1
|
Lye LF, Dobson DE, Beverley SM, Tung MC. RNA interference in protozoan parasites and its application. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2025; 58:281-287. [PMID: 39884870 DOI: 10.1016/j.jmii.2025.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/24/2024] [Accepted: 01/19/2025] [Indexed: 02/01/2025]
Abstract
RNA interference (RNAi) is a biological process in which RNA molecules are involved in sequence-specific suppression of gene expression, via small RNA triggers derived from double-stranded RNA that can target specific genes; it is a natural process that plays a role in both the regulation of protein synthesis and in immunity. Discovery of RNAi by Fire and Mello in 1998 had a profound impact on unraveling novel aspects of eukaryotic biology. RNA interference (RNAi) has proven to be an immensely useful tool for studying gene function and validation of potential drug targets in almost all organisms. A great advance in parasitic protozoa was achieved by the experimental demonstration of RNAi in Trypanosoma brucei, and in other protists such as Leishmania braziliensis, Entamoeba histolytica and Giardia lamblia/intestinalis. These organisms exhibit numerous differences beyond the core 'dicer' and 'slicer' activities, thereby expanding knowledge of the evolutionary diversification of this pathway in eukaryotes. When present, RNAi has led to new technologies for engineering powerful and facile knockdowns in gene expression, revolutionizing biomedical research and opening clinical potentialities. In this review, we discuss the distribution of RNAi pathways, their biological roles, and experimental applications in protozoan parasites.
Collapse
Affiliation(s)
- Lon-Fye Lye
- Department of Medical Research, Tungs' Taichung Metro Harbor Hospital, Taichung, Taiwan.
| | - Deborah E Dobson
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| | - Stephen M Beverley
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| | - Min-Che Tung
- Department of Urology, Tungs' Taichung Metro Harbor Hospital, Taichung, Taiwan.
| |
Collapse
|
2
|
Vicentini LPP, Pereira-Chioccola VL, Fux B. Involvement of extracellular vesicles in the interaction of hosts and Toxoplasma gondii. CURRENT TOPICS IN MEMBRANES 2024; 94:133-155. [PMID: 39370205 DOI: 10.1016/bs.ctm.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Toxoplasma gondii, the causative agent of toxoplasmosis, is widely distributed. This protozoan parasite is one of the best adapted, being able to infect innumerous species of animals and different types of cells. This chapter reviews current literature on extracellular vesicles secreted by T. gondii and by its hosts. The topics describe the life cycle and transmission (1); toxoplasmosis epidemiology (2); laboratorial diagnosis approach (3); The T. gondii interaction with extracellular vesicles and miRNAs (4); and the perspectives on T. gondii infection. Each topic emphases the host immune responses to the parasite antigens and the interaction with the extracellular vesicles and miRNAs.
Collapse
Affiliation(s)
| | - Vera Lucia Pereira-Chioccola
- Laboratório de Biologia Molecular de Parasitas e Fungos, Centro de Parasitologia e Micologia Instituto Adolfo Lutz, São Paulo, SP, Brazil.
| | - Blima Fux
- Programa em Doenças Infecciosas, Centro de Doenças Infecciosas, Universidade Federal do Espírito Santo, Vitoria, ES, Brazil; Unidade de Medicina Tropical, Departamento de Patologia, Universidade Federal do Espírito Santo, Vitoria, ES, Brazil.
| |
Collapse
|
3
|
da Silva CV, Velikkakam T, de Oliveira ECM, Silveira ACA, de Lima Júnior JP, Uombe NPI, da Silva PHR, Borges BC. Cellular dormancy: A widespread phenomenon that perpetuates infectious diseases. J Basic Microbiol 2024; 64:e2300389. [PMID: 38064123 DOI: 10.1002/jobm.202300389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 11/05/2023] [Accepted: 11/21/2023] [Indexed: 05/03/2024]
Abstract
Under adverse environmental conditions, microorganisms are able to enter a state of cellular dormancy which consists of cell cycle arrest and interruption of multiplication. This process ensures their perpetuation in the infected host organism and enables the spread of disease. Throughout biological evolution, dormancy allowed microorganisms to persist in a harsh niche until favorable conditions for their reactivation were re-established. Here, we propose to discuss the dormancy of bacteria and protozoa pathogens focusing on the potential mechanisms and components associated with dormancy.
Collapse
Affiliation(s)
- Claudio V da Silva
- Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, Brazil
| | - Teresiama Velikkakam
- Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, Brazil
| | - Elida C M de Oliveira
- Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, Brazil
| | - Anna C A Silveira
- Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, Brazil
| | - Joed P de Lima Júnior
- Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, Brazil
| | - Nelsa P I Uombe
- Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, Brazil
| | - Paulo H R da Silva
- Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, Brazil
| | - Bruna C Borges
- Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, Brazil
| |
Collapse
|
4
|
Horjales S, Li Calzi M, Francia ME, Cayota A, Garcia-Silva MR. piRNA pathway evolution beyond gonad context: Perspectives from apicomplexa and trypanosomatids. Front Genet 2023; 14:1129194. [PMID: 36816026 PMCID: PMC9935688 DOI: 10.3389/fgene.2023.1129194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 01/23/2023] [Indexed: 02/05/2023] Open
Abstract
piRNAs function as genome defense mechanisms against transposable elements insertions within germ line cells. Recent studies have unraveled that piRNA pathways are not limited to germ cells as initially reckoned, but are instead also found in non-gonadal somatic contexts. Moreover, these pathways have also been reported in bacteria, mollusks and arthropods, associated with safeguard of genomes against transposable elements, regulation of gene expression and with direct consequences in axon regeneration and memory formation. In this Perspective we draw attention to early branching parasitic protozoa, whose genome preservation is an essential function as in late eukaryotes. However, little is known about the defense mechanisms of these genomes. We and others have described the presence of putative PIWI-related machinery members in protozoan parasites. We have described the presence of a PIWI-like protein in Trypanosoma cruzi, bound to small non-coding RNAs (sRNAs) as cargo of secreted extracellular vesicles relevant in intercellular communication and host infection. Herein, we put forward the presence of members related to Argonaute pathways in both Trypanosoma cruzi and Toxoplasma gondii. The presence of PIWI-like machinery in Trypansomatids and Apicomplexa, respectively, could be evidence of an ancestral piRNA machinery that evolved to become more sophisticated and complex in multicellular eukaryotes. We propose a model in which ancient PIWI proteins were expressed broadly and had functions independent of germline maintenance. A better understanding of current and ancestral PIWI/piRNAs will be relevant to better understand key mechanisms of genome integrity conservation during cell cycle progression and modulation of host defense mechanisms by protozoan parasites.
Collapse
Affiliation(s)
- S. Horjales
- Apicomplexa Biology Laboratory, Institute Pasteur Montevideo, Montevideo, Uruguay
| | - M Li Calzi
- Functional Genomics Laboratory, Institute Pasteur Montevideo, Montevideo, Uruguay
| | - M. E. Francia
- Apicomplexa Biology Laboratory, Institute Pasteur Montevideo, Montevideo, Uruguay
- Departamento de Parasitología y Micología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - A. Cayota
- Functional Genomics Laboratory, Institute Pasteur Montevideo, Montevideo, Uruguay
- Departmento Basico de Medicina, Facultad de Medicina, Hospital de Clinicas, Universidad de la República, Montevideo, Uruguay
| | - M. R. Garcia-Silva
- Functional Genomics Laboratory, Institute Pasteur Montevideo, Montevideo, Uruguay
| |
Collapse
|
5
|
Contreras SM, Zambrano Siri RT, Rivera EM, Cristaldi C, Kamenetzky L, Kim K, Clemente M, Ocampo J, Vanagas L, Angel SO. Architecture, Chromatin and Gene Organization of Toxoplasma gondii Subtelomeres. EPIGENOMES 2022; 6:29. [PMID: 36135316 PMCID: PMC9498087 DOI: 10.3390/epigenomes6030029] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/05/2022] [Accepted: 09/08/2022] [Indexed: 11/17/2022] Open
Abstract
Subtelomeres (ST) are chromosome regions that separate telomeres from euchromatin and play relevant roles in various biological processes of the cell. While their functions are conserved, ST structure and genetic compositions are unique to each species. This study aims to identify and characterize the subtelomeric regions of the 13 Toxoplasma gondii chromosomes of the Me49 strain. Here, STs were defined at chromosome ends based on poor gene density. The length of STs ranges from 8.1 to 232.4 kbp, with a gene density of 0.049 genes/kbp, lower than the Me49 genome (0.15 kbp). Chromatin organization showed that H3K9me3, H2A.X, and H3.3 are highly enriched near telomeres and the 5' end of silenced genes, decaying in intensity towards euchromatin. H3K4me3 and H2A.Z/H2B.Z are shown to be enriched in the 5' end of the ST genes. Satellite DNA was detected in almost all STs, mainly the sat350 family and a novel satellite named sat240. Beyond the STs, only short dispersed fragments of sat240 and sat350 were found. Within STs, there were 12 functional annotated genes, 59 with unknown functions (Hypothetical proteins), 15 from multigene FamB, and 13 from multigene family FamC. Some genes presented low interstrain synteny associated with the presence of satellite DNA. Orthologues of FamB and FamC were also detected in Neospora caninum and Hammondia hammondi. A re-analysis of previous transcriptomic data indicated that ST gene expression is strongly linked to the adaptation to different situations such as extracellular passage (evolve and resequencing study) and changes in metabolism (lack of acetyl-CoA cofactor). In conclusion, the ST region of the T. gondii chromosomes was defined, the STs genes were determined, and it was possible to associate them with high interstrain plasticity and a role in the adaptability of T. gondii to environmental changes.
Collapse
Affiliation(s)
- Susana M. Contreras
- Laboratorio de Parasitología Molecular, Instituto Tecnológico Chascomús (INTECH), Universidad Nacional de General San Martín (UNSAM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Chascomús 7130, Argentina
| | - Romina T. Zambrano Siri
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular “Dr. Héctor N. Torres” (INGEBI-CONICET), Buenos Aires C1428ADN, Argentina
| | - Elías M. Rivera
- Laboratorio de Parasitología Molecular, Instituto Tecnológico Chascomús (INTECH), Universidad Nacional de General San Martín (UNSAM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Chascomús 7130, Argentina
| | - Constanza Cristaldi
- Laboratorio de Parasitología Molecular, Instituto Tecnológico Chascomús (INTECH), Universidad Nacional de General San Martín (UNSAM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Chascomús 7130, Argentina
| | - Laura Kamenetzky
- Laboratorio de Genómica y Bioinformática de Patógenos, iB3|Instituto de Biociencias, Biotecnología y Biología traslacional, Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EHA, Argentina
| | - Kami Kim
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33602, USA
| | - Marina Clemente
- Laboratorio de Molecular Farming y Vacunas, Instituto Tecnológico Chascomús (INTECH), Universidad Nacional de General San Martín (UNSAM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Chascomús 7130, Argentina
| | - Josefina Ocampo
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular “Dr. Héctor N. Torres” (INGEBI-CONICET), Buenos Aires C1428ADN, Argentina
| | - Laura Vanagas
- Laboratorio de Parasitología Molecular, Instituto Tecnológico Chascomús (INTECH), Universidad Nacional de General San Martín (UNSAM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Chascomús 7130, Argentina
| | - Sergio O. Angel
- Laboratorio de Parasitología Molecular, Instituto Tecnológico Chascomús (INTECH), Universidad Nacional de General San Martín (UNSAM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Chascomús 7130, Argentina
| |
Collapse
|
6
|
Zhang L, Chen L, Zhang H, Si H, Liu X, Suo X, Hu D. A comparative study of microRNAs in different stages of Eimeria tenella. Front Vet Sci 2022; 9:954725. [PMID: 35937295 PMCID: PMC9353057 DOI: 10.3389/fvets.2022.954725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 06/30/2022] [Indexed: 11/17/2022] Open
Abstract
Apicomplexan parasites have divergent biogenesis machinery for small RNA generation. Analysis has shown that parasites in Plasmodium and Cryptosporidium as well as many species in Leishmania or Trypanosoma do not have a complete machinery in small RNA biogenesis. Recently, the miRNA-generating system of Toxoplasma has been identified as plant/fungal-like and its miRNAome has been elucidated. However, the microRNA (miRNA) expression profiles and their potential regulatory functions in different stages of Eimeria tenella remain largely unknown. In this study, we characterized the RNA silencing machinery of E. tenella and investigated the miRNA population distribution at different life stages by high-throughput sequencing. We characterized the expression of miRNAs in the unsporulated oocyst, sporulated oocyst and schizogony stages, obtaining a total of 392 miRNAs. We identified 58 differentially expressed miRNAs between USO (unsporulated oocysts) and SO (sporulated oocysts) that were significantly enriched for their potential target genes in the regulation of gene expression and chromatin binding, suggesting an epigenetic modulation of sporulating by these miRNAs. In comparing miRNA expression at endogenous and exogenous developmental stages, twenty-four miRNAs were identified differently expressed. Those were mainly associated with the regulation of genes with protein kinase activity, suggesting control of protein phosphorylation. This is the first study about the evolution of miRNA biogenesis system and miRNA control of gene expression in Eimeria species. Our data may lead to functional insights into of the regulation of gene expression during parasite life cycle in apicomplexan parasites.
