1
|
Hasan MK, Alaribe O, Govind R. Regulatory networks: Linking toxin production and sporulation in Clostridioides difficile. Anaerobe 2025; 91:102920. [PMID: 39521117 PMCID: PMC11811957 DOI: 10.1016/j.anaerobe.2024.102920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 10/29/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024]
Abstract
Clostridioides difficile has been recognized as an important nosocomial pathogen that causes diarrheal disease as a consequence of antibiotic exposure and costs the healthcare system billions of dollars every year. C. difficile enters the host gut as dormant spores, germinates into vegetative cells, colonizes the gut, and produces toxins TcdA and/or TcdB, leading to diarrhea and inflammation. Spores are the primary transmission vehicle, while the toxins A and B directly contribute to the disease. Thus, toxin production and sporulation are the key traits that determine the success of C. difficile as a pathogen. Both toxins and spores are produced during the late stationary phase in response to various stimuli. This review provides a comprehensive analysis of the current knowledge on the molecular mechanisms, highlighting the regulatory pathways that interconnect toxin gene expression and sporulation in C. difficile. The roles of carbohydrates, amino acids and other nutrients and signals, in modulating these virulence traits through global regulatory networks are discussed. Understanding the links within the gene regulatory network is crucial for developing effective therapeutic strategies against C. difficile infections, potentially leading to targeted interventions that disrupt the co-regulation of toxin production and sporulation.
Collapse
Affiliation(s)
- Md Kamrul Hasan
- Division of Biology, Kansas State University, Manhattan, KS, 66506, USA
| | - Oluchi Alaribe
- Division of Biology, Kansas State University, Manhattan, KS, 66506, USA
| | - Revathi Govind
- Division of Biology, Kansas State University, Manhattan, KS, 66506, USA.
| |
Collapse
|
2
|
Branda F, Ceccarelli G, Giovanetti M, Albanese M, Binetti E, Ciccozzi M, Scarpa F. Nipah Virus: A Zoonotic Threat Re-Emerging in the Wake of Global Public Health Challenges. Microorganisms 2025; 13:124. [PMID: 39858892 PMCID: PMC11767623 DOI: 10.3390/microorganisms13010124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 12/28/2024] [Accepted: 01/07/2025] [Indexed: 01/27/2025] Open
Abstract
The re-emergence of the Nipah virus (NiV) in Kerala, India, following the tragic death of a 14-year-old boy, underscores the persistent threat posed by zoonotic pathogens and highlights the growing global public health challenge. With no vaccine or curative treatment available, and fatality rates as high as 94% in past outbreaks, the Nipah virus is a critical concern for health authorities worldwide. Transmitted primarily through contact with fruit bats or consumption of contaminated food, as well as direct human-to-human transmission, NiV remains a highly lethal and unpredictable pathogen. The World Health Organization has classified Nipah as a priority pathogen due to its alarming potential to cause widespread outbreaks and even trigger the next pandemic. Recent outbreaks in India and Bangladesh, occurring with seasonal regularity, have once again exposed the vulnerability of public health systems in containing this virus. This study explores the epidemiology, ecological factors driving transmission, and the public health response to NiV, emphasizing the role of zoonotic spillovers in pandemic preparedness. As the global community grapples with an increasing number of emerging infectious diseases, the Nipah virus stands as a stark reminder of the importance of coordinated surveillance, rapid containment measures, and the urgent development of novel strategies to mitigate the impact of this re-emerging threat.
Collapse
Affiliation(s)
- Francesco Branda
- Unit of Medical Statistics and Molecular Epidemiology, Università Campus Bio-Medico di Roma, 00128 Rome, Italy
| | - Giancarlo Ceccarelli
- Department of Public Health and Infectious Diseases, University of Rome Sapienza, 00161 Rome, Italy; (G.C.); (M.A.); (E.B.)
- Internal Medicine, Endocrine-Metabolic Sciences and Infectious Diseases, Azienda Ospedaliero Universitaria Umberto I, 00161 Rome, Italy
- Migrant and Global Health Research Organization—Mi-Hero, Italy
| | - Marta Giovanetti
- Department of Science and Technologies for Sustainable Development and One Health, Università Campus Bio-Medico di Roma, 00128 Rome, Italy;
- Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte 30190-002, Brazil
- Climate Amplified Diseases and Epidemics (CLIMADE)—CLIMADE Americas, Belo Horizonte 30190-002, Brazil
| | - Mattia Albanese
- Department of Public Health and Infectious Diseases, University of Rome Sapienza, 00161 Rome, Italy; (G.C.); (M.A.); (E.B.)
- Hospital of Tropical Diseases, Mahidol University, Bangkok 10400, Thailand
| | - Erica Binetti
- Department of Public Health and Infectious Diseases, University of Rome Sapienza, 00161 Rome, Italy; (G.C.); (M.A.); (E.B.)
- Hospital of Tropical Diseases, Mahidol University, Bangkok 10400, Thailand
| | - Massimo Ciccozzi
- Unit of Medical Statistics and Molecular Epidemiology, Università Campus Bio-Medico di Roma, 00128 Rome, Italy
| | - Fabio Scarpa
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy;
| |
Collapse
|
3
|
Lee A, Yoo JS, Yoon EJ. Gut Microbiota and New Microbiome-Targeted Drugs for Clostridioides difficile Infections. Antibiotics (Basel) 2024; 13:995. [PMID: 39452261 PMCID: PMC11505460 DOI: 10.3390/antibiotics13100995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/16/2024] [Accepted: 10/18/2024] [Indexed: 10/26/2024] Open
Abstract
Clostridioides difficile is a major causative pathogen for antibiotic-associated diarrhea and C. difficile infections (CDIs) may lead to life-threatening diseases in clinical settings. Most of the risk factors for the incidence of CDIs, i.e., antibiotic use, treatment by proton pump inhibitors, old age, and hospitalization, are associated with dysbiosis of gut microbiota and associated metabolites and, consequently, treatment options for CDIs include normalizing the composition of the intestinal microbiome. In this review, with an introduction to the CDI and its global epidemiology, CDI-associated traits of the gut microbiome and its metabolites were reviewed, and microbiome-targeting treatment options were introduced, which was approved recently as a new drug by the United States Food and Drug Administration (U.S. FDA), rather than a medical practice.
Collapse
Affiliation(s)
| | | | - Eun-Jeong Yoon
- Division of Antimicrobial Resistance Research, Korea National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju-si 28159, Republic of Korea
| |
Collapse
|
4
|
Majou D. Endopeptidase activities of Clostridium botulinum toxins in the development of this bacterium. Res Microbiol 2024; 175:104216. [PMID: 38897423 DOI: 10.1016/j.resmic.2024.104216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/30/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024]
Abstract
By-products like CO₂ and organic acids, produced during Clostridium botulinum growth, appear to inhibit its development and reduce ATP production. A decrease in ATP production creates an imbalance in the ATP/GTP ratio. GTP activates CodY, which regulates BoNT expression. This toxin is released into the extracellular medium. Its light chains act as a specific endopeptidase, targeting SNARE proteins. The specific amino acids released enter the cells and are metabolized by the Stickland reaction, resulting in the synthesis of ATP. This ATP might then be used by histidine kinases to activate Spo0A, the main regulator initiating sporulation, through phosphorylation.
Collapse
Affiliation(s)
- Didier Majou
- ACTIA, 149, Rue de Bercy, 75595 Paris Cedex 12, France.
| |
Collapse
|
5
|
Kunishima H, Ichiki K, Ohge H, Sakamoto F, Sato Y, Suzuki H, Nakamura A, Fujimura S, Matsumoto K, Mikamo H, Mizutani T, Morinaga Y, Mori M, Yamagishi Y, Yoshizawa S. Japanese Society for infection prevention and control guide to Clostridioides difficile infection prevention and control. J Infect Chemother 2024; 30:673-715. [PMID: 38714273 DOI: 10.1016/j.jiac.2024.03.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 05/09/2024]
Affiliation(s)
- Hiroyuki Kunishima
- Department of Infectious Diseases. St. Marianna University School of Medicine, Japan.
