1
|
Mund R, Whitehurst CB. Ubiquitin-Mediated Effects on Oncogenesis during EBV and KSHV Infection. Viruses 2024; 16:1523. [PMID: 39459858 PMCID: PMC11512223 DOI: 10.3390/v16101523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/13/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024] Open
Abstract
The Herpesviridae include the Epstein-Barr Virus (EBV) and the Kaposi Sarcoma-associated Herpesvirus (KSHV), both of which are oncogenic gamma-herpesviruses. These viruses manipulate host cellular mechanisms, including through ubiquitin-mediated pathways, to promote viral replication and oncogenesis. Ubiquitin, a regulatory protein which tags substrates for degradation or alters their function, is manipulated by both EBV and KSHV to facilitate viral persistence and cancer development. EBV infects approximately 90% of the global population and is implicated in malignancies including Burkitt lymphoma (BL), Hodgkin lymphoma (HL), post-transplant lymphoproliferative disorder (PTLD), and nasopharyngeal carcinoma. EBV latency proteins, notably LMP1 and EBNA3C, use ubiquitin-mediated mechanisms to inhibit apoptosis, promote cell proliferation, and interfere with DNA repair, contributing to tumorigenesis. EBV's lytic proteins, including BZLF1 and BPLF1, further disrupt cellular processes to favor oncogenesis. Similarly, KSHV, a causative agent of Kaposi's Sarcoma and lymphoproliferative disorders, has a latency-associated nuclear antigen (LANA) and other latency proteins that manipulate ubiquitin pathways to degrade tumor suppressors, stabilize oncogenic proteins, and evade immune responses. KSHV's lytic cycle proteins, such as RTA and Orf64, also use ubiquitin-mediated strategies to impair immune functions and promote oncogenesis. This review explores the ubiquitin-mediated interactions of EBV and KSHV proteins, elucidating their roles in viral oncogenesis. Understanding these mechanisms offers insights into the similarities between the viruses, as well as provoking thought about potential therapeutic targets for herpesvirus-associated cancers.
Collapse
Affiliation(s)
| | - Christopher B. Whitehurst
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA;
| |
Collapse
|
2
|
Li Y, Du S, Zhou K, Zhang Y, Chen X, Zhu C, Jia Y, Wang Y, Zhang D, Wei F, Tong Y, Cai Q. A small molecule that selectively inhibits the growth of Epstein-Barr virus-latently infected cancer cells. iScience 2024; 27:110581. [PMID: 39220260 PMCID: PMC11365366 DOI: 10.1016/j.isci.2024.110581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 05/10/2024] [Accepted: 07/22/2024] [Indexed: 09/04/2024] Open
Abstract
Epstein-Barr virus (EBV), an oncogenic herpesvirus, is predominantly found in the latent infection form and is highly associated with many human malignancies, which mainly have poor prognoses and no effective treatments. Here, we obtained thirteen compounds from small-molecule libraries for specific inhibition of EBV-latently infected cell growth in vitro by high-throughput screening. Among them, cetrimonium bromide (CetB) was identified to selectively inhibit the growth of different EBV-infected B lymphoma cell lines. Importantly, CetB reduced EBNA1 protein stability, activated G1 arrest and early apoptosis of EBV-latently infected cells without viral lytic reactivation, which leads to dramatically inhibit colony formation and tumor growth of EBV-infected cells in vitro and in vivo, and significantly prolong the survival of tumor-bearing mice. Overall, these findings demonstrate that CetB acts as a highly selective inhibitor of the growth of EBV-infected cells and has the potential for further development of effective therapeutic strategies specific against EBV-associated cancers.
Collapse
Affiliation(s)
- Ying Li
- Division of Hematology, Shanghai First People’s Hospital, School of Medicine & ShengYushou Center of Cell Biology and Immunology, Joint International Research Laboratory of Metabolic & Development Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| | - Shujuan Du
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infections Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Kun Zhou
- Division of Hematology, Shanghai First People’s Hospital, School of Medicine & ShengYushou Center of Cell Biology and Immunology, Joint International Research Laboratory of Metabolic & Development Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| | - Yulin Zhang
- Division of Hematology, Shanghai First People’s Hospital, School of Medicine & ShengYushou Center of Cell Biology and Immunology, Joint International Research Laboratory of Metabolic & Development Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| | - Xiaoting Chen
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infections Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Caixia Zhu
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infections Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Yuping Jia
- Shandong Academy of Pharmaceutical Sciences, Jinan 250100, P.R. China
| | - Yuyan Wang
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infections Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Daizhou Zhang
- Shandong Academy of Pharmaceutical Sciences, Jinan 250100, P.R. China
| | - Fang Wei
- Division of Hematology, Shanghai First People’s Hospital, School of Medicine & ShengYushou Center of Cell Biology and Immunology, Joint International Research Laboratory of Metabolic & Development Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| | - Yin Tong
- Division of Hematology, Shanghai First People’s Hospital, School of Medicine & ShengYushou Center of Cell Biology and Immunology, Joint International Research Laboratory of Metabolic & Development Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| | - Qiliang Cai
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infections Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| |
Collapse
|
3
|
Otálora-Otálora BA, Payán-Gómez C, López-Rivera JJ, Pedroza-Aconcha NB, Aristizábal-Guzmán C, Isaza-Ruget MA, Álvarez-Moreno CA. Global transcriptomic network analysis of the crosstalk between microbiota and cancer-related cells in the oral-gut-lung axis. Front Cell Infect Microbiol 2024; 14:1425388. [PMID: 39228892 PMCID: PMC11368877 DOI: 10.3389/fcimb.2024.1425388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/15/2024] [Indexed: 09/05/2024] Open
Abstract
Background The diagnosis and treatment of lung, colon, and gastric cancer through the histologic characteristics and genomic biomarkers have not had a strong impact on the mortality rates of the top three global causes of death by cancer. Methods Twenty-five transcriptomic analyses (10 lung cancer, 10 gastric cancer, and 5 colon cancer datasets) followed our own bioinformatic pipeline based on the utilization of specialized libraries from the R language and DAVID´s gene enrichment analyses to identify a regulatory metafirm network of transcription factors and target genes common in every type of cancer, with experimental evidence that supports its relationship with the unlocking of cell phenotypic plasticity for the acquisition of the hallmarks of cancer during the tumoral process. The network's regulatory functional and signaling pathways might depend on the constant crosstalk with the microbiome network established in the oral-gut-lung axis. Results The global transcriptomic network analysis highlighted the impact of transcription factors (SOX4, TCF3, TEAD4, ETV4, and FOXM1) that might be related to stem cell programming and cancer progression through the regulation of the expression of genes, such as cancer-cell membrane receptors, that interact with several microorganisms, including human T-cell leukemia virus 1 (HTLV-1), the human papilloma virus (HPV), the Epstein-Barr virus (EBV), and SARS-CoV-2. These interactions can trigger the MAPK, non-canonical WNT, and IFN signaling pathways, which regulate key transcription factor overexpression during the establishment and progression of lung, colon, and gastric cancer, respectively, along with the formation of the microbiome network. Conclusion The global transcriptomic network analysis highlights the important interaction between key transcription factors in lung, colon, and gastric cancer, which regulates the expression of cancer-cell membrane receptors for the interaction with the microbiome network during the tumorigenic process.
Collapse
Affiliation(s)
| | - César Payán-Gómez
- Dirección Académica, Universidad Nacional de Colombia, Sede de La Paz, La Paz, Colombia
| | - Juan Javier López-Rivera
- Grupo de Investigación INPAC, Specialized Laboratory, Clinica Universitaria Colombia, Clínica Colsanitas S.A., Bogotá, Colombia
| | | | - Claudia Aristizábal-Guzmán
- Grupo de Investigación INPAC, Unidad de Investigación, Fundación Universitaria Sanitas, Bogotá, Colombia
| | - Mario Arturo Isaza-Ruget
- Keralty, Sanitas International Organization, Grupo de Investigación INPAC, Fundación Universitaria Sanitas, Bogotá, Colombia
| | | |
Collapse
|
4
|
Zhao B. Epstein-Barr Virus B Cell Growth Transformation: The Nuclear Events. Viruses 2023; 15:832. [PMID: 37112815 PMCID: PMC10146190 DOI: 10.3390/v15040832] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/13/2023] [Accepted: 03/17/2023] [Indexed: 03/29/2023] Open
Abstract
Epstein-Barr virus (EBV) is the first human DNA tumor virus identified from African Burkitt's lymphoma cells. EBV causes ~200,000 various cancers world-wide each year. EBV-associated cancers express latent EBV proteins, EBV nuclear antigens (EBNAs), and latent membrane proteins (LMPs). EBNA1 tethers EBV episomes to the chromosome during mitosis to ensure episomes are divided evenly between daughter cells. EBNA2 is the major EBV latency transcription activator. It activates the expression of other EBNAs and LMPs. It also activates MYC through enhancers 400-500 kb upstream to provide proliferation signals. EBNALP co-activates with EBNA2. EBNA3A/C represses CDKN2A to prevent senescence. LMP1 activates NF-κB to prevent apoptosis. The coordinated activity of EBV proteins in the nucleus allows efficient transformation of primary resting B lymphocytes into immortalized lymphoblastoid cell lines in vitro.
Collapse
Affiliation(s)
- Bo Zhao
- Department of Medicine, Division of Infectious Diseases, Brigham and Women's Hospital and Harvard Medical School, 181 Longwood Avenue, Boston, MA 02115, USA
| |
Collapse
|
5
|
Tiwari D, Mittal N, Jha HC. Unraveling the links between neurodegeneration and Epstein-Barr virus-mediated cell cycle dysregulation. CURRENT RESEARCH IN NEUROBIOLOGY 2022; 3:100046. [PMID: 36685766 PMCID: PMC9846474 DOI: 10.1016/j.crneur.2022.100046] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/22/2022] [Accepted: 06/22/2022] [Indexed: 01/25/2023] Open
Abstract
The Epstein-Barr virus is a well-known cell cycle modulator. To establish successful infection in the host, EBV alters the cell cycle at multiple steps via antigens such as EBNAs, LMPs, and certain other EBV-encoded transcripts. Interestingly, several recent studies have indicated the possibility of EBV's neurotrophic potential. However, the effects and outcomes of EBV infection in the CNS are under-explored. Additionally, more and more epidemiological evidence implicates the cell-cycle dysregulation in neurodegeneration. Numerous hypotheses which describe the triggers that force post-mitotic neurons to re-enter the cell cycle are prevalent. Apart from the known genetic and epigenetic factors responsible, several reports have shown the association of microbial infections with neurodegenerative pathology. Although, studies implicating the herpesvirus family members in neurodegeneration exist, the involvement of Epstein-Barr virus (EBV), in particular, is under-evaluated. Interestingly, a few clinical studies have reported patients of AD or PD to be seropositive for EBV. Based on the findings mentioned above, in this review, we propose that EBV infection in neurons could drive it towards neurodegeneration through dysregulation of cell-cycle events and induction of apoptosis.
Collapse
Affiliation(s)
- Deeksha Tiwari
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, India
| | - Nitish Mittal
- Computational and Systems Biology, Biozentrum, University of Basel, Klingelbergstrasse 50-70, 4056, Basel, Switzerland,Corresponding author.
| | - Hem Chandra Jha
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, India,Corresponding author.
| |
Collapse
|
6
|
The Central Role of the Ubiquitin-Proteasome System in EBV-Mediated Oncogenesis. Cancers (Basel) 2022; 14:cancers14030611. [PMID: 35158879 PMCID: PMC8833352 DOI: 10.3390/cancers14030611] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/19/2022] [Accepted: 01/24/2022] [Indexed: 12/30/2022] Open
Abstract
Simple Summary Epstein–Barr virus (EBV) is the first discovered human tumor virus, which contributes to the oncogenesis of many human cancers. The ubiquitin–proteasome system is a key player during EBV-mediated oncogenesis and has been developed as a crucial therapeutic target for treatment. In this review, we briefly describe how EBV antigens can modulate the ubiquitin–proteasome system for targeted protein degradation and how they are regulated in the EBV life cycle to mediate oncogenesis. Additionally, the developed proteasome inhibitors are discussed for the treatment of EBV-associated cancers. Abstract Deregulation of the ubiquitin–proteasome system (UPS) plays a critical role in the development of numerous human cancers. Epstein–Barr virus (EBV), the first known human tumor virus, has evolved distinct molecular mechanisms to manipulate the ubiquitin–proteasome system, facilitate its successful infection, and drive opportunistic cancers. The interactions of EBV antigens with the ubiquitin–proteasome system can lead to oncogenesis through the targeting of cellular factors involved in proliferation. Recent studies highlight the central role of the ubiquitin–proteasome system in EBV infection. This review will summarize the versatile strategies in EBV-mediated oncogenesis that contribute to the development of specific therapeutic approaches to treat EBV-associated malignancies.
Collapse
|
7
|
Zhao L, Zheng H, Jiang P. circCD151 promotes GLI2 expression by regulating miR‑30d‑5p and enhancing proliferation, invasion and stemness of lung cancer. Mol Med Rep 2021; 24:699. [PMID: 34368867 PMCID: PMC8365425 DOI: 10.3892/mmr.2021.12338] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 05/28/2021] [Indexed: 11/05/2022] Open
Abstract
To investigate the changes of circular (circ)RNA circCD151 expression in lung cancer tissues and cells and its effects on proliferation, migration and invasion of lung cancer cells. The relative expression levels of circCD151 in lung cancer tissues and lung cancer cells (A549 and NCI‑H292) were determined by reverse transcription‑quantitative PCR. The effects of silencing or upregulation of circCD151 on the activity and clonal forming ability of A549 and NCI‑H292 cells were detected by CCK‑8 and cloning formation experiments. Transwell invasion assay detected the effects of silencing or upregulation of circCD151 on the migration and invasion ability of A549 and NCI‑H292 cells. The regulatory effect of circCD151 on miR‑30d‑5p was detected by dual luciferase reporter gene. The relative expression level of circCD151 in lung cancer tissues was significantly higher compared with that in adjacent tissues. The relative expression level of circCD151 in A549 and NCI‑H292 cells was significantly higher compared with that in human lung epithelial cells. In A549 and NCI‑H292 cells, silencing circCD151 decreased cell activity and clonal formation ability and invasion ability was also significantly decreased. circCD151 was upregulated in A549 and NCI‑H292 cells and the activity and clonal formation ability of A549 and NCI‑H292 cells were significantly increased and the invasion ability was also significantly increased. Double luciferase reporter assay confirmed the ceRNA regulatory mechanism of circCD151/miR‑30d‑5p/GLI2. In the present study, in vivo and in vitro functional studies demonstrated that circCD151 may promote the proliferation, invasion and cell stemness of lung cancer cells. Further molecular mechanism studies demonstrated that circCD151 could promote the malignant proliferation of lung adenocarcinoma by targeting miR‑30d‑5p and upregulating GLI2 expression. From the perspective of circRNA, the present study will provide new clues to the pathogenesis and prognostic judgment of lung adenocarcinoma and provide a new target for clinical treatment.
