1
|
Proulx MK, Wiggins CD, Reames CJ, Wu C, Kiritsy MC, Xu P, Gallant JC, Grace PS, Fenderson BA, Smith CM, Lindestam Arlehamn CS, Alter G, Lauffenburger DA, Sassetti CM. Noncanonical T cell responses are associated with protection from tuberculosis in mice and humans. J Exp Med 2025; 222:e20241760. [PMID: 40192640 PMCID: PMC11974462 DOI: 10.1084/jem.20241760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 01/02/2025] [Accepted: 03/07/2025] [Indexed: 04/10/2025] Open
Abstract
While control of Mycobacterium tuberculosis (Mtb) infection is generally understood to require Th1 cells and IFNγ, infection produces a spectrum of immunological and pathological phenotypes in diverse human populations. By characterizing Mtb infection in mouse strains that model the genetic heterogeneity of an outbred population, we identified strains that control Mtb comparably to a standard IFNγ-dependent mouse model but with substantially lower lung IFNγ levels. We report that these mice have a significantly altered CD4 T cell profile that specifically lacks the terminal effector Th1 subset and that this phenotype is detectable before infection. These mice still require T cells to control bacterial burden but are less dependent on IFNγ signaling. Instead, noncanonical immune features such as Th17-like CD4 and γδT cells correlate with low bacterial burden. We find the same Th17 transcriptional programs are associated with resistance to Mtb infection in humans, implicating specific non-Th1 T cell responses as a common feature of Mtb control across species.
Collapse
Affiliation(s)
- Megan K. Proulx
- Department of Microbiology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Christine D. Wiggins
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Charlotte J. Reames
- Department of Microbiology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Claire Wu
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Michael C. Kiritsy
- Department of Microbiology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Ping Xu
- Transgenic Animal Modeling Core, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Judith C. Gallant
- Transgenic Animal Modeling Core, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Patricia S. Grace
- University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard, Cambridge, MA, USA
| | - Brooke A. Fenderson
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard, Cambridge, MA, USA
| | - Clare M. Smith
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA
| | - Cecilia S. Lindestam Arlehamn
- Center for Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, USA
- Department of Infectious Disease Immunology, Center for Vaccine Research, Statens Serum Institut, Copenhagen, Denmark
| | - Galit Alter
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard, Cambridge, MA, USA
| | | | - Christopher M. Sassetti
- Department of Microbiology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| |
Collapse
|
2
|
Mehanna N, Pradhan A, Kaur R, Kontopoulos T, Rosati B, Carlson D, Cheung NKV, Xu H, Bean J, Hsu KC, Le Luduec JB, Vorkas CK. CD8α marks a Mycobacterium tuberculosis-reactive human NK cell population with high activation potential. Sci Rep 2025; 15:15095. [PMID: 40301594 PMCID: PMC12041513 DOI: 10.1038/s41598-025-98367-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 04/10/2025] [Indexed: 05/01/2025] Open
Abstract
Natural Killer (NK) cells can recognize and kill Mycobacterium tuberculosis (Mtb)-infected cells in vitro, however their role after natural human exposure has not been well-studied. To identify Mtb-responsive NK cell populations, we analyzed the peripheral blood of healthy household contacts of active Tuberculosis (TB) cases and source community donors in an endemic region of Port-au-Prince, Haiti by flow cytometry. We observed higher CD8α expression on NK cells in putative resistors (Interferon γ release assay negative; IGRA- contacts) with a loss of CD8α surface expression during household-associated exposure and active TB disease. In vitro assays and CITE-seq analysis of CD8α+ NK cells demonstrated enhanced maturity, cytotoxic gene expression, and response to cytokine stimulation relative to CD8α- NK cells. CD8α+ NK cells also displayed dynamic surface expression dependent on MHC class I in contrast to conventional CD8+ T cells. Together, these results support a specialized role for CD8α+ NK cell populations during Mtb infection correlating with disease resistance.
Collapse
Affiliation(s)
- Nezar Mehanna
- Renaissance School of Medicine at Stony Brook University, 101 Nicolls Road, Health Sciences Center 15060-I, Stony Brook, NY, 11794, USA
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY, 11794, USA
- Center for Infectious Diseases, Stony Brook University, Stony Brook, NY, 11794, USA
- Division of Infectious Diseases, Department of Medicine, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Atul Pradhan
- Renaissance School of Medicine at Stony Brook University, 101 Nicolls Road, Health Sciences Center 15060-I, Stony Brook, NY, 11794, USA
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY, 11794, USA
- Center for Infectious Diseases, Stony Brook University, Stony Brook, NY, 11794, USA
- Division of Infectious Diseases, Department of Medicine, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Rimanpreet Kaur
- Renaissance School of Medicine at Stony Brook University, 101 Nicolls Road, Health Sciences Center 15060-I, Stony Brook, NY, 11794, USA
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY, 11794, USA
- Center for Infectious Diseases, Stony Brook University, Stony Brook, NY, 11794, USA
- Division of Infectious Diseases, Department of Medicine, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Theodota Kontopoulos
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Barbara Rosati
- Renaissance School of Medicine at Stony Brook University, 101 Nicolls Road, Health Sciences Center 15060-I, Stony Brook, NY, 11794, USA
| | - David Carlson
- Renaissance School of Medicine at Stony Brook University, 101 Nicolls Road, Health Sciences Center 15060-I, Stony Brook, NY, 11794, USA
| | - Nai-Kong V Cheung
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Hong Xu
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - James Bean
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Katharine C Hsu
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Jean-Benoit Le Luduec
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Charles Kyriakos Vorkas
- Renaissance School of Medicine at Stony Brook University, 101 Nicolls Road, Health Sciences Center 15060-I, Stony Brook, NY, 11794, USA.
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY, 11794, USA.
- Center for Infectious Diseases, Stony Brook University, Stony Brook, NY, 11794, USA.
- Division of Infectious Diseases, Department of Medicine, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, 11794, USA.
| |
Collapse
|
3
|
Ouh IO, Kim MJ, Kim K, Lim H, Yang YJ, Heo JW, Choi HN, Kim HH, Lee HJ, Koh PO, Moon SY, Choi EB, Lee YK, Park KI. Bacillus Calmette-Guérin Vaccination Promotes Efficient and Comprehensive Immune Modulation in Guinea Pig Models. Vaccines (Basel) 2025; 13:305. [PMID: 40266210 PMCID: PMC11945953 DOI: 10.3390/vaccines13030305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 03/08/2025] [Accepted: 03/11/2025] [Indexed: 04/24/2025] Open
Abstract
Background/Objectives:Tuberculosis (TB), caused by Mycobacterium tuberculosis H37Rv (M. tuberculosis), primarily affects the lungs. The Bacillus Calmette-Guérin (BCG) vaccine is the only available TB vaccine. Guinea pigs serve as an excellent preclinical model due to the similarity to human Tuberculosis pathology. However, the lack of a standardized vaccination protocol in guinea pigs causes inconsistencies in efficacy assessments, limiting precise evaluation and its application in vaccine studies. This study aims to address this gap by establishing a consistent and reliable protocol for evaluating the immunological efficacy of BCG vaccination. Methods: Guinea pigs were divided into control, M. tuberculosis-infected, and BCG-vaccinated groups. Four weeks post-vaccination, the infected and vaccinated groups were challenged with M. tuberculosis. The bacterial burden in the lungs and spleen was measured, histopathological changes were analyzed using hematoxylin and eosin (H&E) staining, and the infection levels of M. tuberculosis, as well as the presence of interleukin-2 (IL-2), tumor necrosis factor-alpha (TNF-α), and interferon-gamma (IFN-γ) positive cells, were evaluated through immunohistochemical (IHC) staining. Results: BCG vaccination reduced the bacterial load to 3.60 × 104 CFU/lung and 5.52 × 103 CFU/spleen compared to 3.78 × 105 CFU/lung and 1.54 × 104 CFU/spleen in the infected group. The mean histopathological score for lungs was 1.67 compared to 2.67 in the infected group. Similarly, the mean histopathological score for the spleen was 1.33 compared to 2.33 in the infected group. IHC analysis showed a notable reduction in M. tuberculosis and inflammatory cytokine-positive cells in the vaccinated group. The TNF-α, IL-2, and IFN-γ staining intensity decreased by 9.3, 4.8, and 11, respectively, compared to the infected group. Conclusions: This protocol enhances consistency in vaccine assessments, providing a reliable benchmark for the development of safer, more effective, and accessible TB vaccines.
Collapse
Affiliation(s)
- In-Ohk Ouh
- Division of Vaccine Development Coordination, Center for Vaccine Research National Institute of Infectious Diseses, Korea National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju-si 28159, Republic of Korea; (I.-O.O.); (K.K.); (H.L.); (S.Y.M.); (E.B.C.)
| | - Min Jung Kim
- College of Veterinary Medicine, Gyeongsang National University, Gazwa, Jinju 52828, Republic of Korea; (M.J.K.); (Y.J.Y.); (J.W.H.); (H.N.C.); (H.-J.L.); (P.-O.K.)
| | - Kwangwook Kim
- Division of Vaccine Development Coordination, Center for Vaccine Research National Institute of Infectious Diseses, Korea National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju-si 28159, Republic of Korea; (I.-O.O.); (K.K.); (H.L.); (S.Y.M.); (E.B.C.)
| | - Heeji Lim
- Division of Vaccine Development Coordination, Center for Vaccine Research National Institute of Infectious Diseses, Korea National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju-si 28159, Republic of Korea; (I.-O.O.); (K.K.); (H.L.); (S.Y.M.); (E.B.C.)
| | - Ye Jin Yang
- College of Veterinary Medicine, Gyeongsang National University, Gazwa, Jinju 52828, Republic of Korea; (M.J.K.); (Y.J.Y.); (J.W.H.); (H.N.C.); (H.-J.L.); (P.-O.K.)
| | - Ji Woong Heo
- College of Veterinary Medicine, Gyeongsang National University, Gazwa, Jinju 52828, Republic of Korea; (M.J.K.); (Y.J.Y.); (J.W.H.); (H.N.C.); (H.-J.L.); (P.-O.K.)
| | - Han Nim Choi
- College of Veterinary Medicine, Gyeongsang National University, Gazwa, Jinju 52828, Republic of Korea; (M.J.K.); (Y.J.Y.); (J.W.H.); (H.N.C.); (H.-J.L.); (P.-O.K.)
| | - Hun Hwan Kim
- Department of Physiology and Aging, College of Medicine, Institute on Aging, University of Florida, Gainesville, FL 32610, USA;
| | - Hu-Jang Lee
- College of Veterinary Medicine, Gyeongsang National University, Gazwa, Jinju 52828, Republic of Korea; (M.J.K.); (Y.J.Y.); (J.W.H.); (H.N.C.); (H.-J.L.); (P.-O.K.)
| | - Phil-Ok Koh
- College of Veterinary Medicine, Gyeongsang National University, Gazwa, Jinju 52828, Republic of Korea; (M.J.K.); (Y.J.Y.); (J.W.H.); (H.N.C.); (H.-J.L.); (P.-O.K.)
| | - Seo Young Moon
- Division of Vaccine Development Coordination, Center for Vaccine Research National Institute of Infectious Diseses, Korea National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju-si 28159, Republic of Korea; (I.-O.O.); (K.K.); (H.L.); (S.Y.M.); (E.B.C.)
| | - Eun Bee Choi
- Division of Vaccine Development Coordination, Center for Vaccine Research National Institute of Infectious Diseses, Korea National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju-si 28159, Republic of Korea; (I.-O.O.); (K.K.); (H.L.); (S.Y.M.); (E.B.C.)
| | - Yoo-Kyung Lee
- Division of Vaccine Development Coordination, Center for Vaccine Research National Institute of Infectious Diseses, Korea National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju-si 28159, Republic of Korea; (I.-O.O.); (K.K.); (H.L.); (S.Y.M.); (E.B.C.)
| | - Kwang Il Park
- College of Veterinary Medicine, Gyeongsang National University, Gazwa, Jinju 52828, Republic of Korea; (M.J.K.); (Y.J.Y.); (J.W.H.); (H.N.C.); (H.-J.L.); (P.-O.K.)
| |
Collapse
|
4
|
Szachniewicz MM, van den Eeden SJF, van Meijgaarden KE, Franken KLMC, van Veen S, Geluk A, Bouwstra JA, Ottenhoff THM. Cationic pH-sensitive liposome-based subunit tuberculosis vaccine induces protection in mice challenged with Mycobacterium tuberculosis. Eur J Pharm Biopharm 2024; 203:114437. [PMID: 39122053 DOI: 10.1016/j.ejpb.2024.114437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 07/18/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
Tuberculosis (TB) has been and still is a global emergency for centuries. Prevention of disease through vaccination would have a major impact on disease prevalence, but the only available current vaccine, BCG, has insufficient impact. In this article, a novel subunit vaccine against TB was developed, using the Ag85B-ESAT6-Rv2034 fusion antigen, two adjuvants - CpG and MPLA, and a cationic pH-sensitive liposome as a delivery system, representing a new TB vaccine delivery strategy not previously reported for TB. In vitro in human dendritic cells (DCs), the adjuvanted formulation induced a significant increase in the production of (innate) cytokines and chemokines compared to the liposome without additional adjuvants. In vivo, the new vaccine administrated subcutaneously significantly reduced Mycobacterium tuberculosis (Mtb) bacterial load in the lungs and spleens of mice, significantly outperforming results from mice vaccinated with the antigen mixed with adjuvants without liposomes. In-depth analysis underpinned the vaccine's effectiveness in terms of its capacity to induce polyfunctional CD4+ and CD8+ T-cell responses, both considered essential for controlling Mtb infection. Also noteworthy was the differential abundance of various CD69+ B-cell subpopulations, which included IL17-A-producing B-cells. The vaccine stimulated robust antigen-specific antibody titers, further extending its potential as a novel protective agent against TB.
Collapse
Affiliation(s)
- M M Szachniewicz
- Leiden University Center for Infectious Diseases, Leiden University Medical Center (LUMC), the Netherlands.
| | - S J F van den Eeden
- Leiden University Center for Infectious Diseases, Leiden University Medical Center (LUMC), the Netherlands
| | - K E van Meijgaarden
- Leiden University Center for Infectious Diseases, Leiden University Medical Center (LUMC), the Netherlands
| | - K L M C Franken
- Leiden University Center for Infectious Diseases, Leiden University Medical Center (LUMC), the Netherlands
| | - S van Veen
- Leiden University Center for Infectious Diseases, Leiden University Medical Center (LUMC), the Netherlands
| | - A Geluk
- Leiden University Center for Infectious Diseases, Leiden University Medical Center (LUMC), the Netherlands
| | - J A Bouwstra
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research (LACDR), Leiden University, the Netherlands
| | - T H M Ottenhoff
- Leiden University Center for Infectious Diseases, Leiden University Medical Center (LUMC), the Netherlands
| |
Collapse
|
5
|
Becker SH, Ronayne CE, Bold TD, Jenkins MK. CD4 + T cells recruit, then engage macrophages in cognate interactions to clear Mycobacterium tuberculosis from the lungs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.22.609198. [PMID: 39229103 PMCID: PMC11370583 DOI: 10.1101/2024.08.22.609198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
IFN-γ-producing CD4 + T cells are required for protection against lethal Mycobacterium tuberculosis ( Mtb ) infections. However, the ability of CD4 + T cells to suppress Mtb growth cannot be fully explained by IFN-γ or other known T cell products. In this study, we show that CD4 + T cell-derived IFN-γ promoted the recruitment of monocyte-derived macrophages (MDMs) to the lungs of Mtb -infected mice. Although the recruited MDMs became quickly and preferentially infected with Mtb , CD4 + T cells rapidly disinfected the MDMs. Clearance of Mtb from MDMs was not explained by IFN-γ, but rather by MHCII-mediated cognate interactions with CD4 + T cells. These interactions promoted MDM expression of glycolysis genes essential for Mtb control. Thus, by recruiting MDMs, CD4 + T cells initiate a cycle of bacterial phagocytosis, Mtb antigen presentation and disinfection in an attempt to clear the bacteria from the lungs.
