1
|
Suvieri C, Mondanelli G, Orabona C, Pallotta MT, Panfili E, Rossini S, Volpi C, Belladonna ML. Sensing of an HIV-1-Derived Single-Stranded RNA-Oligonucleotide Induces Arginase 1-Mediated Tolerance. Cells 2024; 13:1088. [PMID: 38994942 PMCID: PMC11240372 DOI: 10.3390/cells13131088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 07/13/2024] Open
Abstract
Small synthetic oligodeoxynucleotides (ODNs) can mimic microbial nucleic acids by interacting with receptor systems and promoting immunostimulatory activities. Nevertheless, some ODNs can act differently on the plasmacytoid dendritic cell (pDC) subset, shaping their immunoregulatory properties and rendering them suitable immunotherapeutic tools in several clinical settings for treating overwhelming immune responses. We designed HIV-1-derived, DNA- and RNA-based oligonucleotides (gag, pol, and U5 regions) and assessed their activity in conferring a tolerogenic phenotype to pDCs in skin test experiments. RNA-but not DNA-oligonucleotides are capable of inducing tolerogenic features in pDCs. Interestingly, sensing the HIV-1-derived single-stranded RNA-gag oligonucleotide (RNA-gag) requires both TLR3 and TLR7 and the engagement of the TRIF adaptor molecule. Moreover, the induction of a suppressive phenotype in pDCs by RNA-gag is contingent upon the induction and activation of the immunosuppressive enzyme Arginase 1. Thus, our data suggest that sensing of the synthetic RNA-gag oligonucleotide in pDCs can induce a suppressive phenotype in pDCs, a property rendering RNA-gag a potential tool for therapeutic strategies in allergies and autoimmune diseases.
Collapse
|
2
|
Gardet M, Haigh O, Meurisse F, Coindre S, Dimant N, Desjardins D, Bourgeois C, Goujard C, Vaslin B, Relouzat F, Le Grand R, Lambotte O, Favier B. Identification of macaque dendritic cell precursors in blood and tissue reveals their dysregulation in early SIV infection. Cell Rep 2024; 43:113994. [PMID: 38530856 DOI: 10.1016/j.celrep.2024.113994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 01/27/2024] [Accepted: 03/08/2024] [Indexed: 03/28/2024] Open
Abstract
Distinct dendritic cell (DC) subsets play important roles in shaping immune responses. Circulating DC precursors (pre-DCs) are more susceptible to HIV infection in vitro, which may explain the inefficiency of immune responses against HIV. However, the interplay between HIV and pre-DC is not defined in vivo. We identify human pre-DC equivalents in the cynomolgus macaque and then analyze their dynamics during simian immunodeficiency virus (SIV) infection to illustrate a sharp decrease of blood pre-DCs in early SIV infection and accumulation in lymph nodes (LNs), where they neglect to upregulate CD83/CD86 or MHC-II. Additionally, SIV infection attenuates the capacity of stimulated LN pre-DCs to produce IL-12p40. Analysis of HIV cohorts provides correlation between costimulatory molecule expression on pre-DCs and T cell activation in spontaneous HIV controllers. These findings pinpoint certain dynamics and functional changes of pre-DCs during SIV infection, providing a deeper understanding of immune dysregulation mechanisms elicited in people living with HIV.
Collapse
Affiliation(s)
- Margaux Gardet
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), 92265 Fontenay-aux-Roses, France
| | - Oscar Haigh
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), 92265 Fontenay-aux-Roses, France
| | - Florian Meurisse
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), 92265 Fontenay-aux-Roses, France
| | - Sixtine Coindre
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), 92265 Fontenay-aux-Roses, France
| | - Nastasia Dimant
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), 92265 Fontenay-aux-Roses, France
| | - Delphine Desjardins
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), 92265 Fontenay-aux-Roses, France
| | - Christine Bourgeois
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), 92265 Fontenay-aux-Roses, France
| | - Cecile Goujard
- Paris-Saclay University Hospital Group, Assistance Publique Hôpitaux de Paris, Department of Internal Medicine and Clinical Immunology, Bicêtre Hospital, le Kremlin-Bicêtre, France; Centre de Recherche en Épidémiologie et Santé des Populations (CESP), INSERM U1018, University Paris Saclay, Paris, France
| | - Bruno Vaslin
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), 92265 Fontenay-aux-Roses, France
| | - Francis Relouzat
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), 92265 Fontenay-aux-Roses, France
| | - Roger Le Grand
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), 92265 Fontenay-aux-Roses, France
| | - Olivier Lambotte
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), 92265 Fontenay-aux-Roses, France; Paris-Saclay University Hospital Group, Assistance Publique Hôpitaux de Paris, Department of Internal Medicine and Clinical Immunology, Bicêtre Hospital, le Kremlin-Bicêtre, France
| | - Benoit Favier
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), 92265 Fontenay-aux-Roses, France.
| |
Collapse
|
3
|
Bose D, Deb Adhikary N, Xiao P, Rogers KA, Ferrell DE, Cheng-Mayer C, Chang TL, Villinger F. SHIV-C109p5 NHP induces rapid disease progression in elderly macaques with extensive GI viral replication. J Virol 2024; 98:e0165223. [PMID: 38299866 PMCID: PMC10878093 DOI: 10.1128/jvi.01652-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/02/2024] [Indexed: 02/02/2024] Open
Abstract
CCR5-tropic simian/human immunodeficiency viruses (SHIV) with clade C transmitted/founder envelopes represent a critical tool for the investigation of HIV experimental vaccines and microbicides in nonhuman primates, although many such isolates lead to spontaneous viral control post infection. Here, we generated a high-titer stock of pathogenic SHIV-C109p5 by serial passage in two rhesus macaques (RM) and tested its virulence in aged monkeys. The co-receptor usage was confirmed before infecting five geriatric rhesus macaques (four female and one male). Plasma viral loads were monitored by reverse transcriptase-quantitative PCR (RT-qPCR), cytokines by multiplex analysis, and biomarkers of gastrointestinal damage by enzyme-linked immunosorbent assay. Antibodies and cell-mediated responses were also measured. Viral dissemination into tissues was determined by RNAscope. Intravenous SHIV-C109p5 infection of aged RMs leads to high plasma viremia and rapid disease progression; rapid decrease in CD4+ T cells, CD4+CD8+ T cells, and plasmacytoid dendritic cells; and wasting necessitating euthanasia between 3 and 12 weeks post infection. Virus-specific cellular immune responses were detected only in the two monkeys that survived 4 weeks post infection. These were Gag-specific TNFα+CD8+, MIP1β+CD4+, Env-specific IFN-γ+CD4+, and CD107a+ T cell responses. Four out of five monkeys had elevated intestinal fatty acid binding protein levels at the viral peak, while regenerating islet-derived protein 3α showed marked increases at later time points in the three animals surviving the longest, suggesting gut antimicrobial peptide production in response to microbial translocation post infection. Plasma levels of monocyte chemoattractant protein-1, interleukin-15, and interleukin-12/23 were also elevated. Viral replication in gut and secondary lymphoid tissues was extensive.IMPORTANCESimian/human immunodeficiency viruses (SHIV) are important reagents to study prevention of virus acquisition in nonhuman primate models of HIV infection, especially those representing transmitted/founder (T/F) viruses. However, many R5-tropic SHIV have limited fitness in vivo leading to many monkeys spontaneously controlling the virus post acute infection. Here, we report the generation of a pathogenic SHIV clade C T/F stock by in vivo passage leading to sustained viral load set points, a necessity to study pathogenicity. Unexpectedly, administration of this SHIV to elderly rhesus macaques led to extensive viral replication and fast disease progression, despite maintenance of a strict R5 tropism. Such age-dependent rapid disease progression had previously been reported for simian immunodeficiency virus but not for R5-tropic SHIV infections.
Collapse
Affiliation(s)
- Deepanwita Bose
- New Iberia Research Center, University of Louisiana at Lafayette, New Iberia, Louisiana, USA
| | - Nihar Deb Adhikary
- New Iberia Research Center, University of Louisiana at Lafayette, New Iberia, Louisiana, USA
| | - Peng Xiao
- New Iberia Research Center, University of Louisiana at Lafayette, New Iberia, Louisiana, USA
| | - Kenneth A. Rogers
- New Iberia Research Center, University of Louisiana at Lafayette, New Iberia, Louisiana, USA
| | - Douglas E. Ferrell
- New Iberia Research Center, University of Louisiana at Lafayette, New Iberia, Louisiana, USA
| | | | - Theresa L. Chang
- The Public Health Research Institute, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Francois Villinger
- New Iberia Research Center, University of Louisiana at Lafayette, New Iberia, Louisiana, USA
| |
Collapse
|
4
|
Naidoo KK, Ndumnego OC, Ismail N, Dong KL, Ndung'u T. Antigen Presenting Cells Contribute to Persistent Immune Activation Despite Antiretroviral Therapy Initiation During Hyperacute HIV-1 Infection. Front Immunol 2021; 12:738743. [PMID: 34630420 PMCID: PMC8498034 DOI: 10.3389/fimmu.2021.738743] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 09/09/2021] [Indexed: 12/26/2022] Open
Abstract
Human immunodeficiency virus (HIV)-induced changes in immune cells during the acute phase of infection can cause irreversible immunological damage and predict the rate of disease progression. Antiretroviral therapy (ART) remains the most effective strategy for successful immune restoration in immunocompromised people living with HIV and the earlier ART is initiated after infection, the better the long-term clinical outcomes. Here we explored the effect of ART on peripheral antigen presenting cell (APC) phenotype and function in women with HIV-1 subtype C infection who initiated ART in the hyperacute phase (before peak viremia) or during chronic infection. Peripheral blood mononuclear cells obtained longitudinally from study participants were used for immunophenotyping and functional analysis of monocytes and dendritic cells (DCs) using multiparametric flow cytometry and matched plasma was used for measurement of inflammatory markers IL-6 and soluble CD14 (sCD14) by enzyme-linked immunosorbent assay. HIV infection was associated with expansion of monocyte and plasmacytoid DC (pDC) frequencies and perturbation of monocyte subsets compared to uninfected persons despite antiretroviral treatment during hyperacute infection. Expression of activation marker CD69 on monocytes and pDCs in early treated HIV was similar to uninfected individuals. However, despite early ART, HIV infection was associated with elevation of plasma IL-6 and sCD14 levels which correlated with monocyte activation. Furthermore, HIV infection with or without early ART was associated with downmodulation of the co-stimulatory molecule CD86. Notably, early ART was associated with preserved toll-like receptor (TLR)-induced IFN-α responses of pDCs. Overall, this data provides evidence of the beneficial impact of ART initiated in hyperacute infection in preservation of APC functional cytokine production activity; but also highlights persistent inflammation facilitated by monocyte activation even after prolonged viral suppression and suggests the need for therapeutic interventions that target residual immune activation.
Collapse
Affiliation(s)
- Kewreshini K Naidoo
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | | | - Nasreen Ismail
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Krista L Dong
- Females Rising Through Education, Support and Health, Durban, South Africa.,Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA, United States
| | - Thumbi Ndung'u
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa.,Africa Health Research Institute, Durban, South Africa.,Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA, United States.,Max Planck Institute for Infection Biology, Berlin, Germany.,Division of Infection and Immunity, University College London, London, United Kingdom
| |
Collapse
|
5
|
Greene TT, Zuniga EI. Type I Interferon Induction and Exhaustion during Viral Infection: Plasmacytoid Dendritic Cells and Emerging COVID-19 Findings. Viruses 2021; 13:1839. [PMID: 34578420 PMCID: PMC8472174 DOI: 10.3390/v13091839] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 09/01/2021] [Accepted: 09/01/2021] [Indexed: 01/12/2023] Open
Abstract
Type I Interferons (IFN-I) are a family of potent antiviral cytokines that act through the direct restriction of viral replication and by enhancing antiviral immunity. However, these powerful cytokines are a caged lion, as excessive and sustained IFN-I production can drive immunopathology during infection, and aberrant IFN-I production is a feature of several types of autoimmunity. As specialized producers of IFN-I plasmacytoid (p), dendritic cells (DCs) can secrete superb quantities and a wide breadth of IFN-I isoforms immediately after infection or stimulation, and are the focus of this review. Notably, a few days after viral infection pDCs tune down their capacity for IFN-I production, producing less cytokines in response to both the ongoing infection and unrelated secondary stimulations. This process, hereby referred to as "pDC exhaustion", favors viral persistence and associates with reduced innate responses and increased susceptibility to secondary opportunistic infections. On the other hand, pDC exhaustion may be a compromise to avoid IFN-I driven immunopathology. In this review we reflect on the mechanisms that initially induce IFN-I and subsequently silence their production by pDCs during a viral infection. While these processes have been long studied across numerous viral infection models, the 2019 coronavirus disease (COVID-19) pandemic has brought their discussion back to the fore, and so we also discuss emerging results related to pDC-IFN-I production in the context of COVID-19.
Collapse
Affiliation(s)
| | - Elina I. Zuniga
- Division of Biological Sciences, University of California, San Diego, CA 92093, USA;
| |
Collapse
|
6
|
Stutte S, Ruf J, Kugler I, Ishikawa-Ankerhold H, Parzefall A, Marconi P, Maeda T, Kaisho T, Krug A, Popper B, Lauterbach H, Colonna M, von Andrian U, Brocker T. Type I interferon mediated induction of somatostatin leads to suppression of ghrelin and appetite thereby promoting viral immunity in mice. Brain Behav Immun 2021; 95:429-443. [PMID: 33895286 DOI: 10.1016/j.bbi.2021.04.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 04/06/2021] [Accepted: 04/20/2021] [Indexed: 12/18/2022] Open
Abstract
Loss of appetite (anorexia) is a typical behavioral response to infectious diseases that often reduces body weight. Also, anorexia can be observed in cancer and trauma patients, causing poor quality of life and reduced prospects of positive therapeutic outcomes. Although anorexia is an acute symptom, its initiation and endocrine regulation during antiviral immune responses are poorly understood. During viral infections, plasmacytoid dendritic cells (pDCs) produce abundant type I interferon (IFN-I) to initiate first-line defense mechanisms. Here, by targeted ablation of pDCs and various in vitro and in vivo mouse models of viral infection and inflammation, we identified that IFN-I is a significant driver of somatostatin (SST). Consequently, SST suppressed the hunger hormone ghrelin that led to severe metabolic changes, anorexia, and rapid body weight loss. Furthermore, during vaccination with Modified Vaccinia Ankara virus (MVA), the SST-mediated suppression of ghrelin was critical to viral immune response, as ghrelin restrained the production of early cytokines by natural killer (NK) cells and pDCs, and impaired the clonal expansion of CD8+ T cells. Thus, the hormonal modulation of ghrelin through SST and the cytokine IFN-I is fundamental for optimal antiviral immunity, which comes at the expense of calorie intake.