Collapse
Affiliation(s)
- Lihong Zhao
- Department of Respiratory and Critical Care Medicine, Tianjin First Central Hospital, Tianjin 300110, P.R. China
| | - Hong Zheng
- Department of Respiratory and Critical Care Medicine, Tianjin First Central Hospital, Tianjin 300110, P.R. China
| | - Ping Jiang
- Department of Respiratory and Critical Care Medicine, Tianjin First Central Hospital, Tianjin 300110, P.R. China
| |
Collapse
|
8
|
Chen Z, Wei X, Wang X, Zheng X, Chang B, Shen L, Zhu H, Yang M, Li S, Zheng X. NDUFA4L2 promotes glioblastoma progression, is associated with poor survival, and can be effectively targeted by apatinib. Cell Death Dis 2021; 12:377. [PMID: 33828084 PMCID: PMC8027655 DOI: 10.1038/s41419-021-03646-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 03/17/2021] [Accepted: 03/17/2021] [Indexed: 12/31/2022]
Abstract
NADH dehydrogenase [ubiquinone] 1 alpha subcomplex, 4-like 2 (NDUFA4L2) is a subunit of Complex I of the mitochondrial respiratory chain, which is important in metabolic reprogramming and oxidative stress in multiple cancers. However, the biological role and molecular regulation of NDUFA4L2 in glioblastoma (GBM) are poorly understood. Here, we found that NDUFA4L2 was significantly upregulated in GBM; the elevated levels were correlated with reduced patient survival. Gene knockdown of NDUFA4L2 inhibited tumor cell proliferation and enhanced apoptosis, while tumor cells initiated protective mitophagy in vitro and in vivo. We used lentivirus to reduce expression levels of NDUFA4L2 protein in GBM cells exposed to mitophagy blockers, which led to a significant enhancement of tumor cell apoptosis in vitro and inhibited the development of xenografted tumors in vivo. In contrast to other tumor types, NDUFA4L2 expression in GBM may not be directly regulated by hypoxia-inducible factor (HIF)-1α, because HIF-1α inhibitors failed to inhibit NDUFA4L2 in GBM. Apatinib was able to effectively target NDUFA4L2 in GBM, presenting an alternative to the use of lentiviruses, which currently cannot be used in humans. Taken together, our data suggest the use of NDUFA4L2 as a potential therapeutic target in GBM and demonstrate a practical treatment approach.
Collapse
Affiliation(s)
- Zheng Chen
- Department of Neurosurgery, XinHua Hospital, Shanghai JiaoTong University School of Medicine, 1665 KongJiang Rd, 200092, Shanghai, China.,The Center for Diagnosis and Treatment of Cranial Nerve Diseases of Shanghai JiaoTong University, 200092, Shanghai, China
| | - Xiangyu Wei
- Department of Neurosurgery, XinHua Hospital, Shanghai JiaoTong University School of Medicine, 1665 KongJiang Rd, 200092, Shanghai, China.,The Center for Diagnosis and Treatment of Cranial Nerve Diseases of Shanghai JiaoTong University, 200092, Shanghai, China
| | - Xueyi Wang
- Department of Neurosurgery, XinHua Hospital, Shanghai JiaoTong University School of Medicine, 1665 KongJiang Rd, 200092, Shanghai, China.,The Center for Diagnosis and Treatment of Cranial Nerve Diseases of Shanghai JiaoTong University, 200092, Shanghai, China
| | - Xuan Zheng
- Department of Neurosurgery, XinHua Hospital, Shanghai JiaoTong University School of Medicine, 1665 KongJiang Rd, 200092, Shanghai, China.,The Center for Diagnosis and Treatment of Cranial Nerve Diseases of Shanghai JiaoTong University, 200092, Shanghai, China
| | - Bowen Chang
- Department of Neurosurgery, XinHua Hospital, Shanghai JiaoTong University School of Medicine, 1665 KongJiang Rd, 200092, Shanghai, China.,The Center for Diagnosis and Treatment of Cranial Nerve Diseases of Shanghai JiaoTong University, 200092, Shanghai, China
| | - Lin Shen
- Department of Neurosurgery, XinHua Hospital, Shanghai JiaoTong University School of Medicine, 1665 KongJiang Rd, 200092, Shanghai, China.,The Center for Diagnosis and Treatment of Cranial Nerve Diseases of Shanghai JiaoTong University, 200092, Shanghai, China
| | - Hanshuo Zhu
- Department of Neurosurgery, XinHua Hospital, Shanghai JiaoTong University School of Medicine, 1665 KongJiang Rd, 200092, Shanghai, China.,The Center for Diagnosis and Treatment of Cranial Nerve Diseases of Shanghai JiaoTong University, 200092, Shanghai, China
| | - Min Yang
- Department of Neurosurgery, XinHua Hospital, Shanghai JiaoTong University School of Medicine, 1665 KongJiang Rd, 200092, Shanghai, China.,The Center for Diagnosis and Treatment of Cranial Nerve Diseases of Shanghai JiaoTong University, 200092, Shanghai, China
| | - Shiting Li
- Department of Neurosurgery, XinHua Hospital, Shanghai JiaoTong University School of Medicine, 1665 KongJiang Rd, 200092, Shanghai, China. .,The Center for Diagnosis and Treatment of Cranial Nerve Diseases of Shanghai JiaoTong University, 200092, Shanghai, China.
| | - Xuesheng Zheng
- Department of Neurosurgery, XinHua Hospital, Shanghai JiaoTong University School of Medicine, 1665 KongJiang Rd, 200092, Shanghai, China. .,The Center for Diagnosis and Treatment of Cranial Nerve Diseases of Shanghai JiaoTong University, 200092, Shanghai, China.
| |
Collapse
|
9
|
Herbein G, Nehme Z. Polyploid Giant Cancer Cells, a Hallmark of Oncoviruses and a New Therapeutic Challenge. Front Oncol 2020; 10:567116. [PMID: 33154944 PMCID: PMC7591763 DOI: 10.3389/fonc.2020.567116] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 09/11/2020] [Indexed: 12/19/2022] Open
Abstract
Tumors are renowned as intricate systems that harbor heterogeneous cancer cells with distinctly diverse molecular signatures, sizes and genomic contents. Among those various genomic clonal populations within the complex tumoral architecture are the polyploid giant cancer cells (PGCC). Although described for over a century, PGCC are increasingly being recognized for their prominent role in tumorigenesis, metastasis, therapy resistance and tumor repopulation after therapy. A shared characteristic among all tumors triggered by oncoviruses is the presence of polyploidy. Those include Human Papillomaviruses (HPV), Epstein Barr Virus (EBV), Hepatitis B and C viruses (HBV and HCV, respectively), Human T-cell lymphotropic virus-1 (HTLV-1), Kaposi's sarcoma herpesvirus (KSHV) and Merkel polyomavirus (MCPyV). Distinct viral proteins, for instance Tax for HTLV-1 or HBx for HBV have demonstrated their etiologic role in favoring the appearance of PGCC. Different intriguing biological mechanisms employed by oncogenic viruses, in addition to viruses with high oncogenic potential such as human cytomegalovirus, could support the generation of PGCC, including induction of endoreplication, inactivation of tumor suppressors, development of hypoxia, activation of cellular senescence and others. Interestingly, chemoresistance and radioresistance have been reported in the context of oncovirus-induced cancers, for example KSHV and EBV-associated lymphomas and high-risk HPV-related cervical cancer. This points toward a potential linkage between the previously mentioned players and highlights PGCC as keystone cancer cells in virally-induced tumors. Subsequently, although new therapeutic approaches are actively needed to fight PGCC, attention should also be drawn to reveal the relationship between PGCC and oncoviruses, with the ultimate goal of establishing effective therapeutic platforms for treatment of virus-associated cancers. This review discusses the presence of PGCCs in tumors induced by oncoviruses, biological mechanisms potentially favoring their appearance, as well as their consequent implication at the clinical and therapeutic level.
Collapse
Affiliation(s)
- Georges Herbein
- Pathogens & Inflammation/EPILAB Laboratory, EA 4266, University of Franche-Comté, Université Bourgogne Franche-Comté (UBFC), Besançon, France.,Department of Virology, CHRU Besancon, Besançon, France
| | - Zeina Nehme
- Pathogens & Inflammation/EPILAB Laboratory, EA 4266, University of Franche-Comté, Université Bourgogne Franche-Comté (UBFC), Besançon, France.,Faculty of Sciences, Lebanese University, Beirut, Lebanon
| |
Collapse
|
10
|
Targeted Therapies for Epstein-Barr Virus-Associated Lymphomas. Cancers (Basel) 2020; 12:cancers12092565. [PMID: 32916819 PMCID: PMC7564798 DOI: 10.3390/cancers12092565] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/05/2020] [Accepted: 09/07/2020] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Epstein-Barr virus (EBV) is the first-discovered and important human tumor virus. It infects more than 90% of human population and induces various lymphomas. Development of specific targeted therapies is very critical for treatment of EBV-induced lymphomas, but it remains a great challenge. In this review, we introduced the current progress of EBV-specific therapies and the promising approaches that can be developed as novel targeted therapies, which involve protective or therapeutic strategies to target these lymphomas on different levels. This work will provide new insights into the development of new targeted therapies against EBV-associated lymphomas. Abstract The Epstein-Barr virus (EBV) is the first human tumor virus identified that can transform quiescent B lymphocytes into lymphoblastoid cell lines (LCLs) in vitro. EBV can establish asymptomatic life-long persistence and is associated with multiple human malignancies, including non-Hodgkin lymphoma and Hodgkin lymphoma, as well as infectious mononucleosis. Although EBV-associated lymphomagenesis has been investigated for over 50 years, viral-mediated transformation is not completely understood, and the development of EBV-specific therapeutic strategies to treat the associated cancers is still a major challenge. However, the rapid development of several novel therapies offers exciting possibilities to target EBV-induced lymphomas. This review highlights targeted therapies with potential for treating EBV-associated lymphomas, including small molecule inhibitors, immunotherapy, cell therapy, preventative and therapeutic vaccines, and other potent approaches, which are novel strategies for controlling, preventing, and treating these viral-induced malignances.
Collapse
|
11
|
Zhu Q, Ding L, Zi Z, Gao S, Wang C, Wang Y, Zhu C, Yuan Z, Wei F, Cai Q. Viral-Mediated AURKB Cleavage Promotes Cell Segregation and Tumorigenesis. Cell Rep 2020; 26:3657-3671.e5. [PMID: 30917319 DOI: 10.1016/j.celrep.2019.02.106] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 01/04/2019] [Accepted: 02/27/2019] [Indexed: 12/31/2022] Open
Abstract
Aurora kinase B (AURKB), a central regulator of chromosome segregation and cytokinesis, is aberrantly expressed in various cancer cells. However, the relationship of AURKB and oncogenic viruses in cancer progression remains unclear. Here, we reveal that N-cleaved isoforms of AURKB exist in several oncovirus-associated tumor cells and patient cancer tissues, including Kaposi's sarcoma-associated herpesvirus (KSHV), Epstein-Barr virus (EBV), and human papillomavirus virus (HPV). Mechanistically, in KSHV-infected tumor cells, the latent viral antigen LANA cleaves AURKB at Asp76 in a serine protease-dependent manner. The N'-AURKB relocalizes to the spindle pole and promotes the metaphase-to-telophase transition in mitotic cells. Introduction of N'-AURKB but not C'-AURKB promotes colony formation and malignant growth of tumor cells in vitro and in vivo using a murine xenograft model. Altogether, our findings uncover a proteolytic cleavage mechanism by which oncoviruses induce cancer cell segregation and tumorigenesis.
Collapse
Affiliation(s)
- Qing Zhu
- MOE and MOH Key Laboratory of Medical Molecular Virology, School of Basic Medicine, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Ling Ding
- MOE and MOH Key Laboratory of Medical Molecular Virology, School of Basic Medicine, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Zhenguo Zi
- ShengYushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shujun Gao
- Hospital and Institute of Obstetrics and Gynecology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Chong Wang
- MOE and MOH Key Laboratory of Medical Molecular Virology, School of Basic Medicine, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yuyan Wang
- MOE and MOH Key Laboratory of Medical Molecular Virology, School of Basic Medicine, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Caixia Zhu
- MOE and MOH Key Laboratory of Medical Molecular Virology, School of Basic Medicine, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Zhenghong Yuan
- MOE and MOH Key Laboratory of Medical Molecular Virology, School of Basic Medicine, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Fang Wei
- ShengYushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qiliang Cai
- MOE and MOH Key Laboratory of Medical Molecular Virology, School of Basic Medicine, Shanghai Medical College, Fudan University, Shanghai 200032, China; Expert Workstation, Baoji Central Hospital, Baoji, 721008 Shaanxi Province, China.
| |
Collapse
|
12
|
Gain C, Malik S, Bhattacharjee S, Ghosh A, Robertson ES, Das BB, Saha A. Proteasomal inhibition triggers viral oncoprotein degradation via autophagy-lysosomal pathway. PLoS Pathog 2020; 16:e1008105. [PMID: 32092124 PMCID: PMC7058366 DOI: 10.1371/journal.ppat.1008105] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 03/05/2020] [Accepted: 01/28/2020] [Indexed: 12/22/2022] Open
Abstract
Epstein-Barr virus (EBV) nuclear oncoprotein EBNA3C is essential for B-cell transformation and development of several B-cell lymphomas particularly those are generated in an immuno-compromised background. EBNA3C recruits ubiquitin-proteasome machinery for deregulating multiple cellular oncoproteins and tumor suppressor proteins. Although EBNA3C is found to be ubiquitinated at its N-terminal region and interacts with 20S proteasome, the viral protein is surprisingly stable in growing B-lymphocytes. EBNA3C can also circumvent autophagy-lysosomal mediated protein degradation and subsequent antigen presentation for T-cell recognition. Recently, we have shown that EBNA3C enhances autophagy, which serve as a prerequisite for B-cell survival particularly under growth deprivation conditions. We now demonstrate that proteasomal inhibition by MG132 induces EBNA3C degradation both in EBV transformed B-lymphocytes and ectopic-expression systems. Interestingly, MG132 treatment promotes degradation of two EBNA3 family oncoproteins-EBNA3A and EBNA3C, but not the viral tumor suppressor protein EBNA3B. EBNA3C degradation induced by proteasomal inhibition is partially blocked when autophagy-lysosomal pathway is inhibited. In response to proteasomal inhibition, EBNA3C is predominantly K63-linked polyubiquitinated, colocalized with the autophagy-lysosomal fraction in the cytoplasm and participated within p62-LC3B complex, which facilitates autophagy-mediated degradation. We further show that the degradation signal is present at the first 50 residues of the N-terminal region of EBNA3C. Proteasomal inhibition reduces the colony formation ability of this important viral oncoprotein, induces apoptotic cell death and increases transcriptional activation of both latent and lytic gene expression which further promotes viral reactivation from EBV transformed B-lymphocytes. Altogether, this study offers rationale to use proteasome inhibitors as potential therapeutic strategy against multiple EBV associated B-cell lymphomas, where EBNA3C is expressed.
