1
|
Esmaeili A, Awasthi P, Tabaee S. Beyond immortality: Epstein-Barr virus and the intricate dance of programmed cell death in cancer development. Cancer Treat Res Commun 2025; 43:100880. [PMID: 39923321 DOI: 10.1016/j.ctarc.2025.100880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 01/22/2025] [Accepted: 02/04/2025] [Indexed: 02/11/2025]
Abstract
This comprehensive review delves into the intricate role of programmed cell death in Epstein-Barr virus (EBV)-associated malignancies, focusing on the sophisticated interplay between viral mechanisms and the host's immune response. The central objective is to unravel how EBV exerts control over cell death pathways such as apoptosis, ferroptosis, and autophagy, thereby fostering its persistence and oncogenic potential. By dissecting these mechanisms, the review seeks to identify therapeutic strategies that could disrupt EBV's manipulation of these pathways, enhancing immune recognition and opening new avenues for targeted treatment. A deeper understanding of the molecular underpinnings of EBV's influence on cell death not only enriches the field of viral oncology but also pinpoints targets for drug development. Furthermore, the insights gleaned from this review could catalyze the design of vaccines aimed at preventing EBV infection or curtailing its oncogenic impact. Innovatively, the review synthesizes recent discoveries on the multifaceted roles of non-coding RNAs and cellular signaling pathways in modulating cell death within the context of EBV infection. By consolidating current knowledge and identifying areas where understanding is lacking, it lays the groundwork for future research that could lead to significant advancements in vaccine development and therapeutic interventions for EBV-related cancers. This review underscores the critical necessity for ongoing investigation into the complex interplay between EBV and host cell death mechanisms, with the ultimate goal of enhancing patient outcomes in EBV-associated diseases.
Collapse
Affiliation(s)
- Arezoo Esmaeili
- Department of biology, Damghan Branch, Islamic Azad University, Damghan, Iran.
| | - Prankur Awasthi
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow, India
| | - Samira Tabaee
- Department of immunology, school of medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
2
|
Edwards KR, Schmidt K, Homad LJ, Kher GM, Xu G, Rodrigues KA, Ben-Akiva E, Abbott J, Prlic M, Newell EW, De Rosa SC, Irvine DJ, Pancera M, McGuire AT. Vaccination with nanoparticles displaying gH/gL from Epstein-Barr virus elicits limited cross-protection against rhesus lymphocryptovirus. Cell Rep Med 2024; 5:101587. [PMID: 38781964 PMCID: PMC11228584 DOI: 10.1016/j.xcrm.2024.101587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 03/15/2024] [Accepted: 04/30/2024] [Indexed: 05/25/2024]
Abstract
Epstein-Barr virus (EBV) is associated with infectious mononucleosis, cancer, and multiple sclerosis. A vaccine that prevents infection and/or EBV-associated morbidity is an unmet need. The viral gH/gL glycoprotein complex is essential for infectivity, making it an attractive vaccine target. Here, we evaluate the immunogenicity of a gH/gL nanoparticle vaccine adjuvanted with the Sigma Adjuvant System (SAS) or a saponin/monophosphoryl lipid A nanoparticle (SMNP) in rhesus macaques. Formulation with SMNP elicits higher titers of neutralizing antibodies and more vaccine-specific CD4+ T cells. All but one animal in the SMNP group were infected after oral challenge with the EBV ortholog rhesus lymphocryptovirus (rhLCV). Their immune plasma had a 10- to 100-fold lower reactivity against rhLCV gH/gL compared to EBV gH/gL. Anti-EBV neutralizing monoclonal antibodies showed reduced binding to rhLCV gH/gL, demonstrating that EBV gH/gL neutralizing epitopes are poorly conserved on rhLCV gH/gL. Prevention of rhLCV infection despite antigenic disparity supports clinical development of gH/gL nanoparticle vaccines against EBV.
Collapse
Affiliation(s)
- Kristina R Edwards
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA; Department of Global Health, University of Washington, Seattle, WA, USA
| | - Karina Schmidt
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Leah J Homad
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Gargi M Kher
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Guoyue Xu
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA; Department of Global Health, University of Washington, Seattle, WA, USA
| | - Kristen A Rodrigues
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA; Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA, USA
| | - Elana Ben-Akiva
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA; Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA, USA; Departments of Biological Engineering and Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Joe Abbott
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Martin Prlic
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA; Department of Global Health, University of Washington, Seattle, WA, USA; Department of Immunology, University of Washington, Seattle, WA, USA
| | - Evan W Newell
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA; Department of Global Health, University of Washington, Seattle, WA, USA
| | - Stephen C De Rosa
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA; Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Darrell J Irvine
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA; Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA, USA; Harvard-MIT Health Sciences and Technology Program, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Marie Pancera
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Andrew T McGuire
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA; Department of Global Health, University of Washington, Seattle, WA, USA; Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA.
| |
Collapse
|
3
|
Mohammadzamani M, Kazemzadeh K, Chand S, Thapa S, Ebrahimi N, Yazdan Panah M, Shaygannejad V, Mirmosayyeb O. Insights into the interplay between Epstein-Barr virus (EBV) and multiple sclerosis (MS): A state-of-the-art review and implications for vaccine development. Health Sci Rep 2024; 7:e1898. [PMID: 38361801 PMCID: PMC10867693 DOI: 10.1002/hsr2.1898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 11/12/2023] [Accepted: 01/15/2024] [Indexed: 02/17/2024] Open
Abstract
Background and Aims Multiple sclerosis (MS) is a chronic autoimmune disease of the central nervous system (CNS). MS results from an inflammatory process leading to the loss of neural tissue and increased disability over time. The role of Epstein Barr Virus (EBV), as one of the most common global viruses, in MS development has been the subject of several studies. However, many related questions are still unanswered. This study aimed to review the connection between MS and EBV and provide a quick outline of MS prevention using EBV vaccination. Methods For this narrative review, an extensive literature search using specific terms was conducted across online databases, including PubMed/Medline, Scopus, Web of Science, and Google Scholar, to identify pertinent studies. Results Several studies proved that almost 100% of people with MS showed a history of EBV infection, and there was an association between high titers of EBV antibodies and an increased risk of MS development. Various hypotheses are proposed for how EBV may contribute to MS directly and indirectly: (1) Molecular Mimicry, (2) Mistaken Self, (3) Bystander Damage, and (4) Autoreactive B cells infected with EBV. Conclusion Given the infectious nature of EBV and its ability to elude the immune system, EBV emerges as a strong candidate for being the underlying cause of MS. The development of an EBV vaccine holds promise for preventing MS; however, overcoming the challenge of creating a safe and efficacious vaccine presents a significant obstacle.
Collapse
Affiliation(s)
- Mahtab Mohammadzamani
- Isfahan Neurosciences Research CenterIsfahan University of Medical SciencesIsfahanIran
| | - Kimia Kazemzadeh
- Students' Scientific Research CenterTehran University of Medical SciencesTehranIran
| | - Swati Chand
- Westchester Medical CenterNew York Medical CollegeValhallaNew YorkUSA
| | - Sangharsha Thapa
- Department of Neurology, Westchester Medical CenterNew York Medical CollegeValhallaUSA
| | - Narges Ebrahimi
- Isfahan Neurosciences Research CenterIsfahan University of Medical SciencesIsfahanIran
| | | | - Vahid Shaygannejad
- Isfahan Neurosciences Research CenterIsfahan University of Medical SciencesIsfahanIran
- Department of NeurologyIsfahan University of Medical SciencesIsfahanIran
| | - Omid Mirmosayyeb
- Isfahan Neurosciences Research CenterIsfahan University of Medical SciencesIsfahanIran
- Department of NeurologyIsfahan University of Medical SciencesIsfahanIran
| |
Collapse
|
4
|
Sato Y, Vatsan R, Joshi BH, Husain SR, Puri RK. A Novel Recombinant Modified Vaccinia Ankara Virus expressing Interleukin-13 Receptor α2 Antigen for Potential Cancer Immunotherapy. Curr Mol Med 2024; 24:758-770. [PMID: 36999709 DOI: 10.2174/1566524023666230331085007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 04/01/2023]
Abstract
BACKGROUND Genetically altered recombinant poxviruses hold great therapeutic promise in animal models of cancer. Poxviruses can induce effective cellmediated immune responses against tumor-associated antigens. Preventive and therapeutic vaccination with a DNA vaccine expressing IL-13Rα2 can mediate partial regression of established tumors in vivo, indicating that host immune responses against IL-13Rα2 need further augmentation. OBJECTIVE The aim of the study is developing a recombinant modified vaccinia Ankara (MVA) expressing IL-13Rα2 (rMVA-IL13Rα2) virus and study in vitro infectivity and efficacy against IL-13Rα2 positive cell lines. METHODS We constructed a recombinant MVA expressing IL-13Rα2 and a green fluorescent protein (GFP) reporter gene. Purified virus titration by infection of target cells and immunostaining using anti-vaccinia and anti-IL-13Rα2 antibodies was used to confirm the identity and purity of the rMVA-IL13Rα2. RESULTS Western Blot analysis confirmed the presence of IL-13Rα2 protein (~52 kDa). Flow cytometric analysis of IL-13Rα2 negative T98G glioma cells when infected with rMVA-IL13Rα2 virus demonstrated cell-surface expression of IL-13Rα2, indicating the infectivity of the recombinant virus. Incubation of T98G-IL13Rα2 cells with varying concentrations (0.1-100 ng/ml) of interleukin-13 fused to truncated Pseudomonas exotoxin (IL13-PE) resulted in depletion of GFP+ fluorescence in T98G-IL13Rα2 cells. IL13-PE (10-1000 ng/ml) at higher concentrations also inhibited the protein synthesis in T98G-IL13Rα2 cells compared to cells infected with the control pLW44-MVA virus. IL13- PE treatment of rMVA-IL13Rα2 infected chicken embryonic fibroblast and DF-1 cell line reduced virus titer compared to untreated cells. CONCLUSION rMVA-IL13Rα2 virus can successfully infect mammalian cells to express IL-13Rα2 in a biologically active form on the surface of infected cells. To evaluate the efficacy of rMVA-IL13Rα2, immunization studies are planned in murine tumor models.
