Hussain
- Worldwide Influenza Centre, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
- RNA Virus Replication Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Maria Greco
- RNA Virus Replication Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Yafei Liu
- Department of Immunochemistry, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
- Laboratory of Immunochemistry, World Premier International Immunology Frontier Research Centre, Osaka University, Osaka 565-0871, Japan
| | - Svend Kjaer
- Structural Biology STP, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Charles Swanton
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Metastasis Laboratory, University College London Cancer Institute, London, UK
| | - Sonia Gandhi
- Neurodegradation Biology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Rupert Beale
- Cell Biology of Infection Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Steve J Gamblin
- Structural Biology of Disease Processes Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Peter Cherepanov
- Chromatin structure and mobile DNA Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - John McCauley
- Worldwide Influenza Centre, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Rodney Daniels
- Worldwide Influenza Centre, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Michael Howell
- High Throughput Screening STP, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Hisashi Arase
- Department of Immunochemistry, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
- Laboratory of Immunochemistry, World Premier International Immunology Frontier Research Centre, Osaka University, Osaka 565-0871, Japan
- Center for Infectious Disease Education and Research, Osaka University, Osaka 565-0871, Japan
| | - Andreas Wack
- Immunoregulation Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - David L V Bauer
- RNA Virus Replication Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - George Kassiotis
- Retroviral Immunology, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
- Department of Infectious Disease, St Mary's Hospital, Imperial College London, London W2 1PG, UK
| |
Collapse
|
9
|
McNaughton AL, Paton RS, Edmans M, Youngs J, Wellens J, Phalora P, Fyfe A, Belij-Rammerstorfer S, Bolton JS, Ball J, Carnell GW, Dejnirattisai W, Dold C, Eyre DW, Hopkins P, Howarth A, Kooblall K, Klim H, Leaver S, Lee LN, López-Camacho C, Lumley SF, Macallan DC, Mentzer AJ, Provine NM, Ratcliff J, Slon-Compos J, Skelly D, Stolle L, Supasa P, Temperton N, Walker C, Wang B, Wyncoll D, Oxford Protective T Cell Immunology for COVID-19 (OPTIC) consortium, Scottish National Blood Transfusion Service (SNBTS) consortium, Simmonds P, Lambe T, Baillie JK, Semple MG, Openshaw PJ, International Severe Acute Respiratory and emerging Infection Consortium Coronavirus Clinical Characterisation Consortium (ISARIC4C) investigators, Obolski U, Turner M, Carroll M, Mongkolsapaya J, Screaton G, Kennedy SH, Jarvis L, Barnes E, Dunachie S, Lourenço J, Matthews PC, Bicanic T, Klenerman P, Gupta S, Thompson CP. Fatal COVID-19 outcomes are associated with an antibody response targeting epitopes shared with endemic coronaviruses. JCI Insight 2022; 7:156372. [PMID: 35608920 PMCID: PMC9310533 DOI: 10.1172/jci.insight.156372] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 05/18/2022] [Indexed: 11/17/2022] Open
Abstract
The role of immune responses to previously seen endemic coronavirus epitopes in severe acute respiratory coronavirus 2 (SARS-CoV-2) infection and disease progression has not yet been determined. Here, we show that a key characteristic of fatal outcomes with coronavirus disease 2019 (COVID-19) is that the immune response to the SARS-CoV-2 spike protein is enriched for antibodies directed against epitopes shared with endemic beta-coronaviruses and has a lower proportion of antibodies targeting the more protective variable regions of the spike. The magnitude of antibody responses to the SARS-CoV-2 full-length spike protein, its domains and subunits, and the SARS-CoV-2 nucleocapsid also correlated strongly with responses to the endemic beta-coronavirus spike proteins in individuals admitted to an intensive care unit (ICU) with fatal COVID-19 outcomes, but not in individuals with nonfatal outcomes. This correlation was found to be due to the antibody response directed at the S2 subunit of the SARS-CoV-2 spike protein, which has the highest degree of conservation between the beta-coronavirus spike proteins. Intriguingly, antibody responses to the less cross-reactive SARS-CoV-2 nucleocapsid were not significantly different in individuals who were admitted to an ICU with fatal and nonfatal outcomes, suggesting an antibody profile in individuals with fatal outcomes consistent with an "original antigenic sin" type response.
