1
|
Platt Ii RN, Enabulele EE, Adeyemi E, Agbugui MO, Ajakaye OG, Amaechi EC, Ejikeugwu CP, Igbeneghu C, Njom VS, Dlamini P, Arya GA, Diaz R, Rabone M, Allan F, Webster B, Emery A, Rollinson D, Anderson TJC. Genomic data reveal a north-south split and introgression history of blood fluke populations across Africa. Nat Commun 2025; 16:3508. [PMID: 40223094 PMCID: PMC11994774 DOI: 10.1038/s41467-025-58543-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 03/20/2025] [Indexed: 04/15/2025] Open
Abstract
The human parasitic fluke, Schistosoma haematobium hybridizes with the livestock parasite S. bovis in the laboratory, but the frequency of hybridization in nature is unclear. Here, we analyze 34.6 million single nucleotide variants in 162 samples from 18 African countries, revealing a sharp genetic discontinuity between northern and southern S. haematobium. We find no evidence for recent hybridization. Instead the data reveal admixture events that occurred 257-879 generations ago in northern S. haematobium populations. Fifteen introgressed S. bovis genes are approaching fixation in northern S. haematobium with four genes potentially driving adaptation. Further, we identify 19 regions that are resistant to introgression; these are enriched on the sex chromosomes. These results (i) suggest strong barriers to gene flow between these species, (ii) indicate that hybridization may be less common than currently envisaged, but (iii) reveal profound genomic consequences of rare interspecific hybridization between schistosomes of medical and veterinary importance.
Collapse
Affiliation(s)
- Roy N Platt Ii
- Texas Biomedical Research Institute, San Antonio, TX, USA.
| | | | - Ehizogie Adeyemi
- Department of Pathology, University of Benin Teaching Hospital, Edo State, Benin City, Nigeria
| | - Marian O Agbugui
- Department of Biological Sciences, Edo State University, Uzairue, Nigeria
| | - Oluwaremilekun G Ajakaye
- Department of Animal and Environmental Biology, Adekunle Ajasin University, Akungba Akoko, Nigeria
| | - Ebube C Amaechi
- Department of Zoology, University of Ilorin, Kwara State, Ilorin, Nigeria
| | - Chika P Ejikeugwu
- Department of Pharmaceutical Microbiology and Biotechnology, Enugu State University of Science and Technology, Enugu, Nigeria
| | - Christopher Igbeneghu
- Department of Medical Laboratory Science, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| | - Victor S Njom
- Department of Applied Biology and Biotechnology, Enugu State University of Science and Technology, Enugu, Nigeria
| | | | - Grace A Arya
- Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Robbie Diaz
- Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Muriel Rabone
- Science Department, Natural History Museum, London, UK
| | - Fiona Allan
- Science Department, Natural History Museum, London, UK
| | | | - Aidan Emery
- Science Department, Natural History Museum, London, UK
| | - David Rollinson
- Science Department, Natural History Museum, London, UK
- Global Schistosomiasis Alliance, London, UK
| | | |
Collapse
|
2
|
Mattiucci S, Palomba M, Belli B, Aco-Alburqueque R, Cipriani P, Roca-Gerones X, Santoro M, Webb SC, Nascetti G. Hybridization and introgression of the mitochondrial genome between the two species Anisakis pegreffii and A. simplex (s.s.) using a wide genotyping approach: evolutionary and ecological implications. Parasitology 2025:1-21. [PMID: 40181623 DOI: 10.1017/s0031182025000228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
Anisakis pegreffii and A. simplex (s.s.) are the two zoonotic anisakids infecting cetaceans as well as pelagic/demersal fish and squids. In European waters, A. pegreffii prevails in the Mediterranean Sea, while A. simplex (s.s.) in the NE Atlantic Ocean. Abiotic conditions likely play a significant role in shaping their geographical distribution. The Iberian Atlantic and Alboran Sea waters are sympatric areas of the two species. A total of 429 adults and L3 stage from both sympatric and allopatric areas were studied by a wide nuclear genotyping approach (including newly and previously found diagnostic single nucleotide polymorphisms (SNPs) at nuclear DNA (nDNA) and microsatellite DNA loci) and sequenced at mitochondrial DNA (mtDNA) cox2. Admixture between the two species was detected in the sympatric areas studied by STRUCTURE Bayesian analysis; NEWHYBRIDS revealed different categories of hybridization between the two species, representing approximately 5%. A tendency for F1 female hybrids to interbreed with the parental species at the geographical distribution limits of both species was observed. This finding suggests that hybridization occurs when the two parental species significantly differ in abundance. Mitochondrial introgression of A. simplex (s.s.) in A. pegreffii from Mediterranean waters was also detected, likely as a result of past and/or paleo-introgression events. The high level of genetic differentiation between the two species and their backcrosses indicates that, despite current hybridization, reproductive isolation which maintains evolutionary boundaries between the two species, exists. Possible causes of hybridization phenomena are attempted, as well as their evolutionary and ecological implications, also considering a sea warming scenario in European waters.
Collapse
Affiliation(s)
- Simonetta Mattiucci
- Department of Public Health and Infectious Diseases, Section of Parasitology, Sapienza University of Rome, Rome, Italy
| | - Marialetizia Palomba
- Department of Ecological and Biological Sciences (DEB), Tuscia University, Viterbo, Italy
| | - Beatrice Belli
- Department of Public Health and Infectious Diseases, Section of Parasitology, Sapienza University of Rome, Rome, Italy
| | - Renato Aco-Alburqueque
- Department of Public Health and Infectious Diseases, Section of Parasitology, Sapienza University of Rome, Rome, Italy
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Paolo Cipriani
- Department of Public Health and Infectious Diseases, Section of Parasitology, Sapienza University of Rome, Rome, Italy
- Institute of Marine Research (IMR), Nordnes, Bergen, Norway
| | - Xavier Roca-Gerones
- Secció de Parasitologia, Departament de Biologia, Sanitat i Medi Ambient, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Barcelona, Spain
| | - Mario Santoro
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Stephen C Webb
- Private Bag 2, Nelson 7042, Cawthron Institute, Nelson, New Zealand
| | - Giuseppe Nascetti
- Department of Ecological and Biological Sciences (DEB), Tuscia University, Viterbo, Italy
| |
Collapse
|
3
|
Mwinzi PN, Chimbari M, Sylla K, Odiere MR, Midzi N, Ruberanziza E, Mupoyi S, Mazigo HD, Coulibaly JT, Ekpo UF, Sacko M, Njenga SM, Tchuem-Tchuente LA, Gouvras AN, Rollinson D, Garba A, Juma EA. Priority knowledge gaps for schistosomiasis research and development in the World Health Organization Africa Region. Infect Dis Poverty 2025; 14:19. [PMID: 40098025 PMCID: PMC11912667 DOI: 10.1186/s40249-025-01285-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 02/12/2025] [Indexed: 03/19/2025] Open
Abstract
Schistosomiasis, also known as bilharzia, is a widespread neglected tropical disease (NTD) in Africa, with more significant research and development (R&D) challenges and gaps compared to other preventive chemotherapy NTDs (PC-NTDs) like onchocerciasis, lymphatic filariasis, and trachoma. In response to this challenge, some global initiatives have advocated for bridging this gap, focusing on coordinated engagement with research donors. In this opinion article we highlight key R&D priorities for combating schistosomiasis in the WHO Africa region. These include defining morbidity indicators, expanding prevention, and developing innovative diagnostics, treatments, and public health strategies like test-and-treat. We emphasize integrating efforts with broader health campaigns, assessing zoonotic transmission through One Health, and using environmental surveillance tools like xenomonitoring and eDNA. We stress the need to study climate and environmental impacts on transmission, zoonotic transmission, schistosome hybridization, and snail ecology, advancing snail control, and developing vaccines, while calling for new treatments beyond praziquantel, addressing drug resistance, and improving access for children and remote populations. Further, operational research should refine hotspot interventions, enhance water, sanitation and hygiene integration, and address socio-cultural barriers. Lastly, sustainable funding and global collaboration are vital to achieve 2030 NTD Roadmap goals.
Collapse
Affiliation(s)
- Pauline N Mwinzi
- Expanded Special Project for Elimination of NTDs, WHO Regional Office for Africa, Brazzaville, Republic of Congo.
| | - Moses Chimbari
- University of KwaZulu-Natal, College of Health Sciences, Durban, South Africa
| | | | - Maurice R Odiere
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
- African Research Network for Neglected Tropical Diseases, KCCR, KNUST, Kumasi, Ghana
| | - Nicholas Midzi
- National Institute of Health Research, Ministry of Health and Childcare, Harare, Zimbabwe
| | | | - Sylvian Mupoyi
- Department of Tropical Medicine, University of Kinshasa, Kinshasa, Democratic Republic of the Congo
- National Programme for the Fight Against Bilharzia and Intestinal Parasitoses, Kinshasa, Democratic Republic of Congo
| | - Humphrey D Mazigo
- Department of Medical Parasitology and Entomology, School of Medicine, Catholic University of Health and Allied Sciences, Mwanza, Tanzania
| | - Jean T Coulibaly
- Faculty of Biosciences, Félix Houphouët-Boigny University, Abidjan, Côte d'Ivoire
- Swiss Center for Scientific Research in Côte d'Ivoire, Abidjan, Côte d'Ivoire
| | - Uwem Friday Ekpo
- Department of Pure and Applied Zoology, Federal University of Agriculture Abeokuta, Abeokuta, Nigeria
- Department of Zoology, Akwa Ibom State University, Ikot Akpaden, Akwa Ibom State, Nigeria
| | - Moussa Sacko
- Department of Diagnostic and Biomedical Research, National Institute of Public Health Research, Bamako, Mali
| | - Sammy M Njenga
- Eastern and Southern Africa Centre of International Parasite Control, Kenya Medical Research Institute, Nairobi, Kenya
| | - Louis-Albert Tchuem-Tchuente
- Centre for Schistosomiasis and Parasitology, Yaoundé, Cameroon
- Laboratory of Parasitology and Ecology, Faculty of Sciences, University of Yaoundé I, Yaoundé, Cameroon
- National Programme for the Control of Schistosomiasis and Intestinal Helminthiasis, Ministry of Public Health, Yaoundé, Cameroon
| | | | | | - Amadou Garba
- Global NTD Programme, World Health Organization, Geneva, Switzerland
| | - Elizabeth A Juma
- Expanded Special Project for Elimination of NTDs, WHO Regional Office for Africa, Brazzaville, Republic of Congo
| |
Collapse
|
4
|
Saint F, Boissier J, Arnaud P, Totet A, Dinh A, Vallee M, Le Govic Y. Urinary schistosomiasis: The Corsican file. THE FRENCH JOURNAL OF UROLOGY 2025; 35:102799. [PMID: 39490902 DOI: 10.1016/j.fjurol.2024.102799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 10/11/2024] [Accepted: 10/22/2024] [Indexed: 11/05/2024]
Abstract
Schistosomiasis, known as bilharzia, is a parasitic disease caused by trematodes of the genus Schistosoma, found primarily in Africa and pockets of the Middle East. Southern Europe seems to be a breeding ground for urogenital schistosomiasis emergence. Ten and five years have passed since the first and the last cases of urogenital schistosomiasis were identified in Corsica (patients who have bathed in the Cavu and/or Solenzara rivers between 2013 and 2019). Through a literature review, the authors aimed to clarify the epidemiological, clinical and diagnostic particularities of urinary schistosomiasis acquired in Corsica. LEVEL OF EVIDENCE: 4.
Collapse
Affiliation(s)
- Fabien Saint
- Department of Urology and Transplantation, CHUAP, Amiens, France; PROAD, EA 4669, Picardie Jules-Verne University, Amiens, France; Infection Disease Committee of the French Association of Urology (CI-AFU), Paris, France.
| | - Jérôme Boissier
- Hosts Pathogens Environment Interactions, UMR 5244, CNRS, IFREMER, Perpignan University, Via Domitia, Perpignan, France
| | - Pierre Arnaud
- Infection Disease Committee of the French Association of Urology (CI-AFU), Paris, France; Department of Urology, Hôpital Privé du Sud de la Corse, Ajaccio, France
| | - Anne Totet
- Department of Parasitology and Mycology, CBH, CHUAP, Amiens, France; Agents Infectieux, Résistance et Chimiothérapie (AGIR), UR 4294, Picardie Jules-Verne University, Amiens, France
| | - Aurélien Dinh
- Infectious Disease Department, R.-Poincaré University Hospital, Versailles Saint-Quentin University, Garches, France; Infection Disease Committee of the French Association of Urology (CI-AFU), Paris, France
| | - Maxime Vallee
- Department of Urology and Kidney Transplantation, CHU, 2, rue de la Milétrie, Poitiers, France; Infection Disease Committee of the French Association of Urology (CI-AFU), Paris, France
| | - Yohann Le Govic
- Department of Parasitology and Mycology, CBH, CHUAP, Amiens, France; Agents Infectieux, Résistance et Chimiothérapie (AGIR), UR 4294, Picardie Jules-Verne University, Amiens, France
| |
Collapse
|
5
|
Platt RN, Enabulele EE, Adeyemi E, Agbugui MO, Ajakaye OG, Amaechi EC, Ejikeugwu CE, Igbeneghu C, Njom VS, Dlamini P, Arya GA, Diaz R, Rabone M, Allan F, Webster B, Emery A, Rollinson D, Anderson TJC. Genomic data reveal a north-south split and introgression history of blood fluke ( Schistosoma haematobium) populations from across Africa. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.06.606828. [PMID: 39149400 PMCID: PMC11326172 DOI: 10.1101/2024.08.06.606828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
The human parasitic fluke, Schistosoma haematobium hybridizes with the livestock parasite S. bovis in the laboratory, but the frequency of hybridization in nature is unclear. We analyzed 34.6 million single nucleotide variants in 162 samples from 18 African countries, revealing a sharp genetic discontinuity between northern and southern S. haematobium. We found no evidence for recent hybridization. Instead the data reveal admixture events that occurred 257-879 generations ago in northern S. haematobium populations. Fifteen introgressed S. bovis genes are approaching fixation in northern S. haematobium with four genes potentially driving adaptation. We identified 19 regions that were resistant to introgression; these were enriched on the sex chromosomes. These results (i) suggest strong barriers to gene flow between these species, (ii) indicate that hybridization may be less common than currently envisaged, but (iii) reveal profound genomic consequences of rare interspecific hybridization between schistosomes of medical and veterinary importance.
Collapse
Affiliation(s)
- Roy N Platt
- Texas Biomedical Research Institute, San Antonio TX, United States
| | - Egie E Enabulele
- Texas Biomedical Research Institute, San Antonio TX, United States
| | - Ehizogie Adeyemi
- Department of Pathology, University of Benin Teaching Hospital, Edo State, Nigeria
| | - Marian O Agbugui
- Department of Biological Sciences, Edo State University, Uzairue, Nigeria
| | | | - Ebube C Amaechi
- Department of Zoology, University of Ilorin, Kwara State, Nigeria
| | | | - Christopher Igbeneghu
- Department of Medical Laboratory Science, Ladoke Akintola University of Technology, Nigeria
| | - Victor S Njom
- Department of Applied Biology and Biotechnology, Enugu State University of Science and Technology, Nigeria
| | | | - Grace A Arya
- Texas Biomedical Research Institute, San Antonio TX, United States
| | - Robbie Diaz
- Texas Biomedical Research Institute, San Antonio TX, United States
| | - Muriel Rabone
- Science Department, Natural History Museum, London, United Kingdom
| | - Fiona Allan
- Science Department, Natural History Museum, London, United Kingdom
| | - Bonnie Webster
- Science Department, Natural History Museum, London, United Kingdom
| | - Aidan Emery
- Science Department, Natural History Museum, London, United Kingdom
| | - David Rollinson
- Science Department, Natural History Museum, London, United Kingdom
- Global Schistosomiasis Alliance, London, United Kingdom
| | | |
Collapse
|
6
|
Kincaid-Smith J, Savassi BSAE, Senghor B, Diagne C, Niang Y, Kane M, Tatard C, Brouat C, Granjon L. African schistosomes in small mammal communities: Perspectives from a spatio-temporal survey in the vicinity of Lake Guiers, Senegal. PLoS Negl Trop Dis 2024; 18:e0012721. [PMID: 39715271 PMCID: PMC11706494 DOI: 10.1371/journal.pntd.0012721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 01/07/2025] [Accepted: 11/25/2024] [Indexed: 12/25/2024] Open
Abstract
Schistosomiasis is a neglected tropical disease of public health significance. In view of its elimination as a public health problem by 2030, adopting a One Health approach is necessary, considering its multidimensional nature. Animal reservoirs, in particular, pose a significant threat to schistosomiasis control in Africa and beyond. In this study, we conducted a spatio-temporal survey of Schistosoma infections in small mammal communities and intermediate snail hosts in the vicinity of Lake Guiers in northern Senegal. Sampling campaigns were undertaken four times between April 2021 and August 2022 around eight villages. A total of 534 small mammals of four species, primarily Hubert's multimammate mice Mastomys huberti, were captured. Out of 498 individuals examined, only 18 rodents (17 M. huberti and 1 Arvicanthis niloticus) were infected with schistosomes. The infection rates in M. huberti varied over time (prevalence range: 2.4% to 9.3%, intensity range: 4 to 132), and space (prevalence range: 3.1% to 40%, intensity range: 2 to 110) and were higher in adult hosts captured during or just after the rainy season, a time when older individuals dominate in rodent populations. Using a multi-locus molecular approach (cox1 and ITS) on Schistosoma larvae (cercariae and miracidia) and adult worms, we identified Schistosoma mansoni as the most widespread species. We also detected Schistosoma bovis and Schistosoma haematobium in M. huberti from one locality (Temeye). Although no Schistosoma hybrids were found, the discovery of a male S. mansoni and a female S. bovis pair raises concerns about potential hybridization patterns that could occur in rodents. Finally, three snail species were found infected (25 Biomphalaria pfeifferi, 3 Bulinus truncatus and 1 Bulinus senegalensis) including with S. mansoni, S. bovis, S. haematobium and S. haematobium x S. bovis hybrids. Our findings highlight the spatial-temporal variations of Schistosoma infections in rodents and emphasize the need for fine-scale monitoring over time and space for effective One Health measures and ensuring the sustainability of schistosomiasis control efforts.
Collapse
Affiliation(s)
- Julien Kincaid-Smith
- CBGP, IRD, CIRAD, INRAE, Institut Agro, Université de Montpellier, Montpellier, France
| | - Boris Sègnito A. E. Savassi
- Centre de Recherche pour la lutte contre les Maladies Infectieuses Tropicales (CReMIT/TIDRC), Université d’Abomey-Calavi, Abomey-Calavi, Bénin
- IHPE, Univ Montpellier, CNRS, IFREMER, Univ Perpignan Via Domitia, Perpignan, France
| | - Bruno Senghor
- VITROME, Campus International IRD-UCAD de Hann, Dakar, Sénégal
| | - Christophe Diagne
- CBGP, IRD, CIRAD, INRAE, Institut Agro, Université de Montpellier, Montpellier, France
| | | | - Mamadou Kane
- CBGP-BIOPASS 2, IRD, Campus IRD-ISRA de Bel-Air, Dakar, Sénégal
| | - Caroline Tatard
- CBGP, IRD, CIRAD, INRAE, Institut Agro, Université de Montpellier, Montpellier, France
| | - Carine Brouat
- CBGP, IRD, CIRAD, INRAE, Institut Agro, Université de Montpellier, Montpellier, France
| | - Laurent Granjon
- CBGP, IRD, CIRAD, INRAE, Institut Agro, Université de Montpellier, Montpellier, France
| |
Collapse
|
7
|
Namirembe D, Huyse T, Wangalwa R, Tumusiime J, Tolo CU. Liver fluke and schistosome cross-infection risk between livestock and wild mammals in Western Uganda, a One Health approach. Int J Parasitol Parasites Wildl 2024; 25:101022. [PMID: 39687763 PMCID: PMC11648790 DOI: 10.1016/j.ijppaw.2024.101022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 11/17/2024] [Accepted: 11/17/2024] [Indexed: 12/18/2024]
Abstract
Trematodiases strongly reduce the welfare of humans and animals causing a great decline in health and productivity. Insufficient data on the extent of trematode infection in definitive hosts and associated risk factors remain a great threat to its control. A cross-sectional study was conducted to establish the; prevalence of liver flukes and schistosomes in livestock and wild mammals and the socio-ecological risk factors associated with their spread. Fresh dung samples were collected opportunistically (n = 865) and examined using formal ether sedimentation and microscopy for parasite eggs. Twelve abattoir visits were conducted to examine the livers of animals killed for mature flukes. Key informants (n = 110) including farmers, butchers, game rangers, and herders were interviewed to document the socio-ecological risk factors. In the abattoirs, 57.1%(CI 0.422-0.712) of cattle were infected with Fasciola flukes and not sheep and goats. Cattle dung had the highest prevalence (56% CI 0.518-0.604) of Fasciola eggs, followed by sheep (50%, CI 0.319-0.681) and goats (28.2%, CI 0.218-0.353). Among wild mammals, hippos' dung (66%; 95% CI 0.53-0.777) had the highest prevalence of Fasciola followed by warthogs (8%; 95% CI 0.002-0.385) and baboons (6.7%; CI 0.002-0.319). No Fasciola eggs were observed in elephant dung (n = 21) and monkeys (n = 2). Schistosoma bovis was found in cattle dung from Mpeefu (2.6%; 95% CI 0.007-0.066) and Ndaiga (4.3%; 95% CI 0.022-0.075) while S. mattheei in goats' (1.4%; 95% CI 0.00-0.075) and cattle (0.39%; 95% CI 0.00-0.021) dung samples from Ndaiga. Key informants had moderate knowledge of fasciolosis (62.7%), highest among butchers (89.7%), and lowest among herders (31.8%). Only veterinary officers knew about schistosomiasis in animals. Free-range grazing and unsafe water sources for livestock, shared with wild animals, were the risky practices by most farmers (66-100%). Fasciola was prevalent in livestock and wild mammals, while Schistosoma in cattle and goats.