Collapse
|
6
|
Ravesloot-Chávez MM, Van Dis E, Fox D, Anaya Sanchez A, Espich S, Nguyenla XH, Rawal SL, Samani H, Ballinger MA, Thomas H, Kotov D, Vance R, Nachman MW, Stanley SA. Tuberculosis susceptibility in genetically diverse mice reveals functional diversity of neutrophils. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.06.29.547125. [PMID: 39211107 PMCID: PMC11361191 DOI: 10.1101/2023.06.29.547125] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Tuberculosis (TB) is a heterogenous disease in humans with individuals exhibiting a wide range of susceptibility. This heterogeneity is not captured by standard laboratory mouse lines. We used a new collection of 19 wild-derived inbred mouse lines collected from diverse geographic sites to identify novel phenotypes during Mycobacterium tuberculosis ( Mtb ) infection. Wild derived mice have heterogenous immune responses to infection that result in differential ability to control disease at early timepoints. Correlation analysis with multiple parameters including sex, weight, and cellular immune responses in the lungs revealed that enhanced control of infection is associated with increased numbers of CD4 T cells, CD8 T cells and B cells. Surprisingly, we did not observe strong correlations between IFN-γ production and control of infection. Although in most lines high neutrophils were associated with susceptibility, we identified a mouse line that harbors high neutrophils numbers yet controls infection. Using single-cell RNA sequencing, we identified a novel neutrophil signature associated with failure to control infection.
Collapse
|
7
|
Sun M, Phan JM, Kieswetter NS, Huang H, Yu KKQ, Smith MT, Liu YE, Wang C, Gupta S, Obermoser G, Maecker HT, Krishnan A, Suresh S, Gupta N, Rieck M, Acs P, Ghanizada M, Chiou SH, Khatri P, Boom WH, Hawn TR, Stein CM, Mayanja-Kizza H, Davis MM, Seshadri C. Specific CD4 + T cell phenotypes associate with bacterial control in people who 'resist' infection with Mycobacterium tuberculosis. Nat Immunol 2024; 25:1411-1421. [PMID: 38997431 PMCID: PMC11291275 DOI: 10.1038/s41590-024-01897-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 06/13/2024] [Indexed: 07/14/2024]
Abstract
A subset of individuals exposed to Mycobacterium tuberculosis (Mtb) that we refer to as 'resisters' (RSTR) show evidence of IFN-γ- T cell responses to Mtb-specific antigens despite serially negative results on clinical testing. Here we found that Mtb-specific T cells in RSTR were clonally expanded, confirming the priming of adaptive immune responses following Mtb exposure. RSTR CD4+ T cells showed enrichment of TH17 and regulatory T cell-like functional programs compared to Mtb-specific T cells from individuals with latent Mtb infection. Using public datasets, we showed that these TH17 cell-like functional programs were associated with lack of progression to active tuberculosis among South African adolescents with latent Mtb infection and with bacterial control in nonhuman primates. Our findings suggested that RSTR may successfully control Mtb following exposure and immune priming and established a set of T cell biomarkers to facilitate further study of this clinical phenotype.
Collapse
Affiliation(s)
- Meng Sun
- Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA, USA
| | - Jolie M Phan
- Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Nathan S Kieswetter
- Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Huang Huang
- Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA, USA
| | - Krystle K Q Yu
- Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Malisa T Smith
- Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Yiran E Liu
- Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA, USA
- Department of Epidemiology and Population Health, School of Medicine, Stanford University, Stanford, CA, USA
| | - Chuangqi Wang
- Department of Immunology and Microbiology, University of Colorado, Anschutz Medicine Campus, Aurora, CO, USA
| | - Sanjana Gupta
- Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA, USA
- Center for Biomedical Informatics Research, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Gerlinde Obermoser
- Human Immune Monitoring Center, Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA, USA
| | - Holden Terry Maecker
- Human Immune Monitoring Center, Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA, USA
| | - Akshaya Krishnan
- Human Immune Monitoring Center, Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA, USA
| | - Sundari Suresh
- Human Immune Monitoring Center, Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA, USA
| | - Neha Gupta
- Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA, USA
- Human Immune Monitoring Center, Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA, USA
| | - Mary Rieck
- Human Immune Monitoring Center, Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA, USA
| | - Peter Acs
- Human Immune Monitoring Center, Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA, USA
| | - Mustafa Ghanizada
- Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA, USA
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Shin-Heng Chiou
- Division of Medical Oncology, Rutgers Cancer Institute of New Jersey, Department of Medicine, Rutgers Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, USA
| | - Purvesh Khatri
- Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA, USA
- Center for Biomedical Informatics Research, Department of Medicine, Stanford University, Stanford, CA, USA
- Department of Biomedical Data Sciences, School of Medicine, Stanford University, Stanford, CA, USA
| | - W Henry Boom
- Department of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Thomas R Hawn
- Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Catherine M Stein
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA
| | | | - Mark M Davis
- Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA, USA.
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA.
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA.
| | - Chetan Seshadri
- Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA.
| |
Collapse
|
8
|
Maciag K, Plumlee CR, Cohen SB, Gern BH, Urdahl KB. Reappraising the Role of T Cell-Derived IFN-γ in Restriction of Mycobacterium tuberculosis in the Murine Lung. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:339-346. [PMID: 38912839 PMCID: PMC11249196 DOI: 10.4049/jimmunol.2400145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 05/29/2024] [Indexed: 06/25/2024]
Abstract
T cells producing IFN-γ have long been considered a stalwart for immune protection against Mycobacterium tuberculosis (Mtb), but their relative importance to pulmonary immunity has been challenged by murine studies that achieved protection by adoptively transferred Mtb-specific IFN-γ-/- T cells. Using IFN-γ-/- T cell chimeric mice and adoptive transfer of IFN-γ-/- T cells into TCRβ-/-δ-/- mice, we demonstrate that control of lung Mtb burden is in fact dependent on T cell-derived IFN-γ, and, furthermore, mice selectively deficient in T cell-derived IFN-γ develop exacerbated disease compared with T cell-deficient control animals, despite equivalent lung bacterial burdens. Deficiency in T cell-derived IFN-γ skews infected and bystander monocyte-derived macrophages to an alternative M2 phenotype and promotes neutrophil and eosinophil influx. Our studies support an important role for T cell-derived IFN-γ in pulmonary immunity against tuberculosis.
Collapse
Affiliation(s)
- Karolina Maciag
- Division of Allergy and Infectious Diseases, University of Washington, Seattle, WA
- Seattle Children’s Research Institute, Seattle, WA
| | | | | | - Benjamin H. Gern
- Seattle Children’s Research Institute, Seattle, WA
- Department of Pediatrics, University of Washington, Seattle, WA
| | - Kevin B. Urdahl
- Seattle Children’s Research Institute, Seattle, WA
- Department of Pediatrics, University of Washington, Seattle, WA
- Department of Immunology, University of Washington, Seattle, WA
| |
Collapse
|
9
|
Mehanna N, Pradhan A, Kaur R, Kontopoulos T, Rosati B, Carlson D, Cheung NK, Xu H, Bean J, Hsu K, Le Luduec JB, Vorkas CK. Loss of circulating CD8α + NK cells during human Mycobacterium tuberculosis infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.16.588542. [PMID: 38659858 PMCID: PMC11042275 DOI: 10.1101/2024.04.16.588542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Natural Killer (NK) cells can recognize and kill Mtb-infected cells in vitro, however their role after natural human exposure has not been well-studied. To identify Mtb-responsive NK cell populations, we analyzed the peripheral blood of healthy household contacts of active Tuberculosis (TB) cases and source community donors in an endemic region of Port-au-Prince, Haiti by flow cytometry. We observed higher CD8α expression on NK cells in putative resistors (IGRA- contacts) with a progressive loss of these circulating cells during household-associated latent infection and disease. In vitro assays and CITE-seq analysis of CD8α+ NK cells demonstrated enhanced maturity, cytotoxic gene expression, and response to cytokine stimulation relative to CD8α- NK cells. CD8α+ NK cells also displayed dynamic surface expression dependent on MHC I in contrast to conventional CD8+ T cells. Together, these results support a specialized role for CD8α+ NK cell populations during Mtb infection correlating with disease resistance.
Collapse
Affiliation(s)
- Nezar Mehanna
- Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, 11794
| | - Atul Pradhan
- Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, 11794
| | - Rimanpreet Kaur
- Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, 11794
| | - Theodota Kontopoulos
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Barbara Rosati
- Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, 11794
| | - David Carlson
- Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, 11794
| | - Nai-Kong Cheung
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Hong Xu
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - James Bean
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Katherine Hsu
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Jean-Benoit Le Luduec
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Charles Kyriakos Vorkas
- Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, 11794
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY 11794
- Center for Infectious Diseases, Stony Brook University, Stony Brook, NY, 11794
| |
Collapse
|
10
|
Maciag K, Plumlee C, Cohen S, Gern B, Urdahl K. Re-appraising the role of T-cell derived interferon gamma in restriction of Mycobacterium tuberculosis in the murine lung: T-cell derived IFNγ is required to restrict pulmonary Mtb. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.04.588086. [PMID: 38617280 PMCID: PMC11014638 DOI: 10.1101/2024.04.04.588086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
T cells producing interferon gamma (IFNγ) have long been considered a stalwart for immune protection against Mycobacterium tuberculosis (Mtb), but their relative importance to pulmonary immunity has been challenged by murine studies which achieved protection by adoptively transferred Mtb-specific IFNγ-/- T cells. Using IFNγ-/- T cell chimeric mice and adoptive transfer of IFNγ-/- T cells into TCRβ-/-δ-/- mice, we demonstrate that control of lung Mtb burden is in fact dependent on T cell-derived IFNγ, and furthermore, mice selectively deficient in T cell-derived IFNγ develop exacerbated disease compared to T cell-deficient controls despite equivalent lung bacterial burdens. Deficiency in T cell-derived IFNγ skews infected and bystander monocyte-derived macrophages (MDMs) to an alternative M2 phenotype, and promotes neutrophil and eosinophil influx. Our studies support an important role for T cell-derived IFNγ in pulmonary immunity against TB.
Collapse
Affiliation(s)
- Karolina Maciag
- Seattle Children's Research Institute
- Division of Allergy and Infectious Diseases, University of Washington
| | | | | | | | - Kevin Urdahl
- Seattle Children's Research Institute
- Department of Immunology, University of Washington
| |
Collapse
|
11
|
Martinez-Martinez YB, Huante MB, Chauhan S, Naqvi KF, Bharaj P, Endsley JJ. Helper T cell bias following tuberculosis chemotherapy identifies opportunities for therapeutic vaccination to prevent relapse. NPJ Vaccines 2023; 8:165. [PMID: 37898618 PMCID: PMC10613213 DOI: 10.1038/s41541-023-00761-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 10/09/2023] [Indexed: 10/30/2023] Open
Abstract
Therapeutic vaccines have promise as adjunctive treatment for tuberculosis (TB) or as preventives against TB relapse. An important development challenge is the limited understanding of T helper (Th) cell roles during these stages of disease. A murine model of TB relapse was used to identify changes in Th populations and cytokine microenvironment. Active TB promoted expansion of Th1, Th2, Th17, and Th22 cells and cytokines in the lung. Following drug therapy, pulmonary Th17 and Th22 cells contracted, Th1 cells remained elevated, while Th cells producing IL-4 or IL-10 expanded. At relapse, Th22 cells failed to re-expand in the lung despite a moderate re-expansion of Th1 and Th17 cells and an increase in Th cytokine polyfunctionality. The dynamics of Th populations further differed by tissue compartment and disease presentation. These outcomes identify immune bias by Th subpopulations during TB relapse as candidate mechanisms for pathogenesis and targets for therapeutic vaccination.
Collapse
Affiliation(s)
- Yazmin B Martinez-Martinez
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Matthew B Huante
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Sadhana Chauhan
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Kubra F Naqvi
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, 77555, USA
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Preeti Bharaj
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, 77555, USA
- Department of Medicine, Rutgers New Jersey Medical School, Newark, NJ, 07103, USA
| | - Janice J Endsley
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, 77555, USA.
| |
Collapse
|
12
|
Roy A, Kumari Agnivesh P, Sau S, Kumar S, Pal Kalia N. Tweaking host immune responses for novel therapeutic approaches against Mycobacterium tuberculosis. Drug Discov Today 2023; 28:103693. [PMID: 37390961 DOI: 10.1016/j.drudis.2023.103693] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 06/14/2023] [Accepted: 06/22/2023] [Indexed: 07/02/2023]
Abstract
In TB, combat between the human host and Mycobacterium tuberculosis involves intricate interactions with immune cells. M. tuberculosis has evolved a complex evasion system to circumvent immune cells, leading to persistence and limiting its clearance by the host. Host-directed therapies are emerging approaches to modulate host responses, including inflammatory responses, cytokine responses, and autophagy, by using small molecules to curb mycobacterial infections. Targeting host immune pathways reduces the chances of antibiotic resistance to M. tuberculosis because, unlike antibiotics, this approach acts directly on the cells of the host. In this review, we discuss the role of immune cells during M. tuberculosis proliferation, provide a updated understanding of immunopathogenesis, and explore the range of host-modulating options for the clearance of this pathogen.
Collapse
Affiliation(s)
- Arnab Roy
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana 500 037, India
| | - Puja Kumari Agnivesh
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana 500 037, India
| | - Shashikanta Sau
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana 500 037, India
| | - Sunil Kumar
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana 500 037, India
| | - Nitin Pal Kalia
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana 500 037, India.
| |
Collapse
|
13
|
Wang L, Ruan JX, Chen W, Wang XQ, Yu Y. Exploration and improvement of QuantiFERON-TB assay in patients with indeterminate results in clinical practice: A head-to-head study. Clin Chim Acta 2023; 549:117559. [PMID: 37709113 DOI: 10.1016/j.cca.2023.117559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/13/2023] [Accepted: 09/11/2023] [Indexed: 09/16/2023]
Abstract
BACKGROUND We implemented the QuantiFERON-TB Gold In-Tube (QFT-GIT) based on peripheral blood mononuclear cells (QFT-PBMCs) and QFT Gold Plus (QFT-Plus) in patients with indeterminate results, and use Mit-Nil value to identify false negatives and impaired cellular immunity. METHODS One hundred seventy-one out of 2480 patients who had a QFT-GIT test were prospectively recruited and classified as high Nil (n = 35), low Mit (n = 75) and control (n = 61) cohorts. Head-to-head comparisons, i.e., QFT-PBMCs vs. QFT-GIT in high Nil cohort, QFT-Plus vs. QFT-GIT in low Mit cohort, and QFT-PBMCs vs. QFT-GIT in controls, were performed. Lymphocyte subsets counts were conducted in low Mit and control cohorts. RESULTS A significant reduction of positive rate only occurred in Mit-Nil < 6 IU/ml (p < 0.001). QFT-PBMCs yielded 100 % valid results and had a significant Nil decline in high Nil cohort (0.98 ± 1.06 vs. 9.55 ± 0.64 IU/ml, p < 0.0001), while correlated well with QFT-GIT for qualitative (Cohen's k = 0.93) and quantitative (TB-Ag [R2 = 0.91] and Mit [R2 = 0.94]) analyses. QFT-Plus produced 61.3 % valid results and had a significant Mit increase in low Mit cohort (0.82 ± 0.95 vs. 0.17 ± 0.11 IU/ml, p < 0.0001). Mit-Nil value significantly correlated with lymphocyte subsets counts (R:0.49-0.56, p < 0.0001), separately corresponding to thresholds of 4.26, 5.33, 5.55 and 5.81 IU/ml for predicting decreased total lymphocyte, T lymphocyte, CD4+ and CD8+ cells. CONCLUSIONS QFT that replacing whole blood with PBMCs should be recommended to handle high Nil samples, and QFT-Plus can declined the frequency of low Mit results. In addition, Mit-Nil < 6 and 5.81 IU/ml are potential thresholds to identify the risk of false negatives and impaired cellular immunity, respectively.