Collapse
Affiliation(s)
- Anna L. McNaughton
- Peter Medawar Building for Pathogen Research
- Nuffield Department of Medicine, and
| | - Robert S. Paton
- Peter Medawar Building for Pathogen Research
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Matthew Edmans
- Peter Medawar Building for Pathogen Research
- Nuffield Department of Medicine, and
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Jonathan Youngs
- Institute of Infection & Immunity, St George’s University of London, London, United Kingdom
| | - Judith Wellens
- Peter Medawar Building for Pathogen Research
- Translational Gastroenterology Unit, Experimental Medicine Division, Nuffield Department of Medicine, John Radcliffe Hospital, Oxford, United Kingdom
- Translational Research for Gastrointestinal Diseases, University Hospitals Leuven, Leuven, Belgium
| | - Prabhjeet Phalora
- Peter Medawar Building for Pathogen Research
- Nuffield Department of Medicine, and
| | - Alex Fyfe
- Peter Medawar Building for Pathogen Research
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | | | - Jai S. Bolton
- Peter Medawar Building for Pathogen Research
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Jonathan Ball
- General Intensive Care service, St George’s University Hospital National Health Service (NHS) Trust, London, United Kingdom
| | - George W. Carnell
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | | | | | - David W. Eyre
- Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Philip Hopkins
- Centre for Human & Applied Physiological Sciences, School of Basic & Medical Biosciences, Faculty of Life Sciences & Medicine, King’s College, London, United Kingdom
| | - Alison Howarth
- Department of Microbiology/Infectious Diseases, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford, United Kingdom
| | - Kreepa Kooblall
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, and
| | - Hannah Klim
- Peter Medawar Building for Pathogen Research
- Department of Zoology, University of Oxford, Oxford, United Kingdom
- Future of Humanity Institute, Department of Philosophy, and
| | - Susannah Leaver
- General Intensive Care service, St George’s University Hospital National Health Service (NHS) Trust, London, United Kingdom
| | - Lian Ni Lee
- Peter Medawar Building for Pathogen Research
- Nuffield Department of Medicine, and
| | | | - Sheila F. Lumley
- Peter Medawar Building for Pathogen Research
- Nuffield Department of Medicine, and
- Department of Microbiology/Infectious Diseases, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford, United Kingdom
| | - Derek C. Macallan
- Institute of Infection & Immunity, St George’s University of London, London, United Kingdom
| | | | - Nicholas M. Provine
- Translational Gastroenterology Unit, Experimental Medicine Division, Nuffield Department of Medicine, John Radcliffe Hospital, Oxford, United Kingdom
| | - Jeremy Ratcliff
- Peter Medawar Building for Pathogen Research
- Nuffield Department of Medicine, and
| | - Jose Slon-Compos
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine
| | - Donal Skelly
- Peter Medawar Building for Pathogen Research
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
- Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Lucas Stolle
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Piyada Supasa
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine
| | - Nigel Temperton
- Viral Pseudotype Unit, Medway School of Pharmacy, University of Kent, Chatham, United Kingdom
| | - Chris Walker
- Meso Scale Diagnostics, Rockville, Maryland, USA
| | - Beibei Wang
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine
| | - Duncan Wyncoll
- Intensive Care Medicine, Guy’s and St Thomas’ Hospital NHS Foundation Trust, London, United Kingdom
| | | | | | - Peter Simmonds
- Peter Medawar Building for Pathogen Research
- Nuffield Department of Medicine, and
| | - Teresa Lambe
- The Jenner Institute Laboratories, University of Oxford, Oxford, United Kingdom
| | | | - Malcolm G. Semple
- NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, Institute of Infection, Veterinary and Ecological Sciences, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, United Kingdom
| | | | | | - Uri Obolski
- School of Public Health, Faculty of Medicine, and
- Porter School of the Environment and Earth Sciences, Faculty of Exact Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Marc Turner
- National Microbiology Reference Unit, Scottish National Blood Transfusion Service, Edinburgh, United Kingdom
| | - Miles Carroll
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine
- National Infection Service, Public Health England (PHE), Salisbury, United Kingdom
| | - Juthathip Mongkolsapaya
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine
- Siriraj Center of Research for Excellence in Dengue & Emerging Pathogens, Faculty of Medicine Siriraj Hospital, Mahidol University, Thailand
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, United Kingdom
| | - Gavin Screaton
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, United Kingdom
| | - Stephen H. Kennedy
- Nuffield Department of Women’s & Reproductive Health, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Lisa Jarvis
- National Microbiology Reference Unit, Scottish National Blood Transfusion Service, Edinburgh, United Kingdom
| | - Eleanor Barnes
- Peter Medawar Building for Pathogen Research
- Nuffield Department of Medicine, and
- Translational Gastroenterology Unit, Experimental Medicine Division, Nuffield Department of Medicine, John Radcliffe Hospital, Oxford, United Kingdom