Collapse
Affiliation(s)
- Daisy Namirembe
- Department of Biology, Mbarara University of Science and Technology, Uganda
| | - Tine Huyse
- Department of Biology, Royal Museum for Central Africa, Belgium
| | - Rapheal Wangalwa
- Department of Biology, Mbarara University of Science and Technology, Uganda
| | - Julius Tumusiime
- Department of Biology, Mbarara University of Science and Technology, Uganda
| | - Casim Umba Tolo
- Department of Biology, Mbarara University of Science and Technology, Uganda
| |
Collapse
|
8
|
Juhász A, Makaula P, Cunningham LJ, Field L, Jones S, Archer J, Mainga B, Lally D, Namacha G, Kapira D, Chammudzi P, LaCourse EJ, Nkolokosa C, Seto E, Kayuni SA, Musaya J, Stothard JR. Revealing caprine schistosomiasis and its One Health importance in Malawi: A molecular epidemiological investigation augmented with a praziquantel treatment and GPS animal tracking pilot sub-study. One Health 2024; 19:100918. [PMID: 39507305 PMCID: PMC11539161 DOI: 10.1016/j.onehlt.2024.100918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/14/2024] [Accepted: 10/14/2024] [Indexed: 11/08/2024] Open
Abstract
To shed first light on caprine schistosomiasis and its zoonotic potential in Malawi, we conducted a molecular epidemiological investigation, sampling goats (n = 230) across three districts, using faecal miracidia hatching test. Molecular genotyping of miracidia later revealed the prevalence of Schistosoma mattheei to be 0.0 % in Nsanje District (n = 30), 16.7 % in Chikwawa District (n = 30) and 25.3 % in Mangochi District (n = 170). Notably, a miracidium of Schistosoma haematobium was observed from a single goat in Chikwawa. Inspection of carcasses (n = 51) at two local abattoirs in Mangochi District did not find any evidence of caprine schistosomiasis where only a single herd, at Mangochi 3, was infected. Here, despite sampling several other herds nearby, the prevalence was 87.7 % (n = 49), with an animal found excreting 1000 miracidia per 5 g of faeces. At this location, our praziquantel treatment (n = 14) and GPS animal tracking (n = 2) pilot sub-study compared two local goat herds over a three-month period. The daily foraging ranges across a 10 km2 area were recorded, alongside targeted schistosome surveillance within local freshwater intermediate snail hosts. Analysis of GPS data revealed only one herd (infected) to have regular daily water contact with Lake Malawi whereas the other herd (not infected) totally avoided the lake. One week after praziquantel treatment administered at 40 mg/kg, anthelminthic cure rate was 92.3 % while at three months approximately a third of treated animals were shedding schistosome miracidia. Cercariae from several field-caught snails locally were genotyped, inclusive of finding a Schistosoma haematobium-mattheei hybrid. Our findings reveal the focalized nature of caprine schistosomiasis, signposting a novel alert for S. haematobium transmission, and highlight where zoonotic transmission can be intense. To better address zoonotic spill-over from S. mattheei (and/or S. haematobium), the national control programme for schistosomiasis should formally develop targeted surveillance of caprine schistosomiasis and where appropriate, attempt an integrated One Health intervention in future.
Collapse
Affiliation(s)
- Alexandra Juhász
- Liverpool School of Tropical Medicine, Liverpool, UK
- Semmelweis University, Budapest, Hungary
| | - Peter Makaula
- Malawi Liverpool Wellcome Research Programme, Blantyre, Malawi
- Kamuzu University of Health Sciences, Blantyre, Malawi
| | | | - Lewis Field
- Liverpool School of Tropical Medicine, Liverpool, UK
| | - Sam Jones
- Liverpool School of Tropical Medicine, Liverpool, UK
| | - John Archer
- Liverpool School of Tropical Medicine, Liverpool, UK
| | - Bright Mainga
- Malawi Liverpool Wellcome Research Programme, Blantyre, Malawi
- Kamuzu University of Health Sciences, Blantyre, Malawi
| | - David Lally
- Malawi Liverpool Wellcome Research Programme, Blantyre, Malawi
| | - Gladys Namacha
- Malawi Liverpool Wellcome Research Programme, Blantyre, Malawi
| | - Donales Kapira
- Malawi Liverpool Wellcome Research Programme, Blantyre, Malawi
| | | | | | | | | | - Sekeleghe A. Kayuni
- Liverpool School of Tropical Medicine, Liverpool, UK
- Malawi Liverpool Wellcome Research Programme, Blantyre, Malawi
| | - Janelisa Musaya
- Malawi Liverpool Wellcome Research Programme, Blantyre, Malawi
- Kamuzu University of Health Sciences, Blantyre, Malawi
| | | |
Collapse
|
9
|
Juhász A, Makaula P, Cunningham LJ, Jones S, Archer J, Lally D, Namacha G, Kapira D, Chammudzi P, LaCourse EJ, Seto E, Kayuni SA, Musaya J, Stothard JR. Revealing bovine schistosomiasis in Malawi: Connecting human and hybrid schistosomes within cattle. One Health 2024; 19:100761. [PMID: 39021560 PMCID: PMC11253675 DOI: 10.1016/j.onehlt.2024.100761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 05/22/2024] [Indexed: 07/20/2024] Open
Abstract
In Malawi, the putative origin of a newly described Schistosoma haematobium-mattheei hybrid human schistosome was assessed upon a seminal molecular parasitological survey of cattle. Using miracidia hatch test (MHT) and carcass inspection at slaughter, mean prevalence of bovine schistosomiasis was 49.1% (95% CI: 43.7-54.6%) and 10.3% (95% CI: 6.0-16.2%) respectively, though significant spatial heterogeneity was noted. Approximately 2.0% of infected cattle, and only those from Mangochi District, shed S. haematobium-mattheei and/or S. haematobium in faeces. To quantify schistosome (re)infection dynamics, where a S. haematobium-mattheei hybrid was present, we undertook a novel pilot GPS-datalogging sub-study within a specific herd of cattle (n = 8) on the Lake Malawi shoreline, alongside a praziquantel (40 mg/kg) treatment efficacy spot check. At sub-study baseline, all GPS-tagged cattle had proven daily water contact with the lake. Each animal was patently infected upon MHT, with older animals shedding less miracidia. At one month review, whilst parasitological cure was 100.0%, from six weeks onwards, (re)infection was first noted in the youngest animal. By three-month review, all animals were patently (re)infected though only miracidia of S. mattheei were recovered, albeit in much lower numbers. To conclude, infection with S. mattheei is particularly common in cattle and demonstrates a previously cryptic burden of bovine schistosomiasis. Within Mangochi District, bovine transmission of both S. haematobium-mattheei hybrids and S. haematobium are now incriminated, with unequivocal evidence of contemporary zoonotic spill-over. Future control of urogenital schistosomiasis here in the southern region needs to develop, then successfully integrate, a One Health approach with appropriate mitigating strategies to reduce and/or contain bovine schistosomiasis transmission.
Collapse
Affiliation(s)
- Alexandra Juhász
- Liverpool School of Tropical Medicine, Liverpool, UK
- Semmelweis University, Budapest, Hungary
| | - Peter Makaula
- Malawi Liverpool Wellcome Research Programme, Blantyre, Malawi
- Kamuzu University of Health Sciences, Blantyre, Malawi
| | | | - Sam Jones
- Liverpool School of Tropical Medicine, Liverpool, UK
| | - John Archer
- Liverpool School of Tropical Medicine, Liverpool, UK
| | - David Lally
- Malawi Liverpool Wellcome Research Programme, Blantyre, Malawi
| | - Gladys Namacha
- Malawi Liverpool Wellcome Research Programme, Blantyre, Malawi
| | - Donales Kapira
- Malawi Liverpool Wellcome Research Programme, Blantyre, Malawi
| | | | | | | | - Sekeleghe A. Kayuni
- Malawi Liverpool Wellcome Research Programme, Blantyre, Malawi
- Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Janelisa Musaya
- Malawi Liverpool Wellcome Research Programme, Blantyre, Malawi
- Kamuzu University of Health Sciences, Blantyre, Malawi
| | | |
Collapse
|
10
|
Diakité A, Agniwo P, Dabo A, Sidibé B, Savassi BA, Akplogan A, Guindo H, Dembélé L, Ibikounlé M, Niaré SD, Tembely S, Boissier J. Population genetic structure of Schistosoma bovis and S. curassoni collected from cattle in Mali. Parasite 2024; 31:36. [PMID: 38953782 PMCID: PMC11218738 DOI: 10.1051/parasite/2024035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 06/07/2024] [Indexed: 07/04/2024] Open
Abstract
Schistosomiasis is of medical and veterinary importance. Despite the critical situation of schistosomiasis in sub-Saharan Africa, few molecular epidemiological studies have been carried out to determine the role of animals in its transmission. In Mali, it has been over three decades since the last molecular study of animal schistosomes was carried out. It is now urgent to identify circulating strains of the parasite because of potential interactions with other schistosome species, which could complicate disease control. The aim of our work was to study the composition and genetic structure of schistosome populations collected from cattle. The prevalence of schistosome was 23.9%, with the prevalences of Schistosoma bovis (Sb) and S. curassoni (Sc) estimated at 12.6% and 9.8%, respectively. No hybrid strains or S. haematobium were found. The parasites displayed distinct geographical distribution with Sb dominant in Bamako (78.8% and 98% in Central Bamako Slaughterhouse and Sabalibougou Slaughterhouses, respectively) and Sc dominant in Kayes (95.3%). Of the 476 parasites with a complete genetic profile, 60.4% were pure Sc, and were mainly from Kayes. We identified two clusters at the site level (Fst of 0.057 and 0.042 for Sb and Sc, respectively). Cluster 1 was predominantly composed of pure Sb parasites and cluster 2 was mainly composed of pure Sc parasites, from Bamako and Kayes, respectively. Our study shows that cattle schistosomiasis remains endemic in Mali with S. bovis and S. curassoni. A robust genetic structure between the different schistosome populations was identified, which included two clusters based on the geographical distribution of the parasites.
Collapse
Affiliation(s)
- Assitan Diakité
- Department of Epidemiology of Infectious Diseases, Faculty of Pharmacy, Malaria Research and Training Center (MRTC), University of Sciences, Techniques and Technologies of Bamako, Environnement, Santé, Sociétés (USTTB/UCAD/UGB/CNRST/CNRS) BP 1805, IRL3189 Bamako Mali
| | - Privat Agniwo
- Department of Epidemiology of Infectious Diseases, Faculty of Pharmacy, Malaria Research and Training Center (MRTC), University of Sciences, Techniques and Technologies of Bamako, Environnement, Santé, Sociétés (USTTB/UCAD/UGB/CNRST/CNRS) BP 1805, IRL3189 Bamako Mali
- Interactions Hôtes-Pathogènes-Environnements (IHPE), Univ. Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia 58 Avenue Paul Alduy Bâtiment R 66860 Perpignan France
- Centre de Recherche pour la lutte contre les Maladies Infectieuses Tropicales (CReMIT/TIDRC), Université d’Abomey-Calavi 01 BP 526 Abomey-Calavi Bénin
| | - Abdoulaye Dabo
- Department of Epidemiology of Infectious Diseases, Faculty of Pharmacy, Malaria Research and Training Center (MRTC), University of Sciences, Techniques and Technologies of Bamako, Environnement, Santé, Sociétés (USTTB/UCAD/UGB/CNRST/CNRS) BP 1805, IRL3189 Bamako Mali
| | - Bakary Sidibé
- Department of Epidemiology of Infectious Diseases, Faculty of Pharmacy, Malaria Research and Training Center (MRTC), University of Sciences, Techniques and Technologies of Bamako, Environnement, Santé, Sociétés (USTTB/UCAD/UGB/CNRST/CNRS) BP 1805, IRL3189 Bamako Mali
| | - Boris A.E.S. Savassi
- Interactions Hôtes-Pathogènes-Environnements (IHPE), Univ. Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia 58 Avenue Paul Alduy Bâtiment R 66860 Perpignan France
- Centre de Recherche pour la lutte contre les Maladies Infectieuses Tropicales (CReMIT/TIDRC), Université d’Abomey-Calavi 01 BP 526 Abomey-Calavi Bénin
| | - Ahristode Akplogan
- Department of Epidemiology of Infectious Diseases, Faculty of Pharmacy, Malaria Research and Training Center (MRTC), University of Sciences, Techniques and Technologies of Bamako, Environnement, Santé, Sociétés (USTTB/UCAD/UGB/CNRST/CNRS) BP 1805, IRL3189 Bamako Mali
| | - Hassim Guindo
- Department of Epidemiology of Infectious Diseases, Faculty of Pharmacy, Malaria Research and Training Center (MRTC), University of Sciences, Techniques and Technologies of Bamako, Environnement, Santé, Sociétés (USTTB/UCAD/UGB/CNRST/CNRS) BP 1805, IRL3189 Bamako Mali
| | - Laurent Dembélé
- Department of Epidemiology of Infectious Diseases, Faculty of Pharmacy, Malaria Research and Training Center (MRTC), University of Sciences, Techniques and Technologies of Bamako, Environnement, Santé, Sociétés (USTTB/UCAD/UGB/CNRST/CNRS) BP 1805, IRL3189 Bamako Mali
| | - Moudachirou Ibikounlé
- Centre de Recherche pour la lutte contre les Maladies Infectieuses Tropicales (CReMIT/TIDRC), Université d’Abomey-Calavi 01 BP 526 Abomey-Calavi Bénin
| | - Safiatou Doumbo Niaré
- Interactions Hôtes-Pathogènes-Environnements (IHPE), Univ. Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia 58 Avenue Paul Alduy Bâtiment R 66860 Perpignan France
| | - Saidou Tembely
- Académie des Sciences du Mali, Baco-Djicoroni ACI Ouest Rue 619 Porte, 104 Bamako Mali
| | - Jérôme Boissier
- Interactions Hôtes-Pathogènes-Environnements (IHPE), Univ. Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia 58 Avenue Paul Alduy Bâtiment R 66860 Perpignan France
| |
Collapse
|
11
|
Mathieu-Bégné E, Kincaid-Smith J, Chaparro C, Allienne JF, Rey O, Boissier J, Toulza E. Schistosoma haematobium and Schistosoma bovis first generation hybrids undergo gene expressions changes consistent with species compatibility and heterosis. PLoS Negl Trop Dis 2024; 18:e0012267. [PMID: 38954732 PMCID: PMC11249247 DOI: 10.1371/journal.pntd.0012267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/15/2024] [Accepted: 06/03/2024] [Indexed: 07/04/2024] Open
Abstract
When two species hybridize, the two parental genomes are brought together and some alleles might interact for the first time. To date, the extent of the transcriptomic changes in first hybrid generations, along with their functional outcome constitute an important knowledge gap, especially in parasite species. Here we explored the molecular and functional outcomes of hybridization in first-generation hybrids between the blood fluke parasites Schistosoma haematobium and S. bovis. Through a transcriptomic approach, we measured gene expression in both parental species and hybrids. We described and quantified expression profiles encountered in hybrids along with the main biological processes impacted. Up to 7,100 genes fell into a particular hybrid expression profile (intermediate between the parental expression levels, over-expressed, under-expressed, or expressed like one of the parental lines). Most of these genes were different depending on the direction of the parental cross (S. bovis mother and S. haematobium father or the reverse) and depending on the sex. For a given sex and cross direction, the vast majority of genes were hence unassigned to a hybrid expression profile: either they were differentially expressed genes but not typical of any hybrid expression profiles or they were not differentially expressed neither between hybrids and parental lines nor between parental lines. The most prevalent profile of gene expression in hybrids was the intermediate one (24% of investigated genes). These results suggest that transcriptomic compatibility between S. haematobium and S. bovis remains quite high. We also found support for an over-dominance model (over- and under-expressed genes in hybrids compared to parental lines) potentially associated with heterosis. In females in particular, processes such as reproductive processes, metabolism and cell interactions as well as signaling pathways were indeed affected. Our study hence provides new insight on the biology of Schistosoma hybrids with evidences supporting compatibility and heterosis.
Collapse
Affiliation(s)
| | - Julien Kincaid-Smith
- IHPE, Université de Montpellier, CNRS, Ifremer, Université Perpignan Via Domitia, Perpignan, France
- CBGP, IRD, CIRAD, INRAE, Institut Agro, Université de Montpellier, Montpellier, France
| | - Cristian Chaparro
- IHPE, Université de Montpellier, CNRS, Ifremer, Université Perpignan Via Domitia, Perpignan, France
| | - Jean-François Allienne
- IHPE, Université de Montpellier, CNRS, Ifremer, Université Perpignan Via Domitia, Perpignan, France
| | - Olivier Rey
- IHPE, Université de Montpellier, CNRS, Ifremer, Université Perpignan Via Domitia, Perpignan, France
| | - Jérôme Boissier
- IHPE, Université de Montpellier, CNRS, Ifremer, Université Perpignan Via Domitia, Perpignan, France
| | - Eve Toulza
- IHPE, Université de Montpellier, CNRS, Ifremer, Université Perpignan Via Domitia, Perpignan, France
| |
Collapse
|
12
|
Mudavanhu A, Schols R, Goossens E, Nhiwatiwa T, Manyangadze T, Brendonck L, Huyse T. One Health monitoring reveals invasive freshwater snail species, new records, and undescribed parasite diversity in Zimbabwe. Parasit Vectors 2024; 17:234. [PMID: 38773521 PMCID: PMC11110352 DOI: 10.1186/s13071-024-06307-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/25/2024] [Indexed: 05/24/2024] Open
Abstract
BACKGROUND Snail-borne trematodes afflict humans, livestock, and wildlife. Recognizing their zoonotic potential and possible hybridization, a One Health approach is essential for effective control. Given the dearth of knowledge on African trematodes, this study aimed to map snail and trematode diversity, focusing on (i) characterizing gastropod snail species and their trematode parasites, (ii) determining infection rates of snail species as intermediate hosts for medically, veterinary, and ecologically significant trematodes, and (iii) comparing their diversity across endemic regions. METHODS A cross-sectional study conducted in 2021 in Chiredzi and Wedza districts in Zimbabwe, known for high human schistosomiasis prevalence, involved malacological surveys at 56 sites. Trematode infections in snails were detected through shedding experiments and multiplex rapid diagnostic polymerase chain reactions (RD-PCRs). Morphological and molecular analyses were employed to identify snail and trematode species. RESULTS Among 3209 collected snail specimens, 11 species were identified, including schistosome and fasciolid competent snail species. We report for the first time the invasive exotic snail Tarebia granifera in Zimbabwe, which was highly abundant, mainly in Chiredzi, occurring at 29 out of 35 sites. Shedding experiments on 1303 snails revealed a 2.24% infection rate, with 15 trematode species identified through molecular genotyping. Five species were exclusive to Chiredzi: Bolbophorus sp., Schistosoma mansoni, Schistosoma mattheei, Calicophoron sp., and Uvulifer sp. Eight were exclusive to Wedza, including Trichobilharzia sp., Stephanoprora amurensis, Spirorchid sp., and Echinostoma sp. as well as an unidentified species of the Plagiorchioidea superfamily. One species, Tylodelphys mashonensis, was common to both regions. The RD-PCR screening of 976 non-shedding snails indicated a 35.7% trematode infection rate, including the presence of schistosomes (1.1%) Fasciola nyanzae (0.6%). In Chiredzi, Radix natalensis had the highest trematode infection prevalence (33.3%), while in Wedza, R. natalensis (55.4%) and Bulinus tropicus (53.2%) had the highest infection prevalence. CONCLUSIONS Our xenomonitoring approach unveiled 15 trematode species, including nine new records in Zimbabwe. Schistosoma mansoni persists in the study region despite six mass deworming rounds. The high snail and parasite diversity, including the presence of exotic snail species that can impact endemic species and biomedically important trematodes, underscores the need for increased monitoring.
Collapse
Affiliation(s)
- Aspire Mudavanhu
- Department of Biological Sciences, Bindura University of Science Education, Bindura, Zimbabwe.