Collapse
Affiliation(s)
- Susanne Stutte
- Institute for Immunology, Faculty of Medicine, LMU Munich, Germany; Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, USA
| | - Janina Ruf
- Institute for Immunology, Faculty of Medicine, LMU Munich, Germany
| | - Ina Kugler
- Institute for Immunology, Faculty of Medicine, LMU Munich, Germany
| | | | - Andreas Parzefall
- Research Unit Analytical Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Peggy Marconi
- Department of Chemical and Pharmaceutical Sciences (DipSCF), University of Ferrara, Italy
| | - Takahiro Maeda
- Departments of Island and Community Medicine, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1, Sakamoto, Nagasaki City, Japan
| | - Tsuneyasu Kaisho
- Department of Immunology, Institute of Advanced Medicine, Wakayama Medical University, Kimiidera 811-1, Wakayama 641-8509, Japan
| | - Anne Krug
- Institute for Immunology, Faculty of Medicine, LMU Munich, Germany
| | - Bastian Popper
- Biomedical Center (BMC), Core Facility Animal Models, Medical Faculty, LMU Munich, Germany
| | | | - Marco Colonna
- Washington University, School of Medicine, St. Louis, USA
| | - Ulrich von Andrian
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, USA
| | - Thomas Brocker
- Institute for Immunology, Faculty of Medicine, LMU Munich, Germany.
| |
Collapse
|
7
|
Lee MYH, Upadhyay AA, Walum H, Chan CN, Dawoud RA, Grech C, Harper JL, Karunakaran KA, Nelson SA, Mahar EA, Goss KL, Carnathan DG, Cervasi B, Gill K, Tharp GK, Wonderlich ER, Velu V, Barratt-Boyes SM, Paiardini M, Silvestri G, Estes JD, Bosinger SE. Tissue-specific transcriptional profiling of plasmacytoid dendritic cells reveals a hyperactivated state in chronic SIV infection. PLoS Pathog 2021; 17:e1009674. [PMID: 34181694 PMCID: PMC8270445 DOI: 10.1371/journal.ppat.1009674] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 07/09/2021] [Accepted: 05/28/2021] [Indexed: 12/15/2022] Open
Abstract
HIV associated immune activation (IA) is associated with increased morbidity in people living with HIV (PLWH) on antiretroviral therapy, and remains a barrier for strategies aimed at reducing the HIV reservoir. The underlying mechanisms of IA have not been definitively elucidated, however, persistent production of Type I IFNs and expression of ISGs is considered to be one of the primary factors. Plasmacytoid DCs (pDCs) are a major producer of Type I IFN during viral infections, and are highly immunomodulatory in acute HIV and SIV infection, however their role in chronic HIV/SIV infection has not been firmly established. Here, we performed a detailed transcriptomic characterization of pDCs in chronic SIV infection in rhesus macaques, and in sooty mangabeys, a natural host non-human primate (NHP) species that undergoes non-pathogenic SIV infection. We also investigated the immunostimulatory capacity of lymph node homing pDCs in chronic SIV infection by contrasting gene expression of pDCs isolated from lymph nodes with those from blood. We observed that pDCs in LNs, but not blood, produced high levels of IFNα transcripts, and upregulated gene expression programs consistent with T cell activation and exhaustion. We apply a novel strategy to catalogue uncharacterized surface molecules on pDCs, and identified the lymphoid exhaustion markers TIGIT and LAIR1 as highly expressed in SIV infection. pDCs from SIV-infected sooty mangabeys lacked the activation profile of ISG signatures observed in infected macaques. These data demonstrate that pDCs are a primary producer of Type I IFN in chronic SIV infection. Further, this study demonstrated that pDCs trafficking to LNs persist in a highly activated state well into chronic infection. Collectively, these data identify pDCs as a highly immunomodulatory cell population in chronic SIV infection, and a putative therapeutic target to reduce immune activation.
Collapse
Affiliation(s)
- Michelle Y.-H. Lee
- Division of Microbiology & Immunology, Yerkes National Primate Research Center, Atlanta, Georgia, United States of America
| | - Amit A. Upadhyay
- Division of Microbiology & Immunology, Yerkes National Primate Research Center, Atlanta, Georgia, United States of America
| | - Hasse Walum
- Division of Microbiology & Immunology, Yerkes National Primate Research Center, Atlanta, Georgia, United States of America
| | - Chi N. Chan
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Reem A. Dawoud
- Division of Microbiology & Immunology, Yerkes National Primate Research Center, Atlanta, Georgia, United States of America
| | - Christine Grech
- Division of Microbiology & Immunology, Yerkes National Primate Research Center, Atlanta, Georgia, United States of America
| | - Justin L. Harper
- Division of Microbiology & Immunology, Yerkes National Primate Research Center, Atlanta, Georgia, United States of America
| | - Kirti A. Karunakaran
- Division of Microbiology & Immunology, Yerkes National Primate Research Center, Atlanta, Georgia, United States of America
| | - Sydney A. Nelson
- Division of Microbiology & Immunology, Yerkes National Primate Research Center, Atlanta, Georgia, United States of America
| | - Ernestine A. Mahar
- Division of Microbiology & Immunology, Yerkes National Primate Research Center, Atlanta, Georgia, United States of America
| | - Kyndal L. Goss
- Division of Microbiology & Immunology, Yerkes National Primate Research Center, Atlanta, Georgia, United States of America
| | - Diane G. Carnathan
- Division of Microbiology & Immunology, Yerkes National Primate Research Center, Atlanta, Georgia, United States of America
| | - Barbara Cervasi
- Flow Cytometry Core, Emory Vaccine Center, Emory University, Atlanta, Georgia, United States of America
| | - Kiran Gill
- Flow Cytometry Core, Emory Vaccine Center, Emory University, Atlanta, Georgia, United States of America
| | - Gregory K. Tharp
- Yerkes NHP Genomics Core Laboratory, Yerkes National Primate Research Center, Atlanta, Georgia, United States of America
| | | | - Vijayakumar Velu
- Division of Microbiology & Immunology, Yerkes National Primate Research Center, Atlanta, Georgia, United States of America
- Department of Pathology and Laboratory Medicine, School of Medicine, Emory University, Atlanta, Georgia, United States of America
| | - Simon M. Barratt-Boyes
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Mirko Paiardini
- Division of Microbiology & Immunology, Yerkes National Primate Research Center, Atlanta, Georgia, United States of America
- Department of Pathology and Laboratory Medicine, School of Medicine, Emory University, Atlanta, Georgia, United States of America
| | - Guido Silvestri
- Division of Microbiology & Immunology, Yerkes National Primate Research Center, Atlanta, Georgia, United States of America
- Department of Pathology and Laboratory Medicine, School of Medicine, Emory University, Atlanta, Georgia, United States of America
| | - Jacob D. Estes
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, United States of America
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Steven E. Bosinger
- Division of Microbiology & Immunology, Yerkes National Primate Research Center, Atlanta, Georgia, United States of America
- Yerkes NHP Genomics Core Laboratory, Yerkes National Primate Research Center, Atlanta, Georgia, United States of America
- Department of Pathology and Laboratory Medicine, School of Medicine, Emory University, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
8
|
Singh MV, Suwunnakorn S, Simpson SR, Weber EA, Singh VB, Kalinski P, Maggirwar SB. Monocytes complexed to platelets differentiate into functionally deficient dendritic cells. J Leukoc Biol 2021; 109:807-820. [PMID: 32663904 PMCID: PMC7854860 DOI: 10.1002/jlb.3a0620-460rr] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 06/25/2020] [Accepted: 06/27/2020] [Indexed: 12/12/2022] Open
Abstract
In addition to their role in hemostasis, platelets store numerous immunoregulatory molecules such as CD40L, TGFβ, β2-microglobulin, and IL-1β and release them upon activation. Previous studies indicate that activated platelets form transient complexes with monocytes, especially in HIV infected individuals and induce a proinflammatory monocyte phenotype. Because monocytes can act as precursors of dendritic cells (DCs) during infection/inflammation as well as for generation of DC-based vaccine therapies, we evaluated the impact of activated platelets on monocyte differentiation into DCs. We observed that in vitro cultured DCs derived from platelet-monocyte complexes (PMCs) exhibit reduced levels of molecules critical to DC function (CD206, dendritic cell-specific intercellular adhesion molecule-3-grabbing nonintegrin, CD80, CD86, CCR7) and reduced antigen uptake capacity. DCs derived from PMCs also showed reduced ability to activate naïve CD4+ and CD8+ T cells, and secrete IL-12p70 in response to CD40L stimulation, resulting in decreased ability to promote type-1 immune responses to HIV antigens. Our results indicate that formation of complexes with activated platelets can suppress the development of functional DCs from such monocytes. Disruption of PMCs in vivo via antiplatelet drugs such as Clopidogrel/Prasugrel or the application of platelet-free monocytes for DCs generation in vitro, may be used to enhance immunization and augment the immune control of HIV.
Collapse
Affiliation(s)
- Meera V Singh
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Sumanun Suwunnakorn
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
- Department of Microbiology and Immunology and Tropical Medicine, George Washington School of Medicine and Health Sciences, Washington, District of Columbia, USA
| | - Sydney R Simpson
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Emily A Weber
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Vir B Singh
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Pawel Kalinski
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Sanjay B Maggirwar
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
- Department of Microbiology and Immunology and Tropical Medicine, George Washington School of Medicine and Health Sciences, Washington, District of Columbia, USA
| |
Collapse
|
9
|
Mitchell JL, Takata H, Muir R, Colby DJ, Kroon E, Crowell TA, Sacdalan C, Pinyakorn S, Puttamaswin S, Benjapornpong K, Trichavaroj R, Tressler RL, Fox L, Polonis VR, Bolton DL, Maldarelli F, Lewin SR, Haddad EK, Phanuphak P, Robb ML, Michael NL, de Souza M, Phanuphak N, Ananworanich J, Trautmann L. Plasmacytoid dendritic cells sense HIV replication before detectable viremia following treatment interruption. J Clin Invest 2021; 130:2845-2858. [PMID: 32017709 DOI: 10.1172/jci130597] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 01/29/2020] [Indexed: 12/20/2022] Open
Abstract
Plasmacytoid dendritic cells (pDCs) are robust producers of IFNα and one of the first immune cells to respond to SIV infection. To elucidate responses to early HIV-1 replication, we studied blood pDCs in 29 HIV-infected participants who initiated antiretroviral therapy during acute infection and underwent analytic treatment interruption (ATI). We observed an increased frequency of partially activated pDCs in the blood before detection of HIV RNA. Concurrent with peak pDC frequency, we detected a transient decline in the ability of pDCs to produce IFNα in vitro, which correlated with decreased phosphorylation of IFN regulatory factory 7 (IRF7) and NF-κB. The levels of phosphorylated IRF7 and NF-κB inversely correlated with plasma IFNα2 levels, implying that pDCs were refractory to in vitro stimulation after IFNα production in vivo. After ATI, decreased expression of IFN genes in pDCs inversely correlated with the time to viral detection, suggesting that pDC IFN loss is part of an effective early immune response. These data from a limited cohort provide a critical first step in understanding the earliest immune response to HIV-1 and suggest that changes in blood pDC frequency and function can be used as an indicator of viral replication before detectable plasma viremia.
Collapse
Affiliation(s)
- Julie L Mitchell
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine (HJF), Bethesda, Maryland, USA
| | - Hiroshi Takata
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine (HJF), Bethesda, Maryland, USA
| | - Roshell Muir
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Donn J Colby
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine (HJF), Bethesda, Maryland, USA.,South East Asia Research Collaboration with Hawaii (SEARCH), Thai Red Cross AIDS Research Centre (TRC-ARC), Bangkok, Thailand
| | - Eugène Kroon
- South East Asia Research Collaboration with Hawaii (SEARCH), Thai Red Cross AIDS Research Centre (TRC-ARC), Bangkok, Thailand
| | - Trevor A Crowell
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine (HJF), Bethesda, Maryland, USA
| | - Carlo Sacdalan
- South East Asia Research Collaboration with Hawaii (SEARCH), Thai Red Cross AIDS Research Centre (TRC-ARC), Bangkok, Thailand
| | - Suteeraporn Pinyakorn
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine (HJF), Bethesda, Maryland, USA
| | - Suwanna Puttamaswin
- South East Asia Research Collaboration with Hawaii (SEARCH), Thai Red Cross AIDS Research Centre (TRC-ARC), Bangkok, Thailand
| | - Khunthalee Benjapornpong
- South East Asia Research Collaboration with Hawaii (SEARCH), Thai Red Cross AIDS Research Centre (TRC-ARC), Bangkok, Thailand
| | - Rapee Trichavaroj
- Department of Retrovirology, Armed Forces Research Institute of Medical Sciences (AFRIMS) United States Component, Bangkok, Thailand
| | - Randall L Tressler
- Division of AIDS, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, Maryland, USA
| | - Lawrence Fox
- Division of AIDS, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, Maryland, USA
| | - Victoria R Polonis
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Diane L Bolton
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine (HJF), Bethesda, Maryland, USA
| | - Frank Maldarelli
- HIV Dynamics and Replication Program, National Cancer Institute (NCI), NIH, Frederick, Maryland, USA
| | - Sharon R Lewin
- Peter Doherty Institute for Infection and Immunity, University of Melbourne and Royal Melbourne Hospital, Melbourne, Australia.,Department of Infectious Diseases, Alfred Hospital and Monash University, Melbourne, Australia
| | - Elias K Haddad
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Praphan Phanuphak
- South East Asia Research Collaboration with Hawaii (SEARCH), Thai Red Cross AIDS Research Centre (TRC-ARC), Bangkok, Thailand
| | - Merlin L Robb
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine (HJF), Bethesda, Maryland, USA
| | - Nelson L Michael
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Mark de Souza
- South East Asia Research Collaboration with Hawaii (SEARCH), Thai Red Cross AIDS Research Centre (TRC-ARC), Bangkok, Thailand
| | - Nittaya Phanuphak
- South East Asia Research Collaboration with Hawaii (SEARCH), Thai Red Cross AIDS Research Centre (TRC-ARC), Bangkok, Thailand
| | - Jintanat Ananworanich
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine (HJF), Bethesda, Maryland, USA.,South East Asia Research Collaboration with Hawaii (SEARCH), Thai Red Cross AIDS Research Centre (TRC-ARC), Bangkok, Thailand.,Department of Global Health, University of Amsterdam, Amsterdam, Netherlands
| | - Lydie Trautmann
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine (HJF), Bethesda, Maryland, USA
| | | |
Collapse
|
10
|
Tomescu C, Colon K, Smith P, Taylor M, Azzoni L, Metzger DS, Montaner LJ. Persons who inject drugs (PWID) retain functional NK cells, dendritic cell stimulation, and adaptive immune recall responses despite prolonged opioid use. J Leukoc Biol 2020; 110:10.1002/JLB.5A0920-604R. [PMID: 33289158 PMCID: PMC8244827 DOI: 10.1002/jlb.5a0920-604r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/22/2020] [Accepted: 06/11/2020] [Indexed: 01/28/2023] Open
Abstract
Previous literature suggests that acute opioid use results in the functional impairment of the immune response, thereby decreasing resistance to viral infection. Here, we assessed if innate and adaptive immune responses are compromised ex vivo in persons who inject drugs (PWID) and whether long-term injection drug use may impact host susceptibility to in vitro HIV infection. We measured the frequency, activation state, and functional profile of NK cells, dendritic cells, and CD4+ and CD8+ T cells in low-risk PWID who do not share needles, high-risk needle-sharing PWID, and control donors who did not inject drugs. We also assessed plasma levels of inflammatory markers and CD4+ T cell susceptibility to HIV infection. We observed a significant increase in the amount of sCD14 (P = 0.0023, n = 16) and sCD163 (P = 0.0001, n = 16) in the plasma of PWID compared to controls. Evidence of constitutive activation was noted in PWID as compared to controls with increased CD69 expression in CD56dim NK cells (P = 0.0103, n = 26) and increased CD38 and HLA-DR expression in CD4+ T cells (P = 0.0355, n = 23). However, no innate or adaptive functional differences were detected between PWID and controls, including: NK cell direct or antibody-dependent cellular cytotoxicity poly-functional response, TLR-stimulated dendritic cell/NK crosstalk, CD8+ T cell response to Staphylococcal enterotoxin B or CMV/EBV/FLU peptides, or constitutive or anti-CD3/CD28-stimulated CD4+ T cell infectivity with CCR5-tropic or CXCR4-tropic HIV-1 isolates. Our data indicate that PWID who utilize opioids over as prolonged time frame can retain a functional ex vivo immune response without a measurable increase in CD4+ T cell infectivity suggesting that leukocytes from PWID are not intrinsically more susceptibility to infection with HIV than non-PWID controls.
