1
|
Ren C, Chen T, Zhang S, Gao Q, Zou J, Li P, Wang B, Zhao Y, OuYang A, Suolang S, Zhou H. PLK3 facilitates replication of swine influenza virus by phosphorylating viral NP protein. Emerg Microbes Infect 2023; 12:2275606. [PMID: 37874309 PMCID: PMC10768867 DOI: 10.1080/22221751.2023.2275606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 10/19/2023] [Indexed: 10/25/2023]
Abstract
Swine H1N1/2009 influenza is a highly infectious respiratory disease in pigs, which poses a great threat to pig production and human health. In this study, we investigated the global expression profiling of swine-encoded genes in response to swine H1N1/2009 influenza A virus (SIV-H1N1/2009) in newborn pig trachea (NPTr) cells. In total, 166 genes were found to be differentially expressed (DE) according to the gene microarray. After analyzing the DE genes which might affect the SIV-H1N1/2009 replication, we focused on polo-like kinase 3 (PLK3). PLK3 is a member of the PLK family, which is a highly conserved serine/threonine kinase in eukaryotes and well known for its role in the regulation of cell cycle and cell division. We validated that the expression of PLK3 was upregulated after SIV-H1N1/2009 infection. Additionally, PLK3 was found to interact with viral nucleoprotein (NP), significantly increased NP phosphorylation and oligomerization, and promoted viral ribonucleoprotein assembly and replication. Furthermore, we identified serine 482 (S482) as the phosphorylated residue on NP by PLK3. The phosphorylation of S482 regulated NP oligomerization, viral polymerase activity and growth. Our findings provide further insights for understanding the replication of influenza A virus.
Collapse
Affiliation(s)
- Caiyue Ren
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Tong Chen
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Shishuo Zhang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Qingxia Gao
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Jiahui Zou
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Peng Li
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Biaoxiong Wang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Yaxin Zhao
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Aotian OuYang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Sizhu Suolang
- Department of Animal Science, Tibet Agricultural and Animal Husbandry College, Linzhi, People’s Republic of China
| | - Hongbo Zhou
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People’s Republic of China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, People’s Republic of China
- Hubei Hongshan Laboratory, Wuhan, People’s Republic of China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan, People’s Republic of China
| |
Collapse
|
2
|
Rizzato M, Mao F, Chardon F, Lai KY, Villalonga-Planells R, Drexler HCA, Pesenti ME, Fiskin M, Roos N, King KM, Li S, Gamez ER, Greune L, Dersch P, Simon C, Masson M, Van Doorslaer K, Campos SK, Schelhaas M. Master mitotic kinases regulate viral genome delivery during papillomavirus cell entry. Nat Commun 2023; 14:355. [PMID: 36683055 PMCID: PMC9868124 DOI: 10.1038/s41467-023-35874-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 01/05/2023] [Indexed: 01/24/2023] Open
Abstract
Mitosis induces cellular rearrangements like spindle formation, Golgi fragmentation, and nuclear envelope breakdown. Similar to certain retroviruses, nuclear delivery during entry of human papillomavirus (HPV) genomes is facilitated by mitosis, during which minor capsid protein L2 tethers viral DNA to mitotic chromosomes. However, the mechanism of viral genome delivery and tethering to condensed chromosomes is barely understood. It is unclear, which cellular proteins facilitate this process or how this process is regulated. This work identifies crucial phosphorylations on HPV minor capsid protein L2 occurring at mitosis onset. L2's chromosome binding region (CBR) is sequentially phosphorylated by the master mitotic kinases CDK1 and PLK1. L2 phosphorylation, thus, regulates timely delivery of HPV vDNA to mitotic chromatin during mitosis. In summary, our work demonstrates a crucial role of mitotic kinases for nuclear delivery of viral DNA and provides important insights into the molecular mechanism of pathogen import into the nucleus during mitosis.
Collapse
Affiliation(s)
- Matteo Rizzato
- Institute of Cellular Virology, Westphalian Wilhelms-University of Münster, Münster, Germany
| | - Fuxiang Mao
- Institute of Cellular Virology, Westphalian Wilhelms-University of Münster, Münster, Germany
| | - Florian Chardon
- Institute of Cellular Virology, Westphalian Wilhelms-University of Münster, Münster, Germany
| | - Kun-Yi Lai
- Institute of Cellular Virology, Westphalian Wilhelms-University of Münster, Münster, Germany
- Interfaculty Centre 'Cells in Motion' (CiM), Westphalian Wilhelms-University of Münster, Münster, Germany
| | | | | | | | - Mert Fiskin
- UMR 7242 Biotechnologie et signalisation cellulaire, CNRS, UdS, ESBS, Illkirch, France
| | - Nora Roos
- Institute of Medical Virology and Epidemiology of Viral Diseases, Tübingen, Germany
| | - Kelly M King
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, USA
| | - Shuaizhi Li
- Department of Immunobiology, University of Arizona, Tucson, AZ, USA
| | - Eduardo R Gamez
- Department of Immunobiology, University of Arizona, Tucson, AZ, USA
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, University of Hawai'i at Manoa, Honolulu, Hawaii, 96813-5525, USA
| | - Lilo Greune
- Institute of Infectiology, Westphalian Wilhelms-University of Münster, Münster, Germany
| | - Petra Dersch
- Institute of Infectiology, Westphalian Wilhelms-University of Münster, Münster, Germany
| | - Claudia Simon
- Institute of Medical Virology and Epidemiology of Viral Diseases, Tübingen, Germany
| | - Murielle Masson
- UMR 7242 Biotechnologie et signalisation cellulaire, CNRS, UdS, ESBS, Illkirch, France
| | - Koenraad Van Doorslaer
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, USA
- Cancer Biology Graduate Interdisciplinary Program, Genetics Graduate Interdisciplinary Program, UA Cancer Center, University of Arizona, Tucson, AZ, USA
| | - Samuel K Campos
- Department of Immunobiology, University of Arizona, Tucson, AZ, USA
| | - Mario Schelhaas
- Institute of Cellular Virology, Westphalian Wilhelms-University of Münster, Münster, Germany.
- Interfaculty Centre 'Cells in Motion' (CiM), Westphalian Wilhelms-University of Münster, Münster, Germany.
| |
Collapse
|
3
|
Identification of Molecular Markers Related to Immune Infiltration in Patients with Severe Asthma: A Comprehensive Bioinformatics Analysis Based on the Human Bronchial Epithelial Transcriptome. DISEASE MARKERS 2022; 2022:8906064. [DOI: 10.1155/2022/8906064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 10/08/2022] [Indexed: 11/06/2022]
Abstract
Background. Severe asthma (SA), a heterogeneous inflammatory disease characterized by immune cell infiltration, is particularly difficult to treat and manage. The airway epithelium is an important tissue in regulating innate and adaptive immunity, and targeting airway epithelial cell may contribute to improving the efficacy of asthma therapy. Methods. Bioinformatics methods were utilized to identify the hub genes and signaling pathways involved in SA. Experiments were performed to determine whether these hub genes and signaling pathways were affected by the differences in immune cell infiltration. Results. The weighted gene coexpression network analysis identified 14 coexpression modules, among which the blue and salmon modules exhibited the strongest associations with SA. The blue module was mainly enriched in actomyosin structure organization and was associated with regulating stem cell pluripotency signaling pathways. The salmon module was mainly involved in cornification, skin development, and glycosphingolipid biosynthesis-lacto and neolacto series. The protein-protein interaction network and module analysis identified 11 hub genes in the key modules. The CIBERSORTx algorithm revealed statistically significant differences in CD8+ T cells (
), T follicular helper cells (
), resting mast cells (
), and neutrophils (
) between patients with SA and mild-moderate asthma patients. Pearson’s correlation analysis identified 11 genes that were significantly associated with a variety of immune cells. We further predicted the utility of some potential drugs and validated our results in external datasets. Conclusion. Our results may help provide a better understanding of the relationship between the airway epithelial transcriptome and clinical data of SA. And this study will help to guide the development of SA-targeted molecular therapy.
Collapse
|
4
|
The Nucleocapsid of Paramyxoviruses: Structure and Function of an Encapsidated Template. Viruses 2021; 13:v13122465. [PMID: 34960734 PMCID: PMC8708338 DOI: 10.3390/v13122465] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/07/2021] [Accepted: 12/07/2021] [Indexed: 01/28/2023] Open
Abstract
Viruses of the Paramyxoviridae family share a common and complex molecular machinery for transcribing and replicating their genomes. Their non-segmented, negative-strand RNA genome is encased in a tight homopolymer of viral nucleoproteins (N). This ribonucleoprotein complex, termed a nucleocapsid, is the template of the viral polymerase complex made of the large protein (L) and its co-factor, the phosphoprotein (P). This review summarizes the current knowledge on several aspects of paramyxovirus transcription and replication, including structural and functional data on (1) the architecture of the nucleocapsid (structure of the nucleoprotein, interprotomer contacts, interaction with RNA, and organization of the disordered C-terminal tail of N), (2) the encapsidation of the genomic RNAs (structure of the nucleoprotein in complex with its chaperon P and kinetics of RNA encapsidation in vitro), and (3) the use of the nucleocapsid as a template for the polymerase complex (release of the encased RNA and interaction network allowing the progress of the polymerase complex). Finally, this review presents models of paramyxovirus transcription and replication.
