1
|
Zhai B, Ran W, Sun Y, Alcos A, Liu M, Chen J, Richardson CD, Sun D, Zhao J. Human SLAM-adapted canine distemper virus can enter human peripheral blood mononuclear cells and replicate in mice expressing human SLAM and defective for STAT1 expression. Virulence 2025; 16:2457967. [PMID: 39981650 PMCID: PMC11849921 DOI: 10.1080/21505594.2025.2457967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/24/2024] [Accepted: 01/20/2025] [Indexed: 02/22/2025] Open
Abstract
Canine distemper virus (CDV) is a member of the genus Morbillivirus with a worldwide distribution that causes fatal diseases in canids and marine mammals. In recent years, CDV has demonstrated the remarkable ability of pathogens to cross species barriers. The natural host range of CDV has expanded from Canidae to Primates, presumably attributed to ecological shifts and the emergence of viral variants. Therefore, it is important to investigate whether CDV can infect humans by adapting to the human signalling lymphocyte activation molecule (hSLAM) receptor to cross the species barrier. Through successive passaging and plaque cloning of a CDV wild-type strain (5804PeH) in Vero cells expressing hSLAM (Vero-hSLAM), we obtained an hSLAM adaptive strain, 5804PeH-VhS. The adapted CDV strain exhibited a D540G mutation within the receptor-binding domain (RBD) of the haemagglutinin (H) protein. The HD540G mutation has enhanced cell-cell fusion activity in Vero-hSLAM cells. This adaptation allowed the CDV strain to infect human peripheral blood mononuclear cells (PBMCs), particularly T lymphocytes and inhibited lymphocyte proliferation. Additionally, this strain could replicate in the lymphoid tissues of transgenic mice that express the hSLAM receptor, causing viraemia. However, the adapted strain did not spread to the epithelial cells or the central nervous system of the mice. While this adaptation indicates a potential risk, there is no definitive evidence that the virus can spread among humans.
Collapse
Affiliation(s)
- Boyu Zhai
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Wei Ran
- Animal Husbandry and Fisheries, Guizhou Vocational College of Agriculture, Guiyang, China
| | - Yiyang Sun
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Angelita Alcos
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
| | - Mengjia Liu
- Institute of Special Animal and Plant Sciences, The Chinese Academy of Agricultural Sciences, Changchun, China
| | - Jie Chen
- Institute of Special Animal and Plant Sciences, The Chinese Academy of Agricultural Sciences, Changchun, China
| | | | - Dongbo Sun
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Jianjun Zhao
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| |
Collapse
|
2
|
Tashiro K, Segawa T, Konishi K, Seki F, Katoh H, Ishibashi T, Takeda M, Itou T. Serological Evidence of Cetacean Morbillivirus Infection in Common Bottlenose Dolphins in Japan. Microbiol Immunol 2025; 69:307-312. [PMID: 39949182 PMCID: PMC12050910 DOI: 10.1111/1348-0421.13207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 12/23/2024] [Accepted: 02/05/2025] [Indexed: 05/06/2025]
Abstract
This study revealed that 41.9% of wild-born Japanese captive dolphins (18 out of 43 dolphins) have neutralizing antibodies specific to cetacean morbillivirus (CeMV). This finding indicates a widespread yet undetected CeMV infection among wild dolphins in the waters around Japan, occurring without notable epidemic or mass mortality of dolphins.
Collapse
Affiliation(s)
- Kaede Tashiro
- Department of Veterinary Medicine, College of Bioresource SciencesLaboratory of Preventive Veterinary Medicine and Animal HealthKanagawaJapan
- Department of Microbiology, Graduate School of Medicine and Faculty of MedicineThe University of TokyoTokyoJapan
| | - Takao Segawa
- Department of Veterinary Medicine, College of Bioresource SciencesLaboratory of Preventive Veterinary Medicine and Animal HealthKanagawaJapan
| | - Kiyotaka Konishi
- Department of Microbiology, Graduate School of Medicine and Faculty of MedicineThe University of TokyoTokyoJapan
| | - Fumio Seki
- Department of Virology 3National Institute of Infectious DiseasesTokyoJapan
| | - Hiroshi Katoh
- Department of Microbiology, Graduate School of Medicine and Faculty of MedicineThe University of TokyoTokyoJapan
| | | | - Makoto Takeda
- Department of Microbiology, Graduate School of Medicine and Faculty of MedicineThe University of TokyoTokyoJapan
| | - Takuya Itou
- Department of Veterinary Medicine, College of Bioresource SciencesLaboratory of Preventive Veterinary Medicine and Animal HealthKanagawaJapan
| |
Collapse
|
3
|
Emmelot ME, Bodewes R, Maissan C, Vos M, de Swart RL, van Els CACM, Kaaijk P. Impact of genotypic variability of measles virus T-cell epitopes on vaccine-induced T-cell immunity. NPJ Vaccines 2025; 10:36. [PMID: 39979288 PMCID: PMC11842548 DOI: 10.1038/s41541-025-01088-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 02/11/2025] [Indexed: 02/22/2025] Open
Abstract
After the COVID-19 pandemic, significant increases in measles cases were observed globally. Community-wide vaccination remains the most effective strategy for preventing measles. However, it is crucial to understand whether prevalent genotypes, when circulating in populations with suboptimal vaccination coverage, may undergo adaptive mutations that allow them to escape vaccine-induced immunity. In this study, a bioinformatics-guided approach was used to predict universal helper T-cell epitopes specific to the measles vaccine virus (vaccine-MeV) presented by multiple HLA-DR, -DP, and -DQ alleles to achieve population-wide coverage. By using MeV-specific T-cell lines, we identified 37 functional epitopes out of 83 predicted candidates, including 25 novel ones. Strikingly, 73% of these epitope regions were associated with sequence variations in wild-type viruses. More importantly, we demonstrated that mutations disrupted the ability of vaccine-induced CD4+ T cells to respond to circulating viruses. Consequently, mutations in epitope regions of circulating viruses may affect the effectiveness of vaccine-induced T-cell immunity.
Collapse
Affiliation(s)
- Maarten E Emmelot
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Rogier Bodewes
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Cyril Maissan
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Martijn Vos
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Rik L de Swart
- Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands
| | - Cécile A C M van Els
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
- Division Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Patricia Kaaijk
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands.
| |
Collapse
|
4
|
Wang Y, Li G, Wang H, Qi Q, Wang X, Lu H. Targeted therapeutic strategies for Nectin-4 in breast cancer: Recent advances and future prospects. Breast 2025; 79:103838. [PMID: 39577073 PMCID: PMC11616553 DOI: 10.1016/j.breast.2024.103838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 07/31/2024] [Accepted: 11/13/2024] [Indexed: 11/24/2024] Open
Abstract
Nectin-4 is a cell adhesion molecule which has gained more and more attention as a therapeutic target in cancer recently. Overexpression of Nectin-4 has been observed in various tumors, including breast cancer, and is associated with tumor progression. Enfortumab vedotin(EV)is an antibody-drug conjugate (ADC) targeting Nectin-4, which has been approved by FDA for the treatment of urothelial carcinoma. Notably, Nectin-4 was also investigated as a target for breast cancer in preclinical and clinical settings. Nectin-4-targeted approaches, such as ADCs, oncolytic viruses, photothermal therapy and immunotherapy, have shown promising results in early-phase clinical trials. These therapies offer novel strategies for delivering targeted treatments to Nectin-4-expressing cancer cells, enhancing treatment efficacy and minimizing off-target effects. In conclusion, this review aims to provide an overview of the latest advances in understanding the role of Nectin-4 in breast cancer and discuss the future development prospects of Nectin-4 targeted agents.
Collapse
Affiliation(s)
- Yufei Wang
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China; Laboratory of Cancer Biology, Key Lab of Biotherapy in Zhejiang, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China
| | - Guangliang Li
- Department of Medical Oncology (Breast Cancer), Zhejiang Cancer Hospital, Hangzhou, China
| | - Hanying Wang
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China
| | - Quan Qi
- Department of Medical Oncology, Huzhou Central Hospital, Huzhou, China
| | - Xian Wang
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China.
| | - Haiqi Lu
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China.
| |
Collapse
|
5
|
Vijayan K. K. V, De Paris K. Nonhuman primate models of pediatric viral diseases. Front Cell Infect Microbiol 2024; 14:1493885. [PMID: 39691699 PMCID: PMC11649651 DOI: 10.3389/fcimb.2024.1493885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 11/08/2024] [Indexed: 12/19/2024] Open
Abstract
Infectious diseases are the leading cause of death in infants and children under 5 years of age. In utero exposure to viruses can lead to spontaneous abortion, preterm birth, congenital abnormalities or other developmental defects, often resulting in lifelong health sequalae. The underlying biological mechanisms are difficult to study in humans due to ethical concerns and limited sample access. Nonhuman primates (NHP) are closely related to humans, and pregnancy and immune ontogeny in infants are very similar to humans. Therefore, NHP are a highly relevant model for understanding fetal and postnatal virus-host interactions and to define immune mechanisms associated with increased morbidity and mortality in infants. We will discuss NHP models of viruses causing congenital infections, respiratory diseases in early life, and HIV. Cytomegalovirus (CMV) remains the most common cause of congenital defects worldwide. Measles is a vaccine-preventable disease, yet measles cases are resurging. Zika is an example of an emerging arbovirus with devastating consequences for the developing fetus and the surviving infant. Among the respiratory viruses, we will discuss influenza and Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). We will finish with HIV as an example of a lifelong infection without a cure or vaccine. The review will highlight (i) the impact of viral infections on fetal and infant immune development, (ii) how differences in infant and adult immune responses to infection alter disease outcome, and emphasize the invaluable contribution of pediatric NHP infection models to the design of effective treatment and prevention strategies, including vaccines, for human infants.
Collapse
Affiliation(s)
- Vidya Vijayan K. K.
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, United States
| | - Kristina De Paris
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, United States
- Center for AIDS Research, University of North Carolina, Chapel Hill, NC, United States
- Children’s Research Institute, University of North Carolina, Chapel Hill, NC, United States
| |
Collapse
|
6
|
Gaur SK, Jain J, Chaudhary Y, Kaul R. Insights into the mechanism of Morbillivirus induced immune suppression. Virology 2024; 600:110212. [PMID: 39232265 DOI: 10.1016/j.virol.2024.110212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/26/2024] [Accepted: 08/29/2024] [Indexed: 09/06/2024]
Abstract
Viruses enter the host cell, and various strategies are employed to evade the host immune system. These include overcoming the various components of the immune system, including modulation of the physical and chemical barriers, non-specific innate response and specific adaptive immune response. Morbilliviruses impose immune modulation by utilizing various approaches including hindering antigen presentation to T-Helper (TH) cells, hematopoiesis and suppression of effector molecule activities. These viruses can also impede the early stages of T cell activation. Despite the availability of effective vaccines, morbilliviruses are still a significant threat to mankind. After infection, they also induce a state of immune suppression in the host. The molecular mechanisms employed by morbilliviruses to induce the state of immune suppression in the infected host are still being investigated. This review is an attempt to summarize insights into some of the strategies adopted by morbilliviruses to mediate immune modulation in the host.
Collapse
Affiliation(s)
- Sharad Kumar Gaur
- Department of Microbiology, University of Delhi South Campus, New Delhi, 110021, India
| | - Juhi Jain
- Department of Microbiology, University of Delhi South Campus, New Delhi, 110021, India
| | - Yash Chaudhary
- Department of Microbiology, University of Delhi South Campus, New Delhi, 110021, India
| | - Rajeev Kaul
- Department of Microbiology, University of Delhi South Campus, New Delhi, 110021, India.
| |
Collapse
|
7
|
Creppy JR, Delache B, Lemaitre J, Horvat B, Vecellio L, Ducancel F. Administration of airborne pathogens in non-human primates. Inhal Toxicol 2024; 36:475-500. [PMID: 39388247 DOI: 10.1080/08958378.2024.2412685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 09/30/2024] [Indexed: 10/15/2024]
Abstract
PURPOSE Airborne pathogen scan penetrate in human respiratory tract and can cause illness. The use of animal models to predict aerosol deposition and study respiratory disease pathophysiology is therefore important for research and a prerequisite to test and study the mechanism of action of treatment. NHPs are relevant animal species for inhalation studies because of their similarities with humans in terms of anatomical structure, respiratory parameters and immune system. MATERIALS AND METHODS The aim of this review is to provide an overview of the state of the art of pathogen aerosol studies performed in non-human primates (NHPs). Herein, we present and discuss the deposition of aerosolized bacteria and viruses. In this review, we present important advantages of using NHPs as model for inhalation studies. RESULTS We demonstrate that deposition in the respiratory tract is not only a function of aerosol size but also the technique of administration influences the biological activity and site of aerosol deposition. Finally, we observe an influence of a region of pathogen deposition in the respiratory tract on the development of the pathophysiological effect in NHPs. CONCLUSION The wide range of methods used for the delivery of pathogento NHP respiratory airways is associated with varying doses and deposition profiles in the airways.
Collapse
Affiliation(s)
- Justina R Creppy
- Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Fontenay-aux-Roses, France
- Centre d'Étude des Pathologies Respiratoires, INSERM U1100, Université de Tours, Tours, France
| | - Benoit Delache
- Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Fontenay-aux-Roses, France
| | - Julien Lemaitre
- Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Fontenay-aux-Roses, France
| | - Branka Horvat
- CIRI, Centre International de Recherche en Infectiologie, INSERM U1111, CNRS UMR5308, Université de Lyon, Lyon, France
| | - Laurent Vecellio
- Centre d'Étude des Pathologies Respiratoires, INSERM U1100, Université de Tours, Tours, France
| | - Frédéric Ducancel
- Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Fontenay-aux-Roses, France
| |
Collapse
|
8
|
Amurri L, Dumont C, Pelissier R, Reynard O, Mathieu C, Spanier J, Pályi B, Déri D, Karkowski L, Gonzalez C, Skerra J, Kis Z, Kalinke U, Horvat B, Iampietro M. Multifaceted activation of STING axis upon Nipah and measles virus-induced syncytia formation. PLoS Pathog 2024; 20:e1012569. [PMID: 39283943 PMCID: PMC11426520 DOI: 10.1371/journal.ppat.1012569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 09/26/2024] [Accepted: 08/28/2024] [Indexed: 09/27/2024] Open
Abstract
Activation of the DNA-sensing STING axis by RNA viruses plays a role in antiviral response through mechanisms that remain poorly understood. Here, we show that the STING pathway regulates Nipah virus (NiV) replication in vivo in mice. Moreover, we demonstrate that following both NiV and measles virus (MeV) infection, IFNγ-inducible protein 16 (IFI16), an alternative DNA sensor in addition to cGAS, induces the activation of STING, leading to the phosphorylation of NF-κB p65 and the production of IFNβ and interleukin 6. Finally, we found that paramyxovirus-induced syncytia formation is responsible for loss of mitochondrial membrane potential and leakage of mitochondrial DNA in the cytoplasm, the latter of which is further detected by both cGAS and IFI16. These results contribute to improve our understanding about NiV and MeV immunopathogenesis and provide potential paths for alternative therapeutic strategies.