Collapse
Affiliation(s)
- Linchuan Wang
- The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Jin-Xiong Ruan
- The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Wei Chen
- The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Xiao-Qin Wang
- The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Yan Yu
- Hong-Hui Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi Province, China.
| |
Collapse
|
14
|
Marques-Neto LM, Trentini MM, Kanno AI, Rodriguez D, Leite LCDC. Recombinant BCG expressing the LTAK63 adjuvant increased memory T cells and induced long-lasting protection against Mycobacterium tuberculosis challenge in mice. Front Immunol 2023; 14:1205449. [PMID: 37520577 PMCID: PMC10374402 DOI: 10.3389/fimmu.2023.1205449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 06/29/2023] [Indexed: 08/01/2023] Open
Abstract
Vaccine-induced protection against Mycobacterium tuberculosis (Mtb) is usually ascribed to the induction of Th1, Th17, and CD8+ T cells. However, protective immune responses should also involve other immune cell subsets, such as memory T cells. We have previously shown improved protection against Mtb challenge using the rBCG-LTAK63 vaccine (a recombinant BCG strain expressing the LTAK63 adjuvant, a genetically detoxified derivative of the A subunit from E. coli heat-labile toxin). Here we show that mice immunized with rBCG-LTAK63 exhibit a long-term (at least until 6 months) polyfunctional Th1/Th17 response in the draining lymph nodes and in the lungs. This response was accompanied by the increased presence of a diverse set of memory T cells, including central memory, effector memory and tissue-resident memory T cells. After the challenge, the T cell phenotype in the lymph nodes and lungs were characterized by a decrease in central memory T cells, and an increase in effector memory T cells and effector T cells. More importantly, when challenged 6 months after the immunization, this group demonstrated increased protection in comparison to BCG. In conclusion, this work provides experimental evidence in mice that the rBCG-LTAK63 vaccine induces a persistent increase in memory and effector T cell numbers until at least 6 months after immunization, which correlates with increased protection against Mtb. This improved immune response may contribute to enhance the long-term protection.
Collapse
|
15
|
Mittereder LR, Swoboda J, De Pascalis R, Elkins KL. IL-12p40 is essential but not sufficient for Francisella tularensis LVS clearance in chronically infected mice. PLoS One 2023; 18:e0283161. [PMID: 36972230 PMCID: PMC10042368 DOI: 10.1371/journal.pone.0283161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 03/02/2023] [Indexed: 03/29/2023] Open
Abstract
IL-12p40 plays an important role in F. tularensis Live Vaccine Strain (LVS) clearance that is independent of its functions as a part of the heterodimeric cytokines IL-12p70 or IL-23. In contrast to WT, p35, or p19 knockout (KO) mice, p40 KO mice infected with LVS develop a chronic infection that does not resolve. Here, we further evaluated the role of IL-12p40 in F. tularensis clearance. Despite reduced IFN-γ production, primed splenocytes from p40 KO and p35 KO mice appeared functionally similar to those from WT mice during in vitro co-culture assays of intramacrophage bacterial growth control. Gene expression analysis revealed a subset of genes that were upregulated in re-stimulated WT and p35 KO splenocytes, but not p40 KO splenocytes, and thus are candidates for involvement in F. tularensis clearance. To directly evaluate a potential mechanism for p40 in F. tularensis clearance, we reconstituted protein levels in LVS-infected p40 KO mice using either intermittent injections of p40 homodimer (p80) or treatment with a p40-producing lentivirus construct. Although both delivery strategies yielded readily detectable levels of p40 in sera and spleens, neither treatment had a measurable impact on LVS clearance by p40 KO mice. Taken together, these studies demonstrate that clearance of F. tularensis infection depends on p40, but p40 monomers and/or dimers alone are not sufficient.
Collapse
Affiliation(s)
- Lara R Mittereder
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Jonathan Swoboda
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Roberto De Pascalis
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Karen L Elkins
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
| |
Collapse
|
16
|
Chandra P, Grigsby SJ, Philips JA. Immune evasion and provocation by Mycobacterium tuberculosis. Nat Rev Microbiol 2022; 20:750-766. [PMID: 35879556 PMCID: PMC9310001 DOI: 10.1038/s41579-022-00763-4] [Citation(s) in RCA: 228] [Impact Index Per Article: 76.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/20/2022] [Indexed: 02/07/2023]
Abstract
Mycobacterium tuberculosis, the causative agent of tuberculosis, has infected humans for millennia. M. tuberculosis is well adapted to establish infection, persist in the face of the host immune response and be transmitted to uninfected individuals. Its ability to complete this infection cycle depends on it both evading and taking advantage of host immune responses. The outcome of M. tuberculosis infection is often a state of equilibrium characterized by immunological control and bacterial persistence. Recent data have highlighted the diverse cell populations that respond to M. tuberculosis infection and the dynamic changes in the cellular and intracellular niches of M. tuberculosis during the course of infection. M. tuberculosis possesses an arsenal of protein and lipid effectors that influence macrophage functions and inflammatory responses; however, our understanding of the role that specific bacterial virulence factors play in the context of diverse cellular reservoirs and distinct infection stages is limited. In this Review, we discuss immune evasion and provocation by M. tuberculosis during its infection cycle and describe how a more detailed molecular understanding is crucial to enable the development of novel host-directed therapies, disease biomarkers and effective vaccines.
Collapse
Affiliation(s)
- Pallavi Chandra
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, USA
| | - Steven J Grigsby
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, USA
| | - Jennifer A Philips
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St Louis, MO, USA.
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, USA.
| |
Collapse
|
17
|
Hasankhani A, Bahrami A, Mackie S, Maghsoodi S, Alawamleh HSK, Sheybani N, Safarpoor Dehkordi F, Rajabi F, Javanmard G, Khadem H, Barkema HW, De Donato M. In-depth systems biological evaluation of bovine alveolar macrophages suggests novel insights into molecular mechanisms underlying Mycobacterium bovis infection. Front Microbiol 2022; 13:1041314. [PMID: 36532492 PMCID: PMC9748370 DOI: 10.3389/fmicb.2022.1041314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 11/04/2022] [Indexed: 08/26/2023] Open
Abstract
Objective Bovine tuberculosis (bTB) is a chronic respiratory infectious disease of domestic livestock caused by intracellular Mycobacterium bovis infection, which causes ~$3 billion in annual losses to global agriculture. Providing novel tools for bTB managements requires a comprehensive understanding of the molecular regulatory mechanisms underlying the M. bovis infection. Nevertheless, a combination of different bioinformatics and systems biology methods was used in this study in order to clearly understand the molecular regulatory mechanisms of bTB, especially the immunomodulatory mechanisms of M. bovis infection. Methods RNA-seq data were retrieved and processed from 78 (39 non-infected control vs. 39 M. bovis-infected samples) bovine alveolar macrophages (bAMs). Next, weighted gene co-expression network analysis (WGCNA) was performed to identify the co-expression modules in non-infected control bAMs as reference set. The WGCNA module preservation approach was then used to identify non-preserved modules between non-infected controls and M. bovis-infected samples (test set). Additionally, functional enrichment analysis was used to investigate the biological behavior of the non-preserved modules and to identify bTB-specific non-preserved modules. Co-expressed hub genes were identified based on module membership (MM) criteria of WGCNA in the non-preserved modules and then integrated with protein-protein interaction (PPI) networks to identify co-expressed hub genes/transcription factors (TFs) with the highest maximal clique centrality (MCC) score (hub-central genes). Results As result, WGCNA analysis led to the identification of 21 modules in the non-infected control bAMs (reference set), among which the topological properties of 14 modules were altered in the M. bovis-infected bAMs (test set). Interestingly, 7 of the 14 non-preserved modules were directly related to the molecular mechanisms underlying the host immune response, immunosuppressive mechanisms of M. bovis, and bTB development. Moreover, among the co-expressed hub genes and TFs of the bTB-specific non-preserved modules, 260 genes/TFs had double centrality in both co-expression and PPI networks and played a crucial role in bAMs-M. bovis interactions. Some of these hub-central genes/TFs, including PSMC4, SRC, BCL2L1, VPS11, MDM2, IRF1, CDKN1A, NLRP3, TLR2, MMP9, ZAP70, LCK, TNF, CCL4, MMP1, CTLA4, ITK, IL6, IL1A, IL1B, CCL20, CD3E, NFKB1, EDN1, STAT1, TIMP1, PTGS2, TNFAIP3, BIRC3, MAPK8, VEGFA, VPS18, ICAM1, TBK1, CTSS, IL10, ACAA1, VPS33B, and HIF1A, had potential targets for inducing immunomodulatory mechanisms by M. bovis to evade the host defense response. Conclusion The present study provides an in-depth insight into the molecular regulatory mechanisms behind M. bovis infection through biological investigation of the candidate non-preserved modules directly related to bTB development. Furthermore, several hub-central genes/TFs were identified that were significant in determining the fate of M. bovis infection and could be promising targets for developing novel anti-bTB therapies and diagnosis strategies.
Collapse
Affiliation(s)
- Aliakbar Hasankhani
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Abolfazl Bahrami
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
- Biomedical Center for Systems Biology Science Munich, Ludwig-Maximilians-University, Munich, Germany
| | - Shayan Mackie
- Faculty of Science, Earth Sciences Building, University of British Columbia, Vancouver, BC, Canada
| | - Sairan Maghsoodi
- Faculty of Paramedical Sciences, Kurdistan University of Medical Sciences, Kurdistan, Iran
| | - Heba Saed Kariem Alawamleh
- Department of Basic Scientific Sciences, AL-Balqa Applied University, AL-Huson University College, AL-Huson, Jordan
| | - Negin Sheybani
- Department of Animal and Poultry Science, College of Aburaihan, University of Tehran, Tehran, Iran
| | - Farhad Safarpoor Dehkordi
- Halal Research Center of IRI, FDA, Tehran, Iran
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Fatemeh Rajabi
- Department of Agronomy and Plant Breeding, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Ghazaleh Javanmard
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Hosein Khadem
- Department of Agronomy and Plant Breeding, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Herman W. Barkema
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Marcos De Donato
- Regional Department of Bioengineering, Tecnológico de Monterrey, Monterrey, Mexico
| |
Collapse
|
18
|
Makatsa MS, Omondi FMA, Bunjun R, Wilkinson RJ, Riou C, Burgers WA. Characterization of Mycobacterium tuberculosis-Specific Th22 Cells and the Effect of Tuberculosis Disease and HIV Coinfection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:446-455. [PMID: 35777848 PMCID: PMC9339498 DOI: 10.4049/jimmunol.2200140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 05/26/2022] [Indexed: 02/03/2023]
Abstract
The development of a highly effective tuberculosis (TB) vaccine is likely dependent on our understanding of what constitutes a protective immune response to TB. Accumulating evidence suggests that CD4+ T cells producing IL-22, a distinct subset termed "Th22" cells, may contribute to protective immunity to TB. Thus, we characterized Mycobacterium tuberculosis-specific Th22 (and Th1 and Th17) cells in 72 people with latent TB infection or TB disease, with and without HIV-1 infection. We investigated the functional properties (IFN-γ, IL-22, and IL-17 production), memory differentiation (CD45RA, CD27, and CCR7), and activation profile (HLA-DR) of M. tuberculosis-specific CD4+ T cells. In HIV-uninfected individuals with latent TB infection, we detected abundant circulating IFN-γ-producing CD4+ T cells (median, 0.93%) and IL-22-producing CD4+ T cells (median, 0.46%) in response to M. tuberculosis The frequency of IL-17-producing CD4+ T cells was much lower, at a median of 0.06%. Consistent with previous studies, IL-22 was produced by a distinct subset of CD4+ T cells and not coexpressed with IL-17. M. tuberculosis-specific IL-22 responses were markedly reduced (median, 0.08%) in individuals with TB disease and HIV coinfection compared with IFN-γ responses. M. tuberculosis-specific Th22 cells exhibited a distinct memory and activation phenotype compared with Th1 and Th17 cells. Furthermore, M. tuberculosis-specific IL-22 was produced by conventional CD4+ T cells that required TCR engagement. In conclusion, we confirm that Th22 cells are a component of the human immune response to TB. Depletion of M. tuberculosis-specific Th22 cells during HIV coinfection may contribute to increased risk of TB disease.
Collapse
Affiliation(s)
- Mohau S Makatsa
- Division of Medical Virology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - F Millicent A Omondi
- Division of Medical Virology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Rubina Bunjun
- Division of Medical Virology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Robert J Wilkinson
- Wellcome Centre for Infectious Diseases Research in Africa, University of Cape Town, Cape Town, South Africa
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- Department of Medicine, Imperial College London, London, U.K.; and
- Francis Crick Institute Mill Hill laboratory, London, U.K
| | - Catherine Riou
- Division of Medical Virology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Wellcome Centre for Infectious Diseases Research in Africa, University of Cape Town, Cape Town, South Africa
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Wendy A Burgers
- Division of Medical Virology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa;
- Wellcome Centre for Infectious Diseases Research in Africa, University of Cape Town, Cape Town, South Africa
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
19
|
Díaz-Fernández S, Villar-Hernández R, Stojanovic Z, Fernández M, Galvão MLDS, Tolosa G, Sánchez-Montalva A, Abad J, Jiménez-Fuentes MÁ, Safont G, Romero I, Sabrià J, Prat C, Domínguez J, Latorre I. Study of CD27, CD38, HLA-DR and Ki-67 immune profiles for the characterization of active tuberculosis, latent infection and end of treatment. Front Microbiol 2022; 13:885312. [PMID: 35935194 PMCID: PMC9354672 DOI: 10.3389/fmicb.2022.885312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 06/28/2022] [Indexed: 11/22/2022] Open
Abstract
Background Current blood-based diagnostic tools for TB are insufficient to properly characterize the distinct stages of TB, from the latent infection (LTBI) to its active form (aTB); nor can they assess treatment efficacy. Several immune cell biomarkers have been proposed as potential candidates for the development of improved diagnostic tools. Objective To compare the capacity of CD27, HLA-DR, CD38 and Ki-67 markers to characterize LTBI, active TB and patients who ended treatment and resolved TB. Methods Blood was collected from 45 patients defined according to clinical and microbiological criteria as: LTBI, aTB with less than 1 month of treatment and aTB after completing treatment. Peripheral blood mononuclear cells were stimulated with ESAT-6/CFP-10 or PPD antigens and acquired for flow cytometry after labelling with conjugated antibodies against CD3, CD4, CD8, CD27, IFN-γ, TNF-α, CD38, HLA-DR, and Ki-67. Conventional and multiparametric analyses were done with FlowJo and OMIQ, respectively. Results The expression of CD27, CD38, HLA-DR and Ki-67 markers was analyzed in CD4+ T-cells producing IFN-γ and/or TNF-α cytokines after ESAT-6/CFP-10 or PPD stimulation. Within antigen-responsive CD4+ T-cells, CD27− and CD38+ (ESAT-6/CFP-10-specific), and HLA-DR+ and Ki-67+ (PPD- and ESAT-6/CFP-10-specific) populations were significantly increased in aTB compared to LTBI. Ki-67 demonstrated the best discriminative performance as evaluated by ROC analyses (AUC > 0.9 after PPD stimulation). Data also points to a significant change in the expression of CD38 (ESAT-6/CFP-10-specific) and Ki-67 (PPD- and ESAT-6/CFP-10-specific) after ending the anti-TB treatment regimen. Furthermore, ratio based on the CD27 median fluorescence intensity in CD4+ T-cells over Mtb-specific CD4+ T-cells showed a positive association with aTB over LTBI (ESAT-6/CFP-10-specific). Additionally, multiparametric FlowSOM analyses revealed an increase in CD27 cell clusters and a decrease in HLA-DR cell clusters within Mtb-specific populations after the end of treatment. Conclusion Our study independently confirms that CD27−, CD38+, HLA-DR+ and Ki-67+ populations on Mtb-specific CD4+ T-cells are increased during active TB disease. Multiparametric analyses unbiasedly identify clusters based on CD27 or HLA-DR whose abundance can be related to treatment efficacy. Further studies are necessary to pinpoint the convergence between conventional and multiparametric approaches.