Collapse
|
5
|
Auwul MR, Rahman MR, Gov E, Shahjaman M, Moni MA. Bioinformatics and machine learning approach identifies potential drug targets and pathways in COVID-19. Brief Bioinform 2021; 22:6220170. [PMID: 33839760 PMCID: PMC8083354 DOI: 10.1093/bib/bbab120] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/15/2021] [Accepted: 03/13/2021] [Indexed: 12/12/2022] Open
Abstract
Current coronavirus disease-2019 (COVID-19) pandemic has caused massive loss of lives. Clinical trials of vaccines and drugs are currently being conducted around the world; however, till now no effective drug is available for COVID-19. Identification of key genes and perturbed pathways in COVID-19 may uncover potential drug targets and biomarkers. We aimed to identify key gene modules and hub targets involved in COVID-19. We have analyzed SARS-CoV-2 infected peripheral blood mononuclear cell (PBMC) transcriptomic data through gene coexpression analysis. We identified 1520 and 1733 differentially expressed genes (DEGs) from the GSE152418 and CRA002390 PBMC datasets, respectively (FDR < 0.05). We found four key gene modules and hub gene signature based on module membership (MMhub) statistics and protein-protein interaction (PPI) networks (PPIhub). Functional annotation by enrichment analysis of the genes of these modules demonstrated immune and inflammatory response biological processes enriched by the DEGs. The pathway analysis revealed the hub genes were enriched with the IL-17 signaling pathway, cytokine-cytokine receptor interaction pathways. Then, we demonstrated the classification performance of hub genes (PLK1, AURKB, AURKA, CDK1, CDC20, KIF11, CCNB1, KIF2C, DTL and CDC6) with accuracy >0.90 suggesting the biomarker potential of the hub genes. The regulatory network analysis showed transcription factors and microRNAs that target these hub genes. Finally, drug-gene interactions analysis suggests amsacrine, BRD-K68548958, naproxol, palbociclib and teniposide as the top-scored repurposed drugs. The identified biomarkers and pathways might be therapeutic targets to the COVID-19.
Collapse
Affiliation(s)
- Md Rabiul Auwul
- School of Economics and Statistics, Guangzhou University, Guangzhou 510006, China
| | - Md Rezanur Rahman
- Department of Biochemistry and Biotechnology, School of Biomedical Science, Khwaja Yunus Ali University, Sirajgonj-6751, Bangladesh
| | - Esra Gov
- Department of Bioengineering, Adana Alparslan Turkes Science and Technology University, Adana-01250, Turkey
| | - Md Shahjaman
- Department of Statistics, Begum Rokeya University, Rangpur-5400, Bangladesh
| | - Mohammad Ali Moni
- WHO Collaborating Centre on eHealth, UNSW Digital Health, School of Public Health and Community Medicine, Faculty of Medicine, UNSW Sydney, Australia
| |
Collapse
|
6
|
Douglas J, Drummond AJ, Kingston RL. Evolutionary history of cotranscriptional editing in the paramyxoviral phosphoprotein gene. Virus Evol 2021; 7:veab028. [PMID: 34141448 PMCID: PMC8204654 DOI: 10.1093/ve/veab028] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The phosphoprotein gene of the paramyxoviruses encodes multiple protein products. The P, V, and W proteins are generated by transcriptional slippage. This process results in the insertion of non-templated guanosine nucleosides into the mRNA at a conserved edit site. The P protein is an essential component of the viral RNA polymerase and is encoded by a faithful copy of the gene in the majority of paramyxoviruses. However, in some cases, the non-essential V protein is encoded by default and guanosines must be inserted into the mRNA in order to encode P. The number of guanosines inserted into the P gene can be described by a probability distribution, which varies between viruses. In this article, we review the nature of these distributions, which can be inferred from mRNA sequencing data, and reconstruct the evolutionary history of cotranscriptional editing in the paramyxovirus family. Our model suggests that, throughout known history of the family, the system has switched from a P default to a V default mode four times; complete loss of the editing system has occurred twice, the canonical zinc finger domain of the V protein has been deleted or heavily mutated a further two times, and the W protein has independently evolved a novel function three times. Finally, we review the physical mechanisms of cotranscriptional editing via slippage of the viral RNA polymerase.
Collapse
Affiliation(s)
- Jordan Douglas
- Centre for Computational Evolution, University of Auckland, Auckland 1010, New Zealand
- School of Computer Science, University of Auckland, Auckland 1010, New Zealand
| | - Alexei J Drummond
- Centre for Computational Evolution, University of Auckland, Auckland 1010, New Zealand
- School of Biological Sciences, University of Auckland, Auckland 1010, New Zealand
| | - Richard L Kingston
- School of Biological Sciences, University of Auckland, Auckland 1010, New Zealand
| |
Collapse
|
7
|
Ivanov A, Ramanathan P, Parry C, Ilinykh PA, Lin X, Petukhov M, Obukhov Y, Ammosova T, Amarasinghe GK, Bukreyev A, Nekhai S. Global phosphoproteomic analysis of Ebola virions reveals a novel role for VP35 phosphorylation-dependent regulation of genome transcription. Cell Mol Life Sci 2020; 77:2579-2603. [PMID: 31562565 PMCID: PMC7101265 DOI: 10.1007/s00018-019-03303-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 08/26/2019] [Accepted: 09/16/2019] [Indexed: 12/27/2022]
Abstract
Ebola virus (EBOV) causes severe human disease with a high case fatality rate. The balance of evidence implies that the virus circulates in bats. The molecular basis for host-viral interactions, including the role for phosphorylation during infections, is largely undescribed. To address this, and to better understand the biology of EBOV, the phosphorylation of EBOV proteins was analyzed in virions purified from infected monkey Vero-E6 cells and bat EpoNi/22.1 cells using high-resolution mass spectrometry. All EBOV structural proteins were detected with high coverage, along with phosphopeptides. Phosphorylation sites were identified in all viral structural proteins. Comparison of EBOV protein phosphorylation in monkey and bat cells showed only partial overlap of phosphorylation sites, with shared sites found in NP, VP35, and VP24 proteins, and no common sites in the other proteins. Three-dimensional structural models were built for NP, VP35, VP40, GP, VP30 and VP24 proteins using available crystal structures or by de novo structure prediction to elucidate the potential role of the phosphorylation sites. Phosphorylation of one of the identified sites in VP35, Thr-210, was demonstrated to govern the transcriptional activity of the EBOV polymerase complex. Thr-210 phosphorylation was also shown to be important for VP35 interaction with NP. This is the first study to compare phosphorylation of all EBOV virion proteins produced in primate versus bat cells, and to demonstrate the role of VP35 phosphorylation in the viral life cycle. The results uncover a novel mechanism of EBOV transcription and identify novel targets for antiviral drug development.
Collapse
Affiliation(s)
- Andrey Ivanov
- Center for Sickle Cell Disease, Howard University, 2201 Georgia Ave., N.W., Suite 321D, Washington, D.C., 20059, USA
| | - Palaniappan Ramanathan
- Department of Pathology, University of Texas, Medical Branch at Galveston, 301 University Boulevard, Galveston, TX, 77574-0609, USA
| | - Christian Parry
- Center for Sickle Cell Disease, Howard University, 2201 Georgia Ave., N.W., Suite 321D, Washington, D.C., 20059, USA
- Department of Microbiology, Howard University, Washington, D.C., 20059, USA
| | - Philipp A Ilinykh
- Department of Pathology, University of Texas, Medical Branch at Galveston, 301 University Boulevard, Galveston, TX, 77574-0609, USA
| | - Xionghao Lin
- Center for Sickle Cell Disease, Howard University, 2201 Georgia Ave., N.W., Suite 321D, Washington, D.C., 20059, USA
- College of Dentistry, Howard University, Washington, D.C., 20059, USA
| | - Michael Petukhov
- Division of Molecular and Radiation Biophysics, Russian Nuclear Physics Institute Named After B. P. Konstantinov, National Research Center "Kurchatov Institute", Gatchina, 188300, Russia
- Russian Scientific Center of Radiology and Surgical Technologies Named After A. M. Granov, St. Petersburg, 197758, Russia
| | - Yuri Obukhov
- Center for Sickle Cell Disease, Howard University, 2201 Georgia Ave., N.W., Suite 321D, Washington, D.C., 20059, USA
| | - Tatiana Ammosova
- Center for Sickle Cell Disease, Howard University, 2201 Georgia Ave., N.W., Suite 321D, Washington, D.C., 20059, USA
- Department of Medicine, Howard University, Washington, D.C., 20059, USA
| | - Gaya K Amarasinghe
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, 63110, USA
| | - Alexander Bukreyev
- Department of Pathology, University of Texas, Medical Branch at Galveston, 301 University Boulevard, Galveston, TX, 77574-0609, USA.