| | - Kaoru Ichiki
- Department of Infection Control and Prevention, Hyogo Medical University Hospital, Japan
| | - Hiroki Ohge
- Department of Infectious Diseases, Hiroshima University Hospital, Japan
| | - Fumie Sakamoto
- Quality Improvement and Safety Center, Itabashi Chuo Medical Center, Japan
| | - Yuka Sato
- Department of Infection Control and Nursing, Graduate School of Nursing, Aichi Medical University, Japan
| | - Hiromichi Suzuki
- Department of Infectious Diseases, University of Tsukuba School of Medicine and Health Sciences, Japan
| | - Atsushi Nakamura
- Department of Infection Prevention and Control, Graduate School of Medical Sciences, Nagoya City University, Japan
| | - Shigeru Fujimura
- Division of Clinical Infectious Diseases and Chemotherapy, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Japan
| | - Kazuaki Matsumoto
- Division of Pharmacodynamics, Faculty of Pharmacy, Keio University, Japan
| | - Hiroshige Mikamo
- Department of Clinical Infectious Diseases, Aichi Medical University, Japan
| | | | - Yoshitomo Morinaga
- Department of Microbiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Japan
| | - Minako Mori
- Department of Infection Control, Hiroshima University Hospital, Japan
| | - Yuka Yamagishi
- Department of Clinical Infectious Diseases, Kochi Medical School, Kochi University, Japan
| | - Sadako Yoshizawa
- Department of Laboratory Medicine/Department of Microbiology and Infectious Diseases, Faculty of Medicine, Toho University, Japan
| |
Collapse
|
6
|
Cassona CP, Ramalhete S, Amara K, Candela T, Kansau I, Denève-Larrazet C, Janoir-Jouveshomme C, Mota LJ, Dupuy B, Serrano M, Henriques AO. Spores of Clostridioides difficile are toxin delivery vehicles. Commun Biol 2024; 7:839. [PMID: 38987278 PMCID: PMC11237016 DOI: 10.1038/s42003-024-06521-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 06/28/2024] [Indexed: 07/12/2024] Open
Abstract
Clostridioides difficile causes a wide range of intestinal diseases through the action of two main cytotoxins, TcdA and TcdB. Ingested spores germinate in the intestine establishing a population of cells that produce toxins and spores. The pathogenicity locus, PaLoc, comprises several genes, including those coding for TcdA/B, for the holin-like TcdE protein, and for TcdR, an auto-regulatory RNA polymerase sigma factor essential for tcdA/B and tcdE expression. Here we show that tcdR, tcdA, tcdB and tcdE are expressed in a fraction of the sporulating cells, in either the whole sporangium or in the forespore. The whole sporangium pattern is due to protracted expression initiated in vegetative cells by σD, which primes the TcdR auto-regulatory loop. In contrast, the forespore-specific regulatory proteins σG and SpoVT control TcdR production and tcdA/tcdB and tcdE expression in this cell. We detected TcdA at the spore surface, and we show that wild type and ΔtcdA or ΔtcdB spores but not ΔtcdR or ΔtcdA/ΔtcdB spores are cytopathic against HT29 and Vero cells, indicating that spores may serve as toxin-delivery vehicles. Since the addition of TcdA and TcdB enhance binding of spores to epithelial cells, this effect may occur independently of toxin production by vegetative cells.
Collapse
Affiliation(s)
- Carolina P Cassona
- Instituto de Tecnologia Química e Biológica, NOVA University Lisbon, Oeiras, Portugal
| | - Sara Ramalhete
- Instituto de Tecnologia Química e Biológica, NOVA University Lisbon, Oeiras, Portugal
| | - Khira Amara
- Instituto de Tecnologia Química e Biológica, NOVA University Lisbon, Oeiras, Portugal
| | - Thomas Candela
- Micalis Institute, Université Paris-Saclay, INRAE, AgroParisTech, Jouy-en-Josas, France
| | - Imad Kansau
- Micalis Institute, Université Paris-Saclay, INRAE, AgroParisTech, Jouy-en-Josas, France
| | | | | | - Luís Jaime Mota
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
- UCIBIO, Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
| | - Bruno Dupuy
- Institut Pasteur, Université Paris-Cité, UMR-CNRS 6047, Laboratoire Pathogenèse des Bactéries Anaérobies, F-75015, Paris, France
| | - Mónica Serrano
- Instituto de Tecnologia Química e Biológica, NOVA University Lisbon, Oeiras, Portugal
| | - Adriano O Henriques
- Instituto de Tecnologia Química e Biológica, NOVA University Lisbon, Oeiras, Portugal.
| |
Collapse
|
7
|
TAKEICHI K, FUKUDA A, SHONO C, OTA N, NAKAJIMA C, SUZUKI Y, USUI M. Association of toxin-producing Clostridioides difficile with piglet diarrhea and potential transmission to humans. J Vet Med Sci 2024; 86:769-776. [PMID: 38797681 PMCID: PMC11251813 DOI: 10.1292/jvms.24-0051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/09/2024] [Indexed: 05/29/2024] Open
Abstract
The pathogenicity of Clostridioides difficile in piglets remains controversial. It is unknown whether C. difficile control helps protect piglet health. To clarify the association between C. difficile presence and piglet diarrhea, isolates were obtained from piglets with and without diarrhea. In addition, to determine the genetic relationship of C. difficile from pigs and humans, we performed whole-genome sequencing (WGS) of C. difficile isolates. Diarrheal and non-diarrheal stool samples were collected from neonatal piglets from five farms in Japan in 2021. To clarify the relationship between C. difficile derived from pigs and those from human clinical cases, WGS of C. difficile isolates was performed. Toxin-positive C. difficile were significantly more prevalent in piglets with diarrhea, although the overall frequency of C. difficile did not differ between piglets with and without diarrhea. This observation indicates an association between toxin-positive C. difficile and diarrhea in piglets. However, further studies are needed to establish a direct causal relationship and to explore other contributing factors to diarrhea in piglets. WGS results showed that C. difficile sequence type (ST) 11 including the hypervirulent PCR ribotype 078 isolates derived from Japanese pigs were closely related to ST11 of overseas strains (human clinical and animal-derived) and a Japanese human clinical strain. Toxin-positive C. difficile may cause diarrhea in piglets and hypervirulent C. difficile are spreading among pigs and human populations worldwide.
Collapse
Affiliation(s)
- Kouki TAKEICHI
- Laboratory of Food Microbiology and Food Safety, School of Veterinary Medicine, Rakuno Gakuen University, Hokkaido, Japan
| | - Akira FUKUDA
- Laboratory of Food Microbiology and Food Safety, School of Veterinary Medicine, Rakuno Gakuen University, Hokkaido, Japan
| | - Chika SHONO
- Biological Science Laboratories, Kao Corporation, Tochigi, Japan
| | - Noriyasu OTA
- Biological Science Laboratories, Kao Corporation, Tochigi, Japan
| | - Chie NAKAJIMA
- Division of Bioresources, Hokkaido University International Institute for Zoonosis Control, Hokkaido, Japan
- International Collaboration Unit, Hokkaido University International Institute for Zoonosis Control, Hokkaido, Japan
- Institute for Vaccine Research and Development, Hokkaido University, Hokkaido, Japan
| | - Yasuhiko SUZUKI
- Division of Bioresources, Hokkaido University International Institute for Zoonosis Control, Hokkaido, Japan
- International Collaboration Unit, Hokkaido University International Institute for Zoonosis Control, Hokkaido, Japan
- Institute for Vaccine Research and Development, Hokkaido University, Hokkaido, Japan
| | - Masaru USUI
- Laboratory of Food Microbiology and Food Safety, School of Veterinary Medicine, Rakuno Gakuen University, Hokkaido, Japan
| |
Collapse
|
8
|
Pourliotopoulou E, Karampatakis T, Kachrimanidou M. Exploring the Toxin-Mediated Mechanisms in Clostridioides difficile Infection. Microorganisms 2024; 12:1004. [PMID: 38792835 PMCID: PMC11124097 DOI: 10.3390/microorganisms12051004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
Clostridioides difficile infection (CDI) is the leading cause of nosocomial antibiotic-associated diarrhea, and colitis, with increasing incidence and healthcare costs. Its pathogenesis is primarily driven by toxins produced by the bacterium C. difficile, Toxin A (TcdA) and Toxin B (TcdB). Certain strains produce an additional toxin, the C. difficile transferase (CDT), which further enhances the virulence and pathogenicity of C. difficile. These toxins disrupt colonic epithelial barrier integrity, and induce inflammation and cellular damage, leading to CDI symptoms. Significant progress has been made in the past decade in elucidating the molecular mechanisms of TcdA, TcdB, and CDT, which provide insights into the management of CDI and the future development of novel treatment strategies based on anti-toxin therapies. While antibiotics are common treatments, high recurrence rates necessitate alternative therapies. Bezlotoxumab, targeting TcdB, is the only available anti-toxin, yet limitations persist, prompting ongoing research. This review highlights the current knowledge of the structure and mechanism of action of C. difficile toxins and their role in disease. By comprehensively describing the toxin-mediated mechanisms, this review provides insights for the future development of novel treatment strategies and the management of CDI.