Collapse
Affiliation(s)
- Costin Tomescu
- The Wistar Institute, HIV Immunopathogenesis Laboratory, Philadelphia, PA 19104
| | - Krystal Colon
- The Wistar Institute, HIV Immunopathogenesis Laboratory, Philadelphia, PA 19104
| | - Peter Smith
- The University of Pennsylvania, Department of Psychiatry, HIV Prevention Division, Philadelphia, PA, 19104
| | - Mack Taylor
- The University of Pennsylvania, Department of Psychiatry, HIV Prevention Division, Philadelphia, PA, 19104
| | - Livio Azzoni
- The Wistar Institute, HIV Immunopathogenesis Laboratory, Philadelphia, PA 19104
| | - David S. Metzger
- The University of Pennsylvania, Department of Psychiatry, HIV Prevention Division, Philadelphia, PA, 19104
| | - Luis J. Montaner
- The Wistar Institute, HIV Immunopathogenesis Laboratory, Philadelphia, PA 19104
| |
Collapse
|
11
|
Pham TNQ, Meziane O, Miah MA, Volodina O, Colas C, Béland K, Li Y, Dallaire F, Keler T, Guimond JV, Lesage S, Cheong C, Haddad É, Cohen ÉA. Flt3L-Mediated Expansion of Plasmacytoid Dendritic Cells Suppresses HIV Infection in Humanized Mice. Cell Rep 2020; 29:2770-2782.e5. [PMID: 31775044 DOI: 10.1016/j.celrep.2019.10.094] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 08/29/2019] [Accepted: 10/23/2019] [Indexed: 12/24/2022] Open
Abstract
Plasmacytoid dendritic cells (plasmacytoid DC, pDC) are major IFN-I producers and have been shown to be affected by HIV through ill-defined mechanisms. In this study, we directly assess the role of pDC in early infection, evaluating whether modulating their abundance can alter viral replication. First, HIV infection of humanized mice induces systemic depletion of pDC, and in the presence of soluble FMS-like tyrosine kinase 3 ligand (Flt3L), pDC levels remain elevated. Flt3L significantly delays the onset of viremia and reduces viral replication via a process that is dependent on pDC and mediated through an enhanced early IFN-I response. pDC from Flt3L-treated mice are more prone to express IFN-α following TLR7 stimulation, but this propensity is gradually decreased during infection. In conclusion, maintaining pDC levels and function is key to effective early viral control, and in this context, these findings provide practical insights for anti-HIV strategies and vaccine design.
Collapse
Affiliation(s)
- Tram N Q Pham
- Montréal Clinical Research Institute, Montréal, QC H2W 1R7, Canada.
| | - Oussama Meziane
- Montréal Clinical Research Institute, Montréal, QC H2W 1R7, Canada
| | - Mohammad Alam Miah
- Montréal Clinical Research Institute, Montréal, QC H2W 1R7, Canada; Department of Physiology, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Olga Volodina
- Montréal Clinical Research Institute, Montréal, QC H2W 1R7, Canada
| | - Chloé Colas
- Research Center of CHU Sainte-Justine, Montréal, QC H3T 1C5, Canada
| | - Kathie Béland
- Research Center of CHU Sainte-Justine, Montréal, QC H3T 1C5, Canada
| | - Yuanyi Li
- Research Center of CHU Sainte-Justine, Montréal, QC H3T 1C5, Canada
| | | | - Tibor Keler
- Celldex Therapeutics, Hampton, NJ 08827, USA
| | - Jean V Guimond
- Centre de Santé et de Services Sociaux Jeanne-Mance, Montreal, QC H2T 1H4, Canada
| | - Sylvie Lesage
- Department of Immunology-Oncology, Maisonneuve-Rosemont Hospital, Montréal, QC H1T 2M4, Canada; Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Cheolho Cheong
- Montréal Clinical Research Institute, Montréal, QC H2W 1R7, Canada; Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Élie Haddad
- Research Center of CHU Sainte-Justine, Montréal, QC H3T 1C5, Canada; Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montréal, QC H3T 1J4, Canada; Department of Pediatrics, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Éric A Cohen
- Montréal Clinical Research Institute, Montréal, QC H2W 1R7, Canada; Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montréal, QC H3T 1J4, Canada.
| |
Collapse
|
12
|
Greene TT, Jo YR, Zuniga EI. Infection and cancer suppress pDC derived IFN-I. Curr Opin Immunol 2020; 66:114-122. [PMID: 32947131 PMCID: PMC8526282 DOI: 10.1016/j.coi.2020.08.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/03/2020] [Accepted: 08/04/2020] [Indexed: 12/12/2022]
Abstract
Plasmacytoid dendritic cells (pDCs) are specialized producers of Type I interferon (IFN-I) that promote anti-viral and anti-tumor immunity. However, chronic infections and cancer inhibit pDC-derived IFN-I. While the mechanisms of this inhibition are multifarious they can be classified broadly into two categories: i) reduction or ablation of pDC IFN-I-production capacity (functional exhaustion) and/or ii) decrease in pDC numbers (altered population dynamics). Recent work has identified many processes that contribute to suppression of pDC-derived IFN-I during chronic infections and cancer, including sustained stimulation through Toll Like Receptors (TLRs), inhibitory microenvironments, inhibitory receptor ligation, and reduced development from bone marrow progenitors and apoptosis. Emerging success leveraging pDCs in treatment of disease through TLR activation illustrates the therapeutic potential of targeting pDCs. Deeper understanding of the systems that limit pDC-derived IFN-I has the potential to improve these emerging therapies as well as help devising new approaches that harness the outstanding IFN-I-production capacity of pDCs.
Collapse
Affiliation(s)
- Trever T Greene
- University of California San Diego, Department of Biological Sciences, San Diego, United States
| | - Yea-Ra Jo
- University of California San Diego, Department of Biological Sciences, San Diego, United States
| | - Elina I Zuniga
- University of California San Diego, Department of Biological Sciences, San Diego, United States.
| |
Collapse
|
13
|
Jamali A, Kenyon B, Ortiz G, Abou-Slaybi A, Sendra VG, Harris DL, Hamrah P. Plasmacytoid dendritic cells in the eye. Prog Retin Eye Res 2020; 80:100877. [PMID: 32717378 DOI: 10.1016/j.preteyeres.2020.100877] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 05/28/2020] [Accepted: 06/05/2020] [Indexed: 02/07/2023]
Abstract
Plasmacytoid dendritic cells (pDCs) are a unique subpopulation of immune cells, distinct from classical dendritic cells. pDCs are generated in the bone marrow and following development, they typically home to secondary lymphoid tissues. While peripheral tissues are generally devoid of pDCs during steady state, few tissues, including the lung, kidney, vagina, and in particular ocular tissues harbor resident pDCs. pDCs were originally appreciated for their potential to produce large quantities of type I interferons in viral immunity. Subsequent studies have now unraveled their pivotal role in mediating immune responses, in particular in the induction of tolerance. In this review, we summarize our current knowledge on pDCs in ocular tissues in both mice and humans, in particular in the cornea, limbus, conjunctiva, choroid, retina, and lacrimal gland. Further, we will review our current understanding on the significance of pDCs in ameliorating inflammatory responses during herpes simplex virus keratitis, sterile inflammation, and corneal transplantation. Moreover, we describe their novel and pivotal neuroprotective role, their key function in preserving corneal angiogenic privilege, as well as their potential application as a cell-based therapy for ocular diseases.
Collapse
Affiliation(s)
- Arsia Jamali
- Center for Translational Ocular Immunology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA; Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA
| | - Brendan Kenyon
- Center for Translational Ocular Immunology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA; Program in Neuroscience, Graduate School of Biomedical Sciences, Tufts University, Boston, MA, USA
| | - Gustavo Ortiz
- Center for Translational Ocular Immunology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA; Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA
| | - Abdo Abou-Slaybi
- Center for Translational Ocular Immunology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA; Program in Immunology, Graduate School of Biomedical Sciences, Tufts University, Boston, MA, USA
| | - Victor G Sendra
- Center for Translational Ocular Immunology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA; Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA
| | - Deshea L Harris
- Center for Translational Ocular Immunology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA; Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA
| | - Pedram Hamrah
- Center for Translational Ocular Immunology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA; Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA; Program in Neuroscience, Graduate School of Biomedical Sciences, Tufts University, Boston, MA, USA; Program in Immunology, Graduate School of Biomedical Sciences, Tufts University, Boston, MA, USA; Cornea Service, Tufts New England Eye Center, Boston, MA, USA.
| |
Collapse
|
14
|
Borhis G, Trovato M, Ibrahim HM, Isnard S, Le Grand R, Bosquet N, Richard Y. Impact of BAFF Blockade on Inflammation, Germinal Center Reaction and Effector B-Cells During Acute SIV Infection. Front Immunol 2020; 11:252. [PMID: 32194549 PMCID: PMC7061218 DOI: 10.3389/fimmu.2020.00252] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 01/30/2020] [Indexed: 12/14/2022] Open
Abstract
Memory B-cell dysfunctions and inefficient antibody response suggest germinal center (GC) impairments during HIV/SIV infection with possible contribution of overproduced B-cell activating factor (BAFF). To address this question, we compared proportions and functions of various B-cell subsets and follicular helper T-cells (TFH) in untreated (Placebo) and BR3-Fc treated (Treated) SIV-infected macaques. From day 2 post-infection (dpi), Treated macaques received one weekly injection of BR3-Fc molecule, a soluble BAFF antagonist, for 4 weeks. Whereas, the kinetics of CD4+ T-cell loss and plasma viral loads were comparable in both groups, BAFF blockade delayed the peak of inflammatory cytokines (CXCL10, IFNα), impaired the renewal of plasmacytoid dendritic cells and fostered the decline of plasma CXCL13 titers after 14 dpi. In Treated macaques, proportions of total and naïve B-cells were reduced in blood and spleen whereas SIV-induced loss of marginal zone (MZ) B-cells was only accentuated in blood and terminal ileum. Proportions of spleen GC B-cells and TFH were similar in both groups, with CD8+ T-cells and rare Foxp3+ being present in spleen GC. Regardless of treatment, sorted TFH produced similar levels of IL21, CXCL13, and IFNγ but no IL2, IL4, or BAFF and exhibited similar capacities to support IgG production by autologous or heterologous B-cells. Consistently, most TFH were negative for BAFF-R and TACI. Higher proportions of resting and atypical (CD21lo) memory B-cells were present in Treated macaques compared to Placebo. In both groups, we found higher levels of BAFF-R expression on MZ and resting memory B-cells but low levels on atypical memory B-cells. TACI was present on 20-30% of MZ, resting and atypical memory B-cells in Placebo macaques. BAFF blockade decreased TACI expression on these B-cell subsets as well as titers of SIV-specific and vaccine-specific antibodies arguing for BAFF being mandatory for plasma cell survival. Irrespective of treatment, GC B-cells expressed BAFF-R at low level and were negative for TACI. In addition to key information on spleen BAFF-R and TACI expression, our data argue for BAFF contributing to the GC reaction in terminal ileum but being dispensable for the generation of atypical memory B-cells and GC reaction in spleen during T-dependent response against SIV.
Collapse
Affiliation(s)
- Gwenoline Borhis
- Université de Paris, Institut Cochin, INSERM, CNRS, Paris, France
| | - Maria Trovato
- Université de Paris, Institut Cochin, INSERM, CNRS, Paris, France
| | - Hany M. Ibrahim
- Université de Paris, Institut Cochin, INSERM, CNRS, Paris, France
| | - Stephane Isnard
- Université de Paris, Institut Cochin, INSERM, CNRS, Paris, France
| | - Roger Le Grand
- CEA, Université Paris Sud, INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases (IMVA), IDMIT Department/IBFJ, Fontenay-aux-Roses, France
| | - Nathalie Bosquet
- CEA, Université Paris Sud, INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases (IMVA), IDMIT Department/IBFJ, Fontenay-aux-Roses, France
| | - Yolande Richard
- Université de Paris, Institut Cochin, INSERM, CNRS, Paris, France
| |
Collapse
|
15
|
Macal M, Jo Y, Dallari S, Chang AY, Dai J, Swaminathan S, Wehrens EJ, Fitzgerald-Bocarsly P, Zúñiga EI. Self-Renewal and Toll-like Receptor Signaling Sustain Exhausted Plasmacytoid Dendritic Cells during Chronic Viral Infection. Immunity 2019; 48:730-744.e5. [PMID: 29669251 DOI: 10.1016/j.immuni.2018.03.020] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 12/30/2017] [Accepted: 03/14/2018] [Indexed: 12/26/2022]
Abstract
Although characterization of T cell exhaustion has unlocked powerful immunotherapies, the mechanisms sustaining adaptations of short-lived innate cells to chronic inflammatory settings remain unknown. During murine chronic viral infection, we found that concerted events in bone marrow and spleen mediated by type I interferon (IFN-I) and Toll-like receptor 7 (TLR7) maintained a pool of functionally exhausted plasmacytoid dendritic cells (pDCs). In the bone marrow, IFN-I compromised the number and the developmental capacity of pDC progenitors, which generated dysfunctional pDCs. Concurrently, exhausted pDCs in the periphery were maintained by self-renewal via IFN-I- and TLR7-induced proliferation of CD4- subsets. On the other hand, pDC functional loss was mediated by TLR7, leading to compromised IFN-I production and resistance to secondary infection. These findings unveil the mechanisms sustaining a self-perpetuating pool of functionally exhausted pDCs and provide a framework for deciphering long-term exhaustion of other short-lived innate cells during chronic inflammation.