Collapse
Affiliation(s)
- Sergio Díaz-Fernández
- Institut d’Investigació Germans Trias i Pujol, Barcelona, Spain
- CIBER Enfermedades Respiratorias, CIBERES, Instituto de Salud Carlos III, Madrid, Spain
- Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Raquel Villar-Hernández
- Institut d’Investigació Germans Trias i Pujol, Barcelona, Spain
- CIBER Enfermedades Respiratorias, CIBERES, Instituto de Salud Carlos III, Madrid, Spain
- Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Zoran Stojanovic
- CIBER Enfermedades Respiratorias, CIBERES, Instituto de Salud Carlos III, Madrid, Spain
- Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, Barcelona, Spain
- Servei de Pneumologia, Hospital Universitari Germans Trias i Pujol, Barcelona, Spain
| | - Marco Fernández
- Plataforma de Citometría, Institut d’Investigació Germans Trias i Pujol, Barcelona, Spain
| | | | | | - Adrián Sánchez-Montalva
- Infectious Diseases Department, Vall d’Hebron University Hospital, PROSICS Barcelona, Universitat Autònoma de Barcelona, Barcelona, Spain
- Grupo de Estudio de micobacterias (GEIM), Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica (SEIMC), Madrid, Spain
| | - Jorge Abad
- CIBER Enfermedades Respiratorias, CIBERES, Instituto de Salud Carlos III, Madrid, Spain
- Servei de Pneumologia, Hospital Universitari Germans Trias i Pujol, Barcelona, Spain
| | | | - Guillem Safont
- Institut d’Investigació Germans Trias i Pujol, Barcelona, Spain
- CIBER Enfermedades Respiratorias, CIBERES, Instituto de Salud Carlos III, Madrid, Spain
- Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Iris Romero
- Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, Barcelona, Spain
| | | | - Cristina Prat
- Institut d’Investigació Germans Trias i Pujol, Barcelona, Spain
- CIBER Enfermedades Respiratorias, CIBERES, Instituto de Salud Carlos III, Madrid, Spain
- Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, Barcelona, Spain
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Jose Domínguez
- Institut d’Investigació Germans Trias i Pujol, Barcelona, Spain
- CIBER Enfermedades Respiratorias, CIBERES, Instituto de Salud Carlos III, Madrid, Spain
- Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Irene Latorre
- Institut d’Investigació Germans Trias i Pujol, Barcelona, Spain
- CIBER Enfermedades Respiratorias, CIBERES, Instituto de Salud Carlos III, Madrid, Spain
- Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, Barcelona, Spain
- *Correspondence: Irene Latorre,
| |
Collapse
|
20
|
Van Dis E, Fox DM, Morrison HM, Fines DM, Babirye JP, McCann LH, Rawal S, Cox JS, Stanley SA. IFN-γ-independent control of M. tuberculosis requires CD4 T cell-derived GM-CSF and activation of HIF-1α. PLoS Pathog 2022; 18:e1010721. [PMID: 35877763 PMCID: PMC9352196 DOI: 10.1371/journal.ppat.1010721] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 08/04/2022] [Accepted: 07/01/2022] [Indexed: 11/29/2022] Open
Abstract
The prevailing model of protective immunity to tuberculosis is that CD4 T cells produce the cytokine IFN-γ to activate bactericidal mechanisms in infected macrophages. Although IFN-γ-independent CD4 T cell based control of M. tuberculosis infection has been demonstrated in vivo it is unclear whether CD4 T cells are capable of directly activating macrophages to control infection in the absence of IFN-γ. We developed a co-culture model using CD4 T cells isolated from the lungs of infected mice and M. tuberculosis-infected murine bone marrow-derived macrophages (BMDMs) to investigate mechanisms of CD4 dependent control of infection. We found that even in the absence of IFN-γ signaling, CD4 T cells drive macrophage activation, M1 polarization, and control of infection. This IFN-γ-independent control of infection requires activation of the transcription factor HIF-1α and a shift to aerobic glycolysis in infected macrophages. While HIF-1α activation following IFN-γ stimulation requires nitric oxide, HIF-1α-mediated control in the absence of IFN-γ is nitric oxide-independent, indicating that distinct pathways can activate HIF-1α during infection. We show that CD4 T cell-derived GM-CSF is required for IFN-γ-independent control in BMDMs, but that recombinant GM-CSF is insufficient to control infection in BMDMs or alveolar macrophages and does not rescue the absence of control by GM-CSF-deficient T cells. In contrast, recombinant GM-CSF controls infection in peritoneal macrophages, induces lipid droplet biogenesis, and also requires HIF-1α for control. These results advance our understanding of CD4 T cell-mediated immunity to M. tuberculosis, reveal important differences in immune activation of distinct macrophage types, and outline a novel mechanism for the activation of HIF-1α. We establish a previously unknown functional link between GM-CSF and HIF-1α and provide evidence that CD4 T cell-derived GM-CSF is a potent bactericidal effector.
Collapse
Affiliation(s)
- Erik Van Dis
- Department of Molecular and Cell Biology, Division of Immunology and Pathogenesis, University of California, Berkeley, Berkeley, California, United States of America
| | - Douglas M. Fox
- Department of Molecular and Cell Biology, Division of Immunology and Pathogenesis, University of California, Berkeley, Berkeley, California, United States of America
| | - Huntly M. Morrison
- Department of Molecular and Cell Biology, Division of Immunology and Pathogenesis, University of California, Berkeley, Berkeley, California, United States of America
| | - Daniel M. Fines
- Department of Molecular and Cell Biology, Division of Immunology and Pathogenesis, University of California, Berkeley, Berkeley, California, United States of America
| | - Janet Peace Babirye
- Department of Molecular and Cell Biology, Division of Immunology and Pathogenesis, University of California, Berkeley, Berkeley, California, United States of America
| | - Lily H. McCann
- School of Public Health, Division of Infectious Diseases and Vaccinology, University of California, Berkeley, Berkeley, California, United States of America
| | - Sagar Rawal
- Department of Molecular and Cell Biology, Division of Immunology and Pathogenesis, University of California, Berkeley, Berkeley, California, United States of America
| | - Jeffery S. Cox
- Department of Molecular and Cell Biology, Division of Immunology and Pathogenesis, University of California, Berkeley, Berkeley, California, United States of America
| | - Sarah A. Stanley
- Department of Molecular and Cell Biology, Division of Immunology and Pathogenesis, University of California, Berkeley, Berkeley, California, United States of America
- School of Public Health, Division of Infectious Diseases and Vaccinology, University of California, Berkeley, Berkeley, California, United States of America
| |
Collapse
|
21
|
Mouse Subcutaneous BCG Vaccination and Mycobacterium tuberculosis Infection Alter the Lung and Gut Microbiota. Microbiol Spectr 2022; 10:e0169321. [PMID: 35652642 PMCID: PMC9241886 DOI: 10.1128/spectrum.01693-21] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The objective of this study was to characterize the effect of Bacillus Calmette-Guérin (BCG) vaccination and M. tuberculosis infection on gut and lung microbiota of C57BL/6 mice, a well-characterized mouse model of tuberculosis. BCG vaccination and infection with M. tuberculosis altered the relative abundance of Firmicutes and Bacteroidetes phyla in the lung compared with control group. Vaccination and infection changed the alpha- and beta-diversity in both the gut and the lung. However, lung diversity was the most affected organ after BCG vaccination and M. tuberculosis infection. Focusing on the gut-lung axis, a multivariate regression approach was used to compare profile evolution of gut and lung microbiota. More genera have modified relative abundances associated with BCG vaccination status at gut level compared with lung. Conversely, genera with modified relative abundances associated with M. tuberculosis infection were numerous at lung level. These results indicated that the host local response against infection impacted the whole microbial flora, while the immune response after vaccination modified mainly the gut microbiota. This study showed that a subcutaneous vaccination with a live attenuated microorganism induced both gut and lung dysbiosis that may play a key role in the immunopathogenesis of tuberculosis. IMPORTANCE The microbial communities in gut and lung are important players that may modulate the immunity against tuberculosis or other infections as well as impact the vaccine efficacy. We discovered that vaccination through the subcutaneous route affect the composition of gut and lung bacteria, and this might influence susceptibility and defense mechanisms against tuberculosis. Through these studies, we can identify microbial communities that can be manipulated to improve vaccine response and develop treatment adjuvants.
Collapse
|
22
|
Grant NL, Maiello P, Klein E, Lin PL, Borish HJ, Tomko J, Frye LJ, White AG, Kirschner DE, Mattila JT, Flynn JL. T cell transcription factor expression evolves over time in granulomas from Mycobacterium tuberculosis-infected cynomolgus macaques. Cell Rep 2022; 39:110826. [PMID: 35584684 PMCID: PMC9169877 DOI: 10.1016/j.celrep.2022.110826] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/25/2022] [Accepted: 04/26/2022] [Indexed: 11/18/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), is a global health concern, yearly resulting in 10 million new cases of active TB. Immunologic investigation of lung granulomas is essential for understanding host control of bacterial replication. Here, we identify and compare the pathological, cellular, and functional differences in granulomas at 4, 12, and 20 weeks post-infection in Chinese cynomolgus macaques. Original granulomas differ in transcription-factor expression within adaptive lymphocytes, with those at 12 weeks showing higher frequencies of CD8+T-bet+ T cells, while CD4+T-bet+ T cells increase at 20 weeks post-infection. The appearance of T-bet+ adaptive T cells at 12 and 20 weeks is coincident with a reduction in bacterial burden, suggesting their critical role in Mtb control. This study highlights the evolution of T cell responses within lung granulomas, suggesting that vaccines promoting the development and migration of T-bet+ T cells would enhance mycobacterial control. Grant et al. investigate the pathological, cellular, and functional differences in TB lung granulomas from macaques. The data reveal that most T cells at early time points have low frequencies of transcription factor expression, while T cells at later time points have increased expression of T-bet and a reduction in bacterial burden.
Collapse
Affiliation(s)
- Nicole L Grant
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Pauline Maiello
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Edwin Klein
- Division of Laboratory Animal Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - Philana Ling Lin
- Department of Pediatrics, Children's Hospital of Pittsburgh of the University of Pittsburgh Medical Center, Pittsburgh, PA, USA; Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - H Jacob Borish
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jaime Tomko
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - L James Frye
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Alexander G White
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Denise E Kirschner
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Joshua T Mattila
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA; Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - JoAnne L Flynn
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
23
|
Mishra A, Singh VK, Jagannath C, Subbian S, Restrepo BI, Gauduin MC, Khan A. Human Macrophages Exhibit GM-CSF Dependent Restriction of Mycobacterium tuberculosis Infection via Regulating Their Self-Survival, Differentiation and Metabolism. Front Immunol 2022; 13:859116. [PMID: 35634283 PMCID: PMC9134823 DOI: 10.3389/fimmu.2022.859116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 04/05/2022] [Indexed: 11/30/2022] Open
Abstract
GM-CSF is an important cytokine that regulates the proliferation of monocytes/macrophages and its various functions during health and disease. Although growing evidences support the notion that GM-CSF could play a major role in immunity against tuberculosis (TB) infection, the mechanism of GM-CSF mediated protective effect against TB remains largely unknown. Here in this study we examined the secreted levels of GM-CSF by human macrophages from different donors along with the GM-CSF dependent cellular processes that are critical for control of M. tuberculosis infection. While macrophage of different donors varied in their ability to produce GM-CSF, a significant correlation was observed between secreted levels of GM-CSF, survial of macrophages and intra-macrophage control of Mycobacterium tuberculosis bacilli. GM-CSF levels secreted by macrophages negatively correlated with the intra-macrophage M. tuberculosis burden, survival of infected host macrophages positively correlated with their GM-CSF levels. GM-CSF-dependent prolonged survival of human macrophages also correlated with significantly decreased bacterial burden and increased expression of self-renewal/cell-survival associated genes such as BCL-2 and HSP27. Antibody-mediated depletion of GM-CSF in macrophages resulted in induction of significantly elevated levels of apoptotic/necrotic cell death and a simultaneous decrease in autophagic flux. Additionally, protective macrophages against M. tuberculosis that produced more GM-CSF, induced a stronger granulomatous response and produced significantly increased levels of IL-1β, IL-12 and IL-10 and decreased levels of TNF-α and IL-6. In parallel, macrophages isolated from the peripheral blood of active TB patients exhibited reduced capacity to control the intracellular growth of M. tuberculosis and produced significantly lower levels of GM-CSF. Remarkably, as compared to healthy controls, macrophages of active TB patients exhibited significantly altered metabolic state correlating with their GM-CSF secretion levels. Altogether, these results suggest that relative levels of GM-CSF produced by human macrophages plays a critical role in preventing cell death and maintaining a protective differentiation and metabolic state of the host cell against M. tuberculosis infection.
