1
|
Klepp LI, Bigi MM, Villafañe L, Blanco FC, Malinge L P, Bigi F. Production of functional bovine IL-22 in a mammalian episomal expression system. Vet Immunol Immunopathol 2025; 279:110863. [PMID: 39615285 DOI: 10.1016/j.vetimm.2024.110863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/13/2024] [Accepted: 11/25/2024] [Indexed: 01/07/2025]
Abstract
Interleukin 22 is a member of the interleukin-10 superfamily of cytokines. This protein has a dual role as an inflammatory and anti-inflammatory molecule dependent on the context. IL-22 is produced mainly by immune cells and seems to have non-hematopoietic cells as its target. In this work, we report the production of bovine IL-22 for the first time in a semi-stable expression system in mammalian cells. We showed that this recombinant IL-22 possesses biological activity in bovine macrophages infected with Mycobacterium bovis and is easy to produce in large quantities. Given its role in the defence against infections, the IL-22 produced in this work has potential applications in scientific research as well as in immunotherapy to treat diseases in cattle.
Collapse
Affiliation(s)
- Laura I Klepp
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), UEDD INTA-CONICET, Argentina; Instituto de Biotecnología, CICVyA, Instituto Nacional de Tecnología Agropecuaria (Institute of Biotechnology, National Institute of Agricultural Technology, Argentina), Argentina.
| | | | - Luciana Villafañe
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), UEDD INTA-CONICET, Argentina; Instituto de Biotecnología, CICVyA, Instituto Nacional de Tecnología Agropecuaria (Institute of Biotechnology, National Institute of Agricultural Technology, Argentina), Argentina.
| | - Federico C Blanco
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), UEDD INTA-CONICET, Argentina; Instituto de Biotecnología, CICVyA, Instituto Nacional de Tecnología Agropecuaria (Institute of Biotechnology, National Institute of Agricultural Technology, Argentina), Argentina.
| | | | - Fabiana Bigi
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), UEDD INTA-CONICET, Argentina; Instituto de Biotecnología, CICVyA, Instituto Nacional de Tecnología Agropecuaria (Institute of Biotechnology, National Institute of Agricultural Technology, Argentina), Argentina.
| |
Collapse
|
2
|
Botey-Bataller J, Vrijmoeth HD, Ursinus J, Kullberg BJ, van den Wijngaard CC, Ter Hofstede H, Alaswad A, Gupta MK, Roesner LM, Huehn J, Werfel T, Schulz TF, Xu CJ, Netea MG, Hovius JW, Joosten LAB, Li Y. A comprehensive genetic map of cytokine responses in Lyme borreliosis. Nat Commun 2024; 15:3795. [PMID: 38714679 PMCID: PMC11076587 DOI: 10.1038/s41467-024-47505-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 04/02/2024] [Indexed: 05/10/2024] Open
Abstract
The incidence of Lyme borreliosis has risen, accompanied by persistent symptoms. The innate immune system and related cytokines are crucial in the host response and symptom development. We characterized cytokine production capacity before and after antibiotic treatment in 1,060 Lyme borreliosis patients. We observed a negative correlation between antibody production and IL-10 responses, as well as increased IL-1Ra responses in patients with disseminated disease. Genome-wide mapping the cytokine production allowed us to identify 34 cytokine quantitative trait loci (cQTLs), with 31 novel ones. We pinpointed the causal variant at the TLR1-6-10 locus and validated the regulation of IL-1Ra responses at transcritpome level using an independent cohort. We found that cQTLs contribute to Lyme borreliosis susceptibility and are relevant to other immune-mediated diseases. Our findings improve the understanding of cytokine responses in Lyme borreliosis and provide a genetic map of immune function as an expanded resource.
Collapse
Affiliation(s)
- Javier Botey-Bataller
- Department of Internal Medicine and Radboudumc Community for Infectious Diseases, Radboud university medical center, Nijmegen, the Netherlands
- Department of Computational Biology for Individualised Infection Medicine, Centre for Individualised Infection Medicine, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
- TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
| | - Hedwig D Vrijmoeth
- Department of Internal Medicine and Radboudumc Community for Infectious Diseases, Radboud university medical center, Nijmegen, the Netherlands
- National Institute for Public Health and Environment (RIVM), Center for Infectious Disease Control, Bilthoven, the Netherlands
| | - Jeanine Ursinus
- National Institute for Public Health and Environment (RIVM), Center for Infectious Disease Control, Bilthoven, the Netherlands
- Department of Internal Medicine, Division of Infectious Diseases & Center for Experimental and Molecular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Bart-Jan Kullberg
- Department of Internal Medicine and Radboudumc Community for Infectious Diseases, Radboud university medical center, Nijmegen, the Netherlands
| | - Cees C van den Wijngaard
- National Institute for Public Health and Environment (RIVM), Center for Infectious Disease Control, Bilthoven, the Netherlands
| | - Hadewych Ter Hofstede
- Department of Internal Medicine and Radboudumc Community for Infectious Diseases, Radboud university medical center, Nijmegen, the Netherlands
| | - Ahmed Alaswad
- Department of Computational Biology for Individualised Infection Medicine, Centre for Individualised Infection Medicine, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
- TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
| | - Manoj K Gupta
- Department of Computational Biology for Individualised Infection Medicine, Centre for Individualised Infection Medicine, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
- TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Lennart M Roesner
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
- Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany
| | - Jochen Huehn
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
- Department of Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Thomas Werfel
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
- Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany
| | - Thomas F Schulz
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Cheng-Jian Xu
- Department of Internal Medicine and Radboudumc Community for Infectious Diseases, Radboud university medical center, Nijmegen, the Netherlands
- Department of Computational Biology for Individualised Infection Medicine, Centre for Individualised Infection Medicine, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
- TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
| | - Mihai G Netea
- Department of Internal Medicine and Radboudumc Community for Infectious Diseases, Radboud university medical center, Nijmegen, the Netherlands
- Department for Genomics and Immunoregulation, Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | - Joppe W Hovius
- Department of Internal Medicine, Division of Infectious Diseases & Center for Experimental and Molecular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Leo A B Joosten
- Department of Internal Medicine and Radboudumc Community for Infectious Diseases, Radboud university medical center, Nijmegen, the Netherlands
- Department of Medical Genetics, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Yang Li
- Department of Internal Medicine and Radboudumc Community for Infectious Diseases, Radboud university medical center, Nijmegen, the Netherlands.
- Department of Computational Biology for Individualised Infection Medicine, Centre for Individualised Infection Medicine, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany.
- TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany.
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany.
| |
Collapse
|
3
|
Baarsma ME, van de Schoor FR, Gauw SA, Vrijmoeth HD, Ursinus J, Goudriaan N, Popa CD, Ter Hofstede HJ, Leeflang MM, Kremer K, van den Wijngaard CC, Kullberg BJ, Joosten LA, Hovius JW. Diagnostic parameters of cellular tests for Lyme borreliosis in Europe (VICTORY study): a case-control study. THE LANCET. INFECTIOUS DISEASES 2022; 22:1388-1396. [PMID: 35714662 DOI: 10.1016/s1473-3099(22)00205-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/21/2022] [Accepted: 03/11/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Cellular tests for Lyme borreliosis might be able to overcome major shortcomings of serological testing, such as its low sensitivity in early stages of infection. Therefore, we aimed to assess the sensitivity and specificity of three cellular tests. METHODS This was a nationwide, prospective, multiple-gate case-control study done in the Netherlands. Patients with physician-confirmed Lyme borreliosis, either early localised or disseminated, were consecutively included as cases at the start of antibiotic treatment. Controls were those without Lyme borreliosis from the general population (healthy controls) and those with potentially cross-reactive conditions (eg, autoimmune disease). We used three cellular tests for Lyme borreliosis (Spirofind Revised, iSpot Lyme, and LTT-MELISA) as index tests, and standard two-tier serological testing (STTT) as a comparator. Clinical data from Lyme borreliosis patients were collected at baseline and at 12 weeks after inclusion, and blood samples were obtained at baseline, 6 weeks, and 12 weeks. Control participants underwent clinical and laboratory assessments at baseline only. FINDINGS Cases comprised 271 patients with Lyme borreliosis (of whom 245 had early-localised Lyme borreliosis and 26 had disseminated disease) and controls comprised 228 participants without Lyme borreliosis from the general population and 41 participants with potentially cross-reactive conditions. Recruitment occurred between May 14, 2018, and March 16, 2020. The specificity of STTT in healthy controls (216 of 228 samples [94·7%, 95% CI 91·5-97·7]) was higher than that of the cellular tests: Spirofind (140 of 171 [81·9%, 76·1-87·2]), iSpot Lyme (32 of 103 [31·1%, 21·5-40·3]) and LTT-MELISA (100 of 190 [52·6%, 44·9-60·3]). Cellular tests had varying sensitivities: Spirofind (88 of 204 [43·1%, 36·4-50·4]), iSpot Lyme (51 of 94 [54·3%, 44·5-63·7]), and LTT-MELISA (66 of 218 [30·3%, 23·8-36·7]). The Spirofind and iSpot Lyme outperformed STTT for sensitivity, but were similar to the C6-ELISA (C6-ELISA: 135 of 270 [50·0%, 44·5-55·5]; STTT: 76 of 270 [28·1%, 23·0-33·6]). INTERPRETATION The cellular tests for Lyme borreliosis used in this study have a low specificity compared with serological tests, which leads to a high number of false-positive test results. We conclude that these cellular tests are unfit for clinical use at this stage. FUNDING Netherlands Organization for Health Research and Development, AMC Foundation (Amsterdam UMC), and Ministry of Health of the Netherlands.
Collapse
Affiliation(s)
- M E Baarsma
- Center for Experimental and Molecular Medicine, Amsterdam UMC location AMC, Amsterdam Institute for Infection and Immunity, University of Amsterdam, Amsterdam, Netherlands
| | - Freek R van de Schoor
- Department of Internal Medicine, Radboudumc Center for Infectious Diseases and Radboud Institute of Health Sciences, Radboudumc, Nijmegen, Netherlands
| | - Stefanie A Gauw
- Center for Experimental and Molecular Medicine, Amsterdam UMC location AMC, Amsterdam Institute for Infection and Immunity, University of Amsterdam, Amsterdam, Netherlands
| | - Hedwig D Vrijmoeth
- Department of Internal Medicine, Radboudumc Center for Infectious Diseases and Radboud Institute of Health Sciences, Radboudumc, Nijmegen, Netherlands
| | - Jeanine Ursinus
- Center for Experimental and Molecular Medicine, Amsterdam UMC location AMC, Amsterdam Institute for Infection and Immunity, University of Amsterdam, Amsterdam, Netherlands
| | - Nienke Goudriaan
- Center for Experimental and Molecular Medicine, Amsterdam UMC location AMC, Amsterdam Institute for Infection and Immunity, University of Amsterdam, Amsterdam, Netherlands
| | - Calin D Popa
- Department of Rheumatology, Radboudumc, Nijmegen, Netherlands; Department of Rheumatology, Sint Maartenskliniek, Ubbergen, Netherlands
| | - Hadewych Jm Ter Hofstede
- Department of Internal Medicine, Radboudumc Center for Infectious Diseases and Radboud Institute of Health Sciences, Radboudumc, Nijmegen, Netherlands
| | - Mariska Mg Leeflang
- Department of Epidemiology and Data Science, Amsterdam UMC location AMC, Amsterdam Institute for Infection and Immunity, University of Amsterdam, Amsterdam, Netherlands
| | - Kristin Kremer
- National Institute for Public Health and the Environment, Center for Infectious Disease Control, Bilthoven, Netherlands; KNCV Tuberculosis Foundation, The Hague, Netherlands
| | - Cees C van den Wijngaard
- National Institute for Public Health and the Environment, Center for Infectious Disease Control, Bilthoven, Netherlands
| | - Bart-Jan Kullberg
- Department of Internal Medicine, Radboudumc Center for Infectious Diseases and Radboud Institute of Health Sciences, Radboudumc, Nijmegen, Netherlands
| | - Leo Ab Joosten
- Department of Internal Medicine, Radboudumc Center for Infectious Diseases and Radboud Institute of Health Sciences, Radboudumc, Nijmegen, Netherlands
| | - Joppe W Hovius
- Center for Experimental and Molecular Medicine, Amsterdam UMC location AMC, Amsterdam Institute for Infection and Immunity, University of Amsterdam, Amsterdam, Netherlands.