| | - Susanna Dunachie
- Peter Medawar Building for Pathogen Research
- Department of Microbiology/Infectious Diseases, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford, United Kingdom
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - José Lourenço
- Peter Medawar Building for Pathogen Research
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Philippa C. Matthews
- Peter Medawar Building for Pathogen Research
- Nuffield Department of Medicine, and
- Department of Microbiology/Infectious Diseases, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford, United Kingdom
| | - Tihana Bicanic
- Institute of Infection & Immunity, St George’s University of London, London, United Kingdom
| | - Paul Klenerman
- Peter Medawar Building for Pathogen Research
- Nuffield Department of Medicine, and
- Translational Research for Gastrointestinal Diseases, University Hospitals Leuven, Leuven, Belgium
| | - Sunetra Gupta
- Peter Medawar Building for Pathogen Research
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Craig P. Thompson
- Peter Medawar Building for Pathogen Research
- Department of Zoology, University of Oxford, Oxford, United Kingdom
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| |
Collapse
|
10
|
Wang G, Xiang Z, Wang W, Chen Z. Seasonal coronaviruses and SARS-CoV-2: effects of preexisting immunity during the COVID-19 pandemic. J Zhejiang Univ Sci B 2022; 23:451-460. [PMID: 35686525 PMCID: PMC9198228 DOI: 10.1631/jzus.b2200049] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 04/01/2022] [Indexed: 01/09/2023]
Abstract
Although the coronavirus disease 2019 (COVID-19) epidemic is still ongoing, vaccination rates are rising slowly and related treatments and drugs are being developed. At the same time, there is increasing evidence of preexisting immunity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in humans, mainly consisting of preexisting antibodies and immune cells (including T cells and B cells). The presence of these antibodies is mainly due to the seasonal prevalence of four common coronavirus types, especially OC43 and HKU1. The accumulated relevant evidence has suggested that the target of antibodies is mainly the S2 subunit of S protein, followed by evolutionary conservative regions such as the nucleocapsid (N) protein. Additionally, preexisting memory T and B cells are also present in the population. Preexisting antibodies can help the body protect against SARS-CoV-2 infection, reduce the severity of COVID-19, and rapidly increase the immune response post-infection. These multiple effects can directly affect disease progression and even the likelihood of death in certain individuals. Besides the positive effects, preexisting immunity may also have negative consequences, such as antibody-dependent enhancement (ADE) and original antigenic sin (OAS), the prevalence of which needs to be further established. In the future, more research should be focused on evaluating the role of preexisting immunity in COVID-19 outcomes, adopting appropriate policies and strategies for fighting the pandemic, and vaccine development that considers preexisting immunity.
Collapse
Affiliation(s)
- Gang Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Ze Xiang
- Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Wei Wang
- Jiangsu Institute of Parasitic Diseases, Wuxi 214064, China
| | - Zhi Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| |
Collapse
|
11
|
Tang J, Novak T, Hecker J, Grubbs G, Zahra FT, Bellusci L, Pourhashemi S, Chou J, Moffitt K, Halasa NB, Schwartz SP, Walker TC, Tarquinio KM, Zinter MS, Staat MA, Gertz SJ, Cvijanovich NZ, Schuster JE, Loftis LL, Coates BM, Mack EH, Irby K, Fitzgerald JC, Rowan CM, Kong M, Flori HR, Maddux AB, Shein SL, Crandall H, Hume JR, Hobbs CV, Tremoulet AH, Shimizu C, Burns JC, Chen SR, Moon HK, Lange C, Randolph AG, Khurana S. Cross-reactive immunity against the SARS-CoV-2 Omicron variant is low in pediatric patients with prior COVID-19 or MIS-C. Nat Commun 2022; 13:2979. [PMID: 35624101 PMCID: PMC9142524 DOI: 10.1038/s41467-022-30649-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/10/2022] [Indexed: 02/05/2023] Open
Abstract
Neutralization capacity of antibodies against Omicron after a prior SARS-CoV-2 infection in children and adolescents is not well studied. Therefore, we evaluated virus-neutralizing capacity against SARS-CoV-2 Alpha, Beta, Gamma, Delta and Omicron variants by age-stratified analyses (<5, 5-11, 12-21 years) in 177 pediatric patients hospitalized with severe acute COVID-19, acute MIS-C, and in convalescent samples of outpatients with mild COVID-19 during 2020 and early 2021. Across all patients, less than 10% show neutralizing antibody titers against Omicron. Children <5 years of age hospitalized with severe acute COVID-19 have lower neutralizing antibodies to SARS-CoV-2 variants compared with patients >5 years of age. As expected, convalescent pediatric COVID-19 and MIS-C cohorts demonstrate higher neutralization titers than hospitalized acute COVID-19 patients. Overall, children and adolescents show some loss of cross-neutralization against all variants, with the most pronounced loss against Omicron. In contrast to SARS-CoV-2 infection, children vaccinated twice demonstrated higher titers against Alpha, Beta, Gamma, Delta and Omicron. These findings can influence transmission, re-infection and the clinical disease outcome from emerging SARS-CoV-2 variants and supports the need for vaccination in children.