Collapse
Affiliation(s)
- Abhishek Mishra
- Department of Pathology and Genomic Medicine, Houston Methodist Research Institute, Houston, TX, United States
| | - Vipul K. Singh
- Department of Pathology and Genomic Medicine, Houston Methodist Research Institute, Houston, TX, United States
| | - Chinnaswamy Jagannath
- Department of Pathology and Genomic Medicine, Houston Methodist Research Institute, Houston, TX, United States
| | - Selvakumar Subbian
- Department of Medicine, New Jersey Medical School, Public Health Research Institute, Newark, NJ, United States
| | - Blanca I. Restrepo
- University of Texas School of Public Health, Brownsville, TX, United States
| | - Marie-Claire Gauduin
- Disease Intervention and Prevention, Texas Biomedical Research Institute, San Antonio, TX, United States
| | - Arshad Khan
- Department of Pathology and Genomic Medicine, Houston Methodist Research Institute, Houston, TX, United States
| |
Collapse
|
24
|
Bharti R, Roy T, Verma S, Reddy DS, Shafi H, Verma K, Raman SK, Pal S, Azmi L, Singh AK, Ray L, Mugale MN, Misra A. Transient, inhaled gene therapy with gamma interferon mitigates pathology induced by host response in a mouse model of tuberculosis. Tuberculosis (Edinb) 2022; 134:102198. [DOI: 10.1016/j.tube.2022.102198] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/10/2022] [Accepted: 03/15/2022] [Indexed: 12/13/2022]
|
25
|
van der Donk LEH, van der Spek J, van Duivenvoorde T, Ten Brink MS, Geijtenbeek TBH, Kuijl CP, van Heijst JWJ, Ates LS. An optimized retroviral toolbox for overexpression and genetic perturbation of primary lymphocytes. Biol Open 2022; 11:274579. [PMID: 35229875 PMCID: PMC8905627 DOI: 10.1242/bio.059032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 01/11/2022] [Indexed: 11/20/2022] Open
Abstract
Genetic manipulation of primary lymphocytes is crucial for both clinical purposes and fundamental research. Despite their broad use, we encountered a paucity of data on systematic comparison and optimization of retroviral vectors, the workhorses of genetic modification of primary lymphocytes. Here, we report the construction and validation of a versatile range of retroviral expression vectors. These vectors can be used for the knockdown or overexpression of genes of interest in primary human and murine lymphocytes, in combination with a wide choice of selection and reporter strategies. By streamlining the vector backbone and insert design, these publicly available vectors allow easy interchangeability of the independent building blocks, such as different promoters, fluorescent proteins, surface markers and antibiotic resistance cassettes. We validated these vectors and tested the optimal promoters for in vitro and in vivo overexpression and knockdown of the murine T cell antigen receptor. By publicly sharing these vectors and the data on their optimization, we aim to facilitate genetic modification of primary lymphocytes for researchers entering this field. Summary: Viral transduction is generally the method of choice for genetic manipulation of primary lymphocytes. Here, the authors systematically compared different genetic components and created and shared an optimized set of vectors that can be used in all aspects of research on T cells.
Collapse
Affiliation(s)
- Lieve E H van der Donk
- Department of Experimental Immunology, Amsterdam institute for Infection and Immunity, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam 1105 AZ, the Netherlands
| | - Jet van der Spek
- Department of Experimental Immunology, Amsterdam institute for Infection and Immunity, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam 1105 AZ, the Netherlands
| | - Tom van Duivenvoorde
- Department of Experimental Immunology, Amsterdam institute for Infection and Immunity, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam 1105 AZ, the Netherlands
| | - Marieke S Ten Brink
- Division of Infectious Diseases and Center of Experimental and Molecular Medicine, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam 1105 AZ, the Netherlands
| | - Teunis B H Geijtenbeek
- Department of Experimental Immunology, Amsterdam institute for Infection and Immunity, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam 1105 AZ, the Netherlands
| | - Coenraad P Kuijl
- Medical Microbiology and Infection Control, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam 1081 HV, the Netherlands
| | - Jeroen W J van Heijst
- Department of Experimental Immunology, Amsterdam institute for Infection and Immunity, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam 1105 AZ, the Netherlands
| | - Louis S Ates
- Department of Experimental Immunology, Amsterdam institute for Infection and Immunity, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam 1105 AZ, the Netherlands.,Medical Microbiology and Infection Control, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam 1081 HV, the Netherlands
| |
Collapse
|
26
|
Th1 cells are dispensable for primary clearance of Chlamydia from the female reproductive tract of mice. PLoS Pathog 2022; 18:e1010333. [PMID: 35196366 PMCID: PMC8901068 DOI: 10.1371/journal.ppat.1010333] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 03/07/2022] [Accepted: 02/02/2022] [Indexed: 01/20/2023] Open
Abstract
Protective immune responses to Chlamydia infection within the female reproductive tract (FRT) are incompletely understood. MHC class II-restricted CD4 Th1 responses are believed to be vital for bacterial clearance due to their capacity to secrete IFN-γ, but an essential requirement for T-bet-expressing Th1 cells has yet to be demonstrated in the mouse model of Chlamydia infection. Here, we investigated the role of T-bet and IFN-γ in primary clearance of Chlamydia after FRT infection. Surprisingly, IFN-γ producing CD4 T cells from the FRT expressed low levels of T-bet throughout infection, suggesting that classical T-bet-expressing Th1 cells are inefficiently generated and therefore unlikely to participate in bacteria clearance. Furthermore, mice deficient in T-bet expression or with a CD4-specific T-bet deficiency cleared FRT infection similarly to wild-type controls. T-bet-deficient mice displayed significant skewing of FRT CD4 T cells towards Th17 responses, demonstrating that compensatory effector pathways are generated in the absence of Th1 cells. In marked contrast, IFN-γ-, and IFN-γR-deficient mice were able to reduce FRT bacterial burdens, but suffered systemic bacterial dissemination and 100% mortality. Together, these data demonstrate that IFN-γ signaling is essential to protect mice from fatal systemic disease, but that classical T-bet-expressing Th1 cells are non-essential for primary clearance within the FRT. Exploring the protective contribution of Th1 cells versus other CD4 effector lineages could provide important information for the generation of new Chlamydia vaccines. The production of IFN-γ by CD4 Th1 cells is thought to be critical for the clearance of Chlamydia from the female reproductive tract (FRT), but this has not been formally tested. Here we demonstrate that T-bet+ Th1 cells are not essential for effective Chlamydia clearance. Furthermore, the impact of IFN-γ deficiency or depletion is largely observed as a failure to control bacterial dissemination, rather than clearance from the FRT. Together, these data suggest that different immunological mechanisms are responsible for restraining systemic spread of bacteria versus FRT control. Defining alternative non-Th1 CD4 effector mechanisms that are responsible for controlling Chlamydia replication within the FRT could be foundational for future vaccine development.
Collapse
|
27
|
Ritter K, Rousseau J, Hölscher C. Interleukin-27 in Tuberculosis: A Sheep in Wolf’s Clothing? Front Immunol 2022; 12:810602. [PMID: 35116036 PMCID: PMC8803639 DOI: 10.3389/fimmu.2021.810602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 12/22/2021] [Indexed: 12/12/2022] Open
Abstract
In tuberculosis (TB), protective inflammatory immune responses and the pathological sequelae of chronic inflammation significantly depend on a timely balance of cytokine expression. In contrast to other anti-inflammatory cytokines, interleukin (IL)-27 has fundamental effects in experimental Mycobacterium tuberculosis (Mtb) infection: the absence of IL-27-mediated signalling promotes a better control of mycobacterial growth on the one hand side but also leads to a chronic hyperinflammation and immunopathology later during infection. Hence, in the context of novel host-directed therapeutic approaches and vaccination strategies for the management of TB, the timely restricted blockade of IL-27 signalling may represent an advanced treatment option. In contrast, administration of IL-27 itself may allow to treat the immunopathological consequences of chronic TB. In both cases, a better knowledge of the cell type-specific and kinetic effects of IL-27 after Mtb infection is essential. This review summarizes IL-27-mediated mechanisms affecting protection and immunopathology in TB and discusses possible therapeutic applications.
Collapse
Affiliation(s)
- Kristina Ritter
- Infection Immunology, Research Centre Borstel, Borstel, Germany
| | - Jasmin Rousseau
- Infection Immunology, Research Centre Borstel, Borstel, Germany
| | - Christoph Hölscher
- Infection Immunology, Research Centre Borstel, Borstel, Germany
- German Centre for Infection Research (DZIF), Partner Site Hamburg-Borstel-Lübeck-Riems, Borstel, Germany
- *Correspondence: Christoph Hölscher,
| |
Collapse
|
28
|
Co DO, Hogan LH, Karman J, Herbath M, Fabry Z, Sandor M. T Cell Interactions in Mycobacterial Granulomas: Non-Specific T Cells Regulate Mycobacteria-Specific T Cells in Granulomatous Lesions. Cells 2021; 10:cells10123285. [PMID: 34943793 PMCID: PMC8699651 DOI: 10.3390/cells10123285] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 11/16/2021] [Accepted: 11/20/2021] [Indexed: 11/16/2022] Open
Abstract
Infections with pathogenic mycobacteria are controlled by the formation of a unique structure known as a granuloma. The granuloma represents a host–pathogen interface where bacteria are killed and confined by the host response, but also where bacteria persist. Previous work has demonstrated that the T cell repertoire is heterogenous even at the single granuloma level. However, further work using pigeon cytochrome C (PCC) epitope-tagged BCG (PCC-BCG) and PCC-specific 5CC7 RAG−/− TCR transgenic (Tg) mice has demonstrated that a monoclonal T cell population is able to control infection. At the chronic stage of infection, granuloma-infiltrating T cells remain highly activated in wild-type mice, while T cells in the monoclonal T cell mice are anergic. We hypothesized that addition of an acutely activated non-specific T cell to the monoclonal T cell system could recapitulate the wild-type phenotype. Here we report that activated non-specific T cells have access to the granuloma and deliver a set of cytokines and chemokines to the lesions. Strikingly, non-specific T cells rescue BCG-specific T cells from anergy and enhance the function of BCG-specific T cells in the granuloma in the chronic phase of infection when bacterial antigen load is low. In addition, we find that these same non-specific T cells have an inhibitory effect on systemic BCG-specific T cells. Taken together, these data suggest that T cells non-specific for granuloma-inducing agents can alter the function of granuloma-specific T cells and have important roles in mycobacterial immunity and other granulomatous disorders.
Collapse
Affiliation(s)
- Dominic O. Co
- Department of Pediatrics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA;
| | - Laura H. Hogan
- The Institute for Clinical and Translational Research, University of Wisconsin-Madison, Madison, WI 53705, USA;
| | - Jozsef Karman
- Cambridge Research Center, Abbvie, Inc., Cambridge, MA 02139, USA;
| | - Melinda Herbath
- Department of Pathology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA; (M.H.); (Z.F.)
| | - Zsuzsanna Fabry
- Department of Pathology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA; (M.H.); (Z.F.)
| | - Matyas Sandor
- Department of Pathology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA; (M.H.); (Z.F.)
- Correspondence: ; Tel.: +1-(608)-265-8715
| |
Collapse
|
29
|
Bernard-Raichon L, Colom A, Monard SC, Namouchi A, Cescato M, Garnier H, Leon-Icaza SA, Métais A, Dumas A, Corral D, Ghebrendrias N, Guilloton P, Vérollet C, Hudrisier D, Remot A, Langella P, Thomas M, Cougoule C, Neyrolles O, Lugo-Villarino G. A Pulmonary Lactobacillus murinus Strain Induces Th17 and RORγt + Regulatory T Cells and Reduces Lung Inflammation in Tuberculosis. THE JOURNAL OF IMMUNOLOGY 2021; 207:1857-1870. [PMID: 34479945 DOI: 10.4049/jimmunol.2001044] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 07/24/2021] [Indexed: 12/31/2022]
Abstract
The lungs harbor multiple resident microbial communities, otherwise known as the microbiota. There is an emerging interest in deciphering whether the pulmonary microbiota modulate local immunity, and whether this knowledge could shed light on mechanisms operating in the response to respiratory pathogens. In this study, we investigate the capacity of a pulmonary Lactobacillus strain to modulate the lung T cell compartment and assess its prophylactic potential upon infection with Mycobacterium tuberculosis, the etiological agent of tuberculosis. In naive mice, we report that a Lactobacillus murinus (Lagilactobacillus murinus) strain (CNCM I-5314) increases the presence of lung Th17 cells and of a regulatory T cell (Treg) subset known as RORγt+ Tregs. In particular, intranasal but not intragastric administration of CNCM I-5314 increases the expansion of these lung leukocytes, suggesting a local rather than systemic effect. Resident Th17 and RORγt+ Tregs display an immunosuppressive phenotype that is accentuated by CNCM I-5314. Despite the well-known ability of M. tuberculosis to modulate lung immunity, the immunomodulatory effect by CNCM I-5314 is dominant, as Th17 and RORγt+ Tregs are still highly increased in the lung at 42-d postinfection. Importantly, CNCM I-5314 administration in M. tuberculosis-infected mice results in reduction of pulmonary inflammation, without increasing M. tuberculosis burden. Collectively, our findings provide evidence for an immunomodulatory capacity of CNCM I-5314 at steady state and in a model of chronic inflammation in which it can display a protective role, suggesting that L. murinus strains found in the lung may shape local T cells in mice and, perhaps, in humans.
Collapse
Affiliation(s)
- Lucie Bernard-Raichon
- Institut de Pharmacologie et Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France;
| | - André Colom
- Institut de Pharmacologie et Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Sarah C Monard
- Institut de Pharmacologie et Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Amine Namouchi
- Centre for Integrative Genetics, Norwegian University of Life Sciences, As, Norway; and
| | - Margaux Cescato
- Institut de Pharmacologie et Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Hugo Garnier
- Institut de Pharmacologie et Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Stephen A Leon-Icaza
- Institut de Pharmacologie et Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Arnaud Métais
- Institut de Pharmacologie et Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Alexia Dumas
- Institut de Pharmacologie et Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Dan Corral
- Institut de Pharmacologie et Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Natsinet Ghebrendrias
- Institut de Pharmacologie et Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Pauline Guilloton
- Institut de Pharmacologie et Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Christel Vérollet
- Institut de Pharmacologie et Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Denis Hudrisier
- Institut de Pharmacologie et Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Aude Remot
- Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Philippe Langella
- Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Muriel Thomas
- Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Céline Cougoule
- Institut de Pharmacologie et Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Olivier Neyrolles
- Institut de Pharmacologie et Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Geanncarlo Lugo-Villarino
- Institut de Pharmacologie et Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France;
| |
Collapse
|
30
|
Bunjun R, Omondi FMA, Makatsa MS, Keeton R, Wendoh JM, Müller TL, Prentice CSL, Wilkinson RJ, Riou C, Burgers WA. Th22 Cells Are a Major Contributor to the Mycobacterial CD4 + T Cell Response and Are Depleted During HIV Infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2021; 207:1239-1249. [PMID: 34389623 PMCID: PMC8387408 DOI: 10.4049/jimmunol.1900984] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 07/03/2021] [Indexed: 12/13/2022]
Abstract
HIV-1 infection substantially increases the risk of developing tuberculosis (TB). Mechanisms such as defects in the Th1 response to Mycobacterium tuberculosis in HIV-infected persons have been widely reported. However, Th1-independent mechanisms also contribute to protection against TB. To identify a broader spectrum of defects in TB immunity during HIV infection, we examined IL-17A and IL-22 production in response to mycobacterial Ags in peripheral blood of persons with latent TB infection and HIV coinfection. Upon stimulating with mycobacterial Ags, we observed a distinct CD4+ Th lineage producing IL-22 in the absence of IL-17A and IFN-γ. Mycobacteria-specific Th22 cells were present at high frequencies in blood and contributed up to 50% to the CD4+ T cell response to mycobacteria, comparable in magnitude to the IFN-γ Th1 response (median 0.91% and 0.55%, respectively). Phenotypic characterization of Th22 cells revealed that their memory differentiation was similar to M. tuberculosis-specific Th1 cells (i.e., predominantly early differentiated CD45RO+CD27+ phenotype). Moreover, CCR6 and CXCR3 expression profiles of Th22 cells were similar to Th17 cells, whereas their CCR4 and CCR10 expression patterns displayed an intermediate phenotype between Th1 and Th17 cells. Strikingly, mycobacterial IL-22 responses were 3-fold lower in HIV-infected persons compared with uninfected persons, and the magnitude of responses correlated inversely with HIV viral load. These data provide important insights into mycobacteria-specific Th subsets in humans and suggest a potential role for IL-22 in protection against TB during HIV infection. Further studies are needed to fully elucidate the role of IL-22 in protective TB immunity.