| |
Collapse
|
4
|
Akoolo L, Djokic V, Rocha SC, Ulloa L, Parveen N. Sciatic-Vagal Nerve Stimulation by Electroacupuncture Alleviates Inflammatory Arthritis in Lyme Disease-Susceptible C3H Mice. Front Immunol 2022; 13:930287. [PMID: 35924250 PMCID: PMC9342905 DOI: 10.3389/fimmu.2022.930287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 06/17/2022] [Indexed: 11/25/2022] Open
Abstract
Lyme disease is caused by Borrelia burgdorferi, and the pathogenesis of the disease is complex with both bacterial and host factors contributing to inflammatory responses. Lyme disease affects different organs including joints and results in arthritis. Immune responses stimulated by B. burgdorferi through toll-like receptors cause infiltration of leukocytes, which produce inflammatory cytokines and facilitate spirochete clearance. However, arthritic manifestations and chronic fatigue syndrome-like symptoms persist long after completion of antibiotic treatment regimens in a significant number of patients. To counter the effects of inflammation, treatment by non-steroidal anti-inflammatory drugs, hydroxychloroquine, or synovectomy to eradicate inflammatory arthritis in the involved joint could be employed; however, they often have long-term consequences. Acupuncture has been used for a long time in Asian medicine to diminish pain during various ailments, but the effects and its mechanism are just beginning to be explored. Control of inflammation by neuronal stimulation has been exploited as a systemic therapeutic intervention to arrest inflammatory processes. Our objective was to determine whether activation of the sciatic-vagal network by electroacupuncture on ST36 acupoint, which is used to control systemic inflammation in experimental models of infectious disorders such as endotoxemia, can also alleviate Lyme arthritis symptoms in mice. This aim was further strengthened by the reports that sciatic-vagal neuronal network stimulation can lead to dopamine production in the adrenal medulla and moderate the production of inflammatory factors. We first assessed whether electroacupuncture affects spirochete colonization to attenuate Lyme arthritis. Interestingly, bioluminescent B. burgdorferi burden detected by live imaging and qPCR were similar in electroacupuncture- and mock-treated mice, while electroacupuncture induced a lasting anti-inflammatory effect on mice. Despite the discontinuation of treatment at 2 weeks, the simultaneous decrease in neutrophils in the joints and inflammatory cytokine levels throughout the body at 4 weeks suggests a systemic and persistent effect of electroacupuncture that attenuates Lyme arthritis. Our results suggest that electroacupuncture-mediated anti-inflammatory responses could offer promising healthcare benefits in patients suffering from long-term Lyme disease manifestations.
Collapse
Affiliation(s)
- Lavoisier Akoolo
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ, United States
| | - Vitomir Djokic
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ, United States
| | - Sandra C. Rocha
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ, United States
| | - Luis Ulloa
- Center of Perioperative Organ Protection, Department of Anesthesiology, Duke University, Durham, NC, United States
| | - Nikhat Parveen
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ, United States
| |
Collapse
|
5
|
Oosting M, Brouwer M, Vrijmoeth HD, Pascual Domingo R, Greco A, ter Hofstede H, van den Bogaard EH, Schalkwijk J, Netea MG, Joosten LA. Borrelia burgdorferi is strong inducer of IFN-γ production by human primary NK cells. Cytokine 2022; 155:155895. [DOI: 10.1016/j.cyto.2022.155895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 04/05/2022] [Accepted: 04/20/2022] [Indexed: 11/28/2022]
|
6
|
Borrelia burgdorferi is a poor inducer of interferon-gamma: amplification induced by interleukin-12. Infect Immun 2022; 90:e0055821. [PMID: 35130450 DOI: 10.1128/iai.00558-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Background Laboratory diagnosis of Lyme borreliosis (LB) is mainly based on serology, which has limitations, particularly in the early stages of the disease. In recent years there have been conflicting reports concerning a new diagnostic tool using the cytokine interferon-gamma (IFN-γ). Previous studies have generally found low concentrations of IFN-γ in early LB infection. The goal of this study is to investigate IFN-γ regulation during early LB and provide insights into the host response to B. burgdorferi. Methods We performed in vitro experiments with whole blood assays and peripheral blood mononuclear cells (PBMCs) of LB patients and healthy volunteers exposed to B. burgdorferi and evaluated the IFN-γ response using ELISA and related interindividual variation in IFN-γ production to the presence of single nucleotide polymorphisms. Results IFN-γ production of B. burgdorferi-exposed PBMCs and whole blood was amplified by the addition of IL-12 to the stimulation system. This effect was observed after 24 hours of B. burgdorferi stimulation in both healthy individuals and LB patients. The effect was highly variable between individuals, but was significantly higher in LB patients six weeks since the start of antibiotic treatment compared to healthy individuals. IL-12 p40 and IL-18 mRNA was upregulated upon exposure to B. burgdorferi, whereas IL-12 p35 and IFN-γ mRNA expression remained relatively unchanged. SNP Rs280520 in the downstream IL-12 pathway, Tyrosine Kinase 2, was associated with increased IFN-γ production. Conclusions This study shows that IL-12 evokes an IFN-γ response in B. burgdorferi exposed cells, and LB patients and healthy controls respond differently to this stimulation.
Collapse
|
7
|
Stülb H, Bachmann M, Gonther S, Mühl H. Acetaminophen-Induced Liver Injury Exposes Murine IL-22 as Sex-Related Gene Product. Int J Mol Sci 2021; 22:10623. [PMID: 34638962 PMCID: PMC8509061 DOI: 10.3390/ijms221910623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/24/2021] [Accepted: 09/27/2021] [Indexed: 12/13/2022] Open
Abstract
Gaining detailed knowledge about sex-related immunoregulation remains a crucial prerequisite for the development of adequate disease models and therapeutic strategies enabling personalized medicine. Here, the key parameter of the production of cytokines mediating disease resolution was investigated. Among these cytokines, STAT3-activating interleukin (IL)-22 is principally associated with recovery from tissue injury. By investigating paradigmatic acetaminophen-induced liver injury, we demonstrated that IL-22 expression is enhanced in female mice. Increased female IL-22 was confirmed at a cellular level using murine splenocytes stimulated by lipopolysaccharide or αCD3/CD28 to model innate or adaptive immunoactivation. Interestingly, testosterone or dihydrotestosterone reduced IL-22 production by female but not by male splenocytes. Mechanistic studies on PMA/PHA-stimulated T-cell-lymphoma EL-4 cells verified the capability of testosterone/dihydrotestosterone to reduce IL-22 production. Moreover, we demonstrated by chromatin immunoprecipitation that testosterone impairs binding of the aryl hydrocarbon receptor to xenobiotic responsive elements within the murine IL-22 promoter. Overall, female mice undergoing acute liver injury and cultured female splenocytes upon inflammatory activation display increased IL-22. This observation is likely related to the immunosuppressive effects of androgens in males. The data presented concur with more pronounced immunological alertness demonstrable in females, which may relate to the sex-specific course of some immunological disorders.
Collapse
Affiliation(s)
| | | | | | - Heiko Mühl
- Pharmazentrum Frankfurt/ZAFES, Institute of General Pharmacology and Toxicology, Faculty of Medicine, Goethe-University Frankfurt, D-60590 Frankfurt am Main, Germany; (H.S.); (M.B.); (S.G.)
| |
Collapse
|
8
|
Brouwer MAE, van de Schoor FR, Vrijmoeth HD, Netea MG, Joosten LAB. A joint effort: The interplay between the innate and the adaptive immune system in Lyme arthritis. Immunol Rev 2020; 294:63-79. [PMID: 31930745 PMCID: PMC7065069 DOI: 10.1111/imr.12837] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 11/07/2019] [Indexed: 12/20/2022]
Abstract
Articular joints are a major target of Borrelia burgdorferi, the causative agent of Lyme arthritis. Despite antibiotic treatment, recurrent or persistent Lyme arthritis is observed in a significant number of patients. The host immune response plays a crucial role in this chronic arthritic joint complication of Borrelia infections. During the early stages of B. burgdorferi infection, a major hinder in generating a proper host immune response is the lack of induction of a strong adaptive immune response. This may lead to a delayed hyperinflammatory reaction later in the disease. Several mechanisms have been suggested that might be pivotal for the development of Lyme arthritis and will be highlighted in this review, from molecular mimicry of matrix metallopeptidases and glycosaminoglycans, to autoimmune responses to live bacteria, or remnants of Borrelia spirochetes in joints. Murine studies have suggested that the inflammatory responses are initiated by innate immune cells, but this does not exclude the involvement of the adaptive immune system in this dysregulated immune profile. Genetic predisposition, via human leukocyte antigen-DR isotype and microRNA expression, has been associated with the development of antibiotic-refractory Lyme arthritis. Yet the ultimate cause for (antibiotic-refractory) Lyme arthritis remains unknown. Complex processes of different immune cells and signaling cascades are involved in the development of Lyme arthritis. When these various mechanisms are fully been unraveled, new treatment strategies can be developed to target (antibiotic-refractory) Lyme arthritis more effectively.
Collapse
Affiliation(s)
- Michelle A. E. Brouwer
- Department of Internal MedicineRadboud Center for Infectious Diseases (RCI)Radboud Institute of Molecular Life Sciences (RIMLS)Radboud Institute of Health Sciences (RIHS)Radboud University Medical CenterNijmegenThe Netherlands
| | - Freek R. van de Schoor
- Department of Internal MedicineRadboud Center for Infectious Diseases (RCI)Radboud Institute of Molecular Life Sciences (RIMLS)Radboud Institute of Health Sciences (RIHS)Radboud University Medical CenterNijmegenThe Netherlands
| | - Hedwig D. Vrijmoeth
- Department of Internal MedicineRadboud Center for Infectious Diseases (RCI)Radboud Institute of Molecular Life Sciences (RIMLS)Radboud Institute of Health Sciences (RIHS)Radboud University Medical CenterNijmegenThe Netherlands
| | - Mihai G. Netea
- Department of Internal MedicineRadboud Center for Infectious Diseases (RCI)Radboud Institute of Molecular Life Sciences (RIMLS)Radboud Institute of Health Sciences (RIHS)Radboud University Medical CenterNijmegenThe Netherlands
- Department for Genomics & ImmunoregulationLife and Medical Sciences Institute (LIMES)University of BonnBonnGermany
| | - Leo A. B. Joosten
- Department of Internal MedicineRadboud Center for Infectious Diseases (RCI)Radboud Institute of Molecular Life Sciences (RIMLS)Radboud Institute of Health Sciences (RIHS)Radboud University Medical CenterNijmegenThe Netherlands
| |
Collapse
|
9
|
Rudloff I, Jardé T, Bachmann M, Elgass KD, Kerr G, Engel R, Richards E, Oliva K, Wilkins S, McMurrick PJ, Abud HE, Mühl H, Nold MF. Molecular signature of interleukin-22 in colon carcinoma cells and organoid models. Transl Res 2020; 216:1-22. [PMID: 31734267 DOI: 10.1016/j.trsl.2019.10.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 10/18/2019] [Accepted: 10/22/2019] [Indexed: 12/18/2022]
Abstract
Interleukin (IL)-22 activates STAT (signal transducer and activator of transcription) 3 and antiapoptotic and proproliferative pathways; but beyond this, the molecular mechanisms by which IL-22 promotes carcinogenesis are poorly understood. Characterizing the molecular signature of IL-22 in human DLD-1 colon carcinoma cells, we observed increased expression of 26 genes, including NNMT (nicotinamide N-methyltransferase, ≤10-fold) and CEA (carcinoembryonic antigen, ≤7-fold), both known to promote intestinal carcinogenesis. ERP27 (endoplasmic reticulum protein-27, function unknown, ≤5-fold) and the proinflammatory ICAM1 (intercellular adhesion molecule-1, ≤4-fold) were also increased. The effect on CEA was partly STAT3-mediated, as STAT3-silencing reduced IL-22-induced CEA by ≤56%. Silencing of CEA or NNMT inhibited IL-22-induced proliferation/migration of DLD-1, Caco-2, and SW480 colon carcinoma cells. To validate these results in primary tissues, we assessed IL-22-induced gene expression in organoids from human healthy colon and colon cancer patients, and from normal mouse small intestine and colon. Gene regulation by IL-22 was similar in DLD-1 cells and human and mouse healthy organoids. CEA was an exception with no induction by IL-22 in organoids, indicating the 3-dimensional organization of the tissue may produce signals absent in 2D cell culture. Importantly, augmentation of NNMT was 5-14-fold greater in human cancerous compared to normal organoids, supporting a role for NNMT in IL-22-mediated colon carcinogenesis. Thus, NNMT and CEA emerge as mediators of the tumor-promoting effects of IL-22 in the intestine. These data advance our understanding of the multifaceted role of IL-22 in the gut and suggest the IL-22 pathway may represent a therapeutic target in colon cancer.