Collapse
Affiliation(s)
- Yuki Sato
- Tumor Vaccines and Biotechnology Branch, Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, 20993, USA
- Department of Research Promotion, Division of Cancer Research, Japan Agency for Medical Research and Development, 1-7-1, Otemachi, Chiyoda, Tokyo 100- 0004, Japan
| | - Ramjay Vatsan
- Gene Therapy Branch, Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - Bharat H Joshi
- Tumor Vaccines and Biotechnology Branch, Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - Syed R Husain
- Tumor Vaccines and Biotechnology Branch, Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, 20993, USA
- Iovance Biotherapeutics, 825 Industrial Road, Suite 400, San Carlos, CA, California, 94070, USA
| | - Raj K Puri
- Tumor Vaccines and Biotechnology Branch, Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, 20993, USA
- Iovance Biotherapeutics, 825 Industrial Road, Suite 400, San Carlos, CA, California, 94070, USA
| |
Collapse
|
5
|
Zhong L, Krummenacher C, Zhang W, Hong J, Feng Q, Chen Y, Zhao Q, Zeng MS, Zeng YX, Xu M, Zhang X. Urgency and necessity of Epstein-Barr virus prophylactic vaccines. NPJ Vaccines 2022; 7:159. [PMID: 36494369 PMCID: PMC9734748 DOI: 10.1038/s41541-022-00587-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 11/24/2022] [Indexed: 12/13/2022] Open
Abstract
Epstein-Barr virus (EBV), a γ-herpesvirus, is the first identified oncogenic virus, which establishes permanent infection in humans. EBV causes infectious mononucleosis and is also tightly linked to many malignant diseases. Various vaccine formulations underwent testing in different animals or in humans. However, none of them was able to prevent EBV infection and no vaccine has been approved to date. Current efforts focus on antigen selection, combination, and design to improve the efficacy of vaccines. EBV glycoproteins such as gH/gL, gp42, and gB show excellent immunogenicity in preclinical studies compared to the previously favored gp350 antigen. Combinations of multiple EBV proteins in various vaccine designs become more attractive approaches considering the complex life cycle and complicated infection mechanisms of EBV. Besides, rationally designed vaccines such as virus-like particles (VLPs) and protein scaffold-based vaccines elicited more potent immune responses than soluble antigens. In addition, humanized mice, rabbits, as well as nonhuman primates that can be infected by EBV significantly aid vaccine development. Innovative vaccine design approaches, including polymer-based nanoparticles, the development of effective adjuvants, and antibody-guided vaccine design, will further enhance the immunogenicity of vaccine candidates. In this review, we will summarize (i) the disease burden caused by EBV and the necessity of developing an EBV vaccine; (ii) previous EBV vaccine studies and available animal models; (iii) future trends of EBV vaccines, including activation of cellular immune responses, novel immunogen design, heterologous prime-boost approach, induction of mucosal immunity, application of nanoparticle delivery system, and modern adjuvant development.
Collapse
Affiliation(s)
- Ling Zhong
- grid.12981.330000 0001 2360 039XState Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong PR China
| | - Claude Krummenacher
- grid.262671.60000 0000 8828 4546Department of Biological and Biomedical Sciences, Rowan University, Glassboro, NJ USA
| | - Wanlin Zhang
- grid.12981.330000 0001 2360 039XState Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong PR China
| | - Junping Hong
- grid.12955.3a0000 0001 2264 7233State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian PR China
| | - Qisheng Feng
- grid.12981.330000 0001 2360 039XState Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong PR China
| | - Yixin Chen
- grid.12955.3a0000 0001 2264 7233State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian PR China
| | - Qinjian Zhao
- grid.203458.80000 0000 8653 0555College of Pharmacy, Chongqing Medical University, Chongqing, PR China
| | - Mu-Sheng Zeng
- grid.12981.330000 0001 2360 039XState Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong PR China
| | - Yi-Xin Zeng
- grid.12981.330000 0001 2360 039XState Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong PR China
| | - Miao Xu
- grid.12981.330000 0001 2360 039XState Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong PR China
| | - Xiao Zhang
- grid.12981.330000 0001 2360 039XState Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong PR China ,grid.203458.80000 0000 8653 0555College of Pharmacy, Chongqing Medical University, Chongqing, PR China
| |
Collapse
|
6
|
Hong J, Wei D, Zhong L, Wu Q, Chen K, Zhang W, Yang Y, Chen J, Xia N, Zhang X, Chen Y. Glycoprotein B Antibodies Completely Neutralize EBV Infection of B Cells. Front Immunol 2022; 13:920467. [PMID: 35711430 PMCID: PMC9197244 DOI: 10.3389/fimmu.2022.920467] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 04/29/2022] [Indexed: 11/26/2022] Open
Abstract
The Epstein-Barr virus (EBV) is the first reported oncogenic herpesvirus that establishes persistent infection in B lymphocytes in 95% of adults worldwide. Glycoprotein B (gB) plays a predominant role in the fusion of the viral envelope with the host cell membrane. Hence, it is of great significance to isolate gB-specific fusion-inhibiting neutralizing antibodies (NAbs). AMMO5 is the only gB NAb but fails to antagonize B-cell infection. It is essential to isolate potent NAbs that can completely block EBV infection of B cells. Using hybridoma technology and neutralization assay, we isolate two gB NAbs 8A9 and 8C12 that are capable of completely neutralizing B-cell infection in vitro. In addition, 8A9 shows cross-reactivity with rhesus lymphocryptovirus (rhLCV) gB. Competitive binding experiments demonstrate that 8A9 and 8C12 recognize novel epitopes that are different from the AMMO5 epitope. The epitopes of 8A9 and 8C12 are mapped to gB D-II, and the AMMO5 epitope is located precisely at gB aa 410-419. We find that 8A9 and 8C12 significantly inhibit gB-derived membrane fusion using a virus-free fusion assay. In summary, this study identifies two gB-specific NAbs that potently block EBV infection of B cells. Our work highlights the importance of gB D-II as a predominant neutralizing epitope, and aids in the rational design of therapeutics or vaccines based on gB.
Collapse
Affiliation(s)
- Junping Hong
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, China
| | - Dongmei Wei
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, China
| | - Ling Zhong
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Qian Wu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, China
| | - Kaiyun Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, China
| | - Wanlin Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yanbo Yang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, China
| | - Junyu Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, China
| | - Ningshao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, China
| | - Xiao Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yixin Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, China
| |
Collapse
|
7
|
Wei CJ, Bu W, Nguyen LA, Batchelor JD, Kim J, Pittaluga S, Fuller JR, Nguyen H, Chou TH, Cohen JI, Nabel GJ. A bivalent Epstein-Barr virus vaccine induces neutralizing antibodies that block infection and confer immunity in humanized mice. Sci Transl Med 2022; 14:eabf3685. [PMID: 35507671 DOI: 10.1126/scitranslmed.abf3685] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Epstein-Barr virus (EBV) is the major cause of infectious mononucleosis and is associated with several human cancers and, more recently, multiple sclerosis. Despite its prevalence and health impact, there are currently no vaccines or treatments. Four viral glycoproteins (gp), gp350 and gH/gL/gp42, mediate entry into the major sites of viral replication, B cells, and epithelial cells. Here, we designed a nanoparticle vaccine displaying these proteins and showed that it elicits potent neutralizing antibodies that protect against infection in vivo. We designed single-chain gH/gL and gH/gL/gp42 proteins that were each fused to bacterial ferritin to form a self-assembling nanoparticle. Structural analysis revealed that single-chain gH/gL and gH/gL/gp42 adopted a similar conformation to the wild-type proteins, and the protein spikes were observed by electron microscopy. Single-chain gH/gL or gH/gL/gp42 nanoparticle vaccines were constructed to ensure product homogeneity needed for clinical development. These vaccines elicited neutralizing antibodies in mice, ferrets, and nonhuman primates that inhibited EBV entry into both B cells and epithelial cells. When mixed with a previously reported gp350 nanoparticle vaccine, gp350D123, no immune competition was observed. To confirm its efficacy in vivo, humanized mice were challenged with EBV after passive transfer of IgG from mice vaccinated with control, gH/gL/gp42+gp350D123, or gH/gL+gp350D123 nanoparticles. Although all control animals were infected, only one mouse in each vaccine group that received immune IgG had detectable transient viremia. Furthermore, no EBV lymphomas were detected in immune animals. This bivalent EBV nanoparticle vaccine represents a promising candidate to prevent EBV infection and EBV-related malignancies in humans.
Collapse
Affiliation(s)
- Chih-Jen Wei
- Sanofi, 640 Memorial Dr., Cambridge, MA 02139, USA.,ModeX Therapeutics Inc., 22 Strathmore Rd., Natick, MA 01760, USA
| | - Wei Bu
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 50 South Dr., Bethesda, MD 20892, USA
| | | | | | - JungHyun Kim
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 50 South Dr., Bethesda, MD 20892, USA
| | - Stefania Pittaluga
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - James R Fuller
- Large Molecule Research, Sanofi, Framingham, MA 01701, USA
| | - Hanh Nguyen
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 50 South Dr., Bethesda, MD 20892, USA
| | - Te-Hui Chou
- Sanofi, 640 Memorial Dr., Cambridge, MA 02139, USA.,ModeX Therapeutics Inc., 22 Strathmore Rd., Natick, MA 01760, USA
| | - Jeffrey I Cohen
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 50 South Dr., Bethesda, MD 20892, USA
| | - Gary J Nabel
- Sanofi, 640 Memorial Dr., Cambridge, MA 02139, USA.,ModeX Therapeutics Inc., 22 Strathmore Rd., Natick, MA 01760, USA
| |
Collapse
|
8
|
Dowell AC, Haigh TA, Ryan GB, Turner JE, Long HM, Taylor GS. Cytotoxic CD4+ T-cells specific for EBV capsid antigen BORF1 are maintained in long-term latently infected healthy donors. PLoS Pathog 2021; 17:e1010137. [PMID: 34882759 PMCID: PMC8691624 DOI: 10.1371/journal.ppat.1010137] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 12/21/2021] [Accepted: 11/22/2021] [Indexed: 12/15/2022] Open
Abstract
Epstein Barr Virus (EBV) infects more than 95% of the population whereupon it establishes a latent infection of B-cells that persists for life under immune control. Primary EBV infection can cause infectious mononucleosis (IM) and long-term viral carriage is associated with several malignancies and certain autoimmune diseases. Current efforts developing EBV prophylactic vaccination have focussed on neutralising antibodies. An alternative strategy, that could enhance the efficacy of such vaccines or be used alone, is to generate T-cell responses capable of recognising and eliminating newly EBV-infected cells before the virus initiates its growth transformation program. T-cell responses against the EBV structural proteins, brought into the newly infected cell by the incoming virion, are prime candidates for such responses. Here we show the structural EBV capsid proteins BcLF1, BDLF1 and BORF1 are frequent targets of T-cell responses in EBV infected people, identify new CD8+ and CD4+ T-cell epitopes and map their HLA restricting alleles. Using T-cell clones we demonstrate that CD4+ but not CD8+ T-cell clones specific for the capsid proteins can recognise newly EBV-infected B-cells and control B-cell outgrowth via cytotoxicity. Using MHC-II tetramers we show a CD4+ T-cell response to an epitope within the BORF1 capsid protein epitope is present during acute EBV infection and in long-term viral carriage. In common with other EBV-specific CD4+ T-cell responses the BORF1-specific CD4+ T-cells in IM patients expressed perforin and granzyme-B. Unexpectedly, perforin and granzyme-B expression was sustained over time even when the donor had entered the long-term infected state. These data further our understanding of EBV structural proteins as targets of T-cell responses and how CD4+ T-cell responses to EBV change from acute disease into convalescence. They also identify new targets for prophylactic EBV vaccine development. Epstein-Barr virus is a widespread herpesvirus carried by most individuals. Whilst infection is usually asymptomatic, development of a prophylactic vaccine against EBV is desirable because of the virus’s association with infectious mononucleosis in primary infection and several cancers and autoimmune diseases during long-term virus carriage. Identifying T-cell responses that can recognise newly infected B-cells at very early stages of infection may provide novel targets for T-cell vaccination. Here we characterise T-cell responses against three virus proteins, BcLF1, BDLF1 and BORF1 that, as structural proteins of the virus particle, are delivered into the cell by the infecting virus. We find that all three proteins are recognised by T-cells from infected individuals. Moreover, isolated structural antigen-specific CD4+ T-cells rapidly recognise newly infected B-cells and prevent their outgrowth in vitro. As reported for CD4+ T-cells against other EBV proteins, structural antigen-specific CD4+ T-cells induced by primary EBV infection have cytotoxic function. However, we also demonstrate that, unusually, this cytotoxic function is retained in memory T-cells present in long-term infected individuals. Structural antigens may therefore represent useful targets for prophylactic EBV vaccine development to induce CD4+ T-cells able to rapidly eliminate virus-infected cells.