Collapse
Affiliation(s)
- Monica Macal
- Division of Biological Sciences, University of California San Diego, La Jolla, San Diego, CA 92093, USA
| | - Yeara Jo
- Division of Biological Sciences, University of California San Diego, La Jolla, San Diego, CA 92093, USA
| | - Simone Dallari
- Division of Biological Sciences, University of California San Diego, La Jolla, San Diego, CA 92093, USA
| | - Aaron Y Chang
- Division of Biological Sciences, University of California San Diego, La Jolla, San Diego, CA 92093, USA
| | - Jihong Dai
- Department of Pathology and Laboratory Medicine, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Shobha Swaminathan
- Department of Medicine, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Ellen J Wehrens
- Division of Biological Sciences, University of California San Diego, La Jolla, San Diego, CA 92093, USA
| | | | - Elina I Zúñiga
- Division of Biological Sciences, University of California San Diego, La Jolla, San Diego, CA 92093, USA.
| |
Collapse
|
16
|
Huot N, Bosinger SE, Paiardini M, Reeves RK, Müller-Trutwin M. Lymph Node Cellular and Viral Dynamics in Natural Hosts and Impact for HIV Cure Strategies. Front Immunol 2018; 9:780. [PMID: 29725327 PMCID: PMC5916971 DOI: 10.3389/fimmu.2018.00780] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 03/28/2018] [Indexed: 01/03/2023] Open
Abstract
Combined antiretroviral therapies (cARTs) efficiently control HIV replication leading to undetectable viremia and drastic increases in lifespan of people living with HIV. However, cART does not cure HIV infection as virus persists in cellular and anatomical reservoirs, from which the virus generally rebounds soon after cART cessation. One major anatomical reservoir are lymph node (LN) follicles, where HIV persists through replication in follicular helper T cells and is also trapped by follicular dendritic cells. Natural hosts of SIV, such as African green monkeys and sooty mangabeys, generally do not progress to disease although displaying persistently high viremia. Strikingly, these hosts mount a strong control of viral replication in LN follicles shortly after peak viremia that lasts throughout infection. Herein, we discuss the potential interplay between viral control in LNs and the resolution of inflammation, which is characteristic for natural hosts. We furthermore detail the differences that exist between non-pathogenic SIV infection in natural hosts and pathogenic HIV/SIV infection in humans and macaques regarding virus target cells and replication dynamics in LNs. Several mechanisms have been proposed to be implicated in the strong control of viral replication in natural host's LNs, such as NK cell-mediated control, that will be reviewed here, together with lessons and limitations of in vivo cell depletion studies that have been performed in natural hosts. Finally, we discuss the impact that these insights on viral dynamics and host responses in LNs of natural hosts have for the development of strategies toward HIV cure.
Collapse
Affiliation(s)
- Nicolas Huot
- HIV Inflammation and Persistence Unit, Institut Pasteur, Paris, France.,Vaccine Research Institute, Créteil, France
| | - Steven E Bosinger
- Yerkes National Primate Research Center, Emory University School of Medicine, Atlanta, GA, United States.,Yerkes Nonhuman Primate Genomics Core, Yerkes National Primate Research Center, Atlanta, GA, United States
| | - Mirko Paiardini
- Yerkes National Primate Research Center, Emory University School of Medicine, Atlanta, GA, United States
| | - R Keith Reeves
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center (BIDMC), Harvard Medical School, Boston, MA, United States.,Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, United States
| | - Michaela Müller-Trutwin
- HIV Inflammation and Persistence Unit, Institut Pasteur, Paris, France.,Vaccine Research Institute, Créteil, France
| |
Collapse
|
17
|
Bryant CE, Sutherland S, Kong B, Papadimitrious MS, Fromm PD, Hart DNJ. Dendritic cells as cancer therapeutics. Semin Cell Dev Biol 2018; 86:77-88. [PMID: 29454038 DOI: 10.1016/j.semcdb.2018.02.015] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 12/14/2017] [Accepted: 02/10/2018] [Indexed: 02/06/2023]
Abstract
The ability of immune therapies to control cancer has recently generated intense interest. This therapeutic outcome is reliant on T cell recognition of tumour cells. The natural function of dendritic cells (DC) is to generate adaptive responses, by presenting antigen to T cells, hence they are a logical target to generate specific anti-tumour immunity. Our understanding of the biology of DC is expanding, and they are now known to be a family of related subsets with variable features and function. Most clinical experience to date with DC vaccination has been using monocyte-derived DC vaccines. There is now growing experience with alternative blood-derived DC derived vaccines, as well as with multiple forms of tumour antigen and its loading, a wide range of adjuvants and different modes of vaccine delivery. Key insights from pre-clinical studies, and lessons learned from early clinical testing drive progress towards improved vaccines. The potential to fortify responses with other modalities of immunotherapy makes clinically effective "second generation" DC vaccination strategies a priority for cancer immune therapists.
Collapse
Affiliation(s)
- Christian E Bryant
- Institute of Haematology, Royal Prince Alfred Hospital, Camperdown, NSW Australia; Dendritic Cell Research, ANZAC Research Institute, Concord, NSW Australia.
| | - Sarah Sutherland
- Dendritic Cell Research, ANZAC Research Institute, Concord, NSW Australia; Sydney Medical School, The University of Sydney, Sydney, NSW Australia
| | - Benjamin Kong
- Dendritic Cell Research, ANZAC Research Institute, Concord, NSW Australia; Sydney Medical School, The University of Sydney, Sydney, NSW Australia
| | - Michael S Papadimitrious
- Dendritic Cell Research, ANZAC Research Institute, Concord, NSW Australia; Sydney Medical School, The University of Sydney, Sydney, NSW Australia
| | - Phillip D Fromm
- Dendritic Cell Research, ANZAC Research Institute, Concord, NSW Australia; Sydney Medical School, The University of Sydney, Sydney, NSW Australia
| | - Derek N J Hart
- Institute of Haematology, Royal Prince Alfred Hospital, Camperdown, NSW Australia; Dendritic Cell Research, ANZAC Research Institute, Concord, NSW Australia; Sydney Medical School, The University of Sydney, Sydney, NSW Australia.
| |
Collapse
|
18
|
The Biology of Monocytes and Dendritic Cells: Contribution to HIV Pathogenesis. Viruses 2018; 10:v10020065. [PMID: 29415518 PMCID: PMC5850372 DOI: 10.3390/v10020065] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 02/01/2018] [Accepted: 02/03/2018] [Indexed: 02/07/2023] Open
Abstract
Myeloid cells such as monocytes, dendritic cells (DC) and macrophages (MΦ) are key components of the innate immune system contributing to the maintenance of tissue homeostasis and the development/resolution of immune responses to pathogens. Monocytes and DC, circulating in the blood or infiltrating various lymphoid and non-lymphoid tissues, are derived from distinct bone marrow precursors and are typically short lived. Conversely, recent studies revealed that subsets of tissue resident MΦ are long-lived as they originate from embryonic/fetal precursors that have the ability to self-renew during the life of an individual. Pathogens such as the human immunodeficiency virus type 1 (HIV-1) highjack the functions of myeloid cells for viral replication (e.g., MΦ) or distal dissemination and cell-to-cell transmission (e.g., DC). Although the long-term persistence of HIV reservoirs in CD4+ T-cells during viral suppressive antiretroviral therapy (ART) is well documented, the ability of myeloid cells to harbor replication competent viral reservoirs is still a matter of debate. This review summarizes the current knowledge on the biology of monocytes and DC during homeostasis and in the context of HIV-1 infection and highlights the importance of future studies on long-lived resident MΦ to HIV persistence in ART-treated patients.
Collapse
|
19
|
Soper A, Kimura I, Nagaoka S, Konno Y, Yamamoto K, Koyanagi Y, Sato K. Type I Interferon Responses by HIV-1 Infection: Association with Disease Progression and Control. Front Immunol 2018; 8:1823. [PMID: 29379496 PMCID: PMC5775519 DOI: 10.3389/fimmu.2017.01823] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 12/04/2017] [Indexed: 01/08/2023] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) is the causative agent of acquired immunodeficiency syndrome and its infection leads to the onset of several disorders such as the depletion of peripheral CD4+ T cells and immune activation. HIV-1 is recognized by innate immune sensors that then trigger the production of type I interferons (IFN-Is). IFN-Is are well-known cytokines eliciting broad anti-viral effects by inducing the expression of anti-viral genes called interferon-stimulated genes (ISGs). Extensive in vitro studies using cell culture systems have elucidated that certain ISGs such as APOBEC3G, tetherin, SAM domain and HD domain-containing protein 1, MX dynamin-like GTPase 2, guanylate-binding protein 5, and schlafen 11 exert robust anti-HIV-1 activity, suggesting that IFN-I responses triggered by HIV-1 infection are detrimental for viral replication and spread. However, recent studies using animal models have demonstrated that at both the acute and chronic phase of infection, the role of IFN-Is produced by HIV or SIV infection in viral replication, spread, and pathogenesis, may not be that straightforward. In this review, we describe the pluses and minuses of HIV-1 infection stimulated IFN-I responses on viral replication and pathogenesis, and further discuss the possibility for therapeutic approaches.
Collapse
Affiliation(s)
- Andrew Soper
- Laboratory of Systems Virology, Department of Biosystems Science, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan.,Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Izumi Kimura
- Laboratory of Systems Virology, Department of Biosystems Science, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan.,Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Shumpei Nagaoka
- Laboratory of Systems Virology, Department of Biosystems Science, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan.,Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Yoriyuki Konno
- Laboratory of Systems Virology, Department of Biosystems Science, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan.,Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Keisuke Yamamoto
- Laboratory of Systems Virology, Department of Biosystems Science, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan.,Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yoshio Koyanagi
- Laboratory of Systems Virology, Department of Biosystems Science, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Kei Sato
- Laboratory of Systems Virology, Department of Biosystems Science, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan.,CREST, Japan Science and Technology Agency, Kawaguchi, Japan
| |
Collapse
|
20
|
Maldonado S, Fitzgerald-Bocarsly P. Antifungal Activity of Plasmacytoid Dendritic Cells and the Impact of Chronic HIV Infection. Front Immunol 2017; 8:1705. [PMID: 29255464 PMCID: PMC5723005 DOI: 10.3389/fimmu.2017.01705] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 11/20/2017] [Indexed: 01/10/2023] Open
Abstract
Due to the effectiveness of combined antiretroviral therapy, people living with HIV can control viral replication and live longer lifespans than ever. However, HIV-positive individuals still face challenges to their health and well-being, including dysregulation of the immune system resulting from years of chronic immune activation, as well as opportunistic infections from pathogenic fungi. This review focuses on one of the key players in HIV immunology, the plasmacytoid dendritic cell (pDC), which links the innate and adaptive immune response and is notable for being the body’s most potent producer of type-I interferons (IFNs). During chronic HIV infection, the pDC compartment is greatly dysregulated, experiencing a substantial depletion in number and compromise in function. This immune dysregulation may leave patients further susceptible to opportunistic infections. This is especially important when considering a new role for pDCs currently emerging in the literature: in addition to their role in antiviral immunity, recent studies suggest that pDCs also play an important role in antifungal immunity. Supporting this new role, pDCs express C-type lectin receptors including dectin-1, dectin-2, dectin-3, and mannose receptor, and toll-like receptors-4 and -9 that are involved in recognition, signaling, and response to a wide variety of fungal pathogens, including Aspergillus fumigatus, Cryptococcus neoformans, Candida albicans, and Pneumocystis jirovecii. Accordingly, pDCs have been demonstrated to recognize and respond to certain pathogenic fungi, measured via activation, cytokine production, and fungistatic activity in vitro, while in vivo mouse models indicated a strikingly vital role for pDCs in survival against pulmonary Aspergillus challenge. Here, we discuss the role of the pDC compartment and the dysregulation it undergoes during chronic HIV infection, as well as what is known so far about the role and mechanisms of pDC antifungal activity.
Collapse
Affiliation(s)
- Samuel Maldonado
- Rutgers School of Graduate Studies, Newark, NJ, United States.,Department of Pathology and Laboratory Medicine, New Jersey Medical School, Newark, NJ, United States
| | - Patricia Fitzgerald-Bocarsly
- Rutgers School of Graduate Studies, Newark, NJ, United States.,Department of Pathology and Laboratory Medicine, New Jersey Medical School, Newark, NJ, United States
| |
Collapse
|
21
|
Abbott RJ, Pachnio A, Pedroza-Pacheco I, Leese AM, Begum J, Long HM, Croom-Carter D, Stacey A, Moss PAH, Hislop AD, Borrow P, Rickinson AB, Bell AI. Asymptomatic Primary Infection with Epstein-Barr Virus: Observations on Young Adult Cases. J Virol 2017; 91:e00382-17. [PMID: 28835490 PMCID: PMC5640854 DOI: 10.1128/jvi.00382-17] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 07/28/2017] [Indexed: 02/07/2023] Open
Abstract
Epstein-Barr virus (EBV) is typically acquired asymptomatically in childhood. In contrast, infection later in life often leads to infectious mononucleosis (IM), a febrile illness characterized by anti-EBV IgM antibody positivity, high loads of circulating latently infected B cells, and a marked lymphocytosis caused by hyperexpansion of EBV-specific CD8+ T cells plus a milder expansion of CD56dim NKG2A+ KIR- natural killer (NK) cells. How the two situations compare is unclear due to the paucity of studies on clinically silent infection. Here we describe five prospectively studied patients with asymptomatic infections identified in a seroepidemiologic survey of university entrants. In each case, the key blood sample had high cell-associated viral loads without a marked CD8 lymphocytosis or NK cell disturbance like those seen in patients during the acute phase of IM. Two of the cases with the highest viral loads showed a coincident expansion of activated EBV-specific CD8+ T cells, but overall CD8+ T cell numbers were either unaffected or only mildly increased. Two cases with slightly lower loads, in whom serology suggests the infection may have been caught earlier in the course of infection, also showed no T or NK cell expansion at the time. Interestingly, in another case with a higher viral load, in which T and NK cell responses were undetectable in the primary blood sample in which infection was detected, EBV-specific T cell responses did not appear until several months later, by which time the viral loads in the blood had already fallen. Thus, some patients with asymptomatic primary infections have very high circulating viral loads similar to those in patients during the acute phase of IM and a cell-mediated immune response that is qualitatively similar to that in IM patients but of a lower magnitude. However, other patients may have quite different immune responses that ultimately could reveal novel mechanisms of host control.IMPORTANCE Epstein-Barr virus (EBV) is transmitted orally, replicates in the throat, and then invades the B lymphocyte pool through a growth-transforming latent infection. While primary infection in childhood is usually asymptomatic, delayed infection is associated with infectious mononucleosis (IM), a febrile illness in which patients have high circulating viral loads and an exaggerated virus-induced immune response involving both CD8+ T cells and natural killer (NK) cells. Here we show that in five cases of asymptomatic infection, viral loads in the blood were as high as those in patients during the acute phase of IM, whereas the cell-mediated responses, even when they resembled those in patients during the acute phase of IM in timing and quality, were never as exaggerated. We infer that IM symptoms arise as a consequence not of the virus infection per se but of the hyperactivated immune response. Interestingly, there were idiosyncratic differences among asymptomatic cases in the relationship between the viral load and the response kinetics, emphasizing how much there is still to learn about primary EBV infection.
Collapse
Affiliation(s)
- Rachel J Abbott
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Annette Pachnio
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | | | - Alison M Leese
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Jusnara Begum
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Heather M Long
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Debbie Croom-Carter
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Andrea Stacey
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Paul A H Moss
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Andrew D Hislop
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Persephone Borrow
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Alan B Rickinson
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Andrew I Bell
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
22
|
Yasmin AR, Yeap SK, Hair-Bejo M, Omar AR. Characterization of Chicken Splenic-Derived Dendritic Cells Following Vaccine and Very Virulent Strains of Infectious Bursal Disease Virus Infection. Avian Dis 2017; 60:739-751. [PMID: 27902915 DOI: 10.1637/11275-091315-reg.1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Studies have shown that infectious bursal disease virus (IBDV) infects lymphoid cells, mainly B cells and macrophages. This study was aimed to examine the involvement of chicken splenic-derived dendritic cells (ch-sDCs) in specific-pathogen-free chickens following inoculation with IBDV vaccine strain (D78) and a very virulent (vv) strain (UPM0081). Following IBDV infection, enriched activated ch-sDCs were collected by using the negative selection method and were examined based on morphology and immunophenotyping to confirm the isolation method for dendritic cells (DCs). The presence of IBDV on enriched activated ch-sDCs was analyzed based on the immunofluorescence antibody test (IFAT), flow cytometry, and quantitative real-time PCR (RT-qPCR) while the mRNAs of several cytokines were detected using RT-qPCR. The isolated ch-sDCs resembled typical DC morphologies found in mammals by having a veiled shape and they grew in clusters. Meanwhile, the expression of DC maturation markers, namely CD86 and MHCII, were increased at day 2 and day 3 following vvIBDV and vaccine strain inoculation, respectively, ranging from 10% to 40% compared to the control at 2.55% (P < 0.05). At day 3 postinfection, IBDV VP3 proteins colocalized with CD86 were readily detected via IFAT and flow cytometry in both vaccine and vvIBDV strains. In addition, enriched activated ch-sDCs were also detected as positive based on the VP4 gene by RT-qPCR; however, a higher viral load was detected on vvIBDV compared to the vaccine group. Infection with vaccine and vvIBDV strains induced the enriched activated ch-sDCs to produce proinflammatory cytokines and Th1-like cytokines from day 3 onward; however, the expressions were higher in the vvIBDV group (P < 0.05). These data collectively suggest that enriched activated ch-sDCs were permissive to IBDV infection and produced a strong inflammatory and Th1-like cytokine response following vvIBDV infection as compared to the vaccine strain.