Collapse
Affiliation(s)
- Lucia Amurri
- CIRI, Centre International de Recherche en Infectiologie, INSERM U1111, CNRS, UMR5308, Univ Lyon, Université Claude Bernard Lyon, École Normale Supérieure de Lyon, Lyon, France
| | - Claire Dumont
- CIRI, Centre International de Recherche en Infectiologie, INSERM U1111, CNRS, UMR5308, Univ Lyon, Université Claude Bernard Lyon, École Normale Supérieure de Lyon, Lyon, France
| | - Rodolphe Pelissier
- CIRI, Centre International de Recherche en Infectiologie, INSERM U1111, CNRS, UMR5308, Univ Lyon, Université Claude Bernard Lyon, École Normale Supérieure de Lyon, Lyon, France
| | - Olivier Reynard
- CIRI, Centre International de Recherche en Infectiologie, INSERM U1111, CNRS, UMR5308, Univ Lyon, Université Claude Bernard Lyon, École Normale Supérieure de Lyon, Lyon, France
| | - Cyrille Mathieu
- CIRI, Centre International de Recherche en Infectiologie, INSERM U1111, CNRS, UMR5308, Univ Lyon, Université Claude Bernard Lyon, École Normale Supérieure de Lyon, Lyon, France
| | - Julia Spanier
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection research, Hanover, Germany
| | - Bernadett Pályi
- National Biosafety Laboratory, National Center for Public Health and Pharmacy, Budapest, Hungary
- Semmelweis University, Institute of Medical Microbiology, Budapest, Hungary
| | - Daniel Déri
- National Biosafety Laboratory, National Center for Public Health and Pharmacy, Budapest, Hungary
- Semmelweis University, Institute of Medical Microbiology, Budapest, Hungary
| | - Ludovic Karkowski
- CIRI, Centre International de Recherche en Infectiologie, INSERM U1111, CNRS, UMR5308, Univ Lyon, Université Claude Bernard Lyon, École Normale Supérieure de Lyon, Lyon, France
| | - Claudia Gonzalez
- CIRI, Centre International de Recherche en Infectiologie, INSERM U1111, CNRS, UMR5308, Univ Lyon, Université Claude Bernard Lyon, École Normale Supérieure de Lyon, Lyon, France
| | - Jennifer Skerra
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection research, Hanover, Germany
| | - Zoltán Kis
- National Biosafety Laboratory, National Center for Public Health and Pharmacy, Budapest, Hungary
- Semmelweis University, Institute of Medical Microbiology, Budapest, Hungary
- European Research Infrastructure on Highly Pathogenic Agents (ERINHA-AISBL), Brussels, Belgium
| | - Ulrich Kalinke
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection research, Hanover, Germany
| | - Branka Horvat
- CIRI, Centre International de Recherche en Infectiologie, INSERM U1111, CNRS, UMR5308, Univ Lyon, Université Claude Bernard Lyon, École Normale Supérieure de Lyon, Lyon, France
| | - Mathieu Iampietro
- CIRI, Centre International de Recherche en Infectiologie, INSERM U1111, CNRS, UMR5308, Univ Lyon, Université Claude Bernard Lyon, École Normale Supérieure de Lyon, Lyon, France
| |
Collapse
|
9
|
Kim HY, Seo IK, Hur DY. CD150‑dependent activation of EBV‑transformed B cells induces the differentiation of peripheral blood monocytes via the secretion of multiple cytokines. Int J Mol Med 2024; 54:79. [PMID: 39027993 PMCID: PMC11265835 DOI: 10.3892/ijmm.2024.5403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 06/25/2024] [Indexed: 07/20/2024] Open
Abstract
CD150, also termed signaling lymphocyte activation molecule family member 1, is a cell surface receptor expressed on T cells, B cells, dendritic cells (DCs) and some tumors. Stimulation of CD150 on immune cells induces cell proliferation and cytokine production. However, the function of CD150 in Epstein‑Barr virus (EBV)‑infected B cells is still not fully understood. In the present study, CD150 expression on B cells increased rapidly following EBV infection, and various CD150 antibodies, measles viral proteins and recombinant CD150 proteins induced the secretion of multiple cytokines in both CD150+ EBV‑transformed B cells and EBV+ lymphoma cells. Notably, the IL‑1α protein level showed the greatest increase among all cytokines measured. The culture supernatant containing these cytokines induced the rapid differentiation of monocytes to DCs after only 2 days in vitro, which was faster than the established DC maturation time. Furthermore, knockdown of CD150 expression led to a reduction in the secretion of multiple cytokines, and monocyte differentiation was partially inhibited by anti‑IL‑1α and anti‑granulocyte‑macrophage colony‑stimulating factor neutralizing antibodies. Collectively, the results of the present study suggest that CD150 activation triggers cytokine production in EBV‑transformed B cells, and that measles virus coinfection might affect immune responses through the production of various cytokines in EBV+ lymphoma cells.
Collapse
Affiliation(s)
- Hye Young Kim
- Department of Anatomy and Tumor Immunology, Inje University College of Medicine, Busan 47392, Republic of Korea
| | - Il Keung Seo
- Department of Anatomy and Tumor Immunology, Inje University College of Medicine, Busan 47392, Republic of Korea
| | - Dae Young Hur
- Department of Anatomy and Tumor Immunology, Inje University College of Medicine, Busan 47392, Republic of Korea
| |
Collapse
|
10
|
Kumar S, Singh S, Bansal V, Gupta V, Jain R. Unwelcome return: analyzing the recent rise of measles cases in the United States. Proc AMIA Symp 2024; 37:958-962. [PMID: 39440085 PMCID: PMC11492649 DOI: 10.1080/08998280.2024.2384019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/04/2024] [Accepted: 07/10/2024] [Indexed: 10/25/2024] Open
Abstract
Measles is a highly contagious viral illness mainly affecting the younger population worldwide despite the availability of a safe and effective vaccine. The disease is caused by measles virus, a member of the Paramyxoviridea family, which is transmitted through aerosols and respiratory droplets. Widespread vaccination has led to a significant decline in morbidity and mortality worldwide; however, recent years have witnessed a resurgence of outbreaks in the United States, highlighting barriers in achieving and sustaining elimination goals. The measles and rubella elimination initiative, under Immunization Agenda 2030, required at least 5 World Health Organization regions to achieve measles elimination by 2020, but none of the regions met these goals. Vaccine hesitancy, virus importation via international travel, and waning immunity are considered contributing factors to the recent surge of measles outbreaks. This review highlights the challenges in the pursuit of measles eradication and the importance of a multidimensional approach involving public health interventions.
Collapse
Affiliation(s)
- Siddharth Kumar
- Department of Internal Medicine, Lady Hardinge Medical College, New Delhi, India
| | | | - Vasu Bansal
- Department of Internal Medicine, Dayanand Medical College and Hospital, Ludhiana, Punjab, India
| | - Vasu Gupta
- Department of Internal Medicine, Cleveland Clinic Akron General, Akron, Ohio, USA
| | - Rohit Jain
- Department of Internal Medicine, Penn State Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA
| |
Collapse
|
11
|
Moss WJ, Griffin DE. What's going on with measles? J Virol 2024; 98:e0075824. [PMID: 39041786 PMCID: PMC11334507 DOI: 10.1128/jvi.00758-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024] Open
Abstract
Measles is a highly transmissible systemic viral infection associated with substantial mortality primarily due to secondary infections. Measles induces lifelong immunity to reinfection but loss of immunity to other pathogens. An attenuated live virus vaccine is highly effective, but lapses in delivery have resulted in increasing cases worldwide. Although the primary cause of failure to control measles is failure to vaccinate, waning vaccine-induced immunity and the possible emergence of more virulent virus strains may also contribute.
Collapse
Affiliation(s)
- William J. Moss
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Diane E. Griffin
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| |
Collapse
|
12
|
Acklin JA, Patel AR, Kurland AP, Horiuchi S, Moss AS, DeGrace EJ, Ikegame S, Carmichael J, Kowdle S, Thibault PA, Imai N, Ueno H, Tweel B, Johnson JR, Rosenberg BR, Lee B, Lim JK. Immunological landscape of human lymphoid explants during measles virus infection. JCI Insight 2024; 9:e172261. [PMID: 39253971 PMCID: PMC11385098 DOI: 10.1172/jci.insight.172261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/23/2024] [Indexed: 09/11/2024] Open
Abstract
In humans, lymph nodes are the primary site of measles virus (MeV) replication. To understand the immunological events that occur at this site, we infected human lymphoid tissue explants using a pathogenic strain of MeV that expresses GFP. We found that MeV infected 5%-15% of cells across donors. Using single-cell RNA-Seq and flow cytometry, we found that while most of the 29 cell populations identified in the lymphoid culture were susceptible to MeV, there was a broad preferential infection of B cells and reduced infection of T cells. Further subsetting of T cells revealed that this reduction may be driven by the decreased infection of naive T cells. Transcriptional changes in infected B cells were dominated by an interferon-stimulated gene (ISG) signature. To determine which of these ISGs were most substantial, we evaluated the proteome of MeV-infected Raji cells by mass spectrometry. We found that IFIT1, IFIT2, IFIT3, ISG15, CXCL10, MX2, and XAF1 proteins were the most highly induced and positively correlated with their expression in the transcriptome. These data provide insight into the immunological events that occur in lymph nodes during infection and may lead to the development of therapeutic interventions.
Collapse
Affiliation(s)
- Joshua A Acklin
- Department of Microbiology
- Graduate School of Biomedical Sciences, and
| | - Aum R Patel
- Department of Microbiology
- Graduate School of Biomedical Sciences, and
| | | | | | | | - Emma J DeGrace
- Department of Microbiology
- Graduate School of Biomedical Sciences, and
| | | | | | | | | | | | | | - Benjamin Tweel
- Department of Otolaryngology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | | | | | | | | |
Collapse
|
13
|
Anelone AJN, Clapham HE. Measles Infection Dose Responses: Insights from Mathematical Modeling. Bull Math Biol 2024; 86:85. [PMID: 38853189 PMCID: PMC11162976 DOI: 10.1007/s11538-024-01305-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 04/24/2024] [Indexed: 06/11/2024]
Abstract
How viral infections develop can change based on the number of viruses initially entering the body. The understanding of the impacts of infection doses remains incomplete, in part due to challenging constraints, and a lack of research. Gaining more insights is crucial regarding the measles virus (MV). The higher the MV infection dose, the earlier the peak of acute viremia, but the magnitude of the peak viremia remains almost constant. Measles is highly contagious, causes immunosuppression such as lymphopenia, and contributes substantially to childhood morbidity and mortality. This work investigated mechanisms underlying the observed wild-type measles infection dose responses in cynomolgus monkeys. We fitted longitudinal data on viremia using maximum likelihood estimation, and used the Akaike Information Criterion (AIC) to evaluate relevant biological hypotheses and their respective model parameterizations. The lowest AIC indicates a linear relationship between the infection dose, the initial viral load, and the initial number of activated MV-specific T cells. Early peak viremia is associated with high initial number of activated MV-specific T cells. Thus, when MV infection dose increases, the initial viremia and associated immune cell stimulation increase, and reduce the time it takes for T cell killing to be sufficient, thereby allowing dose-independent peaks for viremia, MV-specific T cells, and lymphocyte depletion. Together, these results suggest that the development of measles depends on virus-host interactions at the start and the efficiency of viral control by cellular immunity. These relationships are additional motivations for prevention, vaccination, and early treatment for measles.
Collapse
Affiliation(s)
- Anet J N Anelone
- Saw Swee Hock School of Public Health, National University of Singapore, 12 Science Drive 2, Singapore, 117549, Singapore.
| | - Hannah E Clapham
- Saw Swee Hock School of Public Health, National University of Singapore, 12 Science Drive 2, Singapore, 117549, Singapore.
| |
Collapse
|
14
|
Schmitz KS, Rennick LJ, Tilston-Lunel NL, Comvalius AD, Laksono BM, Geers D, van Run P, de Vries RD, de Swart RL, Duprex WP. Rational attenuation of canine distemper virus (CDV) to develop a morbillivirus animal model that mimics measles in humans. J Virol 2024; 98:e0185023. [PMID: 38415596 PMCID: PMC10949419 DOI: 10.1128/jvi.01850-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 02/05/2024] [Indexed: 02/29/2024] Open
Abstract
Morbilliviruses are members of the family Paramyxoviridae and are known for their ability to cause systemic disease in a variety of mammalian hosts. The prototypic morbillivirus, measles virus (MeV), infects humans and still causes morbidity and mortality in unvaccinated children and young adults. Experimental infection studies in non-human primates have contributed to the understanding of measles pathogenesis. However, ethical restrictions call for the development of new animal models. Canine distemper virus (CDV) infects a wide range of animals, including ferrets, and its pathogenesis shares many features with measles. However, wild-type CDV infection is almost always lethal, while MeV infection is usually self-limiting. Here, we made five recombinant CDVs, predicted to be attenuated, and compared their pathogenesis to the non-attenuated recombinant CDV in a ferret model. Three viruses were insufficiently attenuated based on clinical signs, fatality, and systemic infection, while one virus was too attenuated. The last candidate virus caused a self-limiting infection associated with transient viremia and viral dissemination to all lymphoid tissues, was shed transiently from the upper respiratory tract, and did not result in acute neurological signs. Additionally, an in-depth phenotyping of the infected white blood cells showed lower infection percentages in all lymphocyte subsets when compared to the non-attenuated CDV. In conclusion, infection models using this candidate virus mimic measles and can be used to study pathogenesis-related questions and to test interventions for morbilliviruses in a natural host species.IMPORTANCEMorbilliviruses are transmitted via the respiratory route but cause systemic disease. The viruses use two cellular receptors to infect myeloid, lymphoid, and epithelial cells. Measles virus (MeV) remains an important cause of morbidity and mortality in humans, requiring animal models to study pathogenesis or intervention strategies. Experimental MeV infections in non-human primates are restricted by ethical and practical constraints, and animal morbillivirus infections in natural host species have been considered as alternatives. Inoculation of ferrets with wild-type canine distemper virus (CDV) has been used for this purpose, but in most cases, the virus overwhelms the immune system and causes highly lethal disease. Introduction of an additional transcription unit and an additional attenuating point mutation in the polymerase yielded a candidate virus that caused self-limiting disease with transient viremia and virus shedding. This rationally attenuated CDV strain can be used for experimental morbillivirus infections in ferrets that reflect measles in humans.