Collapse
Affiliation(s)
- Alexander C. Dowell
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Tracey A. Haigh
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Gordon B. Ryan
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - James E. Turner
- Department for Health, University of Bath, Claverton Down, Bath, United Kingdom
| | - Heather M. Long
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Graham S. Taylor
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- * E-mail:
| |
Collapse
|
9
|
Cai J, Zhang B, Li Y, Zhu W, Akihisa T, Li W, Kikuchi T, Liu W, Feng F, Zhang J. Prophylactic and Therapeutic EBV Vaccines: Major Scientific Obstacles, Historical Progress, and Future Direction. Vaccines (Basel) 2021; 9:vaccines9111290. [PMID: 34835222 PMCID: PMC8623587 DOI: 10.3390/vaccines9111290] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/27/2021] [Accepted: 11/03/2021] [Indexed: 11/29/2022] Open
Abstract
The Epstein-Barr virus (EBV) infects more than 95% of adults worldwide and is associated with various malignant tumors and immune diseases, imparting a huge disease burden on the human population. Available EBV vaccines are imminent. Prophylactic vaccines can effectively prevent the spread of infection, whereas therapeutic vaccines mainly stimulate cell-mediated immunity and kill infected cells, thus curbing the development of malignant tumors. Nevertheless, there are still no approved EBV vaccines after decades of effort. The complexity of the EBV life cycle, the lack of appropriate animal models, and the limited reports on adjuvant selection and immune responses are gravely impeding progress in EBV vaccines. The soluble gp350 vaccine could reduce the incidence of infectious mononucleosis (IM), which seemed to offer hope, but could not prevent EBV infection. Continuous research and vaccine trials provide deep insights into the structural biology of viruses, the designs for immunogenicity, and the evolving vaccine platforms. Moreover, the new vaccine candidates are expected to achieve further success via combined immunization to elicit both a dual protection of B cells and epithelial cells, and sustainable immunization against infected cells at several phases of infection.
Collapse
Affiliation(s)
- Jing Cai
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China; (J.C.); (B.Z.); (Y.L.); (T.A.); (F.F.)
| | - Bodou Zhang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China; (J.C.); (B.Z.); (Y.L.); (T.A.); (F.F.)
| | - Yuqi Li
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China; (J.C.); (B.Z.); (Y.L.); (T.A.); (F.F.)
| | - Wanfang Zhu
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China; (W.Z.); (W.L.)
| | - Toshihiro Akihisa
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China; (J.C.); (B.Z.); (Y.L.); (T.A.); (F.F.)
- Research Institute for Science and Technology, Tokyo University of Science, Chiba 278-8510, Japan
| | - Wei Li
- Faculty of Pharmaceutical Sciences, Toho University, Chiba 274-8510, Japan; (W.L.); (T.K.)
| | - Takashi Kikuchi
- Faculty of Pharmaceutical Sciences, Toho University, Chiba 274-8510, Japan; (W.L.); (T.K.)
| | - Wenyuan Liu
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China; (W.Z.); (W.L.)
| | - Feng Feng
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China; (J.C.); (B.Z.); (Y.L.); (T.A.); (F.F.)
- Jiangsu Food and Pharmaceutical Science College, Huaian 223003, China
| | - Jie Zhang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China; (J.C.); (B.Z.); (Y.L.); (T.A.); (F.F.)
- Jiangsu Food and Pharmaceutical Science College, Huaian 223003, China
- Correspondence:
| |
Collapse
|
10
|
Cui X, Snapper CM. Epstein Barr Virus: Development of Vaccines and Immune Cell Therapy for EBV-Associated Diseases. Front Immunol 2021; 12:734471. [PMID: 34691042 PMCID: PMC8532523 DOI: 10.3389/fimmu.2021.734471] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 09/15/2021] [Indexed: 11/13/2022] Open
Abstract
Epstein-Barr virus (EBV) is the first human tumor virus discovered and is strongly implicated in the etiology of multiple lymphoid and epithelial cancers. Each year EBV associated cancers account for over 200,000 new cases of cancer and cause 150,000 deaths world-wide. EBV is also the primary cause of infectious mononucleosis, and up to 70% of adolescents and young adults in developed countries suffer from infectious mononucleosis. In addition, EBV has been shown to play a critical role in the pathogenesis of multiple sclerosis. An EBV prophylactic vaccine that induces neutralizing antibodies holds great promise for prevention of EBV associated diseases. EBV envelope proteins including gH/gL, gB and gp350 play key roles in EBV entry and infection of target cells, and neutralizing antibodies elicited by each of these proteins have shown to prevent EBV infection of target cells and markedly decrease EBV titers in the peripheral blood of humanized mice challenged with lethal dose EBV. Recent studies demonstrated that immunization with the combination of gH/gL, gB and/or gp350 induced markedly increased synergistic EBV neutralizing activity compared to immunization with individual proteins. As previous clinical trials focused on gp350 alone were partially successful, the inclusion of gH/gL and gB in a vaccine formulation with gp350 represents a promising approach of EBV prophylactic vaccine development. Therapeutic EBV vaccines have also been tested clinically with encouraging results. Immunization with various vaccine platforms expressing the EBV latent proteins EBNA1, LMP1, and/or LMP2 promoted specific CD4+ and CD8+ cytotoxic responses with anti-tumor activity. The addition of EBV envelope proteins gH/gL, gB and gp350 has the potential to increase the efficacy of a therapeutic EBV vaccine. The immune system plays a critical role in the control of tumors, and immune cell therapy has emerged as a promising treatment of cancers. Adoptive T-cell therapy has been successfully used in the prevention and treatment of post-transplant lymphoproliferative disorder. Chimeric antigen receptor T cell therapy and T cell receptor engineered T cell therapy targeting EBV latent proteins LMP1, LMP2 and/or EBNA1 have been in development, with the goal to increase the specificity and efficacy of treatment of EBV associated cancers.
Collapse
Affiliation(s)
- Xinle Cui
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States.,The Institute for Vaccine Research and Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Clifford M Snapper
- The Institute for Vaccine Research and Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States.,Citranvi Biosciences LLC, Chapel Hill, NC, United States
| |
Collapse
|
11
|
Mühe J, Aye PP, Quink C, Eng JY, Engelman K, Reimann KA, Wang F. Neutralizing antibodies against Epstein-Barr virus infection of B cells can protect from oral viral challenge in the rhesus macaque animal model. CELL REPORTS MEDICINE 2021; 2:100352. [PMID: 34337567 PMCID: PMC8324488 DOI: 10.1016/j.xcrm.2021.100352] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/09/2021] [Accepted: 06/24/2021] [Indexed: 12/12/2022]
Abstract
Epstein-Barr virus (EBV) and related lymphocryptoviruses (LCVs) from nonhuman primates are transmitted through oral secretions, penetrate the mucosal epithelium, and establish persistent infection in B cells. To determine whether neutralizing antibodies against epithelial or B cell infection could block oral transmission and persistent LCV infection, we use rhesus macaques, the most accurate animal model for EBV infection by faithfully reproducing acute and persistent infection in humans. Naive animals are infused with monoclonal antibodies neutralizing epithelial cell infection or B cell infection and then challenged orally with recombinant rhesus LCV. Our data show that high-titer B cell-neutralizing antibodies alone, but not epithelial cell-neutralizing antibodies, can provide complete protection of rhesus macaques from oral LCV challenge, but not in all hosts. Thus, neutralizing antibodies against B cell infection are important targets for EBV vaccine development, but they may not be sufficient. mAb infusion leads to high neutralizing titers in nonhuman primates Protection of epithelial cells does not protect from lymphocryptovirus challenge Neutralization of B cell infection alone provides partial protection in macaques
Collapse
Affiliation(s)
- Janine Mühe
- Department of Medicine, Infectious Diseases Division, Brigham and Women's Hospital and Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | | | - Carol Quink
- Department of Medicine, Infectious Diseases Division, Brigham and Women's Hospital and Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Jing Ying Eng
- MassBiologics, University of Massachusetts Medical School, Boston, MA, USA
| | - Kathleen Engelman
- MassBiologics, University of Massachusetts Medical School, Boston, MA, USA
| | - Keith A Reimann
- MassBiologics, University of Massachusetts Medical School, Boston, MA, USA
| | - Fred Wang
- Department of Medicine, Infectious Diseases Division, Brigham and Women's Hospital and Department of Microbiology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
12
|
Immunization with Epstein-Barr Virus Core Fusion Machinery Envelope Proteins Elicit High Titers of Neutralizing Activities and Protect Humanized Mice from Lethal Dose EBV Challenge. Vaccines (Basel) 2021; 9:vaccines9030285. [PMID: 33808755 PMCID: PMC8003492 DOI: 10.3390/vaccines9030285] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/26/2021] [Accepted: 03/11/2021] [Indexed: 12/18/2022] Open
Abstract
Epstein–Barr virus (EBV) is the primary cause of infectious mononucleosis and is strongly implicated in the etiology of multiple lymphoid and epithelial cancers. EBV core fusion machinery envelope proteins gH/gL and gB coordinately mediate EBV fusion and entry into its target cells, B lymphocytes and epithelial cells, suggesting these proteins could induce antibodies that prevent EBV infection. We previously reported that the immunization of rabbits with recombinant EBV gH/gL or trimeric gB each induced markedly higher serum EBV-neutralizing titers for B lymphocytes than that of the leading EBV vaccine candidate gp350. In this study, we demonstrated that immunization of rabbits with EBV core fusion machinery proteins induced high titer EBV neutralizing antibodies for both B lymphocytes and epithelial cells, and EBV gH/gL in combination with EBV trimeric gB elicited strong synergistic EBV neutralizing activities. Furthermore, the immune sera from rabbits immunized with EBV gH/gL or trimeric gB demonstrated strong passive immune protection of humanized mice from lethal dose EBV challenge, partially or completely prevented death respectively, and markedly decreased the EBV load in peripheral blood of humanized mice. These data strongly suggest the combination of EBV core fusion machinery envelope proteins gH/gL and trimeric gB is a promising EBV prophylactic vaccine.