Collapse
Affiliation(s)
- Ina Rudloff
- Department of Paediatrics, Monash University, Clayton, Melbourne, Australia; Ritchie Centre, Hudson Institute of Medical Research, Clayton, Melbourne, Australia; Pharmazentrum Frankfurt/ZAFES, University Hospital Goethe University Frankfurt am Main, Frankfurt am Main, Germany.
| | - Thierry Jardé
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Melbourne, Australia; Stem Cells and Development Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Melbourne, Australia; Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, Melbourne, Australia
| | - Malte Bachmann
- Pharmazentrum Frankfurt/ZAFES, University Hospital Goethe University Frankfurt am Main, Frankfurt am Main, Germany
| | - Kirstin D Elgass
- Monash Micro Imaging, Hudson Institute of Medical Research, Clayton, Melbourne, Australia
| | - Genevieve Kerr
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Melbourne, Australia; Stem Cells and Development Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Melbourne, Australia
| | - Rebekah Engel
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Melbourne, Australia; Stem Cells and Development Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Melbourne, Australia; Cabrini Monash University Department of Surgery, Cabrini Hospital, Malvern, Melbourne, Australia
| | - Elizabeth Richards
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Melbourne, Australia; Stem Cells and Development Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Melbourne, Australia
| | - Karen Oliva
- Cabrini Monash University Department of Surgery, Cabrini Hospital, Malvern, Melbourne, Australia
| | - Simon Wilkins
- Cabrini Monash University Department of Surgery, Cabrini Hospital, Malvern, Melbourne, Australia; Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Paul J McMurrick
- Cabrini Monash University Department of Surgery, Cabrini Hospital, Malvern, Melbourne, Australia
| | - Helen E Abud
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Melbourne, Australia; Stem Cells and Development Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Melbourne, Australia
| | - Heiko Mühl
- Pharmazentrum Frankfurt/ZAFES, University Hospital Goethe University Frankfurt am Main, Frankfurt am Main, Germany
| | - Marcel F Nold
- Department of Paediatrics, Monash University, Clayton, Melbourne, Australia; Ritchie Centre, Hudson Institute of Medical Research, Clayton, Melbourne, Australia.
| |
Collapse
|
10
|
Bernard Q, Grillon A, Lenormand C, Ehret-Sabatier L, Boulanger N. Skin Interface, a Key Player for Borrelia Multiplication and Persistence in Lyme Borreliosis. Trends Parasitol 2020; 36:304-314. [PMID: 32007396 DOI: 10.1016/j.pt.2019.12.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 11/27/2019] [Accepted: 12/25/2019] [Indexed: 01/01/2023]
Abstract
The skin plays a key role in vector-borne diseases because it is the site where the arthropod coinoculates pathogens and its saliva. Lyme borreliosis, particularly well investigated in this context, is a multisystemic infectious disease caused by Borrelia burgdorferi sensu lato and transmitted by the hard tick Ixodes. Numerous in vitro studies were conducted to better understand the role of specific skin cells and tick saliva in host defense, vector feeding, and pathogen transmission. The skin was also evidenced in various animal models as the site of bacterial multiplication and persistence. We present the achievements in this field as well as the gaps that impede comprehensive knowledge of the disease pathophysiology and the development of efficient diagnostic tools and vaccines in humans.
Collapse
Affiliation(s)
- Quentin Bernard
- Fédération de Médecine Translationnelle de Strasbourg, Institut de Bactériologie, Université de Strasbourg, VBP EA7290, F-67000 Strasbourg, France
| | - Antoine Grillon
- Fédération de Médecine Translationnelle de Strasbourg, Institut de Bactériologie, Université de Strasbourg, VBP EA7290, F-67000 Strasbourg, France
| | - Cédric Lenormand
- Fédération de Médecine Translationnelle de Strasbourg, Institut de Bactériologie, Université de Strasbourg, VBP EA7290, F-67000 Strasbourg, France; Clinique Dermatologique, Hôpital Universitaire de Strasbourg, Strasbourg, France
| | - Laurence Ehret-Sabatier
- Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France
| | - Nathalie Boulanger
- Fédération de Médecine Translationnelle de Strasbourg, Institut de Bactériologie, Université de Strasbourg, VBP EA7290, F-67000 Strasbourg, France; French National Reference Center on Lyme Borreliosis, CHRU, F-67000 Strasbourg, France.
| |
Collapse
|
11
|
Xiang Q, Wu X, Pan Y, Wang L, Cui C, Guo Y, Zhu L, Peng J, Wei H. Early-Life Intervention Using Fecal Microbiota Combined with Probiotics Promotes Gut Microbiota Maturation, Regulates Immune System Development, and Alleviates Weaning Stress in Piglets. Int J Mol Sci 2020; 21:ijms21020503. [PMID: 31941102 PMCID: PMC7014131 DOI: 10.3390/ijms21020503] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/01/2020] [Accepted: 01/07/2020] [Indexed: 02/07/2023] Open
Abstract
Previous studies have suggested that immune system development and weaning stress are closely related to the maturation of gut microbiota. The early-life period is a “window of opportunity” for microbial colonization, which potentially has a critical impact on the development of the immune system. Fecal microbiota transplantation (FMT) and probiotics are often used to regulate gut microbial colonization. This study aims to test whether early intervention with FMT using fecal microbiota from gestation sows combined with Clostridium butyricum and Saccharomyces boulardii (FMT-CS) administration could promote the maturation of gut microbiota and development of immune system in piglets. Piglets were assigned to control (n = 84) and FMT-CS treatment (n = 106), which were treated with placebo and bacterial suspension during the first three days after birth, respectively. By 16S rRNA gene sequencing, we found that FMT-CS increased the α-diversity and reduced the unweighted UniFrac distances of the OTU community. Besides, FMT-CS increased the relative abundance of beneficial bacteria, while decreasing that of opportunistic pathogens. FMT-CS also enhanced the relative abundance of genes related to cofactors and vitamin, energy, and amino acid metabolisms during the early-life period. ELISA analysis revealed that FMT-CS gave rise to the plasma concentrations of IL-23, IL-17, and IL-22, as well as the plasma levels of anti-M.hyo and anti-PCV2 antibodies. Furthermore, the FMT-CS-treated piglets showed decreases in inflammation levels and oxidative stress injury, and improvement of intestinal barrier function after weaning as well. Taken together, our results suggest that early-life intervention with FMT-CS could promote the development of innate and adaptive immune system and vaccine efficacy, and subsequently alleviate weaning stress through promoting the maturation of gut microbiota in piglets.
Collapse
Affiliation(s)
- Quanhang Xiang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Q.X.); (X.W.); (Y.P.); (L.W.); (C.C.); (Y.G.); (L.Z.)
| | - Xiaoyu Wu
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Q.X.); (X.W.); (Y.P.); (L.W.); (C.C.); (Y.G.); (L.Z.)
| | - Ye Pan
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Q.X.); (X.W.); (Y.P.); (L.W.); (C.C.); (Y.G.); (L.Z.)
| | - Liu Wang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Q.X.); (X.W.); (Y.P.); (L.W.); (C.C.); (Y.G.); (L.Z.)
| | - Chenbin Cui
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Q.X.); (X.W.); (Y.P.); (L.W.); (C.C.); (Y.G.); (L.Z.)
| | - Yuwei Guo
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Q.X.); (X.W.); (Y.P.); (L.W.); (C.C.); (Y.G.); (L.Z.)
| | - Lingling Zhu
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Q.X.); (X.W.); (Y.P.); (L.W.); (C.C.); (Y.G.); (L.Z.)
| | - Jian Peng
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Q.X.); (X.W.); (Y.P.); (L.W.); (C.C.); (Y.G.); (L.Z.)
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 400700, China
- Hubei Agricultural Sciences and Technology Innovation Center, Wuhan 430070, China
- Correspondence: (J.P.); (H.W.)
| | - Hongkui Wei
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Q.X.); (X.W.); (Y.P.); (L.W.); (C.C.); (Y.G.); (L.Z.)
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 400700, China
- Hubei Agricultural Sciences and Technology Innovation Center, Wuhan 430070, China
- Correspondence: (J.P.); (H.W.)
| |
Collapse
|
12
|
Mühl H, Bachmann M. IL-18/IL-18BP and IL-22/IL-22BP: Two interrelated couples with therapeutic potential. Cell Signal 2019; 63:109388. [PMID: 31401146 DOI: 10.1016/j.cellsig.2019.109388] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/07/2019] [Accepted: 08/07/2019] [Indexed: 02/06/2023]
Abstract
Interleukin (IL)-18 and IL-22 are key components of cytokine networks that play a decisive role in (pathological) inflammation, host defense, and tissue regeneration. Tight regulation of cytokine-driven signaling, inflammation, and immunoactivation is supposed to enable nullification of a given deleterious trigger without mediating overwhelming collateral tissue damage or even activating a cancerous face of regeneration. In fact, feedback regulation by specific cytokine opponents is regarded as a major means by which the immune system is kept in balance. Herein, we shine a light on the interplay between IL-18 and IL-22 and their opponents IL-18 binding protein (IL-18BP) and IL-22BP in order to provide integrated information on their biology, pathophysiological significance, and prospect as targets and/or instruments of therapeutic intervention.
Collapse
Affiliation(s)
- Heiko Mühl
- pharmazentrum frankfurt/ZAFES, University Hospital Goethe University Frankfurt am Main, Theodor-Stern- Kai 7, 60590 Frankfurt am Main, Germany.
| | - Malte Bachmann
- pharmazentrum frankfurt/ZAFES, University Hospital Goethe University Frankfurt am Main, Theodor-Stern- Kai 7, 60590 Frankfurt am Main, Germany
| |
Collapse
|
13
|
Djokic V, Primus S, Akoolo L, Chakraborti M, Parveen N. Age-Related Differential Stimulation of Immune Response by Babesia microti and Borrelia burgdorferi During Acute Phase of Infection Affects Disease Severity. Front Immunol 2018; 9:2891. [PMID: 30619263 PMCID: PMC6300717 DOI: 10.3389/fimmu.2018.02891] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 11/26/2018] [Indexed: 12/17/2022] Open
Abstract
Lyme disease is the most prominent tick-borne disease with 300,000 cases estimated by CDC every year while ~2,000 cases of babesiosis occur per year in the United States. Simultaneous infection with Babesia microti and Borrelia burgdorferi are now the most common tick-transmitted coinfections in the U.S.A., and they are a serious health problem because coinfected patients show more intense and persisting disease symptoms. B. burgdorferi is an extracellular spirochete responsible for systemic Lyme disease while B. microti is a protozoan that infects erythrocytes and causes babesiosis. Immune status and spleen health are important for resolution of babesiosis, which is more severe and even fatal in the elderly and splenectomized patients. Therefore, we investigated the effect of each pathogen on host immune response and consequently on severity of disease manifestations in both young, and 30 weeks old C3H mice. At the acute stage of infection, Th1 polarization in young mice spleen was associated with increased IFN-γ and TNF-α producing T cells and a high Tregs/Th17 ratio. Together, these changes could help in the resolution of both infections in young mice and also prevent fatality by B. microti infection as observed with WA-1 strain of Babesia. In older mature mice, Th2 polarization at acute phase of B. burgdorferi infection could play a more effective role in preventing Lyme disease symptoms. As a result, enhanced B. burgdorferi survival and increased tissue colonization results in severe Lyme arthritis only in young coinfected mice. At 3 weeks post-infection, diminished pathogen-specific antibody production in coinfected young, but not older mice, as compared to mice infected with each pathogen individually may also contribute to increased inflammation observed due to B. burgdorferi infection, thus causing persistent Lyme disease observed in coinfected mice and reported in patients. Thus, higher combined proinflammatory response to B. burgdorferi due to Th1 and Th17 cells likely reduced B. microti parasitemia significantly only in young mice later in infection, while the presence of B. microti reduced humoral immunity later in infection and enhanced tissue colonization by Lyme spirochetes in these mice even at the acute stage, thereby increasing inflammatory arthritis.