Collapse
Affiliation(s)
| | - Linda J. Rennick
- Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Natasha L. Tilston-Lunel
- Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | | | | | - Daryl Geers
- Department of Viroscience, Erasmus MC, Rotterdam, the Netherlands
| | - Peter van Run
- Department of Viroscience, Erasmus MC, Rotterdam, the Netherlands
| | - Rory D. de Vries
- Department of Viroscience, Erasmus MC, Rotterdam, the Netherlands
| | - Rik L. de Swart
- Department of Viroscience, Erasmus MC, Rotterdam, the Netherlands
| | - W. Paul Duprex
- Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
15
|
Durnell LA, Hippee CE, Cattaneo R, Bartlett JA, Singh BK, Sinn PL. Interferon-independent processes constrain measles virus cell-to-cell spread in primary human airway epithelial cells. Microbiol Spectr 2023; 11:e0136123. [PMID: 37724882 PMCID: PMC10580916 DOI: 10.1128/spectrum.01361-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 07/27/2023] [Indexed: 09/21/2023] Open
Abstract
Amplification of measles virus (MeV) in human airway epithelia may contribute to its extremely high contagious nature. We use well-differentiated primary cultures of human airway epithelial cells (HAE) to model ex vivo how MeV spreads in human airways. In HAE, MeV spreads cell-to-cell for 3-5 days, but then, infectious center growth is arrested. What stops MeV spread in HAE is not understood, but interferon (IFN) is known to slow MeV spread in other in vitro and in vivo models. Here, we assessed the role of type I and type III IFN in arresting MeV spread in HAE. The addition of IFN-β or IFN-λ1 to the medium of infected HAE slowed MeV infectious center growth, but when IFN receptor signaling was blocked, infectious center size was not affected. In contrast, blocking type-I IFN receptor signaling enhanced respiratory syncytial virus spread. HAE were also infected with MeV mutants defective for the V protein. The V protein has been demonstrated to interact with both MDA5 and STAT2 to inhibit activation of innate immunity; however, innate immune reactions were unexpectedly muted against the V-defective MeV in HAE. Minimal innate immunity activation was confirmed by deep sequencing, quantitative RT-PCR, and single-cell RNA-seq analyses of the transcription of IFN and IFN-stimulated genes. We conclude that in HAE, IFN-signaling can contribute to slowing infectious center growth; however, IFN-independent processes are most important for limiting cell-to-cell spread. IMPORTANCE Fundamental biological questions remain about the highly contagious measles virus (MeV). MeV amplifies within airway epithelial cells before spreading to the next host. This final step likely contributes to the ability of MeV to spread host-to-host. Over the course of 3-5 days post-infection of airway epithelial cells, MeV spreads directly cell-to-cell and forms infectious centers. Infectious center formation is unique to MeV. In this study, we show that interferon (IFN) signaling does not explain why MeV cell-to-cell spread is ultimately impeded within the cell layer. The ability of MeV to spread cell-to-cell in airway cells without appreciable IFN induction may contribute to its highly contagious nature. This study contributes to the understanding of a significant global health concern by demonstrating that infectious center formation occurs independent of the simplest explanation for limiting viral transmission within a host.
Collapse
Affiliation(s)
- Lorellin A. Durnell
- Department of Microbiology and Immunology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| | - Camilla E. Hippee
- Department of Microbiology and Immunology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| | - Roberto Cattaneo
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Jennifer A. Bartlett
- Stead Family Department of Pediatrics, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| | - Brajesh K. Singh
- Stead Family Department of Pediatrics, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| | - Patrick L. Sinn
- Department of Microbiology and Immunology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
- Stead Family Department of Pediatrics, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
16
|
Roelofs D, Schmitz KS, van Amerongen G, Rijsbergen LC, Laksono BM, Comvalius AD, Nambulli S, Rennick LJ, van Run P, Duprex WP, van den Brand JMA, de Swart RL, de Vries RD. Inoculation of raccoons with a wild-type-based recombinant canine distemper virus results in viremia, lymphopenia, fever, and widespread histological lesions. mSphere 2023; 8:e0014423. [PMID: 37314205 PMCID: PMC10449507 DOI: 10.1128/msphere.00144-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 04/26/2023] [Indexed: 06/15/2023] Open
Abstract
Raccoons are naturally susceptible to canine distemper virus (CDV) infection and can be a potential source of spill-over events. CDV is a highly contagious morbillivirus that infects multiple species of carnivores and omnivores, resulting in severe and often fatal disease. Here, we used a recombinant CDV (rCDV) based on a full-genome sequence detected in a naturally infected raccoon to perform pathogenesis studies in raccoons. Five raccoons were inoculated intratracheally with a recombinant virus engineered to express a fluorescent reporter protein, and extensive virological, serological, histological, and immunohistochemical assessments were performed at different time points post inoculation. rCDV-infected white blood cells were detected as early as 4 days post inoculation (dpi). Raccoon necropsies at 6 and 8 dpi revealed replication in the lymphoid tissues, preceding spread into peripheral tissues observed during necropsies at 21 dpi. Whereas lymphocytes, and to a lesser extent myeloid cells, were the main target cells of CDV at early time points, CDV additionally targeted epithelia at 21 dpi. At this later time point, CDV-infected cells were observed throughout the host. We observed lymphopenia and lymphocyte depletion from lymphoid tissues after CDV infection, in the absence of detectable CDV neutralizing antibodies and an impaired ability to clear CDV, indicating that the animals were severely immunosuppressed. The use of a wild-type-based recombinant virus in a natural host species infection study allowed systematic and sensitive assessment of antigen detection by immunohistochemistry, enabling further comparative pathology studies of CDV infection in different species. IMPORTANCE Expansion of the human interface supports increased interactions between humans and peridomestic species like raccoons. Raccoons are highly susceptible to canine distemper virus (CDV) and are considered an important target species. Spill-over events are increasingly likely, potentially resulting in fatal CDV infections in domestic and free ranging carnivores. CDV also poses a threat for (non-human) primates, as massive outbreaks in macaque colonies were reported. CDV pathogenesis was studied by experimental inoculation of several species, but pathogenesis in raccoons was not properly studied. Recently, we generated a recombinant virus based on a full-genome sequence detected in a naturally infected raccoon. Here, we studied CDV pathogenesis in its natural host species and show that distemper completely overwhelms the immune system and spreads to virtually all tissues, including the central nervous system. Despite this, raccoons survived up to 21 d post inoculation with long-term shedding, supporting an important role of raccoons as host species for CDV.
Collapse
Affiliation(s)
- Dagmar Roelofs
- Division of Pathology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | | | | | | | | | | | - Sham Nambulli
- Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Linda J. Rennick
- Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Peter van Run
- Department of Viroscience, Erasmus MC, Rotterdam, Netherlands
| | - W. Paul Duprex
- Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | | | - Rik L. de Swart
- Department of Viroscience, Erasmus MC, Rotterdam, Netherlands
| | | |
Collapse
|
17
|
Peart Akindele NA, Katamoni LD, Brockhurst J, Ghimire S, Suwanmanee S, Pieterse L, Metcalf Pate KA, Bunyan E, Bannister R, Cihlar T, Porter DP, Griffin DE. Effect of remdesivir post-exposure prophylaxis and treatment on pathogenesis of measles in rhesus macaques. Sci Rep 2023; 13:6463. [PMID: 37081035 PMCID: PMC10116456 DOI: 10.1038/s41598-023-33572-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 04/14/2023] [Indexed: 04/22/2023] Open
Abstract
Measles is a systemic disease initiated in the respiratory tract with widespread measles virus (MeV) infection of lymphoid tissue. Mortality can be substantial, but no licensed antiviral therapy is available. We evaluated both post-exposure prophylaxis and treatment with remdesivir, a broad-spectrum antiviral, using a well-characterized rhesus macaque model of measles. Animals were treated with intravenous remdesivir for 12 days beginning either 3 days after intratracheal infection (post-exposure prophylaxis, PEP) or 11 days after infection at the onset of disease (late treatment, LT). As PEP, remdesivir lowered levels of viral RNA in peripheral blood mononuclear cells, but RNA rebounded at the end of the treatment period and infectious virus was continuously recoverable. MeV RNA was cleared more rapidly from lymphoid tissue, was variably detected in the respiratory tract, and not detected in urine. PEP did not improve clinical disease nor lymphopenia and reduced the antibody response to infection. In contrast, LT had little effect on levels of viral RNA or the antibody response but also did not decrease clinical disease. Therefore, remdesivir transiently suppressed expression of viral RNA and limited dissemination when provided as PEP, but virus was not cleared and resumed replication without improvement in the clinical disease parameters evaluated.
Collapse
Affiliation(s)
- Nadine A Peart Akindele
- Division of Pediatric Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD, 21218, USA
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe St, Rm E5636, Baltimore, MD, 21205, USA
- United States Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - Laharika Dasharath Katamoni
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe St, Rm E5636, Baltimore, MD, 21205, USA
- Zanvyl Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD, 21205, USA
- BioCheck, Inc., South San Francisco, CA, 94080, USA
| | - Jacqueline Brockhurst
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe St, Rm E5636, Baltimore, MD, 21205, USA
- Department of Molecular and Comparative Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21218, USA
| | - Shristi Ghimire
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe St, Rm E5636, Baltimore, MD, 21205, USA
| | - San Suwanmanee
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe St, Rm E5636, Baltimore, MD, 21205, USA
- Department of Epidemiology, Faculty of Public Health, Mahidol University, Bangkok, Thailand
| | - Lisa Pieterse
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe St, Rm E5636, Baltimore, MD, 21205, USA
| | - Kelly A Metcalf Pate
- Department of Molecular and Comparative Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21218, USA
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | | | | | - Tomas Cihlar
- Gilead Sciences Inc., Foster City, CA, 94404, USA
| | | | - Diane E Griffin
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe St, Rm E5636, Baltimore, MD, 21205, USA.
| |
Collapse
|
18
|
Dogadov DI, Kyuregyan KK, Goncharenko AM, Mikhailov MI. Measles in non-human primates. J Med Primatol 2023; 52:135-143. [PMID: 36440505 DOI: 10.1111/jmp.12630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/07/2022] [Accepted: 11/17/2022] [Indexed: 11/29/2022]
Abstract
It is six decades since the measles vaccine was first introduced, and yet we continue to see frequent outbreaks of this disease occurring all over the world. Many non-human primate (NHP) species, including apes, are susceptible to the measles virus. Spontaneous measles outbreaks have been described in a number of zoos and primate centers worldwide. Research into the spontaneous and experimental infection of laboratory primates with measles represents an invaluable source of information regarding the biology and pathogenesis of this virus and continues to be an irreplaceable and unique tool for testing vaccines and treatments. The purpose of this literature review is to summarize and analyze published data on the circulation of the measles virus among free-living synanthropic and captive primate populations, as well as the results of experiments that have modeled this infection in NHPs.
Collapse
Affiliation(s)
- Dmitriy I Dogadov
- Research Institute of Medical Primatology of the Ministry of Education and Science of Russia, Sochi, Russia
| | - Karen K Kyuregyan
- I.I. Mechnikov Research Institute of Vaccines and Sera, Moscow, Russia.,Russian Medical Academy of Continuous Professional Education of the Ministry of Health of Russia, Moscow, Russia
| | - Alexandra M Goncharenko
- Research Institute of Medical Primatology of the Ministry of Education and Science of Russia, Sochi, Russia
| | - Mikhail I Mikhailov
- I.I. Mechnikov Research Institute of Vaccines and Sera, Moscow, Russia.,Russian Medical Academy of Continuous Professional Education of the Ministry of Health of Russia, Moscow, Russia
| |
Collapse
|
19
|
Chludzinski E, Ciurkiewicz M, Stoff M, Klemens J, Krüger J, Shin DL, Herrler G, Beineke A. Canine Distemper Virus Alters Defense Responses in an Ex Vivo Model of Pulmonary Infection. Viruses 2023; 15:v15040834. [PMID: 37112814 PMCID: PMC10144441 DOI: 10.3390/v15040834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/18/2023] [Accepted: 03/22/2023] [Indexed: 04/29/2023] Open
Abstract
Canine distemper virus (CDV), belonging to the genus Morbillivirus, is a highly contagious pathogen. It is infectious in a wide range of host species, including domestic and wildlife carnivores, and causes severe systemic disease with involvement of the respiratory tract. In the present study, canine precision-cut lung slices (PCLSs) were infected with CDV (strain R252) to investigate temporospatial viral loads, cell tropism, ciliary activity, and local immune responses during early infection ex vivo. Progressive viral replication was observed during the infection period in histiocytic and, to a lesser extent, epithelial cells. CDV-infected cells were predominantly located within the bronchial subepithelial tissue. Ciliary activity was reduced in CDV-infected PCLSs, while viability remained unchanged when compared to controls. MHC-II expression was increased in the bronchial epithelium on day three postinfection. Elevated levels of anti-inflammatory cytokines (interleukin-10 and transforming growth factor-β) were observed in CDV-infected PCLSs on day one postinfection. In conclusion, the present study demonstrates that PCLSs are permissive for CDV. The model reveals an impaired ciliary function and an anti-inflammatory cytokine response, potentially fostering viral replication in the lung during the early phase of canine distemper.