- Laboratory of Animal Ecology, Global Change and Sustainable Development, KU Leuven, Leuven, Belgium.
| | - Ruben Schols
- Department of Biology, Royal Museum for Central Africa, Tervuren, Belgium
- Laboratory of Aquatic Biology, KU Leuven Kulak, Kortrijk, Belgium
| | - Emilie Goossens
- Laboratory of Animal Ecology, Global Change and Sustainable Development, KU Leuven, Leuven, Belgium
| | - Tamuka Nhiwatiwa
- Department of Fisheries and Ocean Sciences, School of Agriculture and Fisheries, University of Namibia, Henties Bay, Namibia
| | - Tawanda Manyangadze
- Department of Geosciences, School of Geosciences, Disaster and Development, Faculty of Science and Engineering, Bindura University of Science Education, Bindura, Zimbabwe
- Discipline of Public Health Medicine, College of Health Sciences, University of KwaZulu-Natal, Durban, 4000, South Africa
| | - Luc Brendonck
- Laboratory of Animal Ecology, Global Change and Sustainable Development, KU Leuven, Leuven, Belgium
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - Tine Huyse
- Department of Biology, Royal Museum for Central Africa, Tervuren, Belgium
| |
Collapse
|
13
|
Ajakaye OG, Enabulele EE, Balogun JB, Oyeyemi OT, Grigg ME. Extant interspecific hybridization among trematodes within the Schistosoma haematobium species complex in Nigeria. PLoS Negl Trop Dis 2024; 18:e0011472. [PMID: 38620029 PMCID: PMC11045100 DOI: 10.1371/journal.pntd.0011472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 04/25/2024] [Accepted: 03/22/2024] [Indexed: 04/17/2024] Open
Abstract
BACKGROUND Natural interspecific hybridization between the human parasite (Schistosoma haematobium [Sh]) and bovine parasites (Schistosoma bovis [Sb], Schistosoma curassoni [Sc]) is increasingly reported in Africa. We developed a multi-locus PCR DNA-Seq strategy that amplifies two unlinked nuclear (transITS, BF) and two linked organellar genome markers (CO1, ND5) to genotype S. haematobium eggs collected from infected people in Ile Oluji/Oke Igbo, Ondo State (an agrarian community) and Kachi, Jigawa State (a pastoral community) in Southwestern and Northern Nigeria, respectively. PRINCIPAL FINDINGS Out of a total of 219 urine samples collected, 57 were positive for schistosomes. All patients from Jigawa state possessed an Sh mitochondrial genome and were infected with a genetic profile consistent with an Sh x Sb hybrid based on sequences obtained at CO1, ND5, transITS and BF nuclear markers. Whereas samples collected from Ondo state were more varied. Mitonuclear discordance was observed in all 17 patients, worms possessed an Sb mitochondrial genome but one of four different genetic profiles at the nuclear markers, either admixed (heterozygous between Sh x Sc or Sh x Sb) at both markers (n = 10), Sh at BF and admixed at transITS (Sh x Sc) (n = 5), admixed (Sh x Sc) at BF and homozygous Sc at transITS (n = 1) or homozygous Sh at BF and homozygous Sc at transITS (n = 1). SIGNIFICANCE Previous work suggested that zoonotic transmission of S. bovis in pastoral communities, where humans and animals share a common water source, is a driving factor facilitating interspecific hybridization. However, our data showed that all samples were hybrids, with greater diversity identified in Southwestern Nigeria, a non-pastoral site. Further, one patient possessed an S. bovis mitochondrial genome but was homozygous for S. haematobium at BF and homozygous for S. curassoni at transITS supporting at least two separate backcrosses in its origin, suggesting that interspecific hybridization may be an ongoing process.
Collapse
Affiliation(s)
- Oluwaremilekun G. Ajakaye
- Molecular Parasitology Section, Laboratory of Parasitic Diseases, NIAID, National Institutes of Health, Bethesda Maryland, United States of America
- Department of Animal and Environmental Biology, Adekunle Ajasin University, Akungba Akoko, Nigeria
| | - Elisha E. Enabulele
- Disease Intervention and Prevention Program, Biomedical Research Institute, San Antonio, Texas, United States of America
| | - Joshua B. Balogun
- Department of Biological Sciences Federal University, Dutse, Nigeria
| | - Oyetunde T. Oyeyemi
- Department of Biosciences and Biotechnology, University of Medical Sciences, Ondo, Nigeria
| | - Michael E. Grigg
- Molecular Parasitology Section, Laboratory of Parasitic Diseases, NIAID, National Institutes of Health, Bethesda Maryland, United States of America
| |
Collapse
|
14
|
Giovanoli Evack J, Kouadio JN, Achi LY, Bonfoh B, N'Goran EK, Zinsstag J, Utzinger J, Balmer O. Genetic characterization of schistosome species from cattle in Côte d'Ivoire. Parasit Vectors 2024; 17:122. [PMID: 38475876 DOI: 10.1186/s13071-024-06221-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 02/28/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND Schistosomiasis is a water-based parasitic disease that affects humans, livestock and wild animals. While considerable resources are dedicated to the surveillance, disease mapping, control and elimination of human schistosomiasis, this is not the case for livestock schistosomiasis. Indeed, there are important data and knowledge gaps concerning the species present, population genetic diversity, infection prevalence, morbidity and economic impact. This study aimed to identify circulating schistosome species in cattle across Côte d'Ivoire and to investigate their population diversity and structuring. METHODS Overall, 400 adult schistosomes were collected from slaughtered cattle at six sites across Côte d'Ivoire. Additionally, 114 miracidia were collected from live cattle at one site: Ferkessédougou, in the northern part of Côte d'Ivoire. DNA from all specimens was extracted and the cox1 and ITS1/2 regions amplified and analysed to confirm species. The genetic diversity and structuring of the schistosome populations were investigated using 12 microsatellite markers. RESULTS All adult schistosomes and miracidia presented Schistosoma bovis mitochondrial cox1 profile. Nuclear ITS1/2 data were obtained from 101 adult schistosomes and four miracidia, all of which presented an S. bovis profile. Genetic diversity indices revealed a deficiency of heterozygotes and signals of inbreeding across all sites, while structure analyses displayed little geographic structuring and differentiation. Cattle in Côte d'Ivoire thus appear to be mono-species infected with S. bovis. Hybrids of Schistosoma haematobium × S. bovis have not been identified in this study. Cattle schistosomes appear to be panmictic across the country. CONCLUSIONS Our results contribute to a deeper understanding of schistosome populations in Ivorian cattle and emphasize a One Health approach of joint human and animal surveillance and prevention and control programmes for schistosomiasis.
Collapse
Affiliation(s)
- Jennifer Giovanoli Evack
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland.
- University of Basel, Basel, Switzerland.
- Epidemiology, Biostatistics and Prevention Institute, University of Zurich, Zurich, Switzerland.
| | - Jules N Kouadio
- Unité de Formation et de Recherche Biosciences, Université Félix Houphouët-Boigny, Abidjan, Côte d'Ivoire
- Centre Suisse de Recherches Scientifiques en Côte d'Ivoire, Abidjan, Côte d'Ivoire
| | - Louise Y Achi
- Unité de Formation et de Recherche Biosciences, Université Félix Houphouët-Boigny, Abidjan, Côte d'Ivoire
- Centre Suisse de Recherches Scientifiques en Côte d'Ivoire, Abidjan, Côte d'Ivoire
- École de Spécialisation en Elevage et Métiers de la Viande de Bingerville, Abidjan, Côte d'Ivoire
| | - Bassirou Bonfoh
- Centre Suisse de Recherches Scientifiques en Côte d'Ivoire, Abidjan, Côte d'Ivoire
| | - Eliézer K N'Goran
- Unité de Formation et de Recherche Biosciences, Université Félix Houphouët-Boigny, Abidjan, Côte d'Ivoire
- Centre Suisse de Recherches Scientifiques en Côte d'Ivoire, Abidjan, Côte d'Ivoire
| | - Jakob Zinsstag
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Jürg Utzinger
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Oliver Balmer
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| |
Collapse
|
15
|
Kołodziej P, Szostakowska B, Lass A, Sulima M, Sikorska K, Kocki J, Krupski W, Starownik D, Bojar P, Szumiło J, Kasztelan-Szczerbińska B, Cichoż-Lach H, Bogucki J, Szymańska M, Fota-Markowska H, Bogucka-Kocka A. Chronic intestinal schistosomiasis caused by co-infection with Schistosoma intercalatum and Schistosoma mansoni. THE LANCET. INFECTIOUS DISEASES 2024; 24:e196-e205. [PMID: 37783223 DOI: 10.1016/s1473-3099(23)00486-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/23/2023] [Accepted: 07/19/2023] [Indexed: 10/04/2023]
Abstract
The Grand Round concerns a 24-year-old man from Zimbabwe who was studying and living in Poland. The patient had been complaining of abdominal pain, fatigue, alternating diarrhoea and constipation, and presence of blood in his stool for 3 years. The patient had the following diagnostic tests: colonoscopy, CT scan, histopathology, and parasitological and molecular tests. Results of the examinations showed that the cause of the patient's complaints was chronic intestinal schistosomiasis due to the co-infection with Schistosoma intercalatum and Schistosoma mansoni. The patient had two cycles of praziquantel therapy (Biltricide) and responded well to the treatment. In the Grand Round, we describe full diagnostics as well as clinical and therapeutic management in the patient with S intercalatum and S mansoni co-infection. This case allows us to draw attention to cases of forgotten chronic tropical diseases (including rare ones) in patients from regions with a high endemic index staying in non-endemic regions of the world for a long time. Co-infection with S intercalatum and S mansoni should be considered as a very rare clinical case.
Collapse
Affiliation(s)
- Przemysław Kołodziej
- Department of Biology and Genetics, Medical University of Lublin, Lublin, Poland.
| | - Beata Szostakowska
- Department of Tropical Parasitology, Medical University of Gdańsk, Gdańsk, Poland.
| | - Anna Lass
- Department of Tropical Parasitology, Medical University of Gdańsk, Gdańsk, Poland
| | - Małgorzata Sulima
- Division of Tropical and Parasitic Diseases, Medical University of Gdańsk, Gdańsk, Poland
| | - Katarzyna Sikorska
- Division of Tropical and Parasitic Diseases, Medical University of Gdańsk, Gdańsk, Poland
| | - Janusz Kocki
- Department of Clinical Genetics, Medical University of Lublin, Lublin, Poland
| | - Witold Krupski
- Department of Medical Radiology, Medical University of Lublin, Lublin, Poland
| | - Dorota Starownik
- Independent Public Clinical Hospital No. 4 in Lublin, Medical University of Lublin, Lublin, Poland
| | - Paweł Bojar
- Department of Pathomorphology, Beskid Oncology Centre-John Paul II Memorial City Hospital in Bielsko-Biala, Bielsko-Biała, Poland
| | - Justyna Szumiło
- Department of Clinical Pathomorphology, Medical University of Lublin, Lublin, Poland
| | | | - Halina Cichoż-Lach
- Department of Gastroenterology with Endoscopy Unit, Medical University of Lublin, Lublin, Poland
| | - Jacek Bogucki
- Department of Organic Chemistry, Medical University of Lublin, Lublin, Poland
| | - Magdalena Szymańska
- Department of Biology and Genetics, Medical University of Lublin, Lublin, Poland
| | | | - Anna Bogucka-Kocka
- Department of Biology and Genetics, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
16
|
Tumusiime J, Kagoro-Rugunda G, Tolo CU, Namirembe D, Schols R, Hammoud C, Albrecht C, Huyse T. An accident waiting to happen? Exposing the potential of urogenital schistosomiasis transmission in the Lake Albert region, Uganda. Parasit Vectors 2023; 16:398. [PMID: 37919743 PMCID: PMC10623741 DOI: 10.1186/s13071-023-06017-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 10/16/2023] [Indexed: 11/04/2023] Open
Abstract
BACKGROUND Urogenital schistosomiasis caused by the parasitic blood fluke Schistosoma haematobium is the most common form of that constitutes a majority of over 240 million schistosomiasis cases. The enigmatic absence of urogenital schistosomiasis in Uganda has, until now, been attributed to the absence of substantial populations of suitable snail intermediate hosts. METHODS Malacological surveys were carried out in 73 sites southeast of Lake Albert, Uganda in October and November 2020. Collected snails were transported to the laboratory for identification. The snails were identified using partial mitochondrial cytochrome c oxidase subunit one and nuclear internal transcribed spacer barcoding. Schistosome infections in snails were also assessed using cercarial shedding and rapid diagnostic PCR techniques. RESULTS We found Bulinus globosus and Bulinus nasutus productus, the main intermediate species in the transmission of S. haematobium in mainland East Africa. In this survey, B. globosus was more common than B. nasutus productus, with the former reported at four sites (total count = 188) and the latter reported at one site (total count = 79). Molecular testing revealed a high prevalence of Schistosoma bovis in B. nasutus productus (16%), but no S. haematobium infections were found. CONCLUSIONS Given the abundance of snail hosts and the risky human water contact behaviours observed, we highlight the potential for urogenital schistosomiasis transmission in the region.
Collapse
Affiliation(s)
- Julius Tumusiime
- Department of Biology, Mbarara University of Science and Technology, Mbarara, Uganda.
- Institute of Animal Ecology and Systematics, Justus Liebig University Giessen, Giessen, Germany.
| | - Grace Kagoro-Rugunda
- Department of Biology, Mbarara University of Science and Technology, Mbarara, Uganda
| | - Casim Umba Tolo
- Department of Biology, Mbarara University of Science and Technology, Mbarara, Uganda
| | - Daisy Namirembe
- Department of Biology, Mbarara University of Science and Technology, Mbarara, Uganda
| | - Ruben Schols
- Department of Biology, Royal Museum for Central Africa, Tervuren, Belgium
- Laboratory of Aquatic Biology, KU Leuven, Campus Kortrijk, Kortrijk, Belgium
| | - Cyril Hammoud
- Department of Biology, Royal Museum for Central Africa, Tervuren, Belgium
- Department of Biology, Ghent University, Ghent, Belgium
| | - Christian Albrecht
- Department of Biology, Mbarara University of Science and Technology, Mbarara, Uganda
- Institute of Animal Ecology and Systematics, Justus Liebig University Giessen, Giessen, Germany
| | - Tine Huyse
- Department of Biology, Royal Museum for Central Africa, Tervuren, Belgium
| |
Collapse
|
17
|
Porretta D, Canestrelli D. The ecological importance of hybridization. Trends Ecol Evol 2023; 38:1097-1108. [PMID: 37620217 DOI: 10.1016/j.tree.2023.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 07/16/2023] [Accepted: 07/20/2023] [Indexed: 08/26/2023]
Abstract
Hybridization as an evolutionary process has been studied in depth over the past few decades. Research has focused on its role in shaping reproductive barriers, its adaptive value, and its genomic consequences. In contrast, our knowledge of ecological dimensions of hybridization is still in its infancy, despite hybridization being an inherently ecological interaction. Using examples from various organisms, we show that hybridization can affect and be affected by non-reproductive interactions, including predation, competition, parasitism, mutualism, commensalism, and organism-environment interactions, with significant implications for community structure and ecosystem functioning. However, since these dimensions of hybridization have mostly been revealed from studies designed to decipher other evolutionary processes, we argue that much of the eco-evolutionary importance of hybridization is yet to be discovered.
Collapse
Affiliation(s)
- Daniele Porretta
- Department of Environmental Biology, Sapienza University of Rome, Italy.
| | | |
Collapse
|
18
|
Agniwo P, Boissier J, Sidibé B, Dembélé L, Diakité A, Niaré DS, Akplogan A, Guindo H, Blin M, Dametto S, Ibikounlé M, Spangenberg T, Dabo A. Genetic profiles of Schistosoma haematobium parasites from Malian transmission hotspot areas. Parasit Vectors 2023; 16:263. [PMID: 37542265 PMCID: PMC10403946 DOI: 10.1186/s13071-023-05860-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 06/30/2023] [Indexed: 08/06/2023] Open
Abstract
BACKGROUND Although schistosomiasis is a public health issue in Mali, little is known about the parasite genetic profile. The purpose of this study was to analyze the genetic profile of the schistosomes of Schistosoma haematobium group in school-aged children in various sites in Mali. METHODS Urine samples were collected from 7 to 21 November 2021 and subjected to a filtration method for the presence S. haematobium eggs. The study took place in two schistosomiasis endemic villages (Fangouné Bamanan and Diakalèl), qualified as hotspots according to the World Health Organization (WHO) definition. Molecular genotyping on both Cox1 and ITS2/18S was used for eggs' taxonomic assignation. RESULTS A total of 970 miracidia were individually collected from 63 school-aged children and stored on Whatman FTA cards for molecular analysis. After genotyping 42.0% (353/840) and 58.0% (487/840) of miracidia revealed Schistosoma bovis and S. haematobium Cox1 profiles, respectively; 95.7 (885/925) and 4.3% (40/925) revealed S. haematobium and S. haematobium/S. curassoni profiles for ITS/18S genes, respectively. There was a significant difference in the Cox1 and ITS2/18S profile distribution according to the village (P < 0.0001). Overall, 45.6% (360/789) were hybrids, of which 72.0% (322/447) were from Diakalèl. Three hybrids' profiles (Sb/Sc_ShxSc with 2.3%; Sb/Sc_ShxSh with 40.5%; Sh_ShxSc with 2.8%) and one pure profile (Sh_ShxSh with 54.4%) were identified. CONCLUSION Our findings show, for the first time to our knowledge, high prevalence of hybrid schistosomes in Mali. More studies are needed on population genetics of schistosomes at the human and animal interface to evaluate the parasite's gene flow and its consequences on epidemiology of the disease as well as the transmission to humans.
Collapse
Affiliation(s)
- Privat Agniwo
- Department of Epidemiology of Infectious Diseases, Faculty of Pharmacy, Malaria Research and Training Center (MRTC), University of Sciences, Techniques and Technologies of Bamako, Environnement, Santé, Sociétés (USTTB/UCAD/UGB/CNRST/CNRS), BP 1805, IRL 3189, Bamako, Mali
- IHPE, University Montpellier, CNRS, Ifremer, University Perpignan Via Domitia, Perpignan, France
- Centre de Recherche pour la lutte contre les Maladies Infectieuses Tropicales (CReMIT/TIDRC), Université d'Abomey-Calavi, Abomey-Calavi, Bénin
| | - Jérôme Boissier
- IHPE, University Montpellier, CNRS, Ifremer, University Perpignan Via Domitia, Perpignan, France
| | - Bakary Sidibé
- Department of Epidemiology of Infectious Diseases, Faculty of Pharmacy, Malaria Research and Training Center (MRTC), University of Sciences, Techniques and Technologies of Bamako, Environnement, Santé, Sociétés (USTTB/UCAD/UGB/CNRST/CNRS), BP 1805, IRL 3189, Bamako, Mali
| | - Laurent Dembélé
- Department of Epidemiology of Infectious Diseases, Faculty of Pharmacy, Malaria Research and Training Center (MRTC), University of Sciences, Techniques and Technologies of Bamako, Environnement, Santé, Sociétés (USTTB/UCAD/UGB/CNRST/CNRS), BP 1805, IRL 3189, Bamako, Mali
| | - Assitan Diakité
- Department of Epidemiology of Infectious Diseases, Faculty of Pharmacy, Malaria Research and Training Center (MRTC), University of Sciences, Techniques and Technologies of Bamako, Environnement, Santé, Sociétés (USTTB/UCAD/UGB/CNRST/CNRS), BP 1805, IRL 3189, Bamako, Mali
| | - Doumbo Safiatou Niaré
- IHPE, University Montpellier, CNRS, Ifremer, University Perpignan Via Domitia, Perpignan, France
| | - Ahristode Akplogan
- Department of Epidemiology of Infectious Diseases, Faculty of Pharmacy, Malaria Research and Training Center (MRTC), University of Sciences, Techniques and Technologies of Bamako, Environnement, Santé, Sociétés (USTTB/UCAD/UGB/CNRST/CNRS), BP 1805, IRL 3189, Bamako, Mali
| | - Hassim Guindo
- Department of Epidemiology of Infectious Diseases, Faculty of Pharmacy, Malaria Research and Training Center (MRTC), University of Sciences, Techniques and Technologies of Bamako, Environnement, Santé, Sociétés (USTTB/UCAD/UGB/CNRST/CNRS), BP 1805, IRL 3189, Bamako, Mali
| | - Manon Blin
- IHPE, University Montpellier, CNRS, Ifremer, University Perpignan Via Domitia, Perpignan, France
| | - Sarah Dametto
- IHPE, University Montpellier, CNRS, Ifremer, University Perpignan Via Domitia, Perpignan, France
| | - Moudachirou Ibikounlé
- Centre de Recherche pour la lutte contre les Maladies Infectieuses Tropicales (CReMIT/TIDRC), Université d'Abomey-Calavi, Abomey-Calavi, Bénin
| | - Thomas Spangenberg
- Global Health Institute of Merck, Ares Trading S.A., a subsidiary of Merck KGaA, Darmstadt, Route de Crassier 1, 1262, Eysins, Switzerland
| | - Abdoulaye Dabo
- Department of Epidemiology of Infectious Diseases, Faculty of Pharmacy, Malaria Research and Training Center (MRTC), University of Sciences, Techniques and Technologies of Bamako, Environnement, Santé, Sociétés (USTTB/UCAD/UGB/CNRST/CNRS), BP 1805, IRL 3189, Bamako, Mali.
| |
Collapse
|
19
|
Calvo-Urbano B, Léger E, Gabain I, De Dood CJ, Diouf ND, Borlase A, Rudge JW, Corstjens PLAM, Sène M, Van Dam GJ, Walker M, Webster JP. Sensitivity and specificity of human point-of-care circulating cathodic antigen (POC-CCA) test in African livestock for rapid diagnosis of schistosomiasis: A Bayesian latent class analysis. PLoS Negl Trop Dis 2023; 17:e0010739. [PMID: 37216407 DOI: 10.1371/journal.pntd.0010739] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 04/29/2023] [Indexed: 05/24/2023] Open
Abstract
Schistosomiasis is a major neglected tropical disease (NTD) affecting both humans and animals. The morbidity and mortality inflicted upon livestock in the Afrotropical region has been largely overlooked, in part due to a lack of validated sensitive and specific tests, which do not require specialist training or equipment to deliver and interpret. As stressed within the recent WHO NTD 2021-2030 Roadmap and Revised Guideline for schistosomiasis, inexpensive, non-invasive, and sensitive diagnostic tests for livestock-use would also facilitate both prevalence mapping and appropriate intervention programmes. The aim of this study was to assess the sensitivity and specificity of the currently available point-of-care circulating cathodic antigen test (POC-CCA), designed for Schistosoma mansoni detection in humans, for the detection of intestinal livestock schistosomiasis caused by Schistosoma bovis and Schistosoma curassoni. POC-CCA, together with the circulating anodic antigen (CAA) test, miracidial hatching technique (MHT) and organ and mesentery inspection (for animals from abattoirs only), were applied to samples collected from 195 animals (56 cattle and 139 small ruminants (goats and sheep) from abattoirs and living populations) from Senegal. POC-CCA sensitivity was greater in the S. curassoni-dominated Barkedji livestock, both for cattle (median 81%; 95% credible interval (CrI): 55%-98%) and small ruminants (49%; CrI: 29%-87%), than in S. bovis-dominated Richard Toll ruminants (cattle: 62%; CrI: 41%-84%; small ruminants: 12%, CrI: 1%-37%). Overall, sensitivity was greater in cattle than in small ruminants. Small ruminants POC-CCA specificity was similar in both locations (91%; CrI: 77%-99%), whilst cattle POC-CCA specificity could not be assessed owing to the low number of uninfected cattle surveyed. Our results indicate that, whilst the current POC-CCA does represent a potential diagnostic tool for cattle and possibly for predominantly S. curassoni-infected livestock, future work is needed to develop parasite- and/or livestock-specific affordable and field-applicable diagnostic tests to enable determination of the true extent of livestock schistosomiasis.