Collapse
Affiliation(s)
- Evdokia Pourliotopoulou
- Department of Microbiology, Medical School, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece;
| | | | - Melania Kachrimanidou
- Department of Microbiology, Medical School, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece;
| |
Collapse
|
9
|
Buddle JE, Fagan RP. Pathogenicity and virulence of Clostridioides difficile. Virulence 2023; 14:2150452. [PMID: 36419222 DOI: 10.1080/21505594.2022.2150452] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 11/02/2022] [Accepted: 11/17/2022] [Indexed: 11/25/2022] Open
Abstract
Clostridioides difficile is the most common cause of nosocomial antibiotic-associated diarrhea, and is responsible for a spectrum of diseases characterized by high levels of recurrence, morbidity, and mortality. Treatment is complex, since antibiotics constitute both the main treatment and the major risk factor for infection. Worryingly, resistance to multiple antibiotics is becoming increasingly widespread, leading to the classification of this pathogen as an urgent threat to global health. As a consummate opportunist, C. difficile is well equipped for promoting disease, owing to its arsenal of virulence factors: transmission of this anaerobe is highly efficient due to the formation of robust endospores, and an array of adhesins promote gut colonization. C. difficile produces multiple toxins acting upon gut epithelia, resulting in manifestations typical of diarrheal disease, and severe inflammation in a subset of patients. This review focuses on such virulence factors, as well as the importance of antimicrobial resistance and genome plasticity in enabling pathogenesis and persistence of this important pathogen.
Collapse
Affiliation(s)
- Jessica E Buddle
- Molecular Microbiology, School of Biosciences, University of Sheffield, Sheffield, UK
| | - Robert P Fagan
- Molecular Microbiology, School of Biosciences, University of Sheffield, Sheffield, UK
| |
Collapse
|
10
|
DiBenedetto NV, Oberkampf M, Cersosimo L, Yeliseyev V, Bry L, Peltier J, Dupuy B. The TcdE holin drives toxin secretion and virulence in Clostridioides difficile. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.16.558055. [PMID: 37745472 PMCID: PMC10516005 DOI: 10.1101/2023.09.16.558055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Clostridioides difficile is the leading cause of healthcare associated infections. The Pathogenicity Locus (PaLoc) toxins TcdA and TcdB promote host disease. These toxins lack canonical N-terminal signal sequences for translocation across the bacterial membrane, suggesting alternate mechanisms of release, which have included targeted secretion and passive release from cell lysis. While the holin TcdE has been implicated in TcdA and TcdB release, its role in vivo remains unknown. Here, we show profound reductions in toxin secretion in ΔtcdE mutants in the highly virulent strains UK1 (epidemic ribotype 027, Clade 3) and VPI10463 (ribotype 087, Clade 1). Notably, tcdE deletion in either strain rescued highly susceptible gnotobiotic mice from lethal infection by reducing acute extracellular toxin to undetectable levels, limiting mucosal damage, and enabling long-term survival, in spite of continued toxin gene expression in ΔtcdE mutants. Our findings confirm TcdE's critical functions in vivo for toxin secretion and C. difficile virulence.
Collapse
Affiliation(s)
- N V DiBenedetto
- Massachusetts Host-Microbiome Center, Dept. Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - M Oberkampf
- Institut Pasteur, Université Paris-Cité, UMR-CNRS 6047, Laboratoire Pathogenèse des Bactéries Anaérobies, F-75015 Paris, France
| | - L Cersosimo
- Massachusetts Host-Microbiome Center, Dept. Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - V Yeliseyev
- Massachusetts Host-Microbiome Center, Dept. Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - L Bry
- Massachusetts Host-Microbiome Center, Dept. Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - J Peltier
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - B Dupuy
- Institut Pasteur, Université Paris-Cité, UMR-CNRS 6047, Laboratoire Pathogenèse des Bactéries Anaérobies, F-75015 Paris, France
| |
Collapse
|
11
|
Dicks LMT. Biofilm Formation of Clostridioides difficile, Toxin Production and Alternatives to Conventional Antibiotics in the Treatment of CDI. Microorganisms 2023; 11:2161. [PMID: 37764005 PMCID: PMC10534356 DOI: 10.3390/microorganisms11092161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/16/2023] [Accepted: 08/24/2023] [Indexed: 09/29/2023] Open
Abstract
Clostridioides difficile is considered a nosocomial pathogen that flares up in patients exposed to antibiotic treatment. However, four out of ten patients diagnosed with C. difficile infection (CDI) acquired the infection from non-hospitalized individuals, many of whom have not been treated with antibiotics. Treatment of recurrent CDI (rCDI) with antibiotics, especially vancomycin (VAN) and metronidazole (MNZ), increases the risk of experiencing a relapse by as much as 70%. Fidaxomicin, on the other hand, proved more effective than VAN and MNZ by preventing the initial transcription of RNA toxin genes. Alternative forms of treatment include quorum quenching (QQ) that blocks toxin synthesis, binding of small anion molecules such as tolevamer to toxins, monoclonal antibodies, such as bezlotoxumab and actoxumab, bacteriophage therapy, probiotics, and fecal microbial transplants (FMTs). This review summarizes factors that affect the colonization of C. difficile and the pathogenicity of toxins TcdA and TcdB. The different approaches experimented with in the destruction of C. difficile and treatment of CDI are evaluated.
Collapse
Affiliation(s)
- Leon M T Dicks
- Department of Microbiology, Stellenbosch University, Stellenbosch 7600, South Africa
| |
Collapse
|
12
|
Abad-Fau A, Sevilla E, Martín-Burriel I, Moreno B, Bolea R. Update on Commonly Used Molecular Typing Methods for Clostridioides difficile. Microorganisms 2023; 11:1752. [PMID: 37512924 PMCID: PMC10384772 DOI: 10.3390/microorganisms11071752] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/26/2023] [Accepted: 07/01/2023] [Indexed: 07/30/2023] Open
Abstract
This review aims to provide a comprehensive overview of the significant Clostridioides difficile molecular typing techniques currently employed in research and medical communities. The main objectives of this review are to describe the key molecular typing methods utilized in C. difficile studies and to highlight the epidemiological characteristics of the most prevalent strains on a global scale. Geographically distinct regions exhibit distinct strain types of C. difficile, with notable concordance observed among various typing methodologies. The advantages that next-generation sequencing (NGS) offers has changed epidemiology research, enabling high-resolution genomic analyses of this pathogen. NGS platforms offer an unprecedented opportunity to explore the genetic intricacies and evolutionary trajectories of C. difficile strains. It is relevant to acknowledge that novel routes of transmission are continually being unveiled and warrant further investigation, particularly in the context of zoonotic implications and environmental contamination.
Collapse
Affiliation(s)
- Ana Abad-Fau
- Departamento de Patología Animal, Facultad de Veterinaria, Instituto Agroalimentario de Aragon-IA2-(Universidad de Zaragoza-CITA), 50013 Zaragoza, Spain
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Facultad de Veterinaria, Universidad de Zaragoza, 50013 Zaragoza, Spain
| | - Eloísa Sevilla
- Departamento de Patología Animal, Facultad de Veterinaria, Instituto Agroalimentario de Aragon-IA2-(Universidad de Zaragoza-CITA), 50013 Zaragoza, Spain
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Facultad de Veterinaria, Universidad de Zaragoza, 50013 Zaragoza, Spain
| | - Inmaculada Martín-Burriel
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Facultad de Veterinaria, Universidad de Zaragoza, 50013 Zaragoza, Spain
- Laboratorio de Genética Bioquímica, Facultad de Veterinaria, Instituto Agroalimentario de Aragon-IA2-(Universidad de Zaragoza-CITA), 50013 Zaragoza, Spain
| | - Bernardino Moreno
- Departamento de Patología Animal, Facultad de Veterinaria, Instituto Agroalimentario de Aragon-IA2-(Universidad de Zaragoza-CITA), 50013 Zaragoza, Spain
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Facultad de Veterinaria, Universidad de Zaragoza, 50013 Zaragoza, Spain
| | - Rosa Bolea
- Departamento de Patología Animal, Facultad de Veterinaria, Instituto Agroalimentario de Aragon-IA2-(Universidad de Zaragoza-CITA), 50013 Zaragoza, Spain
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Facultad de Veterinaria, Universidad de Zaragoza, 50013 Zaragoza, Spain
| |
Collapse
|
13
|
Dupuy B. Regulation of Clostridial Toxin Gene Expression: A Pasteurian Tradition. Toxins (Basel) 2023; 15:413. [PMID: 37505682 PMCID: PMC10467148 DOI: 10.3390/toxins15070413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/13/2023] [Accepted: 06/19/2023] [Indexed: 07/29/2023] Open
Abstract
The alarming symptoms attributed to several potent clostridial toxins enabled the early identification of the causative agent of tetanus, botulism, and gas gangrene diseases, which belongs to the most famous species of pathogenic clostridia. Although Clostridioides difficile was identified early in the 20th century as producing important toxins, it was identified only 40 years later as the causative agent of important nosocomial diseases upon the advent of antibiotic therapies in hospital settings. Today, C. difficile is a leading public health issue, as it is the major cause of antibiotic-associated diarrhea in adults. In particular, severe symptoms within the spectrum of C. difficile infections are directly related to the levels of toxins produced in the host. This highlights the importance of understanding the regulation of toxin synthesis in the pathogenicity process of C. difficile, whose regulatory factors in response to the gut environment were first identified at the Institut Pasteur. Subsequently, the work of other groups in the field contributed to further deciphering the complex mechanisms controlling toxin production triggered by the intestinal dysbiosis states during infection. This review summarizes the Pasteurian contribution to clostridial toxin regulation studies.