Collapse
Affiliation(s)
- Juanjie Tang
- Division of Viral Products, Center for Biologics Evaluation and Research (CBER), FDA, Silver Spring, MD, 20993, USA
| | - Tanya Novak
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Anesthesia, Harvard Medical School, Boston, MA, 02115, USA
| | - Julian Hecker
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Gabrielle Grubbs
- Division of Viral Products, Center for Biologics Evaluation and Research (CBER), FDA, Silver Spring, MD, 20993, USA
| | - Fatema Tuz Zahra
- Division of Viral Products, Center for Biologics Evaluation and Research (CBER), FDA, Silver Spring, MD, 20993, USA
| | - Lorenza Bellusci
- Division of Viral Products, Center for Biologics Evaluation and Research (CBER), FDA, Silver Spring, MD, 20993, USA
| | - Sara Pourhashemi
- Division of Viral Products, Center for Biologics Evaluation and Research (CBER), FDA, Silver Spring, MD, 20993, USA
| | - Janet Chou
- Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115, USA
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Kristin Moffitt
- Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115, USA
- Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Natasha B Halasa
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Stephanie P Schwartz
- Department of Pediatrics, University of North Carolina at Chapel Hill Children's Hospital, Chapel Hill, NC, 27514, USA
| | - Tracie C Walker
- Department of Pediatrics, University of North Carolina at Chapel Hill Children's Hospital, Chapel Hill, NC, 27514, USA
| | - Keiko M Tarquinio
- Division of Critical Care Medicine, Department of Pediatrics, Emory University School of Medicine, Children's Healthcare of Atlanta, Atlanta, GA, 30322, USA
| | - Matt S Zinter
- Department of Pediatrics, Divisions of Critical Care and Bone Marrow Transplantation, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Mary A Staat
- Department of Pediatrics, University of Cincinnati, Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Shira J Gertz
- Division of Pediatric Critical Care, Department of Pediatrics, Cooperman Barnabas Medical Center, Livingston, NJ, 07039, USA
| | - Natalie Z Cvijanovich
- Division of Critical Care Medicine, UCSF Benioff Children's Hospital Oakland, Oakland, CA, 94609, USA
| | - Jennifer E Schuster
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Children's Mercy Kansas City, Kansas City, MO, 64108, USA
| | - Laura L Loftis
- Division of Critical Care Medicine, Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Bria M Coates
- Division of Critical Care Medicine, Department of Pediatrics, Northwestern University Feinberg School of Medicine, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, 60611, USA
| | - Elizabeth H Mack
- Division of Pediatric Critical Care Medicine, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Katherine Irby
- Section of Pediatric Critical Care, Department of Pediatrics, Arkansas Children's Hospital, Little Rock, AR, 72202, USA
| | - Julie C Fitzgerald
- Division of Critical Care, Department of Anesthesiology and Critical Care, The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Courtney M Rowan
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, Indiana University School of Medicine, Riley Hospital for Children, Indianapolis, IN, 46202, USA
| | - Michele Kong
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Heidi R Flori
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, Mott Children's Hospital and University of Michigan, Ann Arbor, MI, 48109, USA
| | - Aline B Maddux
- Department of Pediatrics, Section of Critical Care Medicine, University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, CO, 80045, USA
| | - Steven L Shein
- Division of Pediatric Critical Care Medicine, Rainbow Babies and Children's Hospital, Cleveland, OH, 44106, USA
| | - Hillary Crandall
- Division of Pediatric Critical Care, Department of Pediatrics, University of Utah, Salt Lake City, UT, 84113, USA
| | - Janet R Hume
- Division of Pediatric Critical Care, University of Minnesota Masonic Children's Hospital, Minneapolis, MN, 55454, USA
| | - Charlotte V Hobbs
- Department of Pediatrics, Department of Microbiology, Division of Infectious Diseases, University of Mississippi Medical Center, Jackson, MS, 39202, USA
| | - Adriana H Tremoulet
- Kawasaki Disease Research Center, Rady Children's Hospital and Department of Pediatrics, UCSD School of Medicine, La Jolla, CA, 92093, USA
| | - Chisato Shimizu
- Kawasaki Disease Research Center, Rady Children's Hospital and Department of Pediatrics, UCSD School of Medicine, La Jolla, CA, 92093, USA
| | - Jane C Burns
- Kawasaki Disease Research Center, Rady Children's Hospital and Department of Pediatrics, UCSD School of Medicine, La Jolla, CA, 92093, USA
| | - Sabrina R Chen
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Hye Kyung Moon
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Christoph Lange
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Adrienne G Randolph
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Anesthesia, Harvard Medical School, Boston, MA, 02115, USA
- Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Surender Khurana
- Division of Viral Products, Center for Biologics Evaluation and Research (CBER), FDA, Silver Spring, MD, 20993, USA.