Collapse
Affiliation(s)
- Lei Zhang
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Linlin Chen
- Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Hongtao Zhang
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Hongbin Si
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Xianyong Liu
- Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xun Suo
- Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Dandan Hu
- College of Animal Science and Technology, Guangxi University, Nanning, China
- *Correspondence: Dandan Hu
| |
Collapse
|
7
|
Abstract
In eukaryotic organisms, noncoding RNAs (ncRNAs) have been implicated as important regulators of multifaceted biological processes, including transcriptional, posttranscriptional, and epigenetic regulation of gene expression. In recent years, it is becoming clear that protozoan parasites encode diverse ncRNA transcripts; however, little is known about their cellular functions. Recent advances in high-throughput “omic” studies identified many novel long ncRNAs (lncRNAs) in apicomplexan parasites, some of which undergo splicing, polyadenylation, and encode small proteins. To date, only a few of them are characterized, leaving a big gap in our understanding regarding their origin, mode of action, and functions in parasite biology. In this review, we focus on lncRNAs of the human malaria parasite Plasmodium falciparum and highlight their cellular functions and possible mechanisms of action.
Collapse
Affiliation(s)
- Karina Simantov
- Department of Microbiology & Molecular Genetics, The Kuvin Center for the Study of Infectious and Tropical Diseases, IMRIC, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Manish Goyal
- Department of Microbiology & Molecular Genetics, The Kuvin Center for the Study of Infectious and Tropical Diseases, IMRIC, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Ron Dzikowski
- Department of Microbiology & Molecular Genetics, The Kuvin Center for the Study of Infectious and Tropical Diseases, IMRIC, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
- * E-mail:
| |
Collapse
|
8
|
de Barros RAM, Torrecilhas AC, Marciano MAM, Mazuz ML, Pereira-Chioccola VL, Fux B. Toxoplasmosis in Human and Animals Around the World. Diagnosis and Perspectives in the One Health Approach. Acta Trop 2022; 231:106432. [PMID: 35390311 DOI: 10.1016/j.actatropica.2022.106432] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/25/2022] [Accepted: 03/27/2022] [Indexed: 12/12/2022]
Abstract
Toxoplasmosis is a unique health disease that significantly affects the health of humans, domestic animals, wildlife and is present in ecosystems, including water, soil and food. Toxoplasma gondii is one of the best-adapted parasites in the word. This parasite is able to persist for long periods in its hosts, in different geographic regions of the word. This review summarizes the current literature of these themes, focusing on: (1) toxoplasmosis, a zoonotic infection; (2) One health approach and toxoplasmosis; (3) human toxoplasmosis; (4) animal toxoplasmosis; (5) toxoplasmosis diagnosis, as immunological, parasitological and molecular diagnosis; (6) T. gondii outbreaks caused by infected meat, milk and dairy products, as well as, vegetables and water consume; (7) studies in experimental models; (8) genetic characterization of T. gondii strains; (9) extracellular vesicles and miRNA; and (10) future perspectives on T. gondii and toxoplasmosis. The vast prevalence of toxoplasmosis in both humans and animals and the dispersion and resistence of T. gondii parasites in environment highlight the importance of the one health approach in diagnostic and control of the disease. Here the different aspects of the one health approach are presented and discussed.
Collapse
Affiliation(s)
- Rosangela Aparecida Müller de Barros
- Unidade de Medicina Tropical, Departamento de Patologia, Universidade Federal do Espirito Santo, Vitoria, ES, Brazil.; Programa em Doenças Infecciosas, Centro de Doenças Infecciosas, Universidade Federal do Espirito Santo, Vitoria, ES, Brazil..
| | - Ana Claudia Torrecilhas
- Laboratório de Imunologia Celular e Bioquímica de Fungos e Protozoários, Departamento de Ciências Farmacêuticas, Universidade Federal de São Paulo (UNIFESP), Campus Diadema, Sao Paulo, SP, Brazil..
| | | | - Monica Leszkowicz Mazuz
- Parasitology Division, Kimron Veterinary Institute, Israeli Veterinary Service and Animal Health, Ministry of Agriculture and Rural Development Beit Dagan, 5025000, Israel..
| | | | - Blima Fux
- Unidade de Medicina Tropical, Departamento de Patologia, Universidade Federal do Espirito Santo, Vitoria, ES, Brazil.; Programa em Doenças Infecciosas, Centro de Doenças Infecciosas, Universidade Federal do Espirito Santo, Vitoria, ES, Brazil..
| |
Collapse
|
9
|
Rojas-Pirela M, Andrade-Alviárez D, Medina L, Castillo C, Liempi A, Guerrero-Muñoz J, Ortega Y, Maya JD, Rojas V, Quiñones W, Michels PA, Kemmerling U. MicroRNAs: master regulators in host-parasitic protist interactions. Open Biol 2022; 12:210395. [PMID: 35702995 PMCID: PMC9198802 DOI: 10.1098/rsob.210395] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
MicroRNAs (miRNAs) are a group of small non-coding RNAs present in a wide diversity of organisms. MiRNAs regulate gene expression at a post-transcriptional level through their interaction with the 3' untranslated regions of target mRNAs, inducing translational inhibition or mRNA destabilization and degradation. Thus, miRNAs regulate key biological processes, such as cell death, signal transduction, development, cellular proliferation and differentiation. The dysregulation of miRNAs biogenesis and function is related to the pathogenesis of diseases, including parasite infection. Moreover, during host-parasite interactions, parasites and host miRNAs determine the probability of infection and progression of the disease. The present review is focused on the possible role of miRNAs in the pathogenesis of diseases of clinical interest caused by parasitic protists. In addition, the potential role of miRNAs as targets for the design of drugs and diagnostic and prognostic markers of parasitic diseases is also discussed.
Collapse
Affiliation(s)
- Maura Rojas-Pirela
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago de Chile 8380453, Chile,Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso 2373223, Chile,Facultad de Farmacia y Bioanálisis, Universidad de Los Andes, Mérida, Venezuela
| | - Diego Andrade-Alviárez
- Laboratorio de Enzimología de Parásitos, Facultad de Ciencias, Universidad de Los Andes, Mérida, Venezuela
| | - Lisvaneth Medina
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago de Chile 8380453, Chile
| | - Christian Castillo
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago de Chile 8380453, Chile,Núcleo de Investigación Aplicada en Ciencias Veterinarias y Agronómicas, Facultad de Medicina Veterinaria y Agronomía, Universidad de Las Américas, Chile
| | - Ana Liempi
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago de Chile 8380453, Chile
| | - Jesús Guerrero-Muñoz
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago de Chile 8380453, Chile
| | - Yessica Ortega
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago de Chile 8380453, Chile,Facultad de Farmacia y Bioanálisis, Universidad de Los Andes, Mérida, Venezuela
| | - Juan Diego Maya
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago de Chile 8380453, Chile
| | - Verónica Rojas
- Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso 2373223, Chile
| | - Wilfredo Quiñones
- Laboratorio de Enzimología de Parásitos, Facultad de Ciencias, Universidad de Los Andes, Mérida, Venezuela
| | - Paul A. Michels
- Centre for Immunity, Infection and Evolution and Centre for Translational and Chemical Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Ulrike Kemmerling
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago de Chile 8380453, Chile
| |
Collapse
|
10
|
Peng R, Santos HJ, Nozaki T. Transfer RNA-Derived Small RNAs in the Pathogenesis of Parasitic Protozoa. Genes (Basel) 2022; 13:286. [PMID: 35205331 PMCID: PMC8872473 DOI: 10.3390/genes13020286] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/19/2022] [Accepted: 01/27/2022] [Indexed: 01/25/2023] Open
Abstract
Transfer RNA (tRNA)-derived small RNAs (tsRNAs) are newly identified non-coding small RNAs that have recently attracted attention due to their functional significance in both prokaryotes and eukaryotes. tsRNAs originated from the cleavage of precursor or mature tRNAs by specific nucleases. According to the start and end sites, tsRNAs can be broadly divided into tRNA halves (31-40 nucleotides) and tRNA-derived fragments (tRFs, 14-30 nucleotides). tsRNAs have been reported in multiple organisms to be involved in gene expression regulation, protein synthesis, and signal transduction. As a novel regulator, tsRNAs have also been identified in various protozoan parasites. The conserved biogenesis of tsRNAs in early-branching eukaryotes strongly suggests the universality of this machinery, which requires future research on their shared and potentially disparate biological functions. Here, we reviewed the recent studies of tsRNAs in several representative protozoan parasites including their biogenesis and the roles in parasite biology and intercellular communication. Furthermore, we discussed the remaining questions and potential future works for tsRNAs in this group of organisms.
Collapse
Affiliation(s)
| | | | - Tomoyoshi Nozaki
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; (R.P.); (H.J.S.)
| |
Collapse
|
11
|
RISC in Entamoeba histolytica: Identification of a Protein-Protein Interaction Network for the RNA Interference Pathway in a Deep-Branching Eukaryote. mBio 2021; 12:e0154021. [PMID: 34488447 PMCID: PMC8546589 DOI: 10.1128/mbio.01540-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Entamoeba histolytica is a protozoan parasite that causes amebiasis in humans and is a major health concern in developing countries. Our previous work revealed a functional RNA interference (RNAi) pathway in Entamoeba. Several unusual features encompass the RNAi pathway in the parasite, including small RNAs (sRNAs) with a 5'-polyphosphate structure (identified to date only in Entamoeba and nematodes) and the conspicuous absence of a canonical Dicer enzyme. Currently, little is known about the Entamoeba RNA-induced silencing complex (RISC), which is critical in understanding how RNAi is achieved in the parasite. In this study, we examined the RISC of EhAgo2-2, the most highly expressed Argonaute protein in Entamoeba. We identified 43 protein components of EhAgo2-2 RISC with a broad range of functional activities. Two proteins with nucleosome assembly protein (NAP) domains, not previously observed in other RNAi systems, were identified as novel core members of amebic RISC. We further demonstrated the interaction of these NAPs with Ago using an in vitro recombinant system. Finally, we characterized the interaction network of five RISC components identified in this study to further elucidate the interactions of these RNAi pathway proteins. Our data suggest the presence of closely interacting protein groups within RISC and allowed us to build a map of protein-protein interactions in relation to Ago. Our work is the first to elucidate RISC components in Entamoeba and expands the current knowledge of RISC to a deep-branching single-celled eukaryote. IMPORTANCE Entamoeba histolytica is a leading parasitic cause of death in developing countries, and our efforts are focused on defining the molecular basis of RNA interference (RNAi) gene regulation in this parasite. The Entamoeba RNAi pathway effectively silences a subset of endogenous genes and has also been harnessed as a gene silencing tool to study gene function in this organism. However, little is known about the components of the Entamoeba RNA-induced silencing complex (RISC), which is critical in understanding how gene silencing is achieved in the parasite. This study characterizes, for the first time, the RISC components in Entamoeba and provides new insights in understanding the molecular regulatory mechanisms of RNAi in this parasite, including the demonstration of novel Ago protein-interacting partners. From an evolutionary point of view, our findings expand the current knowledge of RISC to a deep-branching single-celled eukaryote.
Collapse
|
12
|
Daher D, Shaghlil A, Sobh E, Hamie M, Hassan ME, Moumneh MB, Itani S, El Hajj R, Tawk L, El Sabban M, El Hajj H. Comprehensive Overview of Toxoplasma gondii-Induced and Associated Diseases. Pathogens 2021; 10:pathogens10111351. [PMID: 34832507 PMCID: PMC8625914 DOI: 10.3390/pathogens10111351] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/07/2021] [Accepted: 10/14/2021] [Indexed: 12/03/2022] Open
Abstract
Toxoplasma gondii (T. gondii) is a prevalent protozoan parasite of medical and veterinary significance. It is the etiologic agent of toxoplasmosis, a neglected disease in which incidence and symptoms differ between patients and regions. In immunocompetent patients, toxoplasmosis manifests as acute and chronic forms. Acute toxoplasmosis presents as mild or asymptomatic disease that evolves, under the host immune response, into a persistent chronic disease in healthy individuals. Chronic toxoplasmosis establishes as latent tissue cysts in the brain and skeletal muscles. In immunocompromised patients, chronic toxoplasmosis may reactivate, leading to a potentially life-threatening condition. Recently, the association between toxoplasmosis and various diseases has been shown. These span primary neuropathies, behavioral and psychiatric disorders, and different types of cancer. Currently, a direct pre-clinical or clinical molecular connotation between toxoplasmosis and most of its associated diseases remains poorly understood. In this review, we provide a comprehensive overview on Toxoplasma-induced and associated diseases with a focus on available knowledge of the molecular players dictating these associations. We will also abridge the existing therapeutic options of toxoplasmosis and highlight the current gaps to explore the implications of toxoplasmosis on its associated diseases to advance treatment modalities.