Collapse
Affiliation(s)
- Bruno Dupuy
- Institut Pasteur, Université Paris-Cité, UMR-CNRS 6047, Laboratoire Pathogenèse des Bactéries Anaérobies, F-75015 Paris, France
| |
Collapse
|
14
|
Cheng JKJ, Unnikrishnan M. Clostridioides difficile infection: traversing host-pathogen interactions in the gut. MICROBIOLOGY (READING, ENGLAND) 2023; 169. [PMID: 36848200 DOI: 10.1099/mic.0.001306] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
C. difficile is the primary cause for nosocomial infective diarrhoea. For a successful infection, C. difficile must navigate between resident gut bacteria and the harsh host environment. The perturbation of the intestinal microbiota by broad-spectrum antibiotics alters the composition and the geography of the gut microbiota, deterring colonization resistance, and enabling C. difficile to colonize. This review will discuss how C. difficile interacts with and exploits the microbiota and the host epithelium to infect and persist. We provide an overview of C. difficile virulence factors and their interactions with the gut to aid adhesion, cause epithelial damage and mediate persistence. Finally, we document the host responses to C. difficile, describing the immune cells and host pathways that are associated and triggered during C. difficile infection.
Collapse
Affiliation(s)
- Jeffrey K J Cheng
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK
| | - Meera Unnikrishnan
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK
| |
Collapse
|
15
|
Nale JY, Thanki AM, Rashid SJ, Shan J, Vinner GK, Dowah ASA, Cheng JKJ, Sicheritz-Pontén T, Clokie MRJ. Diversity, Dynamics and Therapeutic Application of Clostridioides difficile Bacteriophages. Viruses 2022; 14:v14122772. [PMID: 36560776 PMCID: PMC9784644 DOI: 10.3390/v14122772] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/08/2022] [Accepted: 12/08/2022] [Indexed: 12/15/2022] Open
Abstract
Clostridioides difficile causes antibiotic-induced diarrhoea and pseudomembranous colitis in humans and animals. Current conventional treatment relies solely on antibiotics, but C. difficile infection (CDI) cases remain persistently high with concomitant increased recurrence often due to the emergence of antibiotic-resistant strains. Antibiotics used in treatment also induce gut microbial imbalance; therefore, novel therapeutics with improved target specificity are being investigated. Bacteriophages (phages) kill bacteria with precision, hence are alternative therapeutics for the targeted eradication of the pathogen. Here, we review current progress in C. difficile phage research. We discuss tested strategies of isolating C. difficile phages directly, and via enrichment methods from various sample types and through antibiotic induction to mediate prophage release. We also summarise phenotypic phage data that reveal their morphological, genetic diversity, and various ways they impact their host physiology and pathogenicity during infection and lysogeny. Furthermore, we describe the therapeutic development of phages through efficacy testing in different in vitro, ex vivo and in vivo infection models. We also discuss genetic modification of phages to prevent horizontal gene transfer and improve lysis efficacy and formulation to enhance stability and delivery of the phages. The goal of this review is to provide a more in-depth understanding of C. difficile phages and theoretical and practical knowledge on pre-clinical, therapeutic evaluation of the safety and effectiveness of phage therapy for CDI.
Collapse
Affiliation(s)
- Janet Y. Nale
- Centre for Epidemiology and Planetary Health, Department of Veterinary and Animal Science, Scotland’s Rural College, Inverness IV2 5NA, UK
- Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH, UK
| | - Anisha M. Thanki
- Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH, UK
| | - Srwa J. Rashid
- Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH, UK
| | - Jinyu Shan
- Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH, UK
| | - Gurinder K. Vinner
- Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH, UK
| | - Ahmed S. A. Dowah
- Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH, UK
- School of Pharmacy, University of Lincoln, Lincoln LN6 7TS, UK
| | | | - Thomas Sicheritz-Pontén
- Center for Evolutionary Hologenomics, The Globe Institute, University of Copenhagen, 1353 Copenhagen, Denmark
- Centre of Excellence for Omics-Driven Computational Biodiscovery, AIMST University, Bedong 08100, Kedah, Malaysia
| | - Martha R. J. Clokie
- Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH, UK
- Correspondence:
| |
Collapse
|
16
|
Characterization of the virulence of three novel clade 2 Clostridioides (Clostridium) difficile strains and a two-year screening in animals and humans in Brazil. PLoS One 2022; 17:e0273013. [PMID: 36026500 PMCID: PMC9416996 DOI: 10.1371/journal.pone.0273013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 07/29/2022] [Indexed: 11/19/2022] Open
Abstract
Clostridioides (Clostridium) difficile infection (CDI) is an evolving global healthcare problem, and owing to the diverse and dynamic molecular epidemiology of C. difficile, new strains continue to emerge. In Brazil, only two cases of CDI due to the so called hypervirulent PCR ribotype (RT) 027 belonging to clade 2 have ever been reported, whereas incidence of CDI due to another “hypervirulent” RT078 (clade 5) has not yet been reported. In contrast, novel clade 2 strains have been identified in different hospitals. To better understand the epidemiology of CDIs in Brazil, this study aimed to genotypically and phenotypically characterize three novel Brazilian clade 2 strains (RT883, 884, and 885) isolated from patients with confirmed CDI. In addition, to better understand the circulating RTs, a two-year sampling was conducted in patients from the same hospital and in several domestic and wild animal species. The three strains examined showed lower production of A/B toxins than the control RT027, although two of these strains harbored a truncated tcdC gene. All strains showed swimming motility similar to that of RT027, while RT883 showed higher spore production than the reference strain. In the in vivo hamster model, the lethality of all strains was found to be similar to that of RT027. Both cgMLST and cgMLSA analyses revealed a high genetic similarity among the three-novel clade 2 isolates. In the two-year survey in animals and humans, RT883, 884, and 885 were not detected; however, three new RTs (RT988, RT989, and RT990) were isolated, two of which were genetically related to the three previously reported clade 2 strains. RT106 and RT126 were most frequently detected in humans (47.9%) and animals (57.9%), respectively. Furthermore, RT027 and RT078 were not detected in humans. The results of this study suggest that these novel clade 2 strains have virulence potential and that new strains from clade 2 continue to emerge in our setting, indicating the need for long-term local surveillance.
Collapse
|
17
|
Nishida A, Nishino K, Ohno M, Sakai K, Owaki Y, Noda Y, Imaeda H. Update on gut microbiota in gastrointestinal diseases. World J Clin Cases 2022; 10:7653-7664. [PMID: 36158494 PMCID: PMC9372855 DOI: 10.12998/wjcc.v10.i22.7653] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/20/2022] [Accepted: 06/22/2022] [Indexed: 02/06/2023] Open
Abstract
The human gut is a complex microbial ecosystem comprising approximately 100 trillion microbes collectively known as the "gut microbiota". At a rough estimate, the human gut microbiome contains almost 3.3 million genes, which are about 150 times more than the total human genes present in the human genome. The vast amount of genetic information produces various enzymes and physiologically active substances. Thus, the gut microbiota contributes to the maintenance of host health; however, when healthy microbial composition is perturbed, a condition termed "dysbiosis", the altered gut microbiota can trigger the development of various gastrointestinal diseases. The gut microbiota has consequently become an extremely important research area in gastroenterology. It is also expected that the results of research into the gut microbiota will be applied to the prevention and treatment of human gastrointestinal diseases. A randomized controlled trial conducted by a Dutch research group in 2013 showed the positive effect of fecal microbiota transplantation (FMT) on recurrent Clostridioides difficile infection (CDI). These findings have led to the development of treatments targeting the gut microbiota, such as probiotics and FMT for inflammatory bowel diseases (IBD) and other diseases. This review focuses on the association of the gut microbiota with human gastrointestinal diseases, including CDI, IBD, and irritable bowel syndrome. We also summarize the therapeutic options for targeting the altered gut microbiota, such as probiotics and FMT.