Collapse
Affiliation(s)
- Beatriz Calvo-Urbano
- Royal Veterinary College, Department of Pathobiology and Population Sciences, University of London, Hatfield, United Kingdom
- London Centre for Neglected Tropical Disease Research, School of Public Health, Department of Infectious Disease Epidemiology, Imperial College Faculty of Medicine, London, United Kingdom
| | - Elsa Léger
- Royal Veterinary College, Department of Pathobiology and Population Sciences, University of London, Hatfield, United Kingdom
- London Centre for Neglected Tropical Disease Research, School of Public Health, Department of Infectious Disease Epidemiology, Imperial College Faculty of Medicine, London, United Kingdom
| | - Isobel Gabain
- Royal Veterinary College, Department of Pathobiology and Population Sciences, University of London, Hatfield, United Kingdom
- London Centre for Neglected Tropical Disease Research, School of Public Health, Department of Infectious Disease Epidemiology, Imperial College Faculty of Medicine, London, United Kingdom
| | | | - Nicolas D Diouf
- Unité de Formation et de Recherche des Sciences Agronomiques, d'Aquaculture et de Technologies Alimentaires, Université Gaston Berger, Saint Louis, Senegal
| | - Anna Borlase
- Royal Veterinary College, Department of Pathobiology and Population Sciences, University of London, Hatfield, United Kingdom
- Department of Biology, University of Oxford, Oxford, United Kingdom
| | - James W Rudge
- London Centre for Neglected Tropical Disease Research, School of Public Health, Department of Infectious Disease Epidemiology, Imperial College Faculty of Medicine, London, United Kingdom
- Communicable Diseases Policy Research Group, Department of Global Health and Development, London School of Hygiene and Tropical Medicine, London, United Kingdom
- Faculty of Public Health, Mahidol University, Bangkok, Thailand
| | | | - Mariama Sène
- Unité de Formation et de Recherche des Sciences Agronomiques, d'Aquaculture et de Technologies Alimentaires, Université Gaston Berger, Saint Louis, Senegal
| | | | - Martin Walker
- Royal Veterinary College, Department of Pathobiology and Population Sciences, University of London, Hatfield, United Kingdom
- London Centre for Neglected Tropical Disease Research, School of Public Health, Department of Infectious Disease Epidemiology, Imperial College Faculty of Medicine, London, United Kingdom
| | - Joanne P Webster
- Royal Veterinary College, Department of Pathobiology and Population Sciences, University of London, Hatfield, United Kingdom
- London Centre for Neglected Tropical Disease Research, School of Public Health, Department of Infectious Disease Epidemiology, Imperial College Faculty of Medicine, London, United Kingdom
| |
Collapse
|
20
|
Senghor B, Webster B, Pennance T, Sène M, Doucouré S, Sow D, Sokhna C. Molecular characterization of schistosome cercariae and their Bulinus snail hosts from Niakhar, a seasonal transmission focus in central Senegal. CURRENT RESEARCH IN PARASITOLOGY & VECTOR-BORNE DISEASES 2023; 3:100114. [PMID: 36824299 PMCID: PMC9941053 DOI: 10.1016/j.crpvbd.2023.100114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/11/2023] [Accepted: 01/18/2023] [Indexed: 01/25/2023]
Abstract
Bulinus senegalensis and Bulinus umbilicatus, two sympatric freshwater snails found in temporal ponds in Senegal, were thought to be involved in the transmission of Schistosoma haematobium and/or Schistosoma curassoni. To better understand the role of these Bulinus species in the transmission of human and animal Schistosoma species, B. senegalensis and B. umbilicatus were collected in 2015, during a malacological survey, from a temporal pond in Niakhar, central Senegal. Snails were induced to shed cercariae on two consecutive days. Individual cercariae from each snail were collected and preserved for molecular identification. Infected snails were identified by analysis of a partial region of the cytochrome c oxidase subunit 1 (cox1) gene. Six individual cercariae shed from each infected snail were identified by analyses of the cox1, nuclear ITS and partial 18S rDNA regions. Of the 98 snails collected, one B. senegalensis had a mixed infection shedding S. haematobium, S. bovis and S. haematobium-S. bovis hybrid cercariae and one B. umbilicatus was found to be shedding only S. haematobium. These data provide molecular confirmation for B. senegalensis transmitting S. bovis and S. haematobium-S. bovis hybrids in Senegal. The multiple Bulinus species involved in the human urogenital schistosomiasis in Senegal provides a high force of transmission warranting detailed mapping, surveillance and regular treatment of at-risk populations.
Collapse
Affiliation(s)
- Bruno Senghor
- VITROME, Campus International IRD-UCAD de Hann, 1386, Dakar, Senegal
| | - Bonnie Webster
- Natural History Museum, Wolfson Wellcome Biomedical Laboratories, Department of Science, Cromwell Road, London, SW7 5BD, UK
- London Centre for Neglected Tropical Disease Research, Imperial College London, School of Public Health, Norfolk Pl, Paddington, London, W21PG, UK
| | - Tom Pennance
- Natural History Museum, Wolfson Wellcome Biomedical Laboratories, Department of Science, Cromwell Road, London, SW7 5BD, UK
- London Centre for Neglected Tropical Disease Research, Imperial College London, School of Public Health, Norfolk Pl, Paddington, London, W21PG, UK
- Department of Basic Medical Sciences, Western University of Health Sciences, Lebanon, OR, 97355, USA
| | - Mariama Sène
- Laboratoire des Sciences Biologiques, Agronomiques et de Modélisation des Systems Complexes, UFRS2ATA, Université Gaston Berger de Saint-Louis, Saint-Louis, Senegal
| | | | - Doudou Sow
- Department of Parasitology-Mycology, UFR Sciences de la Santé, Université Gaston Berger, 234, Saint-Louis, Senegal
| | - Cheikh Sokhna
- VITROME, Campus International IRD-UCAD de Hann, 1386, Dakar, Senegal
- VITROME, Aix-Marseille Univ, IRD, SSA, AP-HM, IHU-Mediterranean Infection, Marseille, France
| |
Collapse
|
21
|
Morphometric analysis of schistosome eggs recovered from human urines in communities along the shoreline of Oyan River Dam in Ogun State, Nigeria. J Helminthol 2023; 96:e89. [PMID: 36621866 DOI: 10.1017/s0022149x22000815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
There are growing concerns that communities characterized with surface water, where both humans and livestock interact for agricultural, domestic, cultural and recreational purposes, are likely to support hybridization between schistosome species infecting humans and livestock. This study therefore investigated the morphometrics of schistosome eggs recovered from human urine samples in four schistosomiasis endemic communities (Imala-Odo, Abule-Titun, Apojula and Ibaro-Oyan) along the banks of Oyan River Dam in Ogun State, Nigeria. Recovered eggs were counted, photographed, and measured with IC Measure™ for total length, maximum width and a ratio of egg shape. A total of 1984 Schistosoma eggs were analysed. Two major egg morphotypes were identified: the first represented 67.8% of the eggs, with the typical round to oval shape and mean length and width of 166 μm, 66.8 μm, respectively; the second represented 32.2% of the eggs and are more elongated, with a mean length of 198 μm, and width of 71.3 μm. Our results revealed significant variations in sizes of the schistosome eggs recovered (length: t = -35.374, degrees of freedom (df) = 1982, P = 0.000; weight: t = -10.431, df = 1982, P = 0.000), with the atypical shaped eggs appearing more elongated than expected. These eggs might represent individuals with some degree of contribution from Schistosoma bovis or possibly other Schistosoma species known to be present in Nigeria. Hence, this observation calls for further molecular studies to establish the genetic information about the miracidia from both atypical and typical eggs. It is also important to establish the presence of bona fide S. bovis infection in cattle and vector snails in the presumptive areas of hybridization.
Collapse
|
22
|
Senghor B, Mathieu-Begné E, Rey O, Doucouré S, Sow D, Diop B, Sène M, Boissier J, Sokhna C. Urogenital schistosomiasis in three different water access in the Senegal river basin: prevalence and monitoring praziquantel efficacy and re-infection levels. BMC Infect Dis 2022; 22:968. [PMID: 36581796 PMCID: PMC9801593 DOI: 10.1186/s12879-022-07813-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 10/26/2022] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Urogenital schistosomiasis is a neglected tropical disease most prevalent in sub-Saharan Africa. In the Senegal river basin, the construction of the Diama dam led to an increase and endemicity of schistosomiasis. Since 2009, praziquantel has frequently been used as preventive chemotherapy in the form of mass administration to Senegalese school-aged children without monitoring of the treatment efficacy and the prevalence after re-infection. This study aims to determine the current prevalence of urogenital schistosomiasis (caused by Schistosoma haematobium), the efficacy of praziquantel, and the re-infection rates in children from five villages with different water access. METHODS The baseline prevalence of S. haematobium was determined in August 2020 in 777 children between 5 and 11 years old and a single dose of praziquantel (40 mg/kg) was administered to those positive. The efficacy of praziquantel and the re-infection rates were monitored 4 weeks and 7 months after treatment, respectively, in 226 children with a high intensity of infection at baseline. RESULTS At the baseline, prevalence was low among children from the village of Mbane who live close to the Lac de Guiers (38%), moderate among those from the villages of Dioundou and Khodit, which neighbor the Doue river (46%), and very high at Khodit (90.6%) and Guia (91.2%) which mainly use an irrigation canal. After treatment, the observed cure rates confirmed the efficacy of praziquantel. The lowest cure rate (88.5%) was obtained in the village using the irrigation canal, while high cure rates were obtained in those using the lake (96.5%) and the river (98%). However, high egg reduction rates (between 96.7 and 99.7%) were obtained in all the villages. The re-infection was significantly higher in the village using the canal (42.5%) than in the villages accessing the Lac de Guiers (18.3%) and the Doue river (14.8%). CONCLUSION Praziquantel has an impact on reducing the prevalence and intensity of urogenital schistosomiasis. However, in the Senegal river basin, S. haematobium remains a real health problem for children living in the villages near the irrigation canals, despite regular treatment, while prevalence is declining from those frequenting the river and the Lac de Guiers. Trial registration ClinicalTrials.gov, NCT04635553. Registered 19 November 2020 retrospectively registered, https://www. CLINICALTRIALS gov/ct2/show/NCT04635553?cntry=SN&draw=2&rank=4.
Collapse
Affiliation(s)
- Bruno Senghor
- grid.418291.70000 0004 0456 337XCampus International IRD-UCAD de Hann, Vectors-Tropical and Mediterranean Infections (VITROME) Laboratory, 1386 Dakar, Senegal
| | - Eglantine Mathieu-Begné
- grid.121334.60000 0001 2097 0141Host Pathogen Environments Interactions (IHPE) Laboratory, CNRS, IFREMER, University of Montpellier, University of Perpignan via Domitia, Perpignan, France
| | - Olivier Rey
- grid.121334.60000 0001 2097 0141Host Pathogen Environments Interactions (IHPE) Laboratory, CNRS, IFREMER, University of Montpellier, University of Perpignan via Domitia, Perpignan, France
| | - Souleymane Doucouré
- grid.418291.70000 0004 0456 337XCampus International IRD-UCAD de Hann, Vectors-Tropical and Mediterranean Infections (VITROME) Laboratory, 1386 Dakar, Senegal
| | - Doudou Sow
- grid.442784.90000 0001 2295 6052Department of Parasitology-Mycology, UFR of Health Sciences, University Gaston Berger, 234, Saint-Louis, Senegal
| | - Bocar Diop
- grid.442784.90000 0001 2295 6052Laboratory of Biological and Agronomic Sciences and Modelling of Complex Systems, UFRS2ATA, Gaston Berger University of Saint-Louis, Saint-Louis, Senegal
| | - Mariama Sène
- National Schistosomiasis Control Program (NSCP), Ministry of Health, Dakar, Senegal
| | - Jérôme Boissier
- grid.121334.60000 0001 2097 0141Host Pathogen Environments Interactions (IHPE) Laboratory, CNRS, IFREMER, University of Montpellier, University of Perpignan via Domitia, Perpignan, France
| | - Cheikh Sokhna
- grid.418291.70000 0004 0456 337XCampus International IRD-UCAD de Hann, Vectors-Tropical and Mediterranean Infections (VITROME) Laboratory, 1386 Dakar, Senegal ,grid.5399.60000 0001 2176 4817VITROME, IRD, SSA, AP-HM, IHU-Mediterranean Infection, Aix-Marseille Univ, Marseille, France
| |
Collapse
|
23
|
Tembo R, Muleya W, Yabe J, Kainga H, Nalubamba KS, Zulu M, Mwaba F, Saad SA, Kamwela M, Mukubesa AN, Monde N, Kallu SA, Mbewe N, Phiri AM. Prevalence and Molecular Identification of Schistosoma haematobium among Children in Lusaka and Siavonga Districts, Zambia. Trop Med Infect Dis 2022; 7:tropicalmed7090239. [PMID: 36136650 PMCID: PMC9505432 DOI: 10.3390/tropicalmed7090239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/04/2022] [Accepted: 09/05/2022] [Indexed: 11/25/2022] Open
Abstract
Schistosomiasis remains a public health concern in Zambia. Urinary schistosomiasis caused by Schistosoma haematobium is the most widely distributed infection. The aim of the current study was to determine the prevalence and risk factors of urinary schistosomiasis and identify the strain of S. haematobium among children in the Siavonga and Lusaka districts in Zambia. Urine samples were collected from 421 primary school children and S. haematobium eggs were examined under light microscopy. A semi-structured questionnaire was used to obtain information on the socio-demographic characteristics and the potential risk factors for urinary schistosomiasis. DNA of the parasite eggs was extracted from urine samples and the internal transcribed spacer gene was amplified, sequenced and phylogenetically analysed. The overall prevalence of S. haematobium was 9.7% (41/421) (95% CI: 7.16–13.08), male participants made up 6.2% (26/232) (95% CI: 4.15–9.03), having a higher burden of disease than female participants who made up 3.5% (15/421) (95% CI: 2.01–5.94). The age group of 11–15 years had the highest overall prevalence of 8.3% (35/421) (5.94–11.48). Participants that did not go fishing were 0.008 times less likely to be positive for schistosomiasis while participants whose urine was blood-tinged or cloudy on physical examination and those that lived close to water bodies were 9.98 and 11.66 times more likely to test positive for schistosomiasis, respectively. A phylogenetic tree analysis indicated that S. haematobium isolates were closely related to pure S. haematobium from Zimbabwe and hybrids of S. haematobium × S. bovis from Benin, Senegal and Malawi. The current study shows that urinary schistosomiasis is endemic in the study areas and is associated with water contact, and S. haematobium isolated is closely related to hybrids of S. bovis × S. haematobium strain, indicating the zoonotic potential of this parasite.
Collapse
Affiliation(s)
- Rabecca Tembo
- Department of Pathology and Microbiology, School of Medicine, University of Zambia, Lusaka P.O. Box 50110, Zambia
- Department of Clinical Sciences, School of Veterinary Medicine, University of Zambia, Lusaka P.O. Box 32379, Zambia
- Africa Center of Excellence for Infectious Diseases of Humans, University of Zambia, Lusaka P.O Box 32379, Zambia
- Correspondence: ; Tel.: 26-097-8363-271
| | - Walter Muleya
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Zambia, Lusaka P.O. Box 32379, Zambia
| | - John Yabe
- Department of Para Clinical Studies, School of Veterinary Medicine, University of Zambia, Lusaka P.O. Box 32379, Zambia
- School of Veterinary Medicine, University of Namibia, P.O. Box 13301, Windhoek 1005, Namibia
| | - Henson Kainga
- Department of Veterinary Epidemiology and Public Health, Faculty of Veterinary Medicine, Lilongwe University of Agriculture and Natural Resources, Lilongwe 207203, Malawi or
- Department of Disease Control, School of Veterinary Medicine, Zambia Animals, University of Zambia, Lusaka P.O. Box 32379, Zambia
| | - King S. Nalubamba
- Department of Clinical Sciences, School of Veterinary Medicine, University of Zambia, Lusaka P.O. Box 32379, Zambia
| | - Mildred Zulu
- Department of Pathology and Microbiology, School of Medicine, University of Zambia, Lusaka P.O. Box 50110, Zambia
- Africa Center of Excellence for Infectious Diseases of Humans, University of Zambia, Lusaka P.O Box 32379, Zambia
| | - Florence Mwaba
- Department of Pathology and Microbiology, School of Medicine, University of Zambia, Lusaka P.O. Box 50110, Zambia
- Africa Center of Excellence for Infectious Diseases of Humans, University of Zambia, Lusaka P.O Box 32379, Zambia
| | - Shereen Ahmed Saad
- Africa Center of Excellence for Infectious Diseases of Humans, University of Zambia, Lusaka P.O Box 32379, Zambia
- Department of Para Clinical Studies, School of Veterinary Medicine, University of Zambia, Lusaka P.O. Box 32379, Zambia
- Department of Clinical Studies, College of Veterinary Science, University of Bahr El Ghazal, Wau P.O. Box 10739, South Sudan
| | - Moses Kamwela
- Department of Pharmacology, Faculty of Pharmacy, Lusaka Apex Medical University, Lusaka P.O. Box 31909, Zambia
| | - Andrew N. Mukubesa
- Department of Disease Control, School of Veterinary Medicine, Zambia Animals, University of Zambia, Lusaka P.O. Box 32379, Zambia
| | - Ngula Monde
- Department of Biomedical Sciences, Tropical Diseases Research Centre, Ndola P.O. Box 71769, Zambia
| | - Simegnew Adugna Kallu
- Department of Disease Control, School of Veterinary Medicine, Zambia Animals, University of Zambia, Lusaka P.O. Box 32379, Zambia
- College of Veterinary Medicine, Haramaya University, Dire Dawa P.O. Box 138, Ethiopia
| | - Natalia Mbewe
- Department of Disease Control, School of Veterinary Medicine, Zambia Animals, University of Zambia, Lusaka P.O. Box 32379, Zambia
- Department of Basic and Clinical Nursing Sciences, School of Nursing Sciences, University of Zambia, Lusaka P.O. Box 50110, Zambia
| | - Andrew M. Phiri
- Department of Clinical Sciences, School of Veterinary Medicine, University of Zambia, Lusaka P.O. Box 32379, Zambia
- Africa Center of Excellence for Infectious Diseases of Humans, University of Zambia, Lusaka P.O Box 32379, Zambia
| |
Collapse
|
24
|
Miranda GS, Rodrigues JGM, Silva JKADO, Camelo GMA, Silva-Souza N, Neves RH, Machado-Silva JR, Negrão-Corrêa DA. New challenges for the control of human schistosomiasis: The possible impact of wild rodents in Schistosoma mansoni transmission. Acta Trop 2022; 236:106677. [PMID: 36063905 DOI: 10.1016/j.actatropica.2022.106677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 08/27/2022] [Accepted: 09/01/2022] [Indexed: 11/17/2022]
Abstract
Schistosomiasis is a neglected parasitic disease caused by digenean trematodes from the genus Schistosoma that affects millions of people worldwide. Despite efforts to control its transmission, this disease remains active within several endemic regions of Africa, Asia, and the Americas. In addition to the deficits in sanitation and educational structure, another major obstacle hindering the eradication of schistosomiasis is the ability of Schistosoma spp. to naturally infect multiple vertebrate hosts, particularly wild rodents. Due to climate change and other anthropogenic disturbances, contact between humans and wild animals has increased, and this has contributed to more frequent interactions between Schistosoma species that typically infect different hosts. This new transmission dynamic involving Schistosoma spp., humans, wild rodents, and livestock could potentially increase the frequency of Schistosoma hybridization and the establishment of new genotypes and strains. Although it is not currently possible to precisely measure how this biological phenomenon affects the epidemiology and morbidity of schistosomiasis, we speculate that these Schistosoma variants may negatively impact control strategies, treatment regimens, and disease burden in humans. In the present study, we discuss the natural infections of wild rodents with Schistosoma spp., the role of these animals as Schistosoma spp. reservoirs, and how they may select hybrids and strains of Schistosoma mansoni. We also discuss measures required to shed light on the actual role of the wild rodents Nectomys squamipes and Holochilus sciureus in the transmission and morbidity of schistosomiasis in Brazil.