Collapse
Affiliation(s)
- Rubina Bunjun
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Fidilia M A Omondi
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Mohau S Makatsa
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Roanne Keeton
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Jerome M Wendoh
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Tracey L Müller
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Caryn S L Prentice
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Robert J Wilkinson
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- Wellcome Centre for Infectious Diseases Research in Africa, University of Cape Town, Cape Town, South Africa
- Department of Medicine, University of Cape Town, Cape Town, South Africa
- Department of Medicine, Imperial College London, London, United Kingdom; and
- The Francis Crick Institute, London, United Kingdom
| | - Catherine Riou
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- Department of Pathology, University of Cape Town, Cape Town, South Africa
- Wellcome Centre for Infectious Diseases Research in Africa, University of Cape Town, Cape Town, South Africa
| | - Wendy A Burgers
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa;
- Department of Pathology, University of Cape Town, Cape Town, South Africa
- Wellcome Centre for Infectious Diseases Research in Africa, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
31
|
Park HS, Choi S, Back YW, Lee KI, Choi HG, Kim HJ. Mycobacterium tuberculosis RpfE-Induced Prostaglandin E2 in Dendritic Cells Induces Th1/Th17 Cell Differentiation. Int J Mol Sci 2021; 22:ijms22147535. [PMID: 34299161 PMCID: PMC8304802 DOI: 10.3390/ijms22147535] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/05/2021] [Accepted: 07/11/2021] [Indexed: 01/13/2023] Open
Abstract
Prostaglandin E2 (PGE2) is an important biological mediator involved in the defense against Mycobacterium tuberculosis (Mtb) infection. Currently, there are no reports on the mycobacterial components that regulate PGE2 production. Previously, we have reported that RpfE-treated dendritic cells (DCs) effectively expanded the Th1 and Th17 cell responses simultaneously; however, the mechanism underlying Th1 and Th17 cell differentiation is unclear. Here, we show that PGE2 produced by RpfE-activated DCs via the MAPK and cyclooxygenase 2 signaling pathways induces Th1 and Th17 cell responses mainly via the EP4 receptor. Furthermore, mice administered intranasally with PGE2 displayed RpfE-induced antigen-specific Th1 and Th17 responses with a significant reduction in bacterial load in the lungs. Furthermore, the addition of optimal PGE2 amount to IL-2-IL-6-IL-23p19-IL-1β was essential for promoting differentiation into Th1/Th17 cells with strong bactericidal activity. These results suggest that RpfE-matured DCs produce PGE2 that induces Th1 and Th17 cell differentiation with potent anti-mycobacterial activity.
Collapse
|
32
|
Foster M, Hill PC, Setiabudiawan TP, Koeken VACM, Alisjahbana B, van Crevel R. BCG-induced protection against Mycobacterium tuberculosis infection: Evidence, mechanisms, and implications for next-generation vaccines. Immunol Rev 2021; 301:122-144. [PMID: 33709421 PMCID: PMC8252066 DOI: 10.1111/imr.12965] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 02/12/2021] [Accepted: 02/13/2021] [Indexed: 12/20/2022]
Abstract
The tuberculosis (TB) vaccine Bacillus Calmette-Guérin (BCG) was introduced 100 years ago, but as it provides insufficient protection against TB disease, especially in adults, new vaccines are being developed and evaluated. The discovery that BCG protects humans from becoming infected with Mycobacterium tuberculosis (Mtb) and not just from progressing to TB disease provides justification for considering Mtb infection as an endpoint in vaccine trials. Such trials would require fewer participants than those with disease as an endpoint. In this review, we first define Mtb infection and disease phenotypes that can be used for mechanistic studies and/or endpoints for vaccine trials. Secondly, we review the evidence for BCG-induced protection against Mtb infection from observational and BCG re-vaccination studies, and discuss limitations and variation of this protection. Thirdly, we review possible underlying mechanisms for BCG efficacy against Mtb infection, including alternative T cell responses, antibody-mediated protection, and innate immune mechanisms, with a specific focus on BCG-induced trained immunity, which involves epigenetic and metabolic reprogramming of innate immune cells. Finally, we discuss the implications for further studies of BCG efficacy against Mtb infection, including for mechanistic research, and their relevance to the design and evaluation of new TB vaccines.
Collapse
Affiliation(s)
- Mitchell Foster
- Department of Microbiology and ImmunologyUniversity of OtagoDunedinNew Zealand
| | - Philip C. Hill
- Centre for International HealthUniversity of OtagoDunedinNew Zealand
| | - Todia Pediatama Setiabudiawan
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI)Radboud University Medical CenterNijmegenThe Netherlands
| | - Valerie A. C. M. Koeken
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI)Radboud University Medical CenterNijmegenThe Netherlands
- Department of Computational Biology for Individualised Infection MedicineCentre for Individualised Infection Medicine (CiiM) & TWINCOREJoint Ventures between The Helmholtz‐Centre for Infection Research (HZI) and The Hannover Medical School (MHH)HannoverGermany
| | - Bachti Alisjahbana
- Tuberculosis Working GroupFaculty of MedicineUniversitas PadjadjaranBandungIndonesia
| | - Reinout van Crevel
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI)Radboud University Medical CenterNijmegenThe Netherlands
| |
Collapse
|
33
|
De novo histidine biosynthesis protects Mycobacterium tuberculosis from host IFN-γ mediated histidine starvation. Commun Biol 2021; 4:410. [PMID: 33767335 PMCID: PMC7994828 DOI: 10.1038/s42003-021-01926-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 03/01/2021] [Indexed: 01/31/2023] Open
Abstract
Intracellular pathogens including Mycobacterium tuberculosis (Mtb) have evolved with strategies to uptake amino acids from host cells to fulfil their metabolic requirements. However, Mtb also possesses de novo biosynthesis pathways for all the amino acids. This raises a pertinent question- how does Mtb meet its histidine requirements within an in vivo infection setting? Here, we present a mechanism in which the host, by up-regulating its histidine catabolizing enzymes through interferon gamma (IFN-γ) mediated signalling, exerts an immune response directed at starving the bacillus of intracellular free histidine. However, the wild-type Mtb evades this host immune response by biosynthesizing histidine de novo, whereas a histidine auxotroph fails to multiply. Notably, in an IFN-γ-/- mouse model, the auxotroph exhibits a similar extent of virulence as that of the wild-type. The results augment the current understanding of host-Mtb interactions and highlight the essentiality of Mtb histidine biosynthesis for its pathogenesis.
Collapse
|
34
|
Ravesloot-Chávez MM, Van Dis E, Stanley SA. The Innate Immune Response to Mycobacterium tuberculosis Infection. Annu Rev Immunol 2021; 39:611-637. [PMID: 33637017 DOI: 10.1146/annurev-immunol-093019-010426] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Infection with Mycobacterium tuberculosis causes >1.5 million deaths worldwide annually. Innate immune cells are the first to encounter M. tuberculosis, and their response dictates the course of infection. Dendritic cells (DCs) activate the adaptive response and determine its characteristics. Macrophages are responsible both for exerting cell-intrinsic antimicrobial control and for initiating and maintaining inflammation. The inflammatory response to M. tuberculosis infection is a double-edged sword. While cytokines such as TNF-α and IL-1 are important for protection, either excessive or insufficient cytokine production results in progressive disease. Furthermore, neutrophils-cells normally associated with control of bacterial infection-are emerging as key drivers of a hyperinflammatory response that results in host mortality. The roles of other innate cells, including natural killer cells and innate-like T cells, remain enigmatic. Understanding the nuances of both cell-intrinsic control of infection and regulation of inflammation will be crucial for the successful development of host-targeted therapeutics and vaccines.
Collapse
Affiliation(s)
| | - Erik Van Dis
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA; ,
| | - Sarah A Stanley
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA; , .,Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, California 94720, USA
| |
Collapse
|
35
|
Innate IFN-γ Is Essential for Systemic Chlamydia muridarum Control in Mice, While CD4 T Cell-Dependent IFN-γ Production Is Highly Redundant in the Female Reproductive Tract. Infect Immun 2021; 89:IAI.00541-20. [PMID: 33257535 PMCID: PMC8097277 DOI: 10.1128/iai.00541-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 11/17/2020] [Indexed: 12/15/2022] Open
Abstract
Protective immunity against the obligate intracellular bacterium Chlamydia has long been thought to rely on CD4 T cell-dependent gamma interferon (IFN-γ) production. Nevertheless, whether IFN-γ is produced by other cellular sources during Chlamydia infection and how CD4 T cell-dependent and -independent IFN-γ contribute differently to host resistance have not been carefully evaluated. In this study, we dissected the requirements of IFN-γ produced by innate immune cells and CD4 T cells for resolution of Chlamydia muridarum female reproductive tract (FRT) infection. After C. muridarum intravaginal infection, IFN-γ-deficient and T cell-deficient mice exhibited opposite phenotypes for survival and bacterial shedding at the FRT mucosa, demonstrating the distinct requirements for IFN-γ and CD4 T cells in host defense against Chlamydia In Rag1-deficient mice, IFN-γ produced by innate lymphocytes (ILCs) accounted for early bacterial control and prolonged survival in the absence of adaptive immunity. Although type I ILCs are potent IFN-γ producers, we found that mature NK cells and ILC1s were not the sole sources of innate IFN-γ in response to Chlamydia By conducting T cell adoptive transfer, we showed definitively that IFN-γ-deficient CD4 T cells were sufficient for effective bacterial killing in the FRT during the first 21 days of infection and reduced bacterial burden more than 1,000-fold, although mice receiving IFN-γ-deficient CD4 T cells failed to completely eradicate the bacteria from the FRT like their counterparts receiving wild-type (WT) CD4 T cells. Together, our results revealed that innate IFN-γ is essential for preventing systemic Chlamydia dissemination, whereas IFN-γ produced by CD4 T cells is largely redundant at the FRT mucosa.
Collapse
|
36
|
Kinsella RL, Zhu DX, Harrison GA, Mayer Bridwell AE, Prusa J, Chavez SM, Stallings CL. Perspectives and Advances in the Understanding of Tuberculosis. ANNUAL REVIEW OF PATHOLOGY 2021; 16:377-408. [PMID: 33497258 DOI: 10.1146/annurev-pathol-042120-032916] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), remains a leading cause of death due to infection in humans. To more effectively combat this pandemic, many aspects of TB control must be developed, including better point of care diagnostics, shorter and safer drug regimens, and a protective vaccine. To address all these areas of need, better understanding of the pathogen, host responses, and clinical manifestations of the disease is required. Recently, the application of cutting-edge technologies to the study of Mtb pathogenesis has resulted in significant advances in basic biology, vaccine development, and antibiotic discovery. This leaves us in an exciting era of Mtb research in which our understanding of this deadly infection is improving at a faster rate than ever, and renews hope in our fight to end TB. In this review, we reflect on what is known regarding Mtb pathogenesis, highlighting recent breakthroughs that will provide leverage for the next leaps forward in the field.
Collapse
Affiliation(s)
- Rachel L Kinsella
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri 63110, USA;
| | - Dennis X Zhu
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri 63110, USA;
| | - Gregory A Harrison
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri 63110, USA;
| | - Anne E Mayer Bridwell
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri 63110, USA;
| | - Jerome Prusa
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri 63110, USA;
| | - Sthefany M Chavez
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri 63110, USA;
| | - Christina L Stallings
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri 63110, USA;
| |
Collapse
|
37
|
Ritter K, Rousseau J, Hölscher C. The Role of gp130 Cytokines in Tuberculosis. Cells 2020; 9:E2695. [PMID: 33334075 PMCID: PMC7765486 DOI: 10.3390/cells9122695] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/01/2020] [Accepted: 12/10/2020] [Indexed: 12/13/2022] Open
Abstract
Protective immune responses to Mycobacterium tuberculosis (Mtb) infection substantially depend on a delicate balance within cytokine networks. Thus, immunosuppressive therapy by cytokine blockers, as successfully used in the management of various chronic inflammatory diseases, is often connected with an increased risk for tuberculosis (TB) reactivation. Hence, identification of alternative therapeutics which allow the treatment of inflammatory diseases without compromising anti-mycobacterial immunity remains an important issue. On the other hand, in the context of novel therapeutic approaches for the management of TB, host-directed adjunct therapies, which combine administration of antibiotics with immunomodulatory drugs, play an increasingly important role, particularly to reduce the duration of treatment. In both respects, cytokines/cytokine receptors related to the common receptor subunit gp130 may serve as promising target candidates. Within the gp130 cytokine family, interleukin (IL)-6, IL-11 and IL-27 are most explored in the context of TB. This review summarizes the differential roles of these cytokines in protection and immunopathology during Mtb infection and discusses potential therapeutic implementations with respect to the aforementioned approaches.
Collapse
Affiliation(s)
- Kristina Ritter
- Infection Immunology, Research Centre Borstel, D-23845 Borstel, Germany; (K.R.); (J.R.)
| | - Jasmin Rousseau
- Infection Immunology, Research Centre Borstel, D-23845 Borstel, Germany; (K.R.); (J.R.)
| | - Christoph Hölscher
- Infection Immunology, Research Centre Borstel, D-23845 Borstel, Germany; (K.R.); (J.R.)
- German Centre for Infection Research (DZIF), Partner Site Hamburg-Borstel-Lübeck-Riems, D-23845 Borstel, Germany
| |
Collapse
|
38
|
Böhme J, Martinez N, Li S, Lee A, Marzuki M, Tizazu AM, Ackart D, Frenkel JH, Todd A, Lachmandas E, Lum J, Shihui F, Ng TP, Lee B, Larbi A, Netea MG, Basaraba R, van Crevel R, Newell E, Kornfeld H, Singhal A. Metformin enhances anti-mycobacterial responses by educating CD8+ T-cell immunometabolic circuits. Nat Commun 2020; 11:5225. [PMID: 33067434 PMCID: PMC7567856 DOI: 10.1038/s41467-020-19095-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 09/28/2020] [Indexed: 02/07/2023] Open
Abstract
Patients with type 2 diabetes (T2D) have a lower risk of Mycobacterium tuberculosis infection, progression from infection to tuberculosis (TB) disease, TB morality and TB recurrence, when being treated with metformin. However, a detailed mechanistic understanding of these protective effects is lacking. Here, we use mass cytometry to show that metformin treatment expands a population of memory-like antigen-inexperienced CD8+CXCR3+ T cells in naive mice, and in healthy individuals and patients with T2D. Metformin-educated CD8+ T cells have increased (i) mitochondrial mass, oxidative phosphorylation, and fatty acid oxidation; (ii) survival capacity; and (iii) anti-mycobacterial properties. CD8+ T cells from Cxcr3-/- mice do not exhibit this metformin-mediated metabolic programming. In BCG-vaccinated mice and guinea pigs, metformin enhances immunogenicity and protective efficacy against M. tuberculosis challenge. Collectively, these results demonstrate an important function of CD8+ T cells in metformin-derived host metabolic-fitness towards M. tuberculosis infection.