Collapse
Affiliation(s)
- Chandrima Gain
- Department of Life Sciences, Presidency University, West Bengal, India
| | - Samaresh Malik
- Department of Life Sciences, Presidency University, West Bengal, India
| | | | - Arijit Ghosh
- Laboratory of Molecular Biology, School of Biological Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, India
| | - Erle S. Robertson
- Department of Otorhinolaryngology Head and Neck Surgery, and the Tumor Virology Program, Abramson Comprehensive Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Benu Brata Das
- Laboratory of Molecular Biology, School of Biological Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, India
| | - Abhik Saha
- Department of Life Sciences, Presidency University, West Bengal, India
| |
Collapse
|
13
|
The interplay between Epstein-Bar virus (EBV) with the p53 and its homologs during EBV associated malignancies. Heliyon 2019; 5:e02624. [PMID: 31840114 PMCID: PMC6893087 DOI: 10.1016/j.heliyon.2019.e02624] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 07/26/2019] [Accepted: 10/08/2019] [Indexed: 12/12/2022] Open
Abstract
p53, p63, and p73, the members of the p53 family of proteins, are structurally similar proteins that play central roles regulating cell cycle and apoptotic cell death. Alternative splicing at the carboxyl terminus and the utilization of different promoters further categorizes these proteins as having different isoforms for each. Among such isoforms, TA and ΔN versions of each protein serve as the pro and the anti-apoptotic proteins, respectively. Changes in the expression patterns of these isoforms are noted in many human cancers. Proteins of certain human herpesviruses, like Kaposi's sarcoma-associated herpesvirus (KSHV) and Epstein-Barr virus (EBV), interact with p53 family members and alter their expressions in many malignancies. Upon infections in the B cells and epithelial cells, EBV expresses different lytic or latent proteins during viral replication and latency respectively to preserve viral copy number, chromosomal integrity and viral persistence inside the host. In this review, we have surveyed and summarised the interactions of EBV gene products, known so far, with the p53 family proteins. The interactions between P53 and EBV oncoproteins are observed in stomach cancer, non-Hodgkin's lymphoma (NHL) of the head and neck, Nasopharyngeal Cancer (NPC), Gastric carcinoma (GC) and Burkitt's lymphoma (BL). EBV latent protein EBNA1, EBNA3C, LMP-1, and lytic proteins BZLF-1 can alter p53 expressions in many cancer cell lines. Interactions of p63 with EBNA-1, 2, 5, LMP-2A and BARF-1 have also been investigated in several cancers. Similarly, associations of p73 isoform with EBV latent proteins EBNA3C and LMP-1 have been reported. Methylation and single nucleotide polymorphisms in p53 have also been found to be correlated with EBV infection. Therefore, interactions and altered expression strategies of the isoforms of p53 family proteins in EBV associated cancers propose an important field for further molecular research.
Collapse
|
14
|
Zhang S, Pei Y, Lang F, Sun K, Singh RK, Lamplugh ZL, Saha A, Robertson ES. EBNA3C facilitates RASSF1A downregulation through ubiquitin-mediated degradation and promoter hypermethylation to drive B-cell proliferation. PLoS Pathog 2019; 15:e1007514. [PMID: 30615685 PMCID: PMC6336319 DOI: 10.1371/journal.ppat.1007514] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 01/17/2019] [Accepted: 12/08/2018] [Indexed: 12/15/2022] Open
Abstract
EBV latent antigen 3C (EBNA3C) is essential for EBV-induced primary B-cell transformation. Infection by EBV induces hypermethylation of a number of tumor suppressor genes, which contributes to the development of human cancers. The Ras association domain family isoform 1A (RASSF1A) is a cellular tumor suppressor, which regulates a broad range of cellular functions, including apoptosis, cell-cycle arrest, mitotic arrest, and migration. However, the expression of RASSF1A is lost in many human cancers by epigenetic silencing. In the present study, we showed that EBNA3C promoted B-cell transformation by specifically suppressing the expression of RASSF1A. EBNA3C directly interacted with RASSF1A and induced RASSF1A degradation via the ubiquitin-proteasome-dependent pathway. SCFSkp2, an E3-ubiquitin ligase, was recruited by EBNA3C to enhance RASSF1A degradation. Moreover, EBNA3C decreased the transcriptional activity of RASSF1A promoter by enhancing its methylation through EBNA3C-mediated modulation of DNMTs expression. EBNA3C also inhibited RASSF1A-mediated cell apoptosis, disrupted RASSF1A-mediated microtubule and chromosomal stability, and promoted cell proliferation by upregulating Cyclin D1 and Cyclin E expression. Our data provides new details, which sheds light on additional mechanisms by which EBNA3C can induce B-cell transformation. This will also facilitate the development of novel therapeutic approaches through targeting of the RASSF1A pathway.
Collapse
Affiliation(s)
- Shengwei Zhang
- Department of Otorhinolaryngology-Head and Neck Surgery, and Microbiology, the Tumor Virology Program, Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Yonggang Pei
- Department of Otorhinolaryngology-Head and Neck Surgery, and Microbiology, the Tumor Virology Program, Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Fengchao Lang
- Department of Otorhinolaryngology-Head and Neck Surgery, and Microbiology, the Tumor Virology Program, Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Kunfeng Sun
- Department of Otorhinolaryngology-Head and Neck Surgery, and Microbiology, the Tumor Virology Program, Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Rajnish Kumar Singh
- Department of Otorhinolaryngology-Head and Neck Surgery, and Microbiology, the Tumor Virology Program, Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Zachary L. Lamplugh
- Department of Otorhinolaryngology-Head and Neck Surgery, and Microbiology, the Tumor Virology Program, Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Abhik Saha
- Department of Life Sciences, Presidency University, Kolkata, India
| | - Erle S. Robertson
- Department of Otorhinolaryngology-Head and Neck Surgery, and Microbiology, the Tumor Virology Program, Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
15
|
Lang F, Pei Y, Lamplugh ZL, Robertson ES. Molecular Biology of EBV in Relationship to HIV/AIDS-Associated Oncogenesis. Cancer Treat Res 2019; 177:81-103. [PMID: 30523622 DOI: 10.1007/978-3-030-03502-0_4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Herpesvirus-induced disease is one of the most lethal factors which leads to high mortality in HIV/AIDS patients. EBV, also known as human herpesvirus 4, can transform naive B cells into immortalized cells in vitro through the regulation of cell cycle, cell proliferation, and apoptosis. EBV infection is associated with several lymphoma and epithelial cancers in humans, which occurs at a much higher rate in immune deficient individuals than in healthy people, demonstrating that the immune system plays a vital role in inhibiting EBV activities. EBV latency infection proteins can mimic suppression cytokines or upregulate PD-1 on B cells to repress the cytotoxic T cells response. Many malignancies, including Hodgkin Lymphoma and non-Hodgkin's lymphomas occur at a much higher frequency in EBV positive individuals than in EBV negative people during the development of HIV infection. Importantly, understanding EBV pathogenesis at the molecular level will aid the development of novel therapies for EBV-induced diseases in HIV/AIDS patients.
Collapse
Affiliation(s)
- Fengchao Lang
- Department of Otorhinolaryngology-Head and Neck Surgery and Tumor Virology and Global Cancer Programs, Abramson Cancer Center, Philadelphia, USA.,Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Yonggang Pei
- Department of Otorhinolaryngology-Head and Neck Surgery and Tumor Virology and Global Cancer Programs, Abramson Cancer Center, Philadelphia, USA.,Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Zachary L Lamplugh
- Department of Otorhinolaryngology-Head and Neck Surgery and Tumor Virology and Global Cancer Programs, Abramson Cancer Center, Philadelphia, USA.,Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Erle S Robertson
- Department of Otorhinolaryngology-Head and Neck Surgery and Tumor Virology and Global Cancer Programs, Abramson Cancer Center, Philadelphia, USA. .,Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA. .,, 3610 Hamilton Walk, 201E Johnson Pavilion, Philadelphia, PA, 19104, USA.
| |
Collapse
|
16
|
Epstein-Barr Virus Nuclear Antigen 3C Facilitates Cell Proliferation by Regulating Cyclin D2. J Virol 2018; 92:JVI.00663-18. [PMID: 29997218 DOI: 10.1128/jvi.00663-18] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 07/03/2018] [Indexed: 02/06/2023] Open
Abstract
Cell cycle regulation is one of the hallmarks of virus-mediated oncogenesis. Epstein-Barr virus (EBV)-induced lymphomas express a repertoire of essential viral latent proteins that regulate expression of cell cycle-related proteins to dysregulate this process, thereby facilitating the proliferation of infected cells. We now demonstrate that the essential EBV latent protein 3C (EBNA3C) stabilizes cyclin D2 to regulate cell cycle progression. More specifically, EBNA3C directly binds to cyclin D2 and they colocalize together in nuclear compartments. We show that EBNA3C regulates the promoter of cyclin D2 through cooperation with master transcription factor Bcl6 and enhances its stability by inhibiting its ubiquitin-dependent degradation. EBNA3C also promoted cell proliferation in the presence of cyclin D2, suggesting that cyclin D2 contributes to EBNA3C-mediated cell cycle progression. These results provide new clues as to the role of this essential viral latent protein and its ability to regulate expression of cellular factors, which drives the oncogenic process.IMPORTANCE Epstein-Barr virus (EBV) is the first identified human tumor virus and is associated with a range of human cancers. During EBV-induced lymphomas, the essential viral latent proteins modify the expression of cell cycle-related proteins to disturb the cell cycle process, thereby facilitating the proliferative process. The essential EBV nuclear antigen 3C (EBNA3C) plays an important role in EBV-mediated B-cell transformation. Here we show that EBNA3C stabilizes cyclin D2 to regulate cell cycle progression. More specifically, EBNA3C directly binds to cyclin D2, and they colocalize together in nuclear compartments. EBNA3C enhances cyclin D2 stability by inhibiting its ubiquitin-dependent degradation and significantly promotes cell proliferation in the presence of cyclin D2. Our results provide novel insights into the function of EBNA3C on cell progression by regulating the cyclin D2 protein and raise the possibility of the development of new anticancer therapies against EBV-associated cancers.
Collapse
|
17
|
β-catenin contributes to cordycepin-induced MGMT inhibition and reduction of temozolomide resistance in glioma cells by increasing intracellular reactive oxygen species. Cancer Lett 2018; 435:66-79. [PMID: 30081068 DOI: 10.1016/j.canlet.2018.07.040] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 07/30/2018] [Accepted: 07/31/2018] [Indexed: 12/13/2022]
Abstract
Glioblastoma multiforme (GBM) is one of the most aggressive human tumors, and it has a poor prognosis. Temozolomide (TMZ) is the primary alkylating agent used to treat GBM. Nevertheless, a number of GBM patients are resistant to TMZ. Therefore, there is an urgent need for more effective therapeutic options. Cordycepin (COR) is a natural chemical with anti-tumor effects, although its mechanism of action is poorly understood. Several lines of evidence suggest that O6-methylguanine DNA methyltransferase (MGMT) repairs damaged DNA and contributes to drug resistance to TMZ in gliomas. The Wnt/β-catenin pathway regulates MGMT gene expression. However, whether cordycepin inhibits MGMT expression by downregulating the β catenin pathway and augmenting chemosensitivity to TMZ in glioma cells remains unclear. In the present study, we found that cordycepin inhibited the viability of glioma cells and induced apoptosis, cell cycle arrest, overproduction of reactive oxygen species (ROS) and reduction of glutathione (GSH) in vitro. Moreover, cordycepin significantly reduced tumor volume and prolonged median survival of tumor-bearing rats in vivo. We also found that cordycepin inhibited MGMT expression and augmented chemosensitivity to TMZ in glioma cells in vitro and in vivo, accompanied by downregulation of p-GSK-3β and β-catenin. Moreover, overexpression of MGMT reversed the synergistic effect of cordycepin and TMZ. Pharmacological inhibition of GSK-3β with CHIR-99021 or overexpression of β-catenin reversed cordycepin-induced reduction of cell viability, downregulation of β-catenin and MGMT, increase of apoptosis and reduction of TMZ resistance. Furthermore, we found that β-catenin regulated cordycepin-induced overproduction of ROS by decreasing GSH. Inhibition of ROS production with N-acetyl-l-cysteine (NAC) not only rescued the reduction of cell viability but also eliminated β-catenin and MGMT inhibition, prevented glioma cells apoptosis and reversed the synergistic effect of cordycepin and TMZ. Taken together, we demonstrated that β-catenin contributed to cordycepin-induced MGMT inhibition and reduction of TMZ resistance in glioma cells via increasing intracellular ROS. These results indicate that cordycepin may be a novel agent to improve GBM treatment, especially in TMZ-resistant GBM with high MGMT expression.