Collapse
Affiliation(s)
- Guilherme Silva Miranda
- Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, Avenida Antônio Carlos 6627, Campus Pampulha, Belo Horizonte, MG CEP: 31270-010, Brazil; Department of Biology, Federal Institute of Education, Science and Technology of Maranhão, São Raimundo das Mangabeiras, Brazil
| | - João Gustavo Mendes Rodrigues
- Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, Avenida Antônio Carlos 6627, Campus Pampulha, Belo Horizonte, MG CEP: 31270-010, Brazil
| | - Jeferson Kelvin Alves de Oliveira Silva
- Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, Avenida Antônio Carlos 6627, Campus Pampulha, Belo Horizonte, MG CEP: 31270-010, Brazil
| | - Genil Mororó Araújo Camelo
- Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, Avenida Antônio Carlos 6627, Campus Pampulha, Belo Horizonte, MG CEP: 31270-010, Brazil
| | - Nêuton Silva-Souza
- Department of Chemistry and Biology, State University of Maranhão, São Luis, Brazil
| | - Renata Heisler Neves
- Department of Microbiology, Immunology and Parasitology, Faculty of Medical Sciences, Biomedical Center, University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - José Roberto Machado-Silva
- Department of Microbiology, Immunology and Parasitology, Faculty of Medical Sciences, Biomedical Center, University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Deborah Aparecida Negrão-Corrêa
- Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, Avenida Antônio Carlos 6627, Campus Pampulha, Belo Horizonte, MG CEP: 31270-010, Brazil.
| |
Collapse
|
25
|
Inceboz T. One Health Concept against Schistosomiasis: An Overview. Infect Dis (Lond) 2022. [DOI: 10.5772/intechopen.106912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Schistosomiasis (bilharziasis) is a parasitic disease caused by Schistosoma spp. that belongs to trematode worms. These worms are known as “blood parasites”. This disease is included in “neglected tropical diseases” and “water-borne diseases”. The main species are Schistosoma (S.) haematobium, S. japonicum, S. mansoni, S. intercalatum, S. mekongi, S. guineensis and S. intercalatum, though there are more than 20 different species. The parasite in the definitive host may affect many organs and systems. The disease may become chronic and lasts 3–8 years and even up to 20–30 years. The definitive host is primarily human; however, in endemic areas animals such as monkeys, cattle, horses, rodents, cats, dogs are reservoirs. According to World Health Organization (WHO), schistosomiasis affects 250 million people, and causes 1.9 million deaths yearly in endemic areas. Moreover, due to global warming, the spread of the disease may increase. The effective way to fight against schistosomiasis is following the “one-health system”. Indeed, to overcome or “eradicate” this disease, we have to strive against different forms at different evolutionary stages of the worm such as, forms in humans, domestic or wild animals, and freshwater snails. If we combine the knowledge of professionals, we may achieve this goal.
Collapse
|
26
|
Summers S, Bhattacharyya T, Allan F, Stothard JR, Edielu A, Webster BL, Miles MA, Bustinduy AL. A review of the genetic determinants of praziquantel resistance in Schistosoma mansoni: Is praziquantel and intestinal schistosomiasis a perfect match? FRONTIERS IN TROPICAL DISEASES 2022. [DOI: 10.3389/fitd.2022.933097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Schistosomiasis is a neglected tropical disease (NTD) caused by parasitic trematodes belonging to the Schistosoma genus. The mainstay of schistosomiasis control is the delivery of a single dose of praziquantel (PZQ) through mass drug administration (MDA) programs. These programs have been successful in reducing the prevalence and intensity of infections. Due to the success of MDA programs, the disease has recently been targeted for elimination as a public health problem in some endemic settings. The new World Health Organization (WHO) treatment guidelines aim to provide equitable access to PZQ for individuals above two years old in targeted areas. The scale up of MDA programs may heighten the drug selection pressures on Schistosoma parasites, which could lead to the emergence of PZQ resistant schistosomes. The reliance on a single drug to treat a disease of this magnitude is worrying should drug resistance develop. Therefore, there is a need to detect and track resistant schistosomes to counteract the threat of drug resistance to the WHO 2030 NTD roadmap targets. Until recently, drug resistance studies have been hindered by the lack of molecular markers associated with PZQ resistance. This review discusses recent significant advances in understanding the molecular basis of PZQ action in S. mansoni and proposes additional genetic determinants associated with PZQ resistance. PZQ resistance will also be analyzed in the context of alternative factors that may decrease efficacy within endemic field settings, and the most recent treatment guidelines recommended by the WHO.
Collapse
|
27
|
Berger DJ, Léger E, Sankaranarayanan G, Sène M, Diouf ND, Rabone M, Emery A, Allan F, Cotton JA, Berriman M, Webster JP. Genomic evidence of contemporary hybridization between Schistosoma species. PLoS Pathog 2022; 18:e1010706. [PMID: 35939508 PMCID: PMC9387932 DOI: 10.1371/journal.ppat.1010706] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 08/18/2022] [Accepted: 06/27/2022] [Indexed: 11/19/2022] Open
Abstract
Hybridization between different species of parasites is increasingly being recognised as a major public and veterinary health concern at the interface of infectious diseases biology, evolution, epidemiology and ultimately control. Recent research has revealed that viable hybrids and introgressed lineages between Schistosoma spp. are prevalent across Africa and beyond, including those with zoonotic potential. However, it remains unclear whether these hybrid lineages represent recent hybridization events, suggesting hybridization is ongoing, and/or whether they represent introgressed lineages derived from ancient hybridization events. In human schistosomiasis, investigation is hampered by the inaccessibility of adult-stage worms due to their intravascular location, an issue which can be circumvented by post-mortem of livestock at abattoirs for Schistosoma spp. of known zoonotic potential. To characterise the composition of naturally-occurring schistosome hybrids, we performed whole-genome sequencing of 21 natural livestock infective schistosome isolates. To facilitate this, we also assembled a de novo chromosomal-scale draft assembly of Schistosoma curassoni. Genomic analyses identified isolates of S. bovis, S. curassoni and hybrids between the two species, all of which were early generation hybrids with multiple generations found within the same host. These results show that hybridization is an ongoing process within natural populations with the potential to further challenge elimination efforts against schistosomiasis.
Collapse
Affiliation(s)
- Duncan J. Berger
- Wellcome Sanger Institute, Hinxton, United Kingdom
- Royal Veterinary College, University of London, London, United Kingdom
| | - Elsa Léger
- Royal Veterinary College, University of London, London, United Kingdom
- London Centre for Neglected Tropical Diseases Research, Imperial College Faculty of Medicine, London, United Kingdom
| | | | - Mariama Sène
- Unité de Formation et de Recherche des Sciences Agronomiques, d’Aquaculture et de Technologies Alimentaires, Université Gaston Berger, Saint-Louis, Senegal
| | - Nicolas D. Diouf
- Unité de Formation et de Recherche des Sciences Agronomiques, d’Aquaculture et de Technologies Alimentaires, Université Gaston Berger, Saint-Louis, Senegal
| | - Muriel Rabone
- The Natural History Museum, Department of Life Sciences, Cromwell Road, London, United Kingdom
| | - Aidan Emery
- The Natural History Museum, Department of Life Sciences, Cromwell Road, London, United Kingdom
| | - Fiona Allan
- The Natural History Museum, Department of Life Sciences, Cromwell Road, London, United Kingdom
- Pelagic Ecology Research Group, Scottish Oceans Institute, Gatty Marine Laboratory, School of Biology, University of St Andrews, St Andrews, United Kingdom
| | - James A. Cotton
- Wellcome Sanger Institute, Hinxton, United Kingdom
- London Centre for Neglected Tropical Diseases Research, Imperial College Faculty of Medicine, London, United Kingdom
| | - Matthew Berriman
- Wellcome Sanger Institute, Hinxton, United Kingdom
- London Centre for Neglected Tropical Diseases Research, Imperial College Faculty of Medicine, London, United Kingdom
| | - Joanne P. Webster
- Royal Veterinary College, University of London, London, United Kingdom
- London Centre for Neglected Tropical Diseases Research, Imperial College Faculty of Medicine, London, United Kingdom
| |
Collapse
|
28
|
Kenney ET, Mann VH, Ittiprasert W, Rosa BA, Mitreva M, Bracken BK, Loukas A, Brindley PJ, Sotillo J. Differential Excretory/Secretory Proteome of the Adult Female and Male Stages of the Human Blood Fluke, Schistosoma mansoni. FRONTIERS IN PARASITOLOGY 2022; 1:950744. [PMID: 39816473 PMCID: PMC11732030 DOI: 10.3389/fpara.2022.950744] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 06/22/2022] [Indexed: 01/18/2025]
Abstract
Intricate molecular communication between schistosome flatworms and their mammalian host, as well as between paired male and female schistosomes has shaped the secreted proteome of these flatworms. Whereas the schistosome egg is responsible for the disease manifestations of chronic schistosomiasis, the long lived, adult female and male stages also release different mediators including glycans, lipids, proteins and small molecules, known as excretory/secretory products (ESPs), that facilitate their survival. Given their importance, deeper analysis focused on analyzing the ESPs from adult schistosomes would likely be informative, beyond current understanding of the complement of ESP proteins. Here, taking advantage of highly accurate and sensitive mass spectrometers, the excretory/secretory proteome from cultured Schistosoma mansoni male or female adult worms was identified, quantified, compared and contrasted using a label-free proteomic approach. Approximately 1,000 proteins were identified, from which almost 800 could be quantified. Considering the proteins uniquely identified and proteins with a significantly regulated expression pattern in male or female flukes, a total of 370 and 140 proteins were uniquely or more abundantly secreted by males and females, respectively. Using functional analysis networks showing the gene ontology terms and KEGG pathways with the highest significance, we observed that male schistosomes secrete proteins related to carbohydrate metabolism and cytoskeletal organization more abundantly than females, while female worms secreted more hydrolases and proteins involved in cellular homeostasis than males. This analysis doubles the number of reported excreted/secreted proteins from S. mansoni, contributing to deeper understanding of the host-parasite interaction and parasitism. Furthermore, these findings expand potential vaccine and diagnostic candidates for this neglected tropical disease pathogen, and thereby also provide leads for novel intervention to control this disease and its transmission.
Collapse
Affiliation(s)
- Eric T. Kenney
- Department of Microbiology, Immunology & Tropical Medicine, and Research Center for Neglected Diseases of Poverty, School of Medicine and Health Sciences, George Washington University, Washington, DC, United States
| | - Victoria H. Mann
- Department of Microbiology, Immunology & Tropical Medicine, and Research Center for Neglected Diseases of Poverty, School of Medicine and Health Sciences, George Washington University, Washington, DC, United States
| | - Wannaporn Ittiprasert
- Department of Microbiology, Immunology & Tropical Medicine, and Research Center for Neglected Diseases of Poverty, School of Medicine and Health Sciences, George Washington University, Washington, DC, United States
| | - Bruce A. Rosa
- Department of Internal Medicine, Washington University of St. Louis School of Medicine, St. Louis, MO, United States
| | - Makedonka Mitreva
- Department of Internal Medicine, Washington University of St. Louis School of Medicine, St. Louis, MO, United States
| | | | - Alex Loukas
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| | - Paul J. Brindley
- Department of Microbiology, Immunology & Tropical Medicine, and Research Center for Neglected Diseases of Poverty, School of Medicine and Health Sciences, George Washington University, Washington, DC, United States
| | - Javier Sotillo
- Parasitology Reference and Research Laboratory, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
29
|
Pennance T, Ame SM, Amour AK, Suleiman KR, Muhsin MA, Kabole F, Ali SM, Archer J, Allan F, Emery A, Rabone M, Knopp S, Rollinson D, Cable J, Webster BL. Transmission and diversity of Schistosoma haematobium and S. bovis and their freshwater intermediate snail hosts Bulinus globosus and B. nasutus in the Zanzibar Archipelago, United Republic of Tanzania. PLoS Negl Trop Dis 2022; 16:e0010585. [PMID: 35788199 PMCID: PMC9286283 DOI: 10.1371/journal.pntd.0010585] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 07/15/2022] [Accepted: 06/14/2022] [Indexed: 11/17/2022] Open
Abstract
Background The Zanzibar Archipelago (Pemba and Unguja islands) is targeted for the elimination of human urogenital schistosomiasis caused by infection with Schistosoma haematobium where the intermediate snail host is Bulinus globosus. Following multiple studies, it has remained unclear if B. nasutus (a snail species that occupies geographically distinct regions on the Archipelago) is involved in S. haematobium transmission on Zanzibar. Additionally, S. haematobium was thought to be the only Schistosoma species present on the Zanzibar Archipelago until the sympatric transmission of S. bovis, a parasite of ruminants, was recently identified. Here we re-assess the epidemiology of schistosomiasis on Pemba and Unguja together with the role and genetic diversity of the Bulinus spp. involved in transmission. Methodology/Principal findings Malacological and parasitological surveys were conducted between 2016 and 2019. In total, 11,116 Bulinus spp. snails were collected from 65 of 112 freshwater bodies surveyed. Bulinus species identification were determined using mitochondrial cox1 sequences for a representative subset of collected Bulinus (n = 504) and together with archived museum specimens (n = 6), 433 B. globosus and 77 B. nasutus were identified. Phylogenetic analysis of cox1 haplotypes revealed three distinct populations of B. globosus, two with an overlapping distribution on Pemba and one on Unguja. For B. nasutus, only a single clade with matching haplotypes was observed across the islands and included reference sequences from Kenya. Schistosoma haematobium cercariae (n = 158) were identified from 12 infected B. globosus and one B. nasutus collected between 2016 and 2019 in Pemba, and cercariae originating from 69 Bulinus spp. archived in museum collections. Schistosoma bovis cercariae (n = 21) were identified from seven additional B. globosus collected between 2016 and 2019 in Pemba. By analysing a partial mitochondrial cox1 region and the nuclear ITS (1–5.8S-2) rDNA region of Schistosoma cercariae, we identified 18 S. haematobium and three S. bovis haplotypes representing populations associated with mainland Africa and the Indian Ocean Islands (Zanzibar, Madagascar, Mauritius and Mafia). Conclusions/Significance The individual B. nasutus on Pemba infected with S. haematobium demonstrates that B. nasutus could also play a role in the local transmission of S. haematobium. We provide preliminary evidence that intraspecific variability of S. haematobium on Pemba may increase the transmission potential of S. haematobium locally due to the expanded intermediate host range, and that the presence of S. bovis complicates the environmental surveillance of schistosome infections. Schistosomiasis is a snail-borne neglected tropical disease caused by parasitic blood flukes of the genus Schistosoma. Human urogenital schistosomiasis is targeted for elimination on the Zanzibar Archipelago, United Republic of Tanzania, with multiple interventions being implemented to curtail transmission of the parasite to humans on the islands since 2012. Environmental surveillance for schistosomiasis transmission by collecting intermediate host snails, checking snails for Schistosoma infection, and preserving collected snails and Schistosoma parasites offers the possibility for molecular analyses to investigate the evolutionary/genetic relationships of both snails and parasites. Schistosome transmission on Zanzibar was believed to involve a single schistosome species (Schistosoma haematobium) transmitted via a single intermediate host species (Bulinus globosus). However, our findings demonstrate the locally established presence of S. bovis, responsible for bovine intestinal schistosomiasis, and an extended intermediate host compatibility of S. haematobium with the snail B. nasutus on Pemba. Increased parasite diversity and intermediate host species compatibility may increase the transmission of Schistosoma species on Zanzibar and stretch resources for public health interventions with the need for Schistosoma species specific surveillance.
Collapse
Affiliation(s)
- Tom Pennance
- Department of Science, Natural History Museum, London, United Kingdom
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
- London Centre for Neglected Tropical Disease Research, London, United Kingdom
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific–Northwest, Western University of Health Sciences, Lebanon, Oregon, United States of America
- * E-mail:
| | - Shaali Makame Ame
- Public Health Laboratory-Ivo de Carneri, Pemba, United Republic of Tanzania
| | - Amour Khamis Amour
- Public Health Laboratory-Ivo de Carneri, Pemba, United Republic of Tanzania
| | | | - Mtumweni Ali Muhsin
- Neglected Diseases Program, Ministry of Health Zanzibar, United Republic of Tanzania
| | - Fatma Kabole
- Neglected Diseases Program, Ministry of Health Zanzibar, United Republic of Tanzania
| | - Said Mohammed Ali
- Public Health Laboratory-Ivo de Carneri, Pemba, United Republic of Tanzania
| | - John Archer
- Department of Science, Natural History Museum, London, United Kingdom
- London Centre for Neglected Tropical Disease Research, London, United Kingdom
| | - Fiona Allan
- Department of Science, Natural History Museum, London, United Kingdom
- London Centre for Neglected Tropical Disease Research, London, United Kingdom
- The Scottish Oceans Institute, Gatty Marine Laboratory, University of St Andrews, East Sands, St Andrews, United Kingdom
| | - Aidan Emery
- Department of Science, Natural History Museum, London, United Kingdom
- London Centre for Neglected Tropical Disease Research, London, United Kingdom
| | - Muriel Rabone
- Department of Science, Natural History Museum, London, United Kingdom
- London Centre for Neglected Tropical Disease Research, London, United Kingdom
| | - Stefanie Knopp
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - David Rollinson
- Department of Science, Natural History Museum, London, United Kingdom
- London Centre for Neglected Tropical Disease Research, London, United Kingdom
| | - Joanne Cable
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Bonnie L. Webster
- Department of Science, Natural History Museum, London, United Kingdom
- London Centre for Neglected Tropical Disease Research, London, United Kingdom
| |
Collapse
|
30
|
Tober AV, Govender D, Russo IRM, Cable J. The microscopic five of the big five: Managing zoonotic diseases within and beyond African wildlife protected areas. ADVANCES IN PARASITOLOGY 2022; 117:1-46. [PMID: 35878948 DOI: 10.1016/bs.apar.2022.05.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
African protected areas strive to conserve the continent's great biodiversity with a targeted focus on the flagship 'Big Five' megafauna. Though often not considered, this biodiversity protection also extends to the lesser-known microbes and parasites that are maintained in these diverse ecosystems, often in a silent and endemically stable state. Climate and anthropogenic change, and associated diversity loss, however, are altering these dynamics leading to shifts in ecological interactions and pathogen spill over into new niches and hosts. As many African protected areas are bordered by game and livestock farms, as well as villages, they provide an ideal study system to assess infection dynamics at the human-livestock-wildlife interface. Here we review five zoonotic, multi-host diseases (bovine tuberculosis, brucellosis, Rift Valley fever, schistosomiasis and cryptosporidiosis)-the 'Microscopic Five'-and discuss the biotic and abiotic drivers of parasite transmission using the iconic Kruger National Park, South Africa, as a case study. We identify knowledge gaps regarding the impact of the 'Microscopic Five' on wildlife within parks and highlight the need for more empirical data, particularly for neglected (schistosomiasis) and newly emerging (cryptosporidiosis) diseases, as well as zoonotic disease risk from the rising bush meat trade and game farm industry. As protected areas strive to become further embedded in the socio-economic systems that surround them, providing benefits to local communities, One Health approaches can help maintain the ecological integrity of ecosystems, while protecting local communities and economies from the negative impacts of disease.
Collapse
Affiliation(s)
- Anya V Tober
- School of Biosciences, Cardiff University, Cardiff, Wales, United Kingdom.
| | - Danny Govender
- SANParks, Scientific Services, Savanna and Grassland Research Unit, Pretoria, South Africa; Department of Paraclinical Sciences, University of Pretoria, Onderstepoort, South Africa
| | - Isa-Rita M Russo
- School of Biosciences, Cardiff University, Cardiff, Wales, United Kingdom
| | - Jo Cable
- School of Biosciences, Cardiff University, Cardiff, Wales, United Kingdom
| |
Collapse
|
31
|
Mating Interactions between Schistosoma bovis and S. mansoni and Compatibility of Their F1 Progeny with Biomphalaria glabrata and Bulinus truncatus. Microorganisms 2022; 10:microorganisms10061251. [PMID: 35744769 PMCID: PMC9227498 DOI: 10.3390/microorganisms10061251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/12/2022] [Accepted: 06/14/2022] [Indexed: 11/22/2022] Open
Abstract
Contrary to the majority of other Trematoda, Schistosoma species are gonochoric. Consequently, in endemic areas where several schistosome species overlap and can co-infect the same definitive host, there may be frequent opportunities for interspecific pairing. Our experimental study provides novel insight on the pairing behavior between Schistosoma bovis and S. mansoni in mixed infections in mice. We used six mate choice experiments to assess mating interactions between the two schistosome species. We show that mating between the two Schistosoma species is not random and that S. mansoni exhibits greater mate recognition compared to S. bovis. We also performed reciprocal crosses (male S. mansoni × female S. bovis) and (female S. mansoni × male S. bovis) that produce active swimming miracidia. These miracidia were genotyped by ITS2 sequencing and proposed for mollusc infection. Molecular analyses show that all the miracidia are parthenogenetically produced (i.e., their harbor the mother ITS2 genotype) and as a consequence can only infect the mollusc of the maternal species. Offspring produced by male S. mansoni × female S. bovis pairing can only infect Bulinus truncatus whereas offspring produced by female S. mansoni × male S. bovis can only infect Biomphalaria glabrata snails. Evolutionary and epidemiological consequences are discussed.