Collapse
Affiliation(s)
- Atsushi Nishida
- Department of Gastroenterology and Hepatology, Nagahama City Hospital, Nagahama 526-8580, Japan
| | - Kyohei Nishino
- Department of Gastroenterology and Hepatology, Nagahama City Hospital, Nagahama 526-8580, Japan
| | - Masashi Ohno
- Department of Gastroenterology and Hepatology, Nagahama City Hospital, Nagahama 526-8580, Japan
| | - Keitaro Sakai
- Department of Gastroenterology and Hepatology, Nagahama City Hospital, Nagahama 526-8580, Japan
| | - Yuji Owaki
- Department of Gastroenterology and Hepatology, Nagahama City Hospital, Nagahama 526-8580, Japan
| | - Yoshika Noda
- Department of Gastroenterology and Hepatology, Nagahama City Hospital, Nagahama 526-8580, Japan
| | - Hirotsugu Imaeda
- Department of Gastroenterology and Hepatology, Nagahama City Hospital, Nagahama 526-8580, Japan
| |
Collapse
|
18
|
Kunishima H, Ohge H, Suzuki H, Nakamura A, Matsumoto K, Mikamo H, Mori N, Morinaga Y, Yanagihara K, Yamagishi Y, Yoshizawa S. Japanese Clinical Practice Guidelines for Management of Clostridioides (Clostridium) difficile infection. J Infect Chemother 2022; 28:1045-1083. [PMID: 35618618 DOI: 10.1016/j.jiac.2021.12.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/16/2021] [Accepted: 12/13/2021] [Indexed: 12/19/2022]
Affiliation(s)
- Hiroyuki Kunishima
- Department of Infectious Diseases, St. Marianna University School of Medicine, Japan.
| | - Hiroki Ohge
- Department of Infectious Diseases, Hiroshima University Hospital, Japan
| | - Hiromichi Suzuki
- Division of Infectious Diseases, Department of Medicine, Tsukuba Medical Center Hospital, Japan
| | - Atsushi Nakamura
- Division of Infection Control and Prevention, Nagoya City University Hospital, Japan
| | - Kazuaki Matsumoto
- Division of Pharmacodynamics, Faculty of Pharmacy, Keio University, Japan
| | - Hiroshige Mikamo
- Clinical Infectious Diseases, Graduate School of Medicine, Aichi Medical University, Japan
| | - Nobuaki Mori
- Division of General Internal Medicine and Infectious Diseases, National Hospital Organization Tokyo Medical Center, Japan
| | - Yoshitomo Morinaga
- Department of Microbiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Japan
| | - Katsunori Yanagihara
- Department of Laboratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Japan
| | - Yuka Yamagishi
- Clinical Infectious Diseases, Graduate School of Medicine, Aichi Medical University, Japan
| | - Sadako Yoshizawa
- Department of Clinical Laboratory/Department of Microbiology and Infectious Diseases, Toho University School of Medicine, Japan
| |
Collapse
|
19
|
Vidor CJ, Hamiot A, Wisniewski J, Mathias RA, Dupuy B, Awad M, Lyras D. A Highly Specific Holin-Mediated Mechanism Facilitates the Secretion of Lethal Toxin TcsL in Paeniclostridium sordellii. Toxins (Basel) 2022; 14:toxins14020124. [PMID: 35202151 PMCID: PMC8878733 DOI: 10.3390/toxins14020124] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/03/2022] [Accepted: 02/04/2022] [Indexed: 12/10/2022] Open
Abstract
Protein secretion is generally mediated by a series of distinct pathways in bacteria. Recently, evidence of a novel bacterial secretion pathway involving a bacteriophage-related protein has emerged. TcdE, a holin-like protein encoded by toxigenic isolates of Clostridioides difficile, mediates the release of the large clostridial glucosylating toxins (LCGTs), TcdA and TcdB, and TpeL from C. perfringens uses another holin-like protein, TpeE, for its secretion; however, it is not yet known if TcdE or TpeE secretion is specific to these proteins. It is also unknown if other members of the LCGT-producing clostridia, including Paeniclostridium sordellii (previously Clostridium sordellii), use a similar toxin-release mechanism. Here, we confirm that each of the LCGT-producing clostridia encode functional holin-like proteins in close proximity to the toxin genes. To characterise the respective roles of these holin-like proteins in the release of the LCGTs, P. sordellii and its lethal toxin, TcsL, were used as a model. Construction and analysis of mutants of the P. sordellii tcsE (holin-like) gene demonstrated that TcsE plays a significant role in TcsL release. Proteomic analysis of the secretome from the tcsE mutant confirmed that TcsE is required for efficient TcsL secretion. Unexpectedly, comparative sample analysis showed that TcsL was the only protein significantly altered in its release, suggesting that this holin-like protein has specifically evolved to function in the release of this important virulence factor. This specificity has, to our knowledge, not been previously shown and suggests that this protein may function as part of a specific mechanism for the release of all LCGTs.
Collapse
Affiliation(s)
- Callum J. Vidor
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, VIC 3800, Australia; (C.J.V.); (J.W.); (R.A.M.); (M.A.)
- School of Biological Sciences, Monash University, Clayton, VIC 3800, Australia
| | - Audrey Hamiot
- Laboratoire Pathogenèse des Bactéries Anaérobies, UMR-CNRS 6047, Institut Pasteur, Université de Paris, F-75015 Paris, France; (A.H.); (B.D.)
| | - Jessica Wisniewski
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, VIC 3800, Australia; (C.J.V.); (J.W.); (R.A.M.); (M.A.)
| | - Rommel A. Mathias
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, VIC 3800, Australia; (C.J.V.); (J.W.); (R.A.M.); (M.A.)
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Bruno Dupuy
- Laboratoire Pathogenèse des Bactéries Anaérobies, UMR-CNRS 6047, Institut Pasteur, Université de Paris, F-75015 Paris, France; (A.H.); (B.D.)
| | - Milena Awad
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, VIC 3800, Australia; (C.J.V.); (J.W.); (R.A.M.); (M.A.)
| | - Dena Lyras
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, VIC 3800, Australia; (C.J.V.); (J.W.); (R.A.M.); (M.A.)
- Correspondence:
| |
Collapse
|
20
|
Regulation of Clostridioides difficile toxin production. Curr Opin Microbiol 2022; 65:95-100. [PMID: 34781095 PMCID: PMC8792210 DOI: 10.1016/j.mib.2021.10.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 10/19/2021] [Accepted: 10/25/2021] [Indexed: 02/03/2023]
Abstract
Clostridioides difficile produces toxins TcdA and TcdB during infection. Since the severity of the illness is directly correlated with the level of toxins produced, researchers have long been interested in the regulation mechanisms of toxin production. The advent of new genetics and mutagenesis technologies in C. difficile has allowed a slew of new investigations in the last decade, which considerably improved our understanding of this crucial regulatory network. The current body of work shows that the toxin regulatory network overlaps with the regulatory networks of sporulation, motility, and key metabolic pathways. This implies that toxin production is a complicated process initiated by bacteria in response to numerous host factors during infection. We summarize the existing knowledge about the toxin gene regulatory network here.
Collapse
|
21
|
Gu W, Wang W, Li W, Li N, Wang Y, Zhang W, Lu C, Tong P, Han Y, Sun X, Lu J, Wu Y, Dai J. New ribotype Clostridioides difficile from ST11 group revealed higher pathogenic ability than RT078. Emerg Microbes Infect 2021; 10:687-699. [PMID: 33682630 PMCID: PMC8023612 DOI: 10.1080/22221751.2021.1900748] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 02/07/2021] [Accepted: 03/04/2021] [Indexed: 11/14/2022]
Abstract
Clostridioides difficile is the predominant antibiotic-associated enteropathogen associated with diarrhoea or pseudomembranous colitis in patients worldwide. Previously, we identified C. difficile RT078 isolates (CD21062) from elderly patients in China, including two new ribotype strains (CD10010 and CD12038) belonging to the ST11 group, and their genomic features were also investigated. This study compared sporulation, spore germination, toxin expression, flagellar characteristics, and adhesion among these strains in vitro and analysed their pathogenic ability in vivo using animal models. The results showed sporulation and spore germination did not significantly differ among the three C. difficile strains. CD10010 and CD12038 showed higher transcriptional levels of toxins until 48 h; thereafter, the transcriptional levels of toxins remained constant among RT078, CD10010, and CD12038. RT078 showed a loss of flagellum and its related genes, whereas CD12038 showed the highest motility in vitro. Both CD10010 and CD12038 initially showed flg phase OFF, and the flagellar switch reversed to phase ON after 48 h in swim agar. Flagellar proteins and toxins were both upregulated when flg phase OFF changed to flg phase ON status, enhancing their pathogenic ability. CD12038 showed the highest adhesion to Hep-2 cells. Histopathology and inflammation scores demonstrated that CD12038 caused the most severe tissue damage and infection in vivo. The new ribotype strains, particularly CD12038, exhibit higher pathogenic ability than the typical RT078 strain, both in vitro and in vivo. Therefore, more attention should be paid to this new C. difficile strain in epidemiological research; further studies are warranted.