Collapse
Affiliation(s)
- Darine Daher
- Department of Experimental Pathology, Microbiology and Immunology, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon; (D.D.); (M.H.); (M.E.H.); (M.B.M.); (S.I.)
| | - Ahmad Shaghlil
- Department of Biology, Faculty of Sciences, R. Hariri Campus, Lebanese University, Beirut 1107 2020, Lebanon; (A.S.); (E.S.)
| | - Eyad Sobh
- Department of Biology, Faculty of Sciences, R. Hariri Campus, Lebanese University, Beirut 1107 2020, Lebanon; (A.S.); (E.S.)
| | - Maguy Hamie
- Department of Experimental Pathology, Microbiology and Immunology, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon; (D.D.); (M.H.); (M.E.H.); (M.B.M.); (S.I.)
| | - Malika Elhage Hassan
- Department of Experimental Pathology, Microbiology and Immunology, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon; (D.D.); (M.H.); (M.E.H.); (M.B.M.); (S.I.)
| | - Mohamad Bahij Moumneh
- Department of Experimental Pathology, Microbiology and Immunology, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon; (D.D.); (M.H.); (M.E.H.); (M.B.M.); (S.I.)
| | - Shaymaa Itani
- Department of Experimental Pathology, Microbiology and Immunology, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon; (D.D.); (M.H.); (M.E.H.); (M.B.M.); (S.I.)
| | - Rana El Hajj
- Department of Biological Sciences, Beirut Arab University, Beirut 1107 2809, Lebanon;
| | - Lina Tawk
- Department of Medical Laboratory Sciences, Faculty of Health Sciences, University of Balamand, Beirut 1100 2807, Lebanon;
| | - Marwan El Sabban
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon;
| | - Hiba El Hajj
- Department of Experimental Pathology, Microbiology and Immunology, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon; (D.D.); (M.H.); (M.E.H.); (M.B.M.); (S.I.)
- Correspondence: ; Tel.: +961–1-350000 (ext. 4897)
| |
Collapse
|
13
|
Quiarim TM, Maia MM, da Cruz AB, Taniwaki NN, Namiyama GM, Pereira-Chioccola VL. Characterization of extracellular vesicles isolated from types I, II and III strains of Toxoplasma gondii. Acta Trop 2021; 219:105915. [PMID: 33861971 DOI: 10.1016/j.actatropica.2021.105915] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/15/2021] [Accepted: 03/27/2021] [Indexed: 12/31/2022]
Abstract
This study investigated the participation extracellular vesicles (EVs) in Toxoplasma gondii-host interaction. EVs of three T. gondii strains (RH, ME-49 and VEG) were purified by chromatography and ELISA. Results of "nanoparticle tracking analysis" and scanning electron microscopy showed that RH strain released more EVs than other strains. Images of transmission electron microscopy showed that in beginning of incubation (culture medium), EVs were inside of tachyzoites preparing to be released. After 24 hours, they were largely produced inside tachyzoites and were released through plasma membrane. The parasite burden of mice infected with RH strain plus EVs was increased and with early death of 1-2 days compared of those that received only parasites. EV proteins of ME-49 and VEG strains were poorly reactive to sera of infected patients in imunoblot. However, those from RH strain were reactive against sera of patients with cerebral toxoplasmosis. EVs stimulated murine splenocytes caused similar production of IFN-γ and IL-10 levels. RH strain derived EVs stimulated more TNF-α than those stimulated by other strains. T. gondii and infected hosts can express the same miRNAs (miR-155-5p, miR-125b-5p, miR-423-3p). In conclusion, T. gondii derived EVs promote host-parasite interactions, modulate host immune responses, carry virulent factors and cause an imbalance in cellular immune response.
Collapse
Affiliation(s)
- Talita Motta Quiarim
- Laboratório de Biologia Molecular de Parasitas e Fungos, Instituto Adolfo Lutz, Sao Paulo, Brazil.
| | - Marta Marques Maia
- Laboratório de Biologia Molecular de Parasitas e Fungos, Instituto Adolfo Lutz, Sao Paulo, Brazil.
| | - Allecineia Bispo da Cruz
- Laboratório de Biologia Molecular de Parasitas e Fungos, Instituto Adolfo Lutz, Sao Paulo, Brazil.
| | | | | | | |
Collapse
|
14
|
Liu G, Jia L, Shao Q, Lu H, Zhao J, Yin J. MicroRNA profiling of Neospora caninum tachyzoites (NC-1) using a high-throughput approach. Parasitol Res 2021; 120:2165-2174. [PMID: 33893549 DOI: 10.1007/s00436-021-07155-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 04/05/2021] [Indexed: 02/05/2023]
Abstract
Neospora caninum is an important pathogen commonly causing spontaneous abortion in livestock. The parasite is known to remain in cysts in an inactive state; or it can undergo expansive development within an intermediate host. However, the mechanisms that trigger the proliferation of N. caninum have not been thoroughly elucidated. For various organisms, it has been demonstrated that microRNAs (miRNAs) can act as important endogenous regulatory factors in gene regulation during cell differentiation and development. However, miRNAs and their function have not been studied in N. caninum. In this study, small RNA libraries from N. caninum tachyzoites (NC-1 strain) were analyzed using a high-throughput RNA sequencing technology combined with systematic bioinformatics analysis. A considerable number of novel miRNAs from N. caninum NC-1 strain tachyzoites were identified. Of the 300 miRNAs found by bioinformatics analysis, 10 were conserved miRNAs belonging to 10 metazoan miRNA families, while 290 were novel miRNAs. The expression of 13 novel miRNAs was verified by real-time quantitative PCR (qRT-PCR). Data from this study provided and identified authentic miRNAs for the first time in N. caninum. The study also introduces a framework for further investigations of RNAi-dependent regulatory mechanisms of the parasite and provides data for further understanding of N. caninum development.
Collapse
Affiliation(s)
- Gang Liu
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis/College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Lijun Jia
- Laboratory of Veterinary Microbiology, Department of Veterinary Medicine, Yanbian University, Yanji, 133002, China
| | - Qingyan Shao
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis/College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Huijun Lu
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis/College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Jixue Zhao
- Department of Pediatric Surgery, The First Hospital of Jilin University, Changchun, 130021, China.
| | - Jigang Yin
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis/College of Veterinary Medicine, Jilin University, Changchun, 130062, China.
| |
Collapse
|
15
|
Characterization of natural antisense transcripts arisen from the locus encoding Toxoplasma gondii ubiquitin-like protease. Mol Biochem Parasitol 2020; 240:111334. [PMID: 33011210 DOI: 10.1016/j.molbiopara.2020.111334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 09/16/2020] [Accepted: 09/28/2020] [Indexed: 11/22/2022]
Abstract
Natural antisense transcripts (NATs) are non-protein coding RNAs that could play an important role in regulating the expression of their counterpart protein encoding sense transcript. Although NATs are widespread in most eukaryotic genomes, very little is known about their functions. This study focuses on gaining a better understanding of the function of NATs in Toxoplasma gondii, a pathogenic unicellular eukaryote. Previously, we characterized the gene encoding the first committed enzyme in sumoylation, named ubiquitin-like protease 1 (TgUlp1), and showed that the expression of TgUlp1 is vital to the life cycle of T. gondii. Interestingly, the locus of TgUlp1 also transcribes a NAT species. Using a dual luciferase assay, we identified the promoter of TgUlp1 NAT to be located within the 3'-region of its counterpart coding sequence. While TgUlp1 mRNA level was detected at a lower level throughout the life cycle of T. gondii, its NAT level was upregulated when the parasite converts from actively replicating tachyzoite form to slowly growing bradyzoite form. To investigate the effect of TgUlp1 NAT on the expression of its counterpart mRNA, we used a reporter system bearing TgUlp1 mRNA sequences and showed that the single-stranded TgUlp1 NAT and its in vitro RNase III processed products have the ability to lower the expression of the reporter system. Using a transgenic Dicer-knockout (TgDicer-KO) strain, we showed that TgDicer is required for the function of TgUlp1 NAT in vivo. The findings strongly suggest that the RNA interference pathway is necessary for the function of TgUlp1 NAT.
Collapse
|
16
|
Li Y, Baptista RP, Kissinger JC. Noncoding RNAs in Apicomplexan Parasites: An Update. Trends Parasitol 2020; 36:835-849. [DOI: 10.1016/j.pt.2020.07.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 06/26/2020] [Accepted: 07/18/2020] [Indexed: 12/16/2022]
|
17
|
Leitão AL, Costa MC, Gabriel AF, Enguita FJ. Interspecies Communication in Holobionts by Non-Coding RNA Exchange. Int J Mol Sci 2020; 21:ijms21072333. [PMID: 32230931 PMCID: PMC7177868 DOI: 10.3390/ijms21072333] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 03/24/2020] [Accepted: 03/26/2020] [Indexed: 12/18/2022] Open
Abstract
Complex organisms are associations of different cells that coexist and collaborate creating a living consortium, the holobiont. The relationships between the holobiont members are essential for proper homeostasis of the organisms, and they are founded on the establishment of complex inter-connections between all the cells. Non-coding RNAs are regulatory molecules that can also act as communication signals between cells, being involved in either homeostasis or dysbiosis of the holobionts. Eukaryotic and prokaryotic cells can transmit signals via non-coding RNAs while using specific extracellular conveyors that travel to the target cell and can be translated into a regulatory response by dedicated molecular machinery. Within holobionts, non-coding RNA regulatory signaling is involved in symbiotic and pathogenic relationships among the cells. This review analyzes current knowledge regarding the role of non-coding RNAs in cell-to-cell communication, with a special focus on the signaling between cells in multi-organism consortia.
Collapse
Affiliation(s)
- Ana Lúcia Leitão
- Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus da Caparica, 2829-516 Caparica, Portugal;
- MEtRICs, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus da Caparica, 2829-516 Caparica, Portugal
| | - Marina C. Costa
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal; (M.C.C.); (A.F.G.)
| | - André F. Gabriel
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal; (M.C.C.); (A.F.G.)
| | - Francisco J. Enguita
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal; (M.C.C.); (A.F.G.)
- Correspondence: ; Tel.: +351-217999480
| |
Collapse
|
18
|
Chung BYW, Valli A, Deery MJ, Navarro FJ, Brown K, Hnatova S, Howard J, Molnar A, Baulcombe DC. Distinct roles of Argonaute in the green alga Chlamydomonas reveal evolutionary conserved mode of miRNA-mediated gene expression. Sci Rep 2019; 9:11091. [PMID: 31366981 PMCID: PMC6668577 DOI: 10.1038/s41598-019-47415-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 07/11/2019] [Indexed: 12/20/2022] Open
Abstract
The unicellular green alga Chlamydomonas reinhardtii is evolutionarily divergent from higher plants, but has a fully functional silencing machinery including microRNA (miRNA)-mediated translation repression and mRNA turnover. However, distinct from the metazoan machinery, repression of gene expression is primarily associated with target sites within coding sequences instead of 3′UTRs. This feature indicates that the miRNA-Argonaute (AGO) machinery is ancient and the primary function is for post transcriptional gene repression and intermediate between the mechanisms in the rest of the plant and animal kingdoms. Here, we characterize AGO2 and 3 in Chlamydomonas, and show that cytoplasmically enriched Cr-AGO3 is responsible for endogenous miRNA-mediated gene repression. Under steady state, mid-log phase conditions, Cr-AGO3 binds predominantly miR-C89, which we previously identified as the predominant miRNA with effects on both translation repression and mRNA turnover. In contrast, the paralogue Cr-AGO2 is nuclear enriched and exclusively binds to 21-nt siRNAs. Further analysis of the highly similar Cr-AGO2 and Cr-AGO 3 sequences (90% amino acid identity) revealed a glycine-arginine rich N-terminal extension of ~100 amino acids that, given previous work on unicellular protists, may associate AGO with the translation machinery. Phylogenetic analysis revealed that this glycine-arginine rich N-terminal extension is present outside the animal kingdom and is highly conserved, consistent with our previous proposal that miRNA-mediated CDS-targeting operates in this green alga.