Collapse
Affiliation(s)
- A R Yasmin
- A Institute of Bioscience.,B Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | | | - M Hair-Bejo
- A Institute of Bioscience.,B Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - A R Omar
- A Institute of Bioscience.,B Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| |
Collapse
|
23
|
Swan ZD, Bouwer AL, Wonderlich ER, Barratt-Boyes SM. Persistent accumulation of gut macrophages with impaired phagocytic function correlates with SIV disease progression in macaques. Eur J Immunol 2017; 47:1925-1935. [PMID: 28667761 DOI: 10.1002/eji.201646904] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 04/26/2017] [Accepted: 06/23/2017] [Indexed: 12/26/2022]
Abstract
The contribution of macrophages in the gastrointestinal tract to disease control or progression in HIV infection remains unclear. To address this question, we analyzed CD163+ macrophages in ileum and mesenteric lymph nodes (LN) from SIV-infected rhesus macaques with dichotomous expression of controlling MHC class I alleles predicted to be SIV controllers or progressors. Infection induced accumulation of macrophages into gut mucosa in the acute phase that persisted in progressors but was resolved in controllers. In contrast, macrophage recruitment to mesenteric LNs occurred only transiently in acute infection irrespective of disease outcome. Persistent gut macrophage accumulation was associated with CD163 expression on α4β7+ CD16+ blood monocytes and correlated with epithelial damage. Macrophages isolated from intestine of progressors had reduced phagocytic function relative to controllers and uninfected macaques, and the proportion of phagocytic macrophages negatively correlated with mucosal epithelial breach, lamina propria Escherichia coli density, and plasma virus burden. Macrophages in intestine produced low levels of cytokines regardless of disease course, while mesenteric LN macrophages from progressors became increasingly responsive as infection advanced. These data indicate that noninflammatory CD163+ macrophages accumulate in gut mucosa in progressive SIV infection in response to intestinal damage but fail to adequately phagocytose debris, potentially perpetuating their recruitment.
Collapse
Affiliation(s)
- Zachary D Swan
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Anthea L Bouwer
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Elizabeth R Wonderlich
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Simon M Barratt-Boyes
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA.,Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
24
|
Nash WT, Gillespie AL, Brown MG. Murine Cytomegalovirus Disrupts Splenic Dendritic Cell Subsets via Type I Interferon-Dependent and -Independent Mechanisms. Front Immunol 2017; 8:251. [PMID: 28337202 PMCID: PMC5343017 DOI: 10.3389/fimmu.2017.00251] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 02/20/2017] [Indexed: 01/08/2023] Open
Abstract
Dendritic cells (DC) are well-known modulators of immunity. This heterogeneous population is composed of defined subsets that exhibit functional specialization and are critical in initiating responses to pathogens. As such, many infectious agents employ strategies to disrupt DC functioning in attempts to evade the immune system. In some instances, this manifests as an outright loss of these cells. Previous work has suggested that, in the absence of an efficient natural killer (NK) cell response, murine cytomegalovirus (MCMV) induces large amounts of interferon (IFN)-I. This heightened IFN-I response is thought to contribute to conventional DC (cDC) loss and delayed development of T cell immunity. However, the precise role of IFN-I in such cDC loss remains unclear. We investigated the effects of licensed NK cells and IFN-I signaling on splenic cDC subsets during MCMV infection and found that a licensed NK cell response partially protects cDC numbers, but does not prevent increases in serum IFN-I. This suggested that high residual IFN-I could contribute to cDC loss. Therefore, we used multiple strategies to modulate IFN-I signaling during MCMV infection including plasmacytoid DC depletion, IFN-I receptor (IFNAR) blockade, and genetic ablation of IFNAR expression. Interestingly, restriction of IFN-I signals did not substantially preserve either CD8+ or CD4+ DC total numbers, but resulted in significant retention and/or accumulation of the splenic CD8− CD4− [double negative (DN)] subset. However, the DN DC effect manifested in a DC-extrinsic manner since IFNAR-deficient cells were not preferentially retained over their IFNAR wild-type counterparts in a mixed-chimera setting. Our results show that IFN-I signaling is not responsible for overt cDC toxicity in the setting of acute MCMV infection and emphasize that additional mechanisms contribute to DC loss and require exploration.
Collapse
Affiliation(s)
- William T Nash
- Department of Microbiology, Immunology, and Cancer Biology, School of Medicine, University of Virginia, Charlottesville, VA, USA; Beirne B. Carter Center for Immunology Research, School of Medicine, University of Virginia, Charlottesville, VA, USA; Division of Nephrology, Department of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Alyssa L Gillespie
- Beirne B. Carter Center for Immunology Research, School of Medicine, University of Virginia, Charlottesville, VA, USA; Division of Nephrology, Department of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Michael G Brown
- Department of Microbiology, Immunology, and Cancer Biology, School of Medicine, University of Virginia, Charlottesville, VA, USA; Beirne B. Carter Center for Immunology Research, School of Medicine, University of Virginia, Charlottesville, VA, USA; Division of Nephrology, Department of Medicine, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
25
|
Wonderlich ER, Swan ZD, Bissel SJ, Hartman AL, Carney JP, O'Malley KJ, Obadan AO, Santos J, Walker R, Sturgeon TJ, Frye LJ, Maiello P, Scanga CA, Bowling JD, Bouwer AL, Duangkhae PA, Wiley CA, Flynn JL, Wang J, Cole KS, Perez DR, Reed DS, Barratt-Boyes SM. Widespread Virus Replication in Alveoli Drives Acute Respiratory Distress Syndrome in Aerosolized H5N1 Influenza Infection of Macaques. THE JOURNAL OF IMMUNOLOGY 2017; 198:1616-1626. [PMID: 28062701 DOI: 10.4049/jimmunol.1601770] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 12/09/2016] [Indexed: 01/01/2023]
Abstract
Human infections with highly pathogenic avian influenza A (H5N1) virus are frequently fatal but the mechanisms of disease remain ill-defined. H5N1 infection is associated with intense production of proinflammatory cytokines, but whether this cytokine storm is the main cause of fatality or is a consequence of extensive virus replication that itself drives disease remains controversial. Conventional intratracheal inoculation of a liquid suspension of H5N1 influenza virus in nonhuman primates likely results in efficient clearance of virus within the upper respiratory tract and rarely produces severe disease. We reasoned that small particle aerosols of virus would penetrate the lower respiratory tract and blanket alveoli where target cells reside. We show that inhalation of aerosolized H5N1 influenza virus in cynomolgus macaques results in fulminant pneumonia that rapidly progresses to acute respiratory distress syndrome with a fatal outcome reminiscent of human disease. Molecular imaging revealed intense lung inflammation coincident with massive increases in proinflammatory proteins and IFN-α in distal airways. Aerosolized H5N1 exposure decimated alveolar macrophages, which were widely infected and caused marked influx of interstitial macrophages and neutrophils. Extensive infection of alveolar epithelial cells caused apoptosis and leakage of albumin into airways, reflecting loss of epithelial barrier function. These data establish inhalation of aerosolized virus as a critical source of exposure for fatal human infection and reveal that direct viral effects in alveoli mediate H5N1 disease. This new nonhuman primate model will advance vaccine and therapeutic approaches to prevent and treat human disease caused by highly pathogenic avian influenza viruses.
Collapse
Affiliation(s)
- Elizabeth R Wonderlich
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA 15261.,Department of Infectious Diseases and Microbiology, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA 15261
| | - Zachary D Swan
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA 15261.,Department of Infectious Diseases and Microbiology, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA 15261
| | - Stephanie J Bissel
- Division of Neuropathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - Amy L Hartman
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA 15261.,Department of Infectious Diseases and Microbiology, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA 15261
| | - Jonathan P Carney
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| | - Katherine J O'Malley
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA 15261.,Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - Adebimpe O Obadan
- Department of Population Health, University of Georgia, Athens, GA 30602
| | - Jefferson Santos
- Department of Population Health, University of Georgia, Athens, GA 30602
| | - Reagan Walker
- Division of Laboratory Animal Resources, University of Pittsburgh, Pittsburgh, PA 15260
| | - Timothy J Sturgeon
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA 15261
| | - Lonnie J Frye
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219; and
| | - Pauline Maiello
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219; and
| | - Charles A Scanga
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219; and
| | - Jennifer D Bowling
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA 15261.,Department of Infectious Diseases and Microbiology, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA 15261
| | - Anthea L Bouwer
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA 15261.,Department of Infectious Diseases and Microbiology, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA 15261
| | - Parichat A Duangkhae
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA 15261.,Department of Infectious Diseases and Microbiology, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA 15261
| | - Clayton A Wiley
- Division of Neuropathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - JoAnne L Flynn
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219; and
| | - Jieru Wang
- Division of Pulmonary Medicine, Allergy, and Immunology, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| | - Kelly S Cole
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA 15261.,Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - Daniel R Perez
- Department of Population Health, University of Georgia, Athens, GA 30602
| | - Douglas S Reed
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA 15261.,Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - Simon M Barratt-Boyes
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA 15261; .,Department of Infectious Diseases and Microbiology, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA 15261.,Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| |
Collapse
|
26
|
Abstract
The female reproductive tract (FRT) is a major site for human immunodeficiency virus (HIV) infection. There currently exists a poor understanding of how the innate immune system is activated upon HIV transmission and how this activation may affect systemic spread of HIV from the FRT. However, multiple mechanisms for how HIV is sensed have been deciphered using model systems with cell lines and peripheral blood-derived cells. The aim of this review is to summarize recent progress in the field of HIV innate immune sensing and place this in the context of the FRT. Because HIV is somewhat unique as an STD that thrives under inflammatory conditions, the response of cells upon sensing HIV gene products can either promote or limit HIV infection depending on the context. Future studies should include investigations into how FRT-derived primary cells sense and respond to HIV to confirm conclusions drawn from non-mucosal cells. Understanding how cells of the FRT participate in and effect innate immune sensing of HIV will provide a clearer picture of what parameters during the early stages of HIV exposure determine transmission success. Such knowledge could pave the way for novel approaches for preventing HIV acquisition in women.
Collapse
|
27
|
George J, Renn L, Verthelyi D, Roederer M, Rabin RL, Mattapallil JJ. Early treatment with reverse transcriptase inhibitors significantly suppresses peak plasma IFNα in vivo during acute simian immunodeficiency virus infection. Cell Immunol 2016; 310:156-164. [PMID: 27622386 PMCID: PMC11348878 DOI: 10.1016/j.cellimm.2016.09.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 09/04/2016] [Accepted: 09/04/2016] [Indexed: 02/07/2023]
Abstract
Innate interferons (IFN) are comprised of multiple Type I and III subtypes. The in vivo kinetics of subtype responses during human immunodeficiency virus (HIV) infection is not well defined. Using the acute simian immunodeficiency virus (SIV) infection model, we show that plasma IFNα levels peak at day 10 post-infection (pi) after which they rapidly declined. The mRNA expression of Type I and III IFN subtypes were significantly elevated in the lymph nodes (LN) at day 10 pi. Though the expression levels of all subtypes declined by day 14-31 pi, numerous subtypes remained elevated suggesting that ongoing viral replication in LN continues to drive induction of these subtypes. Interestingly, treatment with reverse transcriptase (RT) inhibitors at day 7 pi significantly suppressed plasma IFNα responses by day 10 pi that significantly correlated with cell-associated SIV DNA loads suggesting that RT byproducts such as viral DNA likely plays a role in driving IFN responses during acute SIV infection. Quantification of Type I and III subtype transcripts in sorted subsets of LN CD4+ and CD8+ T cells, CD14+/CD14- monocytes/macrophages, and total CD11c/CD123+ dendritic cells (DC) at day 10 pi showed that DC expressed ∼3-4 log more subtype transcripts as compared to the other subsets. Taken together, our results provide new insights into the kinetics of innate interferon responses during early stages of infection, and provide evidence that DC's are a major in vivo source of innate IFN during acute SIV infection.
Collapse
Affiliation(s)
- Jeffy George
- Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Lynnsey Renn
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
| | - Daniela Verthelyi
- Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
| | - Mario Roederer
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, United States
| | - Ronald L Rabin
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
| | - Joseph J Mattapallil
- Uniformed Services University of the Health Sciences, Bethesda, MD, United States.
| |
Collapse
|
28
|
Sensitization with vaccinia virus encoding H5N1 hemagglutinin restores immune potential against H5N1 influenza virus. Sci Rep 2016; 6:37915. [PMID: 27892498 PMCID: PMC5124960 DOI: 10.1038/srep37915] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 11/04/2016] [Indexed: 11/08/2022] Open
Abstract
H5N1 highly pathogenic avian influenza (H5N1 HPAI) virus causes elevated mortality compared with seasonal influenza viruses like H1N1 pandemic influenza (H1N1 pdm) virus. We identified a mechanism associated with the severe symptoms seen with H5N1 HPAI virus infection. H5N1 HPAI virus infection induced a decrease of dendritic cell number in the splenic extrafollicular T-cell zone and impaired formation of the outer layers of B-cell follicles, resulting in insufficient levels of antibody production after infection. However, in animals vaccinated with a live recombinant vaccinia virus expressing the H5 hemagglutinin, infection with H5N1 HPAI virus induced parafollicular dendritic cell accumulation and efficient antibody production. These results indicate that a recombinant vaccinia encoding H5 hemagglutinin gene does not impair dendritic cell recruitment and can be a useful vaccine candidate.
Collapse
|
29
|
Dursun E, Endele M, Musumeci A, Failmezger H, Wang SH, Tresch A, Schroeder T, Krug AB. Continuous single cell imaging reveals sequential steps of plasmacytoid dendritic cell development from common dendritic cell progenitors. Sci Rep 2016; 6:37462. [PMID: 27892478 PMCID: PMC5124969 DOI: 10.1038/srep37462] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 10/31/2016] [Indexed: 12/18/2022] Open
Abstract
Functionally distinct plasmacytoid and conventional dendritic cells (pDC and cDC) shape innate and adaptive immunity. They are derived from common dendritic cell progenitors (CDPs) in the murine bone marrow, which give rise to CD11c+ MHCII− precursors with early commitment to DC subpopulations. In this study, we dissect pDC development from CDP into an ordered sequence of differentiation events by monitoring the expression of CD11c, MHC class II, Siglec H and CCR9 in CDP cultures by continuous single cell imaging and tracking. Analysis of CDP genealogies revealed a stepwise differentiation of CDPs into pDCs in a part of the CDP colonies. This developmental pathway involved an early CD11c+ SiglecH− pre-DC stage and a Siglec H+ CCR9low precursor stage, which was followed rapidly by upregulation of CCR9 indicating final pDC differentiation. In the majority of the remaining CDP pedigrees however the Siglec H+ CCR9low precursor state was maintained for several generations. Thus, although a fraction of CDPs transits through precursor stages rapidly to give rise to a first wave of pDCs, the majority of CDP progeny differentiate more slowly and give rise to longer lived precursor cells which are poised to differentiate on demand.