Collapse
Affiliation(s)
- Wenpeng Gu
- Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Yunnan Innovation Team of Standardization and Application Research in Tree Shrew, Kunming, China
- Department of Acute Infectious Diseases Control and Prevention, Yunnan Provincial Centre for Disease Control and Prevention, Kunming, China
| | - Wenguang Wang
- Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Yunnan Innovation Team of Standardization and Application Research in Tree Shrew, Kunming, China
| | - Wenge Li
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Na Li
- Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Yunnan Innovation Team of Standardization and Application Research in Tree Shrew, Kunming, China
| | - Yuanyuan Wang
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Wenzhu Zhang
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Caixia Lu
- Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Yunnan Innovation Team of Standardization and Application Research in Tree Shrew, Kunming, China
| | - Pinfen Tong
- Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Yunnan Innovation Team of Standardization and Application Research in Tree Shrew, Kunming, China
| | - Yuanyuan Han
- Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Yunnan Innovation Team of Standardization and Application Research in Tree Shrew, Kunming, China
| | - Xiaomei Sun
- Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Yunnan Innovation Team of Standardization and Application Research in Tree Shrew, Kunming, China
| | - Jinxing Lu
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yuan Wu
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jiejie Dai
- Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Yunnan Innovation Team of Standardization and Application Research in Tree Shrew, Kunming, China
| |
Collapse
|
22
|
Saha S, Yadav D, Pardi R, Patel R, Khanna S, Pardi D. Kinetics of polymerase chain reaction positivity in patients with Clostridioides difficile infection. Therap Adv Gastroenterol 2021; 14:17562848211050443. [PMID: 34646361 PMCID: PMC8504224 DOI: 10.1177/17562848211050443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 09/06/2021] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Polymerase chain reaction (PCR) is a sensitive test for diagnosing Clostridioides difficile infection (CDI) and could remain positive following resolution of CDI. The kinetics of PCR positivity following antibiotics for CDI is unknown. We studied this and whether it predicted CDI recurrence. METHODS Adults with CDI from October 2009 to May 2017 were included. Serial stool samples within 60 days of treatment were collected. Recurrent CDI was defined as diarrhea after interim symptom resolution with positive stool PCR within 56 or 90 days of treatment completion. Contingency table analysis was used to assess the risk of recurrence. RESULTS Fifty patients were included [median age: 51 (range = 20-86) years, 66% women]. Treatment given was metronidazole, 50% (25); vancomycin, 44% (22); both, 4% (2); and fidaxomicin, 2% (1). Median duration of treatment for all 50 patients was 14 (range = 8-60) days. The median duration of treatment in patients who got prolonged therapy (>14 days) (n = 10) was 47 (range = 18-60) days. Median time to negative PCR was 9 (95% CI, 7-14) days from treatment initiation, which did not differ by antibiotics given (p = 0.5). A positive PCR during or after treatment was associated with a higher risk of recurrence at 56 days (p = 0.02) and at 90 days (p = 0.009). CONCLUSION The median time to negative PCR in CDI was 9 days from treatment initiation. The PCR positivity during or after treatment may be useful for recurrence prediction; larger studies are needed to validate these results.
Collapse
Affiliation(s)
- Srishti Saha
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Devvrat Yadav
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Ryan Pardi
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Robin Patel
- Division of Clinical Microbiology, Mayo Clinic, Rochester, MN, USA
| | - Sahil Khanna
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Darrell Pardi
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, 55905-0002
| |
Collapse
|
23
|
Riedel T, Neumann-Schaal M, Wittmann J, Schober I, Hofmann JD, Lu CW, Dannheim A, Zimmermann O, Lochner M, Groß U, Overmann J. Characterization of Clostridioides difficile DSM 101085 with A-B-CDT+ Phenotype from a Late Recurrent Colonization. Genome Biol Evol 2021; 12:566-577. [PMID: 32302381 PMCID: PMC7250501 DOI: 10.1093/gbe/evaa072] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/10/2020] [Indexed: 12/29/2022] Open
Abstract
During the last decades, hypervirulent strains of Clostridioides difficile with frequent disease recurrence and increased mortality appeared. Clostridioides difficile DSM 101085 was isolated from a patient who suffered from several recurrent infections and colonizations, likely contributing to a fatal outcome. Analysis of the toxin repertoire revealed the presence of a complete binary toxin locus and an atypical pathogenicity locus consisting of only a tcdA pseudogene and a disrupted tcdC gene sequence. The pathogenicity locus shows upstream a transposon and has been subject to homologous recombination or lateral gene transfer events. Matching the results of the genome analysis, neither TcdA nor TcdB production but the expression of cdtA and cdtB was detected. This highlights a potential role of the binary toxin C. difficile toxin in this recurrent colonization and possibly further in a host-dependent virulence. Compared with the C. difficile metabolic model strains DSM 28645 (630Δerm) and DSM 27147 (R20291), strain DSM 101085 showed a specific metabolic profile, featuring changes in the threonine degradation pathways and alterations in the central carbon metabolism. Moreover, products originating from Stickland pathways processing leucine, aromatic amino acids, and methionine were more abundant in strain DSM 101085, indicating a more efficient use of these substrates. The particular characteristics of strain C. difficile DSM 101085 may represent an adaptation to a low-protein diet in a patient with recurrent infections.
Collapse
Affiliation(s)
- Thomas Riedel
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany.,German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Braunschweig, Germany
| | - Meina Neumann-Schaal
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany.,Department of Bioinformatics and Biochemistry and Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Germany
| | - Johannes Wittmann
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Isabel Schober
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Julia Danielle Hofmann
- Department of Bioinformatics and Biochemistry and Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Germany
| | - Chia-Wen Lu
- Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research, a Joint Venture between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
| | - Antonia Dannheim
- Department of Bioinformatics and Biochemistry and Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Germany
| | - Ortrud Zimmermann
- Institute of Medical Microbiology, University Medical Center Göttingen, Germany
| | - Matthias Lochner
- Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research, a Joint Venture between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
| | - Uwe Groß
- Institute of Medical Microbiology, University Medical Center Göttingen, Germany.,Göttingen International Health Network, Göttingen, Germany
| | - Jörg Overmann
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany.,German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Braunschweig, Germany.,Institute of Microbiology, Technical University of Braunschweig, Germany
| |
Collapse
|
24
|
Abstract
Large clostridial toxins (LCTs) are a family of bacterial exotoxins that infiltrate and destroy target cells. Members of the LCT family include Clostridioides difficile toxins TcdA and TcdB, Paeniclostridium sordellii toxins TcsL and TcsH, Clostridium novyi toxin TcnA, and Clostridium perfringens toxin TpeL. Since the 19th century, LCT-secreting bacteria have been isolated from the blood, organs, and wounds of diseased individuals, and LCTs have been implicated as the primary virulence factors in a variety of infections, including C. difficile infection and some cases of wound-associated gas gangrene. Clostridia express and secrete LCTs in response to various physiological signals. LCTs invade host cells by binding specific cell surface receptors, ultimately leading to internalization into acidified vesicles. Acidic pH promotes conformational changes within LCTs, which culminates in translocation of the N-terminal glycosyltransferase and cysteine protease domain across the endosomal membrane and into the cytosol, leading first to cytopathic effects and later to cytotoxic effects. The focus of this review is on the role of LCTs in infection and disease, the mechanism of LCT intoxication, with emphasis on recent structural work and toxin subtyping analysis, and the genomic discovery and characterization of LCT homologues. We provide a comprehensive review of these topics and offer our perspective on emerging questions and future research directions for this enigmatic family of toxins.