Collapse
Affiliation(s)
- Betty Y-W Chung
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, United Kingdom. .,Department of Pathology, University of Cambridge, Cambridge, CB2 1QP, United Kingdom.
| | - Adrian Valli
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, United Kingdom.,Department of Plant Molecular Genetics, Spanish National Centre for Biotechnology, Madrid, 28049, Spain
| | - Michael J Deery
- Cambridge System Biology Centre and Department of Biochemistry, University of Cambridge, Cambridge, CB2 1GA, United Kingdom
| | - Francisco J Navarro
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, United Kingdom
| | - Katherine Brown
- Department of Pathology, University of Cambridge, Cambridge, CB2 1QP, United Kingdom
| | - Silvia Hnatova
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, United Kingdom
| | - Julie Howard
- Cambridge System Biology Centre and Department of Biochemistry, University of Cambridge, Cambridge, CB2 1GA, United Kingdom
| | - Attila Molnar
- Institute of Molecular Plant Sciences, University of Edinburgh, Edinburgh, EH9 3BF, United Kingdom
| | - David C Baulcombe
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, United Kingdom.
| |
Collapse
|
19
|
Bollmann SR, Press CM, Tyler BM, Grünwald NJ. Expansion and Divergence of Argonaute Genes in the Oomycete Genus Phytophthora. Front Microbiol 2018; 9:2841. [PMID: 30555430 PMCID: PMC6284064 DOI: 10.3389/fmicb.2018.02841] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 11/05/2018] [Indexed: 01/17/2023] Open
Abstract
Modulation of gene expression through RNA interference is well conserved in eukaryotes and is involved in many cellular processes. In the oomycete Phytophthora, research on the small RNA machinery and function has started to reveal potential roles in the pathogen, but much is still unknown. We examined Argonaute (AGO) homologs within oomycete genome sequences, especially among Phytophthora species, to gain a clearer understanding of the evolution of this well-conserved protein family. We identified AGO homologs across many representative oomycete and stramenopile species, and annotated representative homologs in P. sojae. Furthermore, we demonstrate variable transcript levels of all identified AGO homologs in comparison to previously identified Dicer-like (DCL) and RNA-dependent RNA polymerase (RDR) homologs. Our phylogenetic analysis further refines the relationship of the AGO homologs in oomycetes and identifies a conserved tandem duplication of AGO homologs in a subset of Phytophthora species.
Collapse
Affiliation(s)
- Stephanie R Bollmann
- Horticultural Crop Research Unit, Agricultural Research Service, United States Department of Agriculture, Corvallis, OR, United States
| | - Caroline M Press
- Horticultural Crop Research Unit, Agricultural Research Service, United States Department of Agriculture, Corvallis, OR, United States
| | - Brett M Tyler
- Department of Botany and Plant Pathology, Center for Genome Research and Biocomputing, Oregon State University, Corvallis, OR, United States
| | - Niklaus J Grünwald
- Horticultural Crop Research Unit, Agricultural Research Service, United States Department of Agriculture, Corvallis, OR, United States
| |
Collapse
|
20
|
Tu V, Yakubu R, Weiss LM. Observations on bradyzoite biology. Microbes Infect 2018; 20:466-476. [PMID: 29287987 PMCID: PMC6019562 DOI: 10.1016/j.micinf.2017.12.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 12/13/2017] [Accepted: 12/15/2017] [Indexed: 02/06/2023]
Abstract
Tachyzoites of the Apicomplexan Toxoplasma gondii cause acute infection, disseminate widely in their host, and eventually differentiate into a latent encysted form called bradyzoites that are found within tissue cysts. During latent infection, whenever transformation to tachyzoites occurs, any tachyzoites that develop are removed by the immune system. In contrast, cysts containing bradyzoites are sequestered from the immune system. In the absence of an effective immune response released organisms that differentiate into tachyzoites cause acute infection. Tissue cysts, therefore, serve as a reservoir for the reactivation of toxoplasmosis when the host becomes immunocompromised by conditions such as HIV infection, organ transplantation, or due to the impaired immune response that occurs when pathogens are acquired in utero. While tachyzoites and bradyzoites are well defined morphologically, there is no clear consensus on how interconversion occurs or what exact signal(s) mediate this transformation. Advances in research methods have facilitated studies on T. gondii bradyzoites providing important new insights into the biology of latent infection.
Collapse
Affiliation(s)
- Vincent Tu
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Rama Yakubu
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Louis M Weiss
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
21
|
Silva VO, Maia MM, Torrecilhas AC, Taniwaki NN, Namiyama GM, Oliveira KC, Ribeiro KS, Toledo MDS, Xander P, Pereira-Chioccola VL. Extracellular vesicles isolated fromToxoplasma gondiiinduce host immune response. Parasite Immunol 2018; 40:e12571. [DOI: 10.1111/pim.12571] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 06/05/2018] [Accepted: 07/03/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Valeria Oliveira Silva
- Laboratório de Biologia Molecular de Parasitas e Fungos; Instituto Adolfo Lutz; Sao Paulo Brazil
| | - Marta Marques Maia
- Laboratório de Biologia Molecular de Parasitas e Fungos; Instituto Adolfo Lutz; Sao Paulo Brazil
| | - Ana Claudia Torrecilhas
- Departamento de Ciências Farmacêuticas; Campus Diadema; Universidade Federal de Sao Paulo; Sao Paulo Brazil
| | | | | | - Katia Cristina Oliveira
- Disciplina de Parasitologia; Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina; Universidade Federal de São Paulo; Sao Paulo Brazil
| | - Kleber Silva Ribeiro
- Departamento de Ciências Farmacêuticas; Campus Diadema; Universidade Federal de Sao Paulo; Sao Paulo Brazil
| | - Maytê dos Santos Toledo
- Departamento de Ciências Farmacêuticas; Campus Diadema; Universidade Federal de Sao Paulo; Sao Paulo Brazil
| | - Patricia Xander
- Departamento de Ciências Farmacêuticas; Campus Diadema; Universidade Federal de Sao Paulo; Sao Paulo Brazil
| | | |
Collapse
|
22
|
Crater AK, Roscoe S, Fahim A, Ananvoranich S. Toxoplasma ubiquitin-like protease 1, a key enzyme in sumoylation and desumoylation pathways, is under the control of non-coding RNAs. Int J Parasitol 2018; 48:867-880. [PMID: 30005881 DOI: 10.1016/j.ijpara.2018.05.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 05/15/2018] [Accepted: 05/17/2018] [Indexed: 11/17/2022]
Abstract
Sumoylation and desumoylation are reversible pathways responsible for modification of protein structures and functions by the reversible covalent attachment of a small ubiquitin-like modifier (SUMO) peptide. These pathways are important for a wide range of cellular processes and require a steady supply of SUMO, which is generated by an enzymatic reaction catalysed by the ubiquitin-like protease (Ulp) family. Here we show by functional complementation analysis that the Ulp1 of Toxoplasma gondii (TgUlp1) can rescue a growth-deficient phenotype of a yeast-Ulp1 knockout. Recombinant TgUlp1 is an active enzyme capable of removing SUMO from a sumoylated substrate. Using a clonal transgenic strain of T. gondii expressing an epitope-tagged version of TgUlp1, we detected that the expression of TgUlp1 is modulated by Tg-miR-60, the most abundant species of micro RNA found in the T. gondii type 1 strain. The introduction of Tg-miR-60 inhibitor caused an increase in TgUlp1 expression and its enzymatic activity, as well as affecting the parasite's growth fitness. Moreover, we discovered a polyadenylated antisense RNA transcribed from the TgUlp1 locus, referred to as TgUlp1-NAT1 (TgUlp1-natural antisense transcript 1). Both Tg-miR-60 and TgUlp1-NAT1 confer a regulatory function by down-regulating the expression of TgUlp1 and affecting the sumoylation and desumoylation pathways in T. gondii.
Collapse
Affiliation(s)
- Anna K Crater
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario N9B3P4, Canada
| | - Scott Roscoe
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario N9B3P4, Canada
| | - Ambreen Fahim
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario N9B3P4, Canada
| | - Sirinart Ananvoranich
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario N9B3P4, Canada.
| |
Collapse
|
23
|
Abstract
Toxoplasma gondii is a common veterinary and human pathogen that persists as latent bradyzoite forms within infected hosts. The ability of the parasite to interconvert between tachyzoite and bradyzoite is key for pathogenesis of toxoplasmosis, particularly in immunocompromised individuals. The transition between tachyzoites and bradyzoites is epigenetically regulated and coupled to the cell cycle. Recent epigenomic studies have begun to elucidate the chromatin states associated with developmental switches in T. gondii. Evidence is also emerging that AP2 transcription factors both activate and repress the bradyzoite developmental program. Further studies are needed to understand the mechanisms by which T. gondii transduces environmental signals to coordinate the epigenetic and transcriptional machinery that are responsible for tachyzoite-bradyzoite interconversion.
Collapse
Affiliation(s)
- Kami Kim
- Department of Internal Medicine, Division of Infectious Diseases and International Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida 33612, USA.,Department of Global Health, College of Public Health, University of South Florida, Tampa, Florida 33612, USA;
| |
Collapse
|
24
|
Radke JB, Worth D, Hong D, Huang S, Sullivan WJ, Wilson EH, White MW. Transcriptional repression by ApiAP2 factors is central to chronic toxoplasmosis. PLoS Pathog 2018; 14:e1007035. [PMID: 29718996 PMCID: PMC5951591 DOI: 10.1371/journal.ppat.1007035] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 05/14/2018] [Accepted: 04/17/2018] [Indexed: 12/20/2022] Open
Abstract
Tachyzoite to bradyzoite development in Toxoplasma is marked by major changes in gene expression resulting in a parasite that expresses a new repertoire of surface antigens hidden inside a modified parasitophorous vacuole called the tissue cyst. The factors that control this important life cycle transition are not well understood. Here we describe an important transcriptional repressor mechanism controlling bradyzoite differentiation that operates in the tachyzoite stage. The ApiAP2 factor, AP2IV-4, is a nuclear factor dynamically expressed in late S phase through mitosis/cytokinesis of the tachyzoite cell cycle. Remarkably, deletion of the AP2IV-4 locus resulted in the expression of a subset of bradyzoite-specific proteins in replicating tachyzoites that included tissue cyst wall components BPK1, MCP4, CST1 and the surface antigen SRS9. In the murine animal model, the mis-timing of bradyzoite antigens in tachyzoites lacking AP2IV-4 caused a potent inflammatory monocyte immune response that effectively eliminated this parasite and prevented tissue cyst formation in mouse brain tissue. Altogether, these results indicate that suppression of bradyzoite antigens by AP2IV-4 during acute infection is required for Toxoplasma to successfully establish a chronic infection in the immune-competent host. The Toxoplasma biology that underlies the establishment of a chronic infection is developmental conversion of the acute tachyzoite stage into the latent bradyzoite-tissue cyst stage. Despite the important clinical consequences of this developmental pathway, the molecular basis of the switch mechanisms that control formation of the tissue cyst is still poorly understood. A fundamental feature of tissue cyst formation is the expression of bradyzoite-specific genes. Here we show the transcription factor AP2IV-4 directly silences bradyzoite mRNA and protein expression in the acute tachyzoite stage demonstrating that developmental control of tissue cyst formation is as much about when not to express bradyzoite genes as it is about when to activate them. Losing the suppression of bradyzoite gene expression in the acute tachyzoite stage caused by deleting AP2IV-4 blocked the establishment of chronic disease in healthy animals via increased protective immunity suggesting a possible strategy for preventing chronic Toxoplasma infections.
Collapse
Affiliation(s)
- Joshua B. Radke
- Department of Global Health, University of South Florida, Tampa, FL, United States of America
| | - Danielle Worth
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States of America
| | - David Hong
- Department of Global Health, University of South Florida, Tampa, FL, United States of America
| | - Sherri Huang
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, United States of America
| | - William J. Sullivan
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, United States of America
| | - Emma H. Wilson
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States of America
| | - Michael W. White
- Department of Global Health, University of South Florida, Tampa, FL, United States of America
- * E-mail:
| |
Collapse
|
25
|
Global miRNA expression profiling of domestic cat livers following acute Toxoplasma gondii infection. Oncotarget 2018; 8:25599-25611. [PMID: 28424428 PMCID: PMC5421954 DOI: 10.18632/oncotarget.16108] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 02/08/2017] [Indexed: 12/30/2022] Open
Abstract
Although microRNAs (miRNAs) play an important role in liver homeostasis, the extent to which they can be altered by Toxoplasma gondii infection is unknown. Here, we utilized small RNA sequencing and bioinformatic analyses to characterize miRNA expression profiles in the liver of domestic cats at 7 days after oral infection with T. gondii (Type II) strain. A total of 384 miRNAs were identified and 82 were differentially expressed, of which 33 were up-regulated and 49 down-regulated. Also, 5690 predicted host gene targets for the differentially expressed miRNAs were identified using the bioinformatic algorithm miRanda. Gene ontology analysis revealed that the predicted gene targets of the dysregulated miRNAs were significantly enriched in apoptosis. Kyoto Encyclopedia of Genes and Genomes analysis showed that the predicted gene targets were involved in several pathways, including acute myeloid leukemia, central carbon metabolism in cancer, choline metabolism in cancer, estrogen signaling pathway, fatty acid degradation, lysosome, nucleotide excision repair, progesterone-mediated oocyte maturation, and VEGF signaling pathway. The expression level of 6 upregulated miRNAs (mmu-miR-21a-5p, mmu-miR-20a-5p, mmu-miR-17-5p, mmu-miR-30e-3p, mmu-miR-142a-3p, and mmu-miR-106b-3p) was confirmed by stem-loop quantitative reverse transcription PCR, which yielded results consistent with the sequencing data. These findings expand our understanding of the regulatory mechanisms of miRNAs underlying T. gondii pathogenesis and contribute new database information on cat miRNAs, opening a new perspective on the prevention and treatment of T. gondii infection.