Collapse
Affiliation(s)
- Julia Böhme
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, 138648, Singapore
| | - Nuria Martinez
- Department of Medicine, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA, 01655, USA
| | - Shamin Li
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, 138648, Singapore
- Fred Hutchinson Cancer Research Center, Seattle, WA, 98109-1024, USA
| | - Andrea Lee
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, 138648, Singapore
| | - Mardiana Marzuki
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, 138648, Singapore
| | - Anteneh Mehari Tizazu
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, 138648, Singapore
| | - David Ackart
- Department of Microbiology, Immunology & Pathology, Colorado State University, Fort Collins, CO, 80525-1601, USA
| | - Jessica Haugen Frenkel
- Department of Microbiology, Immunology & Pathology, Colorado State University, Fort Collins, CO, 80525-1601, USA
| | - Alexandra Todd
- Department of Microbiology, Immunology & Pathology, Colorado State University, Fort Collins, CO, 80525-1601, USA
| | - Ekta Lachmandas
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Josephine Lum
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, 138648, Singapore
| | - Foo Shihui
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, 138648, Singapore
| | - Tze Pin Ng
- Gerontology Research Programme, Yong Loo Lin School of Medicine, Department of Psychological Medicine, National University Health System, National University of Singapore, Singapore, Singapore
| | - Bernett Lee
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, 138648, Singapore
| | - Anis Larbi
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, 138648, Singapore
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
- Department for Genomics & Immunoregulation, Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | - Randall Basaraba
- Department of Microbiology, Immunology & Pathology, Colorado State University, Fort Collins, CO, 80525-1601, USA
| | - Reinout van Crevel
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Evan Newell
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, 138648, Singapore
- Fred Hutchinson Cancer Research Center, Seattle, WA, 98109-1024, USA
| | - Hardy Kornfeld
- Department of Medicine, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA, 01655, USA
| | - Amit Singhal
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, 138648, Singapore.
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore.
- Translational Health Science and Technology Institute (THSTI), Faridabad, Haryana, India.
- Infectious Disease Horizontal Technology Centre (ID HTC), Agency for Science, Technology and Research (A*STAR), Singapore, 138648, Singapore.
| |
Collapse
|
39
|
Barham MS, Whatney WE, Khayumbi J, Ongalo J, Sasser LE, Campbell A, Franczek M, Kabongo MM, Ouma SG, Hayara FO, Gandhi NR, Day CL. Activation-Induced Marker Expression Identifies Mycobacterium tuberculosis-Specific CD4 T Cells in a Cytokine-Independent Manner in HIV-Infected Individuals with Latent Tuberculosis. Immunohorizons 2020; 4:573-584. [PMID: 33008839 PMCID: PMC7585460 DOI: 10.4049/immunohorizons.2000051] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 09/15/2020] [Indexed: 01/07/2023] Open
Abstract
HIV infection is a significant risk factor for reactivation of latent Mycobacterium tuberculosis infection (LTBI) and progression to active tuberculosis disease, yet the mechanisms whereby HIV impairs T cell immunity to M. tuberculosis have not been fully defined. Evaluation of M. tuberculosis–specific CD4 T cells is commonly based on IFN-γ production, yet increasing evidence indicates the immune response to M. tuberculosis is heterogeneous and encompasses IFN-γ–independent responses. We hypothesized that upregulation of surface activation-induced markers (AIM) would facilitate detection of human M. tuberculosis–specific CD4 T cells in a cytokine-independent manner in HIV-infected and HIV-uninfected individuals with LTBI. PBMCs from HIV-infected and HIV-uninfected adults in Kenya were stimulated with CFP-10 and ESAT-6 peptides and evaluated by flow cytometry for upregulation of the activation markers CD25, OX40, CD69, and CD40L. Although M. tuberculosis–specific IFN-γ and IL-2 production was dampened in HIV-infected individuals, M. tuberculosis–specific CD25+OX40+ and CD69+CD40L+ CD4 T cells were detectable in the AIM assay in both HIV-uninfected and HIV-infected individuals with LTBI. Importantly, the frequency of M. tuberculosis–specific AIM+ CD4 T cells was not directly impacted by HIV viral load or CD4 count, thus demonstrating the feasibility of AIM assays for analysis of M. tuberculosis–specific CD4 T cells across a spectrum of HIV infection states. These data indicate that AIM assays enable identification of M. tuberculosis–specific CD4 T cells in a cytokine-independent manner in HIV-uninfected and HIV-infected individuals with LTBI in a high-tuberculosis burden setting, thus facilitating studies to define novel T cell correlates of protection to M. tuberculosis and elucidate mechanisms of HIV-associated dysregulation of antimycobacterial immunity.
Collapse
Affiliation(s)
| | | | - Jeremiah Khayumbi
- Center for Global Health Research, Kenya Medical Research Institute, Kisumu 40100, Kenya
| | - Joshua Ongalo
- Center for Global Health Research, Kenya Medical Research Institute, Kisumu 40100, Kenya
| | - Loren E Sasser
- Emory Vaccine Center, Emory University, Atlanta, GA 30329
| | - Angela Campbell
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA 30322
| | - Meghan Franczek
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA 30322
| | - Mbuyi Madeleine Kabongo
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA 30322
| | - Samuel G Ouma
- Center for Global Health Research, Kenya Medical Research Institute, Kisumu 40100, Kenya
| | - Felix Odhiambo Hayara
- Center for Global Health Research, Kenya Medical Research Institute, Kisumu 40100, Kenya
| | - Neel R Gandhi
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA 30322.,Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322; and
| | - Cheryl L Day
- Emory Vaccine Center, Emory University, Atlanta, GA 30329; .,Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322
| |
Collapse
|
40
|
Carranza C, Pedraza-Sanchez S, de Oyarzabal-Mendez E, Torres M. Diagnosis for Latent Tuberculosis Infection: New Alternatives. Front Immunol 2020; 11:2006. [PMID: 33013856 PMCID: PMC7511583 DOI: 10.3389/fimmu.2020.02006] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 07/24/2020] [Indexed: 12/29/2022] Open
Abstract
Latent tuberculosis infection (LTBI) is a subclinical mycobacterial infection defined on the basis of cellular immune response to mycobacterial antigens. The tuberculin skin test (TST) and the interferon gamma release assay (IGRA) are currently used to establish the diagnosis of LTB. However, neither TST nor IGRA is useful to discriminate between active and latent tuberculosis. Moreover, these tests cannot be used to predict whether an individual with LTBI will develop active tuberculosis (TB) or whether therapy for LTBI could be effective to decrease the risk of developing active TB. Therefore, in this article, we review current approaches and some efforts to identify an immunological marker that could be useful in distinguishing LTBI from TB and in evaluating the effectiveness of treatment of LTB on the risk of progression to active TB.
Collapse
Affiliation(s)
- Claudia Carranza
- Departamento de Microbiología, Instituto Nacional de Enfermedades Respiratorias, Mexico City, Mexico
| | - Sigifredo Pedraza-Sanchez
- Unidad de Bioquímica Instituto Nacional de Ciencias Médicas y Nutrición, Salvador Zubirán, Mexico City, Mexico
| | | | - Martha Torres
- Departamento de Microbiología, Instituto Nacional de Enfermedades Respiratorias, Mexico City, Mexico.,Subdirección de Investigación Biomédica, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City, Mexico
| |
Collapse
|
41
|
Shanmugasundaram U, Bucsan AN, Ganatra SR, Ibegbu C, Quezada M, Blair RV, Alvarez X, Velu V, Kaushal D, Rengarajan J. Pulmonary Mycobacterium tuberculosis control associates with CXCR3- and CCR6-expressing antigen-specific Th1 and Th17 cell recruitment. JCI Insight 2020; 5:137858. [PMID: 32554933 PMCID: PMC7453885 DOI: 10.1172/jci.insight.137858] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 06/04/2020] [Indexed: 12/15/2022] Open
Abstract
Mycobacterium tuberculosis-specific (M. tuberculosis-specific) T cell responses associated with immune control during asymptomatic latent tuberculosis infection (LTBI) remain poorly understood. Using a nonhuman primate aerosol model, we studied the kinetics, phenotypes, and functions of M. tuberculosis antigen-specific T cells in peripheral and lung compartments of M. tuberculosis-infected asymptomatic rhesus macaques by longitudinally sampling blood and bronchoalveolar lavage, for up to 24 weeks postinfection. We found substantially higher frequencies of M. tuberculosis-specific effector and memory CD4+ and CD8+ T cells producing IFN-γ in the airways compared with peripheral blood, and these frequencies were maintained throughout the study period. Moreover, M. tuberculosis-specific IL-17+ and IL-17+IFN-γ+ double-positive T cells were present in the airways but were largely absent in the periphery, suggesting that balanced mucosal Th1/Th17 responses are associated with LTBI. The majority of M. tuberculosis-specific CD4+ T cells that homed to the airways expressed the chemokine receptor CXCR3 and coexpressed CCR6. Notably, CXCR3+CD4+ cells were found in granulomatous and nongranulomatous regions of the lung and inversely correlated with M. tuberculosis burden. Our findings provide insights into antigen-specific T cell responses associated with asymptomatic M. tuberculosis infection that are relevant for developing better strategies to control TB.
Collapse
Affiliation(s)
| | - Allison N. Bucsan
- Tulane National Primate Research Center, Tulane University School of Medicine, Covington, Louisiana, USA
| | - Shashank R. Ganatra
- Tulane National Primate Research Center, Tulane University School of Medicine, Covington, Louisiana, USA
- Southwest National Primate Research Center, San Antonio, Texas, USA
- Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Chris Ibegbu
- Emory Vaccine Center, Emory University, Atlanta, Georgia, USA
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Melanie Quezada
- Emory Vaccine Center, Emory University, Atlanta, Georgia, USA
| | - Robert V. Blair
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, Louisiana, USA
| | - Xavier Alvarez
- Tulane National Primate Research Center, Tulane University School of Medicine, Covington, Louisiana, USA
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, Louisiana, USA
| | - Vijayakumar Velu
- Emory Vaccine Center, Emory University, Atlanta, Georgia, USA
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Deepak Kaushal
- Tulane National Primate Research Center, Tulane University School of Medicine, Covington, Louisiana, USA
- Southwest National Primate Research Center, San Antonio, Texas, USA
- Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Jyothi Rengarajan
- Emory Vaccine Center, Emory University, Atlanta, Georgia, USA
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
42
|
Taneja V, Kalra P, Goel M, Khilnani GC, Saini V, Prasad GBKS, Gupta UD, Krishna Prasad H. Impact and prognosis of the expression of IFN-α among tuberculosis patients. PLoS One 2020; 15:e0235488. [PMID: 32667932 PMCID: PMC7363073 DOI: 10.1371/journal.pone.0235488] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 06/16/2020] [Indexed: 12/03/2022] Open
Abstract
Mycobacterium tuberculosis (M.tb) infection stimulates the release of cytokines, including interferons (IFNs). IFNs are initiators, regulators, and effectors of innate and adaptive immunity. Accordingly, the expression levels of Type I (α, β) and II (γ) IFNs, among untreated tuberculosis (TB) patients and household contacts (HHC) clinically free of TB was assessed. A total of 264 individuals (TB patients-123; HHC-86; laboratory volunteers-55; Treated TB patients-36) were enrolled for this study. IFN-α mRNA expression levels predominated compared to IFN-γ and IFN-β among untreated TB patients. IFN-α transcripts were ~3.5 folds higher in TB patients compared to HHC, (p<0.0001). High expression of IFN-α was seen among 46% (56/ 123) of the TB patients and 26%, (22/86) of HHCs. The expression levels of IFN-α correlated with that of IFN transcriptional release factor 7 (IRF) (p<0.0001). In contrast, an inverse relationship exists between PGE2 and IFN-α expression levels; high IFN-α expressers were associated with low levels of PGE2 and vice-versa (Spearman’s rho = -0.563; p<0.0001). In-vitro, IFN-α failed to restrict the replication of intracellular M.tb. The anti-mycobacterial activity of IFN-γ was compromised in the presence of IFN-α, but not by IFN-β. The expression of IFN-α and β diminished or is absent, among successfully treated TB patients. These observations suggest the utility of assessment of Type I IFNs expression levels as a prognostic marker to monitor tuberculosis patient response to chemotherapy because changes in Type I IFNs expression are expected to precede the clearance and /reduction in bacterial load.
Collapse
Affiliation(s)
- Vibha Taneja
- National JALMA Institute of Leprosy and Other Mycobacterial Diseases, Tajganj, Agra, India
- Department of Biochemistry, Jiwaji University, Gwalior, Madhya Pradesh, India
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, India
| | - Priya Kalra
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, India
| | - Manish Goel
- Department of Pulmonary, Critical Care and Sleep Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Gopi Chand Khilnani
- Department of Pulmonary, Critical Care and Sleep Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Vikram Saini
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, India
| | - G. B. K. S. Prasad
- Department of Biochemistry, Jiwaji University, Gwalior, Madhya Pradesh, India
| | - Umesh Datta Gupta
- National JALMA Institute of Leprosy and Other Mycobacterial Diseases, Tajganj, Agra, India
| | | |
Collapse
|
43
|
Bickett TE, McLean J, Creissen E, Izzo L, Hagan C, Izzo AJ, Silva Angulo F, Izzo AA. Characterizing the BCG Induced Macrophage and Neutrophil Mechanisms for Defense Against Mycobacterium tuberculosis. Front Immunol 2020; 11:1202. [PMID: 32625209 PMCID: PMC7314953 DOI: 10.3389/fimmu.2020.01202] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 05/14/2020] [Indexed: 12/16/2022] Open
Abstract
The live attenuated Mycobacterium bovis strain, Bacille Calmette Guérin (BCG) is a potent innate immune stimulator. In the C57BL/6 mouse model of tuberculosis, BCG vaccination leads to a significant reduction of Mycobacterium tuberculosis burden after aerogenic infection. Our studies indicated that BCG induced protection against pulmonary tuberculosis was independent of T cells and present as early as 7 days after vaccination. This protection showed longevity, as it did not wane when conventional T cell and TNF-α deficient mice were infected 30 days post-vaccination. As BCG induced mycobacterial killing after 7 days, this study investigated the contributions of the innate immune system after BCG vaccination to better understand mechanisms required for mycobacterial killing. Subcutaneous BCG inoculation resulted in significant CD11b+F4/80+ monocyte subset recruitment into the lungs within 7 days. Further studies revealed that killing of mycobacteria was dependent on the viability of BCG, because irradiated BCG did not have the same effect. Although others have identified BCG as a facilitator of trained innate immunity, we found that BCG reduced the mycobacterial burden in the absence of mechanisms required for trained innate immunity, highlighting a role for macrophages and neutrophils for vaccine induced killing of M. tuberculosis.