- Department of Microbiology and Immunology, University of Texas, Medical Branch at Galveston, 301 University Boulevard, Galveston, TX, 77574-0609, USA.
- Galveston National Laboratory, University of Texas, Medical Branch at Galveston, 301 University Boulevard, Galveston, TX, 77574-0609, USA.
| | - Sergei Nekhai
- Center for Sickle Cell Disease, Howard University, 2201 Georgia Ave., N.W., Suite 321D, Washington, D.C., 20059, USA.
- Department of Microbiology, Howard University, Washington, D.C., 20059, USA.
- Department of Medicine, Howard University, Washington, D.C., 20059, USA.
| |
Collapse
|
8
|
Briggs K, Wang L, Nagashima K, Zengel J, Tripp RA, He B. Regulation of Mumps Virus Replication and Transcription by Kinase RPS6KB1. J Virol 2020; 94:e00387-20. [PMID: 32295907 PMCID: PMC7307103 DOI: 10.1128/jvi.00387-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 04/04/2020] [Indexed: 02/07/2023] Open
Abstract
Mumps virus (MuV) caused the most viral meningitis before mass immunization. Unfortunately, MuV has reemerged in the United States in the past several years. MuV is a member of the genus Rubulavirus, in the family Paramyxoviridae, and has a nonsegmented negative-strand RNA genome. The viral RNA-dependent RNA polymerase (vRdRp) of MuV consists of the large protein (L) and the phosphoprotein (P), while the nucleocapsid protein (NP) encapsulates the viral RNA genome. These proteins make up the replication and transcription machinery of MuV. The P protein is phosphorylated by host kinases, and its phosphorylation is important for its function. In this study, we performed a large-scale small interfering RNA (siRNA) screen targeting host kinases that regulated MuV replication. The human kinase ribosomal protein S6 kinase beta-1 (RPS6KB1) was shown to play a role in MuV replication and transcription. We have validated the role of RPS6KB1 in regulating MuV using siRNA knockdown, an inhibitor, and RPS6KB1 knockout cells. We found that MuV grows better in cells lacking RPS6KB1, indicating that it downregulates viral growth. Furthermore, we detected an interaction between the MuV P protein and RPS6KB1, suggesting that RPS6KB1 directly regulates MuV replication and transcription.IMPORTANCE Mumps virus is an important human pathogen. In recent years, MuV has reemerged in the United State, with outbreaks occurring in young adults who have been vaccinated. Our work provides insight into a previously unknown mumps virus-host interaction. RPS6KB1 negatively regulates MuV replication, likely through its interaction with the P protein. Understanding virus-host interactions can lead to novel antiviral drugs and enhanced vaccine production.
Collapse
Affiliation(s)
- Kelsey Briggs
- Department of Infectious Diseases, University of Georgia College of Veterinary Medicine, Athens, Georgia, USA
| | - Leyi Wang
- Department of Infectious Diseases, University of Georgia College of Veterinary Medicine, Athens, Georgia, USA
| | - Kaito Nagashima
- Department of Infectious Diseases, University of Georgia College of Veterinary Medicine, Athens, Georgia, USA
| | - James Zengel
- Department of Infectious Diseases, University of Georgia College of Veterinary Medicine, Athens, Georgia, USA
| | - Ralph A Tripp
- Department of Infectious Diseases, University of Georgia College of Veterinary Medicine, Athens, Georgia, USA
| | - Biao He
- Department of Infectious Diseases, University of Georgia College of Veterinary Medicine, Athens, Georgia, USA
| |
Collapse
|
9
|
Meineke R, Rimmelzwaan GF, Elbahesh H. Influenza Virus Infections and Cellular Kinases. Viruses 2019; 11:E171. [PMID: 30791550 PMCID: PMC6410056 DOI: 10.3390/v11020171] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 02/13/2019] [Accepted: 02/14/2019] [Indexed: 12/24/2022] Open
Abstract
Influenza A viruses (IAVs) are a major cause of respiratory illness and are responsible for yearly epidemics associated with more than 500,000 annual deaths globally. Novel IAVs may cause pandemic outbreaks and zoonotic infections with, for example, highly pathogenic avian influenza virus (HPAIV) of the H5N1 and H7N9 subtypes, which pose a threat to public health. Treatment options are limited and emergence of strains resistant to antiviral drugs jeopardize this even further. Like all viruses, IAVs depend on host factors for every step of the virus replication cycle. Host kinases link multiple signaling pathways in respond to a myriad of stimuli, including viral infections. Their regulation of multiple response networks has justified actively targeting cellular kinases for anti-cancer therapies and immune modulators for decades. There is a growing volume of research highlighting the significant role of cellular kinases in regulating IAV infections. Their functional role is illustrated by the required phosphorylation of several IAV proteins necessary for replication and/or evasion/suppression of the innate immune response. Identified in the majority of host factor screens, functional studies further support the important role of kinases and their potential as host restriction factors. PKC, ERK, PI3K and FAK, to name a few, are kinases that regulate viral entry and replication. Additionally, kinases such as IKK, JNK and p38 MAPK are essential in mediating viral sensor signaling cascades that regulate expression of antiviral chemokines and cytokines. The feasibility of targeting kinases is steadily moving from bench to clinic and already-approved cancer drugs could potentially be repurposed for treatments of severe IAV infections. In this review, we will focus on the contribution of cellular kinases to IAV infections and their value as potential therapeutic targets.
Collapse
Affiliation(s)
- Robert Meineke
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine (TiHo), Bünteweg 17, 30559 Hannover, Germany.
| | - Guus F Rimmelzwaan
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine (TiHo), Bünteweg 17, 30559 Hannover, Germany.
| | - Husni Elbahesh
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine (TiHo), Bünteweg 17, 30559 Hannover, Germany.
| |
Collapse
|
10
|
Young DF, Wignall-Fleming EB, Busse DC, Pickin MJ, Hankinson J, Randall EM, Tavendale A, Davison AJ, Lamont D, Tregoning JS, Goodbourn S, Randall RE. The switch between acute and persistent paramyxovirus infection caused by single amino acid substitutions in the RNA polymerase P subunit. PLoS Pathog 2019; 15:e1007561. [PMID: 30742688 PMCID: PMC6386407 DOI: 10.1371/journal.ppat.1007561] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 02/22/2019] [Accepted: 01/04/2019] [Indexed: 12/24/2022] Open
Abstract
Paramyxoviruses can establish persistent infections both in vitro and in vivo, some of which lead to chronic disease. However, little is known about the molecular events that contribute to the establishment of persistent infections by RNA viruses. Using parainfluenza virus type 5 (PIV5) as a model we show that phosphorylation of the P protein, which is a key component of the viral RNA polymerase complex, determines whether or not viral transcription and replication becomes repressed at late times after infection. If the virus becomes repressed, persistence is established, but if not, the infected cells die. We found that single amino acid changes at various positions within the P protein switched the infection phenotype from lytic to persistent. Lytic variants replicated to higher titres in mice than persistent variants and caused greater infiltration of immune cells into infected lungs but were cleared more rapidly. We propose that during the acute phases of viral infection in vivo, lytic variants of PIV5 will be selected but, as the adaptive immune response develops, variants in which viral replication can be repressed will be selected, leading to the establishment of prolonged, persistent infections. We suggest that similar selection processes may operate for other RNA viruses.