Collapse
Affiliation(s)
- Vitomir Djokic
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ, United States
| | - Shekerah Primus
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ, United States
| | - Lavoisier Akoolo
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ, United States
| | - Monideep Chakraborti
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ, United States
| | - Nikhat Parveen
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ, United States
| |
Collapse
|
14
|
Aden K, Tran F, Ito G, Sheibani-Tezerji R, Lipinski S, Kuiper JW, Tschurtschenthaler M, Saveljeva S, Bhattacharyya J, Häsler R, Bartsch K, Luzius A, Jentzsch M, Falk-Paulsen M, Stengel ST, Welz L, Schwarzer R, Rabe B, Barchet W, Krautwald S, Hartmann G, Pasparakis M, Blumberg RS, Schreiber S, Kaser A, Rosenstiel P. ATG16L1 orchestrates interleukin-22 signaling in the intestinal epithelium via cGAS-STING. J Exp Med 2018; 215:2868-2886. [PMID: 30254094 PMCID: PMC6219748 DOI: 10.1084/jem.20171029] [Citation(s) in RCA: 129] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 01/11/2018] [Accepted: 08/20/2018] [Indexed: 12/19/2022] Open
Abstract
A coding variant of the inflammatory bowel disease (IBD) risk gene ATG16L1 has been associated with defective autophagy and deregulation of endoplasmic reticulum (ER) function. IL-22 is a barrier protective cytokine by inducing regeneration and antimicrobial responses in the intestinal mucosa. We show that ATG16L1 critically orchestrates IL-22 signaling in the intestinal epithelium. IL-22 stimulation physiologically leads to transient ER stress and subsequent activation of STING-dependent type I interferon (IFN-I) signaling, which is augmented in Atg16l1 ΔIEC intestinal organoids. IFN-I signals amplify epithelial TNF production downstream of IL-22 and contribute to necroptotic cell death. In vivo, IL-22 treatment in Atg16l1 ΔIEC and Atg16l1 ΔIEC/Xbp1 ΔIEC mice potentiates endogenous ileal inflammation and causes widespread necroptotic epithelial cell death. Therapeutic blockade of IFN-I signaling ameliorates IL-22-induced ileal inflammation in Atg16l1 ΔIEC mice. Our data demonstrate an unexpected role of ATG16L1 in coordinating the outcome of IL-22 signaling in the intestinal epithelium.
Collapse
Affiliation(s)
- Konrad Aden
- Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
- Department of Internal Medicine I., Christian-Albrechts-University and University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Florian Tran
- Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
- Department of Internal Medicine I., Christian-Albrechts-University and University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Go Ito
- Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Raheleh Sheibani-Tezerji
- Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Simone Lipinski
- Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Jan W Kuiper
- Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Markus Tschurtschenthaler
- Department of Medicine II, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
- Division of Gastroenterology and Hepatology, Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, England, UK
| | - Svetlana Saveljeva
- Division of Gastroenterology and Hepatology, Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, England, UK
| | - Joya Bhattacharyya
- Division of Gastroenterology and Hepatology, Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, England, UK
| | - Robert Häsler
- Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Kareen Bartsch
- Institute of Biochemistry, Kiel University, Kiel, Germany
| | - Anne Luzius
- Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Marlene Jentzsch
- Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Maren Falk-Paulsen
- Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Stephanie T Stengel
- Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Lina Welz
- Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Robin Schwarzer
- Institute for Genetics, CECAD, University of Cologne, Cologne, Germany
| | - Björn Rabe
- Institute of Biochemistry, Kiel University, Kiel, Germany
| | - Winfried Barchet
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Stefan Krautwald
- Department of Nephrology and Hypertension, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Gunther Hartmann
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | | | - Richard S Blumberg
- Gastroenterology Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Stefan Schreiber
- Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
- Department of Internal Medicine I., Christian-Albrechts-University and University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Arthur Kaser
- Division of Gastroenterology and Hepatology, Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, England, UK
| | - Philip Rosenstiel
- Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| |
Collapse
|
15
|
Grygorczuk S, Świerzbińska R, Kondrusik M, Dunaj J, Czupryna P, Moniuszko A, Siemieniako A, Pancewicz S. The intrathecal expression and pathogenetic role of Th17 cytokines and CXCR2-binding chemokines in tick-borne encephalitis. J Neuroinflammation 2018; 15:115. [PMID: 29678185 PMCID: PMC5909263 DOI: 10.1186/s12974-018-1138-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 03/26/2018] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Tick-borne encephalitis (TBE) is a clinically variable but potentially severe Flavivirus infection, with the outcome strongly dependent on secondary immunopathology. Neutrophils are present in cerebrospinal fluid (CSF) of TBE patients, but their pathogenetic role remains unknown. In animal models, neutrophils contributed both to the Flavivirus entry into central nervous system (CNS) and to the control of the encephalitis, which we attempted to evaluate in human TBE. METHODS We analyzed records of 240 patients with TBE presenting as meningitis (n = 110), meningoencephalitis (n = 114) or meningoencephalomyelitis (n = 16) assessing CSF neutrophil count on admission and at follow-up 2 weeks later, and their associations with other laboratory and clinical parameters. We measured serum and CSF concentrations of Th17-type cytokines (interleukin-17A, IL-17F, IL-22) and chemokines attracting neutrophils (IL-8, CXCL1, CXCL2) in patients with TBE (n = 36 for IL-8, n = 15 for other), with non-TBE aseptic meningitis (n = 6) and in non-meningitis controls (n = 7), using commercial ELISA assays. The results were analyzed with non-parametric tests with p < 0.05 considered as significant. RESULTS On admission, neutrophils were universally present in CSF constituting 25% (median) of total pleocytosis, but on follow-up, they were absent in most of patients (58%) and scarce (< 10%) in 36%. CSF neutrophil count did not correlate with lymphocyte count and blood-brain barrier integrity, did not differ between meningitis and meningoencephalitis, but was higher in meningoencephalomyelitis patients. Prolonged presence of neutrophils in follow-up CSF was associated with encephalitis and neurologic sequelae. All the studied cytokines were expressed intrathecally, with IL-8 having the highest CSF concentration index. Additionally, IL-17A concentration was significantly increased in serum. IL-17F and CXCL1 CSF concentrations correlated with neutrophil count and CXCL1 concentration was higher in patients with encephalitis. CONCLUSIONS The neutrophil CNS infiltrate does not correlate directly with TBE severity, but is associated with clinical features like myelitis, possibly being involved in its pathogenesis. Th17 cytokine response is present in TBE, especially intrathecally, and contributes to the CNS neutrophilic inflammation. IL-8 and CXCL1 may be chemokines directly responsible for the neutrophil migration.
Collapse
Affiliation(s)
- Sambor Grygorczuk
- Department of the Infectious Disease and Neuroinfections, Medical University in Białystok, ul. Żurawia 14, 15-540, Białystok, Poland.
| | - Renata Świerzbińska
- Department of the Infectious Disease and Neuroinfections, Medical University in Białystok, ul. Żurawia 14, 15-540, Białystok, Poland
| | - Maciej Kondrusik
- Department of the Infectious Disease and Neuroinfections, Medical University in Białystok, ul. Żurawia 14, 15-540, Białystok, Poland
| | - Justyna Dunaj
- Department of the Infectious Disease and Neuroinfections, Medical University in Białystok, ul. Żurawia 14, 15-540, Białystok, Poland
| | - Piotr Czupryna
- Department of the Infectious Disease and Neuroinfections, Medical University in Białystok, ul. Żurawia 14, 15-540, Białystok, Poland
| | - Anna Moniuszko
- Department of the Infectious Disease and Neuroinfections, Medical University in Białystok, ul. Żurawia 14, 15-540, Białystok, Poland
| | | | - Sławomir Pancewicz
- Department of the Infectious Disease and Neuroinfections, Medical University in Białystok, ul. Żurawia 14, 15-540, Białystok, Poland
| |
Collapse
|
16
|
Hofmann H, Fingerle V, Hunfeld KP, Huppertz HI, Krause A, Rauer S, Ruf B. Cutaneous Lyme borreliosis: Guideline of the German Dermatology Society. GERMAN MEDICAL SCIENCE : GMS E-JOURNAL 2017; 15:Doc14. [PMID: 28943834 PMCID: PMC5588623 DOI: 10.3205/000255] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Indexed: 02/07/2023]
Abstract
This guideline of the German Dermatology Society primarily focuses on the diagnosis and treatment of cutaneous manifestations of Lyme borreliosis. It has received consensus from 22 German medical societies and 2 German patient organisations. It is the first part of an AWMF (Arbeitsgemeinschaft der Wissenschaftlichen Medizinischen Fachgesellschaften e.V.) interdisciplinary guideline: “Lyme Borreliosis – Diagnosis and Treatment, development stage S3”. The guideline is directed at physicians in private practices and clinics who treat Lyme borreliosis. Objectives of this guideline are recommendations for confirming a clinical diagnosis, recommendations for a stage-related laboratory diagnosis (serological detection of IgM and IgG Borrelia antibodies using the 2-tiered ELISA/immunoblot process, sensible use of molecular diagnostic and culture procedures) and recommendations for the treatment of the localised, early-stage infection (erythema migrans, erythema chronicum migrans, and borrelial lymphocytoma), the disseminated early-stage infection (multiple erythemata migrantia, flu-like symptoms) and treatment of the late-stage infection (acrodermatitis chronica atrophicans with and without neurological manifestations). In addition, an information sheet for patients containing recommendations for the prevention of Lyme borreliosis is attached to the guideline.
Collapse
Affiliation(s)
- Heidelore Hofmann
- Klinik für Dermatologie und Allergologie der TU München, München, Germany
| | - Volker Fingerle
- Bayerisches Landesamt für Gesundheit und Lebensmittelsicherheit (LGL) Oberschleißheim, Germany
| | - Klaus-Peter Hunfeld
- Zentralinstitut für Labormedizin, Mikrobiologie & Krankenhaushygiene, Krankenhaus Nordwest, Frankfurt, Germany
| | | | | | | | - Bernhard Ruf
- Klinik für Infektiologie Klinik St Georg, Leipzig, Germany
| | | |
Collapse
|
17
|
Chichelnitskiy E, Himmelseher B, Bachmann M, Pfeilschifter J, Mühl H. Hypothermia Promotes Interleukin-22 Expression and Fine-Tunes Its Biological Activity. Front Immunol 2017; 8:742. [PMID: 28706520 PMCID: PMC5489602 DOI: 10.3389/fimmu.2017.00742] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 06/12/2017] [Indexed: 01/15/2023] Open
Abstract
Disturbed homeostasis as a result of tissue stress can provoke leukocyte responses enabling recovery. Since mild hypothermia displays specific clinically relevant tissue-protective properties and interleukin (IL)-22 promotes healing at host/environment interfaces, effects of lowered ambient temperature on IL-22 were studied. We demonstrate that a 5-h exposure of endotoxemic mice to 4°C reduces body temperature by 5.0° and enhances splenic and colonic il22 gene expression. In contrast, tumor necrosis factor-α and IL-17A were not increased. In vivo data on IL-22 were corroborated using murine splenocytes and human peripheral blood mononuclear cells (PBMC) cultured upon 33°C and polyclonal T cell activation. Upregulation by mild hypothermia of largely T-cell-derived IL-22 in PBMC required monocytes and associated with enhanced nuclear T-cell nuclear factor of activated T cells (NFAT)-c2. Notably, NFAT antagonism by cyclosporin A or FK506 impaired IL-22 upregulation at normothermia and entirely prevented its enhanced expression upon hypothermic culture conditions. Data suggest that intact NFAT signaling is required for efficient IL-22 induction upon normothermic and hypothermic conditions. Hypothermia furthermore boosted early signal transducer and activator of transcription 3 activation by IL-22 and shaped downstream gene expression in epithelial-like cells. Altogether, data indicate that hypothermia supports and fine-tunes IL-22 production/action, which may contribute to regulatory properties of low ambient temperature.