Collapse
|
13
|
Minab R, Bu W, Nguyen H, Wall A, Sholukh AM, Huang ML, Ortego M, Krantz EM, Irvine M, Casper C, Orem J, McGuire AT, Cohen JI, Gantt S. Maternal Epstein-Barr Virus-Specific Antibodies and Risk of Infection in Ugandan Infants. J Infect Dis 2020; 223:1897-1904. [PMID: 33095855 DOI: 10.1093/infdis/jiaa654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 10/19/2020] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Epstein-Barr virus (EBV) infection is a major cause of malignancy worldwide. Maternal antibody is thought to prevent EBV infection because it is uncommon in early infancy. Maternal HIV infection is associated with an increased incidence of EBV infection in exposed infants, which we hypothesized results from impaired transfer of EBV-neutralizing maternal antibodies. METHODS Among Ugandan infants followed for EBV acquisition from birth, we measured antibody binding to EBV glycoproteins (gp350, gH/gL) involved in B-cell and epithelial-cell entry, as well as viral neutralization and antibody-dependent cellular cytotoxicity (ADCC) activity in plasma samples prior to infection. These serologic data were analyzed for differences between HIV-exposed uninfected (HEU) and HIV-unexposed (HUU) infants, and for associations with incident infant EBV infection. RESULTS HEU infants had significantly higher titers than HUU infants for all EBV-binding and neutralizing antibodies measured (P < .01) but not ADCC activity, which was similar between groups. No antibody measure was associated with a decreased risk of EBV acquisition in the cohort. CONCLUSIONS Our findings indicate that in this cohort maternal antibody did not protect infants against EBV infection through viral neutralization. The identification of protective nonneutralizing antibody functions would be invaluable for the development of an EBV vaccine.
Collapse
Affiliation(s)
- Rana Minab
- University of British Columbia, Vancouver, Canada
| | - Wei Bu
- Laboratory of Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Hanh Nguyen
- Laboratory of Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Abigail Wall
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Anton M Sholukh
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Meei-Li Huang
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Michael Ortego
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Elizabeth M Krantz
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | | | - Corey Casper
- Infectious Disease Research Institute, Seattle, Washington, USA
| | - Jackson Orem
- Uganda Cancer Research Institute, Kampala, Uganda
| | - Andrew T McGuire
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.,Department of Global Health, University of Washington, Seattle, Washington, USA
| | - Jeffrey I Cohen
- Laboratory of Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Soren Gantt
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.,Centre de Recherche du Centre Hospitalier Universitaire Sainte-Justine, Montréal, Quebec, Canada
| |
Collapse
|
14
|
Singh S, Homad LJ, Akins NR, Stoffers CM, Lackhar S, Malhi H, Wan YH, Rawlings DJ, McGuire AT. Neutralizing Antibodies Protect against Oral Transmission of Lymphocryptovirus. CELL REPORTS MEDICINE 2020; 1. [PMID: 32724901 PMCID: PMC7386402 DOI: 10.1016/j.xcrm.2020.100033] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Epstein-Barr virus (EBV) is a cancer-associated pathogen for which there is no vaccine. Successful anti-viral vaccines elicit antibodies that neutralize infectivity; however, it is unknown whether neutralizing antibodies prevent EBV acquisition. Here we assessed whether passively delivered AMMO1, a monoclonal antibody that neutralizes EBV in a cell-type-independent manner, could protect against experimental EBV challenge in two animal infection models. When present prior to a high-dose intravenous EBV challenge, AMMO1 prevented viremia and reduced viral loads to nearly undetectable levels in humanized mice. AMMO1 conferred sterilizing immunity to three of four macaques challenged orally with rhesus lymphocryptovirus, the EBV ortholog that infects rhesus macaques. The infected macaque had lower plasma neutralizing activity than the protected animals. These results indicate that a vaccine capable of eliciting adequate titers of neutralizing antibodies targeting the AMMO1 epitope may protect against EBV acquisition and are therefore highly relevant to the design of an effective EBV vaccine. An anti-EBV mAb, AMMO1, limits viral replication following challenge in humanized mice AMMO1 cross-reacts with and neutralizes rhesus lymphocryptovirus Adequate levels of AMMO1 prevent oral acquisition of rhLCV in macaques Protection afforded by neutralizing antibody provides proof of concept for EBV vaccines
Collapse
Affiliation(s)
- Swati Singh
- Center for Immunity and Immunotherapies and Program for Cell and Gene Therapy, Seattle Children's Research Institute, Seattle, WA98101, USA.,These authors contributed equally
| | - Leah J Homad
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,These authors contributed equally
| | - Nicholas R Akins
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Claire M Stoffers
- Center for Immunity and Immunotherapies and Program for Cell and Gene Therapy, Seattle Children's Research Institute, Seattle, WA98101, USA
| | - Stefan Lackhar
- Center for Immunity and Immunotherapies and Program for Cell and Gene Therapy, Seattle Children's Research Institute, Seattle, WA98101, USA
| | - Harman Malhi
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Yu-Hsin Wan
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - David J Rawlings
- Center for Immunity and Immunotherapies and Program for Cell and Gene Therapy, Seattle Children's Research Institute, Seattle, WA98101, USA.,Departments of Pediatrics and Immunology, University of Washington, Seattle, WA 98101, USA
| | - Andrew T McGuire
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,Department of Global Health, University of Washington, Seattle, WA 98195, USA.,Lead Contact
| |
Collapse
|
15
|
Romero-Masters JC, Ohashi M, Djavadian R, Eichelberg MR, Hayes M, Zumwalde NA, Bristol JA, Nelson SE, Ma S, Ranheim EA, Gumperz JE, Johannsen EC, Kenney SC. An EBNA3A-Mutated Epstein-Barr Virus Retains the Capacity for Lymphomagenesis in a Cord Blood-Humanized Mouse Model. J Virol 2020; 94:e02168-19. [PMID: 32132242 PMCID: PMC7199417 DOI: 10.1128/jvi.02168-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 02/28/2020] [Indexed: 02/07/2023] Open
Abstract
Epstein-Barr virus (EBV) causes B cell lymphomas and transforms B cells in vitro The EBV protein EBNA3A collaborates with EBNA3C to repress p16 expression and is required for efficient transformation in vitro An EBNA3A deletion mutant EBV strain was recently reported to establish latency in humanized mice but not cause tumors. Here, we compare the phenotypes of an EBNA3A mutant EBV (Δ3A) and wild-type (WT) EBV in a cord blood-humanized (CBH) mouse model. The hypomorphic Δ3A mutant, in which a stop codon is inserted downstream from the first ATG and the open reading frame is disrupted by a 1-bp insertion, expresses very small amounts of EBNA3A using an alternative ATG at residue 15. Δ3A caused B cell lymphomas at rates similar to their induction by WT EBV but with delayed onset. Δ3A and WT tumors expressed equivalent levels of EBNA2 and p16, but Δ3A tumors in some cases had reduced LMP1. Like the WT EBV tumors, Δ3A lymphomas were oligoclonal/monoclonal, with typically one dominant IGHV gene being expressed. Transcriptome sequencing (RNA-seq) analysis revealed small but consistent gene expression differences involving multiple cellular genes in the WT EBV- versus Δ3A-infected tumors and increased expression of genes associated with T cells, suggesting increased T cell infiltration of tumors. Consistent with an impact of EBNA3A on immune function, we found that the expression of CLEC2D, a receptor that has previously been shown to influence responses of T and NK cells, was markedly diminished in cells infected with EBNA3A mutant virus. Together, these studies suggest that EBNA3A contributes to efficient EBV-induced lymphomagenesis in CBH mice.IMPORTANCE The EBV protein EBNA3A is expressed in latently infected B cells and is important for efficient EBV-induced transformation of B cells in vitro In this study, we used a cord blood-humanized mouse model to compare the phenotypes of an EBNA3A hypomorph mutant virus (Δ3A) and wild-type EBV. The Δ3A virus caused lymphomas with delayed onset compared to the onset of those caused by WT EBV, although the tumors occurred at a similar rate. The WT EBV and EBNA3A mutant tumors expressed similar levels of the EBV protein EBNA2 and cellular protein p16, but in some cases, Δ3A tumors had less LMP1. Our analysis suggested that Δ3A-infected tumors have elevated T cell infiltrates and decreased expression of the CLEC2D receptor, which may point to potential novel roles of EBNA3A in T cell and NK cell responses to EBV-infected tumors.
Collapse
Affiliation(s)
- James C Romero-Masters
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Makoto Ohashi
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Reza Djavadian
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Mark R Eichelberg
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Mitchell Hayes
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Nicholas A Zumwalde
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Jillian A Bristol
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Scott E Nelson
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Shidong Ma
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Erik A Ranheim
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Jenny E Gumperz
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Eric C Johannsen
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Shannon C Kenney
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
16
|
Okoye AA, DeGottardi MQ, Fukazawa Y, Vaidya M, Abana CO, Konfe AL, Fachko DN, Duell DM, Li H, Lum R, Gao L, Park BS, Skalsky RL, Lewis AD, Axthelm MK, Lifson JD, Wong SW, Picker LJ. Role of IL-15 Signaling in the Pathogenesis of Simian Immunodeficiency Virus Infection in Rhesus Macaques. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2019; 203:2928-2943. [PMID: 31653683 PMCID: PMC6864325 DOI: 10.4049/jimmunol.1900792] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 09/30/2019] [Indexed: 01/04/2023]
Abstract
Although IL-15 has been implicated in the pathogenic hyperimmune activation that drives progressive HIV and SIV infection, as well as in the generation of HIV/SIV target cells, it also supports NK and T cell homeostasis and effector activity, potentially benefiting the host. To understand the role of IL-15 in SIV infection and pathogenesis, we treated two cohorts of SIVmac239-infected rhesus macaques (RM; Macaca mulatta), one with chronic infection, the other with primary infection, with a rhesusized, IL-15-neutralizing mAb (versus an IgG isotype control) for up to 10 wk (n = 7-9 RM per group). In both cohorts, anti-IL-15 was highly efficient at blocking IL-15 signaling in vivo, causing 1) profound depletion of NK cells in blood and tissues throughout the treatment period; 2) substantial, albeit transient, depletion of CD8+ effector memory T cells (TEM) (but not the naive and central memory subsets); and 3) CD4+ and CD8+ TEM hyperproliferation. In primary infection, reduced frequencies of SIV-specific effector T cells in an extralymphoid tissue site were also observed. Despite these effects, the kinetics and extent of SIV replication, CD4+ T cell depletion, and the onset of AIDS were comparable between anti-IL-15- and control-treated groups in both cohorts. However, RM treated with anti-IL-15 during primary infection manifested accelerated reactivation of RM rhadinovirus. Thus, IL-15 support of NK cell and TEM homeostasis does not play a demonstrable, nonredundant role in SIV replication or CD4+ T cell deletion dynamics but may contribute to immune control of oncogenic γ-herpesviruses.
Collapse
Affiliation(s)
- Afam A Okoye
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97006
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006
| | - Maren Q DeGottardi
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97006
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006
| | - Yoshinori Fukazawa
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97006
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006
| | - Mukta Vaidya
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97006
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006
| | - Chike O Abana
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97006
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006
| | - Audrie L Konfe
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97006
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006
| | - Devin N Fachko
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97006
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006
| | - Derick M Duell
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97006
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006
| | - He Li
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97006
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006
| | - Richard Lum
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97006
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006
| | - Lina Gao
- Division of Biostatistics, Department of Public Health and Preventative Medicine, Oregon Health & Science University, Portland, OR 97239; and
| | - Byung S Park
- Division of Biostatistics, Department of Public Health and Preventative Medicine, Oregon Health & Science University, Portland, OR 97239; and
| | - Rebecca L Skalsky
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97006
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006
| | - Anne D Lewis
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006
| | - Michael K Axthelm
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97006
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006
| | - Jeffrey D Lifson
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702
| | - Scott W Wong
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97006
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006
| | - Louis J Picker
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97006;
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006
| |
Collapse
|
17
|
Abstract
Vaccination against γ-herpesviruses has been hampered by our limited understanding of their normal control. Epstein–Barr virus (EBV)-transformed B cells are killed by viral latency antigen-specific CD8+ T cells in vitro, but attempts to block B cell infection with antibody or to prime anti-viral CD8+ T cells have protected poorly in vivo. The Doherty laboratory used Murid Herpesvirus-4 (MuHV-4) to analyze γ-herpesvirus control in mice and found CD4+ T cell dependence, with viral evasion limiting CD8+ T cell function. MuHV-4 colonizes germinal center (GC) B cells via lytic transfer from myeloid cells, and CD4+ T cells control myeloid infection. GC colonization and protective, lytic antigen-specific CD4+ T cells are now evident also for EBV. Subunit vaccines have protected only transiently against MuHV-4, but whole virus vaccines give long-term protection, via CD4+ T cells and antibody. They block infection transfer to B cells, and need include no known viral latency gene, nor any MuHV-4-specific gene. Thus, the Doherty approach of in vivo murine analysis has led to a plausible vaccine strategy for EBV and, perhaps, some insight into what CD8+ T cells really do.