Collapse
Affiliation(s)
- Dan F. Young
- School of Biology, Centre for Biomolecular Sciences, BMS Building, North Haugh, University of St. Andrews, St. Andrews, Fife, United Kingdom
| | - Elizabeth B. Wignall-Fleming
- School of Biology, Centre for Biomolecular Sciences, BMS Building, North Haugh, University of St. Andrews, St. Andrews, Fife, United Kingdom
- MRC–University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - David C. Busse
- Mucosal Infection and Immunity Group, Section of Virology, Imperial College London, London, United Kingdom
| | - Matthew J. Pickin
- Institute for Infection and Immunity, St. George's, University of London, London, United Kingdom
| | - Jack Hankinson
- Institute for Infection and Immunity, St. George's, University of London, London, United Kingdom
| | - Elizabeth M. Randall
- School of Biology, Centre for Biomolecular Sciences, BMS Building, North Haugh, University of St. Andrews, St. Andrews, Fife, United Kingdom
| | - Amy Tavendale
- School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Andrew J. Davison
- MRC–University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Douglas Lamont
- School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - John S. Tregoning
- Mucosal Infection and Immunity Group, Section of Virology, Imperial College London, London, United Kingdom
| | - Steve Goodbourn
- Institute for Infection and Immunity, St. George's, University of London, London, United Kingdom
| | - Richard E. Randall
- School of Biology, Centre for Biomolecular Sciences, BMS Building, North Haugh, University of St. Andrews, St. Andrews, Fife, United Kingdom
| |
Collapse
|
11
|
Diab A, Foca A, Fusil F, Lahlali T, Jalaguier P, Amirache F, N'Guyen L, Isorce N, Cosset FL, Zoulim F, Andrisani O, Durantel D. Polo-like-kinase 1 is a proviral host factor for hepatitis B virus replication. Hepatology 2017; 66:1750-1765. [PMID: 28445592 PMCID: PMC5658273 DOI: 10.1002/hep.29236] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 03/17/2017] [Accepted: 04/18/2017] [Indexed: 12/13/2022]
Abstract
Chronic hepatitis B virus (HBV) infection is a major risk factor for hepatocellular carcinoma (HCC) and current treatments for chronic hepatitis B and HCC are suboptimal. Herein, we identified cellular serine/threonine Polo-like-kinase 1 (PLK1) as a positive effector of HBV replication. The aim of this study was to demonstrate the proviral role of PLK1 in HBV biosynthesis and validate PLK1 inhibition a potential antiviral strategy. To this end, we employed physiologically relevant HBV infection models of primary human hepatocytes (PHHs) and differentiated HepaRG cells in conjunction with pharmacologic PLK1 inhibitors, small interfering RNA (siRNA)-mediated knockdown, and overexpression of constitutively active PLK1 (PLK1CA ). In addition, a humanized liver Fah-/- /Rag2-/- /Il2rg-/- (FRG) mouse model was used to determine the antiviral effect of PLK1 inhibitor BI-2536 on HBV infection in vivo. Finally, in vitro PLK1 kinase assays and site-directed mutagenesis were employed to demonstrate that HBV core protein (HBc) is a PLK1 substrate. We demonstrated that HBV infection activated cellular PLK1 in PHHs and differentiated HepaRG cells. PLK1 inhibition by BI-2536 or siRNA-mediated knockdown suppressed HBV DNA biosynthesis, whereas overexpression of PLK1CA increased it, suggesting that the PLK1 effects on viral biosynthesis are specific and that PLK1 is a proviral cellular factor. Significantly, BI-2536 administration to HBV-infected humanized liver FRG mice strongly inhibited HBV infection, validating PLK1 as an antiviral target in vivo. The proviral action of PLK1 is associated with the biogenesis of the nucleocapsid, as BI-2536 leads to its decreased intracellular formation/accumulation. In this respect, our studies identified HBc as a PLK1 substrate in vitro, and mapped PLK1 phosphorylation sites on this protein. CONCLUSION PLK1 is a proviral host factor that could be envisaged as a target for combined antiviral and antitumoral strategies against HBV infection and HBV-mediated carcinogenesis. (Hepatology 2017;66:1750-1765).
Collapse
Affiliation(s)
- Ahmed Diab
- INSERM U1052, Cancer Research Center of Lyon, Lyon, France
- University of Lyon, Université Claude-Bernard, UMR_S1052, UCBL, Lyon, France
- Department of Basic Medical Sciences and Purdue Center for Cancer Research, Purdue University, West Lafayette, IN
| | - Adrien Foca
- INSERM U1052, Cancer Research Center of Lyon, Lyon, France
- University of Lyon, Université Claude-Bernard, UMR_S1052, UCBL, Lyon, France
| | - Floriane Fusil
- University of Lyon, Université Claude-Bernard, UMR_S1052, UCBL, Lyon, France
- CIRI-International Center for Infectiology Research, Team EVIR, INSERM, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Univirsity of Lyon, Lyon, France
| | - Thomas Lahlali
- INSERM U1052, Cancer Research Center of Lyon, Lyon, France
- University of Lyon, Université Claude-Bernard, UMR_S1052, UCBL, Lyon, France
| | - Pascal Jalaguier
- INSERM U1052, Cancer Research Center of Lyon, Lyon, France
- University of Lyon, Université Claude-Bernard, UMR_S1052, UCBL, Lyon, France
| | - Fouzia Amirache
- CIRI-International Center for Infectiology Research, Team EVIR, INSERM, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Univirsity of Lyon, Lyon, France
| | - Lia N'Guyen
- INSERM U1052, Cancer Research Center of Lyon, Lyon, France
- University of Lyon, Université Claude-Bernard, UMR_S1052, UCBL, Lyon, France
| | - Nathalie Isorce
- INSERM U1052, Cancer Research Center of Lyon, Lyon, France
- University of Lyon, Université Claude-Bernard, UMR_S1052, UCBL, Lyon, France
| | - François-Loïc Cosset
- University of Lyon, Université Claude-Bernard, UMR_S1052, UCBL, Lyon, France
- CIRI-International Center for Infectiology Research, Team EVIR, INSERM, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Univirsity of Lyon, Lyon, France
| | - Fabien Zoulim
- INSERM U1052, Cancer Research Center of Lyon, Lyon, France
- University of Lyon, Université Claude-Bernard, UMR_S1052, UCBL, Lyon, France
- Hepato-Gastroenterogy Unit, Croix-Rousse Hospital, Hospices Civils de Lyon, Lyon, France
- Labex DEVweCAN, Lyon, France
| | - Ourania Andrisani
- Department of Basic Medical Sciences and Purdue Center for Cancer Research, Purdue University, West Lafayette, IN
| | - David Durantel
- INSERM U1052, Cancer Research Center of Lyon, Lyon, France
- University of Lyon, Université Claude-Bernard, UMR_S1052, UCBL, Lyon, France
- Labex DEVweCAN, Lyon, France
| |
Collapse
|
12
|
Pohl MO, von Recum-Knepper J, Rodriguez-Frandsen A, Lanz C, Yángüez E, Soonthornvacharin S, Wolff T, Chanda SK, Stertz S. Identification of Polo-like kinases as potential novel drug targets for influenza A virus. Sci Rep 2017; 7:8629. [PMID: 28819179 PMCID: PMC5561215 DOI: 10.1038/s41598-017-08942-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 07/21/2017] [Indexed: 02/06/2023] Open
Abstract
In recent years genome-wide RNAi screens have revealed hundreds of cellular factors required for influenza virus infections in human cells. The long-term goal is to establish some of them as drug targets for the development of the next generation of antivirals against influenza. We found that several members of the polo-like kinases (PLK), a family of serine/threonine kinases with well-known roles in cell cycle regulation, were identified as hits in four different RNAi screens and we therefore studied their potential as drug target for influenza. We show that knockdown of PLK1, PLK3, and PLK4, as well as inhibition of PLK kinase activity by four different compounds, leads to reduced influenza virus replication, and we map the requirement of PLK activity to early stages of the viral replication cycle. We also tested the impact of the PLK inhibitor BI2536 on influenza virus replication in a human lung tissue culture model and observed strong inhibition of virus replication with no measurable toxicity. This study establishes the PLKs as potential drug targets for influenza and contributes to a more detailed understanding of the intricate interactions between influenza viruses and their host cells.
Collapse
Affiliation(s)
- Marie O Pohl
- Institute of Medical Virology, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
- Life Sciences Zurich Graduate School, ETH and University of Zürich, 8057, Zurich, Switzerland
| | - Jessica von Recum-Knepper
- Immunity and Pathogenesis Program, Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Ariel Rodriguez-Frandsen
- Immunity and Pathogenesis Program, Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Caroline Lanz
- Institute of Medical Virology, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
- Life Sciences Zurich Graduate School, ETH and University of Zürich, 8057, Zurich, Switzerland
| | - Emilio Yángüez
- Institute of Medical Virology, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Stephen Soonthornvacharin
- Immunity and Pathogenesis Program, Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Thorsten Wolff
- Unit 17, Influenza and Other Respiratory Viruses, Robert Koch Institute, 13353, Berlin, Germany
| | - Sumit K Chanda
- Immunity and Pathogenesis Program, Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Silke Stertz
- Institute of Medical Virology, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
| |
Collapse
|
13
|
Young DF, Andrejeva J, Li X, Inesta-Vaquera F, Dong C, Cowling VH, Goodbourn S, Randall RE. Human IFIT1 Inhibits mRNA Translation of Rubulaviruses but Not Other Members of the Paramyxoviridae Family. J Virol 2016; 90:9446-56. [PMID: 27512068 PMCID: PMC5044818 DOI: 10.1128/jvi.01056-16] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 08/03/2016] [Indexed: 12/24/2022] Open
Abstract
UNLABELLED We have previously shown that IFIT1 is primarily responsible for the antiviral action of interferon (IFN) alpha/beta against parainfluenza virus type 5 (PIV5), selectively inhibiting the translation of PIV5 mRNAs. Here we report that while PIV2, PIV5, and mumps virus (MuV) are sensitive to IFIT1, nonrubulavirus members of the paramyxoviridae such as PIV3, Sendai virus (SeV), and canine distemper virus (CDV) are resistant. The IFIT1 sensitivity of PIV5 was not rescued by coinfection with an IFIT1-resistant virus (PIV3), demonstrating that PIV3 does not specifically inhibit the antiviral activity of IFIT1 and that the inhibition of PIV5 mRNAs is regulated by cis-acting elements. We developed an in vitro translation system using purified human IFIT1 to further investigate the mechanism of action of IFIT1. While the translations of PIV2, PIV5, and MuV mRNAs were directly inhibited by IFIT1, the translations of PIV3, SeV, and CDV mRNAs were not. Using purified human mRNA-capping enzymes, we show biochemically that efficient inhibition by IFIT1 is dependent upon a 5' guanosine nucleoside cap (which need not be N7 methylated) and that this sensitivity is partly abrogated by 2'O methylation of the cap 1 ribose. Intriguingly, PIV5 M mRNA, in contrast to NP mRNA, remained sensitive to inhibition by IFIT1 following in vitro 2'O methylation, suggesting that other structural features of mRNAs may influence their sensitivity to IFIT1. Thus, surprisingly, the viral polymerases (which have 2'-O-methyltransferase activity) of rubulaviruses do not protect these viruses from inhibition by IFIT1. Possible biological consequences of this are discussed. IMPORTANCE Paramyxoviruses cause a wide variety of diseases, and yet most of their genes encode structural proteins and proteins involved in their replication cycle. Thus, the amount of genetic information that determines the type of disease that paramyxoviruses cause is relatively small. One factor that will influence disease outcomes is how they interact with innate host cell defenses, including the interferon (IFN) system. Here we show that different paramyxoviruses interact in distinct ways with cells in a preexisting IFN-induced antiviral state. Strikingly, all the rubulaviruses tested were sensitive to the antiviral action of ISG56/IFIT1, while all the other paramyxoviruses tested were resistant. We developed novel in vitro biochemical assays to investigate the mechanism of action of IFIT1, demonstrating that the mRNAs of rubulaviruses can be directly inhibited by IFIT1 and that this is at least partially because their mRNAs are not correctly methylated.