Collapse
Affiliation(s)
- Evgeny Chichelnitskiy
- Pharmazentrum Frankfurt/ZAFES, University Hospital Goethe-University Frankfurt, Frankfurt, Germany
| | - Britta Himmelseher
- Pharmazentrum Frankfurt/ZAFES, University Hospital Goethe-University Frankfurt, Frankfurt, Germany
| | - Malte Bachmann
- Pharmazentrum Frankfurt/ZAFES, University Hospital Goethe-University Frankfurt, Frankfurt, Germany
| | - Josef Pfeilschifter
- Pharmazentrum Frankfurt/ZAFES, University Hospital Goethe-University Frankfurt, Frankfurt, Germany
| | - Heiko Mühl
- Pharmazentrum Frankfurt/ZAFES, University Hospital Goethe-University Frankfurt, Frankfurt, Germany
| |
Collapse
|
18
|
Orczyk K, Świdrowska-Jaros J, Smolewska E. When a patient suspected with juvenile idiopathic arthritis turns out to be diagnosed with an infectious disease - a review of Lyme arthritis in children. Pediatr Rheumatol Online J 2017; 15:35. [PMID: 28482848 PMCID: PMC5422956 DOI: 10.1186/s12969-017-0166-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 05/01/2017] [Indexed: 12/26/2022] Open
Abstract
The Lyme arthritis is a common manifestation of infection with Borrelia burgdorferi spirochete. Despite its infectious background, the inflammation clinically and histopatologically resembles juvenile idiopathic arthritis. As it affects a considerable number of Lyme disease patients, it should be routinely considered in differential diagnosis. Development of arthritis is partially dependent on spirochetal factors, including the ribosomal spacer type and the sequence of outer surface protein C. Immunological background involves Th1-related response, but IL-17 provides an additional route of developing arthritis. Autoimmune mechanisms may lead to antibiotic-refractory arthritis. The current diagnostic standard is based on a 2-step testing: ELISA screening and immunoblot confirmation. Other suggested methods contain modified two-tier test with C6 ELISA instead of immunoblot. An initial 28-day course of oral antibiotics (doxycycline, cefuroxime axetil or amoxicillin) is a recommended treatment. Severe cases require further anti-inflammatory management. Precise investigation of new diagnostic and therapeutic approaches is advisable.
Collapse
Affiliation(s)
- Krzysztof Orczyk
- Department of Pediatric Rheumatology, Medical University of Lodz, Sporna 36/50, 91-738 Lodz, Poland
| | - Joanna Świdrowska-Jaros
- Department of Pediatric Rheumatology, Medical University of Lodz, Sporna 36/50, 91-738 Lodz, Poland
| | - Elżbieta Smolewska
- Department of Pediatric Rheumatology, Medical University of Lodz, Sporna 36/50, 91-738 Lodz, Poland
| |
Collapse
|
19
|
Oosting M, Kerstholt M, Ter Horst R, Li Y, Deelen P, Smeekens S, Jaeger M, Lachmandas E, Vrijmoeth H, Lupse M, Flonta M, Cramer RA, Kullberg BJ, Kumar V, Xavier R, Wijmenga C, Netea MG, Joosten LAB. Functional and Genomic Architecture of Borrelia burgdorferi-Induced Cytokine Responses in Humans. Cell Host Microbe 2016; 20:822-833. [PMID: 27818078 DOI: 10.1016/j.chom.2016.10.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 08/25/2016] [Accepted: 10/11/2016] [Indexed: 12/20/2022]
Abstract
Despite the importance of immune variation for the symptoms and outcome of Lyme disease, the factors influencing cytokine production during infection with the causal pathogen Borrelia burgdorferi remain poorly understood. Borrelia infection-induced monocyte- and T cell-derived cytokines were profiled in peripheral blood from two healthy human cohorts of Western Europeans from the Human Functional Genomics Project. Both non-genetic and genetic host factors were found to influence Borrelia-induced cytokine responses. Age strongly impaired IL-22 responses, and genetic studies identified several independent QTLs that impact Borrelia-induced cytokine production. Genetic, transcriptomic, and functional validation studies revealed an important role for HIF-1α-mediated glycolysis in the cytokine response to Borrelia. HIF-1α pathway activation and increase in glycolysis-derived lactate was confirmed in Lyme disease patients. In conclusion, functional genomics approaches reveal the architecture of cytokine production induced by Borrelia infection of human primary leukocytes and suggest a connection between cellular glucose metabolism and Borrelia-induced cytokine production.
Collapse
Affiliation(s)
- Marije Oosting
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, 6525GA Nijmegen, the Netherlands
| | - Mariska Kerstholt
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, 6525GA Nijmegen, the Netherlands
| | - Rob Ter Horst
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, 6525GA Nijmegen, the Netherlands
| | - Yang Li
- Department of Genetics, University Medical Center Groningen, University of Groningen, 9713GZ Groningen, the Netherlands
| | - Patrick Deelen
- Department of Genetics, University Medical Center Groningen, University of Groningen, 9713GZ Groningen, the Netherlands; Genomics Coordination Center, University Medical Center Groningen, University of Groningen, 9713GZ Groningen, the Netherlands
| | - Sanne Smeekens
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, 6525GA Nijmegen, the Netherlands
| | - Martin Jaeger
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, 6525GA Nijmegen, the Netherlands
| | - Ekta Lachmandas
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, 6525GA Nijmegen, the Netherlands
| | - Hedwig Vrijmoeth
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, 6525GA Nijmegen, the Netherlands
| | - Mihaela Lupse
- Department of Infectious Diseases, University of Medicine and Pharmacy "Iuliu Hatieganu," 400012 Cluj-Napoca, Romania
| | - Mirela Flonta
- Department of Infectious Diseases, University of Medicine and Pharmacy "Iuliu Hatieganu," 400012 Cluj-Napoca, Romania
| | - Robert A Cramer
- Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth College, Dartmouth, NH 03755-1404, USA
| | - Bart Jan Kullberg
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, 6525GA Nijmegen, the Netherlands
| | - Vinod Kumar
- Department of Genetics, University Medical Center Groningen, University of Groningen, 9713GZ Groningen, the Netherlands
| | - Ramnik Xavier
- Center for Computational and Integrative Biology and Gastrointestinal Unit, Massachusetts General Hospital, Harvard School of Medicine, Boston, MA 02114, USA; Broad Institute of MIT and Harvard University, Cambridge, MA 02142, USA
| | - Cisca Wijmenga
- Department of Genetics, University Medical Center Groningen, University of Groningen, 9713GZ Groningen, the Netherlands
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, 6525GA Nijmegen, the Netherlands
| | - Leo A B Joosten
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, 6525GA Nijmegen, the Netherlands.
| |
Collapse
|
20
|
Badawi A. The Potential of Omics Technologies in Lyme Disease Biomarker Discovery and Early Detection. Infect Dis Ther 2016; 6:85-102. [PMID: 27900646 PMCID: PMC5336413 DOI: 10.1007/s40121-016-0138-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Indexed: 12/31/2022] Open
Abstract
Lyme borreliosis (LB) is the most prevalent arthropod-borne infectious disease in North America and many countries of the temperate Northern Hemisphere. It is associated with local and systemic manifestations and has persistent post-treatment health complications in some individuals. Innate and acquired immunity-related inflammation is likely to play a critical role in both host defense against Borrelia burgdorferi and disease severity. Large-scale analytical approaches to quantify gene expression (transcriptomics), proteins (proteomics) and metabolites (metabolomics) in LB have recently emerged with a potential to advance the development of disease biomarkers in early, disseminated and posttreatment disease stages. These technologies may permit defining the disease stage and facilitate its early detection to improve diagnosis. They will also likely allow elucidating the underlying molecular pathways to aid in identifying molecular targets for therapy. This article reviews the findings within the field of omics relevant to LB and its prospective utility in developing an array of biomarkers that can be employed in LB diagnosis and detection particularly at the early disease stages.
Collapse
Affiliation(s)
- Alaa Badawi
- Public Health Risk Sciences Division, Public Health Agency of Canada, 180 Queen Street West, Toronto, ON, Canada. .,Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, FitzGerald Building, 150 College Street, Toronto, ON, Canada.
| |
Collapse
|
21
|
Buffen K, Oosting M, Li Y, Kanneganti TD, Netea MG, Joosten LAB. Autophagy suppresses host adaptive immune responses toward Borrelia burgdorferi. J Leukoc Biol 2016; 100:589-98. [PMID: 27101991 PMCID: PMC6608026 DOI: 10.1189/jlb.4a0715-331r] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 04/05/2016] [Accepted: 04/05/2016] [Indexed: 11/24/2022] Open
Abstract
We have previously demonstrated that inhibition of autophagy increased the Borrelia burgdorferi induced innate cytokine production in vitro, but little is known regarding the effect of autophagy on in vivo models of Borrelia infection. Here, we showed that ATG7-deficient mice that were intra-articular injected with Borrelia spirochetes displayed increased joint swelling, cell influx, and enhanced interleukin-1β and interleukin-6 production by inflamed synovial tissue. Because both interleukin-1β and interleukin-6 are linked to the development of adaptive immune responses, we examine the function of autophagy on Borrelia induced adaptive immunity. Human peripheral blood mononuclear cells treated with autophagy inhibitors showed an increase in interleukin-17, interleukin-22, and interferon-γ production in response to exposure to Borrelia burgdorferi. Increased IL-17 production was dependent on IL-1β release but, interestingly, not on interleukin-23 production. In addition, cytokine quantitative trait loci in ATG9B modulate the Borrelia induced interleukin-17 production. Because high levels of IL-17 have been found in patients with confirmed, severe, chronic borreliosis, we propose that the modulation of autophagy may be a potential target for anti-inflammatory therapy in patients with persistent Lyme disease.
Collapse
Affiliation(s)
- Kathrin Buffen
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands; Radboud Institute of Molecular Life Science, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marije Oosting
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands; Radboud Institute of Molecular Life Science, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Yang Li
- University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands; and
| | | | - Mihai G Netea
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands; Radboud Institute of Molecular Life Science, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Leo A B Joosten
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands; Radboud Institute of Molecular Life Science, Radboud University Medical Center, Nijmegen, The Netherlands;
| |
Collapse
|
22
|
Hansen ES, Johnson ME, Schell RF, Nardelli DT. CD4+ cell-derived interleukin-17 in a model of dysregulated, Borrelia-induced arthritis. Pathog Dis 2016; 74:ftw084. [PMID: 27549424 DOI: 10.1093/femspd/ftw084] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2016] [Indexed: 11/14/2022] Open
Abstract
Lyme borreliosis, which is caused in the United States by the spirochete Borrelia burgdorferi, may manifest as different arrays of signs, symptoms and severities between infected individuals. Recent studies have indicated that particularly severe forms of Lyme borreliosis in humans are associated with an increased Th17 response. Here, we hypothesized that a murine model combining the dysregulated immune response of an environment lacking interleukin-10 (IL-10) with a robust T-cell-driven inflammatory response would reflect arthritis associated with the production of IL-17 by CD4+ cells. We demonstrate that IL-10 regulates the production of IL-17 by Borrelia-primed CD4+ cells early after interaction with Lyme spirochetes in vitro and that infection of Borrelia-primed mice with B. burgdorferi leads to significant production of IL-17 that contributes to the development of severe arthritis. These results extend our previous findings by demonstrating that a dysregulated adaptive immune response to Lyme spirochetes can contribute to severe, Th17-associated arthritis. These findings may lead to therapeutic measures for individuals with particularly severe symptoms of Lyme borreliosis.