Collapse
Affiliation(s)
- Elisa Chludzinski
- Department of Pathology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
- Center for Systems Neuroscience (ZSN), 30559 Hannover, Germany
| | - Małgorzata Ciurkiewicz
- Department of Pathology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Melanie Stoff
- Department of Pathology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Johanna Klemens
- Department of Pathology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Johannes Krüger
- Department of Pathology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Dai-Lun Shin
- Institute of Virology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung Hsing University, Taichung 402, Taiwan
| | - Georg Herrler
- Institute of Virology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Andreas Beineke
- Department of Pathology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
- Center for Systems Neuroscience (ZSN), 30559 Hannover, Germany
| |
Collapse
|
20
|
Schmitz KS, Eblé PL, van Gennip RGP, Maris-Veldhuis MA, de Vries RD, van Keulen LJM, de Swart RL, van Rijn PA. Pathogenesis of wild-type- and vaccine-based recombinant peste des petits ruminants virus (PPRV) expressing EGFP in experimentally infected domestic goats. J Gen Virol 2023; 104. [PMID: 36757863 DOI: 10.1099/jgv.0.001828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
Abstract
Peste des petits ruminants virus (PPRV) is a highly contagious morbillivirus related to measles and canine distemper virus, mostly affecting small ruminants. The corresponding PPR disease has a high clinical impact in goats and is characterized by fever, oral and nasal erosions, diarrhoea and pneumonia. In addition, massive infection of lymphoid tissues causes lymphopaenia and immune suppression. This results in increased susceptibility to secondary bacterial infections, explaining the observed high mortality in some outbreaks. We studied the pathogenesis of PPR by experimental inoculation of Dutch domestic goats with a recombinant virulent PPRV strain modified to express EGFP and compared it to an EGFP-expressing vaccine strain of PPRV. After intratracheal inoculation with virulent PPRV, animals developed fever, viraemia and leucopaenia, and shed virus from the respiratory and gastro-intestinal tracts. Macroscopic evaluation of fluorescence at the peak of infection 7 days post-inoculation (dpi) showed prominent PPRV infection of the respiratory tract, lymphoid tissues, gastro-intestinal tract, mucosae and skin. Flow cytometry of PBMCs collected over time demonstrated a cell-associated viraemia mediated by infected lymphocytes. At 14 dpi, pathognomonic zebra stripes were detected in the mucosa of the large intestine. In contrast, vaccine strain-inoculated goats remained largely macroscopically fluorescence negative and did not present clinical signs. A low-level viraemia was detected by flow cytometry, but at necropsy no histological lesions were observed. Animals from both groups seroconverted as early as 7 dpi and sera efficiently neutralized virulent PPRV in vitro. Combined, this work presents a study of the pathogenesis of wild type- and vaccine-based PPRV in its natural host. This study shows the strength of recombinant EGFP-expressing viruses in fluorescence-guided pathogenesis studies.
Collapse
Affiliation(s)
| | - Phaedra L Eblé
- Department of Virology, Wageningen Bioveterinary Research, Lelystad, Netherlands
| | - René G P van Gennip
- Department of Virology, Wageningen Bioveterinary Research, Lelystad, Netherlands
| | | | - Rory D de Vries
- Department of Viroscience, Erasmus MC, Rotterdam, Netherlands
| | - Lucien J M van Keulen
- Department of Infection Biology, Wageningen Bioveterinary Research, Lelystad, Netherlands
| | - Rik L de Swart
- Department of Viroscience, Erasmus MC, Rotterdam, Netherlands.,Department of Virology, Wageningen Bioveterinary Research, Lelystad, Netherlands
| | - Piet A van Rijn
- Department of Virology, Wageningen Bioveterinary Research, Lelystad, Netherlands.,Department of Biochemistry, Centre of Human Metabolomics, North-West University, Potchefstroom, South Africa
| |
Collapse
|
21
|
Shirogane Y. [RNA Virus Pathogenicity, Evolution, and Intrapopulation Interaction]. Uirusu 2023; 73:95-104. [PMID: 39343534 DOI: 10.2222/jsv.73.95] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Measles virus (MeV), the causative agent of measles, can persist in the brain and cause a fatal neurodegenerative disease, subacute sclerosing panencephalitis (SSPE). Because wild-type MeV is not neurotropic, the virus is thought to evolve and acquire neuropathogenicity to cause SSPE. Our recent studies have shown that MeV acquires hyperfusogenic mutations in the fusion (F) gene that confer the ability to use cell adhesion molecule 1 (CADM1) and CADM2 as cis-acting receptor mimicking molecules and allow MeV to spread in neurons. Furthermore, under these conditions, multiple MeV genomes, rather than a single one, are likely to be transmitted transsynaptically between neurons through cell-cell fusion. Therefore, F proteins encoded by different genomes are co-expressed in infected cells, and positive and negative functional interactions between them can occur. These interactions determine the ability of the virus to spread in neurons as a population. In this article, we describe our studies to understand the mechanism by which MeV acquires neuropathogenicity in SSPE.
Collapse
Affiliation(s)
- Yuta Shirogane
- Department of Virology, Faculty of Medicine, Kyushu University
| |
Collapse
|
22
|
Seki F, Takeda M. Novel and classical morbilliviruses: Current knowledge of three divergent morbillivirus groups. Microbiol Immunol 2022; 66:552-563. [PMID: 36151905 DOI: 10.1111/1348-0421.13030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/30/2022] [Accepted: 09/23/2022] [Indexed: 12/24/2022]
Abstract
Currently, seven species of morbillivirus have been classified. Six of these species (Measles morbillivirus, Rinderpest morbillivirus, Small ruminant morbillivirus, Canine morbillivirus, Phocine morbillivirus, and Cetacean morbillivirus) are highly infectious and cause serious systemic diseases in humans, livestock, domestic dogs, and wild animals. These species commonly use the host proteins signaling lymphocytic activation molecule (SLAM) and nectin-4 as receptors, and this usage contributes to their virulence. The seventh species (Feline morbillivirus: FeMV) is phylogenetically divergent from the six SLAM-using species. FeMV differs from the SLAM-using morbillivirus group in pathogenicity and infectivity, and is speculated to use non-SLAM receptors. Recently, novel species of morbilliviruses have been discovered in bats, rodents, and domestic pigs. Because the ability to use SLAM and nectin-4 is closely related to the infectivity and pathogenicity of morbilliviruses, investigation of the potential usage of these receptors is useful for estimating infectivity and pathogenicity. The SLAM-binding sites in the receptor-binding protein show high similarity among the SLAM-using morbilliviruses. This feature may help to estimate whether novel morbillivirus species can use SLAM as a receptor. A novel morbillivirus species isolated from wild mice diverged from the classified morbilliviruses in the phylogenetic tree, forming a third group separate from the SLAM-using morbillivirus group and FeMV. This suggests that the novel rodent morbillivirus may exhibit a different risk from the SLAM-using morbillivirus group, and analyses of its viral pathogenicity and infectivity toward humans are warranted.
Collapse
Affiliation(s)
- Fumio Seki
- Department of Virology 3, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan
| | - Makoto Takeda
- Department of Virology 3, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan
| |
Collapse
|
23
|
Amurri L, Reynard O, Gerlier D, Horvat B, Iampietro M. Measles Virus-Induced Host Immunity and Mechanisms of Viral Evasion. Viruses 2022; 14:v14122641. [PMID: 36560645 PMCID: PMC9781438 DOI: 10.3390/v14122641] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/15/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
The immune system deploys a complex network of cells and signaling pathways to protect host integrity against exogenous threats, including measles virus (MeV). However, throughout its evolutionary path, MeV developed various mechanisms to disrupt and evade immune responses. Despite an available vaccine, MeV remains an important re-emerging pathogen with a continuous increase in prevalence worldwide during the last decade. Considerable knowledge has been accumulated regarding MeV interactions with the innate immune system through two antagonistic aspects: recognition of the virus by cellular sensors and viral ability to inhibit the induction of the interferon cascade. Indeed, while the host could use several innate adaptors to sense MeV infection, the virus is adapted to unsettle defenses by obstructing host cell signaling pathways. Recent works have highlighted a novel aspect of innate immune response directed against MeV unexpectedly involving DNA-related sensing through activation of the cGAS/STING axis, even in the absence of any viral DNA intermediate. In addition, while MeV infection most often causes a mild disease and triggers a lifelong immunity, its tropism for invariant T-cells and memory T and B-cells provokes the elimination of one primary shield and the pre-existing immunity against previously encountered pathogens, known as "immune amnesia".
Collapse
Affiliation(s)
- Lucia Amurri
- Centre International de Recherche en Infectiologie (CIRI), Team Immunobiology of Viral infections, Univ Lyon, Inserm, U1111, CNRS, UMR5308, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, 21 Avenue Tony Garnier, 69007 Lyon, France
| | - Olivier Reynard
- Centre International de Recherche en Infectiologie (CIRI), Team Immunobiology of Viral infections, Univ Lyon, Inserm, U1111, CNRS, UMR5308, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, 21 Avenue Tony Garnier, 69007 Lyon, France
| | - Denis Gerlier
- Centre International de Recherche en Infectiologie (CIRI), Team Neuro-Invasion, TROpism and VIRal Encephalitis, Univ Lyon, Inserm, U1111, CNRS, UMR5308, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, 69007 Lyon, France
| | - Branka Horvat
- Centre International de Recherche en Infectiologie (CIRI), Team Immunobiology of Viral infections, Univ Lyon, Inserm, U1111, CNRS, UMR5308, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, 21 Avenue Tony Garnier, 69007 Lyon, France
| | - Mathieu Iampietro
- Centre International de Recherche en Infectiologie (CIRI), Team Immunobiology of Viral infections, Univ Lyon, Inserm, U1111, CNRS, UMR5308, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, 21 Avenue Tony Garnier, 69007 Lyon, France
- Correspondence:
| |
Collapse
|
24
|
Reynard O, Gonzalez C, Dumont C, Iampietro M, Ferren M, Le Guellec S, Laurie L, Mathieu C, Carpentier G, Roseau G, Bovier FT, Zhu Y, Le Pennec D, Montharu J, Addetia A, Greninger AL, Alabi CA, Brisebard E, Moscona A, Vecellio L, Porotto M, Horvat B. Nebulized fusion inhibitory peptide protects cynomolgus macaques from measles virus infection. Nat Commun 2022; 13:6439. [PMID: 36307480 PMCID: PMC9616412 DOI: 10.1038/s41467-022-33832-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 10/03/2022] [Indexed: 12/25/2022] Open
Abstract
Measles is the most contagious airborne viral infection and the leading cause of child death among vaccine-preventable diseases. We show here that aerosolized lipopeptide fusion inhibitor, derived from heptad-repeat regions of the measles virus (MeV) fusion protein, blocks respiratory MeV infection in a non-human primate model, the cynomolgus macaque. We use a custom-designed mesh nebulizer to ensure efficient aerosol delivery of peptide to the respiratory tract and demonstrate the absence of adverse effects and lung pathology in macaques. The nebulized peptide efficiently prevents MeV infection, resulting in the complete absence of MeV RNA, MeV-infected cells, and MeV-specific humoral responses in treated animals. This strategy provides an additional means to fight against respiratory infection in non-vaccinated people, that can be readily translated to human trials. It presents a proof-of-concept for the aerosol delivery of fusion inhibitory peptides to protect against measles and other airborne viruses, including SARS-CoV-2, in case of high-risk exposure.
Collapse
Affiliation(s)
- Olivier Reynard
- CIRI, Centre International de Recherche en Infectiologie, INSERM U1111, CNRS, UMR5308, Univ Lyon, Université Claude Bernard Lyon 1, École Normale Supérieure de Lyon, 21 Avenue Tony Garnier, 69007, Lyon, France
| | - Claudia Gonzalez
- CIRI, Centre International de Recherche en Infectiologie, INSERM U1111, CNRS, UMR5308, Univ Lyon, Université Claude Bernard Lyon 1, École Normale Supérieure de Lyon, 21 Avenue Tony Garnier, 69007, Lyon, France
| | - Claire Dumont
- CIRI, Centre International de Recherche en Infectiologie, INSERM U1111, CNRS, UMR5308, Univ Lyon, Université Claude Bernard Lyon 1, École Normale Supérieure de Lyon, 21 Avenue Tony Garnier, 69007, Lyon, France
| | - Mathieu Iampietro
- CIRI, Centre International de Recherche en Infectiologie, INSERM U1111, CNRS, UMR5308, Univ Lyon, Université Claude Bernard Lyon 1, École Normale Supérieure de Lyon, 21 Avenue Tony Garnier, 69007, Lyon, France
| | - Marion Ferren
- CIRI, Centre International de Recherche en Infectiologie, INSERM U1111, CNRS, UMR5308, Univ Lyon, Université Claude Bernard Lyon 1, École Normale Supérieure de Lyon, 21 Avenue Tony Garnier, 69007, Lyon, France
| | - Sandrine Le Guellec
- DTF-Aerodrug, R&D aerosolltherapy department of DTF medical (Saint Etienne, France), Faculté de médecine, Université de Tours, 37032, Tours, France
| | - Lajoie Laurie
- Université de Tours, Institut national de recherche pour l'agriculture, l'alimentation et l'environnement (INRAe), UMR1282, Infectiologie et santé publique (ISP), Tours, France
| | - Cyrille Mathieu
- CIRI, Centre International de Recherche en Infectiologie, INSERM U1111, CNRS, UMR5308, Univ Lyon, Université Claude Bernard Lyon 1, École Normale Supérieure de Lyon, 21 Avenue Tony Garnier, 69007, Lyon, France
| | | | | | - Francesca T Bovier
- Center for Host-Pathogen Interaction, Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Yun Zhu
- Center for Host-Pathogen Interaction, Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Laboratory of Infection and Virology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Deborah Le Pennec
- INSERM, Research Center for Respiratory Diseases, CEPR U1100, Université de Tours, 37032, Tours, France
| | | | - Amin Addetia
- Department of Laboratory Medicine and Pathology, University of Washington Medical Center, Seattle, WA, USA
| | - Alexander L Greninger
- Department of Laboratory Medicine and Pathology, University of Washington Medical Center, Seattle, WA, USA
| | - Christopher A Alabi
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA
| | | | - Anne Moscona
- Center for Host-Pathogen Interaction, Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Department of Microbiology and Immunology, Columbia University Vagelos College of Physicians & Surgeons, New York, NY, USA
- Department of Physiology & Cellular Biophysics, Columbia University Vagelos College of Physicians & Surgeons, New York, NY, USA
| | | | - Matteo Porotto
- Center for Host-Pathogen Interaction, Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Department of Experimental Medicine, University of Studies of Campania 'Luigi Vanvitelli', Naples, Italy
| | - Branka Horvat
- CIRI, Centre International de Recherche en Infectiologie, INSERM U1111, CNRS, UMR5308, Univ Lyon, Université Claude Bernard Lyon 1, École Normale Supérieure de Lyon, 21 Avenue Tony Garnier, 69007, Lyon, France.
| |
Collapse
|
25
|
FeMV is a cathepsin-dependent unique morbillivirus infecting the kidneys of domestic cats. Proc Natl Acad Sci U S A 2022; 119:e2209405119. [PMID: 36251995 PMCID: PMC9618091 DOI: 10.1073/pnas.2209405119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Feline morbillivirus (FeMV) is a recently discovered pathogen of domestic cats and has been classified as a morbillivirus in the Paramyxovirus family. We determined the complete sequence of FeMVUS5 directly from an FeMV-positive urine sample without virus isolation or cell passage. Sequence analysis of the viral genome revealed potential divergence from characteristics of archetypal morbilliviruses. First, the virus lacks the canonical polybasic furin cleavage signal in the fusion (F) glycoprotein. Second, conserved amino acids in the hemagglutinin (H) glycoprotein used by all other morbilliviruses for binding and/or fusion activation with the cellular receptor CD150 (signaling lymphocyte activation molecule [SLAM]/F1) are absent. We show that, despite this sequence divergence, FeMV H glycoprotein uses feline CD150 as a receptor and cannot use human CD150. We demonstrate that the protease responsible for cleaving the FeMV F glycoprotein is a cathepsin, making FeMV a unique morbillivirus and more similar to the closely related zoonotic Nipah and Hendra viruses. We developed a reverse genetics system for FeMVUS5 and generated recombinant viruses expressing Venus fluorescent protein from an additional transcription unit located either between the phospho-protein (P) and matrix (M) genes or the H and large (L) genes of the genome. We used these recombinant FeMVs to establish a natural infection and demonstrate that FeMV causes an acute morbillivirus-like disease in the cat. Virus was shed in the urine and detectable in the kidneys at later time points. This opens the door for long-term studies to address the postulated role of this morbillivirus in the development of chronic kidney disease.