Collapse
Affiliation(s)
- D F Young
- School of Biology, Centre for Biomolecular Sciences, University of St. Andrews, St. Andrews, Fife, United Kingdom
| | - J Andrejeva
- School of Biology, Centre for Biomolecular Sciences, University of St. Andrews, St. Andrews, Fife, United Kingdom
| | - X Li
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - F Inesta-Vaquera
- School of Life Sciences, Centre for Gene Regulation and Expression, University of Dundee, Dundee, United Kingdom
| | - C Dong
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - V H Cowling
- School of Life Sciences, Centre for Gene Regulation and Expression, University of Dundee, Dundee, United Kingdom
| | - S Goodbourn
- Institute for Infection and Immunity, St. George's, University of London, London, United Kingdom
| | - R E Randall
- School of Biology, Centre for Biomolecular Sciences, University of St. Andrews, St. Andrews, Fife, United Kingdom
| |
Collapse
|
14
|
Interactions of Prototype Foamy Virus Capsids with Host Cell Polo-Like Kinases Are Important for Efficient Viral DNA Integration. PLoS Pathog 2016; 12:e1005860. [PMID: 27579920 PMCID: PMC5006980 DOI: 10.1371/journal.ppat.1005860] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Accepted: 08/11/2016] [Indexed: 01/31/2023] Open
Abstract
Unlike for other retroviruses, only a few host cell factors that aid the replication of foamy viruses (FVs) via interaction with viral structural components are known. Using a yeast-two-hybrid (Y2H) screen with prototype FV (PFV) Gag protein as bait we identified human polo-like kinase 2 (hPLK2), a member of cell cycle regulatory kinases, as a new interactor of PFV capsids. Further Y2H studies confirmed interaction of PFV Gag with several PLKs of both human and rat origin. A consensus Ser-Thr/Ser-Pro (S-T/S-P) motif in Gag, which is conserved among primate FVs and phosphorylated in PFV virions, was essential for recognition by PLKs. In the case of rat PLK2, functional kinase and polo-box domains were required for interaction with PFV Gag. Fluorescently-tagged PFV Gag, through its chromatin tethering function, selectively relocalized ectopically expressed eGFP-tagged PLK proteins to mitotic chromosomes in a Gag STP motif-dependent manner, confirming a specific and dominant nature of the Gag-PLK interaction in mammalian cells. The functional relevance of the Gag-PLK interaction was examined in the context of replication-competent FVs and single-round PFV vectors. Although STP motif mutated viruses displayed wild type (wt) particle release, RNA packaging and intra-particle reverse transcription, their replication capacity was decreased 3-fold in single-cycle infections, and up to 20-fold in spreading infections over an extended time period. Strikingly similar defects were observed when cells infected with single-round wt Gag PFV vectors were treated with a pan PLK inhibitor. Analysis of entry kinetics of the mutant viruses indicated a post-fusion defect resulting in delayed and reduced integration, which was accompanied with an enhanced preference to integrate into heterochromatin. We conclude that interaction between PFV Gag and cellular PLK proteins is important for early replication steps of PFV within host cells. Viruses are masters at exploiting host cell machineries for their replication. For human immunodeficiency virus type 1 (HIV-1), the best-studied representative of the Orthoretrovirinae subfamily from the genus lentiviruses, numerous important virus-host interactions have been described. In contrast, only a few cellular proteins are known to influence the replication of foamy viruses (FVs, also known as spumaviruses), an intriguing type of complex retrovirus of the Spumaretrovirinae subfamily that combines features of both retroviruses and hepadnaviruses in its replication strategy. Given the increasing interest in FVs as gene transfer tools and their unique status within the retrovirus family, this discrepancy urged the identification of novel host cell interaction partners of FV structural components. This study focused on prototype FV (PFV), the best-characterized member of FVs, and its capsid protein, Gag, as the central player of viral replication. Members of the mitosis-regulatory, polo-like kinase (PLK) family were identified as novel Gag binding partners. The Gag interaction with PLK1 (and possibly also PLK2) facilitated efficient PFV genome integration into host chromatin, ensuring successful replication and viral spread in infected target cell cultures. Collectively, our results elucidate the first link between cell cycle regulatory networks and the mitosis-dependent PFV integration process.
Collapse
|
15
|
Pickar A, Zengel J, Xu P, Li Z, He B. Mumps Virus Nucleoprotein Enhances Phosphorylation of the Phosphoprotein by Polo-Like Kinase 1. J Virol 2016; 90:1588-98. [PMID: 26608325 PMCID: PMC4719615 DOI: 10.1128/jvi.02160-15] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 11/18/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The viral RNA-dependent RNA polymerases (vRdRps) of nonsegmented, negative-sense viruses (NNSVs) consist of the enzymatic large protein (L) and the phosphoprotein (P). P is heavily phosphorylated, and its phosphorylation plays a critical role in viral RNA synthesis. Since NNSVs do not encode kinases, P is phosphorylated by host kinases. In this study, we investigate the roles that viral proteins play in the phosphorylation of mumps virus (MuV) P. We found that nucleoprotein (NP) enhances the phosphorylation of P. We have identified the serine/threonine kinase Polo-like kinase 1 (PLK1) as a host kinase that phosphorylates P and have found that phosphorylation of P by PLK1 is enhanced by NP. The PLK1 binding site in MuV P was mapped to residues 146 to 148 within the S(pS/T)P motif, and the phosphorylation site was identified as residues S292 and S294. IMPORTANCE It has previously been shown that P acts as a chaperone for NP, which encapsidates viral genomic RNA to form the NP-RNA complex, the functional template for viral RNA synthesis. Thus, it is assumed that phosphorylation of P may regulate NP's ability to form the NP-RNA complex, thereby regulating viral RNA synthesis. Our work demonstrates that MuV NP affects phosphorylation of P, suggesting that NP can regulate viral RNA synthesis by regulating phosphorylation of P.
Collapse
Affiliation(s)
- Adrian Pickar
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - James Zengel
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Pei Xu
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Zhuo Li
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Biao He
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
16
|
Regulation of Viral RNA Synthesis by the V Protein of Parainfluenza Virus 5. J Virol 2015; 89:11845-57. [PMID: 26378167 DOI: 10.1128/jvi.01832-15] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 09/06/2015] [Indexed: 02/08/2023] Open
Abstract
UNLABELLED Paramyxoviruses include many important animal and human pathogens. The genome of parainfluenza virus 5 (PIV5), a prototypical paramyxovirus, encodes a V protein that inhibits viral RNA synthesis. In this work, the mechanism of inhibition was investigated. Using mutational analysis and a minigenome system, we identified regions in the N and C termini of the V protein that inhibit viral RNA synthesis: one at the very N terminus of V and the second at the C terminus of V. Furthermore, we determined that residues L16 and I17 are critical for the inhibitory function of the N-terminal region of the V protein. Both regions interact with the nucleocapsid protein (NP), an essential component of the viral RNA genome complex (RNP). Mutations at L16 and I17 abolished the interaction between NP and the N-terminal domain of V. This suggests that the interaction between NP and the N-terminal domain plays a critical role in V inhibition of viral RNA synthesis by the N-terminal domain. Both the N- and C-terminal regions inhibited viral RNA replication. The C terminus inhibited viral RNA transcription, while the N-terminal domain enhanced viral RNA transcription, suggesting that the two domains affect viral RNA through different mechanisms. Interestingly, V also inhibited the synthesis of the RNA of other paramyxoviruses, such as Nipah virus (NiV), human parainfluenza virus 3 (HPIV3), measles virus (MeV), mumps virus (MuV), and respiratory syncytial virus (RSV). This suggests that a common host factor may be involved in the replication of these paramyxoviruses. IMPORTANCE We identified two regions of the V protein that interact with NP and determined that one of these regions enhances viral RNA transcription via its interaction with NP. Our data suggest that a common host factor may be involved in the regulation of paramyxovirus replication and could be a target for broad antiviral drug development. Understanding the regulation of paramyxovirus replication will enable the rational design of vaccines and potential antiviral drugs.