Collapse
|
25
|
Kodori M, Ghalavand Z, Yadegar A, Eslami G, Azimirad M, Krutova M, Abadi A, Zali MR. Molecular characterization of pathogenicity locus (PaLoc) and tcdC genetic diversity among tcdA +B +Clostridioides difficile clinical isolates in Tehran, Iran. Anaerobe 2020; 66:102294. [PMID: 33181348 DOI: 10.1016/j.anaerobe.2020.102294] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 10/28/2020] [Accepted: 11/01/2020] [Indexed: 12/11/2022]
Abstract
Clostridioides difficile is the main cause of healthcare-associated diarrhea worldwide. It is proposed that certain C. difficile toxinotypes with distinct pathogenicity locus (PaLoc) variants are associated with disease severity and outcomes. Additionally, few studies have described the common C. difficile toxinotypes, and also little is known about the tcdC variants in Iranian isolates. We characterized the toxinotypes and the tcdC genotypes from a collection of Iranian clinical C. difficile tcdA+B+ isolates with known ribotypes (RTs). Fifty C. difficile isolates with known RTs and carrying the tcdA and tcdB toxin genes were analyzed. Toxinotyping was carried out based on a PCR-RFLP analysis of a 19.6 kb region encompassing the PaLoc. Genetic diversity of the tcdC gene was determined by the sequencing of the gene. Of the 50 C. difficile isolates investigated, five distinct toxinotypes were recognized. Toxinotypes 0 (33/50, 66%) and V (11/50, 22%) were the most frequently found. C. difficile isolates of the toxinotype 0 mostly belonged to RT 001 (12/33, 36.4%), whereas toxinotype V consisted of RT 126 (9/11, 81.8%). The tcdC sequencing showed six variants (35/50, 70%); tcdC-sc3 (24%), tcdC-A (22%), tcdC-sc9 (18%), tcdC-B (2%), tcdC-sc14 (2%), and tcdC-sc15 (2%). The remaining isolates were wild-types (15/50, 30%) in the tcdC gene. The present study demonstrates that the majority of clinical tcdA+B+ isolates of C. difficile frequently harbor tcdC genetic variants. We also found that the RT 001/toxinotype 0 and the RT 126/toxinotype V are the most common types among Iranian isolates. Further studies are needed to investigate the putative association of various tcdC genotypes with CDI severity and its recurrence.
Collapse
Affiliation(s)
- Mansoor Kodori
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zohreh Ghalavand
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Yadegar
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Gita Eslami
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Masoumeh Azimirad
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Marcela Krutova
- Department of Medical Microbiology, Charles University, 2nd Faculty of Medicine, Motol University Hospital, Prague, Czech Republic; European Society of Clinical Microbiology and Infectious Diseases (ESCMID) Study Group for Clostridioides Difficile (ESGCD), Basel, Switzerland
| | - Alireza Abadi
- Department of Health & Community Medicine, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
26
|
Oliveira Paiva AM, de Jong L, Friggen AH, Smits WK, Corver J. The C-Terminal Domain of Clostridioides difficile TcdC Is Exposed on the Bacterial Cell Surface. J Bacteriol 2020; 202:JB.00771-19. [PMID: 32868401 PMCID: PMC7585056 DOI: 10.1128/jb.00771-19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 08/25/2020] [Indexed: 02/04/2023] Open
Abstract
Clostridioides difficile is an anaerobic Gram-positive bacterium that can produce the large clostridial toxins toxin A and toxin B, encoded within the pathogenicity locus (PaLoc). The PaLoc also encodes the sigma factor TcdR, which positively regulates toxin gene expression, and TcdC, which is a putative negative regulator of toxin expression. TcdC is proposed to be an anti-sigma factor; however, several studies failed to show an association between the tcdC genotype and toxin production. Consequently, the TcdC function is not yet fully understood. Previous studies have characterized TcdC as a membrane-associated protein with the ability to bind G-quadruplex structures. The binding to the DNA secondary structures is mediated through the oligonucleotide/oligosaccharide binding fold (OB-fold) domain present at the C terminus of the protein. This domain was previously also proposed to be responsible for the inhibitory effect on toxin gene expression, implicating a cytoplasmic localization of the OB-fold. In this study, we aimed to obtain topological information on the C terminus of TcdC and demonstrate that the C terminus of TcdC is located extracellularly. In addition, we show that the membrane association of TcdC is dependent on a membrane-proximal cysteine residue and that mutating this residue results in the release of TcdC from the bacterial cell. The extracellular location of TcdC is not compatible with the direct binding of the OB-fold domain to intracellular nucleic acid or protein targets and suggests a mechanism of action that is different from that of the characterized anti-sigma factors.IMPORTANCE The transcription of C. difficile toxins TcdA and TcdB is directed by the sigma factor TcdR. TcdC has been proposed to be an anti-sigma factor. The activity of TcdC has been mapped to its C terminus, and the N terminus serves as the membrane anchor. Acting as an anti-sigma factor requires a cytoplasmic localization of the C terminus of TcdC. Using cysteine accessibility analysis and a HiBiT-based system, we show that the TcdC C terminus is located extracellularly, which is incompatible with its role as anti-sigma factor. Furthermore, mutating a cysteine residue at position 51 resulted in the release of TcdC from the bacteria. The codon-optimized version of the HiBiT (HiBiTopt) extracellular detection system is a valuable tool for topology determination of membrane proteins, increasing the range of systems available to tackle important aspects of C. difficile development.
Collapse
Affiliation(s)
- Ana M Oliveira Paiva
- Department of Medical Microbiology, Section Experimental Bacteriology, Leiden University Medical Center, Leiden, The Netherlands
- Center for Microbial Cell Biology, Leiden, The Netherlands
| | - Leen de Jong
- Department of Medical Microbiology, Section Experimental Bacteriology, Leiden University Medical Center, Leiden, The Netherlands
| | - Annemieke H Friggen
- Department of Medical Microbiology, Section Experimental Bacteriology, Leiden University Medical Center, Leiden, The Netherlands
- Center for Microbial Cell Biology, Leiden, The Netherlands
| | - Wiep Klaas Smits
- Department of Medical Microbiology, Section Experimental Bacteriology, Leiden University Medical Center, Leiden, The Netherlands
- Center for Microbial Cell Biology, Leiden, The Netherlands
| | - Jeroen Corver
- Department of Medical Microbiology, Section Experimental Bacteriology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
27
|
Awad MM, Hutton ML, Quek AJ, Klare WP, Mileto SJ, Mackin K, Ly D, Oorschot V, Bosnjak M, Jenkin G, Conroy PJ, West N, Fulcher A, Costin A, Day CJ, Jennings MP, Medcalf RL, Sanderson-Smith M, Cordwell SJ, Law RHP, Whisstock JC, Lyras D. Human Plasminogen Exacerbates Clostridioides difficile Enteric Disease and Alters the Spore Surface. Gastroenterology 2020; 159:1431-1443.e6. [PMID: 32574621 DOI: 10.1053/j.gastro.2020.06.032] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 06/10/2020] [Accepted: 06/13/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND & AIMS The protease plasmin is an important wound healing factor, but it is not clear how it affects gastrointestinal infection-mediated damage, such as that resulting from Clostridioides difficile. We investigated the role of plasmin in C difficile-associated disease. This bacterium produces a spore form that is required for infection, so we also investigated the effects of plasmin on spores. METHODS C57BL/6J mice expressing the precursor to plasmin, the zymogen human plasminogen (hPLG), or infused with hPLG were infected with C difficile, and disease progression was monitored. Gut tissues were collected, and cytokine production and tissue damage were analyzed by using proteomic and cytokine arrays. Antibodies that inhibit either hPLG activation or plasmin activity were developed and structurally characterized, and their effects were tested in mice. Spores were isolated from infected patients or mice and visualized using super-resolution microscopy; the functional consequences of hPLG binding to spores were determined. RESULTS hPLG localized to the toxin-damaged gut, resulting in immune dysregulation with an increased abundance of cytokines (such as interleukin [IL] 1A, IL1B, IL3, IL10, IL12B, MCP1, MP1A, MP1B, GCSF, GMCSF, KC, TIMP-1), tissue degradation, and reduced survival. Administration of antibodies that inhibit plasminogen activation reduced disease severity in mice. C difficile spores bound specifically to hPLG and active plasmin degraded their surface, facilitating rapid germination. CONCLUSIONS We found that hPLG is recruited to the damaged gut, exacerbating C difficile disease in mice. hPLG binds to C difficile spores, and, upon activation to plasmin, remodels the spore surface, facilitating rapid spore germination. Inhibitors of plasminogen activation might be developed for treatment of C difficile or other infection-mediated gastrointestinal diseases.