Collapse
|
26
|
A Morbillivirus Infection Shifts DC Maturation Toward a Tolerogenic Phenotype to Suppress T Cell Activation. J Virol 2022; 96:e0124022. [PMID: 36094317 PMCID: PMC9517701 DOI: 10.1128/jvi.01240-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Viruses have evolved numerous strategies to impair immunity so that they can replicate more efficiently. Among those, the immunosuppressive effects of morbillivirus infection can be particularly problematic, as they allow secondary infections to take hold in the host, worsening disease prognosis. In the present work, we hypothesized that the highly contagious morbillivirus peste des petits ruminants virus (PPRV) could target monocytes and dendritic cells (DC) to contribute to the immunosuppressive effects produced by the infection. Monocytes isolated from healthy sheep, a natural host of the disease, were able be infected by PPRV and this impaired the differentiation and phagocytic ability of immature monocyte-derived DC (MoDC). We also assessed PPRV capacity to infect differentiated MoDC. Ovine MoDC could be productively infected by PPRV, and this drastically reduced MoDC capacity to activate allogeneic T cell responses. Transcriptomic analysis of infected MoDC indicated that several tolerogenic DC signature genes were upregulated upon PPRV infection. Furthermore, PPRV-infected MoDC could impair the proliferative response of autologous CD4+ and CD8+ T cell to the mitogen concanavalin A (ConA), which indicated that DC targeting by the virus could promote immunosuppression. These results shed new light on the mechanisms employed by morbillivirus to suppress the host immune responses. IMPORTANCE Morbilliviruses pose a threat to global health given their high infectivity. The morbillivirus peste des petits ruminants virus (PPRV) severely affects small-ruminant-productivity and leads to important economic losses in communities that rely on these animals for subsistence. PPRV produces in the infected host a period of severe immunosuppression that opportunistic pathogens exploit, which worsens the course of the infection. The mechanisms of PPRV immunosuppression are not fully understood. In the present work, we demonstrate that PPRV can infect professional antigen-presenting cells called dendritic cells (DC) and disrupt their capacity to elicit an immune response. PPRV infection promoted a DC activation profile that favored the induction of tolerance instead of the activation of an antiviral immune response. These results shed new light on the mechanisms employed by morbilliviruses to suppress the immune responses.
Collapse
|
27
|
Reynard O, Gonzalez C, Dumont C, Iampietro M, Ferren M, Le Guellec S, Laurie L, Mathieu C, Carpentier G, Roseau G, Bovier FT, Zhu Y, Le Pennec D, Montharu J, Addetia A, Greninger AL, Alabi CA, Moscona A, Vecellio L, Porotto M, Horvat B. Nebulized fusion inhibitory peptide protects cynomolgus macaques from measles virus infection. RESEARCH SQUARE 2022:rs.3.rs-1700877. [PMID: 35677066 PMCID: PMC9176655 DOI: 10.21203/rs.3.rs-1700877/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Measles is the most contagious airborne viral infection and the leading cause of child death among vaccine-preventable diseases. We show here that aerosolized lipopeptide fusion inhibitors, derived from heptad-repeat regions of the measles virus (MeV) fusion protein, block respiratory MeV infection in a non-human primate model, the cynomolgus macaque. We used a custom-designed mesh nebulizer to ensure efficient aerosol delivery of peptides to the respiratory tract and demonstrated the absence of adverse effects and lung pathology in macaques. The nebulized peptide efficiently prevented MeV infection, resulting in the complete absence of MeV RNA, MeV-infected cells, and MeV-specific humoral responses in treated animals. This strategy provides an additional shield which complements vaccination to fight against respiratory infection, presenting a proof-of-concept for the aerosol delivery of fusion inhibitory peptides to protect against measles and other airborne viruses, including SARS-CoV-2, in case of high-risk exposure, that can be readily translated to human trials.
Collapse
Affiliation(s)
- Olivier Reynard
- CIRI, Centre International de Recherche en Infectiologie, INSERM U1111, CNRS, UMR5308, Univ Lyon, Université Claude Bernard Lyon 1, École Normale Supérieure de Lyon, 21 Avenue Tony Garnier, 69007 Lyon, France
| | - Claudia Gonzalez
- CIRI, Centre International de Recherche en Infectiologie, INSERM U1111, CNRS, UMR5308, Univ Lyon, Université Claude Bernard Lyon 1, École Normale Supérieure de Lyon, 21 Avenue Tony Garnier, 69007 Lyon, France
| | - Claire Dumont
- CIRI, Centre International de Recherche en Infectiologie, INSERM U1111, CNRS, UMR5308, Univ Lyon, Université Claude Bernard Lyon 1, École Normale Supérieure de Lyon, 21 Avenue Tony Garnier, 69007 Lyon, France
| | - Mathieu Iampietro
- CIRI, Centre International de Recherche en Infectiologie, INSERM U1111, CNRS, UMR5308, Univ Lyon, Université Claude Bernard Lyon 1, École Normale Supérieure de Lyon, 21 Avenue Tony Garnier, 69007 Lyon, France
| | - Marion Ferren
- CIRI, Centre International de Recherche en Infectiologie, INSERM U1111, CNRS, UMR5308, Univ Lyon, Université Claude Bernard Lyon 1, École Normale Supérieure de Lyon, 21 Avenue Tony Garnier, 69007 Lyon, France
| | - Sandrine Le Guellec
- DTF-Aerodrug, R&D aerosolltherapy department of DTF medical (Saint Etienne, France), Faculté de médecine, Université de Tours, 37032 Tours, France
| | - Lajoie Laurie
- Université de Tours, Institut national de recherche pour l’agriculture, l’alimentation et l’environnement (INRAe), UMR1282, Infectiologie et santé publique (ISP), Tours, France
| | - Cyrille Mathieu
- CIRI, Centre International de Recherche en Infectiologie, INSERM U1111, CNRS, UMR5308, Univ Lyon, Université Claude Bernard Lyon 1, École Normale Supérieure de Lyon, 21 Avenue Tony Garnier, 69007 Lyon, France
| | | | | | - Francesca T. Bovier
- Center for Host-Pathogen Interaction, Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Yun Zhu
- Center for Host-Pathogen Interaction, Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA.,Laboratory of Infection and Virology, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing 100045, China
| | - Deborah Le Pennec
- INSERM, Research Center for Respiratory Diseases, CEPR U1100, Université de Tours, 37032 Tours, France
| | | | - Amin Addetia
- Department of Laboratory Medicine and Pathology, University of Washington Medical Center, Seattle, WA, USA
| | - Alexander L. Greninger
- Department of Laboratory Medicine and Pathology, University of Washington Medical Center, Seattle, WA, USA
| | - Christopher A. Alabi
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York, USA
| | - Anne Moscona
- Center for Host-Pathogen Interaction, Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA.,Department of Microbiology and Immunology, Columbia University Vagelos College of Physicians & Surgeons, New York, NY, USA.,Department of Physiology & Cellular Biophysics, Columbia University Vagelos College of Physicians & Surgeons, New York, NY, USA
| | | | - Matteo Porotto
- Center for Host-Pathogen Interaction, Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA.,Department of Experimental Medicine, University of Studies of Campania ‘Luigi Vanvitelli’, Naples, Italy
| | - Branka Horvat
- CIRI, Centre International de Recherche en Infectiologie, INSERM U1111, CNRS, UMR5308, Univ Lyon, Université Claude Bernard Lyon 1, École Normale Supérieure de Lyon, 21 Avenue Tony Garnier, 69007 Lyon, France
| |
Collapse
|
28
|
Schmitz KS, Lange MV, Gommers L, Handrejk K, Porter DP, Alabi CA, Moscona A, Porotto M, de Vries RD, de Swart RL. Repurposing an In Vitro Measles Virus Dissemination Assay for Screening of Antiviral Compounds. Viruses 2022; 14:v14061186. [PMID: 35746658 PMCID: PMC9230603 DOI: 10.3390/v14061186] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 05/25/2022] [Accepted: 05/25/2022] [Indexed: 02/04/2023] Open
Abstract
Measles virus (MV) is a highly contagious respiratory virus responsible for outbreaks associated with significant morbidity and mortality among children and young adults. Although safe and effective measles vaccines are available, the COVID-19 pandemic has resulted in vaccination coverage gaps that may lead to the resurgence of measles when restrictions are lifted. This puts individuals who cannot be vaccinated, such as young infants and immunocompromised individuals, at risk. Therapeutic interventions are complicated by the long incubation time of measles, resulting in a narrow treatment window. At present, the only available WHO-advised option is treatment with intravenous immunoglobulins, although this is not approved as standard of care. Antivirals against measles may contribute to intervention strategies to limit the impact of future outbreaks. Here, we review previously described antivirals and antiviral assays, evaluate the antiviral efficacy of a number of compounds to inhibit MV dissemination in vitro, and discuss potential application in specific target populations. We conclude that broadly reactive antivirals could strengthen existing intervention strategies to limit the impact of measles outbreaks.
Collapse
Affiliation(s)
- Katharina S. Schmitz
- Department of Viroscience, Erasmus MC, 3015 GD Rotterdam, The Netherlands; (K.S.S.); (M.V.L.); (L.G.); (K.H.); (R.D.d.V.)
| | - Mona V. Lange
- Department of Viroscience, Erasmus MC, 3015 GD Rotterdam, The Netherlands; (K.S.S.); (M.V.L.); (L.G.); (K.H.); (R.D.d.V.)
| | - Lennert Gommers
- Department of Viroscience, Erasmus MC, 3015 GD Rotterdam, The Netherlands; (K.S.S.); (M.V.L.); (L.G.); (K.H.); (R.D.d.V.)
| | - Kim Handrejk
- Department of Viroscience, Erasmus MC, 3015 GD Rotterdam, The Netherlands; (K.S.S.); (M.V.L.); (L.G.); (K.H.); (R.D.d.V.)
| | | | - Christopher A. Alabi
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14850, USA;
| | - Anne Moscona
- Department of Pediatrics, Columbia University Medical Center, New York, NY 10032, USA; (A.M.); (M.P.)
- Center for Host–Pathogen Interaction, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Matteo Porotto
- Department of Pediatrics, Columbia University Medical Center, New York, NY 10032, USA; (A.M.); (M.P.)
- Center for Host–Pathogen Interaction, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy
| | - Rory D. de Vries
- Department of Viroscience, Erasmus MC, 3015 GD Rotterdam, The Netherlands; (K.S.S.); (M.V.L.); (L.G.); (K.H.); (R.D.d.V.)
| | - Rik L. de Swart
- Department of Viroscience, Erasmus MC, 3015 GD Rotterdam, The Netherlands; (K.S.S.); (M.V.L.); (L.G.); (K.H.); (R.D.d.V.)
- Correspondence:
| |
Collapse
|
29
|
Rabaan AA, Mutair AA, Alhumaid S, Garout M, Alsubki RA, Alshahrani FS, Alfouzan WA, Alestad JH, Alsaleh AE, Al-Mozaini MA, Koritala T, Alotaibi S, Temsah MH, Akbar A, Ahmad R, Khalid Z, Muhammad J, Ahmed N. Updates on Measles Incidence and Eradication: Emphasis on the Immunological Aspects of Measles Infection. Medicina (B Aires) 2022; 58:medicina58050680. [PMID: 35630096 PMCID: PMC9147347 DOI: 10.3390/medicina58050680] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/15/2022] [Accepted: 05/16/2022] [Indexed: 12/31/2022] Open
Abstract
Measles is an RNA virus infectious disease mainly seen in children. Despite the availability of an effective vaccine against measles, it remains a health issue in children. Although it is a self-limiting disease, it becomes severe in undernourished and immune-compromised individuals. Measles infection is associated with secondary infections by opportunistic bacteria due to the immunosuppressive effects of the measles virus. Recent reports highlight that measles infection erases the already existing immune memory of various pathogens. This review covers the incidence, pathogenesis, measles variants, clinical presentations, secondary infections, elimination of measles virus on a global scale, and especially the immune responses related to measles infection.