Collapse
|
17
|
Treffers EE, Tas A, Scholte FE, Van MN, Heemskerk MT, de Ru AH, Snijder EJ, van Hemert MJ, van Veelen PA. Temporal SILAC-based quantitative proteomics identifies host factors involved in chikungunya virus replication. Proteomics 2015; 15:2267-80. [DOI: 10.1002/pmic.201400581] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 02/12/2015] [Accepted: 03/06/2015] [Indexed: 12/24/2022]
Affiliation(s)
- Emmely E. Treffers
- Molecular Virology Laboratory; Department of Medical Microbiology; Leiden University Medical Center; ZA Leiden The Netherlands
- Department of Immunohematology and Blood transfusion; Leiden University Medical Center; ZA Leiden The Netherlands
| | - Ali Tas
- Molecular Virology Laboratory; Department of Medical Microbiology; Leiden University Medical Center; ZA Leiden The Netherlands
| | - Florine E.M. Scholte
- Molecular Virology Laboratory; Department of Medical Microbiology; Leiden University Medical Center; ZA Leiden The Netherlands
| | - Myrthe N. Van
- Molecular Virology Laboratory; Department of Medical Microbiology; Leiden University Medical Center; ZA Leiden The Netherlands
| | - Matthias T. Heemskerk
- Molecular Virology Laboratory; Department of Medical Microbiology; Leiden University Medical Center; ZA Leiden The Netherlands
| | - Arnoud H. de Ru
- Department of Immunohematology and Blood transfusion; Leiden University Medical Center; ZA Leiden The Netherlands
| | - Eric J. Snijder
- Molecular Virology Laboratory; Department of Medical Microbiology; Leiden University Medical Center; ZA Leiden The Netherlands
| | - Martijn J. van Hemert
- Molecular Virology Laboratory; Department of Medical Microbiology; Leiden University Medical Center; ZA Leiden The Netherlands
| | - Peter A. van Veelen
- Department of Immunohematology and Blood transfusion; Leiden University Medical Center; ZA Leiden The Netherlands
| |
Collapse
|
18
|
Initiation and regulation of paramyxovirus transcription and replication. Virology 2015; 479-480:545-54. [PMID: 25683441 DOI: 10.1016/j.virol.2015.01.014] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 01/04/2015] [Indexed: 12/18/2022]
Abstract
The paramyxovirus family has a genome consisting of a single strand of negative sense RNA. This genome acts as a template for two distinct processes: transcription to generate subgenomic, capped and polyadenylated mRNAs, and genome replication. These viruses only encode one polymerase. Thus, an intriguing question is, how does the viral polymerase initiate and become committed to either transcription or replication? By answering this we can begin to understand how these two processes are regulated. In this review article, we present recent findings from studies on the paramyxovirus, respiratory syncytial virus, which show how its polymerase is able to initiate transcription and replication from a single promoter. We discuss how these findings apply to other paramyxoviruses. Then, we examine how trans-acting proteins and promoter secondary structure might serve to regulate transcription and replication during different phases of the paramyxovirus replication cycle.
Collapse
|
19
|
Phan SI, Chen Z, Xu P, Li Z, Gao X, Foster SL, Teng MN, Tripp RA, Sakamoto K, He B. A respiratory syncytial virus (RSV) vaccine based on parainfluenza virus 5 (PIV5). Vaccine 2014; 32:3050-7. [PMID: 24717150 DOI: 10.1016/j.vaccine.2014.03.049] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 02/19/2014] [Accepted: 03/13/2014] [Indexed: 01/09/2023]
Abstract
Human respiratory syncytial virus (RSV) is a leading cause of severe respiratory disease and hospitalizations in infants and young children. It also causes significant morbidity and mortality in elderly and immune compromised individuals. No licensed vaccine currently exists. Parainfluenza virus 5 (PIV5) is a paramyxovirus that causes no known human illness and has been used as a platform for vector-based vaccine development. To evaluate the efficacy of PIV5 as a RSV vaccine vector, we generated two recombinant PIV5 viruses - one expressing the fusion (F) protein and the other expressing the attachment glycoprotein (G) of RSV strain A2 (RSV A2). The vaccine strains were used separately for single-dose vaccinations in BALB/c mice. The results showed that both vaccines induced RSV antigen-specific antibody responses, with IgG2a/IgG1 ratios similar to those seen in wild-type RSV A2 infection. After challenging the vaccinated mice with RSV A2, histopathology of lung sections showed that the vaccines did not exacerbate lung lesions relative to RSV A2-immunized mice. Importantly, both F and G vaccines induced protective immunity. Therefore, PIV5 presents an attractive platform for vector-based vaccines against RSV infection.
Collapse
Affiliation(s)
- Shannon I Phan
- Department of Infectious Diseases, University of Georgia, Athens, GA 30602, United States
| | - Zhenhai Chen
- Department of Infectious Diseases, University of Georgia, Athens, GA 30602, United States
| | - Pei Xu
- Department of Infectious Diseases, University of Georgia, Athens, GA 30602, United States; Intercollege Graduate Program in Cell and Developmental Biology, Pennsylvania State University, University Park, PA 16802, United States
| | - Zhuo Li
- Department of Infectious Diseases, University of Georgia, Athens, GA 30602, United States
| | - Xiudan Gao
- Department of Infectious Diseases, University of Georgia, Athens, GA 30602, United States
| | - Stephanie L Foster
- Department of Infectious Diseases, University of Georgia, Athens, GA 30602, United States
| | - Michael N Teng
- Division of Allergy and Immunology, Department, Department of Internal Medicine, University of South Florida, TampaFL 33612, United States
| | - Ralph A Tripp
- Department of Infectious Diseases, University of Georgia, Athens, GA 30602, United States
| | - Kaori Sakamoto
- Department of Pathology, University of Georgia, Athens, GA 30602, United States
| | - Biao He
- Department of Infectious Diseases, University of Georgia, Athens, GA 30602, United States.
| |
Collapse
|
20
|
Paramyxovirus activation and inhibition of innate immune responses. J Mol Biol 2013; 425:4872-92. [PMID: 24056173 DOI: 10.1016/j.jmb.2013.09.015] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 09/12/2013] [Accepted: 09/12/2013] [Indexed: 12/18/2022]
Abstract
Paramyxoviruses represent a remarkably diverse family of enveloped nonsegmented negative-strand RNA viruses, some of which are the most ubiquitous disease-causing viruses of humans and animals. This review focuses on paramyxovirus activation of innate immune pathways, the mechanisms by which these RNA viruses counteract these pathways, and the innate response to paramyxovirus infection of dendritic cells (DC). Paramyxoviruses are potent activators of extracellular complement pathways, a first line of defense that viruses must face during natural infections. We discuss mechanisms by which these viruses activate and combat complement to delay neutralization. Once cells are infected, virus replication drives type I interferon (IFN) synthesis that has the potential to induce a large number of antiviral genes. Here we describe four approaches by which paramyxoviruses limit IFN induction: by limiting synthesis of IFN-inducing aberrant viral RNAs, through targeted inhibition of RNA sensors, by providing viral decoy substrates for cellular kinase complexes, and through direct blocking of the IFN promoter. In addition, paramyxoviruses have evolved diverse mechanisms to disrupt IFN signaling pathways. We describe three general mechanisms, including targeted proteolysis of signaling factors, sequestering cellular factors, and upregulation of cellular inhibitors. DC are exceptional cells with the capacity to generate adaptive immunity through the coupling of innate immune signals and T cell activation. We discuss the importance of innate responses in DC following paramyxovirus infection and their consequences for the ability to mount and maintain antiviral T cells.
Collapse
|
21
|
Phosphorylation of measles virus nucleoprotein affects viral growth by changing gene expression and genomic RNA stability. J Virol 2013; 87:11684-92. [PMID: 23966404 DOI: 10.1128/jvi.01201-13] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The measles virus (MV) nucleoprotein associates with the viral RNA genome to form the N-RNA complex, providing a template for viral RNA synthesis. In our previous study, major phosphorylation sites of the nucleoprotein were identified as S479 and S510. However, the functions of these phosphorylation sites have not been clarified. In this study, we rescued recombinant MVs (rMVs) whose phosphorylation sites in the nucleoprotein were substituted (rMV-S479A, rMV-S510A, and rMV-S479A/S510A) by reverse genetics and used them in subsequent analyses. In a one-step growth experiment, rMVs showed rapid growth kinetics compared with wild-type MV, although the peak titer of the wild-type MV was the same as or slightly higher than those of the rMVs. Time course analysis of nucleoprotein accumulation also revealed that viral gene expression of rMV was enhanced during the early phase of infection. These findings suggest that nucleoprotein phosphorylation has an important role in controlling viral growth rate through the regulation of viral gene expression. Conversely, multistep growth curves revealed that nucleoprotein-phosphorylation intensity inversely correlated with viral titer at the plateau phase. Additionally, the phosphorylation intensity of the wild-type nucleoprotein in infected cells was significantly reduced through nucleoprotein-phosphoprotein binding. Excessive nucleoprotein-phosphorylation resulted in lower stability against RNase and faster turnover of viral genomic RNA. These results suggest that nucleoprotein-phosphorylation is also involved in viral genomic RNA stability.