Collapse
Affiliation(s)
- Philip G Stevenson
- School of Chemistry and Molecular Biosciences, University of Queensland and Brisbane, Australia.,Child Health Research Center, Brisbane, Australia
| |
Collapse
|
18
|
Mulama DH, Mutsvunguma LZ, Totonchy J, Ye P, Foley J, Escalante GM, Rodriguez E, Nabiee R, Muniraju M, Wussow F, Barasa AK, Ogembo JG. A multivalent Kaposi sarcoma-associated herpesvirus-like particle vaccine capable of eliciting high titers of neutralizing antibodies in immunized rabbits. Vaccine 2019; 37:4184-4194. [PMID: 31201053 DOI: 10.1016/j.vaccine.2019.04.071] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/19/2019] [Accepted: 04/24/2019] [Indexed: 12/24/2022]
Abstract
Kaposi sarcoma-associated herpesvirus (KSHV) is an emerging pathogen and the causative agent of multiple cancers in immunocompromised patients. To date, there is no licensed prophylactic KSHV vaccine. In this study, we generated a novel subunit vaccine that incorporates four key KSHV envelope glycoproteins required for viral entry in diverse cell types (gpK8.1, gB, and gH/gL) into a single multivalent KSHV-like particle (KSHV-LP). Purified KSHV-LPs were similar in size, shape, and morphology to KSHV virions. Vaccination of rabbits with adjuvanted KSHV-LPs generated strong glycoprotein-specific antibody responses, and purified immunoglobulins from KSHV-LP-immunized rabbits neutralized KSHV infection in epithelial, endothelial, fibroblast, and B cell lines (60-90% at the highest concentration tested). These findings suggest that KSHV-LPs may be an ideal platform for developing a safe and effective prophylactic KSHV vaccine. We envision performing future studies in animal models that are susceptible to KSHV infection, to determine correlates of immune protection in vivo.
Collapse
Affiliation(s)
- David H Mulama
- Department of Immuno-Oncology, Beckman Research Institute of City of Hope, Duarte, CA, United States; Biological Sciences Department, Masinde Muliro University of Science and Technology, Kakamega, Kenya
| | - Lorraine Z Mutsvunguma
- Department of Immuno-Oncology, Beckman Research Institute of City of Hope, Duarte, CA, United States
| | | | - Peng Ye
- Department of Immuno-Oncology, Beckman Research Institute of City of Hope, Duarte, CA, United States
| | - Joslyn Foley
- Department of Immuno-Oncology, Beckman Research Institute of City of Hope, Duarte, CA, United States
| | - Gabriela M Escalante
- Irell & Manella Graduate School of Biological Sciences of City of Hope, Duarte, CA, United States
| | - Esther Rodriguez
- Department of Immuno-Oncology, Beckman Research Institute of City of Hope, Duarte, CA, United States
| | - Ramina Nabiee
- Chapman University, School of Pharmacy, Irvine, CA, United States
| | - Murali Muniraju
- Department of Immuno-Oncology, Beckman Research Institute of City of Hope, Duarte, CA, United States
| | - Felix Wussow
- Department of Immuno-Oncology, Beckman Research Institute of City of Hope, Duarte, CA, United States
| | - Anne K Barasa
- Department of Immuno-Oncology, Beckman Research Institute of City of Hope, Duarte, CA, United States; Department of Human Pathology, University of Nairobi, Nairobi, Kenya
| | - Javier Gordon Ogembo
- Department of Immuno-Oncology, Beckman Research Institute of City of Hope, Duarte, CA, United States.
| |
Collapse
|
19
|
Valencia S, Gill RB, Dowdell KC, Wang Y, Hornung R, Bowman JJ, Lacayo JC, Cohen JI. Comparison of vaccination with rhesus CMV (RhCMV) soluble gB with a RhCMV replication-defective virus deleted for MHC class I immune evasion genes in a RhCMV challenge model. Vaccine 2018; 37:333-342. [PMID: 30522906 DOI: 10.1016/j.vaccine.2018.08.043] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 07/06/2018] [Accepted: 08/17/2018] [Indexed: 11/25/2022]
Abstract
A human cytomegalovirus (HCMV) vaccine to prevent infection and/or reduce disease associated with congenital infection or visceral disease in transplant recipients is a high priority, but has remained elusive. We created a disabled infectious single cycle rhesus CMV (RhCMV) deleted for glycoprotein L (gL) and the MHC class I immune evasion genes Rh178 and Rh182-189, and restored its epithelial cell tropism by inserting the Rh128-131A genes. The resulting virus, RhCMVRΔgL/178/182-189, was used to vaccinate rhesus monkeys intramuscularly and was compared with vaccination of animals with soluble RhCMV glycoprotein B (gB) in alum/monophosphoryl lipid A or with PBS as a control. At 4 weeks after the second vaccination, an increased frequency of RhCMV-specific CD8 T cells was detected in animals vaccinated with the RhCMVRΔgL/178/182-189 vaccine compared to animals vaccinated with soluble gB. In contrast, monkeys vaccinated with soluble gB had 20-fold higher gB antibody titers than animals vaccinated with RhCMVRΔgL/178/182-189. Titers of neutralizing antibody to RhCMV infection of fibroblasts were higher in animals vaccinated with gB compared with RhCMVRΔgL/178/182-189. Following vaccination, monkeys were challenged subcutaneously with RhCMV UCD59, a low passage virus propagated in monkey kidney epithelial cells. All animals became infected after challenge; however, the frequency of RhCMV detection in the blood was reduced in monkeys vaccinated with soluble gB compared with those vaccinated with RhCMVRΔgL/178/182-189. The frequency of challenge virus shedding in the urine and saliva and the RhCMV copy number shed at these sites was not different in animals vaccinated with RhCMVRΔgL/178/182-189 or soluble gB compared with those that received PBS before challenge. Although the RhCMVRΔgL/178/182-189 vaccine was superior in inducing cellular immunity to RhCMV, it induced lower titers of neutralizing antibody and antibody to gB than the soluble gB vaccine; after challenge, animals vaccinated with soluble gB had a lower frequency of virus detection in the blood than those vaccinated with RhCMVRΔgL/178/182-189.
Collapse
Affiliation(s)
- Sarah Valencia
- Medical Virology Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Rachel B Gill
- Medical Virology Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Kennichi C Dowdell
- Medical Virology Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Yanmei Wang
- Clinical Services Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Ron Hornung
- Clinical Services Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - J Jason Bowman
- Medical Virology Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Juan C Lacayo
- Medical Virology Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jeffrey I Cohen
- Medical Virology Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
20
|
Cohen JI. Vaccine Development for Epstein-Barr Virus. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1045:477-493. [PMID: 29896681 DOI: 10.1007/978-981-10-7230-7_22] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Epstein-Barr virus (EBV) is the primary cause of infectious mononucleosis and is associated with several malignancies, including nasopharyngeal carcinoma, gastric carcinoma, Hodgkin lymphoma, Burkitt lymphoma, and lymphomas in immunocompromised persons, as well as multiple sclerosis. A vaccine is currently unavailable. While monomeric EBV gp350 was shown in a phase 2 trial to reduce the incidence of infectious mononucleosis, but not the rate of EBV infection, newer formulations of gp350 including multimeric forms, viruslike particles, and nanoparticles may be more effective. A vaccine that also includes additional viral glycoproteins, lytic proteins, or latency proteins might improve the effectiveness of an EBV gp350 vaccine. Clinical trials to determine if an EBV vaccine can reduce the rate of infectious mononucleosis or posttransplant lymphoproliferative disease should be performed. The former is important since infectious mononucleosis can be associated with debilitating fatigue as well as other complications, and EBV infectious mononucleosis is associated with increased rates of Hodgkin lymphoma and multiple sclerosis. A vaccine to reduce EBV posttransplant lymphoproliferative disease would be an important proof of principle to prevent an EBV-associated malignancy. Trials of an EBV vaccine to reduce the incidence of Hodgkin lymphoma, multiple sclerosis, or Burkitt lymphoma would be difficult but feasible.
Collapse
Affiliation(s)
- Jeffrey I Cohen
- Laboratory of Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
21
|
Fujiwara S. Animal Models of Human Gammaherpesvirus Infections. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1045:413-436. [PMID: 29896678 DOI: 10.1007/978-981-10-7230-7_19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Humans are the only natural host of both Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV), and this strict host tropism has hampered the development of animal models of these human gammaherpesviruses. To overcome this difficulty and develop useful models for these viruses, three main approaches have been employed: first, experimental infection of laboratory animals [mainly new-world non-human primates (NHPs)] with EBV or KSHV; second, experimental infection of NHPs (mainly old-world NHPs) with EBV- or KSHV-related gammaherpesviruses inherent to respective NHPs; and third, experimental infection of humanized mice, i.e., immunodeficient mice engrafted with functional human cells or tissues (mainly human immune system components) with EBV or KSHV. These models have recapitulated diseases caused by human gammaherpesviruses, their asymptomatic persistent infections, as well as both innate and adaptive immune responses to them, facilitating the development of novel therapeutic and prophylactic measures against these viruses.
Collapse
Affiliation(s)
- Shigeyoshi Fujiwara
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo, Japan. .,Division of Hematology and Rheumatology, Department of Medicine, Nihon University School of Medicine, Tokyo, Japan.
| |
Collapse
|
22
|
Dasari V, Bhatt KH, Smith C, Khanna R. Designing an effective vaccine to prevent Epstein-Barr virus-associated diseases: challenges and opportunities. Expert Rev Vaccines 2017; 16:377-390. [PMID: 28276306 DOI: 10.1080/14760584.2017.1293529] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Epstein-Barr virus (EBV) is a ubiquitous herpesvirus associated with a number of clinical manifestations. Primary EBV infection in young adolescents often manifests as acute infectious mononucleosis and latent infection is associated with multiple lymphoid and epithelial cancers and autoimmune disorders, particularly multiple sclerosis. Areas covered: Over the last decade, our understanding of pathogenesis and immune regulation of EBV-associated diseases has provided an important platform for the development of novel vaccine formulations. In this review, we discuss developmental strategies for prophylactic and therapeutic EBV vaccines which have been assessed in preclinical and clinical settings. Expert commentary: Major roadblocks in EBV vaccine development include no precise understanding of the clinical correlates of protection, uncertainty about adjuvant selection and the unavailability of appropriate animal models. Recent development of new EBV vaccine formulations provides exciting opportunities for the formal clinical assessment of novel formulations.