Collapse
Affiliation(s)
- Ali A. Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran 31311, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
- Department of Public Health and Nutrition, The University of Haripur, Haripur 22610, Pakistan
- Correspondence: (A.A.R.); (N.A.)
| | - Abbas Al Mutair
- Research Center, Almoosa Specialist Hospital, Al-Ahsa 36342, Saudi Arabia;
- College of Nursing, Princess Norah Bint Abdulrahman University, Riyadh 11564, Saudi Arabia
- School of Nursing, Wollongong University, Wollongong, NSW 2522, Australia
| | - Saad Alhumaid
- Administration of Pharmaceutical Care, Al-Ahsa Health Cluster, Ministry of Health, Al-Ahsa 31982, Saudi Arabia;
| | - Mohammed Garout
- Department of Community Medicine and Health Care for Pilgrims, Faculty of Medicine, Umm Al-Qura University, Makkah 21955, Saudi Arabia;
| | - Roua A. Alsubki
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11362, Saudi Arabia;
| | - Fatimah S. Alshahrani
- Department of Internal Medicine, College of Medicine, King Saud University, Riyadh 11362, Saudi Arabia;
- Department of Internal Medicine, Division of Infectious Diseases, College of Medicine, King Saud University Medical City, Riyadh 11451, Saudi Arabia
| | - Wadha A. Alfouzan
- Department of Microbiology, Faculty of Medicine, Kuwait University, Safat 13110, Kuwait;
- Microbiology Unit, Department of Laboratories, Farwania Hospital, Farwania 85000, Kuwait
| | - Jeehan H. Alestad
- Immunology and Infectious Microbiology Department, University of Glasgow, Glasgow G1 1XQ, UK;
- Microbiology Department, College of Medicine, Jabriya 46300, Kuwait
| | - Abdullah E. Alsaleh
- Core Laboratory, Johns Hopkins Aramco Healthcare, Dhahran 31311, Saudi Arabia;
| | - Maha A. Al-Mozaini
- Immunocompromised Host Research Section, Department of Infection and Immunity, King Faisal Specialist Hospital and Research Centre, Riyadh 11564, Saudi Arabia;
| | - Thoyaja Koritala
- Division of Hospital Internal Medicine, Mayo Clinic Health System, Mankato, MN 56001, USA;
| | - Sultan Alotaibi
- Molecular Microbiology Department, King Fahad Medical City, Riyadh 11525, Saudi Arabia;
| | - Mohamad-Hani Temsah
- Pediatric Department, College of Medicine, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Ali Akbar
- Department of Microbiology, University of Balochistan, Quetta 87300, Pakistan;
| | - Rafiq Ahmad
- Department of Microbiology, The University of Haripur, Haripur 22610, Pakistan; (R.A.); (Z.K.); (J.M.)
| | - Zainab Khalid
- Department of Microbiology, The University of Haripur, Haripur 22610, Pakistan; (R.A.); (Z.K.); (J.M.)
| | - Javed Muhammad
- Department of Microbiology, The University of Haripur, Haripur 22610, Pakistan; (R.A.); (Z.K.); (J.M.)
| | - Naveed Ahmed
- Department of Medical Microbiology & Parasitology, School of Medical Sciences, University Sains Malaysia, Kota Bharu 16150, Kelantan, Malaysia
- Correspondence: (A.A.R.); (N.A.)
| |
Collapse
|
30
|
Gradauskaite V, Khosravi M, Plattet P. Selective SLAM/CD150 Receptor-Detargeting of Canine Distemper Virus. Virus Res 2022; 318:198841. [DOI: 10.1016/j.virusres.2022.198841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/27/2022] [Accepted: 05/28/2022] [Indexed: 11/29/2022]
|
31
|
Peart Akindele N. Updates in the Epidemiology, Approaches to Vaccine Coverage and Current Outbreaks of Measles. Infect Dis Clin North Am 2022; 36:39-48. [DOI: 10.1016/j.idc.2021.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
32
|
Bühl D, Staudacher O, Santibanez S, Rossi R, Girschick H, Stephan V, Schmidt B, Hundsdoerfer P, von Moers A, Lange M, Barker M, Mall MA, Heininger U, Matysiak-Klose D, Mankertz A, von Bernuth H. Specifically Increased Rate of Infections in Children Post Measles in a High Resource Setting. Front Pediatr 2022; 10:896086. [PMID: 35813375 PMCID: PMC9261986 DOI: 10.3389/fped.2022.896086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 05/11/2022] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES Post-measles increased susceptibility to subsequent infections seems particularly relevant in low-resource settings. We tested the hypothesis that measles causes a specifically increased rate of infections in children, also in a high-resource setting. METHODS We conducted a retrospective cohort study on a large measles outbreak in Berlin, Germany. All children with measles who presented to hospitals in Berlin were included as cases, children with non-infectious and children with non-measles infectious diseases as controls. Repeat visits within 3 years after the outbreak were recorded. RESULTS We included 250 cases, 502 non-infectious, and 498 infectious disease controls. The relative risk for cases for the diagnosis of an infectious disease upon a repeat visit was 1.6 (95% CI 1.4-2.0, p < 0.001) vs. non-infectious and 1.3 (95% CI 1.1-1.6, p = 0.002) vs. infectious disease controls. 33 cases (27%), 35 non-infectious (12%) and 57 (18%) infectious disease controls presented more than three times due to an infectious disease (p = 0.01, and p = 0.02, respectively). This results in a relative risk of more than three repeat visits due to an infection for measles cases of 1.8 (95% CI 1.3-2.4, p = 0.01), and 1.4 (95% CI 1.0-1.9, p = 0.04), respectively. CONCLUSION Our study demonstrates for the first time in a high-resource setting, that increased post-measles susceptibility to subsequent infections in children is measles-specific-even compared to controls with previous non-measles infections.
Collapse
Affiliation(s)
- Daniel Bühl
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Olga Staudacher
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.,Department of Immunology, Labor Berlin GmbH, Berlin, Germany
| | - Sabine Santibanez
- National Reference Center for Measles, Mumps, Rubella, Robert Koch Institute, Berlin, Germany
| | - Rainer Rossi
- Department of Pediatrics, Vivantes Klinikum Neukölln, Berlin, Germany
| | - Hermann Girschick
- Children's Hospital, Vivantes Klinikum im Friedrichshain, Berlin, Germany
| | - Volker Stephan
- Department of Pediatrics, Sana Klinikum Lichtenberg, Berlin, Germany
| | - Beatrix Schmidt
- St. Joseph's Center for Pediatric and Adolescent Medicine, St. Joseph Krankenhaus, Berlin, Germany
| | - Patrick Hundsdoerfer
- Department of Pediatric and Adolescent Medicine, Helios-Klinikum Berlin-Buch, Berlin, Germany
| | - Arpad von Moers
- Department of Pediatrics and Neuropediatrics, DRK Kliniken Berlin Westend, Berlin, Germany
| | - Michael Lange
- Department of Pediatrics, Evangelisches Waldkrankenhaus Spandau, Berlin, Germany
| | - Michael Barker
- Department of Pediatrics, Helios Klinikum Emil von Behring, Berlin, Germany
| | - Marcus A Mall
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.,Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany.,German Center for Lung Research (DZL), Berlin, Germany
| | - Ulrich Heininger
- Infectious Diseases and Vaccinology, University of Basel Children's Hospital, Basel, Switzerland
| | - Dorothea Matysiak-Klose
- Department for Infectious Disease Epidemiology, Immunization Unit, Robert Koch Institute, Berlin, Germany
| | - Annette Mankertz
- National Reference Center for Measles, Mumps, Rubella, Robert Koch Institute, Berlin, Germany
| | - Horst von Bernuth
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.,Department of Immunology, Labor Berlin GmbH, Berlin, Germany.,Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany.,Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Berlin, Germany
| |
Collapse
|
33
|
Gautam S, Joshi C, Sharma AK, Singh KP, Gurav A, Sankar M, Ramakrishnan MA, Chaudhary D, Chauhan RS, Dhama K, Dhanavelu M. Virus distribution and early pathogenesis of highly pathogenic peste-des-petits-ruminants virus in experimentally infected goats. Microb Pathog 2021; 161:105232. [PMID: 34627939 DOI: 10.1016/j.micpath.2021.105232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 10/01/2021] [Accepted: 10/01/2021] [Indexed: 11/15/2022]
Abstract
INTRODUCTION Despite causing one of the most dreaded diseases of small ruminants, relatively little is known about the pathogenic events, antigen distribution and the cells responsible for the uptake and transmission of peste-des-petits-ruminants virus (PPRV) during primitive stages of infection. OBJECTIVES We aimed at deciphering the sequential tissue tropism, pathological events and putative role of M2c macrophages during incubatory, prodromal and invasive stages of PPRV infection. METHODOLOGY A total of 10 goats were sequentially sacrificed at 1, 2, 3, 4, and 5 days post-infection (dpi, n = 2 per time-point) following intranasal inoculation with a highly virulent strain of PPRV (lineage IV PPRV/Izatnagar/94). Histological evaluation to assess PPRV mediated pathologies, RT-qPCR and immunohistochemistry (IHC) to decipher sequential virus distribution, and dual immunolabelling to determine the role of M2c macrophage in early PPRV uptake and transmission was performed. RESULTS PPRV/Izatnagar/94 caused major pathologies in the lung tissues. Unprecedentedly, PPRV nucleic acid and antigens were detected in various tissues as early as one dpi. RT-qPCR revealed PPRV in the nasal cavity, trachea, bronchi, tongue and lymph nodes draining these tissues from 1 dpi. IHC affirms cells residing in the lamina propria and submucosa of the respiratory tract and tongue and peribronchiolar areas of lungs as the primary target of PPRV. Following initial replication in the respiratory tract, PPRV is transmitted to the regional lymph nodes where primary viral amplification occurs. After viraemia and secondary replication in generalized lymphoid tissues, PPRV infects and replicates in the epithelial cells. Further, we localized CD163+ M2c macrophages in the goat tissues, but dual IHC elucidated that M2c macrophages do not facilitate uptake and transmission of PPRV during the early stages of infection. CONCLUSION Our study substantiates the disease establishment process and pathogenesis of PPRV/Izatnagar/94 during the incubatory and prodromal stages of infection. Further, we have also observed M2c macrophage distribution in the goat tissues and demonstrated that they do not pick and transmit PPRV.
Collapse
Affiliation(s)
- Siddharth Gautam
- ICAR - Indian Veterinary Research Institute, Mukteshwar, Nainital, U.K., 263138, India.
| | - Chitra Joshi
- Department of Animal Husbandry, Almora, U.K., 263601, India
| | - Anil K Sharma
- ICAR - Indian Veterinary Research Institute, Izatnagar, U.P., 243122, India
| | - Karam P Singh
- ICAR - Indian Veterinary Research Institute, Izatnagar, U.P., 243122, India
| | - Amol Gurav
- ICAR - Indian Veterinary Research Institute, Mukteshwar, Nainital, U.K., 263138, India
| | - Muthu Sankar
- ICAR - Indian Veterinary Research Institute, Mukteshwar, Nainital, U.K., 263138, India
| | | | - Dheeraj Chaudhary
- ICAR - Indian Veterinary Research Institute, Mukteshwar, Nainital, U.K., 263138, India
| | - Ramswaroop S Chauhan
- College of Veterinary and Animal Sciences, GBPUAT, U.S. Nagar, U.K., 263145, India
| | - Kuldeep Dhama
- ICAR - Indian Veterinary Research Institute, Izatnagar, U.P., 243122, India
| | | |
Collapse
|
34
|
Guo Z, Zhang Z, Prajapati M, Li Y. Lymphopenia Caused by Virus Infections and the Mechanisms Beyond. Viruses 2021; 13:v13091876. [PMID: 34578457 PMCID: PMC8473169 DOI: 10.3390/v13091876] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/14/2021] [Accepted: 09/18/2021] [Indexed: 02/07/2023] Open
Abstract
Viral infections can give rise to a systemic decrease in the total number of lymphocytes in the blood, referred to as lymphopenia. Lymphopenia may affect the host adaptive immune responses and impact the clinical course of acute viral infections. Detailed knowledge on how viruses induce lymphopenia would provide valuable information into the pathogenesis of viral infections and potential therapeutic targeting. In this review, the current progress of viruses-induced lymphopenia is summarized and the potential mechanisms and factors involved are discussed.
Collapse
Affiliation(s)
- Zijing Guo
- State Key Laboratory on Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730030, China;
- College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu 610041, China; (Z.Z.); (M.P.)
| | - Zhidong Zhang
- College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu 610041, China; (Z.Z.); (M.P.)
| | - Meera Prajapati
- College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu 610041, China; (Z.Z.); (M.P.)
- National Animal Health Research Centre, Nepal Agricultural Research Council, Lalitpur 44700, Nepal
| | - Yanmin Li
- College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu 610041, China; (Z.Z.); (M.P.)
- Correspondence: ; Tel.: +28-85528276
| |
Collapse
|
35
|
Hippee CE, Singh BK, Thurman AL, Cooney AL, Pezzulo AA, Cattaneo R, Sinn PL. Measles virus exits human airway epithelia within dislodged metabolically active infectious centers. PLoS Pathog 2021; 17:e1009458. [PMID: 34383863 PMCID: PMC8384213 DOI: 10.1371/journal.ppat.1009458] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 08/24/2021] [Accepted: 07/27/2021] [Indexed: 11/24/2022] Open
Abstract
Measles virus (MeV) is the most contagious human virus. Unlike most respiratory viruses, MeV does not directly infect epithelial cells upon entry in a new host. MeV traverses the epithelium within immune cells that carry it to lymphatic organs where amplification occurs. Infected immune cells then synchronously deliver large amounts of virus to the airways. However, our understanding of MeV replication in airway epithelia is limited. To model it, we use well-differentiated primary cultures of human airway epithelial cells (HAE) from lung donors. In HAE, MeV spreads directly cell-to-cell forming infectious centers that grow for ~3–5 days, are stable for a few days, and then disappear. Transepithelial electrical resistance remains intact during the entire course of HAE infection, thus we hypothesized that MeV infectious centers may dislodge while epithelial function is preserved. After documenting by confocal microscopy that infectious centers progressively detach from HAE, we recovered apical washes and separated cell-associated from cell-free virus by centrifugation. Virus titers were about 10 times higher in the cell-associated fraction than in the supernatant. In dislodged infectious centers, ciliary beating persisted, and apoptotic markers were not readily detected, suggesting that they retain functional metabolism. Cell-associated MeV infected primary human monocyte-derived macrophages, which models the first stage of infection in a new host. Single-cell RNA sequencing identified wound healing, cell growth, and cell differentiation as biological processes relevant for infectious center dislodging. 5-ethynyl-2’-deoxyuridine (EdU) staining located proliferating cells underneath infectious centers. Thus, cells located below infectious centers divide and differentiate to repair the dislodged infected epithelial patch. As an extension of these studies, we postulate that expulsion of infectious centers through coughing and sneezing could contribute to MeV’s strikingly high reproductive number by allowing the virus to survive longer in the environment and by delivering a high infectious dose to the next host. Measles virus (MeV) is a respiratory pathogen that infects millions worldwide each year. Although sometimes mischaracterized as an innocuous childhood disease, measles remains a leading cause of death for children under five. MeV is the most contagious human virus and requires vaccination rates above 90% to maintain herd immunity. Global decreases in vaccination rates over the past ten years contributed to recent, widespread MeV outbreaks. We uncover here a novel mechanism by which MeV exits the human airways that may explain why it is much more contagious than other viruses. We document that infected cells containing cell-associated virus detach en masse from the airway epithelial sheet. These dislodged infectious centers are metabolically active and can transmit infection to primary human monocyte-derived macrophages via cell-cell contact as efficiently as cell-free virus particles. Thus, cell-associated MeV could spread host-to-host and is a potentially vital strategy for efficient respiratory virus transmission.