Collapse
|
22
|
Recombinant parainfluenza virus 5 expressing hemagglutinin of influenza A virus H5N1 protected mice against lethal highly pathogenic avian influenza virus H5N1 challenge. J Virol 2012; 87:354-62. [PMID: 23077314 DOI: 10.1128/jvi.02321-12] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
A safe and effective vaccine is the best way to prevent large-scale highly pathogenic avian influenza virus (HPAI) H5N1 outbreaks in the human population. The current FDA-approved H5N1 vaccine has serious limitations. A more efficacious H5N1 vaccine is urgently needed. Parainfluenza virus 5 (PIV5), a paramyxovirus, is not known to cause any illness in humans. PIV5 is an attractive vaccine vector. In our studies, a single dose of a live recombinant PIV5 expressing a hemagglutinin (HA) gene of H5N1 (rPIV5-H5) from the H5N1 subtype provided sterilizing immunity against lethal doses of HPAI H5N1 infection in mice. Furthermore, we have examined the effect of insertion of H5N1 HA at different locations within the PIV5 genome on the efficacy of a PIV5-based vaccine. Interestingly, insertion of H5N1 HA between the leader sequence, the de facto promoter of PIV5, and the first viral gene, nucleoprotein (NP), did not lead to a viable virus. Insertion of H5N1 HA between NP and the next gene, V/phosphorprotein (V/P), led to a virus that was defective in growth. We have found that insertion of H5N1 HA at the junction between the small hydrophobic (SH) gene and the hemagglutinin-neuraminidase (HN) gene gave the best immunity against HPAI H5N1 challenge: a dose as low as 1,000 PFU was sufficient to protect against lethal HPAI H5N1 challenge in mice. The work suggests that recombinant PIV5 expressing H5N1 HA has great potential as an HPAI H5N1 vaccine.
Collapse
|
23
|
Sugai A, Sato H, Yoneda M, Kai C. Phosphorylation of measles virus phosphoprotein at S86 and/or S151 downregulates viral transcriptional activity. FEBS Lett 2012; 586:3900-7. [PMID: 23022562 DOI: 10.1016/j.febslet.2012.09.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 09/10/2012] [Accepted: 09/15/2012] [Indexed: 01/14/2023]
Abstract
Measles virus phosphoprotein (P protein) is a cofactor of the viral RNA polymerase (L protein) that associates with the nucleoprotein-RNA complex to support viral transcription and replication. Here, we report a significant inverse correlation between the phosphorylation level of MV-P protein and viral transcriptional activity. Upregulation of P protein phosphorylation resulted in reduction of viral transcription. Additionally, we found that strong phosphorylation at S86 and S151 of P protein, which may be generally prevented by association with nucleoprotein, downregulates the viral transcriptional activity. These findings suggest that P protein is involved in regulation of viral transcription through changes in its phosphorylation status.
Collapse
Affiliation(s)
- Akihiro Sugai
- International Research Center for Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
| | | | | | | |
Collapse
|
24
|
Basler CF. Nipah and hendra virus interactions with the innate immune system. Curr Top Microbiol Immunol 2012; 359:123-52. [PMID: 22491899 DOI: 10.1007/82_2012_209] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Nipah virus and Hendra virus are related, highly pathogenic paramyxoviruses with unusually broad host ranges. Henipaviruses encode several proteins that block innate immune responses, and these are likely to serve as virulence factors. Specfically, four virus-encoded proteins, the phosphoprotein (P), the V protein, the W protein, and the C protein have each been demonstrated to counteract aspects of the interferon (IFN)-α/β response, a key component of the innate immune response to virus infection. The available data indicate that V and W can inhibit the production of IFNα/β in response to various stimuli, while the P, V, and W proteins also block the ability of IFNs to signal and induce an antiviral state in cells. The C protein also inhibits the antiviral effects of IFNα/β by a poorly characterized mechanism. Reverse genetics systems, which allow the generation of recombinant viruses bearing specific mutations, have demonstrated the importance of the viral IFN-antagonists for replication. With these systems in hand, the field is now poised to define how specific viral IFN-antagonist functions influence viral pathogenesis.
Collapse
Affiliation(s)
- Christopher F Basler
- Department of Microbiology, Mount Sinai School of Medicine, New York, NY 10029, USA.
| |
Collapse
|
25
|
Keating JA, Striker R. Phosphorylation events during viral infections provide potential therapeutic targets. Rev Med Virol 2011; 22:166-81. [PMID: 22113983 PMCID: PMC3334462 DOI: 10.1002/rmv.722] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Revised: 10/07/2011] [Accepted: 10/10/2011] [Indexed: 01/21/2023]
Abstract
For many medically relevant viruses, there is now considerable evidence that both viral and cellular kinases play important roles in viral infection. Ultimately, these kinases, and the cellular signaling pathways that they exploit, may serve as therapeutic targets for treating patients. Currently, small molecule inhibitors of kinases are under investigation as therapy for herpes viral infections. Additionally, a number of cellular or host-directed tyrosine kinase inhibitors that have been previously FDA approved for cancer treatment are under study in animal models and clinical trials, as they have shown promise for the treatment of various viral infections as well. This review will highlight the wide range of viral proteins phosphorylated by viral and cellular kinases, and the potential for variability of kinase recognition sites within viral substrates to impact phosphorylation and kinase prediction. Research studying kinase-targeting prophylactic and therapeutic treatments for a number of viral infections will also be discussed.
Collapse
Affiliation(s)
- Julie A Keating
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | |
Collapse
|
26
|
Abstract
Mumps virus (MuV) causes an acute infection in humans characterized by a wide array of symptoms ranging from relatively mild manifestations, such as parotitis, to more-severe complications, such as meningitis and encephalitis. Widespread mumps vaccination has reduced mumps incidence dramatically; however, outbreaks still occur in vaccinated populations. The V protein of MuV, when expressed in cell culture, blocks interferon (IFN) expression and signaling and interleukin-6 (IL-6) signaling. In this work, we generated a recombinant MuV incapable of expressing the V protein (rMuVΔV). The rescued MuV was derived from a clinical wild-type isolate from a recent outbreak in the United States (MuV(Iowa/US/06), G genotype). Analysis of the virus confirmed the roles of V protein in blocking IFN expression and signaling and IL-6 signaling. We also found that the rMuV(Iowa/US/06)ΔV virus induced high levels of IL-6 expression in vitro, suggesting that V plays a role in reducing IL-6 expression. In vivo, the rMuV(Iowa/US/06)ΔV virus was highly attenuated, indicating that the V protein plays an essential role in viral virulence.
Collapse
|
27
|
Gerlier D, Lyles DS. Interplay between innate immunity and negative-strand RNA viruses: towards a rational model. Microbiol Mol Biol Rev 2011; 75:468-90, second page of table of contents. [PMID: 21885681 PMCID: PMC3165544 DOI: 10.1128/mmbr.00007-11] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The discovery of a new class of cytosolic receptors recognizing viral RNA, called the RIG-like receptors (RLRs), has revolutionized our understanding of the interplay between viruses and host cells. A tremendous amount of work has been accumulating to decipher the RNA moieties required for an RLR agonist, the signal transduction pathway leading to activation of the innate immunity orchestrated by type I interferon (IFN), the cellular and viral regulators of this pathway, and the viral inhibitors of the innate immune response. Previous reviews have focused on the RLR signaling pathway and on the negative regulation of the interferon response by viral proteins. The focus of this review is to put this knowledge in the context of the virus replication cycle within a cell. Likewise, there has been an expansion of knowledge about the role of innate immunity in the pathophysiology of viral infection. As a consequence, some discrepancies have arisen between the current models of cell-intrinsic innate immunity and current knowledge of virus biology. This holds particularly true for the nonsegmented negative-strand viruses (Mononegavirales), which paradoxically have been largely used to build presently available models. The aim of this review is to bridge the gap between the virology and innate immunity to favor the rational building of a relevant model(s) describing the interplay between Mononegavirales and the innate immune system.