Collapse
|
26
|
Acar İE, Saçar Demirci MD, Groß U, Allmer J. The Expressed MicroRNA—mRNA Interactions of Toxoplasma gondii. Front Microbiol 2018; 8:2630. [PMID: 29354114 PMCID: PMC5759179 DOI: 10.3389/fmicb.2017.02630] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 12/15/2017] [Indexed: 12/02/2022] Open
Abstract
MicroRNAs (miRNAs) are involved in post-transcriptional modulation of gene expression and thereby have a large influence on the resulting phenotype. We have previously shown that miRNAs may be involved in the communication between Toxoplasma gondii and its hosts and further confirmed a number of proposed specific miRNAs. Yet, little is known about the internal regulation via miRNAs in T. gondii. Therefore, we predicted pre-miRNAs directly from the type II ME49 genome and filtered them. For the confident hairpins, we predicted the location of the mature miRNAs and established their target genes. To add further confidence, we evaluated whether the hairpins and their targets were co-expressed. Such co-expressed miRNA and target pairs define a functional interaction. We extracted all such functional interactions and analyzed their differential expression among strains of all three clonal lineages (RH, PLK, and CTG) and between the two stages present in the intermediate host (tachyzoites and bradyzoites). Overall, we found ~65,000 expressed interactions of which ~5,500 are differentially expressed among strains but none are significantly differentially expressed between developmental stages. Since miRNAs and target decoys can be used as therapeutics we believe that the list of interactions we provide will lead to novel approaches in the treatment of toxoplasmosis.
Collapse
Affiliation(s)
- İlhan E. Acar
- Biotechnology, Izmir Institute of Technology, Izmir, Turkey
| | | | - Uwe Groß
- Medical Microbiology, Universitätsmedizin Göttingen, Göttingen, Germany
- *Correspondence: Uwe Groß
| | - Jens Allmer
- Molecular Biology and Genetics, Izmir Institute of Technology, Izmir, Turkey
- Jens Allmer
| |
Collapse
|
27
|
Feng H, Xu M, Liu Y, Dong R, Gao X, Huang L. Dicer-Like Genes Are Required for H 2O 2 and KCl Stress Responses, Pathogenicity and Small RNA Generation in Valsa mali. Front Microbiol 2017; 8:1166. [PMID: 28690605 PMCID: PMC5481355 DOI: 10.3389/fmicb.2017.01166] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 06/07/2017] [Indexed: 11/16/2022] Open
Abstract
Valsa mali (V. mali) is the causative agent of apple tree Valsa canker, which heavily damages the production of apples in China. However, the biological roles of the RNA interfering (RNAi) pathway in the pathogenicity of V. mali remain unknown. Dicer-like proteins (DCLs) are important components that control the initiation of the RNAi pathway. In this study, VmDCL1 and VmDCL2 were isolated and functionally characterized in V. mali. VmDCL1 and VmDCL2 are orthologous in evolution to the DCLs in Cryphonectria parasitica. The deletion of VmDCL1 and VmDCL2 did not affect vegetative growth when the mutants (ΔVmDCL1, ΔVmDCL2 and ΔVmDCL1DCL2) and wild type strain 03–8 were grown on a PDA medium at 25°C in the dark. However, the colony of ΔVmDCL1 increased by 37.1% compared to the 03–8 colony in a medium containing 0.05% H2O2 3 days after inoculation, and the growth of ΔVmDCL1 was significantly inhibited in a medium containing 0.5 M KCl at a ratio of 25.7%. Meanwhile, in the presence of 0.05% H2O2, the growth of ΔVmDCL2 decreased by 34.5% compared with the growth of 03–8, but ΔVmDCL2 grew normally in the presence of 0.5 M KCl. More importantly, the expression of VmDCL2 was up-regulated 125-fold during the pathogen infection. In the infection assays using apple twigs, the pathogenicity of ΔVmDCL2 and ΔVmDCL1DCL2 was significantly reduced compared with that of 03–8 at a ratio of 24.7 and 41.3%, respectively. All defective phenotypes could be nearly rescued by re-introducing the wild type VmDCL1 and VmDCL2 alleles. Furthermore, the number and length distribution of unique small RNAs (unisRNAs) in the mutants and 03–8 were analyzed using deep sequencing. The number of unisRNAs was obviously lower in ΔVmDCL1, ΔVmDCL2 and ΔVmDCL1DCL2 than that in 03–8, and the length distribution of the sRNAs also markedly changed after the VmDCLs were deleted. These results indicated that VmDCLs function in the H2O2 and KCl stress response, pathogenicity and generation of sRNAs.
Collapse
Affiliation(s)
- Hao Feng
- College of Plant Protection and State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F UniversityYangling, China
| | - Ming Xu
- College of Plant Protection and State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F UniversityYangling, China
| | - Yangyang Liu
- College of Plant Protection and State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F UniversityYangling, China
| | - Ruqing Dong
- College of Plant Protection and State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F UniversityYangling, China
| | - Xiaoning Gao
- College of Plant Protection and State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F UniversityYangling, China
| | - Lili Huang
- College of Plant Protection and State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F UniversityYangling, China
| |
Collapse
|
28
|
Yazbeck AM, Tout KR, Stadler PF, Hertel J. Towards a Consistent, Quantitative Evaluation of MicroRNA Evolution. J Integr Bioinform 2017. [PMID: 28637930 PMCID: PMC6042801 DOI: 10.1515/jib-2016-0013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The miRBase currently reports more than 25,000 microRNAs in several hundred genomes that belong to more than 1000 families of homologous sequences. Quantitative investigations of miRNA gene evolution requires the construction of data sets that are consistent in their coverage and include those genomes that are of interest in a given study. Given the size and structure of data, this can be achieved only with the help of a fully automatic pipeline that improves the available seed alignments, extends the set of available sequences by homology search, and reliably identifies true positive homology search results. Here we describe the current progress towards such a system, emphasizing the task of improving and completing the initial seed alignment.
Collapse
|
29
|
Bayer-Santos E, Marini MM, da Silveira JF. Non-coding RNAs in Host-Pathogen Interactions: Subversion of Mammalian Cell Functions by Protozoan Parasites. Front Microbiol 2017; 8:474. [PMID: 28377760 PMCID: PMC5359270 DOI: 10.3389/fmicb.2017.00474] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 03/08/2017] [Indexed: 01/23/2023] Open
Abstract
Pathogens have evolved mechanisms to modulate host cell functions and avoid recognition and destruction by the host damage response. For many years, researchers have focused on proteins as the main effectors used by pathogens to hijack host cell pathways, but only recently with the development of deep RNA sequencing these molecules were brought to light as key players in infectious diseases. Protozoan parasites such as those from the genera Plasmodium, Toxoplasma, Leishmania, and Trypanosoma cause life-threatening diseases and are responsible for 1000s of deaths worldwide every year. Some of these parasites replicate intracellularly when infecting mammalian hosts, whereas others can survive and replicate extracellularly in the bloodstream. Each of these parasites uses specific evasion mechanisms to avoid being killed by the host defense system. An increasing number of studies have shown that these pathogens can transfer non-coding RNA molecules to the host cells to modulate their functions. This transference usually happens via extracellular vesicles, which are small membrane vesicles secreted by the microorganism. In this mini-review we will combine published work regarding several protozoan parasites that were shown to use non-coding RNAs in inter-kingdom communication and briefly discuss future perspectives in the field.
Collapse
Affiliation(s)
- Ethel Bayer-Santos
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo São Paulo, Brazil
| | - Marjorie M Marini
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo São Paulo, Brazil
| | - José F da Silveira
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo São Paulo, Brazil
| |
Collapse
|
30
|
Walzer KA, Chi JT. Trans-kingdom small RNA transfer during host-pathogen interactions: The case of P. falciparum and erythrocytes. RNA Biol 2017; 14:442-449. [PMID: 28277932 DOI: 10.1080/15476286.2017.1294307] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
This review focuses on the role of trans-kingdom movement of small RNA (sRNA) molecules between parasites, particularly Plasmodium falciparum, and their respective host cells. While the intercellular transfer of sRNAs within organisms is well recognized, recent studies illustrate many examples of trans-kingdom sRNA exchange within the context of host-parasite interactions. These interactions are predominantly found in the transfer of host sRNAs between erythrocytes and the invading P. falciparum, as well as other host cell types. In addition, parasite-encoded sRNAs can also be transferred to host cells to evade the immune system. The transport of these parasite sRNAs in the body fluids of the host may also offer means to detect and monitor the parasite infection. These isolated examples may only represent the tip of the iceberg in which the transfer of sRNA between host and parasites is a critical aspect of host-pathogen interactions. In addition, the levels of these sRNAs and their speed of transfer may vary dramatically under different contexts to push the biologic equilibrium toward the benefit of hosts vs. parasites. Therefore, these sRNA transfers may offer potential strategies to detect, prevent or treat parasite infections. Here, we review a brief history of the discovery of host erythrocyte sRNAs, their transfers and interactions in the context of P. falciparum infection. We also provide examples and discuss the functional significance of the reciprocal transfer of parasite-encoded sRNAs into hosts. These understandings of sRNA exchanges are put in the context of their implications for parasite pathogenesis, host defenses and the evolution of host polymorphisms driven by host interactions with these parasites.
Collapse
Affiliation(s)
- Katelyn A Walzer
- a Department of Molecular Genetics and Microbiology , Duke University School of Medicine , Durham , North Carolina , USA.,b Center for Genomic and Computational Biology , Duke University School of Medicine , Durham , North Carolina , USA
| | - Jen-Tsan Chi
- a Department of Molecular Genetics and Microbiology , Duke University School of Medicine , Durham , North Carolina , USA.,b Center for Genomic and Computational Biology , Duke University School of Medicine , Durham , North Carolina , USA
| |
Collapse
|
31
|
Bunnik EM, Batugedara G, Saraf A, Prudhomme J, Florens L, Le Roch KG. The mRNA-bound proteome of the human malaria parasite Plasmodium falciparum. Genome Biol 2016; 17:147. [PMID: 27381095 PMCID: PMC4933991 DOI: 10.1186/s13059-016-1014-0] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 06/20/2016] [Indexed: 02/08/2023] Open
Abstract
Background Gene expression is controlled at multiple levels, including transcription, stability, translation, and degradation. Over the years, it has become apparent that Plasmodium falciparum exerts limited transcriptional control of gene expression, while at least part of Plasmodium’s genome is controlled by post-transcriptional mechanisms. To generate insights into the mechanisms that regulate gene expression at the post-transcriptional level, we undertook complementary computational, comparative genomics, and experimental approaches to identify and characterize mRNA-binding proteins (mRBPs) in P. falciparum. Results Close to 1000 RNA-binding proteins are identified by hidden Markov model searches, of which mRBPs encompass a relatively large proportion of the parasite proteome as compared to other eukaryotes. Several abundant mRNA-binding domains are enriched in apicomplexan parasites, while strong depletion of mRNA-binding domains involved in RNA degradation is observed. Next, we experimentally capture 199 proteins that interact with mRNA during the blood stages, 64 of which with high confidence. These captured mRBPs show a significant overlap with the in silico identified candidate RBPs (p < 0.0001). Among the experimentally validated mRBPs are many known translational regulators active in other stages of the parasite’s life cycle, such as DOZI, CITH, PfCELF2, Musashi, and PfAlba1–4. Finally, we also detect several proteins with an RNA-binding domain abundant in Apicomplexans (RAP domain) that is almost exclusively found in apicomplexan parasites. Conclusions Collectively, our results provide the most complete comparative genomics and experimental analysis of mRBPs in P. falciparum. A better understanding of these regulatory proteins will not only give insight into the intricate parasite life cycle but may also provide targets for novel therapeutic strategies. Electronic supplementary material The online version of this article (doi:10.1186/s13059-016-1014-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Evelien M Bunnik
- Department of Cell Biology and Neuroscience, University of California, Riverside, 900 University Avenue, Riverside, CA, 92521, USA
| | - Gayani Batugedara
- Department of Cell Biology and Neuroscience, University of California, Riverside, 900 University Avenue, Riverside, CA, 92521, USA
| | - Anita Saraf
- Stowers Institute for Medical Research, 1000 E. 50th Street, Kansas City, MO, 64110, USA
| | - Jacques Prudhomme
- Department of Cell Biology and Neuroscience, University of California, Riverside, 900 University Avenue, Riverside, CA, 92521, USA
| | - Laurence Florens
- Stowers Institute for Medical Research, 1000 E. 50th Street, Kansas City, MO, 64110, USA
| | - Karine G Le Roch
- Department of Cell Biology and Neuroscience, University of California, Riverside, 900 University Avenue, Riverside, CA, 92521, USA.