Collapse
Affiliation(s)
- Camilla E. Hippee
- Stead Family Department of Pediatrics, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, United States of America
| | - Brajesh K. Singh
- Stead Family Department of Pediatrics, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, United States of America
| | - Andrew L. Thurman
- Department of Internal Medicine, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, United States of America
| | - Ashley L. Cooney
- Stead Family Department of Pediatrics, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, United States of America
| | - Alejandro A. Pezzulo
- Department of Internal Medicine, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, United States of America
| | - Roberto Cattaneo
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Patrick L. Sinn
- Stead Family Department of Pediatrics, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, United States of America
- * E-mail:
| |
Collapse
|
36
|
Lin WHW, Moran E, Adams RJ, Sievers RE, Hauer D, Godin S, Griffin DE. A durable protective immune response to wild-type measles virus infection of macaques is due to viral replication and spread in lymphoid tissues. Sci Transl Med 2021; 12:12/537/eaax7799. [PMID: 32238577 DOI: 10.1126/scitranslmed.aax7799] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 08/15/2019] [Accepted: 12/02/2019] [Indexed: 12/21/2022]
Abstract
Infection with wild-type (WT) measles virus (MeV) is an important cause of childhood mortality that leads to lifelong protective immunity in survivors. WT MeV and the live-attenuated MeV used in the measles vaccine (LAMV) are antigenically similar, but the determinants of attenuation are unknown, and protective immunity induced by LAMV is less robust than that induced by WT MeV. To identify factors that contribute to these differences, we compared virologic and immunologic responses after respiratory infection of rhesus macaques with WT MeV or LAMV. In infected macaques, WT MeV replicated efficiently in B and T lymphocytes with spreading throughout lymphoid tissues resulting in prolonged persistence of viral RNA. In contrast, LAMV replicated efficiently in the respiratory tract but displayed limited spread to lymphoid tissue or peripheral blood mononuclear cells. In vitro, WT MeV and LAMV replicated similarly in macaque primary respiratory epithelial cells and human lymphocytes, but LAMV-infected lymphocytes produced little virus. Plasma concentrations of interleukin-1β (IL-1β), IL-12, interferon-γ (IFN-γ), CCL2, CCL11, CXCL9, and CXCL11 increased in macaques after WT MeV but not LAMV infection. WT MeV infection induced more protective neutralizing, hemagglutinin-specific antibodies and bone marrow plasma cells than did LAMV infection, although numbers of MeV-specific IFN-γ- and IL-4-producing T cells were comparable. Therefore, MeV attenuation may involve altered viral replication in lymphoid tissue that limited spread and decreased the host antibody response, suggesting a link between lifelong protective immunity and the ability of WT MeV, but not LAMV, to spread in lymphocytes.
Collapse
Affiliation(s)
- Wen-Hsuan W Lin
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Eileen Moran
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Robert J Adams
- Department of Molecular and Comparative Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA
| | - Robert E Sievers
- Department of Chemistry, University of Colorado, Boulder, CO 80309, USA
| | - Debra Hauer
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | | | - Diane E Griffin
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA.
| |
Collapse
|
37
|
Anelone AJN, Hancock EJ, Klein N, Kim P, Spurgeon SK. Control theory helps to resolve the measles paradox. ROYAL SOCIETY OPEN SCIENCE 2021; 8:201891. [PMID: 34007460 PMCID: PMC8080004 DOI: 10.1098/rsos.201891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 03/23/2021] [Indexed: 06/12/2023]
Abstract
Measles virus (MV) is a highly contagious respiratory morbillivirus that results in many disabilities and deaths. A crucial challenge in studying MV infection is to understand the so-called 'measles paradox'-the progression of the infection to severe immunosuppression before clearance of acute viremia, which is also observed in canine distemper virus (CDV) infection. However, a lack of models that match in vivo data has restricted our understanding of this complex and counter-intuitive phenomenon. Recently, progress was made in the development of a model that fits data from acute measles infection in rhesus macaques. This progress motivates our investigations to gain additional insights from this model into the control mechanisms underlying the paradox. In this paper, we investigated analytical conditions determining the control and robustness of viral clearance for MV and CDV, to untangle complex feedback mechanisms underlying the dynamics of acute infections in their natural hosts. We applied control theory to this model to help resolve the measles paradox. We showed that immunosuppression is important to control and clear the virus. We also showed under which conditions T-cell killing becomes the primary mechanism for immunosuppression and viral clearance. Furthermore, we characterized robustness properties of T-cell immunity to explain similarities and differences in the control of MV and CDV. Together, our results are consistent with experimental data, advance understanding of control mechanisms of viral clearance across morbilliviruses, and will help inform the development of effective treatments. Further the analysis methods and results have the potential to advance understanding of immune system responses to a range of viral infections such as COVID-19.
Collapse
Affiliation(s)
- Anet J. N. Anelone
- School of Mathematics and Statistics, The University of Sydney, Camperdown, New South Wales 2006, Australia
| | - Edward J. Hancock
- School of Mathematics and Statistics, The University of Sydney, Camperdown, New South Wales 2006, Australia
- The Charles Perkins Centre, The University of Sydney, Camperdown, New South Wales 2006, Australia
| | - Nigel Klein
- Department of Infection, Immunity and Inflammation, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
| | - Peter Kim
- School of Mathematics and Statistics, The University of Sydney, Camperdown, New South Wales 2006, Australia
| | - Sarah K. Spurgeon
- Department of Electronic and Electrical Engineering, University College London, Torrington Place, London WC1E 7JE, UK
| |
Collapse
|
38
|
Semmler G, Griebler H, Aberle SW, Stiasny K, Richter L, Holzmann H, Weseslindtner L. Elevated CXCL10 Serum Levels in Measles Virus Primary Infection and Reinfection Correlate With the Serological Stage and Hospitalization Status. J Infect Dis 2021; 222:2030-2034. [PMID: 32515478 DOI: 10.1093/infdis/jiaa326] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 06/04/2020] [Indexed: 01/21/2023] Open
Abstract
We quantified serum concentrations of chemokine CXCL10 in 288 patients with measles virus (MeV) primary infection and 16 patients with reinfection (vaccine failure). CXCL10 peaked with emergence of IgM antibodies and was elevated in hospitalized patients (3233 vs 1930 pg/mL, P < .0001). CXCL10 differed between primary and reinfection (1958 vs 932 pg/mL, P = .0402). In comparison to other viral infections with rash-like symptoms, CXCL10 was highly elevated in MeV infection (area under the curve = 0.935; 95% confidence interval, .905-.965; P < .0001). CXCL10 is a potential marker for diagnosis, stage, and severity of MeV infection.
Collapse
Affiliation(s)
- Georg Semmler
- Center for Virology, Medical University of Vienna, Vienna, Austria
| | - Hannah Griebler
- Center for Virology, Medical University of Vienna, Vienna, Austria
| | - Stephan W Aberle
- Center for Virology, Medical University of Vienna, Vienna, Austria
| | - Karin Stiasny
- Center for Virology, Medical University of Vienna, Vienna, Austria
| | - Lukas Richter
- Department of Surveillance and Infectious Disease Epidemiology, Austrian Agency for Health and Food Safety, Vienna, Austria
| | | | | |
Collapse
|
39
|
Primary differentiated respiratory epithelial cells respond to apical measles virus infection by shedding multinucleated giant cells. Proc Natl Acad Sci U S A 2021; 118:2013264118. [PMID: 33836570 DOI: 10.1073/pnas.2013264118] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Measles virus (MeV) is highly infectious by the respiratory route and remains an important cause of childhood mortality. However, the process by which MeV infection is efficiently established in the respiratory tract is controversial with suggestions that respiratory epithelial cells are not susceptible to infection from the apical mucosal surface. Therefore, it has been hypothesized that infection is initiated in lung macrophages or dendritic cells and that epithelial infection is subsequently established through the basolateral surface by infected lymphocytes. To better understand the process of respiratory tract initiation of MeV infection, primary differentiated respiratory epithelial cell cultures were established from rhesus macaque tracheal and nasal tissues. Infection of these cultures with MeV from the apical surface was more efficient than from the basolateral surface with shedding of viable MeV-producing multinucleated giant cell (MGC) syncytia from the surface. Despite presence of MGCs and infectious virus in supernatant fluids after apical infection, infected cells were not detected in the adherent epithelial sheet and transepithelial electrical resistance was maintained. After infection from the basolateral surface, epithelial damage and large clusters of MeV-positive cells were observed. Treatment with fusion inhibitory peptides showed that MeV production after apical infection was not dependent on infection of the basolateral surface. These results are consistent with the hypothesis that MeV infection is initiated by apical infection of respiratory epithelial cells with subsequent infection of lymphoid tissue and systemic spread.
Collapse
|
40
|
Griffin DE. Measles immunity and immunosuppression. Curr Opin Virol 2021; 46:9-14. [PMID: 32891958 PMCID: PMC7994291 DOI: 10.1016/j.coviro.2020.08.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/04/2020] [Accepted: 08/05/2020] [Indexed: 12/16/2022]
Abstract
Effects of measles on the immune system are only partially understood. Lymphoid tissue is a primary site of measles virus (MeV) replication where CD150 is the receptor for infection of both B and T cells. Lymphocyte depletion occurs during the acute phase of infection, but initiation of the adaptive immune response leads to extensive lymphocyte proliferation, production of MeV-specific antibody and T cells, the rash and clearance of infectious virus. Viral RNA persists in lymphoid tissue accompanied by ongoing germinal center proliferation, production of antibody-secreting cells, functionally distinct populations of T cells and antibody avidity maturation to establish life-long immunity. However, at the same time diversity of pre-existing antibodies and numbers of memory and naive B cells are reduced and susceptibility to other infections is increased.
Collapse
Affiliation(s)
- Diane E Griffin
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA.
| |
Collapse
|
41
|
Affiliation(s)
- S. M. Mansour Haeryfar
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
- Department of Medicine, Division of Clinical Immunology & Allergy, Western University, London, Ontario, Canada
- Department of Surgery, Division of General Surgery, Western University, London, Ontario, Canada
- Centre for Human Immunology, Western University, London, Ontario, Canada
- * E-mail:
| |
Collapse
|
42
|
Matveeva OV, Shabalina SA. Prospects for Using Expression Patterns of Paramyxovirus Receptors as Biomarkers for Oncolytic Virotherapy. Cancers (Basel) 2020; 12:cancers12123659. [PMID: 33291506 PMCID: PMC7762160 DOI: 10.3390/cancers12123659] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/28/2020] [Accepted: 12/01/2020] [Indexed: 12/26/2022] Open
Abstract
Simple Summary Some non-pathogenic viruses that do not cause serious illness in humans can efficiently target and kill cancer cells and may be considered candidates for cancer treatment with virotherapy. However, many cancer cells are protected from viruses. An important goal of personalized cancer treatment is to identify viruses that can kill a certain type of cancer cells. To this end, researchers investigate expression patterns of cell entry receptors, which viruses use to bind to and enter host cells. We summarized and analyzed the receptor expression patterns of two paramyxoviruses: The non-pathogenic measles and the Sendai viruses. The receptors for these viruses are different and can be proteins or lipids with attached carbohydrates. This review discusses the prospects for using these paramyxovirus receptors as biomarkers for successful personalized virotherapy for certain types of cancer. Abstract The effectiveness of oncolytic virotherapy in cancer treatment depends on several factors, including successful virus delivery to the tumor, ability of the virus to enter the target malignant cell, virus replication, and the release of progeny virions from infected cells. The multi-stage process is influenced by the efficiency with which the virus enters host cells via specific receptors. This review describes natural and artificial receptors for two oncolytic paramyxoviruses, nonpathogenic measles, and Sendai viruses. Cell entry receptors are proteins for measles virus (MV) and sialylated glycans (sialylated glycoproteins or glycolipids/gangliosides) for Sendai virus (SeV). Accumulated published data reviewed here show different levels of expression of cell surface receptors for both viruses in different malignancies. Patients whose tumor cells have low or no expression of receptors for a specific oncolytic virus cannot be successfully treated with the virus. Recent published studies have revealed that an expression signature for immune genes is another important factor that determines the vulnerability of tumor cells to viral infection. In the future, a combination of expression signatures of immune and receptor genes could be used to find a set of oncolytic viruses that are more effective for specific malignancies.