Collapse
|
18
|
Transcriptional and epigenetic modulation of autophagy promotes EBV oncoprotein EBNA3C induced B-cell survival. Cell Death Dis 2018; 9:605. [PMID: 29789559 PMCID: PMC5964191 DOI: 10.1038/s41419-018-0668-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 03/26/2018] [Accepted: 04/23/2018] [Indexed: 11/09/2022]
Abstract
Epstein-Barr virus (EBV) oncoprotein EBNA3C is indispensable for primary B-cell transformation and maintenance of lymphoblastoid cells outgrowth. EBNA3C usurps two putative cellular pathways-cell-cycle and apoptosis, essentially through modulating ubiquitin-mediated protein-degradation or gene transcription. In cancer cells, these two pathways are interconnected with autophagy,-a survival-promoting catabolic network in which cytoplasmic material including mis/un-folded protein aggregates and damaged organelles along with intracellular pathogens are degraded and recycled in lysosomal compartments. Studies have shown that tumor viruses including EBV can manipulate autophagy as a survival strategy. Here, we demonstrate that EBNA3C elevates autophagy, which serves as a prerequisite for apoptotic inhibition and maintenance of cell growth. Using PCR based micro-array we show that EBNA3C globally accelerates autophagy gene transcription under growth limiting conditions. Reanalyzing the ENCODE ChIP-sequencing data (GSE52632 and GSE26386) followed by ChIP-PCR demonstrate that EBNA3C recruits several histone activation epigenetic marks (H3K4me1, H3K4me3, H3K9ac, and H3K27ac) for transcriptional activation of autophagy genes, notably ATG3, ATG5, and ATG7 responsible for autophagosome formation. Moreover, under growth limiting conditions EBNA3C further stimulates the autophagic response through upregulation of a number of tumor suppressor genes, notably cyclin-dependent kinase inhibitors-CDKN1B (p27Kip1) and CDKN2A (p16INK4a) and autophagy mediated cell-death modulators-DRAM1 and DAPK1. Together our data highlight a new role of an essential EBV oncoprotein in regulating autophagy cascade as a survival mechanism and offer novel-targets for potential therapeutic expansion against EBV induced B-cell lymphomas.
Collapse
|
19
|
Hui KF, Yeung PL, Tam KP, Chiang AKS. Counteracting survival functions of EBNA3C in Epstein-Barr virus (EBV)-driven lymphoproliferative diseases by combination of SAHA and bortezomib. Oncotarget 2018; 9:25101-25114. [PMID: 29861856 PMCID: PMC5982749 DOI: 10.18632/oncotarget.25341] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 04/06/2018] [Indexed: 12/13/2022] Open
Abstract
Combination of suberoylanilide hydroxamic acid (SAHA) and bortezomib (SAHA/bortezomib) was shown to synergistically induce killing of lymphoblastoid cell lines (LCL) and Burkitt lymphoma (BL) of type III or Wp-restricted latency, both of which express EBNA3A, -3B and -3C proteins. We hypothesize that SAHA/bortezomib can counteract the survival functions conferred by the EBNA3 proteins. We tested the effect of SAHA/bortezomib on the survival of BL cell lines containing EBNA3A, -3B or -3C knockout EBV with or without the respective revertant EBNA3 genes. Isobologram analysis showed that SAHA/bortezomib induced significantly greater synergistic killing of EBNA3C-revertant cells when compared with EBNA3C-knockout cells. Such differential response was not observed in either EBNA3A or -3B revertant versus their knockout pairs. Interestingly, EBNA3C-knockout cells showed significant G2/M arrest whilst EBNA3C-revertant cells and LCLs escaped G2/M arrest induced by SAHA/bortezomib and became more susceptible to the induction of apoptosis. In parallel, SAHA/bortezomib induced stronger expression of p21WAF1 but weaker expression of p-cdc25c, an M-phase inducer phosphatase, in EBNA3C-expressing cells when compared with EBNA3C-knockout cells. SAHA/bortezomib also induced greater growth suppression of EBNA3C-expressing xenografts (EBNA3C-revertant and LCL) than that of EBNA3C-knockout xenografts in SCID mice. In conclusion, our data showed that SAHA/bortezomib could synergistically induce killing of BL and LCL through counteracting the survival functions of EBNA3C, providing a strong basis for clinical testing of this drug combination in patients with EBV-associated lymphoproliferative diseases.
Collapse
Affiliation(s)
- Kwai Fung Hui
- Department of Pediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong SAR, China
| | - Po Ling Yeung
- Department of Pediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong SAR, China
| | - Kam Pui Tam
- Department of Pediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong SAR, China
| | - Alan Kwok Shing Chiang
- Department of Pediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong SAR, China
| |
Collapse
|
20
|
Ren C, Yu M, Zhang Y, Fan M, Chang F, Xing L, Liu Y, Wang Y, Qi X, Liu C, Zhang Y, Cui H, Li K, Gao L, Pan Q, Wang X, Gao Y. Avian leukosis virus subgroup J promotes cell proliferation and cell cycle progression through miR-221 by targeting CDKN1B. Virology 2018; 519:121-130. [PMID: 29698854 DOI: 10.1016/j.virol.2018.04.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 04/08/2018] [Accepted: 04/10/2018] [Indexed: 01/02/2023]
Abstract
Avian leukosis virus subgroup J (ALV-J), a highly oncogenic retrovirus, causes leukemia-like proliferative diseases in chickens. microRNAs post-transcriptionally suppress targets and are involved in the development of various tumors. We previously showed that miR-221 is upregulated in ALV-J-induced tumors. In this study, we analyzed the possible function of miR-221 in ALV-J tumorigenesis. The target validation system showed that CDKN1B is a target of miR-221 and is downregulated in ALV-J infection. As CDKN1B arrests the cell cycle and regulates its progression, we analyzed the proliferation of ALV-J-infected DF-1 cells. ALV-J-infection-induced DF1 cell derepression of G1/S transition and overproliferation required high miR-221 expression followed by CDKN1B downregulation. Cell cycle pathway analysis showed that ALV-J infection induced DF-1 cell overproliferation via the CDKN1B-CDK2/CDK6 pathway. Thus, miR-221 may play an important role in ALV-J-induced aggressive growth of DF-1 cells; these findings have expanded our insights into the mechanism underlying ALV-J infection and tumorigenesis.
Collapse
Affiliation(s)
- Chaoqi Ren
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150069, PR China
| | - Mengmeng Yu
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150069, PR China
| | - Yao Zhang
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150069, PR China
| | - Minghui Fan
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150069, PR China
| | - Fangfang Chang
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150069, PR China
| | - Lixiao Xing
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150069, PR China
| | - Yongzhen Liu
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150069, PR China
| | - Yongqiang Wang
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150069, PR China
| | - Xiaole Qi
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150069, PR China
| | - Changjun Liu
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150069, PR China
| | - Yanping Zhang
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150069, PR China
| | - Hongyu Cui
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150069, PR China
| | - Kai Li
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150069, PR China
| | - Li Gao
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150069, PR China
| | - Qing Pan
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150069, PR China
| | - Xiaomei Wang
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150069, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou 225009, PR China.
| | - Yulong Gao
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150069, PR China.
| |
Collapse
|
21
|
Liu Y, Yang B, Zhang L, Cong X, Liu Z, Hu Y, Zhang J, Hu H. Ginkgolic acid induces interplay between apoptosis and autophagy regulated by ROS generation in colon cancer. Biochem Biophys Res Commun 2018; 498:246-253. [DOI: 10.1016/j.bbrc.2018.01.091] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 01/13/2018] [Indexed: 01/17/2023]
|
22
|
Therapeutic Strategies against Epstein-Barr Virus-Associated Cancers Using Proteasome Inhibitors. Viruses 2017; 9:v9110352. [PMID: 29160853 PMCID: PMC5707559 DOI: 10.3390/v9110352] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 11/17/2017] [Accepted: 11/20/2017] [Indexed: 12/15/2022] Open
Abstract
Epstein-Barr virus (EBV) is closely associated with several lymphomas (endemic Burkitt lymphoma, Hodgkin lymphoma and nasal NK/T-cell lymphoma) and epithelial cancers (nasopharyngeal carcinoma and gastric carcinoma). To maintain its persistence in the host cells, the virus manipulates the ubiquitin-proteasome system to regulate viral lytic reactivation, modify cell cycle checkpoints, prevent apoptosis and evade immune surveillance. In this review, we aim to provide an overview of the mechanisms by which the virus manipulates the ubiquitin-proteasome system in EBV-associated lymphoid and epithelial malignancies, to evaluate the efficacy of proteasome inhibitors on the treatment of these cancers and discuss potential novel viral-targeted treatment strategies against the EBV-associated cancers.
Collapse
|
23
|
Ji L, Zhou X, Liang W, Liu J, Liu B. Porcine Interferon Stimulated Gene 12a Restricts Porcine Reproductive and Respiratory Syndrome Virus Replication in MARC-145 Cells. Int J Mol Sci 2017; 18:ijms18081613. [PMID: 28757561 PMCID: PMC5578005 DOI: 10.3390/ijms18081613] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 07/14/2017] [Accepted: 07/18/2017] [Indexed: 01/11/2023] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) causes severe losses in the global pig industry. In the present study, we investigated the molecular characterization of porcine interferon stimulated gene 12a (ISG12A) and confirmed its anti-PRRSV ability for the first time. We found that porcine ISG12A was localized in mitochondria and significantly decreased the number of cells in G2/S phase. Porcine ISG12A mRNA was up-regulated in cells/tissues of Tongcheng (TC) pigs and Large White (LW) pigs after PRRSV challenge. More importantly, the ectopic overexpression of ISG12A could significantly suppress PRRSV replication at 24, 36 and 48 h post challenge (hpc), which was confirmed by detecting PRRSV ORF7 mRNA with quantitative reverse transcription polymerase chain reaction (qRT-PCR) and PRRSV N protein with indirect immunofluorescence assay (IFA) in MARC-145 cells. Meanwhile, knockdown of endogenic ISG12A could obviously facilitate PRRSV replication in MARC-145 cells at 36 hpc. The results will lead to a better understanding of the interaction between host immune system and PRRSV, which may help us develop novel therapeutic tools to control PRRSV.
Collapse
Affiliation(s)
- Likai Ji
- Key Lab of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Xiang Zhou
- Key Lab of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Wan Liang
- Key Lab of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Jianjian Liu
- Key Lab of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Bang Liu
- Key Lab of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China.
| |
Collapse
|
24
|
Pei Y, Banerjee S, Jha HC, Sun Z, Robertson ES. An essential EBV latent antigen 3C binds Bcl6 for targeted degradation and cell proliferation. PLoS Pathog 2017; 13:e1006500. [PMID: 28738086 PMCID: PMC5524291 DOI: 10.1371/journal.ppat.1006500] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 06/29/2017] [Indexed: 02/07/2023] Open
Abstract
The latent EBV nuclear antigen 3C (EBNA3C) is required for transformation of primary human B lymphocytes. Most mature B-cell malignancies originate from malignant transformation of germinal center (GC) B-cells. The GC reaction appears to have a role in malignant transformation, in which a major player of the GC reaction is Bcl6, a key regulator of this process. We now demonstrate that EBNA3C contributes to B-cell transformation by targeted degradation of Bcl6. We show that EBNA3C can physically associate with Bcl6. Notably, EBNA3C expression leads to reduced Bcl6 protein levels in a ubiquitin-proteasome dependent manner. Further, EBNA3C inhibits the transcriptional activity of the Bcl6 promoter through interaction with the cellular protein IRF4. Bcl6 degradation induced by EBNA3C rescued the functions of the Bcl6-targeted downstream regulatory proteins Bcl2 and CCND1, which resulted in increased proliferation and G1-S transition. These data provide new insights into the function of EBNA3C in B-cell transformation during GC reaction, and raises the possibility of developing new targeted therapies against EBV-associated cancers.
Collapse
Affiliation(s)
- Yonggang Pei
- Department of Otorhinolaryngology-Head and Neck Surgery, and Microbiology, the Tumor Virology Program, Abramson Comprehensive Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Shuvomoy Banerjee
- Department of Otorhinolaryngology-Head and Neck Surgery, and Microbiology, the Tumor Virology Program, Abramson Comprehensive Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Hem Chandra Jha
- Department of Otorhinolaryngology-Head and Neck Surgery, and Microbiology, the Tumor Virology Program, Abramson Comprehensive Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Zhiguo Sun
- Department of Otorhinolaryngology-Head and Neck Surgery, and Microbiology, the Tumor Virology Program, Abramson Comprehensive Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Erle S. Robertson
- Department of Otorhinolaryngology-Head and Neck Surgery, and Microbiology, the Tumor Virology Program, Abramson Comprehensive Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
25
|
Epstein-Barr Virus Rta-Mediated Accumulation of DNA Methylation Interferes with CTCF Binding in both Host and Viral Genomes. J Virol 2017; 91:JVI.00736-17. [PMID: 28490592 DOI: 10.1128/jvi.00736-17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 05/02/2017] [Indexed: 12/18/2022] Open
Abstract
Rta, an Epstein-Barr virus (EBV) immediate-early protein, reactivates viral lytic replication that is closely associated with tumorigenesis. In previous studies, we demonstrated that in epithelial cells Rta efficiently induced cellular senescence, which is an irreversible G1 arrest likely to provide a favorable environment for productive replications of EBV and Kaposi's sarcoma-associated herpesvirus (KSHV). To restrict progression of the cell cycle, Rta simultaneously upregulates CDK inhibitors and downregulates MYC, CCND1, and JUN, among others. Rta has long been known as a potent transcriptional activator, thus its role in gene repression is unexpected. In silico analysis revealed that the promoter regions of MYC, CCND1, and JUN are common in (i) the presence of CpG islands, (ii) strong chromatin immunoprecipitation (ChIP) signals of CCCTC-binding factor (CTCF), and (iii) having at least one Rta binding site. By combining ChIP assays and DNA methylation analysis, here we provide evidence showing that Rta binding accumulated CpG methylation and decreased CTCF occupancy in the regulatory regions of MYC, CCND1, and JUN, which were associated with downregulated gene expression. Stable residence of CTCF in the viral latency and reactivation control regions is a hallmark of viral latency. Here, we observed that Rta-mediated decreased binding of CTCF in the viral genome is concurrent with virus reactivation. Via interfering with CTCF binding, in the host genome Rta can function as a transcriptional repressor for gene silencing, while in the viral genome Rta acts as an activator for lytic gene loci by removing a topological constraint established by CTCF.IMPORTANCE CTCF is a multifunctional protein that variously participates in gene expression and higher-order chromatin structure of the cellular and viral genomes. In certain loci of the genome, CTCF occupancy and DNA methylation are mutually exclusive. Here, we demonstrate that the Epstein-Barr virus (EBV) immediate-early protein, Rta, known to be a transcriptional activator, can also function as a transcriptional repressor. Via enriching CpG methylation and decreasing CTCF reloading, Rta binding efficiently shut down the expression of MYC, CCND1, and JUN, thus impeding cell cycle progression. Rta-mediated disruption of CTCF binding was also detected in the latency/reactivation control regions of the EBV genome, and this in turn led to viral lytic cycle progression. As emerging evidence indicates that a methylated EBV genome is a preferable substrate for EBV Zta, the other immediate-early protein, our results suggest a mechanistic link in understanding the molecular processes of viral latent-lytic switch.