| |
Collapse
|
12
|
Auerswald H, Eng C, Lay S, In S, Eng S, Vo HTM, Sith C, Cheng S, Delvallez G, Mich V, Meng N, Sovann L, Sidonn K, Vanhomwegen J, Cantaert T, Dussart P, Duong V, Karlsson EA. Rapid Generation of In-House Serological Assays Is Comparable to Commercial Kits Critical for Early Response to Pandemics: A Case With SARS-CoV-2. Front Med (Lausanne) 2022; 9:864972. [PMID: 35602487 PMCID: PMC9121123 DOI: 10.3389/fmed.2022.864972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 04/13/2022] [Indexed: 11/13/2022] Open
Abstract
Introduction Accurate and sensitive measurement of antibodies is critical to assess the prevalence of infection, especially asymptomatic infection, and to analyze the immune response to vaccination during outbreaks and pandemics. A broad variety of commercial and in-house serological assays are available to cater to different laboratory requirements; however direct comparison is necessary to understand utility. Materials and Methods We investigate the performance of six serological methods against SARS-CoV-2 to determine the antibody profile of 250 serum samples, including 234 RT-PCR-confirmed SARS-CoV-2 cases, the majority with asymptomatic presentation (87.2%) at 1-51 days post laboratory diagnosis. First, we compare to the performance of two in-house antibody assays: (i) an in-house IgG ELISA, utilizing UV-inactivated virus, and (ii) a live-virus neutralization assay (PRNT) using the same Cambodian isolate as the ELISA. In-house assays are then compared to standardized commercial anti-SARS-CoV-2 electrochemiluminescence immunoassays (Elecsys ECLIAs, Roche Diagnostics; targeting anti-N and anti-S antibodies) along with a flow cytometry based assay (FACS) that measures IgM and IgG against spike (S) protein and a multiplex microsphere-based immunoassay (MIA) determining the antibodies against various spike and nucleoprotein (N) antigens of SARS-CoV-2 and other coronaviruses (SARS-CoV-1, MERS-CoV, hCoVs 229E, NL63, HKU1). Results Overall, specificity of assays was 100%, except for the anti-S IgM flow cytometry based assay (96.2%), and the in-house IgG ELISA (94.2%). Sensitivity ranged from 97.3% for the anti-S ECLIA down to 76.3% for the anti-S IgG flow cytometry based assay. PRNT and in-house IgG ELISA performed similarly well when compared to the commercial ECLIA: sensitivity of ELISA and PRNT was 94.7 and 91.1%, respectively, compared to S- and N-targeting ECLIA with 97.3 and 96.8%, respectively. The MIA revealed cross-reactivity of antibodies from SARS-CoV-2-infected patients to the nucleocapsid of SARS-CoV-1, and the spike S1 domain of HKU1. Conclusion In-house serological assays, especially ELISA and PRNT, perform similarly to commercial assays, a critical factor in pandemic response. Selection of suitable immunoassays should be made based on available resources and diagnostic needs.
Collapse
Affiliation(s)
- Heidi Auerswald
- Virology Unit, Institut Pasteur du Cambodge, Pasteur Network, Phnom Penh, Cambodia
| | - Chanreaksmey Eng
- Virology Unit, Institut Pasteur du Cambodge, Pasteur Network, Phnom Penh, Cambodia
| | - Sokchea Lay
- Immunology Unit, Institut Pasteur du Cambodge, Pasteur Network, Phnom Penh, Cambodia
| | - Saraden In
- Virology Unit, Institut Pasteur du Cambodge, Pasteur Network, Phnom Penh, Cambodia
| | - Sokchea Eng
- Medical Biology Laboratory, Institut Pasteur du Cambodge, Pasteur Network, Phnom Penh, Cambodia
| | - Hoa Thi My Vo
- Immunology Unit, Institut Pasteur du Cambodge, Pasteur Network, Phnom Penh, Cambodia
| | - Charya Sith
- Medical Biology Laboratory, Institut Pasteur du Cambodge, Pasteur Network, Phnom Penh, Cambodia
| | - Sokleaph Cheng
- Medical Biology Laboratory, Institut Pasteur du Cambodge, Pasteur Network, Phnom Penh, Cambodia
| | - Gauthier Delvallez
- Medical Biology Laboratory, Institut Pasteur du Cambodge, Pasteur Network, Phnom Penh, Cambodia
| | - Vann Mich
- Khmer–Soviet Friendship Hospital, Ministry of Health, Phnom Penh, Cambodia
| | - Ngy Meng
- Khmer–Soviet Friendship Hospital, Ministry of Health, Phnom Penh, Cambodia
| | - Ly Sovann
- Communicable Disease Control Department, Ministry of Health, Phnom Penh, Cambodia
| | - Kraing Sidonn
- Communicable Disease Control Department, Ministry of Health, Phnom Penh, Cambodia
| | | | - Tineke Cantaert
- Immunology Unit, Institut Pasteur du Cambodge, Pasteur Network, Phnom Penh, Cambodia
| | - Philippe Dussart
- Institut Pasteur de Madagascar, Pasteur Network, Antananarivo, Madagascar
| | - Veasna Duong
- Virology Unit, Institut Pasteur du Cambodge, Pasteur Network, Phnom Penh, Cambodia
| | - Erik A. Karlsson
- Virology Unit, Institut Pasteur du Cambodge, Pasteur Network, Phnom Penh, Cambodia
| |
Collapse
|
13
|
Hastert FD, Henss L, von Rhein C, Gerbeth J, Wieters I, Borgans F, Khodamoradi Y, Zacharowski K, Rohde G, Vehreschild MJ, Schnierle BS. Longitudinal Analysis of Coronavirus-Neutralizing Activity in COVID-19 Patients. Viruses 2022; 14:882. [PMID: 35632624 PMCID: PMC9144377 DOI: 10.3390/v14050882] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/20/2022] [Accepted: 04/21/2022] [Indexed: 11/16/2022] Open
Abstract