Collapse
Affiliation(s)
- Thomas E Bickett
- Department of Microbiology Immunology and Pathology, Cell and Molecular Biology, Colorado State University, Fort Collins, CO, United States
| | - Jennifer McLean
- Department of Microbiology Immunology and Pathology, Cell and Molecular Biology, Colorado State University, Fort Collins, CO, United States
| | - Elizabeth Creissen
- Department of Microbiology Immunology and Pathology, Cell and Molecular Biology, Colorado State University, Fort Collins, CO, United States
| | - Linda Izzo
- Department of Microbiology Immunology and Pathology, Cell and Molecular Biology, Colorado State University, Fort Collins, CO, United States
| | - Cassidy Hagan
- Department of Microbiology Immunology and Pathology, Cell and Molecular Biology, Colorado State University, Fort Collins, CO, United States
| | - Antonio J Izzo
- Department of Microbiology Immunology and Pathology, Cell and Molecular Biology, Colorado State University, Fort Collins, CO, United States
| | - Fabiola Silva Angulo
- Department of Microbiology Immunology and Pathology, Cell and Molecular Biology, Colorado State University, Fort Collins, CO, United States
| | - Angelo A Izzo
- Department of Microbiology Immunology and Pathology, Cell and Molecular Biology, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
44
|
Antigen-Specific IFN-γ/IL-17-Co-Producing CD4 + T-Cells Are the Determinants for Protective Efficacy of Tuberculosis Subunit Vaccine. Vaccines (Basel) 2020; 8:vaccines8020300. [PMID: 32545304 PMCID: PMC7350228 DOI: 10.3390/vaccines8020300] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 05/23/2020] [Accepted: 06/09/2020] [Indexed: 01/05/2023] Open
Abstract
The antigen-specific Th17 responses in the lungs for improved immunity against Mycobacterium tuberculosis (Mtb) infection are incompletely understood. Tuberculosis (TB) vaccine candidate HSP90-ESAT-6 (E6), given as a Bacillus Calmette-Guérin (BCG)-prime boost regimen, confers superior long-term protection against the hypervirulent Mtb HN878 infection, compared to BCG or BCG-E6. Taking advantage of protective efficacy lead-out, we found that ESAT-6-specific multifunctional CD4+IFN-γ+IL-17+ T-cells optimally correlated with protection level against Mtb infection both pre-and post-challenge. Macrophages treated with the supernatant of re-stimulated lung cells from HSP90-E6-immunised mice significantly restricted Mtb growth, and this phenomenon was abrogated by neutralising anti-IFN-γ and/or anti-IL-17 antibodies. We identified a previously unrecognised role for IFN-γ/IL-17 synergism in linking anti-mycobacterial phagosomal activity to enhance host control against Mtb infection. The implications of our findings highlight the fundamental rationale for why and how Th17 responses are essential in the control of Mtb, and for the development of novel anti-TB subunit vaccines.
Collapse
|
45
|
Daumas A, Coiffard B, Chartier C, Ben Amara A, Alingrin J, Villani P, Mege JL. Defective Granuloma Formation in Elderly Infected Patients. Front Cell Infect Microbiol 2020; 10:189. [PMID: 32411623 PMCID: PMC7201002 DOI: 10.3389/fcimb.2020.00189] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 04/09/2020] [Indexed: 11/17/2022] Open
Abstract
Granulomas are compact structures formed in tissues by the immune system in response to aggressions. The in vitro formation of granulomas using circulating mononuclear cells is an innovative method to easily assess the immune response of patients. Monitoring the efficiency of mononuclear cells from patients to form granulomas in vitro would help improve their therapeutic management. Circulating mononuclear cells from 23 elderly patients with sepsis and 24 elderly controls patients were incubated with Sepharose beads coated with either BCG or Coxiella burnetii extracts. The formation of granulomas was measured over 9 days. Most healthy elderly patients (92%) were able to form granulomas in response to BCG and Coxiella burnetii extracts compared to only 48% of infected elderly patients. Undernutrition was significantly associated with impaired granuloma formation in healthy and infected patients. Granulomas typically comprise epithelioid cells and multinucleated giant cells, however, these cells were not detected in samples obtained from patients unable to form granulomas. We also found that the impairment of granuloma formation was associated with reduced production of tumor necrosis factor without overproduction of interleukin-10. Finally, all genes specifically modulated in granulomatous cells were down-modulated in patients with defective granuloma formation. TNFSF10 was the only M1 gene markedly upregulated in patients who did not form granulomas. Our study suggest that defective granuloma formation may be a measurement of altered activation of immune cells which can predispose to nosocomial infections in elderly patients.
Collapse
Affiliation(s)
- Aurélie Daumas
- Aix-Marseille Univ, IRD, Assistance Publique-Hôpitaux de Marseille (APHM), MEPHI, IHU-Méditerranée Infection, Marseille, France.,Service de Médecine Interne, Gériatrie et Thérapeutique, Hôpital de la Timone, APHM, Marseille, France
| | - Benjamin Coiffard
- Aix-Marseille Univ, IRD, Assistance Publique-Hôpitaux de Marseille (APHM), MEPHI, IHU-Méditerranée Infection, Marseille, France
| | - Céline Chartier
- Aix-Marseille Univ, IRD, Assistance Publique-Hôpitaux de Marseille (APHM), MEPHI, IHU-Méditerranée Infection, Marseille, France
| | - Amira Ben Amara
- Aix-Marseille Univ, IRD, Assistance Publique-Hôpitaux de Marseille (APHM), MEPHI, IHU-Méditerranée Infection, Marseille, France
| | - Julie Alingrin
- Service d'Anesthésie et de Réanimation, Hôpital Nord, APHM, Marseille, France
| | - Patrick Villani
- Service de Médecine Interne, Gériatrie et Thérapeutique, Hôpital de la Timone, APHM, Marseille, France
| | - Jean-Louis Mege
- Aix-Marseille Univ, IRD, Assistance Publique-Hôpitaux de Marseille (APHM), MEPHI, IHU-Méditerranée Infection, Marseille, France
| |
Collapse
|
46
|
Abstract
Tuberculosis (TB) is a serious global public health challenge that results in significant morbidity and mortality worldwide. TB is caused by infection with the bacilli Mycobacterium tuberculosis (M. tuberculosis), which has evolved a wide variety of strategies in order to thrive within its host. Understanding the complex interactions between M. tuberculosis and host immunity can inform the rational design of better TB vaccines and therapeutics. This chapter covers innate and adaptive immunity against M. tuberculosis infection, including insights on bacterial immune evasion and subversion garnered from animal models of infection and human studies. In addition, this chapter discusses the immunology of the TB granuloma, TB diagnostics, and TB comorbidities. Finally, this chapter provides a broad overview of the current TB vaccine pipeline.
Collapse
|
47
|
Howlett P, Du Bruyn E, Morrison H, Godsent IC, Wilkinson KA, Ntsekhe M, Wilkinson RJ. The immunopathogenesis of tuberculous pericarditis. Microbes Infect 2020; 22:172-181. [PMID: 32092538 DOI: 10.1016/j.micinf.2020.02.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 02/03/2020] [Indexed: 10/25/2022]
Abstract
Tuberculous pericarditis is a severe form of extrapulmonary tuberculosis and is the commonest cause of pericardial effusion in high incidence settings. Mortality ranges between 8 and 34%, and it is the leading cause of pericardial constriction in Africa and Asia. Current understanding of the disease is based on models derived from studies performed in the 1940-50s. This review summarises recent advances in the histology, microbiology and immunology of tuberculous pericarditis, with special focus on the effect of Human Immunodeficiency Virus (HIV) and the determinants of constriction.
Collapse
Affiliation(s)
- Patrick Howlett
- National Heart & Lung Institute, Imperial College London, Guy Scadding Building, Cale Street, London, SW3 6LY, United Kingdom; Department of Medicine, University of Cape Town, Observatory 7925, South Africa.
| | - Elsa Du Bruyn
- Department of Medicine, University of Cape Town, Observatory 7925, South Africa; Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory 7925, South Africa
| | - Hazel Morrison
- The Jenner Institute, University of Oxford, Old Road Campus Research Build, Roosevelt Dr, Oxford OX3 7DQ, United Kingdom
| | - Isiguzo C Godsent
- National Heart & Lung Institute, Imperial College London, Guy Scadding Building, Cale Street, London, SW3 6LY, United Kingdom; Department of Medicine, Federal Teaching Hospital Abakaliki, Nigeria
| | - Katalin A Wilkinson
- Department of Medicine, University of Cape Town, Observatory 7925, South Africa; Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory 7925, South Africa; Francis Crick Institute, 1 Midland Rd, London NW1 1AT, United Kingdom
| | - Mpiko Ntsekhe
- Department of Medicine, University of Cape Town, Observatory 7925, South Africa; Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory 7925, South Africa
| | - Robert J Wilkinson
- Department of Medicine, University of Cape Town, Observatory 7925, South Africa; Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory 7925, South Africa; Francis Crick Institute, 1 Midland Rd, London NW1 1AT, United Kingdom; Department of Infectious Diseases, Imperial College London, W2 1PG, United Kingdom
| |
Collapse
|
48
|
Wang W, Deng G, Zhang G, Yu Z, Yang F, Chen J, Cai Y, Werz O, Chen X. Genetic polymorphism rs8193036 of IL17A is associated with increased susceptibility to pulmonary tuberculosis in Chinese Han population. Cytokine 2019; 127:154956. [PMID: 31864094 DOI: 10.1016/j.cyto.2019.154956] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 12/09/2019] [Accepted: 12/10/2019] [Indexed: 12/19/2022]
Abstract
Th17 cells play a key role in immunity against Mycobacterium tuberculosis, our previous research showed that reduced Th17 responses were associated with the severe outcome of Mtb infection. The associations between IL17A polymorphisms and susceptibility of TB has been reported, but the results are inconsistent and the underlying mechanisms is unknown. In this study, we identified a genetic variation (rs8193036) in the promoter region of IL17A is associated with susceptibility to TB. The minor allele T frequency of rs8193036 was significantly different between patients with active TB (29.7%) and healthy controls (32.3%) (OR = 0.81; 95%CI, 0.71-0.93; P = 0.0026). Peripheral blood mononuclear cells from individuals carrying rs8193036CC genotypes produced significantly lower amount of IL17A upon CD3/28 stimulation compared to the individuals carrying rs8193036TT genotypes. Functional assay by reporter luciferase activity and EMSA demonstrated that rs8193036C exhibited significantly lower promotor transcription activities. In conclusion, our study confirmed that IL17A (rs8193036) is a functional SNP that could regulate gene expression though influencing transcription factor binding activity.
Collapse
Affiliation(s)
- Wenfei Wang
- Department of Pathogen Biology, Shenzhen University School of Medicine, Shenzhen, China; Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University, Jena, Germany
| | - Guofang Deng
- Guangdong Key Laboratory for Emerging Infectious Diseases, Shenzhen Key Laboratory of Infection & Immunity, Shenzhen Third People's Hospital, Shenzhen, China
| | - Guoliang Zhang
- Guangdong Key Laboratory for Emerging Infectious Diseases, Shenzhen Key Laboratory of Infection & Immunity, Shenzhen Third People's Hospital, Shenzhen, China
| | - Ziqi Yu
- Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Fan Yang
- Department of Pathogen Biology, Shenzhen University School of Medicine, Shenzhen, China
| | - Jianyong Chen
- Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yi Cai
- Department of Pathogen Biology, Shenzhen University School of Medicine, Shenzhen, China
| | - Oliver Werz
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University, Jena, Germany.
| | - Xinchun Chen
- Department of Pathogen Biology, Shenzhen University School of Medicine, Shenzhen, China; Guangdong Key Laboratory for Emerging Infectious Diseases, Shenzhen Key Laboratory of Infection & Immunity, Shenzhen Third People's Hospital, Shenzhen, China.
| |
Collapse
|
49
|
Abstract
Tuberculosis (TB) is the leading killer among all infectious diseases worldwide despite extensive use of the Mycobacterium bovis bacille Calmette-Guérin (BCG) vaccine. A safer and more effective vaccine than BCG is urgently required. More than a dozen TB vaccine candidates are under active evaluation in clinical trials aimed to prevent infection, disease, and recurrence. After decades of extensive research, renewed promise of an effective vaccine against this ancient airborne disease has recently emerged. In two innovative phase 2b vaccine clinical trials, one for the prevention of Mycobacterium tuberculosis infection in healthy adolescents and another for the prevention of TB disease in M. tuberculosis-infected adults, efficacy signals were observed. These breakthroughs, based on the greatly expanded knowledge of the M. tuberculosis infection spectrum, immunology of TB, and vaccine platforms, have reinvigorated the TB vaccine field. Here, we review our current understanding of natural immunity to TB, limitations in BCG immunity that are guiding vaccinologists to design novel TB vaccine candidates and concepts, and the desired attributes of a modern TB vaccine. We provide an overview of the progress of TB vaccine candidates in clinical evaluation, perspectives on the challenges faced by current vaccine concepts, and potential avenues to build on recent successes and accelerate the TB vaccine research-and-development trajectory.
Collapse
|
50
|
Van Dis E, Sogi KM, Rae CS, Sivick KE, Surh NH, Leong ML, Kanne DB, Metchette K, Leong JJ, Bruml JR, Chen V, Heydari K, Cadieux N, Evans T, McWhirter SM, Dubensky TW, Portnoy DA, Stanley SA. STING-Activating Adjuvants Elicit a Th17 Immune Response and Protect against Mycobacterium tuberculosis Infection. Cell Rep 2019; 23:1435-1447. [PMID: 29719256 DOI: 10.1016/j.celrep.2018.04.003] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 03/09/2018] [Accepted: 03/30/2018] [Indexed: 01/04/2023] Open
Abstract
There are a limited number of adjuvants that elicit effective cell-based immunity required for protection against intracellular bacterial pathogens. Here, we report that STING-activating cyclic dinucleotides (CDNs) formulated in a protein subunit vaccine elicit long-lasting protective immunity to Mycobacterium tuberculosis in the mouse model. Subcutaneous administration of this vaccine provides equivalent protection to that of the live attenuated vaccine strain Bacille Calmette-Guérin (BCG). Protection is STING dependent but type I IFN independent and correlates with an increased frequency of a recently described subset of CXCR3-expressing T cells that localize to the lung parenchyma. Intranasal delivery results in superior protection compared with BCG, significantly boosts BCG-based immunity, and elicits both Th1 and Th17 immune responses, the latter of which correlates with enhanced protection. Thus, a CDN-adjuvanted protein subunit vaccine has the capability of eliciting a multi-faceted immune response that results in protection from infection by an intracellular pathogen.
Collapse
Affiliation(s)
- Erik Van Dis
- Molecular and Cell Biology, Division of Immunology and Pathogenesis, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Kimberly M Sogi
- School of Public Health, Division of Infectious Disease and Vaccinology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Chris S Rae
- Aduro Biotech, Inc., 740 Heinz Avenue, Berkeley, CA 94710, USA
| | - Kelsey E Sivick
- Aduro Biotech, Inc., 740 Heinz Avenue, Berkeley, CA 94710, USA
| | - Natalie H Surh
- Aduro Biotech, Inc., 740 Heinz Avenue, Berkeley, CA 94710, USA
| | | | - David B Kanne
- Aduro Biotech, Inc., 740 Heinz Avenue, Berkeley, CA 94710, USA
| | - Ken Metchette
- Aduro Biotech, Inc., 740 Heinz Avenue, Berkeley, CA 94710, USA
| | - Justin J Leong
- Aduro Biotech, Inc., 740 Heinz Avenue, Berkeley, CA 94710, USA
| | - Jacob R Bruml
- Aduro Biotech, Inc., 740 Heinz Avenue, Berkeley, CA 94710, USA
| | - Vivian Chen
- School of Public Health, Division of Infectious Disease and Vaccinology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Kartoosh Heydari
- LKS Flow Cytometry Core, Cancer Research Laboratory, University of California, Berkeley, Berkeley, CA 94720, USA
| | | | - Tom Evans
- Vaccitech Limited, King Charles House, Park End Street, Oxford OX1 1JD, UK
| | | | | | - Daniel A Portnoy
- Molecular and Cell Biology, Division of Immunology and Pathogenesis, University of California, Berkeley, Berkeley, CA 94720, USA; School of Public Health, Division of Infectious Disease and Vaccinology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Sarah A Stanley
- Molecular and Cell Biology, Division of Immunology and Pathogenesis, University of California, Berkeley, Berkeley, CA 94720, USA; School of Public Health, Division of Infectious Disease and Vaccinology, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|