Collapse
Affiliation(s)
- Ezgi Dursun
- Institute for Immunology, Biomedical Center, Ludwig-Maximilians-University Munich, Großhaderner Str. 9, 82152 Martinsried, Germany
| | - Max Endele
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Andrea Musumeci
- Institute for Immunology, Biomedical Center, Ludwig-Maximilians-University Munich, Großhaderner Str. 9, 82152 Martinsried, Germany
| | - Henrik Failmezger
- Max-Planck-Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany.,Department of Biology, University of Cologne, Zülpicher Str. 47, 50829 Cologne, Germany
| | - Shu-Hung Wang
- Institute for Immunology, Biomedical Center, Ludwig-Maximilians-University Munich, Großhaderner Str. 9, 82152 Martinsried, Germany
| | - Achim Tresch
- Max-Planck-Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany.,Department of Biology, University of Cologne, Zülpicher Str. 47, 50829 Cologne, Germany
| | - Timm Schroeder
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Anne B Krug
- Institute for Immunology, Biomedical Center, Ludwig-Maximilians-University Munich, Großhaderner Str. 9, 82152 Martinsried, Germany
| |
Collapse
|
30
|
Huot N, Rascle P, Garcia-Tellez T, Jacquelin B, Müller-Trutwin M. Innate immune cell responses in non pathogenic versus pathogenic SIV infections. Curr Opin Virol 2016; 19:37-44. [PMID: 27447445 DOI: 10.1016/j.coviro.2016.06.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 06/16/2016] [Accepted: 06/24/2016] [Indexed: 02/06/2023]
Abstract
HIV-1/SIVmac infections deeply disturb innate host responses. Most studies have focused on the impact on dendritic cells and NK cells. A few but insufficient data are available on other innate immune cell types, such as neutrophils. It has been shown that innate lymphoid cells are depleted early and irreversibly during SIVmac/HIV-1 infections. Studies in natural hosts of SIV have contributed to pinpoint that early control of inflammation is crucial. In natural hosts, plasmacytoid dendritic cells, myeloid dendritic cells and NK cells are depleted during acute infection but return to normal levels by the end of acute infection. We summarize here the similarities and differences of various types of innate immune responses in natural hosts compared to pathogenic HIV/SIV mac infections.
Collapse
Affiliation(s)
- Nicolas Huot
- Institut Pasteur, Unité HIV, Inflammation and Persistence, Paris, France; CEA, Division of Immuno-Virology, iMETI, DSV, Fontenay-aux-Roses, France; Vaccine Research Institute, Créteil, France
| | - Philippe Rascle
- Institut Pasteur, Unité HIV, Inflammation and Persistence, Paris, France; Vaccine Research Institute, Créteil, France
| | | | - Beatrice Jacquelin
- Institut Pasteur, Unité HIV, Inflammation and Persistence, Paris, France
| | - Michaela Müller-Trutwin
- Institut Pasteur, Unité HIV, Inflammation and Persistence, Paris, France; Vaccine Research Institute, Créteil, France.
| |
Collapse
|
31
|
Lymph nodes from HIV-infected individuals harbor mature dendritic cells and increased numbers of PD-L1+ conventional dendritic cells. Hum Immunol 2016; 77:584-93. [PMID: 27221659 DOI: 10.1016/j.humimm.2016.05.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 05/20/2016] [Accepted: 05/21/2016] [Indexed: 01/02/2023]
Abstract
The immune response induced by dendritic cells (DC) during the HIV infection has been of remarkable interest because of the therapeutic potential of DC for vaccine development. However, their beneficial or detrimental contribution in HIV infection remains unclear. The activation state of DC in lymph nodes (LN) is essential to induce T cell responses against HIV. In the present study, we characterized the immunophenotype and function of conventional (cDC) and plasmacytoid (pDC) dendritic cells from peripheral blood (PB) and LN of HIV(+) individuals. We observed that the frequency of PB pDC was decreased and exhibited an immature phenotype; whereas in the LN, activated pDC accumulated (CD40(+) and CD83(+)). In addition, the frequency of PB cDC from HIV(+) individuals was decreased and exhibited an immature phenotype, whereas LN harbored activated and mature cDC (CD40(+), CD83(+), CD80(+) and CD86(+)). However, an increased number of PD-L1(+) cDC was also observed in the LN. Moreover, pDC and cDC were able to produce inflammatory cytokines (IFN-α, TNF-α and IL-12) after TLR stimulation. These findings suggests that LN cDC expressing PD-L1 from HIV(+) individuals may negatively impact the generation of HIV-specific T cells and that DC might be contributing to tissue chronic immune activation.
Collapse
|
32
|
Cornwell WD, Wagner W, Lewis MG, Fan X, Rappaport J, Rogers TJ. Effect of chronic morphine administration on circulating dendritic cells in SIV-infected rhesus macaques. J Neuroimmunol 2016; 295-296:30-40. [PMID: 27235346 DOI: 10.1016/j.jneuroim.2016.04.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 04/08/2016] [Accepted: 04/10/2016] [Indexed: 11/28/2022]
Abstract
We studied the effect of chronic morphine administration on the circulating dendritic cell population dynamics associated with SIV infection using rhesus macaques. Animals were either first infected with SIV and then given chronic morphine, or visa versa. SIV infection increased the numbers of myeloid DCs (mDCs), but morphine treatment attenuated this mDC expansion. In contrast, morphine increased the numbers of plasmacytoid DCs (pDCs) in SIV-infected animals. Finally, chronic morphine administration (no SIV) transiently increased the numbers of circulating pDCs. These results show that chronic morphine induces a significant alteration in the available circulating levels of critical antigen-presenting cells.
Collapse
Affiliation(s)
| | - Wendeline Wagner
- BioQual Incorporated, 9600 Medical Center Dr., Rockville, MD 20850, USA
| | - Mark G Lewis
- BioQual Incorporated, 9600 Medical Center Dr., Rockville, MD 20850, USA
| | | | - Jay Rappaport
- Department of Neuroscience, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Thomas J Rogers
- Center for Inflammation, Translational and Clinical Lung Research, USA.
| |
Collapse
|
33
|
Swan ZD, Wonderlich ER, Barratt-Boyes SM. Macrophage accumulation in gut mucosa differentiates AIDS from chronic SIV infection in rhesus macaques. Eur J Immunol 2016; 46:446-54. [PMID: 26549608 PMCID: PMC5751443 DOI: 10.1002/eji.201545738] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 10/14/2015] [Accepted: 11/09/2015] [Indexed: 11/07/2022]
Abstract
The relationship between recruitment of mononuclear phagocytes to lymphoid and gut tissues and disease in HIV and SIV infection remains unclear. To address this question, we conducted cross-sectional analyses of dendritic cell (DC) subsets and CD163(+) macrophages in lymph nodes (LNs) and ileum of rhesus macaques with acute and chronic SIV infection and AIDS. In LNs significant differences were only evident when comparing uninfected and AIDS groups, with loss of myeloid DCs and CD103(+) DCs from peripheral and mesenteric LNs, respectively, and accumulation of plasmacytoid DCs and macrophages in mesenteric LNs. In contrast, there were fourfold more macrophages in ileum lamina propria in macaques with AIDS compared with chronic infection, and this increased to 40-fold in Peyer's patches. Gut macrophages exceeded plasmacytoid DCs and CD103(+) DCs by ten- to 17-fold in monkeys with AIDS but were at similar low frequencies as DCs in chronic infection. Gut macrophages in macaques with AIDS expressed IFN-α and TNF-α consistent with cell activation. CD163(+) macrophages also accumulated in gut mucosa in acute infection but lacked expression of IFN-α and TNF-α. These data reveal a relationship between inflammatory macrophage accumulation in gut mucosa and disease and suggest a role for macrophages in AIDS pathogenesis.
Collapse
Affiliation(s)
- Zachary D. Swan
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Elizabeth R. Wonderlich
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Simon M. Barratt-Boyes
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA 15261, USA
| |
Collapse
|
34
|
Plasmacytoid dendritic cells and myeloid cells differently contribute to B-cell-activating factor belonging to the tumor necrosis factor superfamily overexpression during primary HIV infection. AIDS 2016; 30:365-76. [PMID: 26558721 DOI: 10.1097/qad.0000000000000965] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND After describing heightened levels of circulating B-cell-activating factor belonging to the tumor necrosis factor superfamily (BAFF) as well as changes in B-cell phenotype and functions during acute infection by simian immunodeficiency virus, we wanted to determine whether and by which cells BAFF was over-expressed in primary HIV-infected (PHI) patients. DESIGN AND METHODS We simultaneously examined circulating BAFF levels by ELISA and membrane-bound BAFF (mBAFF) expression by flow cytometry in peripheral blood mononuclear cells of healthy donors and PHI patients followed for 6 months. We also examined whether HIV-1 modifies BAFF expression or release in various myeloid cells and plasmacytoid dendritic cells (pDC) in vitro. RESULTS Circulating BAFF levels were transiently increased at enrolment. They positively correlated with CXCL10 levels and inversely with B-cell counts. Whereas mBAFF was expressed by most pDC and on a fraction of intermediate monocytes in healthy donors, the frequency of mBAFF cells significantly increased among nonclassical monocytes and CD1c dendritic cells but decreased among pDC in PHI patients. In contrast to myeloid cells, pDC never released BAFF upon stimulation. Their mBAFF expression was enhanced by HIV-1, independently of type I IFN. CONCLUSION Our findings reveal that the pattern of BAFF expression by myeloid cells and pDC is altered in PHI patients and constitutes a valuable marker of immune activation whose circulating levels correlate with CXCL10 levels. Due to their homing in different tissue areas, pDC and myeloid cells might target different B-cell subsets through their mBAFF expression or soluble BAFF release.
Collapse
|
35
|
Sharifi L, Mirshafiey A, Rezaei N, Azizi G, Magaji Hamid K, Amirzargar AA, Asgardoon MH, Aghamohammadi A. The role of toll-like receptors in B-cell development and immunopathogenesis of common variable immunodeficiency. Expert Rev Clin Immunol 2015; 12:195-207. [PMID: 26654573 DOI: 10.1586/1744666x.2016.1114885] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Common variable immunodeficiency (CVID) is the most frequent symptomatic primary immune deficiency and is characterized by hypogammaglobulinemia, defect in specific antibody response and increased susceptibility to recurrent infections, malignancy and autoimmunity. Patients with CVID often have defects in post-antigenic B-cell differentiation, with fewer memory B cells and impaired isotype switching. Toll-like receptors (TLRs) are expressed on various immune cells as key elements of innate and adaptive immunity. TLR signaling in B cells plays multiple roles in cell differentiation and activation, class-switch recombination and cytokine and antibody production. Moreover, recent studies have shown functional alteration of TLRs responses in CVID patients including poor cell proliferation, impaired upregulation of co-stimulatory molecules and failure in cytokine and immunoglobulin production. The purpose of the present review is to discuss the role of TLRs in B-cell development and function as well as their role in the immunopathogenesis of CVID.
Collapse
Affiliation(s)
- Laleh Sharifi
- a Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center , Tehran University of Medical Sciences , Tehran , Iran
| | - Abbas Mirshafiey
- a Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center , Tehran University of Medical Sciences , Tehran , Iran.,b Department of Immunology, School of Public Health , Tehran University of Medical Sciences , Tehran , Iran
| | - Nima Rezaei
- a Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center , Tehran University of Medical Sciences , Tehran , Iran.,c Department of Immunology, School of Medicine , Tehran University of Medical Sciences , Tehran , Iran
| | - Gholamreza Azizi
- d Imam Hassan Mojtaba Hospital , Alborz University of Medical Sciences , Karaj , Iran
| | - Kabir Magaji Hamid
- b Department of Immunology, School of Public Health , Tehran University of Medical Sciences , Tehran , Iran.,e Immunology Department, Faculty of Medical Laboratory Sciences , Usmanu Danfodiyo University , Sokoto , Nigeria
| | - Ali Akbar Amirzargar
- c Department of Immunology, School of Medicine , Tehran University of Medical Sciences , Tehran , Iran
| | - Mohammad Hossein Asgardoon
- a Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center , Tehran University of Medical Sciences , Tehran , Iran
| | - Asghar Aghamohammadi
- a Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center , Tehran University of Medical Sciences , Tehran , Iran
| |
Collapse
|
36
|
Boichuk SV, Khaiboullina SF, Ramazanov BR, Khasanova GR, Ivanovskaya KA, Nizamutdinov EZ, Sharafutdinov MR, Martynova EV, DeMeirleir KL, Hulstaert J, Anokhin VA, Rizvanov AA, Lombardi VC. Gut-Associated Plasmacytoid Dendritic Cells Display an Immature Phenotype and Upregulated Granzyme B in Subjects with HIV/AIDS. Front Immunol 2015; 6:485. [PMID: 26441989 PMCID: PMC4585323 DOI: 10.3389/fimmu.2015.00485] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Accepted: 09/07/2015] [Indexed: 12/18/2022] Open
Abstract
Plasmacytoid dendritic cells (pDCs) in the periphery of subjects with human immunodeficiency virus (HIV)/acquired immunodeficiency syndrome (AIDS) decrease over time, and the fate of these cells has been the subject of ongoing investigation. Previous studies using animal models as well as studies with humans suggest that these cells may redistribute to the gut. Other studies using animal models propose that the periphery pDCs are depleted and gut is repopulated with naive pDCs from the bone marrow. In the present study, we utilized immunohistochemistry to survey duodenum biopsies of subjects with HIV/AIDS and controls. We observed that subjects with HIV/AIDS had increased infiltration of Ki-67+/CD303+ pDCs, a phenotype consistent with bone marrow-derived pre-pDCs. In contrast, Ki-67+/CD303+ pDCs were not observed in control biopsies. We additionally observed that gut-associated pDCs in HIV/AIDS cases upregulate the proapoptotic enzyme granzyme B; however, no granzyme B was observed in the pDCs of control biopsies. Our data are consistent with reports in animal models that suggest periphery pDCs are depleted by exhaustion and that naive pDCs egress from the bone marrow and ultimately infiltrate the gut mucosa. Additionally, our observation of granzyme B upregulation in naive pDCs may identify a contributing factor to the gut pathology associated with HIV infection.