Collapse
|
32
|
Angora EK, Vangraefschepe A, Allienne JF, Menan H, Coulibaly JT, Meïté A, Raso G, Winkler MS, Yavo W, Touré AO, N'Goran EK, Zinsstag J, Utzinger J, Balmer O, Boissier J. Population genetic structure of Schistosoma haematobium and Schistosoma haematobium × Schistosoma bovis hybrids among school-aged children in Côte d'Ivoire. Parasite 2022; 29:23. [PMID: 35522066 PMCID: PMC9074780 DOI: 10.1051/parasite/2022023] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 04/04/2022] [Indexed: 11/29/2022] Open
Abstract
While population genetics of Schistosoma haematobium have been investigated in West Africa, only scant data are available from Côte d’Ivoire. The purpose of this study was to analyze both genetic variability and genetic structure among S. haematobium populations and to quantify the frequency of S. haematobium × S. bovis hybrids in school-aged children in different parts of Côte d’Ivoire. Urine samples were subjected to a filtration method and examined microscopically for Schistosoma eggs in four sites in the western and southern parts of Côte d’Ivoire. A total of 2692 miracidia were collected individually and stored on Whatman® FTA cards. Of these, 2561 miracidia were successfully genotyped for species and hybrid identification using rapid diagnostic multiplex mitochondrial cox1 PCR and PCR Restriction Fragment Length Polymorphism (PCR-RFLP) analysis of the nuclear ITS2 region. From 2164 miracidia, 1966 (90.9%) were successfully genotyped using at least 10 nuclear microsatellite loci to investigate genetic diversity and population structure. Significant differences were found between sites in all genetic diversity indices and genotypic differentiation was observed between the site in the West and the three sites in the East. Analysis at the infrapopulation level revealed clustering of parasite genotypes within individual children, particularly in Duekoué (West) and Sikensi (East). Of the six possible cox1-ITS2 genetic profiles obtained from miracidia, S. bovis cox1 × S. haematobium ITS2 (42.0%) was the most commonly observed in the populations. We identified only 15 miracidia (0.7%) with an S. bovis cox1 × S. bovis ITS2 genotype. Our study provides new insights into the population genetics of S. haematobium and S. haematobium × S. bovis hybrids in humans in Côte d’Ivoire and we advocate for researching hybrid schistosomes in animals such as rodents and cattle in Côte d’Ivoire.
Collapse
Affiliation(s)
- Etienne K Angora
- Swiss Tropical and Public Health Institute, P.O. Box, CH-4002 Basel, Switzerland - University of Basel, Kreuzstrasse 2, CH-4123 Allschwil, Switzerland - Unité de Formation et de Recherche Sciences Pharmaceutiques et Biologiques, Université Félix Houphouët-Boigny, BPV 34 Abidjan, Côte d'Ivoire
| | - Alexane Vangraefschepe
- IHPE, Univ. Montpellier, CNRS, Ifremer, Univ. Perpignan Via Domitia, 66860 Perpignan, France
| | - Jean-François Allienne
- IHPE, Univ. Montpellier, CNRS, Ifremer, Univ. Perpignan Via Domitia, 66860 Perpignan, France
| | - Hervé Menan
- Unité de Formation et de Recherche Sciences Pharmaceutiques et Biologiques, Université Félix Houphouët-Boigny, BPV 34 Abidjan, Côte d'Ivoire
| | - Jean T Coulibaly
- Swiss Tropical and Public Health Institute, P.O. Box, CH-4002 Basel, Switzerland - University of Basel, Kreuzstrasse 2, CH-4123 Allschwil, Switzerland - Unité de Formation et de Recherche Biosciences, Université Félix Houphouët-Boigny, 22 BP 770, Abidjan 22, Côte d'Ivoire - Centre Suisse de Recherches Scientifiques en Côte d'Ivoire, 01 BP 1303, Abidjan 01, Côte d'Ivoire
| | - Aboulaye Meïté
- Programme National de Lutte contre les Maladies Tropicales Négligées à Chimiothérapie Préventive, 06 BP 6394, Abidjan 06, Côte d'Ivoire
| | - Giovanna Raso
- Swiss Tropical and Public Health Institute, P.O. Box, CH-4002 Basel, Switzerland - University of Basel, Kreuzstrasse 2, CH-4123 Allschwil, Switzerland
| | - Mirko S Winkler
- Swiss Tropical and Public Health Institute, P.O. Box, CH-4002 Basel, Switzerland - University of Basel, Kreuzstrasse 2, CH-4123 Allschwil, Switzerland
| | - William Yavo
- Unité de Formation et de Recherche Sciences Pharmaceutiques et Biologiques, Université Félix Houphouët-Boigny, BPV 34 Abidjan, Côte d'Ivoire
| | - André O Touré
- Institut Pasteur de Côte d'Ivoire, BPV 490 Abidjan, Côte d'Ivoire
| | - Eliézer K N'Goran
- Unité de Formation et de Recherche Biosciences, Université Félix Houphouët-Boigny, 22 BP 770, Abidjan 22, Côte d'Ivoire - Centre Suisse de Recherches Scientifiques en Côte d'Ivoire, 01 BP 1303, Abidjan 01, Côte d'Ivoire
| | - Jakob Zinsstag
- Swiss Tropical and Public Health Institute, P.O. Box, CH-4002 Basel, Switzerland - University of Basel, Kreuzstrasse 2, CH-4123 Allschwil, Switzerland
| | - Jürg Utzinger
- Swiss Tropical and Public Health Institute, P.O. Box, CH-4002 Basel, Switzerland - University of Basel, Kreuzstrasse 2, CH-4123 Allschwil, Switzerland
| | - Oliver Balmer
- Swiss Tropical and Public Health Institute, P.O. Box, CH-4002 Basel, Switzerland - University of Basel, Kreuzstrasse 2, CH-4123 Allschwil, Switzerland
| | - Jérôme Boissier
- IHPE, Univ. Montpellier, CNRS, Ifremer, Univ. Perpignan Via Domitia, 66860 Perpignan, France
| |
Collapse
|
33
|
Onyekwere AM, Rey O, Allienne JF, Nwanchor MC, Alo M, Uwa C, Boissier J. Population Genetic Structure and Hybridization of Schistosoma haematobium in Nigeria. Pathogens 2022; 11:425. [PMID: 35456103 PMCID: PMC9026724 DOI: 10.3390/pathogens11040425] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/24/2022] [Accepted: 03/29/2022] [Indexed: 11/21/2022] Open
Abstract
Background: Schistosomiasis is a major poverty-related disease caused by dioecious parasitic flatworms of the genus Schistosoma with a health impact on both humans and animals. Hybrids of human urogenital schistosome and bovine intestinal schistosome have been reported in humans in several of Nigeria’s neighboring West African countries. No empirical studies have been carried out on the genomic diversity of Schistosoma haematobium in Nigeria. Here, we present novel data on the presence and prevalence of hybrids and the population genetic structure of S. haematobium. Methods: 165 Schistosoma-positive urine samples were obtained from 12 sampling sites in Nigeria. Schistosoma haematobium eggs from each sample were hatched and each individual miracidium was picked and preserved in Whatman® FTA cards for genomic analysis. Approximately 1364 parasites were molecularly characterized by rapid diagnostic multiplex polymerase chain reaction (RD-PCR) for mitochondrial DNA gene (Cox1 mtDNA) and a subset of 1136 miracidia were genotyped using a panel of 18 microsatellite markers. Results: No significant difference was observed in the population genetic diversity (p > 0.05), though a significant difference was observed in the allelic richness of the sites except sites 7, 8, and 9 (p < 0.05). Moreover, we observed two clusters of populations: west (populations 1−4) and east (populations 7−12). Of the 1364 miracidia genotyped, 1212 (89%) showed an S. bovis Cox1 profile and 152 (11%) showed an S. haematobium cox1 profile. All parasites showed an S. bovis Cox1 profile except for some at sites 3 and 4. Schistosoma miracidia full genotyping showed 59.3% of the S. bovis ITS2 allele. Conclusions: This study provides novel insight into hybridization and population genetic structure of S. haematobium in Nigeria. Our findings suggest that S. haematobium x S. bovis hybrids are common in Nigeria. More genomic studies on both human- and animal-infecting parasites are needed to ascertain the role of animals in schistosome transmission.
Collapse
Affiliation(s)
- Amos Mathias Onyekwere
- Department of Biology, Alex Ekwueme Federal University, Ndufu-Alike, Abakaliki PMB 1010, Nigeria; (A.M.O.); (C.U.)
- IHPE, University Montpellier, CNRS, Ifremer, University Perpignan Via Domitia, F-66000 Perpignan, France; (O.R.); (J.-F.A.)
| | - Olivier Rey
- IHPE, University Montpellier, CNRS, Ifremer, University Perpignan Via Domitia, F-66000 Perpignan, France; (O.R.); (J.-F.A.)
| | - Jean-François Allienne
- IHPE, University Montpellier, CNRS, Ifremer, University Perpignan Via Domitia, F-66000 Perpignan, France; (O.R.); (J.-F.A.)
| | | | - Moses Alo
- Department of Microbiology, Alex Ekwueme Federal University, Ndufu-Alike, Abakaliki PMB 1010, Nigeria;
| | - Clementina Uwa
- Department of Biology, Alex Ekwueme Federal University, Ndufu-Alike, Abakaliki PMB 1010, Nigeria; (A.M.O.); (C.U.)
| | - Jerome Boissier
- IHPE, University Montpellier, CNRS, Ifremer, University Perpignan Via Domitia, F-66000 Perpignan, France; (O.R.); (J.-F.A.)
| |
Collapse
|
34
|
Hybridization increases genetic diversity in Schistosoma haematobium populations infecting humans in Cameroon. Infect Dis Poverty 2022; 11:37. [PMID: 35346375 PMCID: PMC8962594 DOI: 10.1186/s40249-022-00958-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 03/09/2022] [Indexed: 11/10/2022] Open
Abstract
Background Hybrids between Schistosoma haematobium (Sh) and S. bovis (Sb) have been found in several African countries as well as in Europe. Since the consequences of this hybridization are still unknown, this study aims to verify the presence of such hybrids in Cameroonian humans, to describe the structure of S. haematobium populations on a large geographic scale, and to examine the impact of these hybrids on genetic diversity and structure of these populations.
Methods From January to April 2019, urine from infected children was collected in ten geographically distinct populations. Miracidia were collected from eggs in this urine. To detect the presence of hybrids among these miracidia we genotyped both Cox1 (RD-PCR) and ITS2 gene (PCR-RFLP). Population genetic diversity and structure was assessed by genotyping each miracidium with a panel of 14 microsatellite markers. Gene diversity was measured using both heterozygosity and allelic richness indexes, and genetic structure was analyzed using paired Fst, PCA and Bayesian approaches. Results Of the 1327 miracidia studied, 88.7% were identified as pure genotypes of S. haematobium (Sh_Sh/Sh) while the remaining 11.3% were hybrids (7.0% with Sh_Sh/Sb, 3.7% with Sb_Sb/Sh and 0.4% with Sb_Sh/Sb). No miracidium has been identified as a pure genotype of S. bovis. Allelic richness ranged from 5.55 (Loum population) to 7.73 (Matta-Barrage) and differed significantly between populations. Mean heterozygosity ranged from 53.7% (Loum) to 59% (Matta Barrage) with no significant difference. The overall genetic differentiation inferred either by a principal component analysis or by the Bayesian approach shows a partial structure. Southern populations (Loum and Matta Barrage) were clearly separated from other localities but genetic differentiation between northern localities was limited, certainly due to the geographic proximity between these sites. Conclusions Hybrids between S. haematobium and S. bovis were identified in 11.3% of miracidia that hatched from eggs present in the urine of Cameroonian schoolchildren. The percentages of these hybrids are correlated with the genetic diversity of the parasite, indicating that hybridization increases genetic diversity in our sampling sites. Hybridization is therefore a major biological process that shapes the genetic diversity of S. haematobium. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s40249-022-00958-0.
Collapse
|
35
|
Adeyemo P, Léger E, Hollenberg E, Diouf N, Sène M, Webster JP, Häsler B. Estimating the financial impact of livestock schistosomiasis on traditional subsistence and transhumance farmers keeping cattle, sheep and goats in northern Senegal. Parasit Vectors 2022; 15:101. [PMID: 35317827 PMCID: PMC8938966 DOI: 10.1186/s13071-021-05147-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 12/29/2021] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Schistosomiasis is a disease that poses major threats to human and animal health, as well as the economy, especially in sub-Saharan Africa (SSA). Whilst many studies have evaluated the economic impact of schistosomiasis in humans, to date only one has been performed in livestock in SSA and none in Senegal. This study aimed to estimate the financial impact of livestock schistosomiasis in selected regions of Senegal. METHODS Stochastic partial budget models were developed for traditional ruminant farmers in 12 villages in northern Senegal. The models were parameterised using data from a cross-sectional survey, focus group discussions, scientific literature and available statistics. Two scenarios were defined: scenario 1 modelled a situation in which farmers tested and treated their livestock for schistosomiasis, whilst scenario 2 modelled a situation in which there were no tests or treatment. The model was run with 10,000 iterations for 1 year; results were expressed in West African CFA francs (XOF; 1 XOF was equivalent to 0.0014 GBP at the time of analysis). Sensitivity analyses were conducted to assess the impact of uncertain variables on the disease costs. RESULTS Farmers surveyed were aware of schistosomiasis in their ruminant livestock and reported hollowing around the eyes, diarrhoea and weight loss as the most common clinical signs in all species. For scenario 1, the median disease costs per year and head of cattle, sheep and goats were estimated at 13,408 XOF, 27,227 XOF and 27,694 XOF, respectively. For scenario 2, the disease costs per year and head of cattle, sheep and goats were estimated at 49,296 XOF, 70,072 XOF and 70,281 XOF, respectively. CONCLUSIONS Our findings suggest that the financial impact of livestock schistosomiasis on traditional subsistence and transhumance farmers is substantial. Consequently, treating livestock schistosomiasis has the potential to generate considerable benefits to farmers and their families. Given the dearth of data in this region, our study serves as a foundation for further in-depth studies to provide estimates of disease impact and as a baseline for future economic analyses. This will also enable One Health economic studies where the burden on both humans and animals is estimated and included in cross-sectoral cost-benefit and cost-effectiveness analyses of disease control strategies.
Collapse
Affiliation(s)
- Praise Adeyemo
- Department of Pathobiology and Population Sciences, Royal Veterinary College, University of London, Hawkshead Lane, Hatfield, Hertfordshire, AL9 7TA UK
- Present Address: Dr Ameyo Stella Adadevoh (DRASA) Health Trust, Yaba, Lagos Nigeria
| | - Elsa Léger
- Department of Pathobiology and Population Sciences, Royal Veterinary College, University of London, Hawkshead Lane, Hatfield, Hertfordshire, AL9 7TA UK
- London Centre for Neglected Tropical Disease Research, School of Public Health, Imperial College London, London, UK
| | - Elizabeth Hollenberg
- Department of Pathobiology and Population Sciences, Royal Veterinary College, University of London, Hawkshead Lane, Hatfield, Hertfordshire, AL9 7TA UK
| | - Nicolas Diouf
- Institut Supérieur de Formation Agricole et Rurale, Université de Thiès, Bambey, Senegal
- Unité de Formation et de Recherche des Sciences Agronomiques, d’Aquaculture et de Technologies Alimentaires, Université Gaston Berger, Saint-Louis, Senegal
| | - Mariama Sène
- Unité de Formation et de Recherche des Sciences Agronomiques, d’Aquaculture et de Technologies Alimentaires, Université Gaston Berger, Saint-Louis, Senegal
| | - Joanne P. Webster
- Department of Pathobiology and Population Sciences, Royal Veterinary College, University of London, Hawkshead Lane, Hatfield, Hertfordshire, AL9 7TA UK
- London Centre for Neglected Tropical Disease Research, School of Public Health, Imperial College London, London, UK
| | - Barbara Häsler
- Department of Pathobiology and Population Sciences, Royal Veterinary College, University of London, Hawkshead Lane, Hatfield, Hertfordshire, AL9 7TA UK
- London Centre for Neglected Tropical Disease Research, School of Public Health, Imperial College London, London, UK
| |
Collapse
|
36
|
Lund AJ, Wade KJ, Nikolakis ZL, Ivey KN, Perry BW, Pike HNC, Paull SH, Liu Y, Castoe TA, Pollock DD, Carlton EJ. Integrating genomic and epidemiologic data to accelerate progress toward schistosomiasis elimination. eLife 2022; 11:79320. [PMID: 36040013 PMCID: PMC9427098 DOI: 10.7554/elife.79320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 08/11/2022] [Indexed: 11/13/2022] Open
Abstract
The global community has adopted ambitious goals to eliminate schistosomiasis as a public health problem, and new tools are needed to achieve them. Mass drug administration programs, for example, have reduced the burden of schistosomiasis, but the identification of hotspots of persistent and reemergent transmission threaten progress toward elimination and underscore the need to couple treatment with interventions that reduce transmission. Recent advances in DNA sequencing technologies make whole-genome sequencing a valuable and increasingly feasible option for population-based studies of complex parasites such as schistosomes. Here, we focus on leveraging genomic data to tailor interventions to distinct social and ecological circumstances. We consider two priority questions that can be addressed by integrating epidemiological, ecological, and genomic information: (1) how often do non-human host species contribute to human schistosome infection? and (2) what is the importance of locally acquired versus imported infections in driving transmission at different stages of elimination? These questions address processes that can undermine control programs, especially those that rely heavily on treatment with praziquantel. Until recently, these questions were difficult to answer with sufficient precision to inform public health decision-making. We review the literature related to these questions and discuss how whole-genome approaches can identify the geographic and taxonomic sources of infection, and how such information can inform context-specific efforts that advance schistosomiasis control efforts and minimize the risk of reemergence.
Collapse
Affiliation(s)
- Andrea J Lund
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado AnschutzAuroraUnited States
| | - Kristen J Wade
- Department of Biochemistry & Molecular Genetics, University of Colorado School of MedicineAuroraUnited States
| | - Zachary L Nikolakis
- Department of Biology, University of Texas at ArlingtonArlingtonUnited States
| | - Kathleen N Ivey
- Department of Biology, University of Texas at ArlingtonArlingtonUnited States
| | - Blair W Perry
- Department of Biology, University of Texas at ArlingtonArlingtonUnited States
| | - Hamish NC Pike
- Department of Biochemistry & Molecular Genetics, University of Colorado School of MedicineAuroraUnited States
| | - Sara H Paull
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado AnschutzAuroraUnited States
| | - Yang Liu
- Sichuan Centers for Disease Control and PreventionChengduChina
| | - Todd A Castoe
- Department of Biology, University of Texas at ArlingtonArlingtonUnited States
| | - David D Pollock
- Department of Biochemistry & Molecular Genetics, University of Colorado School of MedicineAuroraUnited States
| | - Elizabeth J Carlton
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado AnschutzAuroraUnited States
| |
Collapse
|
37
|
Padi N, Akumadu BO, Faerch O, Aloke C, Meyer V, Achilonu I. Engineering a Pseudo-26-kDa Schistosoma Glutathione Transferase from bovis/ haematobium for Structure, Kinetics, and Ligandin Studies. Biomolecules 2021; 11:1844. [PMID: 34944488 PMCID: PMC8699318 DOI: 10.3390/biom11121844] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/25/2021] [Accepted: 11/25/2021] [Indexed: 12/25/2022] Open
Abstract
Glutathione transferases (GSTs) are the main detoxification enzymes in schistosomes. These parasitic enzymes tend to be upregulated during drug treatment, with Schistosoma haematobium being one of the species that mainly affect humans. There is a lack of complete sequence information on the closely related bovis and haematobium 26-kDa GST isoforms in any database. Consequently, we engineered a pseudo-26-kDa S. bovis/haematobium GST (Sbh26GST) to understand structure-function relations and ligandin activity towards selected potential ligands. Sbh26GST was overexpressed in Escherichia coli as an MBP-fusion protein, purified to homogeneity and catalyzed 1-chloro-2,4-dinitrobenzene-glutathione (CDNB-GSH) conjugation activity, with a specific activity of 13 μmol/min/mg. This activity decreased by ~95% in the presence of bromosulfophthalein (BSP), which showed an IC50 of 27 µM. Additionally, enzyme kinetics revealed that BSP acts as a non-competitive inhibitor relative to GSH. Spectroscopic studies affirmed that Sbh26GST adopts the canonical GST structure, which is predominantly α-helical. Further extrinsic 8-anilino-1-naphthalenesulfonate (ANS) spectroscopy illustrated that BSP, praziquantel (PZQ), and artemisinin (ART) might preferentially bind at the dimer interface or in proximity to the hydrophobic substrate-binding site of the enzyme. The Sbh26GST-BSP interaction is both enthalpically and entropically driven, with a stoichiometry of one BSP molecule per Sbh26GST dimer. Enzyme stability appeared enhanced in the presence of BSP and GSH. Induced fit ligand docking affirmed the spectroscopic, thermodynamic, and molecular modelling results. In conclusion, BSP is a potent inhibitor of Sbh26GST and could potentially be rationalized as a treatment for schistosomiasis.