Collapse
Affiliation(s)
- Denis Gerlier
- INSERM U758, CERVI, 21 avenue Tony Garnier, 69007 Lyon, France.
| | | |
Collapse
|
28
|
Sumoylation of the P protein at K254 plays an important role in growth of parainfluenza virus 5. J Virol 2011; 85:10261-8. [PMID: 21795356 DOI: 10.1128/jvi.00389-11] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The P protein of parainfluenza virus 5 (PIV5) is an essential cofactor of the viral RNA-dependent RNA polymerase. Phosphorylation of the P protein can positively or negatively regulate viral gene expression, depending on the precise phosphorylation sites. Sumoylation, a process of adding small ubiquitin-like modifier (SUMO) to proteins posttranslationally, plays an important role in regulating protein function. In this study, we have found that the P protein of PIV5 was sumoylated with SUMO1 in both transfected and infected cells. The K254 residue of the P protein is within a consensus sumoylation motif. Mutation of the P protein at K254 to arginine (P-K254R) reduced PIV5 minigenome activity, as well as the sumoylation level of the P protein. Incorporation of K254R into a recombinant PIV5 (rPIV5-P-K254R) resulted in a virus that grew to a lower titer and had lower levels of viral RNA synthesis and protein expression than wild-type PIV5, suggesting that sumoylation of the P protein at K254 is important for PIV5 growth. Biochemical studies did not reveal any defect of P-K254R in its interactions with viral proteins NP and L or formation of homotetramers. We propose that sumoylation of the P protein at K254 regulates PIV5 gene expression through a host protein.
Collapse
|
29
|
Identification of a phosphorylation site within the P protein important for mRNA transcription and growth of parainfluenza virus 5. J Virol 2011; 85:8376-85. [PMID: 21680523 DOI: 10.1128/jvi.00618-11] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The viral RNA-dependent RNA polymerase (vRdRp) of paramyxovirus consists of the large (L) protein and the phosphoprotein (P). P is heavily phosphorylated, and it is thought that the phosphorylation of P plays a role in regulating viral RNA synthesis. However, no phosphorylation site within the P protein in paramyxovirus has been identified as playing a positive role in viral RNA synthesis in virus infection. Using mass spectrometry analysis, the threonine residue at position 286 of P of parainfluenza virus 5 (PIV5) was found phosphorylated. Mutation of T286 to alanine (T286A), aspartic acid (T286D), or glutamic acid (T286E) reduced minigenome activity. Recombinant virus containing a mutation at the T286 position (rPIV5-P-T286A) grew slower than wild-type virus; viral mRNA synthesis and protein expression of rPIV5-P-T286A were delayed. Biochemical studies showed that the binding of NP or L protein with the P mutants or tetramer formation by the mutant P proteins was unaltered from that for wild-type P. While we failed to rescue rPIV5-P-T286E virus, several revertant viruses were obtained. All non-wild-type revertants had mutations at T286 and showed defects in both minigenome activity and viral growth. This is the first time that a phosphorylation site within the P protein in paramyxovirus has been found to play a positive role in viral mRNA synthesis and virus growth.
Collapse
|
30
|
Schmitt PT, Ray G, Schmitt AP. The C-terminal end of parainfluenza virus 5 NP protein is important for virus-like particle production and M-NP protein interaction. J Virol 2010; 84:12810-23. [PMID: 20943976 PMCID: PMC3004301 DOI: 10.1128/jvi.01885-10] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2010] [Accepted: 10/03/2010] [Indexed: 11/20/2022] Open
Abstract
Enveloped virus particles are formed by budding from infected-cell membranes. For paramyxoviruses, viral matrix (M) proteins are key drivers of virus assembly and budding. However, other paramyxovirus proteins, including glycoproteins, nucleocapsid (NP or N) proteins, and C proteins, are also important for particle formation in some cases. To investigate the role of NP protein in parainfluenza virus 5 (PIV5) particle formation, NP protein truncation and substitution mutants were analyzed. Alterations near the C-terminal end of NP protein completely disrupted its virus-like particle (VLP) production function and significantly impaired M-NP protein interaction. Recombinant viruses with altered NP proteins were generated, and these viruses acquired second-site mutations. Recombinant viruses propagated in Vero cells acquired mutations that mainly affected components of the viral polymerase, while recombinant viruses propagated in MDBK cells acquired mutations that mainly affected the viral M protein. Two of the Vero-propagated viruses acquired the same mutation, V/P(S157F), found previously to be responsible for elevated viral gene expression induced by a well-characterized variant of PIV5, P/V-CPI(-). Vero-propagated viruses caused elevated viral protein synthesis and spread rapidly through infected monolayers by direct cell-cell fusion, bypassing the need to bud infectious virions. Both Vero- and MDBK-propagated viruses exhibited infectivity defects and altered polypeptide composition, consistent with poor incorporation of viral ribonucleoprotein complexes (RNPs) into budding virions. Second-site mutations affecting M protein restored interaction with altered NP proteins in some cases and improved VLP production. These results suggest that multiple avenues are available to paramyxoviruses for overcoming defects in M-NP protein interaction.
Collapse
Affiliation(s)
- Phuong Tieu Schmitt
- Department of Veterinary and Biomedical Sciences, Center for Molecular Immunology and Infectious Disease, the Pennsylvania State University, University Park, Pennsylvania 16802
| | - Greeshma Ray
- Department of Veterinary and Biomedical Sciences, Center for Molecular Immunology and Infectious Disease, the Pennsylvania State University, University Park, Pennsylvania 16802
| | - Anthony P. Schmitt
- Department of Veterinary and Biomedical Sciences, Center for Molecular Immunology and Infectious Disease, the Pennsylvania State University, University Park, Pennsylvania 16802
| |
Collapse
|
31
|
Fuentes SM, Sun D, Schmitt AP, He B. Phosphorylation of paramyxovirus phosphoprotein and its role in viral gene expression. Future Microbiol 2010; 5:9-13. [PMID: 20020826 DOI: 10.2217/fmb.09.93] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Paramyxoviruses include many important human and animal pathogens such as measles virus, mumps virus, human parainfluenza viruses, and respiratory syncytial virus, as well as emerging viruses such as Nipah virus and Hendra virus. The paramyxovirus RNA-dependent RNA polymerase consists of the phosphoprotein (P) and the large protein. Both of these proteins are essential for viral RNA synthesis. The P protein is phosphorylated at multiple sites, probably by more than one host kinase. While it is thought that the phosphorylation of P is important for its role in viral RNA synthesis, the precise role of P protein phosphorylation remains an enigma. For instance, it was demonstrated that the putative CKII phosphorylation sites of the P protein of respiratory syncytial virus play a role in viral RNA synthesis using a minigenome replicon system; however, mutating these putative CKII phosphorylation sites within a viral genome had no effect on viral RNA synthesis, leading to the hypothesis that P protein phosphorylation, at least by CKII, does not play a role in viral RNA synthesis. Recently, it has been reported that the phosphorylation state of the P protein of parainfluenza virus 5, a prototypical paramyxovirus, correlates with the ability of P protein to synthesize viral RNA, indicating that P protein phosphorylation does in fact play a role in viral RNA synthesis. Furthermore, host kinases PLK1, as well as AKT1 have been found to play critical roles in paramyxovirus RNA synthesis through regulation of P protein phosphorylation status. Beyond furthering our understanding of paramyxovirus RNA replication, these recent discoveries may also result in a new paradigm in treating infections caused by these viruses, as host kinases that regulate paramyxovirus replication are investigated as potential targets of therapeutic intervention.
Collapse
Affiliation(s)
- Sandra M Fuentes
- Department of Veterinary & Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA.
| | | | | | | |
Collapse
|
32
|
Shaw ML. Henipaviruses employ a multifaceted approach to evade the antiviral interferon response. Viruses 2009; 1:1190-203. [PMID: 21994589 PMCID: PMC3185527 DOI: 10.3390/v1031190] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2009] [Revised: 12/02/2009] [Accepted: 12/03/2009] [Indexed: 12/13/2022] Open
Abstract
Hendra and Nipah virus, which constitute the genus Henipavirus, are zoonotic paramyxoviruses that have been associated with sporadic outbreaks of severe disease and mortality in humans since their emergence in the late 1990s. Similar to other paramyxoviruses, their ability to evade the host interferon (IFN) response is conferred by the P gene. The henipavirus P gene encodes four proteins; the P, V, W and C proteins, which have all been described to inhibit the antiviral response. Further studies have revealed that these proteins have overlapping but unique properties which enable the virus to block multiple signaling pathways in the IFN response. The best characterized of these is the JAK-STAT signaling pathway which is targeted by the P, V and W proteins via an interaction with the transcription factor STAT1. In addition the V and W proteins can both limit virus-induced induction of IFN but they appear to do this via distinct mechanisms that rely on unique sequences in their C-terminal domains. The ability to generate recombinant Nipah viruses now gives us the opportunity to determine the precise role for each of these proteins and address their contribution to pathogenicity. Additionally, the question of whether these multiple anti-IFN strategies are all active in the different mammalian hosts for henipaviruses, particularly the fruit bat reservoir, warrants further exploration.
Collapse
Affiliation(s)
- Megan L Shaw
- Department of Microbiology, Mount Sinai School of Medicine, New York, NY 10029, USA; E-Mail: ; Tel.: +1-212-241-8931
| |
Collapse
|