Collapse
Affiliation(s)
- Emily S Hansen
- Department of Biomedical Sciences, University of Wisconsin-Milwaukee, Milwaukee WI 53211, USA
| | - Megan E Johnson
- Department of Biomedical Sciences, University of Wisconsin-Milwaukee, Milwaukee WI 53211, USA
| | - Ronald F Schell
- Wisconsin State Laboratory of Hygiene, University of Wisconsin-Madison, Madison, WI 53706, USA Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Dean T Nardelli
- Department of Biomedical Sciences, University of Wisconsin-Milwaukee, Milwaukee WI 53211, USA
| |
Collapse
|
23
|
Härdle L, Bachmann M, Bollmann F, Pautz A, Schmid T, Eberhardt W, Kleinert H, Pfeilschifter J, Mühl H. Tristetraprolin regulation of interleukin-22 production. Sci Rep 2015; 5:15112. [PMID: 26486958 PMCID: PMC4613560 DOI: 10.1038/srep15112] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 09/16/2015] [Indexed: 12/12/2022] Open
Abstract
Interleukin (IL)-22 is a STAT3-activating cytokine displaying characteristic AU-rich elements (ARE) in the 3'-untranslated region (3'-UTR) of its mRNA. This architecture suggests gene regulation by modulation of mRNA stability. Since related cytokines undergo post-transcriptional regulation by ARE-binding tristetraprolin (TTP), the role of this destabilizing protein in IL-22 production was investigated. Herein, we demonstrate that TTP-deficient mice display augmented serum IL-22. Likewise, IL-22 mRNA was enhanced in TTP-deficient splenocytes and isolated primary T cells. A pivotal role for TTP is underscored by an extended IL-22 mRNA half-life detectable in TTP-deficient T cells. Luciferase-reporter assays performed in human Jurkat T cells proved the destabilizing potential of the human IL-22-3'-UTR. Furthermore, overexpression of TTP in HEK293 cells substantially decreased luciferase activity directed by the IL-22-3'-UTR. Transcript destabilization by TTP was nullified upon cellular activation by TPA/A23187, an effect dependent on MEK1/2 activity. Accordingly, IL-22 mRNA half-life as determined in TPA/A23187-stimulated Jurkat T cells decreased under the influence of the MEK1/2 inhibitor U0126. Altogether, data indicate that TTP directly controls IL-22 production, a process counteracted by MEK1/2. The TTP-dependent regulatory pathway described herein likely contributes to the role of IL-22 in inflammation and cancer and may evolve as novel target for pharmacological IL-22 modulation.
Collapse
Affiliation(s)
- Lorena Härdle
- pharmazentrum frankfurt/ZAFES, University Hospital Goethe-University Frankfurt, Germany
| | - Malte Bachmann
- pharmazentrum frankfurt/ZAFES, University Hospital Goethe-University Frankfurt, Germany
| | - Franziska Bollmann
- Department of Pharmacology, University Medical Center of the Johannes-Gutenberg University Mainz, Mainz, Germany
| | - Andrea Pautz
- Department of Pharmacology, University Medical Center of the Johannes-Gutenberg University Mainz, Mainz, Germany
| | - Tobias Schmid
- Institute of Biochemistry I-Pathobiochemistry, Faculty of Medicine, Goethe-University Frankfurt, Germany
| | - Wolfgang Eberhardt
- pharmazentrum frankfurt/ZAFES, University Hospital Goethe-University Frankfurt, Germany
| | - Hartmut Kleinert
- Department of Pharmacology, University Medical Center of the Johannes-Gutenberg University Mainz, Mainz, Germany
| | - Josef Pfeilschifter
- pharmazentrum frankfurt/ZAFES, University Hospital Goethe-University Frankfurt, Germany
| | - Heiko Mühl
- pharmazentrum frankfurt/ZAFES, University Hospital Goethe-University Frankfurt, Germany
| |
Collapse
|
24
|
Berner A, Bachmann M, Pfeilschifter J, Kraiczy P, Mühl H. Interferon-α curbs production of interleukin-22 by human peripheral blood mononuclear cells exposed to live Borrelia burgdorferi. J Cell Mol Med 2015; 19:2507-11. [PMID: 26152778 PMCID: PMC4594692 DOI: 10.1111/jcmm.12634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 05/20/2015] [Indexed: 11/28/2022] Open
Abstract
Cytokine networks initiated by means of innate immunity are regarded as a major determinant of host defence in response to acute infection by bacteria including Borrelia burgdorferi. Herein, we demonstrate that interferon (IFN)-α, either endogenously produced after exposure of cells to toll-like receptor-9-activating CpG oligonucleotides or provided as recombinant cytokine, weakens activation of the anti-bacterial interleukin (IL)-1/IL-22 axis in human peripheral blood mononuclear cells exposed to viable B. burgdorferi. As IFN-α has been related to pathological dissemination of the spirochaete, data suggest an immunoregulatory role of type I IFN in this context that is able to significantly modify cytokine profiles thereby possibly determining early course of B. burgdorferi infection.
Collapse
Affiliation(s)
- Anika Berner
- Pharmazentrum Frankfurt/ZAFES, University Hospital Goethe-University FrankfurtFrankfurt am Main, Germany
| | - Malte Bachmann
- Pharmazentrum Frankfurt/ZAFES, University Hospital Goethe-University FrankfurtFrankfurt am Main, Germany
| | - Josef Pfeilschifter
- Pharmazentrum Frankfurt/ZAFES, University Hospital Goethe-University FrankfurtFrankfurt am Main, Germany
| | - Peter Kraiczy
- Institute of Medical Microbiology and Infection Control, University Hospital Goethe-University FrankfurtFrankfurt am Main, Germany
| | - Heiko Mühl
- Pharmazentrum Frankfurt/ZAFES, University Hospital Goethe-University FrankfurtFrankfurt am Main, Germany
| |
Collapse
|
25
|
Wang CC, Li H, Zhang M, Li XL, Yue LT, Zhang P, Zhao Y, Wang S, Duan RN, Li YB, Duan RS. Caspase-1 inhibitor ameliorates experimental autoimmune myasthenia gravis by innate dendric cell IL-1-IL-17 pathway. J Neuroinflammation 2015; 12:118. [PMID: 26071315 PMCID: PMC4470006 DOI: 10.1186/s12974-015-0334-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 05/30/2015] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND IL-1β has been shown to play a pivotal role in autoimmunity. Cysteinyl aspartate-specific proteinase-1 (caspase-1) inhibitor may be an important drug target for autoimmune diseases. However, the effects of caspase-1 inhibitor on myasthenia gravis (MG) remain undefined. METHODS To investigate the effects of caspase-1 inhibitor on experimental autoimmune myasthenia gravis (EAMG), an animal model of MG, caspase-1 inhibitor was administered to Lewis rats immunized with region 97-116 of the rat AChR α subunit (R97-116 peptide) in complete Freund's adjuvant. The immunophenotypical characterization by flow cytometry and the levels of autoantibody by ELISA were carried out to evaluate the neuroprotective effect of caspase-1 inhibitor. RESULTS We found that caspase-1 inhibitor improved EAMG clinical symptom, which was associated with decreased IL-17 production by CD4+ T cells and γδ T cells, lower affinity of anti-R97-116 peptide IgG. Caspase-1 inhibitor decreased expression of CD80, CD86, and MHC class II on DCs, as well as intracellular IL-1β production from DCs. In addition, caspase-1 inhibitor treatment inhibited R97-116 peptide-specific cell proliferation and decreased follicular helper T cells relating to EAMG development. CONCLUSIONS Our results suggest that caspase-1 inhibitor ameliorates experimental autoimmune myasthenia gravis by innate DC IL-1-IL-17 pathway and provides new evidence that caspase-1 is an important drug target in the treatment of MG and other autoimmune diseases.
Collapse
Affiliation(s)
- Cong-Cong Wang
- Department of Neurology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, 250014, China.
| | - Heng Li
- Department of Neurology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, 250014, China.
| | - Min Zhang
- Department of Neurology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, 250014, China.
| | - Xiao-Li Li
- Department of Neurology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, 250014, China.
| | - Long-Tao Yue
- Central Laboratory, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, 250014, China.
| | - Peng Zhang
- Department of Neurology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, 250014, China.
| | - Yue Zhao
- Department of Neurology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, 250014, China.
| | - Shan Wang
- Department of Neurology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, 250014, China.
| | - Ruo-Nan Duan
- School of Medicine, Shandong University, Jinan, Shandong, 250012, China.
| | - Yan-Bin Li
- Department of Neurology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, 250014, China.
| | - Rui-Sheng Duan
- Department of Neurology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, 250014, China.
| |
Collapse
|
26
|
Infection of Interleukin 17 Receptor A-Deficient C3H Mice with Borrelia burgdorferi Does Not Affect Their Development of Lyme Arthritis and Carditis. Infect Immun 2015; 83:2882-8. [PMID: 25939508 DOI: 10.1128/iai.00533-15] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 04/24/2015] [Indexed: 12/12/2022] Open
Abstract
Recently, a number of studies have reported the presence of interleukin 17 (IL-17) in patients with Lyme disease, and several murine studies have suggested a role for this cytokine in the development of Lyme arthritis. However, the role of IL-17 has not been studied using the experimental Lyme borreliosis model of infection of C3H mice with Borrelia burgdorferi. In the current study, we investigated the role of IL-17 in the development of experimental Lyme borreliosis by infecting C3H mice devoid of the common IL-17 receptor A subunit (IL-17RA) and thus deficient in most IL-17 signaling. Infection of both C3H and C3H IL-17RA(-/-) mice led to the production of high levels of IL-17 in the serum, low levels in the heart tissue, and no detectable IL-17 in the joint tissue. The development and severity of arthritis and carditis in the C3H IL-17RA(-/-) mice were similar to what was seen in wild-type C3H mice. In addition, development of antiborrelia antibodies and clearance of spirochetes from tissues were similar for the two mouse strains. These results demonstrate a limited role for IL-17 signaling through IL-17RA in the development of disease following infection of C3H mice with B. burgdorferi.
Collapse
|
27
|
Xiong F, Janko M, Walker M, Makropoulos D, Weinstock D, Kam M, Hrebien L. Analysis of cytokine release assay data using machine learning approaches. Int Immunopharmacol 2014; 22:465-79. [DOI: 10.1016/j.intimp.2014.07.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 07/01/2014] [Accepted: 07/21/2014] [Indexed: 12/18/2022]
|
28
|
Oosting M, Buffen K, van der Meer JWM, Netea MG, Joosten LAB. Innate immunity networks during infection with Borrelia burgdorferi. Crit Rev Microbiol 2014; 42:233-44. [PMID: 24963691 DOI: 10.3109/1040841x.2014.929563] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The recognition of Borrelia species represents a complex process in which multiple components of the immune system are involved. In this review, we summarize the interplay between the host innate system and Borrelia spp., from the recognition by pattern recognition receptors (PRRs) to the induction of a complex network of proinflammatory mediators. Several PRR families are crucial for recognition of Borrelia spp., including Toll-like receptors (TLRs) and Nucleotide Oligomerization Domain (NOD)-like receptors (NLRs). TLR-2 is crucial for the recognition of outer surface protein (Osp)A from Borrelia spp. and together with TLR8 mediates phagocytosis of the microorganism and production of type I interferons. Intracellular receptors such as TLR7, TLR8 and TLR9 on the one hand and the NLR receptor NOD2 on the other hand, represent the second major recognition system of Borrelia. PRR-dependent signals induce the release of pro-inflammatory cytokines such as interleukin-1 and T-helper-derived cytokines, which are thought to mediate the inflammation during Lyme disease. Understanding the regulation of host defense mechanisms against Borrelia has the potential to lead to the discovery of novel immunotherapeutic targets to improve the therapy against Lyme disease.