Collapse
Affiliation(s)
- Neo Padi
- Protein Structure-Function and Research Unit, School of Molecular and Cell Biology, Faculty of Science, University of the Witwatersrand, Braamfontein, Johannesburg 2050, South Africa; (N.P.); (B.O.A.); (O.F.); (C.A.)
| | - Blessing Oluebube Akumadu
- Protein Structure-Function and Research Unit, School of Molecular and Cell Biology, Faculty of Science, University of the Witwatersrand, Braamfontein, Johannesburg 2050, South Africa; (N.P.); (B.O.A.); (O.F.); (C.A.)
| | - Olga Faerch
- Protein Structure-Function and Research Unit, School of Molecular and Cell Biology, Faculty of Science, University of the Witwatersrand, Braamfontein, Johannesburg 2050, South Africa; (N.P.); (B.O.A.); (O.F.); (C.A.)
| | - Chinyere Aloke
- Protein Structure-Function and Research Unit, School of Molecular and Cell Biology, Faculty of Science, University of the Witwatersrand, Braamfontein, Johannesburg 2050, South Africa; (N.P.); (B.O.A.); (O.F.); (C.A.)
| | - Vanessa Meyer
- Functional Genomics and Immunogenetics Laboratory, School of Molecular and Cell Biology, Faculty of Science, University of the Witwatersrand, Braamfontein, Johannesburg 2050, South Africa;
| | - Ikechukwu Achilonu
- Protein Structure-Function and Research Unit, School of Molecular and Cell Biology, Faculty of Science, University of the Witwatersrand, Braamfontein, Johannesburg 2050, South Africa; (N.P.); (B.O.A.); (O.F.); (C.A.)
| |
Collapse
|
38
|
Reguera-Gomez M, Valero MA, Oliver-Chiva MC, de Elias-Escribano A, Artigas P, Cabeza-Barrera MI, Salas-Coronas J, Boissier J, Mas-Coma S, Bargues MD. First morphogenetic analysis of parasite eggs from Schistosomiasis haematobium infected sub-Saharan migrants in Spain and proposal for a new standardised study methodology. Acta Trop 2021; 223:106075. [PMID: 34358512 DOI: 10.1016/j.actatropica.2021.106075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 07/20/2021] [Accepted: 07/23/2021] [Indexed: 12/17/2022]
Abstract
Schistosomiasis is a Neglected Tropical Disease caused by trematode species of the genus Schistosoma. Both, autochthonous and imported cases of urogenital schistosomiasis have been described in Europe. The present study focuses on eggs, considered pure S. haematobium by genetic characterisation (intergenic ITS region of the rDNA and cox1 mtDNA). A phenotypic characterisation of S. haematobium eggs was made by morphometric comparison with experimental populations of S. bovis and S. mansoni, to help in the diagnosis of S. haematobium populations infecting sub-Saharan migrants in Spain. Analyses were made by Computer Image Analysis System (CIAS) applied on the basis of new standardised measurements and geometric morphometric tools. The principal component analysis (PCA), including seventeen non-redundant measurements, showed three phenotypic patterns in eggs of S. haematobium, S. bovis and S. mansoni. PCA showed that the S. bovis population presented a large egg size range with a pronouncedly larger maximum size. Similarly, S. bovis shows bigger spine values than S. haematobium. Mahalanobis distances between each pair of groups were calculated for each discriminant analysis performed. In general, S. mansoni and S. bovis present larger distances between them than with S. haematobium, i.e. they present the greatest differences. Regarding the spine, S. haematobium and S. mansoni are the most distant species. Results show the usefulness of this methodology for the phenotypic differentiation between eggs from these Schistosoma species, capable of discerning morphologically close eggs, as is the case of the haematobium group. Schistosoma egg phenotyping approaches may be applied to assess not only hybrid forms but also potential influences of a variety of other factors.
Collapse
Affiliation(s)
- Marta Reguera-Gomez
- Departamento de Parasitología, Facultad de Farmacia, Universidad de Valencia, Av. Vicent Andrés Estellés s/n, 46100, Burjassot, Valencia, Spain.
| | - M Adela Valero
- Departamento de Parasitología, Facultad de Farmacia, Universidad de Valencia, Av. Vicent Andrés Estellés s/n, 46100, Burjassot, Valencia, Spain.
| | - M Carmen Oliver-Chiva
- Departamento de Parasitología, Facultad de Farmacia, Universidad de Valencia, Av. Vicent Andrés Estellés s/n, 46100, Burjassot, Valencia, Spain
| | - Alejandra de Elias-Escribano
- Departamento de Parasitología, Facultad de Farmacia, Universidad de Valencia, Av. Vicent Andrés Estellés s/n, 46100, Burjassot, Valencia, Spain.
| | - Patricio Artigas
- Departamento de Parasitología, Facultad de Farmacia, Universidad de Valencia, Av. Vicent Andrés Estellés s/n, 46100, Burjassot, Valencia, Spain.
| | | | | | - Jérôme Boissier
- Université de Perpignan Via Domitia, IHPE UMR 5244, CNRS, IFREMER, Univ. Montpellier, F-66860 Perpignan, France.
| | - Santiago Mas-Coma
- Departamento de Parasitología, Facultad de Farmacia, Universidad de Valencia, Av. Vicent Andrés Estellés s/n, 46100, Burjassot, Valencia, Spain.
| | - M Dolores Bargues
- Departamento de Parasitología, Facultad de Farmacia, Universidad de Valencia, Av. Vicent Andrés Estellés s/n, 46100, Burjassot, Valencia, Spain.
| |
Collapse
|
39
|
Borlase A, Rudge JW, Léger E, Diouf ND, Fall CB, Diop SD, Catalano S, Sène M, Webster JP. Spillover, hybridization, and persistence in schistosome transmission dynamics at the human-animal interface. Proc Natl Acad Sci U S A 2021; 118:e2110711118. [PMID: 34615712 PMCID: PMC8521685 DOI: 10.1073/pnas.2110711118] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/06/2021] [Indexed: 12/24/2022] Open
Abstract
Zoonotic spillover and hybridization of parasites are major emerging public and veterinary health concerns at the interface of infectious disease biology, evolution, and control. Schistosomiasis is a neglected tropical disease of global importance caused by parasites of the Schistosoma genus, and the Schistosoma spp. system within Africa represents a key example of a system where spillover of animal parasites into human populations has enabled formation of hybrids. Combining model-based approaches and analyses of parasitological, molecular, and epidemiological data from northern Senegal, a region with a high prevalence of schistosome hybrids, we aimed to unravel the transmission dynamics of this complex multihost, multiparasite system. Using Bayesian methods and by estimating the basic reproduction number (R0 ), we evaluate the frequency of zoonotic spillover of Schistosoma bovis from livestock and the potential for onward transmission of hybrid S. bovis × S. haematobium offspring within human populations. We estimate R0 of hybrid schistosomes to be greater than the critical threshold of one (1.76; 95% CI 1.59 to 1.99), demonstrating the potential for hybridization to facilitate spread and establishment of schistosomiasis beyond its original geographical boundaries. We estimate R0 for S. bovis to be greater than one in cattle (1.43; 95% CI 1.24 to 1.85) but not in other ruminants, confirming cattle as the primary zoonotic reservoir. Through longitudinal simulations, we also show that where S. bovis and S. haematobium are coendemic (in livestock and humans respectively), the relative importance of zoonotic transmission is predicted to increase as the disease in humans nears elimination.
Collapse
Affiliation(s)
- Anna Borlase
- Centre for Emerging, Endemic and Exotic Diseases, Department of Pathobiology and Population Sciences, Royal Veterinary College, University of London, Hatfield AL9 7TA, United Kingdom;
| | - James W Rudge
- Communicable Diseases Policy Research Group, Department of Global Health and Development, London School of Hygiene and Tropical Medicine, London WC1E 7HT, United Kingdom
- Faculty of Public Health, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Elsa Léger
- Centre for Emerging, Endemic and Exotic Diseases, Department of Pathobiology and Population Sciences, Royal Veterinary College, University of London, Hatfield AL9 7TA, United Kingdom
| | - Nicolas D Diouf
- Institut Supérieur de Formation Agricole et Rurale, Université de Thiès, Bambey BP 54, Senegal
- Unité de Formation et de Recherche des Sciences Agronomiques, d'Aquaculture et de Technologies Alimentaires, Université Gaston Berger, BP 32000 Saint-Louis, Senegal
| | - Cheikh B Fall
- Service de Parasitologie - Mycologie, Faculté de Médecine, Pharmacie et Odontologie, Université Cheikh Anta Diop, BP 5005 Dakar, Senegal
| | - Samba D Diop
- Institut Supérieur de Formation Agricole et Rurale, Université de Thiès, Bambey BP 54, Senegal
| | - Stefano Catalano
- Centre for Emerging, Endemic and Exotic Diseases, Department of Pathobiology and Population Sciences, Royal Veterinary College, University of London, Hatfield AL9 7TA, United Kingdom
| | - Mariama Sène
- Unité de Formation et de Recherche des Sciences Agronomiques, d'Aquaculture et de Technologies Alimentaires, Université Gaston Berger, BP 32000 Saint-Louis, Senegal
| | - Joanne P Webster
- Centre for Emerging, Endemic and Exotic Diseases, Department of Pathobiology and Population Sciences, Royal Veterinary College, University of London, Hatfield AL9 7TA, United Kingdom
| |
Collapse
|
40
|
Joof E, Sanneh B, Sambou SM, Wade CM. Species diversity and distribution of schistosome intermediate snail hosts in The Gambia. PLoS Negl Trop Dis 2021; 15:e0009823. [PMID: 34606509 PMCID: PMC8516291 DOI: 10.1371/journal.pntd.0009823] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 10/14/2021] [Accepted: 09/20/2021] [Indexed: 11/18/2022] Open
Abstract
There is a need for recent information on intermediate snail hosts of schistosomes in The Gambia; the previous studies were conducted over three decades ago. This study assessed the incidence, species diversity, distribution and infection status of schistosome intermediate snail hosts in the country. Malacological surveys were conducted in all 5 regions of The Gambia: Central River Region (CRR), Upper River Region (URR), Western Region (WR), Lower River Region (LRR) and North Bank Region (NBR). Sampling of snails was undertaken at 114 sites that included permanent water bodies such as streams (bolongs), rice fields, irrigation canals and swamps; and temporal (seasonal) laterite pools. Ecological and physicochemical factors of sites were recorded. Snails were identified morphologically and screened for schistosome infections using molecular techniques. Freshwater snails were found at more than 50% (60/114) of sites sampled. While three species of Bulinus were collected, no Biomphalaria snails were found in any of the sites sampled. Of the total 2877 Bulinus snails collected, 75.9% were identified as Bulinus senegalensis, 20.9% as Bulinus forskalii and 3.2% as Bulinus truncatus. Seasonal pools produced the largest number of snails, and CRR was the region with the largest number of snails. Bulinus senegalensis was found more in seasonal pools as opposed to permanent sites, where B. forskalii and B. truncatus were observed to thrive. Bulinus snails were more common in seasonal sites where aquatic vegetation was present. In permanent sites, the abundance of snails increased with increase in water temperature and decrease in water pH. Bulinus senegalensis was found infected with both S. haematobium and S. bovis, while B. forskalii and B. truncatus had only S. bovis infection. While the human parasite S. haematobium was restricted to just four sites, the livestock parasite S. bovis had a much more widespread geographical distribution across both CRR and URR. This new information on the distribution of intermediate snail hosts of schistosomes in The Gambia will be vital for the national schistosomiasis control initiative. Several studies were conducted on intermediate snail hosts of schistosomes in The Gambia between the 1950s and 1980s, but there are few reports of similar studies in recent times. After The Gambia initiated its national control programme for schistosomiasis in 2014, the need arose for more and current information on schistosomiasis and the intermediate snail hosts involved indirectly in its transmission. We undertook a malacological survey of freshwater sites in all five regions (CRR, URR, WR, LRR and NBR) of The Gambia. While no Biomplalaria snails were found in any of the 114 sites sampled, three species of Bulinus snails were found. Of the total 2877 Bulinus snails collected, 75.9% were identified as Bulinus senegalensis, 20.9% as Bulinus forskalii and 3.2% as Bulinus truncatus. CRR had the highest number of snails amongst the regions and seasonal pools yielded the most snails amongst the habitat types sampled. Habitat type, water temperature and pH of sites were observed to have an influence on snail abundance. All three Bulinus snails were found infected with schistosome parasites. The human parasite (Schistosoma haematobium) had a much more restricted distribution as opposed to the livestock parasite (Schistosoma bovis) which had a wider geographical range. The study provides the first malacological report of intermediate snail hosts of schistosomes in The Gambia in over 3 decades and will be useful to the national schistosomiasis control programme.
Collapse
Affiliation(s)
- Ebrima Joof
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
- National Public Health Laboratories, Ministry of Health and Social Welfare, Banjul, The Gambia
- * E-mail: (EJ); (CMW)
| | - Bakary Sanneh
- National Public Health Laboratories, Ministry of Health and Social Welfare, Banjul, The Gambia
| | - Sana M. Sambou
- Epidemiology and Disease Control Department, Ministry of Health and Social Welfare, Banjul, The Gambia
| | - Christopher M. Wade
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
- * E-mail: (EJ); (CMW)
| |
Collapse
|
41
|
Schols R, Carolus H, Hammoud C, Muzarabani KC, Barson M, Huyse T. Invasive snails, parasite spillback, and potential parasite spillover drive parasitic diseases of Hippopotamus amphibius in artificial lakes of Zimbabwe. BMC Biol 2021; 19:160. [PMID: 34412627 PMCID: PMC8377832 DOI: 10.1186/s12915-021-01093-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 07/12/2021] [Indexed: 11/25/2022] Open
Abstract
Background Humans impose a significant pressure on large herbivore populations, such as hippopotami, through hunting, poaching, and habitat destruction. Anthropogenic pressures can also occur indirectly, such as artificial lake creation and the subsequent introduction of invasive species that alter the ecosystem. These events can lead to drastic changes in parasite diversity and transmission, but generally receive little scientific attention. Results In order to document and identify trematode parasites of the common hippopotamus (Hippopotamus amphibius) in artificial water systems of Zimbabwe, we applied an integrative taxonomic approach, combining molecular diagnostics and morphometrics on archived and new samples. In doing so, we provide DNA reference sequences of the hippopotamus liver fluke Fasciola nyanzae, enabling us to construct the first complete Fasciola phylogeny. We describe parasite spillback of F. nyanzae by the invasive freshwater snail Pseudosuccinea columella, as a consequence of a cascade of biological invasions in Lake Kariba, one of the biggest artificial lakes in the world. Additionally, we report an unknown stomach fluke of the hippopotamus transmitted by the non-endemic snail Radix aff. plicatula, an Asian snail species that has not been found in Africa before, and the stomach fluke Carmyerius cruciformis transmitted by the native snail Bulinus truncatus. Finally, Biomphalaria pfeifferi and two Bulinus species were found as new snail hosts for the poorly documented hippopotamus blood fluke Schistosoma edwardiense. Conclusions Our findings indicate that artificial lakes are breeding grounds for endemic and non-endemic snails that transmit trematode parasites of the common hippopotamus. This has important implications, as existing research links trematode parasite infections combined with other stressors to declining wild herbivore populations. Therefore, we argue that monitoring the anthropogenic impact on parasite transmission should become an integral part of wildlife conservation efforts. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12915-021-01093-2.
Collapse
Affiliation(s)
- Ruben Schols
- Department of Biology, Royal Museum for Central Africa, Tervuren, Belgium. .,Laboratory of Aquatic Biology, KU Leuven Kulak, Kortrijk, Belgium.
| | - Hans Carolus
- Laboratory of Molecular Cell Biology, KU Leuven-VIB Center for Microbiology, Leuven, Belgium
| | - Cyril Hammoud
- Department of Biology, Royal Museum for Central Africa, Tervuren, Belgium.,Limnology Research Unit, Ghent University, Ghent, Belgium
| | | | - Maxwell Barson
- Department of Biological Sciences, University of Zimbabwe, Harare, Zimbabwe.,Department of Biological Sciences, University of Botswana, Gaborone, Botswana.,Lake Kariba Research Station, University of Zimbabwe, Kariba, Zimbabwe
| | - Tine Huyse
- Department of Biology, Royal Museum for Central Africa, Tervuren, Belgium
| |
Collapse
|
42
|
Hybridized Zoonotic Schistosoma Infections Result in Hybridized Morbidity Profiles: A Clinical Morbidity Study amongst Co-Infected Human Populations of Senegal. Microorganisms 2021; 9:microorganisms9081776. [PMID: 34442855 PMCID: PMC8401530 DOI: 10.3390/microorganisms9081776] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/03/2021] [Accepted: 08/17/2021] [Indexed: 11/25/2022] Open
Abstract
Hybridization of infectious agents is a major emerging public and veterinary health concern at the interface of evolution, epidemiology, and control. Whilst evidence of the extent of hybridization amongst parasites is increasing, their impact on morbidity remains largely unknown. This may be predicted to be particularly pertinent where parasites of animals with contrasting pathogenicity viably hybridize with human parasites. Recent research has revealed that viable zoonotic hybrids between human urogenital Schistosoma haematobium with intestinal Schistosoma species of livestock, notably Schistosoma bovis, can be highly prevalent across Africa and beyond. Examining human populations in Senegal, we found increased hepatic but decreased urogenital morbidity, and reduced improvement following treatment with praziquantel, in those infected with zoonotic hybrids compared to non-hybrids. Our results have implications for effective monitoring and evaluation of control programmes, and demonstrate for the first time the potential impact of parasite hybridizations on host morbidity.
Collapse
|
43
|
Ojo JA, Adedokun SA, Akindele AA, Olorunfemi AB, Otutu OA, Ojurongbe TA, Thomas BN, Velavan TP, Ojurongbe O. Prevalence of urogenital and intestinal schistosomiasis among school children in South-west Nigeria. PLoS Negl Trop Dis 2021; 15:e0009628. [PMID: 34314428 PMCID: PMC8345861 DOI: 10.1371/journal.pntd.0009628] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 08/06/2021] [Accepted: 07/05/2021] [Indexed: 01/25/2023] Open
Abstract
Background The risk of co-infection with Schistosoma haematobium and S. mansoni and the potential harmful effect on morbidity and control is enhanced by the overlapping distribution of both species in sub-Saharan Africa. Despite the reported high endemicity of both species in Nigeria, studies on the spread and effect of their mixed infection are limited. Therefore, a cross-sectional survey was conducted among school children in two communities in South-west Nigeria to investigate the prevalence of mixed human schistosome infection, intensity, and possible ectopic egg elimination. Methods Urine and stool samples were collected from consenting school children in Ilie and Ore communities of Osun State, Nigeria. Schistosoma haematobium eggs were detected in urine using the urine filtration technique, while S. mansoni eggs were detected in stool using the Kato–Katz thick smear technique. Results The study enrolled 466 primary and secondary school children (211; 45.3% males vs. 255; 54.7% females; mean age 11.6 ± 3.16 years). The overall prevalence of schistosomiasis was 40% (185/466), with 19% (89/466) recording single S. haematobium infection while 9% (41/465) had a single S. mansoni infection. The geometric mean egg count for S. haematobium was 189.4 egg/10ml urine; 95% CI: range 115.9–262.9, while for S. mansoni, it was 115.7 epg; 95% CI: range 78.4–152.9. The prevalence of ectopic S mansoni (S. mansoni eggs in urine) was 4.7%, while no ectopic S. haematobium (S. haematobium eggs in stool) was recorded. Mixed infection of S. haematobium/S. mansoni had a prevalence of 9.5% (44/466). More females (54.5%) presented with S. haematobium/S. mansoni co-infection. For both parasites, males had higher infection intensity, with a significant difference observed with S. haematobium (p = 0.0004). Hematuria was significant in individuals with single S. haematobium infection (p = 0.002), mixed ectopic S. haematobium/S. mansoni (p = 0.009) and mixed S. haematobium/S. mansoni/ectopic S. mansoni (p = 0.0003). Conclusions These findings suggest the probability of interspecific interactions between S. haematobium and S. mansoni. Scaling up of mass administration of praziquantel and control measures in the study areas is highly desirable. In sub-Saharan Africa, human schistosomiasis is a neglected disease of public health concern caused mostly by Schistosoma haematobium and Schistosoma mansoni. The overlapping range of both species in Africa considerably increases the chance of co-infection. School-aged children are the most vulnerable, as they participate in water contact activities that expose them to free-swimming cercariae released by infected snail species in freshwater. This study examined the probable mixed human Schistosoma infections and associated disease variables in school children in the communities of Ilie and Ore in southwest Nigeria. This study reveals a high prevalence of mixed S. haematobium and S. mansoni, and ectopic S. mansoni eggs (S. mansoni eggs in urine) elimination, highlighting the possible ongoing control challenges in this area. Furthermore, this study indicates that some form of inter-specific interaction exists between S. haematobium and S. mansoni, and may produce potentially significant consequences for developing morbidity in the study areas.