Collapse
Affiliation(s)
- Vijayendra Dasari
- a QIMR Centre for Immunotherapy and Vaccine Development and Tumour Immunology Laboratory , QIMR Berghofer Medical Research Institute , Brisbane , Australia
| | - Kunal H Bhatt
- a QIMR Centre for Immunotherapy and Vaccine Development and Tumour Immunology Laboratory , QIMR Berghofer Medical Research Institute , Brisbane , Australia
| | - Corey Smith
- a QIMR Centre for Immunotherapy and Vaccine Development and Tumour Immunology Laboratory , QIMR Berghofer Medical Research Institute , Brisbane , Australia
| | - Rajiv Khanna
- a QIMR Centre for Immunotherapy and Vaccine Development and Tumour Immunology Laboratory , QIMR Berghofer Medical Research Institute , Brisbane , Australia
| |
Collapse
|
23
|
Brooks JM, Long HM, Tierney RJ, Shannon-Lowe C, Leese AM, Fitzpatrick M, Taylor GS, Rickinson AB. Early T Cell Recognition of B Cells following Epstein-Barr Virus Infection: Identifying Potential Targets for Prophylactic Vaccination. PLoS Pathog 2016; 12:e1005549. [PMID: 27096949 PMCID: PMC4838210 DOI: 10.1371/journal.ppat.1005549] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 03/14/2016] [Indexed: 12/25/2022] Open
Abstract
Epstein-Barr virus, a B-lymphotropic herpesvirus, is the cause of infectious mononucleosis, has strong aetiologic links with several malignancies and has been implicated in certain autoimmune diseases. Efforts to develop a prophylactic vaccine to prevent or reduce EBV-associated disease have, to date, focused on the induction of neutralising antibody responses. However, such vaccines might be further improved by inducing T cell responses capable of recognising and killing recently-infected B cells. In that context, EBNA2, EBNA-LP and BHRF1 are the first viral antigens expressed during the initial stage of B cell growth transformation, yet have been poorly characterised as CD8+ T cell targets. Here we describe CD8+ T cell responses against each of these three "first wave" proteins, identifying target epitopes and HLA restricting alleles. While EBNA-LP and BHRF1 each contained one strong CD8 epitope, epitopes within EBNA2 induced immunodominant responses through several less common HLA class I alleles (e.g. B*3801 and B*5501), as well as subdominant responses through common class I alleles (e.g. B7 and C*0304). Importantly, such EBNA2-specific CD8+ T cells recognised B cells within the first day post-infection, prior to CD8+ T cells against well-characterised latent target antigens such as EBNA3B or LMP2, and effectively inhibited outgrowth of EBV-transformed B cell lines. We infer that "first wave" antigens of the growth-transforming infection, especially EBNA2, constitute potential CD8+ T cell immunogens for inclusion in prophylactic EBV vaccine design.
Collapse
Affiliation(s)
- Jill M. Brooks
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Heather M. Long
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Rose J. Tierney
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Claire Shannon-Lowe
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Alison M. Leese
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Martin Fitzpatrick
- Biomolecular Mass Spectrometry and Proteomics Group, Utrecht University, Utrecht, The Netherlands
| | - Graham S. Taylor
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Alan B. Rickinson
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
24
|
Coghill AE, Bu W, Nguyen H, Hsu WL, Yu KJ, Lou PJ, Wang CP, Chen CJ, Hildesheim A, Cohen JI. High Levels of Antibody that Neutralize B-cell Infection of Epstein-Barr Virus and that Bind EBV gp350 Are Associated with a Lower Risk of Nasopharyngeal Carcinoma. Clin Cancer Res 2016; 22:3451-7. [PMID: 26920891 DOI: 10.1158/1078-0432.ccr-15-2299] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 02/07/2016] [Indexed: 12/18/2022]
Abstract
PURPOSE Elevated IgA antibodies indicative of ongoing exposure to Epstein-Barr virus (EBV) are high-risk biomarkers for nasopharyngeal carcinoma (NPC), an EBV-related epithelial tumor. However, protective biomarkers that limit exposure to the virus have not been defined. We evaluated whether antibodies that can neutralize EBV infection by targeting glycoproteins involved in viral cell entry, including EBV vaccine candidate glycoprotein 350 (gp350), were associated with lower NPC risk. EXPERIMENTAL DESIGN In a prospective cohort of 2,557 individuals from 358 high-risk NPC multiplex families in Taiwan, we identified 21 incident NPC cases and 50 disease-free controls. To complement data from high-risk families, we further identified 30 prevalent NPC cases and 50 healthy controls from the general Taiwanese population. We quantified EBV-neutralizing antibody, antibodies against EBV glycoproteins involved in B-cell and epithelial cell entry, and anti-EBNA1 IgA, a high-risk NPC biomarker. RESULTS EBV-neutralizing antibodies blocking B-cell infection and anti-gp350 antibodies were present at significantly higher levels in disease-free controls compared with incident NPC cases (P < 0.03). Family members with both low EBV-neutralizing potential and elevated EBNA1 IgA had a 7-fold increased risk of NPC (95% CI, 1.9-28.7). Neutralizing antibodies against epithelial cell infection did not differ between incident cases and disease-free controls. Anti-glycoprotein antibody levels measured at diagnosis (prevalent NPC) were significantly higher than levels measured prior to diagnosis (P < 0.01). CONCLUSIONS Elevated titers of EBV-neutralizing antibody and anti-gp350 antibody were low-risk biomarkers for NPC. These data suggest that a vaccine that induces potent EBV gp350 and B-cell-neutralizing antibodies could reduce the risk of EBV-related cancers such as NPC. Clin Cancer Res; 22(14); 3451-7. ©2016 AACR.
Collapse
Affiliation(s)
- Anna E Coghill
- Infections and Immunoepidemiology Branch, Division of Cancer Epidemiology and Genetics, NCI, Bethesda, Maryland.
| | - Wei Bu
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland
| | - Hanh Nguyen
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland
| | - Wan-Lun Hsu
- Graduate Institute of Epidemiology, College of Public Health, National Taiwan University, Taipei, Taiwan. Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Kelly J Yu
- Infections and Immunoepidemiology Branch, Division of Cancer Epidemiology and Genetics, NCI, Bethesda, Maryland. Division of Cancer Prevention, NCI, Bethesda, Maryland
| | - Pei-Jen Lou
- Department of Otolaryngology, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | - Cheng-Ping Wang
- Department of Otolaryngology, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | - Chien-Jen Chen
- Graduate Institute of Epidemiology, College of Public Health, National Taiwan University, Taipei, Taiwan. Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Allan Hildesheim
- Infections and Immunoepidemiology Branch, Division of Cancer Epidemiology and Genetics, NCI, Bethesda, Maryland
| | - Jeffrey I Cohen
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland
| |
Collapse
|
25
|
Servat E, Ro BW, Cayatte C, Gemmell L, Barton C, Rao E, Lin R, Zuo F, Woo JC, Hayes GM. Identification of the critical attribute(s) of EBV gp350 antigen required for elicitation of a neutralizing antibody response in vivo. Vaccine 2015; 33:6771-7. [DOI: 10.1016/j.vaccine.2015.10.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 10/05/2015] [Accepted: 10/07/2015] [Indexed: 10/22/2022]
|
26
|
Wang M, Jiang S, Han Z, Zhao B, Wang L, Zhou Z, Wang Y. Expression and immunogenic characterization of recombinant gp350 for developing a subunit vaccine against Epstein-Barr virus. Appl Microbiol Biotechnol 2015; 100:1221-1230. [PMID: 26433969 DOI: 10.1007/s00253-015-7027-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Revised: 09/04/2015] [Accepted: 09/20/2015] [Indexed: 01/27/2023]
Abstract
Epstein-Barr virus (EBV) is a ubiquitous human herpesvirus that is linked to the development of various malignancies. There is an urgent need for effective vaccines against EBV. EBV envelope glycoprotein gp350 is an attractive candidate for a prophylactic vaccine. This study was undertaken to produce the truncated (codons 1-443) gp350 protein (gp350(1-443)) in Pichia pastoris and evaluate its immunogenicity. The gp350(1-443) protein was expressed as a secretory protein with an N-terminal His-tag in P. pastoris and purified through Ni-NTA chromatography. Immunization with the recombinant gp350(1-443) could elicit high levels of gp350(1-443)-specific antibodies in mice. Moreover, gp350(1-443)-immunized mice developed strong lymphoproliferative and Th1/Th2 cytokine responses. Furthermore, the recombinant gp350(1-443) could stimulate CD4(+) and CD8(+) T cell responses in vaccinated mice. Collectively, these findings demonstrated that the yeast-expressed gp350(1-443) retained strong immunogenicity. This study will provide a useful source for developing EBV subunit vaccine candidates.
Collapse
Affiliation(s)
- Man Wang
- Institute for Translational Medicine, Medical College of Qingdao University, Qingdao, 266021, China.
| | - Shuai Jiang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Zhenwei Han
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Bing Zhao
- Institute for Translational Medicine, Medical College of Qingdao University, Qingdao, 266021, China
| | - Li'ao Wang
- Institute for Translational Medicine, Medical College of Qingdao University, Qingdao, 266021, China
| | - Zhixia Zhou
- Institute for Translational Medicine, Medical College of Qingdao University, Qingdao, 266021, China
| | - Yefu Wang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
27
|
Abstract
Glycoproteins are critical to virus entry, to spread within and between hosts and can modify the behavior of cells. Many viruses carry only a few, most found in the virion envelope. EBV makes more than 12, providing flexibility in how it colonizes its human host. Some are dedicated to getting the virus through the cell membrane and on toward the nucleus of the cell, some help guide the virus back out and on to the next cell in the same or a new host. Yet others undermine host defenses helping the virus persist for a lifetime, maintaining a presence that is mostly tolerated and serves to perpetuate EBV as one of the most common infections of man.
Collapse
Affiliation(s)
- Lindsey M Hutt-Fletcher
- Department of Microbiology & Immunology, Feist-Weiller Cancer Center and Center for Molecular & Tumor Virology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130, USA; Tel.: +1 318 675 4948
| |
Collapse
|
28
|
Kanekiyo M, Bu W, Joyce MG, Meng G, Whittle JRR, Baxa U, Yamamoto T, Narpala S, Todd JP, Rao SS, McDermott AB, Koup RA, Rossmann MG, Mascola JR, Graham BS, Cohen JI, Nabel GJ. Rational Design of an Epstein-Barr Virus Vaccine Targeting the Receptor-Binding Site. Cell 2015; 162:1090-100. [PMID: 26279189 PMCID: PMC4757492 DOI: 10.1016/j.cell.2015.07.043] [Citation(s) in RCA: 270] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 05/21/2015] [Accepted: 06/18/2015] [Indexed: 11/19/2022]
Abstract
Epstein-Barr virus (EBV) represents a major global health problem. Though it is associated with infectious mononucleosis and ∼200,000 cancers annually worldwide, a vaccine is not available. The major target of immunity is EBV glycoprotein 350/220 (gp350) that mediates attachment to B cells through complement receptor 2 (CR2/CD21). Here, we created self-assembling nanoparticles that displayed different domains of gp350 in a symmetric array. By focusing presentation of the CR2-binding domain on nanoparticles, potent neutralizing antibodies were elicited in mice and non-human primates. The structurally designed nanoparticle vaccine increased neutralization 10- to 100-fold compared to soluble gp350 by targeting a functionally conserved site of vulnerability, improving vaccine-induced protection in a mouse model. This rational approach to EBV vaccine design elicited potent neutralizing antibody responses by arrayed presentation of a conserved viral entry domain, a strategy that can be applied to other viruses.