Collapse
Affiliation(s)
| | - Svetlana F Khaiboullina
- Institute of Fundamental Medicine and Biology, Kazan Federal University , Kazan , Russia ; Nevada Center for Biomedical Research , Reno, NV , USA
| | | | | | | | | | | | - Ekaterina V Martynova
- Institute of Fundamental Medicine and Biology, Kazan Federal University , Kazan , Russia
| | | | - Jan Hulstaert
- Department of Gastroenterology, General Hospital Jan Portaels , Vilvoorde , Belgium
| | | | - Albert A Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University , Kazan , Russia
| | - Vincent C Lombardi
- Institute of Fundamental Medicine and Biology, Kazan Federal University , Kazan , Russia ; Nevada Center for Biomedical Research , Reno, NV , USA ; Department of Biochemistry and Molecular Biology, School of Medicine, University of Nevada , Reno, NV , USA
| |
Collapse
|
37
|
Wonderlich ER, Wu WC, Normolle DP, Barratt-Boyes SM. Macrophages and Myeloid Dendritic Cells Lose T Cell-Stimulating Function in Simian Immunodeficiency Virus Infection Associated with Diminished IL-12 and IFN-α Production. THE JOURNAL OF IMMUNOLOGY 2015; 195:3284-92. [PMID: 26297760 DOI: 10.4049/jimmunol.1500683] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 07/24/2015] [Indexed: 01/14/2023]
Abstract
Impaired T cell responses are a defining characteristic of HIV infection, but the extent to which altered mononuclear phagocyte function contributes to this defect is unclear. We show that mononuclear phagocytes enriched from rhesus macaque lymph nodes have suppressed ability to stimulate CD4 T cell proliferation and IFN-γ release after acute SIV infection. When individual populations were isolated, myeloid dendritic cells (mDC) and macrophages but not plasmacytoid DC (pDC) had suppressed capacity to stimulate CD4 T cell proliferation, with macrophage function declining as infection progressed. Macrophages, but not pDC or mDC, had suppressed capacity to induce IFN-γ release from CD4 T cells in acute infection, even after stimulation with virus-encoded TLR7/8 ligand. Changes in expression of costimulatory molecules did not explain loss of function postinfection. Conversely, pDC and mDC had marked loss of IFN-α and IL-12 production, respectively, and macrophages lost production of both cytokines. In T cell cocultures without TLR7/8 ligand, macrophages were the primary source of IL-12, which was profoundly suppressed postinfection and correlated with loss of IFN-γ release by T cells. TLR7/8-stimulated pDC, mDC and macrophages all produced IL-12 in T cell cocultures, which was suppressed in chronic infection. Supplementing IL-12 enhanced mDC-driven IFN-γ release from T cells, and IL-12 and IFN-α together restored function in TLR7/8-activated macrophages. These findings reveal loss of macrophage and mDC T cell-stimulating function in lymph nodes of SIV-infected rhesus macaques associated with diminished IL-12 and IFN-α production that may be a factor in AIDS immunopathogenesis.
Collapse
Affiliation(s)
- Elizabeth R Wonderlich
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA 15213; Department of Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, PA 15213
| | - Wen-Chi Wu
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA 15213; and
| | - Daniel P Normolle
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA 15213; and
| | - Simon M Barratt-Boyes
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA 15213; Department of Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, PA 15213; Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15213
| |
Collapse
|
38
|
Soulas C, Autissier PJ, Burdo TH, Piatak M, Lifson JD, Williams KC. Distinct phenotype, longitudinal changes of numbers and cell-associated virus in blood dendritic cells in SIV-infected CD8-lymphocyte depleted macaques. PLoS One 2015; 10:e0119764. [PMID: 25915601 PMCID: PMC4410956 DOI: 10.1371/journal.pone.0119764] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Accepted: 02/03/2015] [Indexed: 11/19/2022] Open
Abstract
Loss of circulating CD123+ plasmacytoid dendritic cells (pDCs) during HIV infection is well established. However, changes of myeloid DCs (mDCs) are ambiguous since they are studied as a homogeneous CD11c+ population despite phenotypic and functional heterogeneity. Heterogeneity of CD11c+ mDCs in primates is poorly described in HIV and SIV infection. Using multiparametric flow cytometry, we monitored longitudinally cell number and cell-associated virus of CD123+ pDCs and non-overlapping subsets of CD1c+ and CD16+ mDCs in SIV-infected CD8-depleted rhesus macaques. The numbers of all three DC subsets were significantly decreased by 8 days post-infection. Whereas CD123+ pDCs were persistently depleted, numbers of CD1c+ and CD16+ mDCs rebounded. Numbers of CD1c+ mDCs significantly increased by 3 weeks post-infection while numbers of CD16+ mDCs remained closer to pre-infection levels. We found similar changes in the numbers of all three DC subsets in CD8 depleted animals as we found in animals that were SIV infected animals that were not CD8 lymphocyte depleted. CD16+ mDCs and CD123+ pDCs but not CD1c+ mDCs were significantly decreased terminally with AIDS. All DC subsets harbored SIV RNA as early as 8 days and then throughout infection. However, SIV DNA was only detected in CD123+ pDCs and only at 40 days post-infection consistent with SIV RNA, at least in mDCs, being surface-bound. Altogether our data demonstrate that SIV infection differently affects CD1c+ and CD16+ mDCs where CD16+ but not CD1c+ mDCs are depleted and might be differentially regulated in terminal AIDS. Finally, our data underline the importance of studying CD1c+ and CD16+ mDCs as discrete populations, and not as total CD11c+ mDCs.
Collapse
Affiliation(s)
- Caroline Soulas
- Department of Biology, Boston College, Chestnut Hill, Massachusetts, United States of America
| | - Patrick J. Autissier
- Department of Biology, Boston College, Chestnut Hill, Massachusetts, United States of America
| | - Tricia H. Burdo
- Department of Biology, Boston College, Chestnut Hill, Massachusetts, United States of America
| | - Michael Piatak
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory, Frederick, MD 21702, United States of America
| | - Jeffrey D. Lifson
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory, Frederick, MD 21702, United States of America
| | - Kenneth C. Williams
- Department of Biology, Boston College, Chestnut Hill, Massachusetts, United States of America
| |
Collapse
|
39
|
Plasmacytoid Dendritic Cell Infection and Sensing Capacity during Pathogenic and Nonpathogenic Simian Immunodeficiency Virus Infection. J Virol 2015; 89:6918-27. [PMID: 25903334 DOI: 10.1128/jvi.00332-15] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 04/17/2015] [Indexed: 01/13/2023] Open
Abstract
UNLABELLED Human immunodeficiency virus (HIV) in humans and simian immunodeficiency virus (SIV) in macaques (MAC) lead to chronic inflammation and AIDS. Natural hosts, such as African green monkeys (AGM) and sooty mangabeys (SM), are protected against SIV-induced chronic inflammation and AIDS. Here, we report that AGM plasmacytoid dendritic cells (pDC) express extremely low levels of CD4, unlike MAC and human pDC. Despite this, AGM pDC efficiently sensed SIVagm, but not heterologous HIV/SIV isolates, indicating a virus-host adaptation. Moreover, both AGM and SM pDC were found to be, in contrast to MAC pDC, predominantly negative for CCR5. Despite such limited CD4 and CCR5 expression, lymphoid tissue pDC were infected to a degree similar to that seen with CD4(+) T cells in both MAC and AGM. Altogether, our finding of efficient pDC infection by SIV in vivo identifies pDC as a potential viral reservoir in lymphoid tissues. We discovered low expression of CD4 on AGM pDC, which did not preclude efficient sensing of host-adapted viruses. Therefore, pDC infection and efficient sensing are not prerequisites for chronic inflammation. The high level of pDC infection by SIVagm suggests that if CCR5 paucity on immune cells is important for nonpathogenesis of natural hosts, it is possibly not due to its role as a coreceptor. IMPORTANCE The ability of certain key immune cell subsets to resist infection might contribute to the asymptomatic nature of simian immunodeficiency virus (SIV) infection in its natural hosts, such as African green monkeys (AGM) and sooty mangabeys (SM). This relative resistance to infection has been correlated with reduced expression of CD4 and/or CCR5. We show that plasmacytoid dendritic cells (pDC) of natural hosts display reduced CD4 and/or CCR5 expression, unlike macaque pDC. Surprisingly, this did not protect AGM pDC, as infection levels were similar to those found in MAC pDC. Furthermore, we show that AGM pDC did not consistently produce type I interferon (IFN-I) upon heterologous SIVmac/HIV type 1 (HIV-1) encounter, while they sensed autologous SIVagm isolates. Pseudotyping SIVmac/HIV-1 overcame this deficiency, suggesting that reduced uptake of heterologous viral strains underlays this lack of sensing. The distinct IFN-I responses depending on host species and HIV/SIV isolates reveal the host/virus species specificity of pDC sensing.
Collapse
|
40
|
Chachage M, Geldmacher C. Immune system modulation by helminth infections: potential impact on HIV transmission and disease progression. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 828:131-49. [PMID: 25253030 DOI: 10.1007/978-1-4939-1489-0_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Affiliation(s)
- Mkunde Chachage
- Department of Cellular Immunology, National Institute for Medical Research-Mbeya Medical Research Centre (NIMR-MMRC), Hospital Hill road, Mbeya, Tanzania,
| | | |
Collapse
|
41
|
Li H, Evans TI, Gillis J, Connole M, Reeves RK. Bone marrow-imprinted gut-homing of plasmacytoid dendritic cells (pDCs) in acute simian immunodeficiency virus infection results in massive accumulation of hyperfunctional CD4+ pDCs in the mucosae. J Infect Dis 2014; 211:1717-25. [PMID: 25489000 DOI: 10.1093/infdis/jiu671] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 11/24/2014] [Indexed: 01/31/2023] Open
Abstract
Plasmacytoid dendritic cells (pDCs), a primary source of interferon α (IFN-α), provide a first line of innate immune defense against human immunodeficiency virus infection. However, their kinetics and functions during acute infection are poorly understood. In mucosal tissues of normal rhesus macaques, we found CD4(+) pDCs to be the subset responsible for most IFN-α and tumor necrosis factor α (TNF-α) production in response to Toll-like receptor (TLR) 7/8 stimulation, compared with relatively anergic CD4(-) pDCs. During acute simian immunodeficiency virus (SIV) infection, gut homing was imprinted on pDCs in the bone marrow, resulting in a decline in pDCs from circulation and secondary lymphoid tissues. Although the accumulated pDCs in the gut mucosae had robust cytokine responses to TLR7/8 stimulation in vitro, pDC gut migration occurred after infection and detection of SIV in plasma. Our data suggest that innate pDC responses do not control initial SIV seeding and dissemination but instead may contribute to ongoing immune activation in the gut.
Collapse
Affiliation(s)
- Haiying Li
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston
| | - Tristan I Evans
- Division of Immunology, New England Primate Research Center, Harvard Medical School, Southborough, Massachusetts
| | - Jacqueline Gillis
- Division of Immunology, New England Primate Research Center, Harvard Medical School, Southborough, Massachusetts
| | - Michelle Connole
- Division of Immunology, New England Primate Research Center, Harvard Medical School, Southborough, Massachusetts
| | - R Keith Reeves
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston Division of Immunology, New England Primate Research Center, Harvard Medical School, Southborough, Massachusetts
| |
Collapse
|
42
|
Li H, Goepfert P, Reeves RK. Short communication: Plasmacytoid dendritic cells from HIV-1 Elite Controllers maintain a gut-homing phenotype associated with immune activation. AIDS Res Hum Retroviruses 2014; 30:1213-5. [PMID: 25387330 DOI: 10.1089/aid.2014.0174] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Lentivirus infections are characterized by a dramatic loss of mucosal CD4(+) T cells, breakdown of the gut mucosa, and subsequent chronic immune activation. Residual immune activation persists even in patients controlling virus replication and remains a significant source of ongoing disease morbidities, but the causes are unclear. Plasmacytoid dendritic cells (pDCs), primary producers of interferon (IFN)-α, have been previously shown to be depleted from peripheral blood of HIV patients and simian immunodeficiency virus (SIV)-infected macaques, and most recently have been shown to accumulate in the gut mucosa. Although previous work has shown that pDC frequencies can be reduced in the circulation of HIV-1 Elite Controllers, it is unknown if gut-homing also occurs. In this new study we found that during progressive HIV-1 infection pDCs were depleted in peripheral blood compared to seronegative controls, and, correlating with plasma viremia, the remaining pDCs upregulated the gut-homing marker, α4β7. Even in HIV-1 Elite Controllers pDCs were significantly reduced in blood and α4β7 expression was still significantly upregulated compared to seronegative controls. Interestingly, pDC trafficking to the gut was associated with increased Ki67 and HLA-DR on circulating CD4(+) and CD8(+) T cells. Overall, these data suggest that gut trafficking of pDCs is independent of virus replication and could be mediated by alternative mechanisms, which in turn could contribute to residual immune activation in HIV-1 Elite Controllers.
Collapse
Affiliation(s)
- Haiying Li
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, Massachusetts
- Division of Immunology, New England Primate Research Center, Harvard Medical School, Southborough, Massachusetts
| | - Paul Goepfert
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - R. Keith Reeves
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, Massachusetts
- Division of Immunology, New England Primate Research Center, Harvard Medical School, Southborough, Massachusetts
| |
Collapse
|
43
|
Wijewardana V, Bouwer AL, Brown KN, Liu X, Barratt-Boyes SM. Accumulation of functionally immature myeloid dendritic cells in lymph nodes of rhesus macaques with acute pathogenic simian immunodeficiency virus infection. Immunology 2014; 143:146-54. [PMID: 24684292 DOI: 10.1111/imm.12295] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 03/19/2014] [Accepted: 03/24/2014] [Indexed: 11/29/2022] Open
Abstract
Myeloid dendritic cells (mDC) are key mediators of innate and adaptive immunity to virus infection, but the impact of HIV infection on the mDC response, particularly early in acute infection, is ill-defined. We studied acute pathogenic simian immunodeficiency virus (SIV) infection of rhesus macaques to address this question. The mDC in blood and bone marrow were depleted within 12 days of intravenous infection with SIVmac251, associated with a marked proliferative response. In lymph nodes, mDC were apoptotic, activated and proliferating, despite normal mDC numbers, reflecting a regenerative response that compensated for mDC loss. Blood mDC had increased expression of MHC class II, CCR7 and CD40, whereas in lymph nodes these markers were significantly decreased, indicating that acute infection induced maturation of mDC in blood but resulted in accumulation of immature mDC in lymph nodes. Following SIV infection, lymph node mDC had an increased capacity to secrete tumour necrosis factor-α upon engagement with a Toll-like receptor 7/8 ligand that mimics exposure to viral RNA, and this was inversely correlated with MHC class II and CCR7 expression. Lymph node mDC had an increased ability to capture and cleave soluble antigen, confirming their functionally immature state. These data indicate that acute SIV infection results in increased mDC turnover, leading to accumulation in lymph nodes of immature mDC with an increased responsiveness to virus stimulation.