The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) pandemic has now been continuing for more than two years. The infection causes COVID-19, a disease of the respiratory and cardiovascular system of variable severity. Here, the humoral immune response of 80 COVID-19 patients from the University Hospital Frankfurt/Main, Germany, was characterized longitudinally. The SARS-CoV-2 neutralization activity of serum waned over time. The neutralizing potential of serum directed towards the human alpha-coronavirus NL-63 (NL63) also waned, indicating that no cross-priming against alpha-coronaviruses occurred. A subset of the recovered patients (n = 13) was additionally vaccinated with the mRNA vaccine Comirnaty. Vaccination increased neutralization activity against SARS-CoV-2 wild-type (WT), Delta, and Omicron, although Omicron-specific neutralization was not detectable prior to vaccination. In addition, the vaccination induced neutralizing antibodies against the more distantly related SARS-CoV-1 but not against NL63. The results indicate that although SARS-CoV-2 humoral immune responses induced by infection wane, vaccination induces a broad neutralizing activity against multiple SARS-CoVs, but not to the common cold alpha-coronavirus NL63.
Collapse
Affiliation(s)
- Florian D. Hastert
- Department of Virology, Paul-Ehrlich-Institut, Paul-Ehrlich Strass 51-59, 63225 Langen, Germany; (F.D.H.); (L.H.); (C.v.R.); (J.G.)
| | - Lisa Henss
- Department of Virology, Paul-Ehrlich-Institut, Paul-Ehrlich Strass 51-59, 63225 Langen, Germany; (F.D.H.); (L.H.); (C.v.R.); (J.G.)
| | - Christine von Rhein
- Department of Virology, Paul-Ehrlich-Institut, Paul-Ehrlich Strass 51-59, 63225 Langen, Germany; (F.D.H.); (L.H.); (C.v.R.); (J.G.)
| | - Julia Gerbeth
- Department of Virology, Paul-Ehrlich-Institut, Paul-Ehrlich Strass 51-59, 63225 Langen, Germany; (F.D.H.); (L.H.); (C.v.R.); (J.G.)
| | - Imke Wieters
- Zentrum für Innere Medizin, Infektiologie, Universitätsklinikum Frankfurt, Goethe Universität Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; (I.W.); (F.B.); (Y.K.); (M.J.G.T.V.)
| | - Frauke Borgans
- Zentrum für Innere Medizin, Infektiologie, Universitätsklinikum Frankfurt, Goethe Universität Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; (I.W.); (F.B.); (Y.K.); (M.J.G.T.V.)
| | - Yascha Khodamoradi
- Zentrum für Innere Medizin, Infektiologie, Universitätsklinikum Frankfurt, Goethe Universität Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; (I.W.); (F.B.); (Y.K.); (M.J.G.T.V.)
| | - Kai Zacharowski
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Frankfurt, Goethe Universität, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany;
| | - Gernot Rohde
- Medizinische Klinik 1, Pneumologie/Allergologie, Universitätsklinikum Frankfurt, Goethe-Universität, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany;
| | - Maria J.G.T. Vehreschild
- Zentrum für Innere Medizin, Infektiologie, Universitätsklinikum Frankfurt, Goethe Universität Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; (I.W.); (F.B.); (Y.K.); (M.J.G.T.V.)
| | - Barbara S. Schnierle
- Department of Virology, Paul-Ehrlich-Institut, Paul-Ehrlich Strass 51-59, 63225 Langen, Germany; (F.D.H.); (L.H.); (C.v.R.); (J.G.)
| |
Collapse
|
14
|
Crowley AR, Natarajan H, Hederman AP, Bobak CA, Weiner JA, Wieland-Alter W, Lee J, Bloch EM, Tobian AAR, Redd AD, Blankson JN, Wolf D, Goetghebuer T, Marchant A, Connor RI, Wright PF, Ackerman ME. Boosting of cross-reactive antibodies to endemic coronaviruses by SARS-CoV-2 infection but not vaccination with stabilized spike. eLife 2022; 11:e75228. [PMID: 35289271 PMCID: PMC8923670 DOI: 10.7554/elife.75228] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 02/23/2022] [Indexed: 12/12/2022] Open
Abstract
Preexisting antibodies to endemic coronaviruses (CoV) that cross-react with SARS-CoV-2 have the potential to influence the antibody response to COVID-19 vaccination and infection for better or worse. In this observational study of mucosal and systemic humoral immunity in acutely infected, convalescent, and vaccinated subjects, we tested for cross-reactivity against endemic CoV spike (S) protein at subdomain resolution. Elevated responses, particularly to the β-CoV OC43, were observed in all natural infection cohorts tested and were correlated with the response to SARS-CoV-2. The kinetics of this response and isotypes involved suggest that infection boosts preexisting antibody lineages raised against prior endemic CoV exposure that cross-react. While further research is needed to discern whether this recalled response is desirable or detrimental, the boosted antibodies principally targeted the better-conserved S2 subdomain of the viral spike and were not associated with neutralization activity. In contrast, vaccination with a stabilized spike mRNA vaccine did not robustly boost cross-reactive antibodies, suggesting differing antigenicity and immunogenicity. In sum, this study provides evidence that antibodies targeting endemic CoV are robustly boosted in response to SARS-CoV-2 infection but not to vaccination with stabilized S, and that depending on conformation or other factors, the S2 subdomain of the spike protein triggers a rapidly recalled, IgG-dominated response that lacks neutralization activity.