Collapse
Affiliation(s)
- Masaru Kanekiyo
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Wei Bu
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - M Gordon Joyce
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Geng Meng
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - James R R Whittle
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ulrich Baxa
- Electron Microscopy Laboratory, Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Takuya Yamamoto
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sandeep Narpala
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - John-Paul Todd
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Srinivas S Rao
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Adrian B McDermott
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Richard A Koup
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Michael G Rossmann
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - John R Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Barney S Graham
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jeffrey I Cohen
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Gary J Nabel
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
29
|
Abstract
Epstein-Barr virus (EBV) is usually acquired silently early in life and carried thereafter as an asymptomatic infection of the B lymphoid system. However, many circumstances disturb the delicate EBV-host balance and cause the virus to display its pathogenic potential. Thus, primary infection in adolescence can manifest as infectious mononucleosis (IM), as a fatal illness that magnifies the immunopathology of IM in boys with the X-linked lymphoproliferative disease trait, and as a chronic active disease leading to life-threatening hemophagocytosis in rare cases of T or natural killer (NK) cell infection. Patients with primary immunodeficiencies affecting the NK and/or T cell systems, as well as immunosuppressed transplant recipients, handle EBV infections poorly, and many are at increased risk of virus-driven B-lymphoproliferative disease. By contrast, a range of other EBV-positive malignancies of lymphoid or epithelial origin arise in individuals with seemingly intact immune systems through mechanisms that remain to be understood.
Collapse
Affiliation(s)
- Graham S Taylor
- School of Cancer Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom; , , , ,
| | | | | | | | | |
Collapse
|
30
|
Modeling EBV infection and pathogenesis in new-generation humanized mice. Exp Mol Med 2015; 47:e135. [PMID: 25613732 PMCID: PMC4314584 DOI: 10.1038/emm.2014.88] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 09/29/2014] [Indexed: 12/12/2022] Open
Abstract
The development of highly immunodeficient mouse strains has allowed the reconstitution of functional human immune system components in mice. New-generation humanized mice generated in this manner have been extensively used for modeling viral infections that are exclusively human tropic. Epstein–Barr virus (EBV)-infected humanized mice reproduce cardinal features of EBV-associated B-cell lymphoproliferative disease and EBV-associated hemophagocytic lymphohistiocytosis (HLH). Erosive arthritis morphologically resembling rheumatoid arthritis (RA) has also been recapitulated in these mice. Low-dose EBV infection of humanized mice results in asymptomatic, persistent infection. Innate immune responses involving natural killer cells, EBV-specific adaptive T-cell responses restricted by human major histocompatibility and EBV-specific antibody responses are also elicited in humanized mice. EBV-associated T-/natural killer cell lymphoproliferative disease, by contrast, can be reproduced in a distinct mouse xenograft model. In this review, recent findings on the recapitulation of human EBV infection and pathogenesis in these mouse models, as well as their application to preclinical studies of experimental anti-EBV therapies, are described.
Collapse
|
31
|
Epstein-barr virus vaccines. Clin Transl Immunology 2015; 4:e32. [PMID: 25671130 PMCID: PMC4318489 DOI: 10.1038/cti.2014.27] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Revised: 11/03/2014] [Accepted: 11/03/2014] [Indexed: 02/08/2023] Open
Abstract
Epstein–Barr virus (EBV) is the primary cause of infectious mononucleosis (IM) and is associated with epithelial cell malignancies such as nasopharyngeal carcinoma and gastric carcinoma, as well as lymphoid malignancies including Hodgkin lymphoma, Burkitt lymphoma, non-Hodgkin lymphoma and post-transplant lymphoproliferative disorder. EBV vaccines to prevent primary infection or disease, or therapeutic vaccines to treat EBV malignancies have not been licensed. Most efforts to develop prophylactic vaccines have focused on EBV gp350, which is the major target of neutralizing antibody. A single phase 2 trial of an EBV gp350 vaccine has been reported; the vaccine reduced the rate of IM but not virus infection. The observation that infusion of EBV-specific T cells can reduce disease due to Hodgkin lymphoma and nasopharyngeal carcinoma provides a proof of principle that a therapeutic vaccine for these and other EBV-associated malignancies might be effective. Most therapeutic vaccines have targeted EBV LMP2 and EBV nuclear antigen-1. As EBV is associated with nearly 200 000 new malignancies each year worldwide, an EBV vaccine to prevent these diseases is needed.
Collapse
|
32
|
Abstract
Over the last century, the development of effective vaccine approaches to treat a number of viral infections has provided the impetus for the continual development of vaccine platforms for other viral infections, including Epstein-Barr virus (EBV). The clinical manifestations associated with EBV infection occur either following primary infection, such as infectious mononucleosis, or following an extended period of latency, primarily the EBV-associated malignancies and potentially including a number of autoimmune disorders, such as multiple sclerosis. As a consequence, two independent vaccine approaches are under development to prevent or control EBV-associated diseases. The first approach, which has been widely successful against other viral infections, is aimed at inducing a viral neutralisation antibody response to prevent primary infection. The second approach focuses upon the induction of cell-mediated immunity to control latent infected cells in persistently infected individuals. Early clinical studies have offered some insight into the potential efficacy of both of these approaches.
Collapse
Affiliation(s)
- Corey Smith
- QIMR Centre for Immunotherapy and Vaccine Development and Department of Immunology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4029, Australia
| | - Rajiv Khanna
- QIMR Centre for Immunotherapy and Vaccine Development and Department of Immunology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4029, Australia. .,Tumour Immunology Laboratory, Department of Immunology, QIMR Berghofer Medical Research Institute, 300 Herston Rd, Brisbane, 4006, Australia.
| |
Collapse
|
33
|
Abstract
Infectious mononucleosis is a clinical entity characterized by sore throat, cervical lymph node enlargement, fatigue, and fever most often seen in adolescents and young adults and lasting several weeks. It can be caused by a number of pathogens, but this chapter only discusses infectious mononucleosis due to primary Epstein-Barr virus (EBV) infection. EBV is a γ-herpesvirus that infects at least 90% of the population worldwide. The virus is spread by intimate oral contact among teenagers and young adults. How preadolescents acquire the virus is not known. A typical clinical picture with a positive heterophile test is usually sufficient to make the diagnosis, but heterophile antibodies are not specific and do not develop in some patients. EBV-specific antibody profiles are the best choice for staging EBV infection. In addition to causing acute illness, there can also be long-term consequences as the result of acquisition of the virus. Several EBV-related illnesses occur including certain cancers and autoimmune diseases, as well as complications of primary immunodeficiency in persons with the certain genetic mutations. A major obstacle to understanding these sequelae has been the lack of an efficient animal model for EBV infection, although progress in primate and mouse models has recently been made. Key future challenges are to develop protective vaccines and effective treatment regimens.
Collapse
Affiliation(s)
- Samantha K Dunmire
- Center for Immunology, University of Minnesota, Minneapolis, MN, 55455, USA.
| | - Kristin A Hogquist
- Center for Immunology, University of Minnesota, Minneapolis, MN, 55455, USA.
| | - Henry H Balfour
- Department of Laboratory Medicine and Pathology, Department of Pediatrics, University of Minnesota, University of Minnesota Medical School, Minneapolis, MN, 55455, USA.
| |
Collapse
|
34
|
Abstract
The advent of reverse genetic approaches to manipulate the genomes of both positive (+) and negative (-) sense RNA viruses allowed researchers to harness these genomes for basic research. Manipulation of positive sense RNA virus genomes occurred first largely because infectious RNA could be transcribed directly from cDNA versions of the RNA genomes. Manipulation of negative strand RNA virus genomes rapidly followed as more sophisticated approaches to provide RNA-dependent RNA polymerase complexes coupled with negative-strand RNA templates were developed. These advances have driven an explosion of RNA virus vaccine vector development. That is, development of approaches to exploit the basic replication and expression strategies of RNA viruses to produce vaccine antigens that have been engineered into their genomes. This study has led to significant preclinical testing of many RNA virus vectors against a wide range of pathogens as well as cancer targets. Multiple RNA virus vectors have advanced through preclinical testing to human clinical evaluation. This review will focus on RNA virus vectors designed to express heterologous genes that are packaged into viral particles and have progressed to clinical testing.
Collapse
Affiliation(s)
- Mark A Mogler
- Harrisvaccines, Inc., 1102 Southern Hills Drive, Suite 101, Ames, IA 50010, USA
| | | |
Collapse
|
35
|
Pender MP, Burrows SR. Epstein-Barr virus and multiple sclerosis: potential opportunities for immunotherapy. Clin Transl Immunology 2014; 3:e27. [PMID: 25505955 PMCID: PMC4237030 DOI: 10.1038/cti.2014.25] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Revised: 09/30/2014] [Accepted: 09/30/2014] [Indexed: 01/04/2023] Open
Abstract
Multiple sclerosis (MS) is a common chronic inflammatory demyelinating disease of the central nervous system (CNS) causing progressive disability. Many observations implicate Epstein–Barr virus (EBV) in the pathogenesis of MS, namely universal EBV seropositivity, high anti-EBV antibody levels, alterations in EBV-specific CD8+ T-cell immunity, increased spontaneous EBV-induced transformation of peripheral blood B cells, increased shedding of EBV from saliva and accumulation of EBV-infected B cells and plasma cells in the brain. Several mechanisms have been postulated to explain the role of EBV in the development of MS including cross-reactivity between EBV and CNS antigens, bystander damage to the CNS by EBV-specific CD8+ T cells, activation of innate immunity by EBV-encoded small RNA molecules in the CNS, expression of αB-crystallin in EBV-infected B cells leading to a CD4+ T-cell response against oligodendrocyte-derived αB-crystallin and EBV infection of autoreactive B cells, which produce pathogenic autoantibodies and provide costimulatory survival signals to autoreactive T cells in the CNS. The rapidly accumulating evidence for a pathogenic role of EBV in MS provides ground for optimism that it might be possible to prevent and cure MS by effectively controlling EBV infection through vaccination, antiviral drugs or treatment with EBV-specific cytotoxic CD8+ T cells. Adoptive immunotherapy with in vitro-expanded autologous EBV-specific CD8+ T cells directed against viral latent proteins was recently used to treat a patient with secondary progressive MS. Following the therapy, there was clinical improvement, decreased disease activity on magnetic resonance imaging and reduced intrathecal immunoglobulin production.