Collapse
Affiliation(s)
- Johnson A. Ojo
- Department of Medical Microbiology & Parasitology, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| | - Samuel A. Adedokun
- Department of Medical Microbiology & Parasitology, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| | - Akeem A. Akindele
- Department of Medical Microbiology & Parasitology, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| | - Adedolapo B. Olorunfemi
- Department of Medical Microbiology & Parasitology, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| | - Olawumi A. Otutu
- Department of Medical Microbiology & Parasitology, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| | - Taiwo A. Ojurongbe
- Department of Mathematical Sciences, Osun State University, Osogbo, Nigeria
| | - Bolaji N. Thomas
- Department of Biomedical Sciences, College of Health Sciences and Technology, Rochester Institute of Technology, Rochester New York, United States of America
| | - Thirumalaisamy P. Velavan
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
- Vietnamese German Center for Medical Research (VG-CARE), Hanoi, Vietnam
| | - Olusola Ojurongbe
- Department of Medical Microbiology & Parasitology, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
- * E-mail:
| |
Collapse
|
44
|
Panzner U, Boissier J. Natural Intra- and Interclade Human Hybrid Schistosomes in Africa with Considerations on Prevention through Vaccination. Microorganisms 2021; 9:microorganisms9071465. [PMID: 34361901 PMCID: PMC8305539 DOI: 10.3390/microorganisms9071465] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 12/04/2022] Open
Abstract
Causal agents of schistosomiasis are dioecious, digenean schistosomes affecting mankind in 76 countries. Preventive measures are manifold but need to be complemented by vaccination for long-term protection; vaccine candidates in advanced pre-clinical/clinical stages include Sm14, Sm-TSP-2/Sm-TSP-2Al®, Smp80/SchistoShield®, and Sh28GST/Bilhvax®. Natural and anthropogenic changes impact on breaking species isolation barriers favoring introgressive hybridization, i.e., allelic exchange among gene pools of sympatric, interbreeding species leading to instant large genetic diversity. Phylogenetic distance matters, thus the less species differ phylogenetically the more likely they hybridize. PubMed and Embase databases were searched for publications limited to hybridale confirmation by mitochondrial cytochrome c oxidase (COX) and/or nuclear ribosomal internal transcribed spacer (ITS). Human schistosomal hybrids are predominantly reported from West Africa with clustering in the Senegal River Basin, and scattering to Europe, Central and Eastern Africa. Noteworthy is the dominance of Schistosoma haematobium interbreeding with human and veterinary species leading due to hybrid vigor to extinction and homogenization as seen for S. guineensis in Cameroon and S. haematobium in Niger, respectively. Heterosis seems to advantage S. haematobium/S. bovis interbreeds with dominant S. haematobium-ITS/S. bovis-COX1 profile to spread from West to East Africa and reoccur in France. S. haematobium/S. mansoni interactions seen among Senegalese and Côte d’Ivoirian children are unexpected due to their high phylogenetic distance. Detecting pure S. bovis and S. bovis/S. curassoni crosses capable of infecting humans observed in Corsica and Côte d’Ivoire, and Niger, respectively, is worrisome. Taken together, species hybridization urges control and preventive measures targeting human and veterinary sectors in line with the One-Health concept to be complemented by vaccination protecting against transmission, infection, and disease recurrence. Functional and structural diversity of naturally occurring human schistosomal hybrids may impact current vaccine candidates requiring further research including natural history studies in endemic areas targeted for clinical trials.
Collapse
Affiliation(s)
- Ursula Panzner
- Division of Infectious Diseases and Tropical Medicine, Ludwig Maximilian University of Munich, 80539 Munich, Germany
- Swiss Tropical and Public Health Institute, University of Basel, 4002 Basel, Switzerland
- Correspondence: ; Tel.: +49-176-6657-2910
| | - Jerome Boissier
- IHPE, University of Montpellier, CNRS, Ifremer, University of Perpignan, 66860 Perpignan, France;
| |
Collapse
|
45
|
Aula OP, McManus DP, Jones MK, Gordon CA. Schistosomiasis with a Focus on Africa. Trop Med Infect Dis 2021; 6:109. [PMID: 34206495 PMCID: PMC8293433 DOI: 10.3390/tropicalmed6030109] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/03/2021] [Accepted: 06/04/2021] [Indexed: 12/19/2022] Open
Abstract
Schistosomiasis is a common neglected tropical disease of impoverished people and livestock in many developing countries in tropical Africa, the Middle East, Asia, and Latin America. Substantial progress has been made in controlling schistosomiasis in some African countries, but the disease still prevails in most parts of sub-Saharan Africa with an estimated 800 million people at risk of infection. Current control strategies rely primarily on treatment with praziquantel, as no vaccine is available; however, treatment alone does not prevent reinfection. There has been emphasis on the use of integrated approaches in the control and elimination of the disease in recent years with the development of health infrastructure and health education. However, there is a need to evaluate the present status of African schistosomiasis, primarily caused by Schistosoma mansoni and S. haematobium, and the factors affecting the disease as the basis for developing more effective control and elimination strategies in the future. This review provides an historical perspective of schistosomiasis in Africa and discusses the current status of control efforts in those countries where the disease is endemic.
Collapse
Affiliation(s)
- Oyime Poise Aula
- School of Public Health, Faculty of Medicine, University of Queensland, Brisbane 4006, Australia;
- Molecular Parasitology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane 4006, Australia
| | - Donald P. McManus
- School of Public Health, Faculty of Medicine, University of Queensland, Brisbane 4006, Australia;
| | - Malcolm K. Jones
- School of Veterinary Sciences, University of Queensland, Gatton 4343, Australia;
| | - Catherine A. Gordon
- School of Public Health, Faculty of Medicine, University of Queensland, Brisbane 4006, Australia;
| |
Collapse
|
46
|
Kincaid-Smith J, Mathieu-Bégné E, Chaparro C, Reguera-Gomez M, Mulero S, Allienne JF, Toulza E, Boissier J. No pre-zygotic isolation mechanisms between Schistosoma haematobium and Schistosoma bovis parasites: From mating interactions to differential gene expression. PLoS Negl Trop Dis 2021; 15:e0009363. [PMID: 33945524 PMCID: PMC8127863 DOI: 10.1371/journal.pntd.0009363] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 05/14/2021] [Accepted: 04/06/2021] [Indexed: 01/21/2023] Open
Abstract
Species usually develop reproductive isolation mechanisms allowing them to avoid interbreeding. These preventive barriers can act before reproduction, "pre-zygotic barriers", or after reproduction, "post-zygotic barriers". Pre-zygotic barriers prevent unfavourable mating, while post-zygotic barriers determine the viability and selective success of the hybrid offspring. Hybridization in parasites and the underlying reproductive isolation mechanisms maintaining their genetic integrity have been overlooked. Using an integrated approach this work aims to quantify the relative importance of pre-zygotic barriers in Schistosoma haematobium x S. bovis crosses. These two co-endemic species cause schistosomiasis, one of the major debilitating parasitic diseases worldwide, and can hybridize naturally. Using mate choice experiments we first tested if a specific mate recognition system exists between both species. Second, using RNA-sequencing we analysed differential gene expression between homo- and hetero-specific pairing in male and female adult parasites. We show that homo- and hetero-specific pairing occurs randomly between these two species, and few genes in both sexes are affected by hetero-specific pairing. This suggests that i) mate choice is not a reproductive isolating factor, and that ii) no pre-zygotic barrier except spatial isolation "by the final vertebrate host" seems to limit interbreeding between these two species. Interestingly, among the few genes affected by the pairing status of the worms, some can be related to pathways affected during male and female interactions and may also present interesting candidates for species isolation mechanisms and hybridization in schistosome parasites.
Collapse
Affiliation(s)
- Julien Kincaid-Smith
- Univ. Montpellier, CNRS, IFREMER, UPVD, IHPE, Perpignan,
France
- Centre for Emerging, Endemic and Exotic Diseases (CEEED), Department of
Pathobiology and Population Sciences (PPS), Royal Veterinary College, University
of London, Hawkshead Campus, Herts, United Kingdom
| | | | | | - Marta Reguera-Gomez
- Departamento de Parasitología, Facultad de Farmacia, Universidad de
Valencia, Burjassot, Valencia, Spain
| | - Stephen Mulero
- Univ. Montpellier, CNRS, IFREMER, UPVD, IHPE, Perpignan,
France
| | | | - Eve Toulza
- Univ. Montpellier, CNRS, IFREMER, UPVD, IHPE, Perpignan,
France
| | - Jérôme Boissier
- Univ. Montpellier, CNRS, IFREMER, UPVD, IHPE, Perpignan,
France
| |
Collapse
|
47
|
Crego-Vicente B, Fernández-Soto P, Febrer-Sendra B, García-Bernalt Diego J, Boissier J, Angora EK, Oleaga A, Muro A. Application of a Genus-Specific LAMP Assay for Schistosome Species to Detect Schistosoma haematobium x Schistosoma bovis Hybrids. J Clin Med 2021; 10:jcm10061308. [PMID: 33810080 PMCID: PMC8004683 DOI: 10.3390/jcm10061308] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/08/2021] [Accepted: 03/18/2021] [Indexed: 02/07/2023] Open
Abstract
Schistosomiasis is a disease of great medical and veterinary importance in tropical and subtropical regions caused by different species of parasitic flatworms of the genus Schistosoma. The emergence of natural hybrids of schistosomes indicate the risk of possible infection to humans and their zoonotic potential, specifically for Schistosoma haematobium and S. bovis. Hybrid schistosomes have the potential to replace existing species, generate new resistances, pathologies and extending host ranges. Hybrids may also confuse the serological, molecular and parasitological diagnosis. Currently, LAMP technology based on detection of nucleic acids is used for detection of many agents, including schistosomes. Here, we evaluate our previously developed species-specific LAMP assays for S. haematobium, S. mansoni, S. bovis and also the genus-specific LAMP for the simultaneous detection of several Schistosoma species against both DNA from pure and, for the first time, S. haematobium x S. bovis hybrids. Proper operation was evaluated with DNA from hybrid schistosomes and with human urine samples artificially contaminated with parasites' DNA. LAMP was performed with and without prior DNA extraction. The genus-specific LAMP properly amplified pure Schistosoma species and different S. haematobium-S. bovis hybrids with different sensitivity. The Schistosoma spp.-LAMP method is potentially adaptable for field diagnosis and disease surveillance in schistosomiasis endemic areas where human infections by schistosome hybrids are increasingly common.
Collapse
Affiliation(s)
- Beatriz Crego-Vicente
- Infectious and Tropical Diseases Research Group (e-INTRO), Research Centre for Tropical Diseases at the University of Salamanca (IBSAL-CIETUS), Biomedical Research Institute of Salamanca, Faculty of Pharmacy, University of Salamanca, 37007 Salamanca, Spain; (B.C.-V.); (B.F.-S.); (J.G.-B.D.)
| | - Pedro Fernández-Soto
- Infectious and Tropical Diseases Research Group (e-INTRO), Research Centre for Tropical Diseases at the University of Salamanca (IBSAL-CIETUS), Biomedical Research Institute of Salamanca, Faculty of Pharmacy, University of Salamanca, 37007 Salamanca, Spain; (B.C.-V.); (B.F.-S.); (J.G.-B.D.)
- Correspondence: (P.F.-S.); (A.M.); Tel.: +34-677596173 (P.F.-S.); +34-677596155 (A.M.)
| | - Begoña Febrer-Sendra
- Infectious and Tropical Diseases Research Group (e-INTRO), Research Centre for Tropical Diseases at the University of Salamanca (IBSAL-CIETUS), Biomedical Research Institute of Salamanca, Faculty of Pharmacy, University of Salamanca, 37007 Salamanca, Spain; (B.C.-V.); (B.F.-S.); (J.G.-B.D.)
| | - Juan García-Bernalt Diego
- Infectious and Tropical Diseases Research Group (e-INTRO), Research Centre for Tropical Diseases at the University of Salamanca (IBSAL-CIETUS), Biomedical Research Institute of Salamanca, Faculty of Pharmacy, University of Salamanca, 37007 Salamanca, Spain; (B.C.-V.); (B.F.-S.); (J.G.-B.D.)
| | - Jérôme Boissier
- IHPE, Université Montpellier, CNRS, Ifremer, Université Perpignan Via Domitia, 66100 Perpignan, France;
| | - Etienne K. Angora
- Swiss Tropical and Public Health Institute, P.O. Box CH-4002 Basel, Switzerland;
- Department of Public Health, University of Basel, P.O. Box CH-4003 Basel, Switzerland
- Unité de Formation et de Recherche Sciences Pharmaceutiques et Biologiques, Université Félix Houphouët-Boigny, Abidjan BPV 34, Côte d’Ivoire
| | - Ana Oleaga
- Parasitology Laboratory, Institute of Natural Resources and Agrobiology (IRNASA, CSIC), Cordel de Merinas 40-52, 37008 Salamanca, Spain;
| | - Antonio Muro
- Infectious and Tropical Diseases Research Group (e-INTRO), Research Centre for Tropical Diseases at the University of Salamanca (IBSAL-CIETUS), Biomedical Research Institute of Salamanca, Faculty of Pharmacy, University of Salamanca, 37007 Salamanca, Spain; (B.C.-V.); (B.F.-S.); (J.G.-B.D.)
- Correspondence: (P.F.-S.); (A.M.); Tel.: +34-677596173 (P.F.-S.); +34-677596155 (A.M.)
| |
Collapse
|
48
|
Mawa PA, Kincaid-Smith J, Tukahebwa EM, Webster JP, Wilson S. Schistosomiasis Morbidity Hotspots: Roles of the Human Host, the Parasite and Their Interface in the Development of Severe Morbidity. Front Immunol 2021; 12:635869. [PMID: 33790908 PMCID: PMC8005546 DOI: 10.3389/fimmu.2021.635869] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/25/2021] [Indexed: 12/14/2022] Open
Abstract
Schistosomiasis is the second most important human parasitic disease in terms of socioeconomic impact, causing great morbidity and mortality, predominantly across the African continent. For intestinal schistosomiasis, severe morbidity manifests as periportal fibrosis (PPF) in which large tracts of macro-fibrosis of the liver, visible by ultrasound, can occlude the main portal vein leading to portal hypertension (PHT), sequelae such as ascites and collateral vasculature, and ultimately fatalities. For urogenital schistosomiasis, severe morbidity manifests as pathology throughout the urinary system and genitals, and is a definitive cause of squamous cell bladder carcinoma. Preventative chemotherapy (PC) programmes, delivered through mass drug administration (MDA) of praziquantel (PZQ), have been at the forefront of schistosomiasis control programmes in sub-Saharan Africa since their commencement in Uganda in 2003. However, despite many successes, 'biological hotspots' (as distinct from 'operational hotspots') of both persistent high transmission and morbidity remain. In some areas, this failure to gain control of schistosomiasis has devastating consequences, with not only persistently high infection intensities, but both "subtle" and severe morbidity remaining prevalent. These hotspots highlight the requirement to revisit research into severe morbidity and its mechanisms, a topic that has been out of favor during times of PC implementation. Indeed, the focality and spatially-structured epidemiology of schistosomiasis, its transmission persistence and the morbidity induced, has long suggested that gene-environmental-interactions playing out at the host-parasite interface are crucial. Here we review evidence of potential unique parasite factors, host factors, and their gene-environmental interactions in terms of explaining differential morbidity profiles in the human host. We then take the situation of schistosomiasis mansoni within the Albertine region of Uganda as a case study in terms of elucidating the factors behind the severe morbidity observed and the avenues and directions for future research currently underway within a new research and clinical trial programme (FibroScHot).
Collapse
Affiliation(s)
- Patrice A. Mawa
- Immunomodulation and Vaccines Programme, Medical Research Council-Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine (MRC/UVRI and LSHTM) Uganda Research Unit, Entebbe, Uganda
- Department of Immunology, Uganda Virus Research Institute, Entebbe, Uganda
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Julien Kincaid-Smith
- Centre for Emerging, Endemic and Exotic Diseases (CEEED), Department of Pathobiology and Population Sciences (PPS), Royal Veterinary College, University of London, Herts, United Kingdom
| | | | - Joanne P. Webster
- Centre for Emerging, Endemic and Exotic Diseases (CEEED), Department of Pathobiology and Population Sciences (PPS), Royal Veterinary College, University of London, Herts, United Kingdom
| | - Shona Wilson
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
49
|
Rey O, Webster BL, Huyse T, Rollinson D, Van den Broeck F, Kincaid-Smith J, Onyekwere A, Boissier J. Population genetics of African Schistosoma species. INFECTION GENETICS AND EVOLUTION 2021; 89:104727. [PMID: 33486128 DOI: 10.1016/j.meegid.2021.104727] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/09/2021] [Accepted: 01/13/2021] [Indexed: 02/06/2023]
Abstract
Blood flukes within the genus Schistosoma (schistosomes) are responsible for the major disease, schistosomiasis, in tropical and sub-tropical areas. This disease is predominantly present on the African continent with more than 85% of the human cases. Schistosomes are also parasites of veterinary importance infecting livestock and wildlife. Schistosoma population genetic structure and diversity are important characteristics that may reflect variations in selection pressures such as those induced by host (mammalian and snail) environments, habitat change, migration and also treatment/control interventions, all of which also shape speciation and evolution of the whole Schistosoma genus. Investigations into schistosome population genetic structure, diversity and evolution has been an area of important debate and research. Supported by advances in molecular techniques with capabilities for multi-locus genetic analyses for single larvae schistosome genetic investigations have greatly progressed in the last decade. This paper aims to review the genetic studies of both animal and human infecting schistosome. Population genetic structures are reviewed at different spatial scales: local, regional or continental (i.e. phylogeography). Within species genetic diversities are discussed compared and the compounding factors discussed, including the effect of mass drug administration. Finally, the ability for intra-species hybridisation questions species integrities and poses many questions in relation to the natural epidemiology of co-endemic species. Here we review molecularly confirmed hybridisation events (in relation to human disease) and discuss the possible impact for ongoing and future control and elimination.
Collapse
Affiliation(s)
- O Rey
- Univ. Montpellier, CNRS, IFREMER, UPVD, IHPE, F-66000 Perpignan, France
| | - B L Webster
- Wolfson Wellcome Biomedical Laboratories, Department of Life Sciences, Natural History Museum, London SW7 5BD, United Kingdom; London Centre for Neglected Tropical Disease Research, Imperial College London School of Public Health, London W2 1PG, United Kingdom
| | - T Huyse
- Department of Biology, Royal Museum for Central Africa, Leuvensesteenweg 13, B-3080 Tervuren, Belgium; Laboratory of Biodiversity and Evolutionary Genomics, Department of Biology, KU Leuven, Ch. Deberiotstraat 32, B-3000 Leuven, Belgium
| | - D Rollinson
- Wolfson Wellcome Biomedical Laboratories, Department of Life Sciences, Natural History Museum, London SW7 5BD, United Kingdom; London Centre for Neglected Tropical Disease Research, Imperial College London School of Public Health, London W2 1PG, United Kingdom
| | - F Van den Broeck
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium; Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - J Kincaid-Smith
- Centre for Emerging, Endemic and Exotic Diseases (CEEED), Department of Pathobiology and Population Sciences (PPS), Royal Veterinary College, University of London, Hawkshead Campus, Herts AL9 7TA, United Kingdom
| | - A Onyekwere
- Univ. Montpellier, CNRS, IFREMER, UPVD, IHPE, F-66000 Perpignan, France
| | - J Boissier
- Univ. Montpellier, CNRS, IFREMER, UPVD, IHPE, F-66000 Perpignan, France.
| |
Collapse
|
50
|
Pennance T, Ame SM, Amour AK, Suleiman KR, Cable J, Webster BL. The detection of Schistosoma bovis in livestock on Pemba Island, Zanzibar: A preliminary study. CURRENT RESEARCH IN PARASITOLOGY & VECTOR-BORNE DISEASES 2021; 1:100056. [PMID: 35284855 PMCID: PMC8906095 DOI: 10.1016/j.crpvbd.2021.100056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/13/2021] [Accepted: 10/15/2021] [Indexed: 11/13/2022]
Abstract
Schistosoma bovis is a parasitic trematode of ungulates transmitted by freshwater snails in Sub-Saharan Africa causing bovine intestinal schistosomiasis that leads to chronic morbidity and significant agricultural economic losses. The recently reported occurrence of Bulinus globosus infected with S. bovis for the first time on Pemba Island (Zanzibar, United Republic of Tanzania) is a cause of concern for livestock/wildlife health and complicates the surveillance of Schistosoma haematobium. To confirm that local cattle are infected with S. bovis, fresh faecal samples were collected from six adult cows surrounding two schistosomiasis transmission sites in Kinyasini, Pemba Island. Schistosome eggs were concentrated, egg hatching stimulated and miracidia were individually captured and identified by analysis of the partial mitochondrial cytochrome c oxidase subunit 1 (cox1) and the partial nuclear internal transcribed spacer region (ITS1+5.8S+ITS2). Two S. bovis miracidia were collected from one faecal sample with two cox1 haplotypes, one matching cox1 data obtained from S. bovis cercariae, collected previously at the same site in Pemba, the other matching S. bovis cox1 data originating from coastal Tanzania. The findings conclude that S. bovis transmission has been established on Pemba Island and is likely to have been imported through livestock trade with East Africa. Increasing the sensitivity of non-invasive diagnostics for bovine schistosomiasis, together with wider sampling, will enable a better assessment on the epidemiology of S. bovis on Pemba Island. The bovine schistosome Schistosoma bovis is detected for the first time from cattle in Zanzibar. Local transmission of S. bovis is confirmed on Pemba Island. Bovine schistosomes complicate the xenomonitoring and surveillance of human urogenital schistosomiasis. Bovine schistosomiasis could lead to chronic morbidity of cattle and agricultural economic losses.
Collapse
|