Collapse
|
26
|
Shukla SK, Jha HC, El-Naccache DW, Robertson ES. An EBV recombinant deleted for residues 130-159 in EBNA3C can deregulate p53/Mdm2 and Cyclin D1/CDK6 which results in apoptosis and reduced cell proliferation. Oncotarget 2017; 7:18116-34. [PMID: 26908453 PMCID: PMC4951276 DOI: 10.18632/oncotarget.7502] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 02/11/2016] [Indexed: 12/29/2022] Open
Abstract
Epstein-Barr virus (EBV), a gamma herpes virus is associated with B-cell malignancies. EBNA-3C is critical for in vitro primary B-cell transformation. Interestingly, the N terminal domain of EBNA3C which contains residues 130–159, interacts with various cellular proteins, such as p53, Mdm2, CyclinD1/Cdk6 complex, and E2F1. In the current reverse genetics study, we deleted the residues 130-159 aa within EBNA3C open reading frame (ORF) by BACmid recombinant engineering methodology. Our experiments demonstrated that deletion of the 130-159 aa showed a reduction in cell proliferation. Also, this recombinant virus showed with higher infectivity of human peripheral blood mononuclear cells (PBMCs) compared to wild type EBV. PBMCs- infected with recombinant EBV deleted for 130-159 residues have differential expression patterns for the p53/Mdm2, CyclinD1/Cdk6 and pRb/E2F1 pathways compared to wild type EBV-infected PBMCs. PBMCs infected with recombinant virus showed increased apoptotic cell death which further resulted in activation of polymerase 1 (PARP1), an important contributor to apoptotic signaling. Interestingly, cells infected with this recombinant virus showed a dramatic decrease in chromosomal instability, indicated by the presence of increased multinucleation and micronucleation. In addition infection with recombinant virus have increased cells in G0/G1 phase and decreased cells in S-G2M phase when compared to wild type infected cells. Thus, these differences in signaling activities due to 29 amino acid residues of EBNA3C is of particular significance in deregulation of cell proliferation in EBV-infected cells.
Collapse
Affiliation(s)
- Sanket Kumar Shukla
- Department of Otorhinolaryngology and Tumor Virology Program, Abramson Cancer Center, Perelman School of Medicine at The University of Pennsylvania, Philadelphia, PA-19104, USA
| | - Hem Chandra Jha
- Department of Otorhinolaryngology and Tumor Virology Program, Abramson Cancer Center, Perelman School of Medicine at The University of Pennsylvania, Philadelphia, PA-19104, USA
| | - Darine W El-Naccache
- Department of Otorhinolaryngology and Tumor Virology Program, Abramson Cancer Center, Perelman School of Medicine at The University of Pennsylvania, Philadelphia, PA-19104, USA
| | - Erle S Robertson
- Department of Otorhinolaryngology and Tumor Virology Program, Abramson Cancer Center, Perelman School of Medicine at The University of Pennsylvania, Philadelphia, PA-19104, USA
| |
Collapse
|
27
|
Pei Y, Lewis AE, Robertson ES. Current Progress in EBV-Associated B-Cell Lymphomas. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1018:57-74. [PMID: 29052132 DOI: 10.1007/978-981-10-5765-6_5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Epstein-Barr virus (EBV) was the first human tumor virus discovered more than 50 years ago. EBV-associated lymphomagenesis is still a significant viral-associated disease as it involves a diverse range of pathologies, especially B-cell lymphomas. Recent development of high-throughput next-generation sequencing technologies and in vivo mouse models have significantly promoted our understanding of the fundamental molecular mechanisms which drive these cancers and allowed for the development of therapeutic intervention strategies. This review will highlight the current advances in EBV-associated B-cell lymphomas, focusing on transcriptional regulation, chromosome aberrations, in vivo studies of EBV-mediated lymphomagenesis, as well as the treatment strategies to target viral-associated lymphomas.
Collapse
Affiliation(s)
- Yonggang Pei
- Department of Otorhinolaryngology-Head and Neck Surgery, and Microbiology, Tumor Virology Program, Abramson Comprehensive Cancer Center, Perelman School of Medicine at the University of Pennsylvania, 3610 Hamilton Walk, 201E Johnson Pavilion, Philadelphia, PA, 19104, USA
| | - Alexandria E Lewis
- Department of Otorhinolaryngology-Head and Neck Surgery, and Microbiology, Tumor Virology Program, Abramson Comprehensive Cancer Center, Perelman School of Medicine at the University of Pennsylvania, 3610 Hamilton Walk, 201E Johnson Pavilion, Philadelphia, PA, 19104, USA
| | - Erle S Robertson
- Department of Otorhinolaryngology-Head and Neck Surgery, and Microbiology, Tumor Virology Program, Abramson Comprehensive Cancer Center, Perelman School of Medicine at the University of Pennsylvania, 3610 Hamilton Walk, 201E Johnson Pavilion, Philadelphia, PA, 19104, USA.
| |
Collapse
|
28
|
Xie G, Wang Z, Chen Y, Zhang S, Feng L, Meng F, Yu Z. Dual blocking of PI3K and mTOR signaling by NVP-BEZ235 inhibits proliferation in cervical carcinoma cells and enhances therapeutic response. Cancer Lett 2016; 388:12-20. [PMID: 27894954 DOI: 10.1016/j.canlet.2016.11.024] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 11/19/2016] [Accepted: 11/22/2016] [Indexed: 02/06/2023]
Abstract
NVP-BEZ235 is a novel dual PI3K/mTOR inhibitor that shows dramatic effects on many tumors, but its effects on cervical carcinoma cells are largely unknown. In the present study, we investigated the effects of NVP-BEZ235 on the proliferation and invasion of cervical carcinoma cells in vitro and clarified its mechanism of action. In cellular settings with human cervical carcinoma cell lines, this molecule effectively and specifically blocked dysfunctional PI3K/mTOR pathway activation, suppressed cell growth in a time- and concentration-dependent manner, led to G1 cell cycle arrest, and induced apoptosis. NVP-BEZ235 suppressed HeLa cell invasiveness and metastasis by inhibiting the PI3K/Akt/MMP-2 pathway. We further demonstrated that NVP-BEZ235 treatment in combination with cisplatin or carboplatin induced a synergistic anti-tumoral response in cervical carcinoma cells. These findings suggested that NVP-BEZ235 could regulate growth and invasion of cervical carcinoma cells; thus it may provide a potential therapy for cervical carcinoma.
Collapse
Affiliation(s)
- Guifang Xie
- Department of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Department of Obstetrics and Gynecology, The First Hospital of Jilin University, Changchun, China
| | - Zhaoyong Wang
- Department of Pathology, The Second Hospital of Jilin University, Changchun, China
| | - Yong Chen
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
| | - Shuya Zhang
- Department of Obstetrics and Gynecology, The First Hospital of Jilin University, Changchun, China
| | - Lu Feng
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Fanhui Meng
- Department of Obstetrics and Gynecology, The First Hospital of Jilin University, Changchun, China
| | - Zhiyun Yu
- Department of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
29
|
Jha HC, Pei Y, Robertson ES. Epstein-Barr Virus: Diseases Linked to Infection and Transformation. Front Microbiol 2016; 7:1602. [PMID: 27826287 PMCID: PMC5078142 DOI: 10.3389/fmicb.2016.01602] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Accepted: 09/26/2016] [Indexed: 12/16/2022] Open
Abstract
Epstein–Barr virus (EBV) was first discovered in 1964, and was the first known human tumor virus now shown to be associated with a vast number of human diseases. Numerous studies have been conducted to understand infection, propagation, and transformation in various cell types linked to human diseases. However, a comprehensive lens through which virus infection, reactivation and transformation of infected host cells can be visualized is yet to be formally established and will need much further investigation. Several human cell types infected by EBV have been linked to associated diseases. However, whether these are a direct result of EBV infection or indirectly due to contributions by additional infectious agents will need to be fully investigated. Therefore, a thorough examination of infection, reactivation, and cell transformation induced by EBV will provide a more detailed view of its contributions that drive pathogenesis. This undoubtedly expand our knowledge of the biology of EBV infection and the signaling activities of targeted cellular factors dysregulated on infection. Furthermore, these insights may lead to identification of therapeutic targets and agents for clinical interventions. Here, we review the spectrum of EBV-associated diseases, the role of the encoded latent antigens, and the switch to latency or lytic replication which occurs in EBV infected cells. Furthermore, we describe the cellular processes and critical factors which contribute to cell transformation. We also describe the fate of B-cells and epithelial cells after EBV infection and the expected consequences which contribute to establishment of viral-associated pathologies.
Collapse
Affiliation(s)
- Hem C Jha
- Department of Otorhinolaryngology-Head and Neck Surgery and Tumor Virology Program, Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia PA, USA
| | - Yonggang Pei
- Department of Otorhinolaryngology-Head and Neck Surgery and Tumor Virology Program, Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia PA, USA
| | - Erle S Robertson
- Department of Otorhinolaryngology-Head and Neck Surgery and Tumor Virology Program, Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia PA, USA
| |
Collapse
|
30
|
Pei Y, Banerjee S, Sun Z, Jha HC, Saha A, Robertson ES. EBV Nuclear Antigen 3C Mediates Regulation of E2F6 to Inhibit E2F1 Transcription and Promote Cell Proliferation. PLoS Pathog 2016; 12:e1005844. [PMID: 27548379 PMCID: PMC4993364 DOI: 10.1371/journal.ppat.1005844] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 08/05/2016] [Indexed: 12/15/2022] Open
Abstract
Epstein–Barr virus (EBV) is considered a ubiquitous herpesvirus with the ability to cause latent infection in humans worldwide. EBV-association is evidently linked to different types of human malignancies, mainly of epithelial and lymphoid origin. Of interest is the EBV nuclear antigen 3C (EBNA3C) which is critical for EBV-mediated immortalization. Recently, EBNA3C was shown to bind the E2F1 transcription regulator. The E2F transcription factors have crucial roles in various cellular functions, including cell cycle, DNA replication, DNA repair, cell mitosis, and cell fate. Specifically, E2F6, one of the unique E2F family members, is known to be a pRb-independent transcription repressor of E2F-target genes. In our current study, we explore the role of EBNA3C in regulating E2F6 activities. We observed that EBNA3C plays an important role in inducing E2F6 expression in LCLs. Our study also shows that EBNA3C physically interacts with E2F6 at its amino and carboxy terminal domains and they form a protein complex in human cells. In addition, EBNA3C stabilizes the E2F6 protein and is co-localized in the nucleus. We also demonstrated that both EBNA3C and E2F6 contribute to reduction in E2F1 transcriptional activity. Moreover, E2F1 forms a protein complex with EBNA3C and E2F6, and EBNA3C competes with E2F1 for E2F6 binding. E2F6 is also recruited by EBNA3C to the E2F1 promoter, which is critical for EBNA3C-mediated cell proliferation. These results demonstrate a critical role for E2F family members in EBV-induced malignancies, and provide new insights for targeting E2F transcription factors in EBV-associated cancers as potential therapeutic intervention strategies. EBV is associated with a broad range of human cancers. EBV-encoded nuclear antigen 3C (EBNA3C) is one of the essential latent antigens important for deregulating the functions of numerous host transcription factors which play vital roles in B-cell immortalization. The family of E2F transcription factors are involved in diverse cellular functions. More specifically, E2F6 is one of the E2F family members with a unique property of transcriptional repression. Our current study now demonstrates that EBNA3C can enhance E2F6 repressive functions, and is also responsible for increased E2F6 protein expression in EBV-transformed LCLs. EBNA3C directly interacts with E2F6 at its amino and carboxy terminal domains. Additionally, E2F6 was stabilized by EBNA3C and co-localized in nuclear compartments. Our study also demonstrated that EBNA3C and E2F6 expression resulted in decreased transcriptional activity of E2F1, and that EBNA3C, E2F6 and E2F1 can form a protein complex, and EBNA3C competes with E2F1 for E2F6 binding. The recruitment of E2F6 by EBNA3C was also shown to be important for its related cell proliferation. These results showed a crucial role for EBNA3C-mediated deregulation of E2F6 and its impact on the activities of other E2F family members. Our findings also provide new insights for targeting these E2F transcription factors as potential therapeutic intervention strategies in EBV-associated cancers.
Collapse
Affiliation(s)
- Yonggang Pei
- Department of Otorhinolaryngology-Head and Neck Surgery, and the Tumor Virology Program, Abramson Comprehensive Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Shuvomoy Banerjee
- Department of Otorhinolaryngology-Head and Neck Surgery, and the Tumor Virology Program, Abramson Comprehensive Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Zhiguo Sun
- Department of Otorhinolaryngology-Head and Neck Surgery, and the Tumor Virology Program, Abramson Comprehensive Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Hem Chandra Jha
- Department of Otorhinolaryngology-Head and Neck Surgery, and the Tumor Virology Program, Abramson Comprehensive Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Abhik Saha
- Department of Biological Sciences, Presidency University, Kolkata, India
| | - Erle S Robertson
- Department of Otorhinolaryngology-Head and Neck Surgery, and the Tumor Virology Program, Abramson Comprehensive Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
31
|
Jha HC, Shukla SK, Lu J, Aj MP, Banerjee S, Robertson ES. Dissecting the contribution of EBNA3C domains important for EBV-induced B-cell growth and proliferation. Oncotarget 2016; 6:30115-29. [PMID: 26336822 PMCID: PMC4745785 DOI: 10.18632/oncotarget.5002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 08/07/2015] [Indexed: 12/21/2022] Open
Abstract
Epstein-Barr virus (EBV) is an oncogenic gammaherpes virus which is linked to pathogenesis of several human lymphatic malignancies. The EBV essential latent antigen EBNA3C is critical for efficient conversion of primary human B-lymphocytes to lymphoblastic cell lines and for continued LCL growth. EBNA3C, an EBV latent antigen with oncogenic potential can bind and regulate the functions of a wide range of cellular transcription factors. In our current reverse genetics study, we deleted the full length EBNA3C, and independently the RBP-Jκ and Nm23-H1 binding sites within EBNA3C using BACmid recombinant engineering methodology. Our experiments demonstrated that deletion of the EBV EBNA3C open reading frame (ORF) and more specifically the residues 621–675 which binds Nm23H1 and SUMO-1 showed a significant reduction in the ability of the cells to proliferate. Furthermore, they exhibited lower infectivity of human peripheral blood mononuclear cells (PBMCs). We also showed that recombinant EBV with deletions of the EBNA3C ORF, as well as a recombinant with residues 621–675 within EBNA3C ORF deleted had diminished abilities to activate CD40. Our study also revealed that the full length (1–992) and 621–675 aa deletions of EBNA3C when compared to wild type EBV infected PBMCs had differential expression patterns for the phosphorylation of MAP kinases specifically p38, JNK and ERK. Regulation of β-catenin also differed among wild type and EBNA3C deleted mutants. These temporal differences in signaling activities of these recombinant viruses in PBMCs is likely important in defining their functional importance in EBV-mediated B-cell transformation.