Collapse
Affiliation(s)
- Michael P Pender
- School of Medicine, The University of Queensland , Brisbane, QLD, Australia ; Department of Neurology, Royal Brisbane and Women's Hospital , Brisbane, QLD, Australia ; QIMR Berghofer Medical Research Institute , Brisbane, QLD, Australia
| | - Scott R Burrows
- School of Medicine, The University of Queensland , Brisbane, QLD, Australia ; QIMR Berghofer Medical Research Institute , Brisbane, QLD, Australia
| |
Collapse
|
36
|
Cohen JI, Mocarski ES, Raab-Traub N, Corey L, Nabel GJ. The need and challenges for development of an Epstein-Barr virus vaccine. Vaccine 2014; 31 Suppl 2:B194-6. [PMID: 23598481 DOI: 10.1016/j.vaccine.2012.09.041] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 08/25/2012] [Accepted: 09/17/2012] [Indexed: 11/17/2022]
Abstract
Epstein-Barr virus (EBV) is the major cause of infectious mononucleosis and is associated with several malignancies including nasopharyngeal carcinoma, gastric carcinoma, Hodgkin lymphoma, Burkitt lymphoma, and lymphoma after organ or stem cell transplant. A candidate vaccine containing soluble EBV glycoprotein gp350 protected cottontop tamarins from EBV lymphoma after challenge with EBV. In the only phase 2 trial of an EBV vaccine in humans, soluble gp350 in alum and monophosphoryl lipid A adjuvant reduced the rate of infectious mononucleosis in EBV seronegative adults, but did not affect the rate of EBV infection. A peptide vaccine corresponding to EBV latency proteins has been tested in a small number of adults to prevent infectious mononucleosis. Some of the barriers to development of an EBV vaccine include (a) whether viral proteins in addition to gp350 would be more effective for preventing mononucleosis or EBV malignancies, (b) the difficulty of performing clinical trials to prevent EBV associated malignancies in the absence of good surrogate markers for tumor development, and the long period of time between primary EBV infection and development of many EBV tumors, (c) the lack of knowledge of immune correlates for protection against EBV infection and disease, (d) the limitations in animal models to study protection against EBV infection and disease, and (e) the need for additional information on the economic and societal burden of infectious mononucleosis to assess the cost-benefit of a prophylactic vaccine.
Collapse
Affiliation(s)
- Jeffrey I Cohen
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institute of Health, Bethesda, MD 20892, USA.
| | | | | | | | | |
Collapse
|
37
|
Balfour HH. Progress, prospects, and problems in Epstein-Barr virus vaccine development. Curr Opin Virol 2014; 6:1-5. [PMID: 24632197 DOI: 10.1016/j.coviro.2014.02.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 02/13/2014] [Accepted: 02/14/2014] [Indexed: 10/25/2022]
Abstract
Epstein-Barr virus (EBV) is responsible for a farrago of acute and chronic human diseases including cancer. A prophylactic vaccine could reduce this disease burden. Several EBV vaccines have been given to humans but none has been sufficiently studied to establish safety and efficacy. EBV vaccine development has been hampered by the lack of an animal model other than subhuman primates, proprietary issues, selection of an appropriate adjuvant, and failure to reach consensus on what an EBV vaccine could or should actually achieve. A recent conference at the U.S. National Institutes of Health emphasizing the global importance of EBV vaccine and advocating a phase 3 trial to prevent infectious mononucleosis should encourage research that could eventually lead to its licensure.
Collapse
Affiliation(s)
- Henry H Balfour
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN 55455, United States; Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN 55455, United States.
| |
Collapse
|
38
|
Chijioke O, Müller A, Feederle R, Barros MHM, Krieg C, Emmel V, Marcenaro E, Leung CS, Antsiferova O, Landtwing V, Bossart W, Moretta A, Hassan R, Boyman O, Niedobitek G, Delecluse HJ, Capaul R, Münz C. Human natural killer cells prevent infectious mononucleosis features by targeting lytic Epstein-Barr virus infection. Cell Rep 2013; 5:1489-98. [PMID: 24360958 DOI: 10.1016/j.celrep.2013.11.041] [Citation(s) in RCA: 186] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2013] [Revised: 09/17/2013] [Accepted: 11/25/2013] [Indexed: 01/20/2023] Open
Abstract
Primary infection with the human oncogenic Epstein-Barr virus (EBV) can result in infectious mononucleosis (IM), a self-limiting disease caused by massive lymphocyte expansion that predisposes for the development of distinct EBV-associated lymphomas. Why some individuals experience this symptomatic primary EBV infection, whereas the majority acquires the virus asymptomatically, remains unclear. Using a mouse model with reconstituted human immune system components, we show that depletion of human natural killer (NK) cells enhances IM symptoms and promotes EBV-associated tumorigenesis mainly because of a loss of immune control over lytic EBV infection. These data suggest that failure of innate immune control by human NK cells augments symptomatic lytic EBV infection, which drives lymphocyte expansion and predisposes for EBV-associated malignancies.
Collapse
Affiliation(s)
- Obinna Chijioke
- Department of Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, 8057 Zürich, Switzerland
| | - Anne Müller
- Department of Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, 8057 Zürich, Switzerland
| | | | | | - Carsten Krieg
- Laboratory of Applied Immunobiology, University of Zürich, 8006 Zürich, Switzerland
| | - Vanessa Emmel
- Bone Marrow Transplantation Center, Instituto Nacional de Cancer (INCA), 20231-130 Rio de Janeiro, Brazil
| | - Emanuela Marcenaro
- Dipartimento di Medicina Sperimentale, Università degli Studi di Genova, 16147 Genova, Italy; Centro di Eccellenza per le Ricerche Biomediche, Università degli Studi di Genova, 16147 Genova, Italy
| | - Carol S Leung
- Department of Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, 8057 Zürich, Switzerland
| | - Olga Antsiferova
- Department of Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, 8057 Zürich, Switzerland
| | - Vanessa Landtwing
- Department of Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, 8057 Zürich, Switzerland
| | - Walter Bossart
- Institute of Medical Virology, University of Zürich, 8006 Zürich, Switzerland
| | - Alessandro Moretta
- Dipartimento di Medicina Sperimentale, Università degli Studi di Genova, 16147 Genova, Italy; Centro di Eccellenza per le Ricerche Biomediche, Università degli Studi di Genova, 16147 Genova, Italy
| | - Rocio Hassan
- Bone Marrow Transplantation Center, Instituto Nacional de Cancer (INCA), 20231-130 Rio de Janeiro, Brazil
| | - Onur Boyman
- Laboratory of Applied Immunobiology, University of Zürich, 8006 Zürich, Switzerland
| | - Gerald Niedobitek
- Institute for Pathology, Unfallkrankenhaus Berlin, 12683 Berlin, Germany
| | | | - Riccarda Capaul
- Institute of Medical Virology, University of Zürich, 8006 Zürich, Switzerland
| | - Christian Münz
- Department of Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, 8057 Zürich, Switzerland.
| |
Collapse
|
39
|
Pakpoor J, Giovannoni G, Ramagopalan SV. Epstein-Barr virus and multiple sclerosis: association or causation? Expert Rev Neurother 2013; 13:287-97. [PMID: 23448218 DOI: 10.1586/ern.13.6] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Multiple sclerosis (MS) is a multifactorial disease in which both genetic and environmental factors and their interactions underlie causation. The current evidence base supports a strong association between Epstein-Barr virus (EBV) and MS, but potential causality remains strongly debated. It is not possible to exclude the possibility that an abnormal response to EBV infection is a consequence, rather than a cause, of the underlying pathophysiology of MS, or indeed that the association may be a reflection of a similar underlying disease mechanism. Substantial experimental progress is necessary to achieve consistency of molecular findings to complement the strong epidemiological association between EBV and MS, which cannot alone show causation. Collectively, the strength of the association between EBV and MS warrants careful development and trial of anti-EBV drugs to observe any effect on MS disease course.
Collapse
Affiliation(s)
- Julia Pakpoor
- Department of Physiology, Anatomy and Genetics and Medical Research Council Functional Genomics Unit, University of Oxford, Oxford, UK
| | | | | |
Collapse
|
40
|
Nonhuman primate models for Epstein-Barr virus infection. Curr Opin Virol 2013; 3:233-7. [PMID: 23562212 DOI: 10.1016/j.coviro.2013.03.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 03/12/2013] [Accepted: 03/13/2013] [Indexed: 10/27/2022]
Abstract
Epstein-Barr virus (EBV) is a human herpesvirus that infects nearly all humans by adulthood and is associated with a spectrum of human diseases including Infectious Mononucleosis, Hodgkin Lymphoma, Nasopharyngeal Carcinoma, and lymphomas in immunosuppressed hosts. Nonhuman primate (NHP) animal models provide important experimental systems for studying EBV infection. There has been significant progress in studies of EBV-related herpesviruses, or lymphocryptoviruses (LCV), that naturally infect New and Old World NHPs. Prototypes for New and Old World LCV have been cloned and sequenced, humoral and cellular immune responses to LCV in NHP have been characterized, experimental LCV infections in naïve rhesus macaques have been successful, and a genetic system to manipulate specific viral genes in rhesus LCV (rhLCV) has been developed. These advances have led to new insights in the dynamic interactions with the host during acute and persistent EBV infection and can provide a novel platform for EBV vaccine development. Further development and utilization of the rhLCV animal model would be greatly enhanced by expansion of LCV-free breeding colonies as a reliable source of naïve animals for experimental studies. NHP animal models for EBV infection provide unique opportunities for understanding the biology of EBV infection in humans and translating that knowledge into effective vaccines against EBV-induced diseases.
Collapse
|
41
|
Burbelo PD, Bayat A, Wagner J, Nutman TB, Baraniuk JN, Iadarola MJ. No serological evidence for a role of HHV-6 infection in chronic fatigue syndrome. Am J Transl Res 2012; 4:443-451. [PMID: 23145212 PMCID: PMC3493030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Accepted: 09/25/2012] [Indexed: 06/01/2023]
Abstract
Human herpesvirus 6A (HHV-6A) and human herpesvirus 6B (HHV-6B) are associated with a variety of conditions including rash, fever, and encephalitis and may play a role in several neurological diseases. Here luciferase immunoprecipitation systems (LIPS) was used to develop HHV-6 serologic diagnostic tests using antigens encoded by the U11 gene from HHV-6A (p100) and HHV-6B (p101). Analysis of the antibody responses against Renilla luciferase fusions with different HHV-6B p101 fragments identified an antigenic fragment (amino acids 389 to 858) that demonstrated ~86% seropositivity in serum samples from healthy US blood donors. Additional experiments detected a HHV-6A antigenic fragment (amino acids 751-870) that showed ~48% antibody seropositivity in samples from Mali, Africa, a known HHV-6A endemic region. In contrast to the high levels of HHV-6A immunoreactivity seen in the African samples, testing of US blood donors with the HHV-6A p100 antigenic fragment revealed little immunoreactivity. To potentially explore the role of HHV-6 infection in human disease, a blinded cohort of controls (n=59) and chronic fatigue syndrome (CFS) patients (n=72) from the US was examined for serum antibodies. While only a few of the controls and CFS patients showed high level immunoreactivity with HHV-6A, a majority of both the controls and CFS patients showed significant immunoreactivity with HHV-6B. However, no statistically significant differences in antibody levels or frequency of HHV-6A or HHV-6B infection were detected between the controls and CFS patients. These findings highlight the utility of LIPS for exploring the seroepidemiology of HHV-6A and HHV-6B infection, but suggest that these viruses are unlikely to play a role in the pathogenesis of CFS.
Collapse
Affiliation(s)
- Peter D Burbelo
- Neurobiology and Pain Therapeutics Section, Laboratory of Sensory Biology, National Institute of Dental and Craniofacial Research, National Institutes of Health Bethesda, MD
| | | | | | | | | | | |
Collapse
|