Collapse
Affiliation(s)
- Andrew R Crowley
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Dartmouth CollegeHanoverUnited States
| | - Harini Natarajan
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Dartmouth CollegeHanoverUnited States
| | | | - Carly A Bobak
- Biomedical Data Science, Dartmouth CollegeHanoverUnited States
| | - Joshua A Weiner
- Thayer School of Engineering, Dartmouth CollegeHanoverUnited States
| | - Wendy Wieland-Alter
- Department of Pediatrics, Geisel School of Medicine at Dartmouth, Dartmouth-Hitchcock Medical CenterLebanonUnited States
| | - Jiwon Lee
- Thayer School of Engineering, Dartmouth CollegeHanoverUnited States
| | - Evan M Bloch
- Department of Pathology, Johns Hopkins School of MedicineBaltimoreUnited States
| | - Aaron AR Tobian
- Department of Pathology, Johns Hopkins School of MedicineBaltimoreUnited States
| | - Andrew D Redd
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins School of MedicineBaltimoreUnited States
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of HealthBethesdaUnited States
| | - Joel N Blankson
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins School of MedicineBaltimoreUnited States
| | - Dana Wolf
- Hadassah University Medical CenterJerusalemIsrael
| | - Tessa Goetghebuer
- Institute for Medical Immunology, Université libre de BruxellesCharleroiBelgium
- Pediatric Department, CHU St PierreBrusselsBelgium
| | - Arnaud Marchant
- Institute for Medical Immunology, Université libre de BruxellesCharleroiBelgium
| | - Ruth I Connor
- Department of Pediatrics, Geisel School of Medicine at Dartmouth, Dartmouth-Hitchcock Medical CenterLebanonUnited States
| | - Peter F Wright
- Department of Pediatrics, Geisel School of Medicine at Dartmouth, Dartmouth-Hitchcock Medical CenterLebanonUnited States
| | - Margaret E Ackerman
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Dartmouth CollegeHanoverUnited States
- Thayer School of Engineering, Dartmouth CollegeHanoverUnited States
- Biomedical Data Science, Dartmouth CollegeHanoverUnited States
| |
Collapse
|
15
|
Immunology of SARS-CoV-2 infection in children. Nat Immunol 2022; 23:177-185. [PMID: 35105983 DOI: 10.1038/s41590-021-01123-9] [Citation(s) in RCA: 110] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/13/2021] [Indexed: 02/06/2023]
Abstract
Children and adolescents exhibit a broad range of clinical outcomes from SARS-CoV-2 infection, with the majority having minimal to mild symptoms. Additionally, some succumb to a severe hyperinflammatory post-infectious complication called multisystem inflammatory syndrome in children (MIS-C), predominantly affecting previously healthy individuals. Studies characterizing the immunological differences associated with these clinical outcomes have identified pathways important for host immunity to SARS-CoV-2 and innate modulators of disease severity. In this Review, we delineate the immunological mechanisms underlying the spectrum of pediatric immune response to SARS-CoV-2 infection in comparison with that of adults.