Collapse
Affiliation(s)
- Hem Chandra Jha
- Department of Microbiology and the Tumor Virology Program, Abramson Comprehensive Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, United States of America
| | - Sanket Kumar Shukla
- Department of Microbiology and the Tumor Virology Program, Abramson Comprehensive Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, United States of America
| | - Jie Lu
- Department of Microbiology and the Tumor Virology Program, Abramson Comprehensive Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, United States of America
| | - Mahadesh Prasad Aj
- Department of Microbiology and the Tumor Virology Program, Abramson Comprehensive Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, United States of America
| | - Shuvomoy Banerjee
- Department of Microbiology and the Tumor Virology Program, Abramson Comprehensive Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, United States of America
| | - Erle S Robertson
- Department of Microbiology and the Tumor Virology Program, Abramson Comprehensive Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, United States of America
| |
Collapse
|
32
|
Jha HC, Sun Z, Upadhyay SK, El-Naccache DW, Singh RK, Sahu SK, Robertson ES. KSHV-Mediated Regulation of Par3 and SNAIL Contributes to B-Cell Proliferation. PLoS Pathog 2016; 12:e1005801. [PMID: 27463802 PMCID: PMC4963126 DOI: 10.1371/journal.ppat.1005801] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 07/09/2016] [Indexed: 12/23/2022] Open
Abstract
Studies have suggested that Epithelial-Mesenchymal Transition (EMT) and transformation is an important step in progression to cancer. Par3 (partitioning-defective protein) is a crucial factor in regulating epithelial cell polarity. However, the mechanism by which the latency associated nuclear antigen (LANA) encoded by Kaposi's Sarcoma associated herpesvirus (KSHV) regulates Par3 and EMTs markers (Epithelial-Mesenchymal Transition) during viral-mediated B-cell oncogenesis has not been fully explored. Moreover, several studies have demonstrated a crucial role for EMT markers during B-cell malignancies. In this study, we demonstrate that Par3 is significantly up-regulated in KSHV-infected primary B-cells. Further, Par3 interacted with LANA in KSHV positive and LANA expressing cells which led to translocation of Par3 from the cell periphery to a predominantly nuclear signal. Par3 knockdown led to reduced cell proliferation and increased apoptotic induction. Levels of SNAIL was elevated, and E-cadherin was reduced in the presence of LANA or Par3. Interestingly, KSHV infection in primary B-cells led to enhancement of SNAIL and down-regulation of E-cadherin in a temporal manner. Importantly, knockdown of SNAIL, a major EMT regulator, in KSHV cells resulted in reduced expression of LANA, Par3, and enhanced E-cadherin. Also, SNAIL bound to the promoter region of p21 and can regulate its activity. Further a SNAIL inhibitor diminished NF-kB signaling through upregulation of Caspase3 in KSHV positive cells in vitro. This was also supported by upregulation of SNAIL and Par3 in BC-3 transplanted NOD-SCID mice which has potential as a therapeutic target for KSHV-associated B-cell lymphomas.
Collapse
Affiliation(s)
- Hem C. Jha
- Department of Otorhinolaryngology-Head and Neck Cancer, and Tumor Virology Program and Tumor Virology Program, Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Zhiguo Sun
- Department of Otorhinolaryngology-Head and Neck Cancer, and Tumor Virology Program and Tumor Virology Program, Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Santosh K. Upadhyay
- Department of Otorhinolaryngology-Head and Neck Cancer, and Tumor Virology Program and Tumor Virology Program, Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Darine W. El-Naccache
- Department of Otorhinolaryngology-Head and Neck Cancer, and Tumor Virology Program and Tumor Virology Program, Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Rajnish K. Singh
- Department of Otorhinolaryngology-Head and Neck Cancer, and Tumor Virology Program and Tumor Virology Program, Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Sushil K. Sahu
- Department of Otorhinolaryngology-Head and Neck Cancer, and Tumor Virology Program and Tumor Virology Program, Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Erle S. Robertson
- Department of Otorhinolaryngology-Head and Neck Cancer, and Tumor Virology Program and Tumor Virology Program, Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
33
|
Banerjee S, Uppal T, Strahan R, Dabral P, Verma SC. The Modulation of Apoptotic Pathways by Gammaherpesviruses. Front Microbiol 2016; 7:585. [PMID: 27199919 PMCID: PMC4847483 DOI: 10.3389/fmicb.2016.00585] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Accepted: 04/11/2016] [Indexed: 12/11/2022] Open
Abstract
Apoptosis or programmed cell death is a tightly regulated process fundamental for cellular development and elimination of damaged or infected cells during the maintenance of cellular homeostasis. It is also an important cellular defense mechanism against viral invasion. In many instances, abnormal regulation of apoptosis has been associated with a number of diseases, including cancer development. Following infection of host cells, persistent and oncogenic viruses such as the members of the Gammaherpesvirus family employ a number of different mechanisms to avoid the host cell’s “burglar” alarm and to alter the extrinsic and intrinsic apoptotic pathways by either deregulating the expressions of cellular signaling genes or by encoding the viral homologs of cellular genes. In this review, we summarize the recent findings on how gammaherpesviruses inhibit cellular apoptosis via virus-encoded proteins by mediating modification of numerous signal transduction pathways. We also list the key viral anti-apoptotic proteins that could be exploited as effective targets for novel antiviral therapies in order to stimulate apoptosis in different types of cancer cells.
Collapse
Affiliation(s)
- Shuvomoy Banerjee
- Amity Institute of Virology and Immunology, Amity University Noida, India
| | - Timsy Uppal
- Department of Microbiology and Immunology, Center for Molecular Medicine, School of Medicine, University of Nevada, Reno Reno, NV, USA
| | - Roxanne Strahan
- Department of Microbiology and Immunology, Center for Molecular Medicine, School of Medicine, University of Nevada, Reno Reno, NV, USA
| | - Prerna Dabral
- Department of Microbiology and Immunology, Center for Molecular Medicine, School of Medicine, University of Nevada, Reno Reno, NV, USA
| | - Subhash C Verma
- Department of Microbiology and Immunology, Center for Molecular Medicine, School of Medicine, University of Nevada, Reno Reno, NV, USA
| |
Collapse
|
34
|
Bhattacharjee S, Ghosh Roy S, Bose P, Saha A. Role of EBNA-3 Family Proteins in EBV Associated B-cell Lymphomagenesis. Front Microbiol 2016; 7:457. [PMID: 27092119 PMCID: PMC4824013 DOI: 10.3389/fmicb.2016.00457] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 03/21/2016] [Indexed: 12/28/2022] Open
Abstract
Epstein-Barr virus (EBV) is highly ubiquitous in human population and establishes a lifelong asymptomatic infection within the infected host unless the immune system is compromised. Following initial infection in the oropharyngeal epithelial cells, EBV primarily infects naive B-lymphocytes and develops a number of B-cell lymphomas particularly in immune-deficient individuals. In vitro, EBV can also infect and subsequently transform quiescent B-lymphocytes into continuously proliferating lymphoblastoid cell lines (LCLs) resembling EBV-induced lymphoproliferative disorders in which a subset of latent transcripts are detected. Genetic studies revealed that EBNA-3 family comprising of three adjacent genes in the viral genome-EBNA-3A and -3C, but not -3B, are critical for B-cell transformation. Nevertheless, all three proteins appear to significantly contribute to maintain the overall proliferation and viability of transformed cells, suggesting a critical role in lymphoma development. Apart from functioning as important viral transcriptional regulators, EBNA-3 proteins associate with many cellular proteins in different signaling networks, providing a suitable platform for lifelong survival of the virus and concurrent lymphoma development in the infected host. The chapter describes the function of each these EBV nuclear antigen 3 proteins employed by the virus as a means to understand viral pathogenesis of several EBV-associated B-cell malignancies.
Collapse
Affiliation(s)
| | | | - Priyanka Bose
- Department of Biological Sciences, Presidency University Kolkata, India
| | - Abhik Saha
- Department of Biological Sciences, Presidency University Kolkata, India
| |
Collapse
|
35
|
EBNA3C regulates p53 through induction of Aurora kinase B. Oncotarget 2016; 6:5788-803. [PMID: 25691063 PMCID: PMC4467402 DOI: 10.18632/oncotarget.3310] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Accepted: 01/02/2015] [Indexed: 01/08/2023] Open
Abstract
In multicellular organisms p53 maintains genomic integrity through activation of DNA repair, and apoptosis. EBNA3C can down regulate p53 transcriptional activity. Aurora kinase (AK) B phosphorylates p53, which leads to degradation of p53. Aberrant expression of AK-B is a hallmark of numerous human cancers. Therefore changes in the activities of p53 due to AK-B and EBNA3C expression is important for understanding EBV-mediated cell transformation. Here we show that the activities of p53 and its homolog p73 are dysregulated in EBV infected primary cells which can contribute to increased cell transformation. Further, we showed that the ETS-1 binding site is crucial for EBNA3C-mediated up-regulation of AK-B transcription. Further, we determined the Ser 215 residue of p53 is critical for functional regulation by AK-B and EBNA3C and that the kinase domain of AK-B which includes amino acid residues 106, 111 and 205 was important for p53 regulation. AK-B with a mutation at residue 207 was functionally similar to wild type AK-B in terms of its kinase activities and knockdown of AK-B led to enhanced p73 expression independent of p53. This study explores an additional mechanism by which p53 is regulated by AK-B and EBNA3C contributing to EBV-induced B-cell transformation.
Collapse
|
36
|
Jha HC, Banerjee S, Robertson ES. The Role of Gammaherpesviruses in Cancer Pathogenesis. Pathogens 2016; 5:pathogens5010018. [PMID: 26861404 PMCID: PMC4810139 DOI: 10.3390/pathogens5010018] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 01/27/2016] [Indexed: 12/15/2022] Open
Abstract
Worldwide, one fifth of cancers in the population are associated with viral infections. Among them, gammaherpesvirus, specifically HHV4 (EBV) and HHV8 (KSHV), are two oncogenic viral agents associated with a large number of human malignancies. In this review, we summarize the current understanding of the molecular mechanisms related to EBV and KSHV infection and their ability to induce cellular transformation. We describe their strategies for manipulating major cellular systems through the utilization of cell cycle, apoptosis, immune modulation, epigenetic modification, and altered signal transduction pathways, including NF-kB, Notch, Wnt, MAPK, TLR, etc. We also discuss the important EBV latent antigens, namely EBNA1, EBNA2, EBNA3’s and LMP’s, which are important for targeting these major cellular pathways. KSHV infection progresses through the engagement of the activities of the major latent proteins LANA, v-FLIP and v-Cyclin, and the lytic replication and transcription activator (RTA). This review is a current, comprehensive approach that describes an in-depth understanding of gammaherpes viral encoded gene manipulation of the host system through targeting important biological processes in viral-associated cancers.
Collapse
Affiliation(s)
- Hem Chandra Jha
- Department of Microbiology and Tumor Virology Program, Abramson Comprehensive Cancer Center, Perelman School of Medicine at the University of Pennsylvania, 201E Johnson Pavilion, 3610, Hamilton Walk, Philadelphia, PA 19104, USA.
| | - Shuvomoy Banerjee
- Department of Microbiology and Tumor Virology Program, Abramson Comprehensive Cancer Center, Perelman School of Medicine at the University of Pennsylvania, 201E Johnson Pavilion, 3610, Hamilton Walk, Philadelphia, PA 19104, USA.
| | - Erle S Robertson
- Department of Microbiology and Tumor Virology Program, Abramson Comprehensive Cancer Center, Perelman School of Medicine at the University of Pennsylvania, 201E Johnson Pavilion, 3610, Hamilton Walk, Philadelphia, PA 19104, USA.
| |
Collapse
|
37
|
Feng J, Gong D, Fu X, Wu TT, Wang J, Chang J, Zhou J, Lu G, Wang Y, Sun R. M1 of Murine Gamma-Herpesvirus 68 Induces Endoplasmic Reticulum Chaperone Production. Sci Rep 2015; 5:17228. [PMID: 26615759 PMCID: PMC4663489 DOI: 10.1038/srep17228] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 10/27/2015] [Indexed: 12/11/2022] Open
Abstract
Viruses rely on host chaperone network to support their infection. In particular, the endoplasmic reticulum (ER) resident chaperones play key roles in synthesizing and processing viral proteins. Influx of a large amount of foreign proteins exhausts the folding capacity in ER and triggers the unfolded protein response (UPR). A fully-executed UPR comprises signaling pathways that induce ER folding chaperones, increase protein degradation, block new protein synthesis and may eventually activate apoptosis, presenting both opportunities and threats to the virus. Here, we define a role of the MHV-68M1 gene in differential modulation of UPR pathways to enhance ER chaperone production. Ectopic expression of M1 markedly induces ER chaperone genes and expansion of ER. The M1 protein accumulates in ER during infection and this localization is indispensable for its function, suggesting M1 acts from the ER. We found that M1 protein selectively induces the chaperon-producing pathways (IRE1, ATF6) while, interestingly, sparing the translation-blocking arm (PERK). We identified, for the first time, a viral factor capable of selectively intervening the initiation of ER stress signaling to induce chaperon production. This finding provides a unique opportunity of using viral protein as a tool to define the activation mechanisms of individual UPR pathways.
Collapse
Affiliation(s)
- Jiaying Feng
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, California 90095.,Zhejiang University, Hangzhou, People's Republic of China
| | - Danyang Gong
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, California 90095
| | - Xudong Fu
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, California 90095.,Zhejiang University, Hangzhou, People's Republic of China
| | - Ting-Ting Wu
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, California 90095
| | - Jane Wang
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, California 90095
| | - Jennifer Chang
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, California 90095
| | - Jingting Zhou
- Zhejiang University, Hangzhou, People's Republic of China.,Department of Anesthesiology, University of California, Los Angeles, California 90095
| | - Gang Lu
- Department of Anesthesiology, University of California, Los Angeles, California 90095
| | - Yibin Wang
- Department of Anesthesiology, University of California, Los Angeles, California 90095
| | - Ren Sun
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, California 90095.,Zhejiang University, Hangzhou, People's Republic of China
| |
Collapse
|
38
|
Kempkes B, Robertson ES. Epstein-Barr virus latency: current and future perspectives. Curr Opin Virol 2015; 14:138-44. [PMID: 26453799 PMCID: PMC5868753 DOI: 10.1016/j.coviro.2015.09.007] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 09/15/2015] [Accepted: 09/15/2015] [Indexed: 12/20/2022]
Abstract
EBV drives resting B cells to continuous proliferating latently infected cells. A restricted program of viral transcription contributes to latency and cell proliferation important for growth transformation. Recent interest in latency and transformation has provided new data about the roles of the EBV encoded latent proteins and non-coding RNAs. We broadly describe the transcription, epigenetic, signaling and super-enhancer functions of the latent nuclear antigens in regulating cellular transcription; the role of LMP2 in utilization of the autophagosome to control cell death, and the association between LMP1, the linear ubiquitin chain assembly complex and TRAF1 which are important for transformation. This review explores recent discoveries with new insights into therapeutic avenues for EBV related malignancies.