Collapse
Affiliation(s)
- Marije Oosting
- a Department of Internal Medicine , and.,b Nijmegen Institute of Infection, Inflammation and Immunity (N4i), Radboud University Medical Centre , Nijmegen , The Netherlands
| | - Kathrin Buffen
- a Department of Internal Medicine , and.,b Nijmegen Institute of Infection, Inflammation and Immunity (N4i), Radboud University Medical Centre , Nijmegen , The Netherlands
| | - Jos W M van der Meer
- a Department of Internal Medicine , and.,b Nijmegen Institute of Infection, Inflammation and Immunity (N4i), Radboud University Medical Centre , Nijmegen , The Netherlands
| | - Mihai G Netea
- a Department of Internal Medicine , and.,b Nijmegen Institute of Infection, Inflammation and Immunity (N4i), Radboud University Medical Centre , Nijmegen , The Netherlands
| | - Leo A B Joosten
- a Department of Internal Medicine , and.,b Nijmegen Institute of Infection, Inflammation and Immunity (N4i), Radboud University Medical Centre , Nijmegen , The Netherlands
| |
Collapse
|
29
|
Mason LMK, Veerman CC, Geijtenbeek TBH, Hovius JWR. Ménage à trois: Borrelia, dendritic cells, and tick saliva interactions. Trends Parasitol 2013; 30:95-103. [PMID: 24388562 DOI: 10.1016/j.pt.2013.12.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 11/27/2013] [Accepted: 12/02/2013] [Indexed: 02/02/2023]
Abstract
Borrelia burgdorferi sensu lato, the causative agent of Lyme borreliosis, is inoculated into the skin during an Ixodes tick bite where it is recognised and captured by dendritic cells (DCs). However, considering the propensity of Borrelia to disseminate, it would appear that DCs fall short in mounting a robust immune response against it. Many aspects of the DC-driven immune response to Borrelia have been examined. Recently, components of tick saliva have been identified that sabotage DC responses and aid Borrelia infection. In this review, we summarise what is currently known about the immune response of DCs to Borrelia and explore the mechanisms by which Borrelia manages to circumvent this immune response, with or without the help of tick salivary proteins.
Collapse
Affiliation(s)
- Lauren M K Mason
- Center for Experimental and Molecular Medicine, Academic Medical Center, Amsterdam, The Netherlands.
| | - Christiaan C Veerman
- Center for Experimental and Molecular Medicine, Academic Medical Center, Amsterdam, The Netherlands
| | - Teunis B H Geijtenbeek
- Department of Experimental Immunology, Academic Medical Center, Amsterdam, The Netherlands
| | - Joppe W R Hovius
- Center for Experimental and Molecular Medicine, Academic Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
30
|
Hodzic E, Feng S, Barthold SW. Assessment of transcriptional activity of Borrelia burgdorferi and host cytokine genes during early and late infection in a mouse model. Vector Borne Zoonotic Dis 2013; 13:694-711. [PMID: 23930938 DOI: 10.1089/vbz.2012.1189] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Differential gene expression by Borrelia burgdorferi spirochetes during mammalian infection facilitates their dissemination as well as immune evasion. Modulation of gene transcription in response to host immunity has been documented with the outer surface protein C, but the influence of transcription of other genes is largely unknown. A low-density array (LDA) was developed to study transcriptional activity of 43 B. burgdorferi genes and 19 host genes that may be involved in various host-agent interactions. Gene transcription in heart, joint, and muscle tissue was compared in immunocompetent C3H and immunodeficient C3H-scid mice during early (3 weeks) and late (2 months) B. burgdorferi infection. Among all tissue types, levels of relative transcription of over 80% of B. burgdorferi genes tested were one- to nine-fold less in C3H mice compared to C3H-scid mice. At the later time point, all genes were transcribed in C3H-scid mice, whereas transcription of 16 genes out of 43 tested was not detected in analyzed tissues of C3H mice. Our data suggest that during infection of immunocompetent mice, a majority of B. burgdorferi genes tested are downregulated in response to acquired host immunity. LDA revealed variable patterns of host gene expression in different tissues and at different intervals in infected mice. Higher levels of relative expression for IL-10 during both early and late infection were detected in heart base, and it was unchanged in the tibiotarsal joint. Comparative analysis of B. burgdorferi and host genes transcriptional activity revealed that increased flaB mRNA during early infection was followed by increases of CCL7, CCL8, interleukin-10 (IL-10), and tumor necrosis factor-α (TNF-α) in all assessed tissue types. LDA represents a valuable approach for sensitive and quantitative gene transcription profiling and for understanding Lyme borreliosis.
Collapse
Affiliation(s)
- Emir Hodzic
- 1 Center for Comparative Medicine, Schools of Veterinary Medicine and Medicine, University of California at Davis , Davis, California
| | | | | |
Collapse
|
31
|
Mühl H, Scheiermann P, Bachmann M, Härdle L, Heinrichs A, Pfeilschifter J. IL-22 in tissue-protective therapy. Br J Pharmacol 2013; 169:761-71. [PMID: 23530726 PMCID: PMC3687657 DOI: 10.1111/bph.12196] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 01/13/2013] [Accepted: 02/12/2013] [Indexed: 12/14/2022] Open
Abstract
IL-22, a member of the IL-10 cytokine family, has recently gained significant attention as a protective agent in murine models of diseases driven by epithelial injury. Like its biochemical and functional sibling IL-10, IL-22 elicits cellular activation primarily by engaging the STAT3 signalling pathway. Exclusively produced by leukocytes, but targeting mostly cells of epithelial origin, IL-22 has been proposed as a specialized cytokine messenger acting between leukocytic and non-leukocytic cell compartments. A lack of response in leukocytes to IL-22 mirrors tightly controlled IL-22 receptor expression and probably explains the apparent lack of instant adverse effects after systemic IL-22 administration to mice. Anti-apoptotic, pro-proliferative and pro-regenerative characteristics the major biological properties of this cytokine. Specifically, application of IL-22 is associated with tissue protection and/or regeneration in murine models of infection/microbe-driven inflammation at host/environment interfaces, ventilator-induced lung injury, pancreatitis and liver damage. Overall, preclinical studies would support therapeutic administration of seemingly well-tolerated recombinant IL-22 for treatment of an array of acute diseases manifested in epithelial tissues. However, the feasibility of prolonged administration of this cytokine is expected to be restricted by the tumourigenic potential of the IL-22/STAT3 axis. IL-22, moreover, apparently displays an inherent context-specific capacity to amplify distinct aspects of autoimmune inflammation. Here, the prospects, expectations and restrictions of IL-22 administration in tissue-protective therapy are discussed.
Collapse
MESH Headings
- Animals
- Anti-Inflammatory Agents, Non-Steroidal/adverse effects
- Anti-Inflammatory Agents, Non-Steroidal/metabolism
- Anti-Inflammatory Agents, Non-Steroidal/pharmacology
- Anti-Inflammatory Agents, Non-Steroidal/therapeutic use
- Apoptosis/drug effects
- Cell Proliferation/drug effects
- Disease Models, Animal
- Drugs, Investigational/adverse effects
- Drugs, Investigational/metabolism
- Drugs, Investigational/pharmacology
- Drugs, Investigational/therapeutic use
- Hepatic Stellate Cells/drug effects
- Hepatic Stellate Cells/immunology
- Hepatic Stellate Cells/metabolism
- Humans
- Interleukins/adverse effects
- Interleukins/genetics
- Interleukins/metabolism
- Interleukins/therapeutic use
- MAP Kinase Signaling System/drug effects
- Mucous Membrane/drug effects
- Mucous Membrane/immunology
- Mucous Membrane/metabolism
- Protective Agents/adverse effects
- Protective Agents/metabolism
- Protective Agents/pharmacology
- Protective Agents/therapeutic use
- Receptors, Interleukin/agonists
- Receptors, Interleukin/metabolism
- Recombinant Proteins/adverse effects
- Recombinant Proteins/metabolism
- Recombinant Proteins/pharmacology
- Recombinant Proteins/therapeutic use
- Regeneration/drug effects
- STAT3 Transcription Factor/agonists
- STAT3 Transcription Factor/metabolism
- Interleukin-22
Collapse
Affiliation(s)
- Heiko Mühl
- pharmazentrum frankfurt/ZAFES, University Hospital, Goethe University Frankfurt, Frankfurt am Main, Germany.
| | | | | | | | | | | |
Collapse
|
32
|
Mühl H. Pro-Inflammatory Signaling by IL-10 and IL-22: Bad Habit Stirred Up by Interferons? Front Immunol 2013; 4:18. [PMID: 23382730 PMCID: PMC3562761 DOI: 10.3389/fimmu.2013.00018] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 01/09/2013] [Indexed: 12/15/2022] Open
Abstract
Interleukin (IL)-10 and IL-22 are key members of the IL-10 cytokine family that share characteristic properties such as defined structural features, usage of IL-10R2 as one receptor chain, and activation of signal transducer and activator of transcription (STAT)-3 as dominant signaling mode. IL-10, formerly known as cytokine synthesis inhibitory factor, is key to deactivation of monocytes/macrophages and dendritic cells. Accordingly, pre-clinical studies document its anti-inflammatory capacity. However, the outcome of clinical trials assessing the therapeutic potential of IL-10 in prototypic inflammatory disorders has been disappointing. In contrast to IL-10, IL-22 acts primarily on non-leukocytic cells, in particular epithelial cells of intestine, skin, liver, and lung. STAT3-driven proliferation, anti-apoptosis, and anti-microbial tissue protection is regarded a principal function of IL-22 at host/environment interfaces. In this hypothesis article, hidden/underappreciated pro-inflammatory characteristics of IL-10 and IL-22 are outlined and related to cellular priming by type I interferon. It is tempting to speculate that an inherent inflammatory potential of IL-10 and IL-22 confines their usage in tissue protective therapy and beyond that determines in some patients efficacy of type I interferon treatment.
Collapse
Affiliation(s)
- Heiko Mühl
- Pharmazentrum Frankfurt/ZAFES, University Hospital Goethe-University Frankfurt Frankfurt am Main, Germany
| |
Collapse
|
33
|
Bachmann M, Ulziibat S, Härdle L, Pfeilschifter J, Mühl H. IFNα converts IL-22 into a cytokine efficiently activating STAT1 and its downstream targets. Biochem Pharmacol 2013; 85:396-403. [PMID: 23153456 DOI: 10.1016/j.bcp.2012.11.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Revised: 11/06/2012] [Accepted: 11/07/2012] [Indexed: 02/08/2023]
Abstract
Besides their antiviral activity, type I Interferons (IFN) display context-specific immunomodulation. In contrast to long-known IFNα/β, Interleukin (IL)-22 is an anti-bacterial, largely tissue protective cytokine that recently gained attention. Herein, cellular IFNα/IL-22 interactions are investigated. We report that pre-conditioning of epithelial cells with IFNα initiated dramatic changes in IL-22 signaling normally dominated by signal transducer and activator of transcription (STAT)-3. Specifically, by using human DLD1 colon epithelial/carcinoma cells we demonstrate that, upon IFNα, IL-22 converts into a cytokine robustly activating STAT1 and its downstream pro-inflammatory targets CXCL9, CXCL10, and inducible nitric oxide synthase (iNOS). Accordingly, only after IFNα pre-incubation was IL-22-induced STAT1 binding to the CXCL10 promoter detectable. Using the viral mimic polyinosinic:polycytidylic acid and the IFNα/β antagonist B18R we furthermore demonstrate the capability of endogenous IFN to promote IL-22-induced STAT1 activation and expression of CXCL10. IL-22-induced STAT1 activation subsequent to IFNα priming became likewise apparent in human Caco2 colon epithelial/carcinoma cells, HepG2 hepatoma cells, and primary keratinocytes. Current observations may relate to characteristics of IFNα/β in clinical therapy and expose margins of tissue protection by IL-22 application.