Collapse
Affiliation(s)
- Viskam Wijewardana
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, USA; Department of Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, PA, USA
| | | | | | | | | |
Collapse
|
44
|
Modulation of type I interferon-associated viral sensing during acute simian immunodeficiency virus infection in African green monkeys. J Virol 2014; 89:751-62. [PMID: 25355871 DOI: 10.1128/jvi.02430-14] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
UNLABELLED Natural hosts of simian immunodeficiency virus (SIV), such as African green monkeys (AGMs), do not progress to AIDS when infected with SIV. This is associated with an absence of a chronic type I interferon (IFN-I) signature. It is unclear how the IFN-I response is downmodulated in AGMs. We longitudinally assessed the capacity of AGM blood cells to produce IFN-I in response to SIV and herpes simplex virus (HSV) infection. Phenotypes and functions of plasmacytoid dendritic cells (pDCs) and other mononuclear blood cells were assessed by flow cytometry, and expression of viral sensors was measured by reverse transcription-PCR. pDCs displayed low BDCA-2, CD40, and HLA-DR expression levels during AGM acute SIV (SIVagm) infection. BDCA-2 was required for sensing of SIV, but not of HSV, by pDCs. In acute infection, AGM peripheral blood mononuclear cells (PBMCs) produced less IFN-I upon SIV stimulation. In the chronic phase, the production was normal, confirming that the lack of chronic inflammation is not due to a sensing defect of pDCs. In contrast to stimulation by SIV, more IFN-I was produced upon HSV stimulation of PBMCs isolated during acute infection, while the frequency of AGM pDCs producing IFN-I upon in vitro stimulation with HSV was diminished. Indeed, other cells started producing IFN-I. This increased viral sensing by non-pDCs was associated with an upregulation of Toll-like receptor 3 and IFN-γ-inducible protein 16 caused by IFN-I in acute SIVagm infection. Our results suggest that, as in pathogenic SIVmac infection, SIVagm infection mobilizes bone marrow precursor pDCs. Moreover, we show that SIV infection modifies the capacity of viral sensing in cells other than pDCs, which could drive IFN-I production in specific settings. IMPORTANCE The effects of HIV/SIV infections on the capacity of plasmacytoid dendritic cells (pDCs) to produce IFN-I in vivo are still incompletely defined. As IFN-I can restrict viral replication, contribute to inflammation, and influence immune responses, alteration of this capacity could impact the viral reservoir size. We observed that even in nonpathogenic SIV infection, the frequency of pDCs capable of efficiently sensing SIV and producing IFN-I was reduced during acute infection. We discovered that, concomitantly, cells other than pDCs had increased abilities for viral sensing. Our results suggest that pDC-produced IFN-I upregulates viral sensors in bystander cells, the latter gaining the capacity to produce IFN-I. These results indicate that in certain settings, cells other than pDCs can drive IFN-I-associated inflammation in SIV infection. This has important implications for the understanding of persistent inflammation and the establishment of viral reservoirs.
Collapse
|
45
|
Tomescu C, Liu Q, Ross BN, Yin X, Lynn K, Mounzer KC, Kostman JR, Montaner LJ. A correlate of HIV-1 control consisting of both innate and adaptive immune parameters best predicts viral load by multivariable analysis in HIV-1 infected viremic controllers and chronically-infected non-controllers. PLoS One 2014; 9:e103209. [PMID: 25078947 PMCID: PMC4117509 DOI: 10.1371/journal.pone.0103209] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 06/30/2014] [Indexed: 12/12/2022] Open
Abstract
HIV-1 infected viremic controllers maintain durable viral suppression below 2000 copies viral RNA/ml without anti-retroviral therapy (ART), and the immunological factor(s) associated with host control in presence of low but detectable viral replication are of considerable interest. Here, we utilized a multivariable analysis to identify which innate and adaptive immune parameters best correlated with viral control utilizing a cohort of viremic controllers (median 704 viral RNA/ml) and non-controllers (median 21,932 viral RNA/ml) that were matched for similar CD4+ T cell counts in the absence of ART. We observed that HIV-1 Gag-specific CD8+ T cell responses were preferentially targeted over Pol-specific responses in viremic controllers (p = 0.0137), while Pol-specific responses were positively associated with viral load (rho = 0.7753, p = 0.0001, n = 23). Viremic controllers exhibited significantly higher NK and plasmacytoid dendritic cells (pDC) frequency as well as retained expression of the NK CD16 receptor and strong target cell-induced NK cell IFN-gamma production compared to non-controllers (p<0.05). Despite differences in innate and adaptive immune function however, both viremic controllers (p<0.05) and non-controller subjects (p<0.001) exhibited significantly increased CD8+ T cell activation and spontaneous NK cell degranulation compared to uninfected donors. Overall, we identified that a combination of innate (pDC frequency) and adaptive (Pol-specific CD8+ T cell responses) immune parameters best predicted viral load (R2 = 0.5864, p = 0.0021, n = 17) by a multivariable analysis. Together, this data indicates that preferential Gag-specific over Pol-specific CD8+ T cell responses along with a retention of functional innate subsets best predict host control over viral replication in HIV-1 infected viremic controllers compared to chronically-infected non-controllers.
Collapse
Affiliation(s)
- Costin Tomescu
- The Wistar Institute, HIV Immunopathogenesis Laboratory, Philadelphia, Pennsylvania, United States of America
| | - Qin Liu
- The Wistar Institute, Biostatistics Laboratory, Philadelphia, Pennsylvania, United States of America
| | - Brian N. Ross
- The Wistar Institute, HIV Immunopathogenesis Laboratory, Philadelphia, Pennsylvania, United States of America
| | - Xiangfan Yin
- The Wistar Institute, Biostatistics Laboratory, Philadelphia, Pennsylvania, United States of America
| | - Kenneth Lynn
- UPENN-Presbyterian Medical Center, Philadelphia, Pennsylvania, United States of America
| | - Karam C. Mounzer
- Philadelphia FIGHT, The Jonathan Lax Treatment Center, Philadelphia, Pennsylvania, United States of America
| | - Jay R. Kostman
- UPENN-Presbyterian Medical Center, Philadelphia, Pennsylvania, United States of America
| | - Luis J. Montaner
- The Wistar Institute, HIV Immunopathogenesis Laboratory, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
46
|
Jacquelin B, Petitjean G, Kunkel D, Liovat AS, Jochems SP, Rogers KA, Ploquin MJ, Madec Y, Barré-Sinoussi F, Dereuddre-Bosquet N, Lebon P, Le Grand R, Villinger F, Müller-Trutwin M. Innate immune responses and rapid control of inflammation in African green monkeys treated or not with interferon-alpha during primary SIVagm infection. PLoS Pathog 2014; 10:e1004241. [PMID: 24991927 PMCID: PMC4081777 DOI: 10.1371/journal.ppat.1004241] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 05/26/2014] [Indexed: 12/20/2022] Open
Abstract
Chronic immune activation (IA) is considered as the driving force of CD4+ T cell depletion and AIDS. Fundamental clues in the mechanisms that regulate IA could lie in natural hosts of SIV, such as African green monkeys (AGMs). Here we investigated the role of innate immune cells and IFN-α in the control of IA in AGMs. AGMs displayed significant NK cell activation upon SIVagm infection, which was correlated with the levels of IFN-α. Moreover, we detected cytotoxic NK cells in lymph nodes during the early acute phase of SIVagm infection. Both plasmacytoid and myeloid dendritic cell (pDC and mDC) homing receptors were increased, but the maturation of mDCs, in particular of CD16+ mDCs, was more important than that of pDCs. Monitoring of 15 cytokines showed that those, which are known to be increased early in HIV-1/SIVmac pathogenic infections, such as IL-15, IFN-α, MCP-1 and CXCL10/IP-10, were significantly increased in AGMs as well. In contrast, cytokines generally induced in the later stage of acute pathogenic infection, such as IL-6, IL-18 and TNF-α, were less or not increased, suggesting an early control of IA. We then treated AGMs daily with high doses of IFN-α from day 9 to 24 post-infection. No impact was observed on the activation or maturation profiles of mDCs, pDCs and NK cells. There was also no major difference in T cell activation or interferon-stimulated gene (ISG) expression profiles and no sign of disease progression. Thus, even after administration of high levels of IFN-α during acute infection, AGMs were still able to control IA, showing that IA control is independent of IFN-α levels. This suggests that the sustained ISG expression and IA in HIV/SIVmac infections involves non-IFN-α products. Chronic inflammation is considered as directly involved in AIDS pathogenesis. The role of IFN-α as a driving force of chronic inflammation is under debate. Natural hosts of SIV, such as African green monkeys (AGMs), avoid chronic inflammation. We show for the first time that NK cells are strongly activated during acute SIVagm infection. This further demonstrates that AGMs mount a strong early innate immune response. Myeloid and plasmacytoid dendritic cells (mDCs and pDCs) homed to lymph nodes; however mDCs showed a stronger maturation profile than pDCs. Monitoring of cytokine profiles in plasma suggests that the control of inflammation in AGMs is starting earlier than previously considered, weeks before the end of the acute infection. We tested whether the capacity to control inflammation depends on the levels of IFN-α produced. When treated with high doses of IFN-α during acute SIVagm infection, AGMs did not show increase of immune activation or signs of disease progression. Our study provides evidence that the control of inflammation in SIVagm infection is not the consequence of weaker IFN-α levels. These data indicate that the sustained interferon-stimulated gene induction and chronic inflammation in HIV/SIVmac infections is driven by factors other than IFN-α.
Collapse
Affiliation(s)
- Béatrice Jacquelin
- Institut Pasteur, Regulation of Retroviral Infection Unit, Paris, France
| | - Gaël Petitjean
- Institut Pasteur, Regulation of Retroviral Infection Unit, Paris, France
| | - Désirée Kunkel
- Institut Pasteur, Regulation of Retroviral Infection Unit, Paris, France
| | - Anne-Sophie Liovat
- Institut Pasteur, Regulation of Retroviral Infection Unit, Paris, France
| | - Simon P. Jochems
- Institut Pasteur, Regulation of Retroviral Infection Unit, Paris, France
- Paris Diderot University, Sorbonne Paris Cité, Paris, France
| | - Kenneth A. Rogers
- Division of Pathology, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Mickaël J. Ploquin
- Institut Pasteur, Regulation of Retroviral Infection Unit, Paris, France
| | - Yoann Madec
- Institut Pasteur, Emerging Diseases Epidemiology Unit, Paris, France
| | | | | | - Pierre Lebon
- Saint-Vincent de Paul Hospital & Paris Descartes University, Paris, France
| | - Roger Le Grand
- CEA, Division of Immuno-Virology, DSV, iMETI, Fontenay-aux-Roses, France
| | - François Villinger
- Division of Pathology, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | | |
Collapse
|
47
|
Dutertre CA, Jourdain JP, Rancez M, Amraoui S, Fossum E, Bogen B, Sanchez C, Couëdel-Courteille A, Richard Y, Dalod M, Feuillet V, Cheynier R, Hosmalin A. TLR3–Responsive, XCR1+, CD141(BDCA-3)+/CD8α+-Equivalent Dendritic Cells Uncovered in Healthy and Simian Immunodeficiency Virus–Infected Rhesus Macaques. THE JOURNAL OF IMMUNOLOGY 2014; 192:4697-708. [DOI: 10.4049/jimmunol.1302448] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
48
|
Atanley E, van Drunen Littel-van den Hurk S. Future considerations for dendritic cell immunotherapy against chronic viral infections. Expert Rev Clin Immunol 2014; 10:801-13. [PMID: 24734867 DOI: 10.1586/1744666x.2014.907742] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Dendritic cells (DCs) are multifunctional cells that are pivotal in immune defense. As such they have been explored as vaccine carriers, largely in cancer immunotherapy and against some infectious diseases including HIV and viral hepatitis. However, while the use of DCs as vaccine carrier has shown some promise in cancer immunotherapy, this approach is laborious and is subject to strict quality control, which makes it expensive. Furthermore, in some individuals chronically infected with HIV, HCV and/or HBV the numbers of circulating DCs are reduced and/or their functions impaired. In vivo expansion and mobilization of DCs with Flt3L in combination with antigen and/or adjuvant targeting to critical DC receptors may be a more effective approach to control viral replication in chronically infected HIV, HBV and/or HCV patients than current DC immunotherapy approaches.
Collapse
Affiliation(s)
- Ethel Atanley
- VIDO-Intervac, University of Saskatchewan, 120 Veterinary Road, Saskatoon, SK, S7N 5E3, Canada
| | | |
Collapse
|
49
|
Attenuation of pathogenic immune responses during infection with human and simian immunodeficiency virus (HIV/SIV) by the tetracycline derivative minocycline. PLoS One 2014; 9:e94375. [PMID: 24732038 PMCID: PMC3986096 DOI: 10.1371/journal.pone.0094375] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 03/15/2014] [Indexed: 01/16/2023] Open
Abstract
HIV immune pathogenesis is postulated to involve two major mechanisms: 1) chronic innate immune responses that drive T cell activation and apoptosis and 2) induction of immune regulators that suppress T cell function and proliferation. Both arms are elevated chronically in lymphoid tissues of non-natural hosts, which ultimately develop AIDS. However, these mechanisms are not elevated chronically in natural hosts of SIV infection that avert immune pathogenesis despite similarly high viral loads. In this study we investigated whether minocycline could modulate these pathogenic antiviral responses in non-natural hosts of HIV and SIV. We found that minocycline attenuated in vitro induction of type I interferon (IFN) and the IFN-stimulated genes indoleamine 2,3-dioxygenase (IDO1) and TNF-related apoptosis inducing ligand (TRAIL) in human plasmacytoid dendritic cells and PBMCs exposed to aldrithiol-2 inactivated HIV or infectious influenza virus. Activation-induced TRAIL and expression of cytotoxic T-lymphocyte antigen 4 (CTLA-4) in isolated CD4+ T cells were also reduced by minocycline. Translation of these in vitro findings to in vivo effects, however, were mixed as minocycline significantly reduced markers of activation and activation-induced cell death (CD25, Fas, caspase-3) but did not affect expression of IFNβ or the IFN-stimulated genes IDO1, FasL, or Mx in the spleens of chronically SIV-infected pigtailed macaques. TRAIL expression, reflecting the mixed effects of minocycline on activation and type I IFN stimuli, was reduced by half, but this change was not significant. These results show that minocycline administered after infection may protect against aspects of activation-induced cell death during HIV/SIV immune disease, but that in vitro effects of minocycline on type I IFN responses are not recapitulated in a rapid progressor model in vivo.
Collapse
|
50
|
Taraldsrud E, Fevang B, Aukrust P, Beiske KH, Fløisand Y, Frøland S, Rollag H, Olweus J. Common variable immunodeficiency revisited: normal generation of naturally occurring dendritic cells that respond to Toll-like receptors 7 and 9. Clin Exp Immunol 2014; 175:439-48. [PMID: 24237110 DOI: 10.1111/cei.12239] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/12/2013] [Indexed: 01/21/2023] Open
Abstract
Patients with common variable immunodeficiency (CVID) have reduced numbers and frequencies of dendritic cells (DCs) in blood, and there is also evidence for defective activation through Toll-like receptors (TLRs). Collectively, these observations may point to a primary defect in the generation of functional DCs. Here, we measured frequencies of plasmacytoid DCs (pDCs) and myeloid DCs (mDCs) in peripheral blood of 26 CVID patients and 16 healthy controls. The results show that the patients have reduced absolute counts of both subsets. However, the decreased numbers in peripheral blood were not reflected in reduced frequencies of CD34(+) pDC progenitors in the bone marrow. Moreover, studies at the single cell level showed that DCs from CVID patients and healthy controls produced similar amounts of interferon-α or interleukin-12 and expressed similar levels of activation markers in response to human cytomegalovirus and ligands for TLR-7 and TLR-9. The study represents the most thorough functional characterization to date, and the first to assess bone marrow progenitor output, of naturally occurring DCs in CVID. In conclusion, it seems unlikely that CVID is secondary to insufficient production of naturally occurring DCs or a defect in their signalling through TLR-7 or TLR-9.
Collapse
Affiliation(s)
- E Taraldsrud
- Department of Immunology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway; K.G. Jebsen Center for Cancer Immunotherapy and K.G. Jebsen Inflammation Research Center, University of Oslo, Oslo, Norway; Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | | | | | | | | | | | | | | |
Collapse
|