| |
Collapse
|
32
|
Small RNA-Based Antiviral Defense in the Phytopathogenic Fungus Colletotrichum higginsianum. PLoS Pathog 2016; 12:e1005640. [PMID: 27253323 PMCID: PMC4890784 DOI: 10.1371/journal.ppat.1005640] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 04/26/2016] [Indexed: 12/21/2022] Open
Abstract
Even though the fungal kingdom contains more than 3 million species, little is known about the biological roles of RNA silencing in fungi. The Colletotrichum genus comprises fungal species that are pathogenic for a wide range of crop species worldwide. To investigate the role of RNA silencing in the ascomycete fungus Colletotrichum higginsianum, knock-out mutants affecting genes for three RNA-dependent RNA polymerase (RDR), two Dicer-like (DCL), and two Argonaute (AGO) proteins were generated by targeted gene replacement. No effects were observed on vegetative growth for any mutant strain when grown on complex or minimal media. However, Δdcl1, Δdcl1Δdcl2 double mutant, and Δago1 strains showed severe defects in conidiation and conidia morphology. Total RNA transcripts and small RNA populations were analyzed in parental and mutant strains. The greatest effects on both RNA populations was observed in the Δdcl1, Δdcl1Δdcl2, and Δago1 strains, in which a previously uncharacterized dsRNA mycovirus [termed Colletotrichum higginsianum non-segmented dsRNA virus 1 (ChNRV1)] was derepressed. Phylogenetic analyses clearly showed a close relationship between ChNRV1 and members of the segmented Partitiviridae family, despite the non-segmented nature of the genome. Immunoprecipitation of small RNAs associated with AGO1 showed abundant loading of 5’U-containing viral siRNA. C. higginsianum parental and Δdcl1 mutant strains cured of ChNRV1 revealed that the conidiation and spore morphology defects were primarily caused by ChNRV1. Based on these results, RNA silencing involving ChDCL1 and ChAGO1 in C. higginsianum is proposed to function as an antiviral mechanism. Colletotrichum sp. comprises a diverse group of fungal pathogens that attack over 3000 plant species worldwide. Understanding the underlying mechanisms that govern fungal development and pathogenicity may enable more effective and sustainable approaches to crop disease management and control. In most organisms, RNA silencing is an important mechanism to control endogenous and exogenous RNA. RNA silencing utilizes small regulatory molecules (small RNAs) produced by proteins called Dicer (DCL), and exercise their function though effector proteins named Argonaute (AGO). Here, we investigated the role of RNA silencing machinery in the fungus Colletotrichum higginsianum, by generating deletions in genes encoding RNA silencing components. Severe defects were observed in both conidiation and conidia morphology in the Δdcl1, Δdcl1Δdcl2, and Δago1 strains. Analysis of transcripts and small RNAs revealed an uncharacterized dsRNA virus persistently infecting C. higginsianum. The virus was shown (1) to be de-repressed in the Δdcl1, Δdcl1Δdcl2 and Δago1 strains, and (2) to cause the conidiation and spore mutant phenotypes. Our results indicate that C. higginsianum employs RNA silencing as an antiviral mechanism to suppress viruses and their debilitating effects.
Collapse
|
33
|
Valli AA, Santos BACM, Hnatova S, Bassett AR, Molnar A, Chung BY, Baulcombe DC. Most microRNAs in the single-cell alga Chlamydomonas reinhardtii are produced by Dicer-like 3-mediated cleavage of introns and untranslated regions of coding RNAs. Genome Res 2016; 26:519-29. [PMID: 26968199 PMCID: PMC4817775 DOI: 10.1101/gr.199703.115] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 02/10/2016] [Indexed: 01/20/2023]
Abstract
We describe here a forward genetic screen to investigate the biogenesis, mode of action, and biological function of miRNA-mediated RNA silencing in the model algal species, Chlamydomonas reinhardtii. Among the mutants from this screen, there were three at Dicer-like 3 that failed to produce both miRNAs and siRNAs and others affecting diverse post-biogenesis stages of miRNA-mediated silencing. The DCL3-dependent siRNAs fell into several classes including transposon- and repeat-derived siRNAs as in higher plants. The DCL3-dependent miRNAs differ from those of higher plants, however, in that many of them are derived from mRNAs or from the introns of pre-mRNAs. Transcriptome analysis of the wild-type and dcl3 mutant strains revealed a further difference from higher plants in that the sRNAs are rarely negative switches of mRNA accumulation. The few transcripts that were more abundant in dcl3 mutant strains than in wild-type cells were not due to sRNA-targeted RNA degradation but to direct DCL3 cleavage of miRNA and siRNA precursor structures embedded in the untranslated (and translated) regions of the mRNAs. Our analysis reveals that the miRNA-mediated RNA silencing in C. reinhardtii differs from that of higher plants and informs about the evolution and function of this pathway in eukaryotes.
Collapse
Affiliation(s)
- Adrian A Valli
- Department of Plant Sciences, University of Cambridge CB2 3EA, Cambridge CB2 3EA, United Kingdom
| | - Bruno A C M Santos
- Department of Plant Sciences, University of Cambridge CB2 3EA, Cambridge CB2 3EA, United Kingdom
| | - Silvia Hnatova
- Department of Plant Sciences, University of Cambridge CB2 3EA, Cambridge CB2 3EA, United Kingdom
| | - Andrew R Bassett
- Department of Plant Sciences, University of Cambridge CB2 3EA, Cambridge CB2 3EA, United Kingdom
| | - Attila Molnar
- Department of Plant Sciences, University of Cambridge CB2 3EA, Cambridge CB2 3EA, United Kingdom
| | - Betty Y Chung
- Department of Plant Sciences, University of Cambridge CB2 3EA, Cambridge CB2 3EA, United Kingdom
| | - David C Baulcombe
- Department of Plant Sciences, University of Cambridge CB2 3EA, Cambridge CB2 3EA, United Kingdom
| |
Collapse
|
34
|
Toxoplasma gondii Arginine Methyltransferase 1 (PRMT1) Is Necessary for Centrosome Dynamics during Tachyzoite Cell Division. mBio 2016; 7:e02094-15. [PMID: 26838719 PMCID: PMC4742710 DOI: 10.1128/mbio.02094-15] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The arginine methyltransferase family (PRMT) has been implicated in a variety of cellular processes, including signal transduction, epigenetic regulation, and DNA repair pathways. PRMT1 is thought to be responsible for the majority of PRMT activity in Toxoplasma gondii, but its exact function is unknown. To further define the biological function of the PRMT family, we generated T. gondii mutants lacking PRMT1 (Δprmt1) by deletion of the PRMT1 gene. Δprmt1 parasites exhibit morphological defects during cell division and grow slowly, and this phenotype reverses in the Δprmt::PRMT1mRFP complemented strain. Tagged PRMT1 localizes primarily in the cytoplasm with enrichment at the pericentriolar material, and the strain lacking PRMT1 is unable to segregate progeny accurately. Unlike wild-type and complemented parasites, Δprmt1 parasites have abnormal daughter buds, perturbed centrosome stoichiometry, and loss of synchronous replication. Whole-genome expression profiling demonstrated differences in expression of cell-cycle-regulated genes in the Δprmt1 strain relative to the complemented Δprmt1::PRMT1mRFP and parental wild-type strains, but these changes do not correlate with a specific block in cell cycle. Although PRMT1’s primary biological function was previously proposed to be methylation of histones, our studies suggest that PRMT1 plays an important role within the centrosome to ensure the proper replication of the parasite. Apicomplexan parasites include several important pathogens, including Toxoplasma gondii, a major cause of opportunistic infections and congenital birth defects. These parasites divide using a unique form of cell division called endodyogeny that is different from those of most eukaryotes. PRMT1 is a conserved arginine methyltransferase that was thought to regulate gene expression of T. gondii by modifying histone methylation. Using genetic techniques, we show that disruption of PRMT1 affects the parasite’s ability to perform accurate cell division. Our studies reveal an unexpected role for arginine methylation in centrosome biology and regulation of parasite replication.
Collapse
|
35
|
Bollmann SR, Fang Y, Press CM, Tyler BM, Grünwald NJ. Diverse Evolutionary Trajectories for Small RNA Biogenesis Genes in the Oomycete Genus Phytophthora. FRONTIERS IN PLANT SCIENCE 2016; 7:284. [PMID: 27014308 PMCID: PMC4791657 DOI: 10.3389/fpls.2016.00284] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 02/22/2016] [Indexed: 05/10/2023]
Abstract
Gene regulation by small RNA pathways is ubiquitous among eukaryotes, but little is known about small RNA pathways in the Stramenopile kingdom. Phytophthora, a genus of filamentous oomycetes, contains many devastating plant pathogens, causing multibillion-dollar damage to crops, ornamental plants, and natural environments. The genomes of several oomycetes including Phytophthora species such as the soybean pathogen P. sojae, have been sequenced, allowing evolutionary analysis of small RNA-processing enzymes. This study examined the evolutionary origins of the oomycete small RNA-related genes Dicer-like (DCL), and RNA-dependent RNA polymerase (RDR) through broad phylogenetic analyses of the key domains. Two Dicer gene homologs, DCL1 and DCL2, and one RDR homolog were cloned and analyzed from P. sojae. Gene expression analysis revealed only minor changes in transcript levels among different life stages. Oomycete DCL1 homologs clustered with animal and plant Dicer homologs in evolutionary trees, whereas oomycete DCL2 homologs clustered basally to the tree along with Drosha homologs. Phylogenetic analysis of the RDR homologs confirmed a previous study that suggested the last common eukaryote ancestor possessed three RDR homologs, which were selectively retained or lost in later lineages. Our analysis clarifies the position of some Unikont and Chromalveolate RDR lineages within the tree, including oomycete homologs. Finally, we analyzed alterations in the domain structure of oomycete Dicer and RDR homologs, specifically focusing on the proposed domain transfer of the DEAD-box helicase domain from Dicer to RDR. Implications of the oomycete domain structure are discussed, and possible roles of the two oomycete Dicer homologs are proposed.
Collapse
Affiliation(s)
- Stephanie R. Bollmann
- Horticultural Crop Research Unit, USDA-Agricultural Research ServiceCorvallis, OR, USA
| | - Yufeng Fang
- Department of Botany and Plant Pathology and Center for Genome Biology and Biocomputing, Oregon State UniversityCorvallis, OR, USA
- Interdisciplinary Ph.D. Program in Genetics, Bioinformatics and Computational Biology, Virginia TechBlacksburg, VA, USA
| | - Caroline M. Press
- Horticultural Crop Research Unit, USDA-Agricultural Research ServiceCorvallis, OR, USA
| | - Brett M. Tyler
- Department of Botany and Plant Pathology and Center for Genome Biology and Biocomputing, Oregon State UniversityCorvallis, OR, USA
| | - Niklaus J. Grünwald
- Horticultural Crop Research Unit, USDA-Agricultural Research ServiceCorvallis, OR, USA
- Department of Botany and Plant Pathology and Center for Genome Biology and Biocomputing, Oregon State UniversityCorvallis, OR, USA
- *Correspondence: Niklaus J. Grünwald
| |
Collapse
|
36
|
Antisense technologies in the studying of Toxoplasma gondii. J Microbiol Methods 2015; 138:93-99. [PMID: 26724749 DOI: 10.1016/j.mimet.2015.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 11/13/2015] [Accepted: 12/17/2015] [Indexed: 11/23/2022]
Abstract
This review covers a brief history of antisense RNAs and its applications, and summarizes the current stage of antisense technologies used in Toxoplasma gondii, a fascinating model organism with a unique characteristic blend of genetic regulatory systems normally found in plants or animals. Based on the current knowledge of regulatory RNAs and non-coding RNA (ncRNA), the antisense technologies are reviewed according to the classification of ncRNAs, which are roughly categorized into small, ranging from ~20-200 nucleotides in length, and long >200 nucleotides. Techniques utilizing small regulatory RNAs such as siRNA, miRNA, antagomirs, ribozymes and morpholino oligomers are discussed along with long non-coding RNA (lncRNA) including antisense and double stranded. These antisense technologies can be used in forward and reverse genetics studies. The future of technologies is limitless, particularly by combining these technologies with conventional methods, and should allow for ever greater understanding of gene regulation of the organism and related pathogenic microorganisms.
Collapse
|
37
|
Hertel J, Stadler PF. The Expansion of Animal MicroRNA Families Revisited. Life (Basel) 2015; 5:905-20. [PMID: 25780960 PMCID: PMC4390885 DOI: 10.3390/life5010905] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 02/09/2015] [Accepted: 02/11/2015] [Indexed: 12/14/2022] Open
Abstract
MicroRNAs are important regulatory small RNAs in many eukaryotes. Due to their small size and simple structure, they are readily innovated de novo. Throughout the evolution of animals, the emergence of novel microRNA families traces key morphological innovations. Here, we use a computational approach based on homology search and parsimony-based presence/absence analysis to draw a comprehensive picture of microRNA evolution in 159 animal species. We confirm previous observations regarding bursts of innovations accompanying the three rounds of genome duplications in vertebrate evolution and in the early evolution of placental mammals. With a much better resolution for the invertebrate lineage compared to large-scale studies, we observe additional bursts of innovation, e.g., in Rhabditoidea. More importantly, we see clear evidence that loss of microRNA families is not an uncommon phenomenon. The Enoplea may serve as a second dramatic example beyond the tunicates. The large-scale analysis presented here also highlights several generic technical issues in the analysis of very large gene families that will require further research.