Collapse
Affiliation(s)
- Bettina Kempkes
- Department of Gene Vectors, Helmholtz Center Munich, German Research Center for Environmental Health, Munich, Germany.
| | - Erle S Robertson
- Department of Microbiology and the Tumor Virology Program of the Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
39
|
Yu Z, Xie G, Zhou G, Cheng Y, Zhang G, Yao G, Chen Y, Li Y, Zhao G. NVP-BEZ235, a novel dual PI3K-mTOR inhibitor displays anti-glioma activity and reduces chemoresistance to temozolomide in human glioma cells. Cancer Lett 2015; 367:58-68. [PMID: 26188279 DOI: 10.1016/j.canlet.2015.07.007] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 07/06/2015] [Accepted: 07/10/2015] [Indexed: 12/11/2022]
Abstract
Glioblastoma multiforme (GBM) is the most frequent and most aggressive brain tumor in adults. The introduction of temozolomide (TMZ) has advanced chemotherapy for malignant gliomas. However, a considerable number of GBM cases are refractory to TMZ, the need for more effective therapeutic options is overwhelming. Mounting evidence shows that endogenous AKT (protein kinase B) activity can be activated in response to clinically relevant concentrations of TMZ. AKT activation correlated with the increased tumorigenicity, invasiveness and stemness and overexpression of an active form of AKT increases glioma cell resistance to TMZ. Previous studies also show that TMZ contributes to glioma cell apoptosis by inhibiting mTOR signaling. Thus, we hypothesized that the dual PI3K-mTOR inhibitor NVP-BEZ235 may act as antitumor agent against gliomas and potentiate the cytotoxicity of TMZ. In the present study, we found that NVP-BEZ235 treatment of glioma cell lines led to G1 cell cycle arrest, and induced apoptosis. Combination treatment with both TMZ and NVP-BEZ235 resulted in synergistically inhibited glioma cell growth and induced apoptosis (combination index CI<1) in a subset of glioma cell lines, as shown in the increased levels of Bax, and active Caspase-3, and decreased level of Bcl-2. Furthermore, NVP-BEZ235 treatment reversed p-AKT levels enhanced by TMZ. Inhibition of mTOR (p70S6K) signaling with the combination of TMZ and NVP-BEZ235 can be augmented beyond that achieved using each agent individually. In vivo xenograft models in mice, the combinatorial treatment with TMZ and NVP-BEZ235 significantly reduced tumor growth rates and prolonged median survival of tumor-bearing mice. These findings exhibit that TMZ in combination with NVP-BEZ235 act synergistically to inhibit proliferation of glioma cells by down-regulating of the PI3K-AKT-mTOR pathway, suggesting TMZ and NVP-BEZ235 combination therapy may be an option for GBM treatment.
Collapse
Affiliation(s)
- Zhiyun Yu
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, China
| | - Guifang Xie
- Department of Obstetrics and Gynecology, First Hospital of Jilin University, Changchun, China
| | - Guangtong Zhou
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, China
| | - Ye Cheng
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, China
| | - Guangtao Zhang
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, China
| | - Guangming Yao
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, China
| | - Yong Chen
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, China.
| | - Yunqian Li
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, China.
| | - Gang Zhao
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
40
|
Ohashi M, Holthaus AM, Calderwood MA, Lai CY, Krastins B, Sarracino D, Johannsen E. The EBNA3 family of Epstein-Barr virus nuclear proteins associates with the USP46/USP12 deubiquitination complexes to regulate lymphoblastoid cell line growth. PLoS Pathog 2015; 11:e1004822. [PMID: 25855980 PMCID: PMC4391933 DOI: 10.1371/journal.ppat.1004822] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 03/19/2015] [Indexed: 11/29/2022] Open
Abstract
The Epstein-Barr virus (EBV) nuclear proteins EBNA3A, EBNA3B, and EBNA3C interact with the cell DNA binding protein RBPJ and regulate cell and viral genes. Repression of the CDKN2A tumor suppressor gene products p16INK4A and p14ARF by EBNA3A and EBNA3C is critical for EBV mediated transformation of resting B lymphocytes into immortalized lymphoblastoid cell lines (LCLs). To define the composition of endogenous EBNA3 protein complexes, we generated lymphoblastoid cell lines (LCLs) expressing flag-HA tagged EBNA3A, EBNA3B, or EBNA3C and used tandem affinity purification to isolate each EBNA3 complex. Our results demonstrated that each EBNA3 protein forms a distinct complex with RBPJ. Mass-spectrometry revealed that the EBNA3A and EBNA3B complexes also contained the deubquitylation complex consisting of WDR48, WDR20, and USP46 (or its paralog USP12) and that EBNA3C complexes contained WDR48. Immunoprecipitation confirmed that EBNA3A, EBNA3B, and EBNA3C association with the USP46 complex. Using chromatin immunoprecipitation, we demonstrate that WDR48 and USP46 are recruited to the p14ARF promoter in an EBNA3C dependent manner. Mapping studies were consistent with WDR48 being the primary mediator of EBNA3 association with the DUB complex. By ChIP assay, WDR48 was recruited to the p14ARF promoter in an EBNA3C dependent manner. Importantly, WDR48 associated with EBNA3A and EBNA3C domains that are critical for LCL growth, suggesting a role for USP46/USP12 in EBV induced growth transformation. Epstein-Barr virus (EBV) is a gammaherpesvirus implicated in the pathogenesis of multiple malignancies, including Burkitt lymphoma, Hodgkin lymphoma, post-transplant lymphoproliferative disease (PTLD), nasopharyngeal carcinoma, and gastric carcinoma. EBV infection of resting B-lymphocytes drives them to proliferate as lymphoblastoid cell lines (LCLs), an in vitro model of PTLD. LCLs express a limited EBV gene repertoire, including six nuclear proteins (EBNA1, 2, 3A, 3B, 3C, and LP), three integral membrane proteins (LMP1, 2A, and 2B), and more than 30 micro RNAs. EBNA2 and the EBNA3 proteins are transcription factors that regulate viral and cell gene expression through the cell DNA binding protein RBPJ. In this study, we established LCLs transformed by recombinant EBV genomes in which a Flag-HA epitope tag is fused in-frame to the C-terminus of EBNA3A, EBNA3B or EBNA3C. Using these LCLs, we purified endogenous EBNA3 complexes and identified the USP46 deubiquitinating enzyme (DUB) and its associated chaperones WDR48 and WDR20 as EBNA3 binding proteins. We find that EBNA3s interact primarily with the WDR48 protein and that loss of WDR48 interaction with EBNA3A or EBNA3C impairs LCL growth. This study represents the first characterization of EBNA3 complexes from LCLs and implicates the USP46 DUB complex in EBNA3 mediated gene regulation.
Collapse
Affiliation(s)
- Makoto Ohashi
- Departments of Medicine and Oncology (McArdle Laboratory for Cancer Research), University of Wisconsin, Madison, Wisconsin, United States of America
| | - Amy M. Holthaus
- Infectious Disease Division, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Michael A. Calderwood
- Infectious Disease Division, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Chiou-Yan Lai
- Infectious Disease Division, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Bryan Krastins
- Biomarker Research Initiatives in Mass Spectrometry (BRIMS), Thermo Fisher Scientific, Cambridge, Massachusetts, United States of America
| | - David Sarracino
- Biomarker Research Initiatives in Mass Spectrometry (BRIMS), Thermo Fisher Scientific, Cambridge, Massachusetts, United States of America
| | - Eric Johannsen
- Departments of Medicine and Oncology (McArdle Laboratory for Cancer Research), University of Wisconsin, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
41
|
Abstract
Latent Epstein–Barr virus (EBV) infection has a substantial role in causing many human disorders. The persistence of these viral genomes in all malignant cells, yet with the expression of limited latent genes, is consistent with the notion that EBV latent genes are important for malignant cell growth. While the EBV-encoded nuclear antigen-1 (EBNA-1) and latent membrane protein-2A (LMP-2A) are critical, the EBNA-leader proteins, EBNA-2, EBNA-3A, EBNA-3C and LMP-1, are individually essential for in vitro transformation of primary B cells to lymphoblastoid cell lines. EBV-encoded RNAs and EBNA-3Bs are dispensable. In this review, the roles of EBV latent genes are summarized.
Collapse
Affiliation(s)
- Myung-Soo Kang
- 1] Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Samsung Medical Center, Sungkyunkwan University, Seoul, Korea [2] Samsung Biomedical Research Institute (SBRI), Samsung Medical Center, Sungkyunkwan University, Seoul, Korea
| | - Elliott Kieff
- Department of Medicine, Brigham and Women's Hospital, Program in Virology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
42
|
Brohl AS, Stinson JR, Su HC, Badgett T, Jennings CD, Sukumar G, Sindiri S, Wang W, Kardava L, Moir S, Dalgard CL, Moscow JA, Khan J, Snow AL. Germline CARD11 Mutation in a Patient with Severe Congenital B Cell Lymphocytosis. J Clin Immunol 2014; 35:32-46. [PMID: 25352053 DOI: 10.1007/s10875-014-0106-4] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 09/30/2014] [Indexed: 01/03/2023]
Abstract
PURPOSE Activating germline mutations in CARD11 have recently been linked to a rare genetic disorder associated with congenital B cell lymphocytosis. We describe a patient with a similar clinical phenotype who had a de novo germline G123D CARD11 mutation. METHODS Whole exome sequencing was performed on DNA from the patient and his biological parents. Laboratory studies examined characteristics of the patient's B and T lymphocytes. A CARD11 cDNA containing the mutation was transfected into a lymphocyte cell line to gain an understanding of its function. RNA sequencing was performed on samples from the patient and from patients with alternate germline CARD11 mutations and differential gene expression analysis was performed. RESULTS The patient had a decade-long history of severe polyclonal B lymphocytosis in the 20,000-90,000 lymphocytes/mm(3) range, which was markedly exacerbated by EBV infection and splenectomy at different times. He had a heterozygous germline CARD11 mutation causing a G123D amino acid substitution, which was demonstrated to induce NF-κB activation in unstimulated lymphocytes. In contrast to previous patients with CARD11 mutations, this patient's B cells exhibited higher expression of several cell cycle progression genes, as well as enhanced proliferation and improved survival following B cell receptor stimulation. CONCLUSIONS This is the third reported germline and first de novo CARD11 mutation shown to cause congenital B cell lymphocytosis. The mutation was associated with a dramatically greater lymphocytosis than in previously described cases, disproportionate to the level of constitutive NF-κB activation. However, comparative review of the patient's clinical history, combined with additional genomic and functional analyses, underscore other important variables that may affect pathophysiology or regulate mutant CARD11 function in B cell proliferation and disease. We now refer to these patients as having BENTA disease (B cell Expansion with NF-κB and T cell Anergy).
Collapse
Affiliation(s)
- Andrew S Brohl
- Oncogenomics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 37 Convent Drive, Building 37, Room 2016B, Bethesda, MD, 20892, USA
| | - Jeffrey R Stinson
- Department of Pharmacology, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Rd., Bethesda, MD, 20814, USA
| | - Helen C Su
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, USA
| | - Thomas Badgett
- Department of Pediatrics and Markey Cancer Center, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Chester D Jennings
- Department of Pathology, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Gauthaman Sukumar
- Department of Anatomy, Physiology & Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Sivasish Sindiri
- Oncogenomics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 37 Convent Drive, Building 37, Room 2016B, Bethesda, MD, 20892, USA
| | - Wei Wang
- Immunopathogenesis Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - Lela Kardava
- Immunopathogenesis Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - Susan Moir
- Immunopathogenesis Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - Clifton L Dalgard
- Department of Anatomy, Physiology & Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Jeffrey A Moscow
- Department of Pediatrics and Markey Cancer Center, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Javed Khan
- Oncogenomics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 37 Convent Drive, Building 37, Room 2016B, Bethesda, MD, 20892, USA.
| | - Andrew L Snow
- Department of Pharmacology, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Rd., Bethesda, MD, 20814, USA.
| |
Collapse
|
43
|
Dzeng RK, Jha HC, Lu J, Saha A, Banerjee S, Robertson ES. Small molecule growth inhibitors of human oncogenic gammaherpesvirus infected B-cells. Mol Oncol 2014; 9:365-76. [PMID: 25306391 DOI: 10.1016/j.molonc.2014.09.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Revised: 08/01/2014] [Accepted: 09/15/2014] [Indexed: 12/14/2022] Open
Abstract
Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV) are two human gammaherpesviruses associated with a broad spectrum of B-cell lymphomas, most acutely in immuno-compromised populations. However, there are no drugs which specifically target KSHV or EBV-associated lymphomas. To identify small molecules which selectively inhibit the growth of EBV or KSHV-associated B-cell lines, we performed a fluorescence based high-throughput screen on multiple stable GFP expressing virus-infected or uninfected B-cell lines. We identified 40 initial compounds with selective growth inhibition and subsequently determined the 50% growth inhibitory concentrations (GI50) for each drug. We further examined compounds with higher specificity to explore the underlying molecular mechanisms using transcription factor analysis, as well as a shRNA based knockdown strategy. Our data identified ten compounds with relatively high efficacy for growth inhibition. Two novel small molecules, NSC#10010 and NSC#65381 were potent growth inhibitors for gammaherpesvirus-associated B-lymphomas through activation of both the NF-κB and c-Myc-mediated signaling pathways. These drugs can serve as potential lead compounds to expand the current therapeutic window against EBV or KSHV-associated human B-cell malignancies.