Collapse
Affiliation(s)
- Olga V. Matveeva
- Sendai Viralytics LLC, 23 Nylander Way, Acton, MA 01720, USA
- Correspondence: (O.V.M.); (S.A.S.)
| | - Svetlana A. Shabalina
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
- Correspondence: (O.V.M.); (S.A.S.)
| |
Collapse
|
43
|
Measles skin rash: Infection of lymphoid and myeloid cells in the dermis precedes viral dissemination to the epidermis. PLoS Pathog 2020; 16:e1008253. [PMID: 33031460 PMCID: PMC7575069 DOI: 10.1371/journal.ppat.1008253] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 10/20/2020] [Accepted: 09/11/2020] [Indexed: 12/22/2022] Open
Abstract
Measles is characterized by fever and a maculopapular skin rash, which is accompanied by immune clearance of measles virus (MV)-infected cells. Histopathological analyses of skin biopsies from humans and non-human primates (NHPs) with measles rash have identified MV-infected keratinocytes and mononuclear cells in the epidermis, around hair follicles and near sebaceous glands. Here, we address the pathogenesis of measles skin rash by combining data from experimentally infected NHPs, ex vivo infection of human skin sheets and in vitro infection of primary human keratinocytes. Analysis of NHP skin samples collected at different time points following MV inoculation demonstrated that infection in the skin precedes onset of rash by several days. MV infection was detected in lymphoid and myeloid cells in the dermis before dissemination to the epidermal leukocytes and keratinocytes. These data were in good concordance with ex vivo MV infections of human skin sheets, in which dermal cells were more targeted than the epidermal cells. To address viral dissemination to the epidermis and to determine whether the dissemination is receptor-dependent, we performed experimental infections of primary keratinocytes collected from healthy donors. These experiments demonstrated that MV infection of keratinocytes is mainly nectin-4-dependent, and differentiated keratinocytes, which express higher levels of nectin-4, are more susceptible to MV infection than proliferating keratinocytes. Based on these data, we propose a model to explain measles skin rash: migrating MV-infected lymphocytes initiate the infection of dermal skin-resident CD150+ immune cells. The infection is subsequently disseminated from the dermal papillae to nectin-4+ keratinocytes in the basal epidermis. Lateral spread of MV infection is observed in the superficial epidermis, most likely due to the higher level of nectin-4 expression on differentiated keratinocytes. Finally, MV-infected cells are cleared by infiltrating immune cells, causing hyperemia and edema, which give the appearance of morbilliform skin rash. Several viral infections are associated with skin rash, including parvovirus B19, human herpesvirus type 6, dengue virus and rubella virus. However, the archetype virus infection that leads to skin rash is measles. Although all of these viral exanthemata often appear similar, their pathogenesis is different. In the case of measles, the appearance of skin rash is a sign that the immune system is clearing MV-infected cells from the skin. How the virus reaches the skin and is locally disseminated remains unknown. Here, we combine observations and expertise from pathologists, dermatologists, virologists and immunologists to delineate the pathogenesis of measles skin rash. We show that MV infection of dermal myeloid and lymphoid cells precedes viral dissemination to the epidermal leukocytes and keratinocytes. We speculate that immune-mediated clearance of these infected cells results in hyperemia and edema, explaining the redness of the skin and the slightly elevated spots of the morbilliform rash.
Collapse
|
44
|
Chevalier-Cottin EP, Ashbaugh H, Brooke N, Gavazzi G, Santillana M, Burlet N, Tin Tin Htar M. Communicating Benefits from Vaccines Beyond Preventing Infectious Diseases. Infect Dis Ther 2020; 9:467-480. [PMID: 32583334 PMCID: PMC7452969 DOI: 10.1007/s40121-020-00312-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Indexed: 02/06/2023] Open
Abstract
Despite immunisation being one of the greatest medical success stories of the twentieth century, there is a growing lack of confidence in some vaccines. Improving communication about the direct benefits of vaccination as well as its benefits beyond preventing infectious diseases may help regain this lost confidence. A conference was organised at the Fondation Merieux in France to discuss what benefits could be communicated and how innovative digital initiatives can used for communication. During this meeting, a wide range of indirect benefits of vaccination were discussed. For example, influenza vaccination can reduce hospitalisations and deaths in older persons with diabetes by 45% and 38%, respectively, but the link between influenza and complications from underlying chronic non-communicable diseases such as diabetes is frequently underestimated. Vaccination can reduce antimicrobial resistance (AMR), which is growing, by reducing the incidence of infectious disease (though direct and indirect or herd protection), by reducing the number of circulating AMR strains, and by reducing the need for antimicrobial use. Disease morbidity and treatment costs in the elderly population are likely to rise substantially, with the ageing global population. Healthy ageing and life-course vaccination approaches can reduce the burden of vaccine-preventable diseases, such as seasonal influenza and pneumococcal diseases, which place a significant burden on individuals and society, while improving quality of life. Novel disease surveillance systems based on information from Internet search engines, mobile phone apps, social media, cloud-based electronic health records, and crowd-sourced systems, contribute to improved awareness of disease burden. Examples of the role of new techniques and tools to process data generated by multiple sources, such as artificial intelligence, to support vaccination programmes, such as influenza and dengue, were discussed. The conference participants agreed that continual efforts are needed from all stakeholders to ensure effective, transparent communication of the full benefits and risks of vaccination.
Collapse
Affiliation(s)
| | - Hayley Ashbaugh
- Department of Epidemiology, UCLA Fielding School of Public Health, UCLA Fielding School of Public Health, South, Los Angeles, CA, USA
| | | | - Gaetan Gavazzi
- Geriatric Clinic, Grenoble-Alpes University Hospital, GREPI EA, Grenoble-Alpes University, 7408, Grenoble, France
| | | | - Nansa Burlet
- Global head Patient Insights Innovation, Sanofi Pasteur, Lyon, France
| | - Myint Tin Tin Htar
- Medical Development and Scientific/Clinical Affairs, Pfizer Inc., Paris, France
| |
Collapse
|
45
|
Mühlebach MD. Measles virus in cancer therapy. Curr Opin Virol 2020; 41:85-97. [PMID: 32861945 DOI: 10.1016/j.coviro.2020.07.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 07/24/2020] [Accepted: 07/27/2020] [Indexed: 02/07/2023]
Abstract
Over the last years, the development of viruses to treat cancer patients has re-gained considerable attention. A genetically modified herpesvirus, Talimogene laherparepvec, has already been authorized for the treatment of melanoma patients. Also recombinant measles virus (MeV) is developed as an oncolytic virus. Because of its high genetic flexibility, a number of different MeV strains have been the basis for the generation of targeted, armed, or shielded viruses that are highly specific for a given tumor target, more effective, or protected against serum neutralization. Such MeV have been extensively tested in vitro and in vivo, whereby remarkable oncolytic potency is accompanied by safety also in non-human primates. Therefore, MeV has been introduced into 19 different clinical trials and has reached phase II against two different tumor entities, multiple myeloma and ovarian carcinoma. Remarkably, one patient with advanced stage myeloma experienced long-term remission after treatment, visualizing the potency of this approach.
Collapse
Affiliation(s)
- Michael D Mühlebach
- Division of Veterinary Medicine, Paul-Ehrlich-Institut, Paul-Ehrlich-Strasse 51-59, D-63225 Langen, Germany.
| |
Collapse
|
46
|
Petrova VN, Sawatsky B, Han AX, Laksono BM, Walz L, Parker E, Pieper K, Anderson CA, de Vries RD, Lanzavecchia A, Kellam P, von Messling V, de Swart RL, Russell CA. Incomplete genetic reconstitution of B cell pools contributes to prolonged immunosuppression after measles. Sci Immunol 2020; 4:4/41/eaay6125. [PMID: 31672862 DOI: 10.1126/sciimmunol.aay6125] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 10/01/2019] [Indexed: 12/24/2022]
Abstract
Measles is a disease caused by the highly infectious measles virus (MeV) that results in both viremia and lymphopenia. Lymphocyte counts recover shortly after the disappearance of measles-associated rash, but immunosuppression can persist for months to years after infection, resulting in increased incidence of secondary infections. Animal models and in vitro studies have proposed various immunological factors underlying this prolonged immune impairment, but the precise mechanisms operating in humans are unknown. Using B cell receptor (BCR) sequencing of human peripheral blood lymphocytes before and after MeV infection, we identified two immunological consequences from measles underlying immunosuppression: (i) incomplete reconstitution of the naïve B cell pool leading to immunological immaturity and (ii) compromised immune memory to previously encountered pathogens due to depletion of previously expanded B memory clones. Using a surrogate model of measles in ferrets, we investigated the clinical consequences of morbillivirus infection and demonstrated a depletion of vaccine-acquired immunity to influenza virus, leading to a compromised immune recall response and increased disease severity after secondary influenza virus challenge. Our results show that MeV infection causes changes in naïve and memory B lymphocyte diversity that persist after the resolution of clinical disease and thus contribute to compromised immunity to previous infections or vaccinations. This work highlights the importance of MeV vaccination not only for the control of measles but also for the maintenance of herd immunity to other pathogens, which can be compromised after MeV infection.
Collapse
Affiliation(s)
| | - Bevan Sawatsky
- Veterinary Medicine Division, Paul-Ehrlich-Institut, Federal Institute for Vaccines and Biomedicines and DZIF TTU Emerging Infections, Langen, Germany
| | - Alvin X Han
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.,Laboratory of Applied Evolutionary Biology, Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Brigitta M Laksono
- Department of Viroscience, Postgraduate School of Molecular Medicine, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, Netherlands
| | - Lisa Walz
- Veterinary Medicine Division, Paul-Ehrlich-Institut, Federal Institute for Vaccines and Biomedicines and DZIF TTU Emerging Infections, Langen, Germany
| | - Edyth Parker
- Laboratory of Applied Evolutionary Biology, Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Kathrin Pieper
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Carl A Anderson
- Department of Human Genetics, Wellcome Sanger Institute, Cambridge, UK
| | - Rory D de Vries
- Department of Viroscience, Postgraduate School of Molecular Medicine, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, Netherlands
| | - Antonio Lanzavecchia
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Paul Kellam
- Department of Medicine, Division of Infectious Diseases, Imperial College Faculty of Medicine, Wright Fleming Institute, St Mary's Campus, London, UK.,Kymab Ltd., The Bennet Building, Babraham Research Campus, Cambridge, UK
| | - Veronika von Messling
- Veterinary Medicine Division, Paul-Ehrlich-Institut, Federal Institute for Vaccines and Biomedicines and DZIF TTU Emerging Infections, Langen, Germany
| | - Rik L de Swart
- Department of Viroscience, Postgraduate School of Molecular Medicine, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, Netherlands
| | - Colin A Russell
- Laboratory of Applied Evolutionary Biology, Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands.
| |
Collapse
|
47
|
Rudak PT, Yao T, Richardson CD, Haeryfar SMM. Measles Virus Infects and Programs MAIT Cells for Apoptosis. J Infect Dis 2020; 223:667-672. [PMID: 32623457 DOI: 10.1093/infdis/jiaa407] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 07/02/2020] [Indexed: 01/07/2023] Open
Abstract
Measles virus (MeV) binds, infects, and kills CD150+ memory T cells, leading to immune amnesia. Whether MeV targets innate, memory-like T cells is unknown. We demonstrate that human peripheral blood and hepatic mucosa-associated invariant T (MAIT) cells and invariant natural killer T cells express surprisingly high levels of CD150, more than other lymphocyte subsets. Furthermore, exposing MAIT cells to MeV results in their efficient infection and rapid apoptosis. This constitutes the first report of direct MAIT cell infection by a viral pathogen. Given MAIT cells' antimicrobial properties, their elimination by MeV may contribute to measles-induced immunosuppression and heightened vulnerability to unrelated infections.
Collapse
Affiliation(s)
- Patrick T Rudak
- Department of Microbiology and Immunology, Western University, London, Canada
| | - Tony Yao
- Department of Microbiology and Immunology, Western University, London, Canada
| | | | - S M Mansour Haeryfar
- Department of Microbiology and Immunology, Western University, London, Canada.,Department of Medicine, Western University, London, Canada.,Department of Surgery, Western University, London, Canada
| |
Collapse
|
48
|
Goodson JL. Recent setbacks in measles elimination: the importance of investing in innovations for immunizations. Pan Afr Med J 2020; 35:15. [PMID: 32373266 PMCID: PMC7196335 DOI: 10.11604/pamj.supp.2020.35.1.21740] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 02/13/2020] [Indexed: 11/18/2022] Open
Abstract
The recent setbacks in efforts to achieve measles elimination goals are alarming. To reverse the current trends, it is imperative that the global health community urgently intensify efforts and make resource commitments to implement evidence-based elimination strategies fully, including supporting research and innovations. The Immunization Agenda 2030: A Global Strategy to Leave No One Behind (IA2030) is the new global guidance document that builds on lessons learned and progress made toward the GVAP goals, includes research and innovation as a core strategic priority, and identifies measles as a “tracer” for improving immunisation services and strengthening primary health care systems. To achieve vaccination coverage and equity targets that leave no one behind, and accelerate progress toward disease eradication and elimination goals, sustained and predictable investments are needed for the identified research and innovations priorities for the new decade.
Collapse
Affiliation(s)
- James L Goodson
- Accelerated Disease Control and Surveillance Branch, Global Immunization Division, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| |
Collapse
|
49
|
Measles pathogenesis, immune suppression and animal models. Curr Opin Virol 2020; 41:31-37. [PMID: 32339942 DOI: 10.1016/j.coviro.2020.03.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/05/2020] [Accepted: 03/06/2020] [Indexed: 02/09/2023]
Abstract
Measles virus causes a disease with seemingly innocent symptoms, such as fever and rash. However, measles immune suppression causes increased susceptibility to opportunistic infections that are responsible for the majority of over 100000 yearly fatalities. The pathogenesis of measles is complex, because measles virus uses multiple receptors to infect different cell types in different phases of the disease. Experimental morbillivirus infections with wild-type viruses in natural host species have demonstrated that direct infection and depletion of memory immune cells causes immune amnesia. This was confirmed in studies of a measles outbreak in unvaccinated children and provides an explanation for epidemiological observations of long-term increases in morbidity and mortality after measles.
Collapse
|
50
|
Prausnitz MR, Goodson JL, Rota PA, Orenstein WA. A microneedle patch for measles and rubella vaccination: a game changer for achieving elimination. Curr Opin Virol 2020; 41:68-76. [PMID: 32622318 PMCID: PMC7497860 DOI: 10.1016/j.coviro.2020.05.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 05/10/2020] [Accepted: 05/14/2020] [Indexed: 02/06/2023]
Abstract
While morbidity and mortality associated with measles and rubella (MR) have dramatically decreased, there are still >100000 estimated deaths due to measles and an estimated 100000 infants born with congenital rubella syndrome annually. Given highly effective MR vaccines, the primary barrier to global elimination of these diseases is low vaccination coverage, especially among the most underserved populations in resource-limited settings. In contrast to conventional MR vaccination by hypodermic injection, microneedle patches are being developed to enable MR vaccination by minimally trained personnel. Simplified supply chain, reduced need for cold chain storage, elimination of vaccine reconstitution, no sharps waste, reduced vaccine wastage, and reduced total system cost of vaccination are advantages of this approach. Preclinical work to develop a MR vaccine patch has proceeded through successful immunization studies in rodents and non-human primates. On-going programs seek to make MR vaccine patches available to support MR elimination efforts around the world.
Collapse
Affiliation(s)
- Mark R Prausnitz
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive, Atlanta, GA 30332, USA.
| | - James L Goodson
- Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA 30329, USA.
| | - Paul A Rota
- Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA 30329, USA.
| | | |
Collapse
|