Collapse
Affiliation(s)
- Jana Hertel
- Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics, University Leipzig, Härtelstrasse 16-18, D-04107 Leipzig, Germany.
| | - Peter F Stadler
- Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics, University Leipzig, Härtelstrasse 16-18, D-04107 Leipzig, Germany.
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5E, 04103 Leipzig, Germany.
- Max Planck Institute for Mathematics in the Sciences, Inselstraße 22, D-04103 Leipzig, Germany.
- Fraunhofer Institute for Cell Therapy and Immunology, Perlickstrasse 1, D-04103 Leipzig, Germany.
- Department of Theoretical Chemistry of the University of Vienna, Währingerstrasse 17, A-1090 Vienna, Austria.
- Center for RNA in Technology and Health, University of Copenhagen, Grønnegårdsvej 3, Frederiksberg C, Denmark.
- Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501, USA.
| |
Collapse
|
38
|
Recombinant expression, purification, and crystallization of the glutaminyl-tRNA synthetase from Toxoplasma gondii. Protein Expr Purif 2015; 110:115-21. [PMID: 25736594 DOI: 10.1016/j.pep.2015.02.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 02/20/2015] [Accepted: 02/23/2015] [Indexed: 11/20/2022]
Abstract
Aminoacyl tRNA synthetases play a critical role in protein synthesis by providing precursor transfer-RNA molecules correctly charged with their cognate amino-acids. The essential nature of these enzymes make them attractive targets for designing new drugs against important pathogenic protozoans like Toxoplasma. Because no structural data currently exists for a protozoan glutaminyl-tRNA synthetase (QRS), an understanding of its potential as a drug target and its function in the assembly of the Toxoplasma multi-aminoacyl tRNA (MARS) complex is therefore lacking. Here we describe the optimization of expression and purification conditions that permitted the recovery and crystallization of both domains of the Toxoplasma QRS enzyme from a heterologous Escherichia coli expression system. Expression of full-length QRS was only achieved after the addition of an N-terminal histidine affinity tag and the isolated protein was active on both cellular and in vitro produced Toxoplasma tRNA. Taking advantage of the proteolytic susceptibility of QRS to cleavage into component domains, N-terminal glutathione S-transferase (GST) motif-containing domain fragments were isolated and crystallization conditions discovered. Isolation of the C-terminal catalytic domain was accomplished after subcloning the domain and optimizing expression conditions. Purified catalytic domain survived cryogenic storage and yielded large diffraction-quality crystals over-night after optimization of screening conditions. This work will form the basis of future structural studies into structural-functional relationships of both domains including potential targeted drug-design studies and investigations into the assembly of the Toxoplasma MARS complex.
Collapse
|
39
|
Crater AK, Manni E, Ananvoranich S. Utilization of inherent miRNAs in functional analyses of Toxoplasma gondii genes. J Microbiol Methods 2015; 108:92-102. [DOI: 10.1016/j.mimet.2014.11.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 11/26/2014] [Accepted: 11/26/2014] [Indexed: 10/24/2022]
|
40
|
Holmes M, Itaas V, Ananvoranich S. Sustained translational repression of lactate dehydrogenase 1 inToxoplasma gondiibradyzoites is conferred by a small regulatory RNA hairpin. FEBS J 2014; 281:5077-91. [DOI: 10.1111/febs.13048] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 09/04/2014] [Accepted: 09/09/2014] [Indexed: 12/24/2022]
Affiliation(s)
- Michael Holmes
- Department of Chemistry and Biochemistry; University of Windsor; Canada
| | - Vaunell Itaas
- Department of Chemistry and Biochemistry; University of Windsor; Canada
| | | |
Collapse
|
41
|
Saçar MD, Bağcı C, Allmer J. Computational Prediction of MicroRNAs from Toxoplasma gondii Potentially Regulating the Hosts’ Gene Expression. GENOMICS PROTEOMICS & BIOINFORMATICS 2014; 12:228-38. [PMID: 25462155 PMCID: PMC4411416 DOI: 10.1016/j.gpb.2014.09.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 09/10/2014] [Accepted: 09/16/2014] [Indexed: 01/03/2023]
Abstract
MicroRNAs (miRNAs) were discovered two decades ago, yet there is still a great need for further studies elucidating their genesis and targeting in different phyla. Since experimental discovery and validation of miRNAs is difficult, computational predictions are indispensable and today most computational approaches employ machine learning. Toxoplasma gondii, a parasite residing within the cells of its hosts like human, uses miRNAs for its post-transcriptional gene regulation. It may also regulate its hosts’ gene expression, which has been shown in brain cancer. Since previous studies have shown that overexpressed miRNAs within the host are causal for disease onset, we hypothesized that T. gondii could export miRNAs into its host cell. We computationally predicted all hairpins from the genome of T. gondii and used mouse and human models to filter possible candidates. These were then further compared to known miRNAs in human and rodents and their expression was examined for T. gondii grown in mouse and human hosts, respectively. We found that among the millions of potential hairpins in T. gondii, only a few thousand pass filtering using a human or mouse model and that even fewer of those are expressed. Since they are expressed and differentially expressed in rodents and human, we suggest that there is a chance that T. gondii may export miRNAs into its hosts for direct regulation.
Collapse
|
42
|
Transcript maturation in apicomplexan parasites. Curr Opin Microbiol 2014; 20:82-7. [PMID: 24934558 DOI: 10.1016/j.mib.2014.05.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 05/19/2014] [Accepted: 05/20/2014] [Indexed: 01/21/2023]
Abstract
The complex life cycles of apicomplexan parasites are associated with dynamic changes of protein repertoire. In Toxoplasma gondii, global analysis of gene expression demonstrates that dynamic changes in mRNA levels unfold in a serial cascade during asexual replication and up to 50% of encoded genes are unequally expressed in development. Recent studies indicate transcription and mRNA processing have important roles in fulfilling the 'just-in-time' delivery of proteins to parasite growth and development. The prominence of post-transcriptional mechanisms in the Apicomplexa was demonstrated by mechanistic studies of the critical RNA-binding proteins and regulatory kinases. However, it is still early in our understanding of how transcription and post-transcriptional mechanisms are balanced to produce adequate numbers of specialized forms that is required to complete the parasite life cycle.
Collapse
|
43
|
Cherry AA, Ananvoranich S. Characterization of a homolog of DEAD-box RNA helicases in Toxoplasma gondii as a marker of cytoplasmic mRNP stress granules. Gene 2014; 543:34-44. [PMID: 24709106 DOI: 10.1016/j.gene.2014.04.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 03/23/2014] [Accepted: 04/03/2014] [Indexed: 11/27/2022]
Abstract
Toxoplasma gondii is an obligate intracellular protozoan which infects one-third of the human population. Due to its high infection prevalence, Toxoplasma offers an ideal system for the study of host-parasite interaction. Similar to other eukaryotes, Toxoplasma maintains levels and localization of cytoplasmic mRNAs throughout its life cycle as part of a gene regulation network to meet all cellular and biochemical requirements. More recently, it was reported that the presence of cytoplasmic mRNA granules could contribute to the parasite pathogenesis and viability. Here we identified a novel Toxoplasma DEAD-box RNA helicase, referred to as Toxoplasma gondiiHomolog of DOZI (TgHoDI), because of its high homology (81%) to Plasmodium DOZI. TgHoDI is the functional ortholog of yeast DHH1, and its function was authenticated by complementation studies in Δdhh1 yeast strain. We demonstrated that TgHoDI is a marker of cytoplasmic RNA stress granules, which assemble when the parasites experience cellular stresses and translational arrest.
Collapse
Affiliation(s)
- Ahmed Adnan Cherry
- The Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario N9B3P4, Canada
| | - Sirinart Ananvoranich
- The Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario N9B3P4, Canada.
| |
Collapse
|
44
|
Host cell subversion by Toxoplasma GRA16, an exported dense granule protein that targets the host cell nucleus and alters gene expression. Cell Host Microbe 2014; 13:489-500. [PMID: 23601110 DOI: 10.1016/j.chom.2013.03.002] [Citation(s) in RCA: 168] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Revised: 01/17/2013] [Accepted: 02/14/2013] [Indexed: 01/17/2023]
Abstract
After invading host cells, Toxoplasma gondii multiplies within a parasitophorous vacuole (PV) that is maintained by parasite proteins secreted from organelles called dense granules. Most dense granule proteins remain within the PV, and few are known to access the host cell cytosol. We identify GRA16 as a dense granule protein that is exported through the PV membrane and reaches the host cell nucleus, where it positively modulates genes involved in cell-cycle progression and the p53 tumor suppressor pathway. GRA16 binds two host enzymes, the deubiquitinase HAUSP and PP2A phosphatase, which exert several functions, including regulation of p53 and the cell cycle. GRA16 alters p53 levels in a HAUSP-dependent manner and induces nuclear translocation of the PP2A holoenzyme. Additionally, certain GRA16-deficient strains exhibit attenuated virulence, indicating the importance of these host alterations in pathogenesis. Therefore, GRA16 represents a potentially emerging subfamily of exported dense granule proteins that modulate host function.
Collapse
|
45
|
van Rooyen JM, Murat JB, Hammoudi PM, Kieffer-Jaquinod S, Coute Y, Sharma A, Pelloux H, Belrhali H, Hakimi MA. Assembly of the novel five-component apicomplexan multi-aminoacyl-tRNA synthetase complex is driven by the hybrid scaffold protein Tg-p43. PLoS One 2014; 9:e89487. [PMID: 24586818 PMCID: PMC3930741 DOI: 10.1371/journal.pone.0089487] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Accepted: 01/20/2014] [Indexed: 12/31/2022] Open
Abstract
In Toxoplasma gondii, as in other eukaryotes, a subset of the amino-acyl-tRNA synthetases are arranged into an abundant cytoplasmic multi-aminoacyl-tRNA synthetase (MARS) complex. Through a series of genetic pull-down assays, we have identified the enzymes of this complex as: methionyl-, glutaminyl-, glutamyl-, and tyrosyl-tRNA synthetases, and we show that the N-terminal GST-like domain of a partially disordered hybrid scaffold protein, Tg-p43, is sufficient for assembly of the intact complex. Our gel filtration studies revealed significant heterogeneity in the size and composition of isolated MARS complexes. By targeting the tyrosyl-tRNA synthetases subunit, which was found exclusively in the complete 1 MDa complex, we were able to directly visualize MARS particles in the electron microscope. Image analyses of the negative stain data revealed the observed heterogeneity and instability of these complexes to be driven by the intrinsic flexibility of the domain arrangements within the MARS complex. These studies provide unique insights into the assembly of these ubiquitous but poorly understood eukaryotic complexes.
Collapse
Affiliation(s)
- Jason M. van Rooyen
- European Molecular Biology Laboratory, Grenoble, France
- CNRS, UMR5163, LAPM, Grenoble, France
- Université Joseph Fourier, Grenoble, France
| | - Jean-Benjamin Murat
- CNRS, UMR5163, LAPM, Grenoble, France
- Université Joseph Fourier, Grenoble, France
| | | | | | - Yohann Coute
- CEA, IRTSV, Laboratoire Biologie à Grande Echelle, Grenoble, France
| | - Amit Sharma
- Structural and Computational Biology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Hervé Pelloux
- CNRS, UMR5163, LAPM, Grenoble, France
- Université Joseph Fourier, Grenoble, France
| | - Hassan Belrhali
- European Molecular Biology Laboratory, Grenoble, France
- * E-mail: (M-AH); (HB)
| | - Mohamed-Ali Hakimi
- CNRS, UMR5163, LAPM, Grenoble, France
- Université Joseph Fourier, Grenoble, France
- * E-mail: (M-AH); (HB)
| |
Collapse
|
46
|
Dalmasso MC, Carmona SJ, Angel SO, Agüero F. Characterization of Toxoplasma gondii subtelomeric-like regions: identification of a long-range compositional bias that is also associated with gene-poor regions. BMC Genomics 2014; 15:21. [PMID: 24417889 PMCID: PMC4008256 DOI: 10.1186/1471-2164-15-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 01/02/2014] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Chromosome ends are composed of telomeric repeats and subtelomeric regions, which are patchworks of genes interspersed with repeated elements. Although chromosome ends display similar arrangements in different species, their sequences are highly divergent. In addition, these regions display a particular nucleosomal composition and bind specific factors, therefore producing a special kind of heterochromatin. Using data from currently available draft genomes we have characterized these putative Telomeric Associated Sequences in Toxoplasma gondii. RESULTS An all-vs-all pairwise comparison of T. gondii assembled chromosomes revealed the presence of conserved regions of ∼ 30 Kb located near the ends of 9 of the 14 chromosomes of the genome of the ME49 strain. Sequence similarity among these regions is ∼ 70%, and they are also highly conserved in the GT1 and VEG strains. However, they are unique to Toxoplasma with no detectable similarity in other Apicomplexan parasites. The internal structure of these sequences consists of 3 repetitive regions separated by high-complexity sequences without annotated genes, except for a gene from the Toxoplasma Specific Family. ChIP-qPCR experiments showed that nucleosomes associated to these sequences are enriched in histone H4 monomethylated at K20 (H4K20me1), and the histone variant H2A.X, suggesting that they are silenced sequences (heterochromatin). A detailed characterization of the base composition of these sequences, led us to identify a strong long-range compositional bias, which was similar to that observed in other genomic silenced fragments such as those containing centromeric sequences, and was negatively correlated to gene density. CONCLUSIONS We identified and characterized a region present in most Toxoplasma assembled chromosomes. Based on their location, sequence features, and nucleosomal markers we propose that these might be part of subtelomeric regions of T. gondii. The identified regions display a unique trinucleotide compositional bias, which is shared (despite the lack of any detectable sequence similarity) with other silenced sequences, such as those making up the chromosome centromeres. We also identified other genomic regions with this compositional bias (but no detectable sequence similarity) that might be functionally similar.