Collapse
Affiliation(s)
- Malte Bachmann
- Pharmazentrum Frankfurt/ZAFES, University Hospital Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany.
| | | | | | | | | |
Collapse
|
34
|
Rudloff I, Bachmann M, Pfeilschifter J, Mühl H. Mechanisms of rapid induction of interleukin-22 in activated T cells and its modulation by cyclosporin a. J Biol Chem 2012; 287:4531-43. [PMID: 22170067 PMCID: PMC3281663 DOI: 10.1074/jbc.m111.286492] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Revised: 12/09/2011] [Indexed: 12/30/2022] Open
Abstract
IL-22 is an immunoregulatory cytokine displaying pathological functions in models of autoimmunity like experimental psoriasis. Understanding molecular mechanisms driving IL-22, together with knowledge on the capacity of current immunosuppressive drugs to target this process, may open an avenue to novel therapeutic options. Here, we sought to characterize regulation of human IL22 gene expression with focus on the established model of Jurkat T cells. Moreover, effects of the prototypic immunosuppressant cyclosporin A (CsA) were investigated. We report that IL-22 induction by TPA/A23187 (T/A) or αCD3 is inhibited by CsA or related FK506. Similar data were obtained with peripheral blood mononuclear cells or purified CD3(+) T cells. IL22 promoter analysis (-1074 to +156 bp) revealed a role of an NF-AT (-95/-91 nt) and a CREB (-194/-190 nt) binding site for gene induction. Indeed, binding of CREB and NF-ATc2, but not c-Rel, under the influence of T/A to those elements could be proven by ChIP. Because CsA has the capability to impair IκB kinase (IKK) complex activation, the IKKα/β inhibitor IKKVII was evaluated. IKKVII likewise reduced IL-22 induction in Jurkat cells and peripheral blood mononuclear cells. Interestingly, transfection of Jurkat cells with siRNA directed against IKKα impaired IL22 gene expression. Data presented suggest that NF-AT, CREB, and IKKα contribute to rapid IL22 gene induction. In particular the crucial role of NF-AT detected herein may form the basis of direct action of CsA on IL-22 expression by T cells, which may contribute to therapeutic efficacy of the drug in autoimmunity.
Collapse
Affiliation(s)
- Ina Rudloff
- From the Pharmazentrum Frankfurt/Zentrum für Arzneimittelforschung, Entwicklung und Sicherheit, University Hospital Goethe-University Frankfurt, Frankfurt am Main 60590, Germany
| | - Malte Bachmann
- From the Pharmazentrum Frankfurt/Zentrum für Arzneimittelforschung, Entwicklung und Sicherheit, University Hospital Goethe-University Frankfurt, Frankfurt am Main 60590, Germany
| | - Josef Pfeilschifter
- From the Pharmazentrum Frankfurt/Zentrum für Arzneimittelforschung, Entwicklung und Sicherheit, University Hospital Goethe-University Frankfurt, Frankfurt am Main 60590, Germany
| | - Heiko Mühl
- From the Pharmazentrum Frankfurt/Zentrum für Arzneimittelforschung, Entwicklung und Sicherheit, University Hospital Goethe-University Frankfurt, Frankfurt am Main 60590, Germany
| |
Collapse
|
35
|
Gessner MA, Werner JL, Lilly LM, Nelson MP, Metz AE, Dunaway CW, Chan YR, Ouyang W, Brown GD, Weaver CT, Steele C. Dectin-1-dependent interleukin-22 contributes to early innate lung defense against Aspergillus fumigatus. Infect Immun 2012; 80:410-7. [PMID: 22038916 PMCID: PMC3255669 DOI: 10.1128/iai.05939-11] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Accepted: 10/15/2011] [Indexed: 12/30/2022] Open
Abstract
We have previously reported that mice deficient in the beta-glucan receptor Dectin-1 displayed increased susceptibility to Aspergillus fumigatus lung infection in the presence of lower interleukin 23 (IL-23) and IL-17A production in the lungs and have reported a role for IL-17A in lung defense. As IL-23 is also thought to control the production of IL-22, we examined the role of Dectin-1 in IL-22 production, as well as the role of IL-22 in innate host defense against A. fumigatus. Here, we show that Dectin-1-deficient mice demonstrated significantly reduced levels of IL-22 in the lungs early after A. fumigatus challenge. Culturing cells from enzymatic lung digests ex vivo further demonstrated Dectin-1-dependent IL-22 production. IL-22 production was additionally found to be independent of IL-1β, IL-6, or IL-18 but required IL-23. The addition of recombinant IL-23 augmented IL-22 production in wild-type (WT) lung cells and rescued IL-22 production by lung cells from Dectin-1-deficient mice. In vivo neutralization of IL-22 in the lungs of WT mice resulted in impaired A. fumigatus lung clearance. Moreover, mice deficient in IL-22 also demonstrated a higher lung fungal burden after A. fumigatus challenge in the presence of impaired IL-1α, tumor necrosis factor alpha (TNF-α), CCL3/MIP-1α, and CCL4/MIP-1β production and lower neutrophil recruitment, yet intact IL-17A production. We further show that lung lavage fluid collected from both A. fumigatus-challenged Dectin-1-deficient and IL-22-deficient mice had compromised anti-fungal activity against A. fumigatus in vitro. Although lipocalin 2 production was observed to be Dectin-1 and IL-22 dependent, lipocalin 2-deficient mice did not demonstrate impaired A. fumigatus clearance. Moreover, lung S100a8, S100a9, and Reg3g mRNA expression was not lower in either Dectin-1-deficient or IL-22-deficient mice. Collectively, our results indicate that early innate lung defense against A. fumigatus is mediated by Dectin-1-dependent IL-22 production.
Collapse
Affiliation(s)
- Melissa A. Gessner
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jessica L. Werner
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Lauren M. Lilly
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Michael P. Nelson
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Allison E. Metz
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Chad W. Dunaway
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Yvonne R. Chan
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Wenjun Ouyang
- Department of Immunology, Genentech, Inc., South San Francisco, California, USA
| | - Gordon D. Brown
- Section of Infection and Immunity, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Casey T. Weaver
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Chad Steele
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
36
|
Oosting M, ter Hofstede H, van de Veerdonk FL, Sturm P, Kullberg BJ, van der Meer JWM, Netea MG, Joosten LAB. Role of interleukin-23 (IL-23) receptor signaling for IL-17 responses in human Lyme disease. Infect Immun 2011; 79:4681-7. [PMID: 21896776 PMCID: PMC3257938 DOI: 10.1128/iai.05242-11] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Revised: 06/24/2011] [Accepted: 08/24/2011] [Indexed: 12/20/2022] Open
Abstract
Interleukin-23 (IL-23) is known to play a crucial role in the development and maintenance of T helper 17 cells. It has been previously demonstrated that IL-17 is involved in experimental Lyme arthritis, caused by Borrelia burgdorferi bacteria. However, the precise role of the IL-23 receptor (IL-23R) for the B. burgdorferi-induced IL-17 responses or human Lyme disease has not yet been elucidated. IL-23R single nucleotide polymorphism (SNP) rs11209026 was genotyped using the TaqMan assay. Functional studies were performed using peripheral blood mononuclear cells, and cytokines were measured using enzyme-linked immunosorbent assay (ELISA). Dose-dependent production of IL-23 and IL-17 by B. burgdorferi could be observed. Interestingly, when IL-23 bioactivity was inhibited by a specific antibody against IL-23p19, IL-17 production was significantly downregulated. In contrast, production of gamma interferon (IFN-γ) was not affected after the blockade of IL-23 activity. Moreover, individuals bearing a single nucleotide polymorphism in the IL-23R gene (Arg381Gln) produced significantly less IL-17 after B. burgdorferi stimulation compared with that of the individuals bearing the wild type. Despite lower IL-17 production, the IL-23R gene polymorphism did not influence the development of chronic Lyme disease in a cohort of patients with Lyme disease. This study demonstrates that IL-23R signaling is needed for B. burgdorferi-induced IL-17 production in vitro and that an IL-23R gene SNP leads to impaired IL-17 production. However, the IL-23R gene polymorphism is not crucial for the pathogenesis of chronic Lyme.
Collapse
Affiliation(s)
- Marije Oosting
- Department of Medicine, Radboud University Nijmegen Medical Centre, Geert Grooteplein Zuid 8, 6525GA Nijmegen, The Netherlands
- Nijmegen Institute of Infection, Inflammation and Immunity (N4i), Radboud University Nijmegen Medical Centre, Geert Grooteplein Zuid 8, 6525GA Nijmegen, The Netherlands
| | - Hadewych ter Hofstede
- Department of Medicine, Radboud University Nijmegen Medical Centre, Geert Grooteplein Zuid 8, 6525GA Nijmegen, The Netherlands
| | - Frank L. van de Veerdonk
- Department of Medicine, Radboud University Nijmegen Medical Centre, Geert Grooteplein Zuid 8, 6525GA Nijmegen, The Netherlands
- Nijmegen Institute of Infection, Inflammation and Immunity (N4i), Radboud University Nijmegen Medical Centre, Geert Grooteplein Zuid 8, 6525GA Nijmegen, The Netherlands
| | - Patrick Sturm
- Department of Microbiology, Radboud University Nijmegen Medical Centre, Geert GrootepleinZuid 8, 6525GA Nijmegen, The Netherlands
| | - Bart-Jan Kullberg
- Department of Medicine, Radboud University Nijmegen Medical Centre, Geert Grooteplein Zuid 8, 6525GA Nijmegen, The Netherlands
- Nijmegen Institute of Infection, Inflammation and Immunity (N4i), Radboud University Nijmegen Medical Centre, Geert Grooteplein Zuid 8, 6525GA Nijmegen, The Netherlands
| | - Jos W. M. van der Meer
- Department of Medicine, Radboud University Nijmegen Medical Centre, Geert Grooteplein Zuid 8, 6525GA Nijmegen, The Netherlands
- Nijmegen Institute of Infection, Inflammation and Immunity (N4i), Radboud University Nijmegen Medical Centre, Geert Grooteplein Zuid 8, 6525GA Nijmegen, The Netherlands
| | - Mihai G. Netea
- Department of Medicine, Radboud University Nijmegen Medical Centre, Geert Grooteplein Zuid 8, 6525GA Nijmegen, The Netherlands
- Nijmegen Institute of Infection, Inflammation and Immunity (N4i), Radboud University Nijmegen Medical Centre, Geert Grooteplein Zuid 8, 6525GA Nijmegen, The Netherlands
| | - Leo A. B. Joosten
- Department of Medicine, Radboud University Nijmegen Medical Centre, Geert Grooteplein Zuid 8, 6525GA Nijmegen, The Netherlands
- Nijmegen Institute of Infection, Inflammation and Immunity (N4i), Radboud University Nijmegen Medical Centre, Geert Grooteplein Zuid 8, 6525GA Nijmegen, The Netherlands
| |
Collapse
|
37
|
Mühl H, Bachmann M, Pfeilschifter J. Inducible NO synthase and antibacterial host defence in times of Th17/Th22/T22 immunity. Cell Microbiol 2011; 13:340-8. [PMID: 21199257 DOI: 10.1111/j.1462-5822.2010.01559.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
During the last two decades nitric oxide (NO) produced by inducible NO synthase (iNOS or NOS2) has been characterized as immunoregulatory and antimicrobial principle displaying the potential to determine course of disease in a range of infections. Being an enzyme primarily regulated on expressional level, cytokine-driven iNOS appears to be connected in particular with activation of Th1-type immunity. However, with the recent advent of additional, partly overlapping CD4(+) T cell effector subsets, namely Th17 and Th22 cells, a further layer of complexity has been added to immunoregulatory networks determining inflammatory gene expression in the context of microbial infections. Here, we review current knowledge on activation of iNOS function by interleukin (IL)-17 and IL-22 with focus on Th17/Th22-directed antibacterial immunity.
Collapse
Affiliation(s)
- Heiko Mühl
- Pharmazentrum frankfurt/ZAFES, University Hospital Goethe-University, Frankfurt am Main, Germany.
| | | | | |
Collapse
|