Collapse
|
16
|
Lin CY, Wolf J, Brice DC, Sun Y, Locke M, Cherry S, Castellaw AH, Wehenkel M, Crawford JC, Zarnitsyna VI, Duque D, Allison KJ, Allen EK, Brown SA, Mandarano AH, Estepp JH, Taylor C, Molina-Paris C, Schultz-Cherry S, Tang L, Thomas PG, McGargill MA. Pre-existing humoral immunity to human common cold coronaviruses negatively impacts the protective SARS-CoV-2 antibody response. Cell Host Microbe 2022; 30:83-96.e4. [PMID: 34965382 PMCID: PMC8648673 DOI: 10.1016/j.chom.2021.12.005] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/05/2021] [Accepted: 11/30/2021] [Indexed: 11/03/2022]
Abstract
SARS-CoV-2 infection causes diverse outcomes ranging from asymptomatic infection to respiratory distress and death. A major unresolved question is whether prior immunity to endemic, human common cold coronaviruses (hCCCoVs) impacts susceptibility to SARS-CoV-2 infection or immunity following infection and vaccination. Therefore, we analyzed samples from the same individuals before and after SARS-CoV-2 infection or vaccination. We found hCCCoV antibody levels increase after SARS-CoV-2 exposure, demonstrating cross-reactivity. However, a case-control study indicates that baseline hCCCoV antibody levels are not associated with protection against SARS-CoV-2 infection. Rather, higher magnitudes of pre-existing betacoronavirus antibodies correlate with more SARS-CoV-2 antibodies following infection, an indicator of greater disease severity. Additionally, immunization with hCCCoV spike proteins before SARS-CoV-2 immunization impedes the generation of SARS-CoV-2-neutralizing antibodies in mice. Together, these data suggest that pre-existing hCCCoV antibodies hinder SARS-CoV-2 antibody-based immunity following infection and provide insight on how pre-existing coronavirus immunity impacts SARS-CoV-2 infection, which is critical considering emerging variants.
Collapse
Affiliation(s)
- Chun-Yang Lin
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA; Integrated Biomedical Sciences Program, University of Tennessee Health Science, Memphis, TN, USA
| | - Joshua Wolf
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - David C Brice
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Yilun Sun
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | | | - Sean Cherry
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Ashley H Castellaw
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Marie Wehenkel
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | | | - Veronika I Zarnitsyna
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Daniel Duque
- School of Mathematics, University of Leeds, Leeds, UK
| | - Kim J Allison
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - E Kaitlynn Allen
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Scott A Brown
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | | | - Jeremie H Estepp
- Department of Global Pediatric Medicine, St. Jude Children's Research Hospital, Memphis, TN, USA
| | | | - Carmen Molina-Paris
- School of Mathematics, University of Leeds, Leeds, UK; T-6, Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Stacey Schultz-Cherry
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Li Tang
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Paul G Thomas
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Maureen A McGargill
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
17
|
Ng KW, Faulkner N, Wrobel AG, Gamblin SJ, Kassiotis G. Heterologous humoral immunity to human and zoonotic coronaviruses: Aiming for the achilles heel. Semin Immunol 2021; 55:101507. [PMID: 34716096 PMCID: PMC8542444 DOI: 10.1016/j.smim.2021.101507] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 10/15/2021] [Accepted: 10/16/2021] [Indexed: 02/04/2023]
Abstract
Coronaviruses are evolutionarily successful RNA viruses, common to multiple avian, amphibian and mammalian hosts. Despite their ubiquity and potential impact, knowledge of host immunity to coronaviruses remains incomplete, partly owing to the lack of overt pathogenicity of endemic human coronaviruses (HCoVs), which typically cause common colds. However, the need for deeper understanding became pressing with the zoonotic introduction of three novel coronaviruses in the past two decades, causing severe acute respiratory syndromes in humans, and the unfolding pandemic of coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This renewed interest not only triggered the discovery of two of the four HCoVs, but also uncovered substantial cellular and humoral cross-reactivity with shared or related coronaviral antigens. Here, we review the evidence for cross-reactive B cell memory elicited by HCoVs and its potential impact on the puzzlingly variable outcome of SARS-CoV-2 infection. The available data indicate targeting of highly conserved regions primarily in the S2 subunits of the spike glycoproteins of HCoVs and SARS-CoV-2 by cross-reactive B cells and antibodies. Rare monoclonal antibodies reactive with conserved S2 epitopes and with potent virus neutralising activity have been cloned, underscoring the potential functional relevance of cross-reactivity. We discuss B cell and antibody cross-reactivity in the broader context of heterologous humoral immunity to coronaviruses, as well as the limits of protective immune memory against homologous re-infection. Given the bidirectional nature of cross-reactivity, the unprecedented current vaccination campaign against SARS-CoV-2 is expected to impact HCoVs, as well as future zoonotic coronaviruses attempting to cross the species barrier. However, emerging SARS-CoV-2 variants with resistance to neutralisation by vaccine-induced antibodies highlight a need for targeting more constrained, less mutable parts of the spike. The delineation of such cross-reactive areas, which humoral immunity can be trained to attack, may offer the key to permanently shifting the balance of our interaction with current and future coronaviruses in our favour.
Collapse
Affiliation(s)
- Kevin W Ng
- Retroviral Immunology Laboratory, London, NW1 1AT, UK
| | - Nikhil Faulkner
- Retroviral Immunology Laboratory, London, NW1 1AT, UK; National Heart and Lung Institute, Imperial College London, London, SW3 6LY, UK
| | - Antoni G Wrobel
- Structural Biology of Disease Processes Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Steve J Gamblin
- Structural Biology of Disease Processes Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - George Kassiotis
- Retroviral Immunology Laboratory, London, NW1 1AT, UK; Department of Infectious Disease, St Mary's Hospital, Imperial College London, London W2 1PG, UK.
| |
Collapse
|