Collapse
Affiliation(s)
| | | | - Sergio O Angel
- Instituto de Investigaciones Biotecnológicas - Instituto Tecnológico de Chascomús, UNSAM - CONICET, Sede Chascomús, Av, Intendente Marino Km 8, 2 CC 164, B 7130 IWA, Chascomús, Argentina.
| | | |
Collapse
|
47
|
Kramer S. RNA in development: how ribonucleoprotein granules regulate the life cycles of pathogenic protozoa. WILEY INTERDISCIPLINARY REVIEWS-RNA 2013; 5:263-84. [PMID: 24339376 DOI: 10.1002/wrna.1207] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2013] [Revised: 10/22/2013] [Accepted: 10/29/2013] [Indexed: 12/11/2022]
Abstract
Ribonucleoprotein (RNP) granules are important posttranscriptional regulators of messenger RNA (mRNA) fate. Several types of RNP granules specifically regulate gene expression during development of multicellular organisms and are commonly referred to as germ granules. The function of germ granules is not entirely understood and probably diverse, but it is generally agreed that one main function is posttranscriptional regulation of gene expression during early development, when transcription is silent. One example is the translational repression of maternally derived mRNAs in oocytes. Here, I hope to show that the need for regulation of gene expression by RNP granules is not restricted to animal development, but plays an equally important role during the development of pathogenic protozoa. Apicomplexa and Trypanosomatidae have complex life cycles with frequent host changes. The need to quickly adapt gene expression to a new environment as well as the ability to suppress translation to survive latencies is critical for successful completion of life cycles. Posttranscriptional gene regulation is not necessarily simpler in protozoa. Apicomplexa surprise with the presence of micro RNA (miRNAs) and upstream open reading frames (µORFs). Trypanosomes have an unusually large repertoire of different RNP granule types. A better understanding of RNP granules in protozoa may help to gain insight into the evolutionary origin of RNP granules: Trypanosomes for example have two types of granules with interesting similarities to animal germ granules.
Collapse
Affiliation(s)
- Susanne Kramer
- Lehrstuhl für Zell- und Entwicklungsbiologie, Biozentrum, Universität Würzburg, Würzburg, Germany
| |
Collapse
|
48
|
Burroughs AM, Ando Y, Aravind L. New perspectives on the diversification of the RNA interference system: insights from comparative genomics and small RNA sequencing. WILEY INTERDISCIPLINARY REVIEWS-RNA 2013; 5:141-81. [PMID: 24311560 DOI: 10.1002/wrna.1210] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 10/03/2013] [Accepted: 11/01/2013] [Indexed: 12/19/2022]
Abstract
Our understanding of the pervasive involvement of small RNAs in regulating diverse biological processes has been greatly augmented by recent application of deep-sequencing technologies to small RNA across diverse eukaryotes. We review the currently known small RNA classes and place them in context of the reconstructed evolutionary history of the RNA interference (RNAi) protein machinery. This synthesis indicates that the earliest versions of eukaryotic RNAi systems likely utilized small RNA processed from three types of precursors: (1) sense-antisense transcriptional products, (2) genome-encoded, imperfectly complementary hairpin sequences, and (3) larger noncoding RNA precursor sequences. Structural dissection of PIWI proteins along with recent discovery of novel families (including Med13 of the Mediator complex) suggest that emergence of a distinct architecture with the N-terminal domains (also occurring separately fused to endoDNases in prokaryotes) formed via duplication of an ancestral unit was key to their recruitment as primary RNAi effectors and use of small RNAs of certain preferred lengths. Prokaryotic PIWI proteins are typically components of several RNA-directed DNA restriction or CRISPR/Cas systems. However, eukaryotic versions appear to have emerged from a subset that evolved RNA-directed RNAi. They were recruited alongside RNaseIII domains and RNA-dependent RNA polymerase (RdRP) domains, also from prokaryotic systems, to form the core eukaryotic RNAi system. Like certain regulatory systems, RNAi diversified into two distinct but linked arms concomitant with eukaryotic nucleocytoplasmic compartmentalization. Subsequent elaboration of RNAi proceeded via diversification of the core protein machinery through lineage-specific expansions and recruitment of new components from prokaryotes (nucleases and small RNA-modifying enzymes), allowing for diversification of associating small RNAs.
Collapse
Affiliation(s)
- Alexander Maxwell Burroughs
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | | | | |
Collapse
|
49
|
Fahlgren N, Bollmann SR, Kasschau KD, Cuperus JT, Press CM, Sullivan CM, Chapman EJ, Hoyer JS, Gilbert KB, Grünwald NJ, Carrington JC. Phytophthora have distinct endogenous small RNA populations that include short interfering and microRNAs. PLoS One 2013; 8:e77181. [PMID: 24204767 PMCID: PMC3804510 DOI: 10.1371/journal.pone.0077181] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2013] [Accepted: 09/06/2013] [Indexed: 12/21/2022] Open
Abstract
In eukaryotes, RNA silencing pathways utilize 20-30-nucleotide small RNAs to regulate gene expression, specify and maintain chromatin structure, and repress viruses and mobile genetic elements. RNA silencing was likely present in the common ancestor of modern eukaryotes, but most research has focused on plant and animal RNA silencing systems. Phytophthora species belong to a phylogenetically distinct group of economically important plant pathogens that cause billions of dollars in yield losses annually as well as ecologically devastating outbreaks. We analyzed the small RNA-generating components of the genomes of P. infestans, P. sojae and P. ramorum using bioinformatics, genetic, phylogenetic and high-throughput sequencing-based methods. Each species produces two distinct populations of small RNAs that are predominantly 21- or 25-nucleotides long. The 25-nucleotide small RNAs were primarily derived from loci encoding transposable elements and we propose that these small RNAs define a pathway of short-interfering RNAs that silence repetitive genetic elements. The 21-nucleotide small RNAs were primarily derived from inverted repeats, including a novel microRNA family that is conserved among the three species, and several gene families, including Crinkler effectors and type III fibronectins. The Phytophthora microRNA is predicted to target a family of amino acid/auxin permeases, and we propose that 21-nucleotide small RNAs function at the post-transcriptional level. The functional significance of microRNA-guided regulation of amino acid/auxin permeases and the association of 21-nucleotide small RNAs with Crinkler effectors remains unclear, but this work provides a framework for testing the role of small RNAs in Phytophthora biology and pathogenesis in future work.
Collapse
Affiliation(s)
- Noah Fahlgren
- Donald Danforth Plant Science Center, St. Louis, Missouri, United States of America
- Center for Genome Research and Biocomputing, Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, United States of America
| | - Stephanie R. Bollmann
- Horticultural Crops Research Laboratory, USDA Agricultural Research Service, Corvallis, Oregon, United States of America
| | - Kristin D. Kasschau
- Center for Genome Research and Biocomputing, Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, United States of America
| | - Josh T. Cuperus
- Center for Genome Research and Biocomputing, Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, United States of America
| | - Caroline M. Press
- Horticultural Crops Research Laboratory, USDA Agricultural Research Service, Corvallis, Oregon, United States of America
| | - Christopher M. Sullivan
- Center for Genome Research and Biocomputing, Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, United States of America
| | - Elisabeth J. Chapman
- Center for Genome Research and Biocomputing, Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, United States of America
| | - J. Steen Hoyer
- Donald Danforth Plant Science Center, St. Louis, Missouri, United States of America
| | - Kerrigan B. Gilbert
- Donald Danforth Plant Science Center, St. Louis, Missouri, United States of America
| | - Niklaus J. Grünwald
- Horticultural Crops Research Laboratory, USDA Agricultural Research Service, Corvallis, Oregon, United States of America
- * E-mail: (NJG); (JCC)
| | - James C. Carrington
- Donald Danforth Plant Science Center, St. Louis, Missouri, United States of America
- Center for Genome Research and Biocomputing, Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, United States of America
- * E-mail: (NJG); (JCC)
| |
Collapse
|
50
|
Zheng LL, Wen YZ, Yang JH, Liao JY, Shao P, Xu H, Zhou H, Wen JZ, Lun ZR, Ayala FJ, Qu LH. Comparative transcriptome analysis of small noncoding RNAs in different stages of Trypanosoma brucei. RNA (NEW YORK, N.Y.) 2013; 19:863-875. [PMID: 23704326 PMCID: PMC3683921 DOI: 10.1261/rna.035683.112] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Accepted: 03/12/2013] [Indexed: 06/02/2023]
Abstract
Trypanosoma brucei, a pathogen of human and domestic animals, is an early evolved parasitic protozoan with a complex life cycle. Most genes of this parasite are post-transcriptionally regulated. However, the mechanisms and the molecules involved remain largely unknown. We have deep-sequenced the small RNAs of two life stages of this parasite--the bloodstream form and the procyclic form. Our results show that the small RNAs of T. brucei could derive from multiple sources, including NATs (natural antisense transcripts), tRNAs, and rRNAs. Most of these small RNAs in the two stages were found to share uniform characteristics. However, our results demonstrate that their variety and expression show significant differences between different stages, indicating possible functional differentiation. Dicer-knockdown evidence further proved that some of the small interfering RNAs (siRNAs) could regulate the expression of genes. Based on the genome-wide analysis of the small RNAs in the two stages of T. brucei, our results not only provide evidence to study their differentiation but also shed light on questions regarding the origins and evolution of small RNA-based mechanisms in early eukaryotes.
Collapse
MESH Headings
- Base Sequence
- Computational Biology
- Evolution, Molecular
- Gene Expression Profiling/methods
- Gene Expression Regulation
- Genes, Protozoan
- High-Throughput Nucleotide Sequencing
- Molecular Sequence Data
- RNA, Protozoan/genetics
- RNA, Protozoan/metabolism
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- RNA, Small Untranslated/genetics
- RNA, Small Untranslated/metabolism
- RNA, Transfer/genetics
- RNA, Transfer/metabolism
- Ribonuclease III/genetics
- Ribonuclease III/metabolism
- Trypanosoma brucei brucei/genetics
- Trypanosoma brucei brucei/metabolism
Collapse
Affiliation(s)
- Ling-Ling Zheng
- State Key Laboratory of Biocontrol, Key Laboratory of Gene Engineering, Ministry of Education, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yan-Zi Wen
- Key Laboratory of Tropical Disease and Control, Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| | - Jian-Hua Yang
- State Key Laboratory of Biocontrol, Key Laboratory of Gene Engineering, Ministry of Education, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Jian-You Liao
- State Key Laboratory of Biocontrol, Key Laboratory of Gene Engineering, Ministry of Education, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Peng Shao
- State Key Laboratory of Biocontrol, Key Laboratory of Gene Engineering, Ministry of Education, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Hui Xu
- State Key Laboratory of Biocontrol, Key Laboratory of Gene Engineering, Ministry of Education, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Hui Zhou
- State Key Laboratory of Biocontrol, Key Laboratory of Gene Engineering, Ministry of Education, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Jun-Zhi Wen
- State Key Laboratory of Biocontrol, Key Laboratory of Gene Engineering, Ministry of Education, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Zhao-Rong Lun
- State Key Laboratory of Biocontrol, Key Laboratory of Gene Engineering, Ministry of Education, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
- Key Laboratory of Tropical Disease and Control, Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
- Centre for Parasitology and Disease, School of Environment and Life Sciences, University of Salford, Salford M5 4WT, United Kingdom
| | - Francisco J. Ayala
- Department of Ecology and Evolutionary Biology, University of California, Irvine, California 92697, USA
| | - Liang-Hu Qu
- State Key Laboratory of Biocontrol, Key Laboratory of Gene Engineering, Ministry of Education, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| |
Collapse
|