Collapse
Affiliation(s)
- Richard K Dzeng
- Department of Microbiology and Tumor Virology Program of the Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, PA, USA
| | - Hem Chandra Jha
- Department of Microbiology and Tumor Virology Program of the Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, PA, USA
| | - Jie Lu
- Department of Microbiology and Tumor Virology Program of the Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, PA, USA
| | - Abhik Saha
- Department of Microbiology and Tumor Virology Program of the Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, PA, USA
| | - Sagarika Banerjee
- Department of Microbiology and Tumor Virology Program of the Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, PA, USA
| | - Erle S Robertson
- Department of Microbiology and Tumor Virology Program of the Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, PA, USA.
| |
Collapse
|
44
|
Banerjee S, Lu J, Cai Q, Sun Z, Jha HC, Robertson ES. EBNA3C augments Pim-1 mediated phosphorylation and degradation of p21 to promote B-cell proliferation. PLoS Pathog 2014; 10:e1004304. [PMID: 25121590 PMCID: PMC4133388 DOI: 10.1371/journal.ppat.1004304] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 06/28/2014] [Indexed: 12/11/2022] Open
Abstract
Epstein–Barr virus (EBV), a ubiquitous human herpesvirus, can latently infect the human population. EBV is associated with several types of malignancies originating from lymphoid and epithelial cell types. EBV latent antigen 3C (EBNA3C) is essential for EBV-induced immortalization of B-cells. The Moloney murine leukemia provirus integration site (PIM-1), which encodes an oncogenic serine/threonine kinase, is linked to several cellular functions involving cell survival, proliferation, differentiation, and apoptosis. Notably, enhanced expression of Pim-1 kinase is associated with numerous hematological and non-hematological malignancies. A higher expression level of Pim-1 kinase is associated with EBV infection, suggesting a crucial role for Pim-1 in EBV-induced tumorigenesis. We now demonstrate a molecular mechanism which reveals a direct role for EBNA3C in enhancing Pim-1 expression in EBV-infected primary B-cells. We also showed that EBNA3C is physically associated with Pim-1 through its amino-terminal domain, and also forms a molecular complex in B-cells. EBNA3C can stabilize Pim-1 through abrogation of the proteasome/Ubiquitin pathway. Our results demonstrate that EBNA3C enhances Pim-1 mediated phosphorylation of p21 at the Thr145 residue. EBNA3C also facilitated the nuclear localization of Pim-1, and promoted EBV transformed cell proliferation by altering Pim-1 mediated regulation of the activity of the cell-cycle inhibitor p21/WAF1. Our study demonstrated that EBNA3C significantly induces Pim-1 mediated proteosomal degradation of p21. A significant reduction in cell proliferation of EBV-transformed LCLs was observed upon stable knockdown of Pim-1. This study describes a critical role for the oncoprotein Pim-1 in EBV-mediated oncogenesis, as well as provides novel insights into oncogenic kinase-targeted therapeutic intervention of EBV-associated cancers. The oncogenic serine/threonine kinase Pim-1 is upregulated in a number of human cancers including lymphomas, gastric, colorectal and prostate carcinomas. EBV nuclear antigen 3C (EBNA3C) is essential for EBV-induced transformation of human primary B-lymphocytes. Our current study revealed that EBNA3C significantly enhances Pim-1 kinase expression at both the transcript and protein levels. EBNA3C also interacts with Pim-1 and can form a complex in EBV-transformed cells. Moreover, EBNA3C increases nuclear localization of Pim-1 and stabilizes Pim-1 protein levels by inhibiting its poly-ubiquitination. Additionally, EBNA3C augments Pim-1 mediated phosphorylation of p21 and its proteosomal degradation. Stable knockdown of Pim-1 using si-RNA showed a significant decrease in proliferation of EBV transformed lymphoblastoid cell lines and subsequent induction of apoptosis by triggering the intrinsic apoptotic pathway. Therefore, our study demonstrated a new mechanism by which the oncogenic Pim-1 kinase targeted by EBV latent antigen 3C can inhibit p21 function, and is therefore a potential therapeutic target for the treatment of EBV-associated malignancies.
Collapse
Affiliation(s)
- Shuvomoy Banerjee
- Department of Microbiology and the Tumor Virology Program, Abramson Comprehensive Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Jie Lu
- Department of Microbiology and the Tumor Virology Program, Abramson Comprehensive Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Qiliang Cai
- Key Laboratory of Molecular Medical Virology (Ministries of Education and Health), School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Zhiguo Sun
- Department of Microbiology and the Tumor Virology Program, Abramson Comprehensive Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Hem Chandra Jha
- Department of Microbiology and the Tumor Virology Program, Abramson Comprehensive Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Erle S. Robertson
- Department of Microbiology and the Tumor Virology Program, Abramson Comprehensive Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
45
|
Poon RYC. DNA damage checkpoints in nasopharyngeal carcinoma. Oral Oncol 2014; 50:339-44. [PMID: 24503238 DOI: 10.1016/j.oraloncology.2014.01.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 01/16/2014] [Accepted: 01/18/2014] [Indexed: 10/25/2022]
Abstract
Nasopharyngeal carcinoma (NPC) is a highly invasive cancer with poor prognosis. One of the recurring themes of NPC biology and treatments is DNA damage. Epstein-Barr virus infection, which is generally accepted as a key etiological factor for NPC, triggers DNA damage responses. In normal cells, DNA damage checkpoints are able to prevent cell cycle progression following DNA damage and are critical for maintaining genome stability. Main features of the checkpoints include activation of ATM and ATR by sensors of DNA damage, which activates effector kinases CHK1 and CHK2; they in turn targets the CDC25/WEE1-cyclin B1-CDK1 axis to cause G(2) arrest, or the p53-p21(CIP1/WAF1) and pRb pathways to cause G(1) arrest. Significantly, these checkpoints are typically disrupted in NPC cells. While mutations are relatively rare, mechanisms including promoter modifications, miRNAs, and actions of Epstein-Barr virus-encoded proteins such as EBNA3C and LMP1 have been described. Paradoxically, radiation-mediated DNA damage remains the primary treatment of NPC. How dysregulation of the DNA damage checkpoints contribute to NPC tumorigenesis and responses to treatment remain poorly understood. In this review, the current understanding of the molecular mechanisms of the various DNA damage checkpoints and what is known about them in NPC are discussed.
Collapse
Affiliation(s)
- Randy Y C Poon
- Division of Life Science, Center for Cancer Research, and State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong.
| |
Collapse
|
46
|
Abstract
Epstein-Barr virus (EBV) latent antigen EBNA3C is implicated in B-cell immortalization and linked to several B-cell malignancies. Deregulation of H2AX can induce genomic instability with increased chromosomal aberrations, which ultimately leads to tumorigenesis. Here we demonstrated that EBNA3C can attenuate H2AX expression at the transcript and protein levels. A reduction of total H2AX levels was clearly observed upon infection of primary B cells with wild-type EBV but not with EBNA3C knockout recombinant EBV. H2AX also interacted with EBNA3C through its N-terminal domain (residues 1 to 100). Furthermore, H2AX mutated at Ser139 failed to interact with EBNA3C. Luciferase-based reporter assays also revealed that the binding domain of EBNA3C is sufficient for transcriptional inhibition of the H2AX promoter. EBNA3C also facilitated H2AX degradation through recruitment of components of the ubiquitin proteasome pathway. We further demonstrated that knockdown of H2AX in lymphoblastoid cell lines (LCLs) led to the upregulation of the Bub1 oncoprotein and downregulated expression of p53. Overall, our study provides additional insights into EBV-associated B-cell lymphomas, which are linked to the regulation of the DNA damage response system in infected cells. The importance of these insights are as follows: (i) EBNA3C downregulates H2AX expression at the protein and transcript levels in epithelial cells, B cells, and EBV-transformed LCLs, (ii) EBNA3C binds with wild-type H2AX but not with the Ser139 mutant of H2AX, (iii) the N terminus (residues 1 to 100) of EBNA3C is critical for binding to H2AX, (iv) localization of H2AX is predominantly nuclear in the presence of EBNA3C, and (v) H2AX knocked down in LCLs led to enhanced expression of Bub1 and downregulation of the tumor suppressor p53, which are both important for driving the oncogenic process.
Collapse
|
47
|
Abstract
To replicate their genomes in cells and generate new progeny, viruses typically require factors provided by the cells that they have infected. Subversion of the cellular machinery that controls replication of the infected host cell is a common activity of many viruses. Viruses employ different strategies to deregulate cell cycle checkpoint controls and modulate cell proliferation pathways. A number of DNA and RNA viruses encode proteins that target critical cell cycle regulators to achieve cellular conditions that are beneficial for viral replication. Many DNA viruses induce quiescent cells to enter the cell cycle; this is thought to increase pools of deoxynucleotides and thus, facilitate viral replication. In contrast, some viruses can arrest cells in a particular phase of the cell cycle that is favorable for replication of the specific virus. Cell cycle arrest may inhibit early cell death of infected cells, allow the cells to evade immune defenses, or help promote virus assembly. Although beneficial for the viral life cycle, virus-mediated alterations in normal cell cycle control mechanisms could have detrimental effects on cellular physiology and may ultimately contribute to pathologies associated with the viral infection, including cell transformation and cancer progression and maintenance. In this chapter, we summarize various strategies employed by DNA and RNA viruses to modulate the replication cycle of the virus-infected cell. When known, we describe how these virus-associated effects influence replication of the virus and contribute to diseases associated with infection by that specific virus.
Collapse
Affiliation(s)
- Eishi Noguchi
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania USA
| | - Mariana C. Gadaleta
- Dept of Biochemistry & Molecular Biology, Drexel University College of Medicine, Philadelphia, USA
| |
Collapse
|
48
|
EBNA3C-mediated regulation of aurora kinase B contributes to Epstein-Barr virus-induced B-cell proliferation through modulation of the activities of the retinoblastoma protein and apoptotic caspases. J Virol 2013; 87:12121-38. [PMID: 23986604 DOI: 10.1128/jvi.02379-13] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Epstein-Barr virus (EBV) is an oncogenic gammaherpesvirus that is implicated in several human malignancies, including Burkitt's lymphoma (BL), posttransplant lymphoproliferative disease (PTLD), nasopharyngeal carcinoma (NPC), and AIDS-associated lymphomas. Epstein-Barr nuclear antigen 3C (EBNA3C), one of the essential EBV latent antigens, can induce mammalian cell cycle progression through its interaction with cell cycle regulators. Aurora kinase B (AK-B) is important for cell division, and deregulation of AK-B is associated with aneuploidy, incomplete mitotic exit, and cell death. Our present study shows that EBNA3C contributes to upregulation of AK-B transcript levels by enhancing the activity of its promoter. Further, EBNA3C also increased the stability of the AK-B protein, and the presence of EBNA3C leads to reduced ubiquitination of AK-B. Importantly, EBNA3C in association with wild-type AK-B but not with its kinase-dead mutant led to enhanced cell proliferation, and AK-B knockdown can induce nuclear blebbing and cell death. This phenomenon was rescued in the presence of EBNA3C. Knockdown of AK-B resulted in activation of caspase 3 and caspase 9, along with poly(ADP-ribose) polymerase 1 (PARP1) cleavage, which is known to be an important contributor to apoptotic signaling. Importantly, EBNA3C failed to stabilize the kinase-dead mutant of AK-B compared to wild-type AK-B, which suggests a role for the kinase domain in AK-B stabilization and downstream phosphorylation of the cell cycle regulator retinoblastoma protein (Rb). This study demonstrates the functional relevance of AK-B kinase activity in EBNA3C-regulated B-cell proliferation and apoptosis.
Collapse
|
49
|
Saha A, Robertson ES. Impact of EBV essential nuclear protein EBNA-3C on B-cell proliferation and apoptosis. Future Microbiol 2013; 8:323-52. [PMID: 23464371 DOI: 10.2217/fmb.12.147] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
For over 40 years, EBV infection has been implicated in the etiology of a variety of lymphoid malignancies with the exceptional ability to drive resting B cells to continuously proliferate by successfully overriding cellular apoptotic stimuli. EBV utilizes the normal physiology of B-cell differentiation to persist within the memory B-cell pool of the immunocompetent host and subsequently establishes a life-long latent infection. During latency, out of a subset of viral genes expressed, EBNA-3C is one of the essential antigens required for in vitro primary B-cell transformation. EBNA-3C acts as a transcriptional coregulator by interacting with various cellular and viral factors. For the last 10 years, we have been actively engaged in discerning the biological significance of these interactions and revealed that EBNA-3C primarily targets two important cellular pathways - cell cycle and apoptosis. This review aims to summarize our current knowledge on EBNA-3C-mediated functions and describe how EBNA-3C seizes these cellular pathways that eventually promote B-cell lymphomagenesis. A scrupulous understanding of the critical relationship between EBNA-3C and these cellular machineries will not only aid in elucidating EBV pathogenesis, but also largely facilitate the development of novel diagnostic, as well as therapeutic, strategies against a vast range of EBV-associated B-cell lymphomas.
Collapse
Affiliation(s)
- Abhik Saha
- Presidency University, Department of Biotechnology, 86/1, College Street, Kolkata-700073, West Bengal, India
| | | |
Collapse
|
50
|
Liu FC, Lai MT, Chen YY, Lin WH, Chang SJ, Sheu MJ, Wu CH. Elucidating the inhibitory mechanisms of the ethanolic extract of the fruiting body of the mushroom Antrodia cinnamomea on the proliferation and migration of murine leukemia WEHI-3 cells and their tumorigenicity in a BALB/c allograft tumor model. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2013; 20:874-882. [PMID: 23611488 DOI: 10.1016/j.phymed.2013.03.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 03/09/2013] [Indexed: 06/02/2023]
Abstract
The aim of this study was to explore whether the ethanolic extract of Antrodia cinnamomea (EEAC), a medical mushroom form Taiwan, could affect the proliferation and migration of WEHI-3 cells in vitro and to explore the antitumor effects of EEAC in BALB/c mice engrafted with WEHI-3 cells. The results showed that EEAC inhibited the proliferation of WEHI-3 cells, resulting in the accumulation of cell in G0/G1 and G2/M phases, as determined by flow cytometry. Moreover, EEAC markedly reduced the migration of WEHI-3 cells, as determined by a transwell assay. Treatment of WEHI-3 cells with EEAC also decreased MMP-9 protein expression and enzyme activity. The protein levels of p-Akt, p-ERK1/2 were also decreased, whereas the expression of p21 and p27 was increased. Furthermore, in an in vivo model, EEAC treatment reduced the infiltration of WEHI-3 cells into the liver and spleens and decreased tumor growth. Other bioactive compounds, such as cordycepin and zhankuic acid A, have been demonstrated to reduce the expression of MMP-9, cyclin E, cyclin D1 and to increase the expression of p21, p27. This is the first study to investigate that the mechanisms by which EEAC reduce the proliferation and migration of WEHI-3 cells in vitro, as well as the ability of EEAC to reduced infiltration of WEHI-3 cells into the liver and spleen in vivo. The results suggest that EEAC may prove to be useful in future antileukemic therapies.
Collapse
Affiliation(s)
- Fon-Chang Liu
- School of Pharmacy, China Medical University, Taichung, Taiwan
| | | | | | | | | | | | | |
Collapse
|