Collapse
Affiliation(s)
- Milena M Awad
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Australia
| | - Melanie L Hutton
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Australia
| | - Adam J Quek
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging and Biomedicine Discovery Institute, Department of Biochemistry, Monash University, Clayton, Australia
| | - William P Klare
- School of Life and Environmental Sciences and Charles Perkins Centre, The University of Sydney, Sydney, Australia
| | - Steven J Mileto
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Australia
| | - Kate Mackin
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Australia
| | - Diane Ly
- Illawarra health and Medical Research Institute, Wollongong, Australia; School of Chemistry and Molecular Bioscience and Molecular Horizons, University of Wollongong, Wollongong, Australia
| | - Viola Oorschot
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging and Biomedicine Discovery Institute, Department of Biochemistry, Monash University, Clayton, Australia; Monash Micro Imaging, Monash University, Clayton, Australia
| | - Marijana Bosnjak
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Australia
| | - Grant Jenkin
- Monash Infectious Diseases, Monash Health, Clayton, Australia
| | - Paul J Conroy
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging and Biomedicine Discovery Institute, Department of Biochemistry, Monash University, Clayton, Australia
| | - Nick West
- School of Chemistry and Molecular Biosciences and Australian Infectious Diseases Research Centre, University of Queensland, St. Lucia, Australia
| | - Alex Fulcher
- Monash Micro Imaging, Monash University, Clayton, Australia
| | - Adam Costin
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging and Biomedicine Discovery Institute, Department of Biochemistry, Monash University, Clayton, Australia
| | | | | | - Robert L Medcalf
- Molecular Neurotrauma and Haemostasis, Australian Centre for Blood Diseases, Monash University, Clayton, Australia
| | - Martina Sanderson-Smith
- Illawarra health and Medical Research Institute, Wollongong, Australia; School of Chemistry and Molecular Bioscience and Molecular Horizons, University of Wollongong, Wollongong, Australia
| | - Stuart J Cordwell
- School of Life and Environmental Sciences and Charles Perkins Centre, The University of Sydney, Sydney, Australia
| | - Ruby H P Law
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging and Biomedicine Discovery Institute, Department of Biochemistry, Monash University, Clayton, Australia
| | - James C Whisstock
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging and Biomedicine Discovery Institute, Department of Biochemistry, Monash University, Clayton, Australia; European Molecular Biology Laboratory Australia, Monash University, Clayton, Australia; South East University-Monash Joint Institute, Institute of Life Sciences, Southeast University, Nanjing, China
| | - Dena Lyras
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Australia.
| |
Collapse
|
28
|
Saito R, Usui Y, Ayibieke A, Nakajima J, Prah I, Sonobe K, Aiso Y, Ito S, Itsui Y, Hadano Y, Nukui Y, Koike R, Tohda S. Hypervirulent clade 2, ribotype 019/sequence type 67 Clostridioides difficile strain from Japan. Gut Pathog 2019; 11:54. [PMID: 31700548 PMCID: PMC6827173 DOI: 10.1186/s13099-019-0336-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 10/25/2019] [Indexed: 12/12/2022] Open
Abstract
Background Clostridioides difficile ribotype (RT) 019/sequence type (ST) 67 strains belong to a hypervirulent lineage closely related to RT027/ST1; however, limited data are available for hypervirulent clade 2 lineages in Japan. Herein, we report the draft genome of a C. difficile strain B18-123 belonging to clade 2, RT019/ST67 for the first time in Japan. Results The pathogenicity locus carried by B18-123 (19.6 kb) showed higher homology (97.29% nucleotide identity) with strain R20291 (RT027/ST1) than the reference strain 630 (RT012/ST54), and B18-123 harbored 8-nucleotide substitutions in tcdC. However, it did not contain an 18-base pair (bp) deletion or a single-bp deletion at position 117 in tcdC, which was identified in the previous strain R20291. A cytotoxicity assay revealed similar cytotoxicity levels between strains B18-123 and ATCC BAA-1870 (RT027/ST1). The B18-123 strain was found to be susceptible to metronidazole and vancomycin. Conclusion Our findings contribute to the further understanding of the characteristics of hypervirulent clade 2 including RT019/ST67 lineages.
Collapse
Affiliation(s)
- Ryoichi Saito
- 1Department of Molecular Microbiology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.,2Department of Infection Control and Prevention, Tokyo Medical and Dental University Medical Hospital, Tokyo, Japan
| | - Yukino Usui
- 1Department of Molecular Microbiology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Alafate Ayibieke
- 1Department of Molecular Microbiology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Jun Nakajima
- 2Department of Infection Control and Prevention, Tokyo Medical and Dental University Medical Hospital, Tokyo, Japan.,3Department of Clinical Laboratory, Tokyo Medical and Dental University Medical Hospital, Tokyo, Japan
| | - Isaac Prah
- 1Department of Molecular Microbiology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kazunari Sonobe
- 2Department of Infection Control and Prevention, Tokyo Medical and Dental University Medical Hospital, Tokyo, Japan.,3Department of Clinical Laboratory, Tokyo Medical and Dental University Medical Hospital, Tokyo, Japan
| | - Yoshibumi Aiso
- 2Department of Infection Control and Prevention, Tokyo Medical and Dental University Medical Hospital, Tokyo, Japan
| | - Shiori Ito
- 4Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University Medical Hospital, Tokyo, Japan
| | - Yasuhiro Itsui
- 4Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University Medical Hospital, Tokyo, Japan
| | - Yoshiro Hadano
- 2Department of Infection Control and Prevention, Tokyo Medical and Dental University Medical Hospital, Tokyo, Japan
| | - Yoko Nukui
- 2Department of Infection Control and Prevention, Tokyo Medical and Dental University Medical Hospital, Tokyo, Japan
| | - Ryuji Koike
- 2Department of Infection Control and Prevention, Tokyo Medical and Dental University Medical Hospital, Tokyo, Japan
| | - Shuji Tohda
- 3Department of Clinical Laboratory, Tokyo Medical and Dental University Medical Hospital, Tokyo, Japan
| |
Collapse
|
29
|
Srikhanta YN, Hutton ML, Awad MM, Drinkwater N, Singleton J, Day SL, Cunningham BA, McGowan S, Lyras D. Cephamycins inhibit pathogen sporulation and effectively treat recurrent Clostridioides difficile infection. Nat Microbiol 2019; 4:2237-2245. [DOI: 10.1038/s41564-019-0519-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Accepted: 06/20/2019] [Indexed: 02/06/2023]
|
30
|
Zackular JP, Kirk L, Trindade BC, Skaar EP, Aronoff DM. Misoprostol protects mice against severe Clostridium difficile infection and promotes recovery of the gut microbiota after antibiotic perturbation. Anaerobe 2019; 58:89-94. [PMID: 31220605 PMCID: PMC6697607 DOI: 10.1016/j.anaerobe.2019.06.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 06/15/2019] [Indexed: 01/13/2023]
Abstract
Clostridium difficile infection (CDI) is one of the most common nosocomial infections worldwide and an urgent public health threat. Epidemiological and experimental studies have demonstrated an association between nonsteroidal anti-inflammatory drug (NSAID) exposure and enhanced susceptibility to, and severity of, CDI. NSAIDs target cyclooxygenase enzymes and inhibit the production of prostaglandins (PGs), but the therapeutic potential of exogenous introduction of PGs for the treatment of CDI has not been explored. In this study, we report that treatment with the FDA-approved stable PGE1 analogue, misoprostol, protects mice against C. difficile-associated mortality, intestinal pathology, and CDI-mediated intestinal permeability. Furthermore, we report that the effect of misoprostol on the gastrointestinal tract contributes to increased recovery of the gut microbiota following antibiotic perturbation. Together, these data implicate PGs as an important host-factor associated with recovery to C. difficile-associated disease and demonstrate the potential for misoprostol in the treatment of CDI. Further studies to explore the safety and efficacy of misoprostol treatment of CDI in humans is needed.
Collapse
Affiliation(s)
- Joseph P Zackular
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, United States; Division of Protective Immunity, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, United States; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Leslie Kirk
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Bruno C Trindade
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Eric P Skaar
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - David M Aronoff
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States; Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States.
| |
Collapse
|
31
|
Knight DR, Riley TV. Genomic Delineation of Zoonotic Origins of Clostridium difficile. Front Public Health 2019; 7:164. [PMID: 31281807 PMCID: PMC6595230 DOI: 10.3389/fpubh.2019.00164] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 06/03/2019] [Indexed: 01/27/2023] Open
Abstract
Clostridium difficile is toxin-producing antimicrobial resistant (AMR) enteropathogen historically associated with diarrhea and pseudomembranous colitis in hospitalized patients. In recent years, there have been dramatic increases in the incidence and severity of C. difficile infection (CDI), and associated morbidity and mortality, in both healthcare and community settings. C. difficile is an ancient and diverse species that displays a sympatric lifestyle, establishing itself in a range of ecological niches external to the healthcare system. These sources/reservoirs include food, water, soil, and over a dozen animal species, in particular, livestock such as pigs and cattle. In a manner analogous to human infection, excessive antimicrobial exposure, particularly to cephalosporins, is driving the expansion of C. difficile in livestock populations worldwide. Subsequent spore contamination of meat, vegetables grown in soil containing animal feces, agricultural by-products such as compost and manure, and the environment in general (households, lawns, and public spaces) is contributing to a persistent community source/reservoir of C. difficile and the insidious rise of CDI in the community. The whole-genome sequencing era continues to redefine our view of this complex pathogen. The application of high-resolution microbial genomics in a One Health framework (encompassing clinical, veterinary, and environment derived datasets) is the optimal paradigm for advancing our understanding of CDI in humans and animals. This approach has begun to yield critical insights into the genetic diversity, evolution, AMR, and zoonotic potential of C. difficile. In Europe, North America, and Australia, microevolutionary analysis of the C. difficile core genome shows strains common to humans and animals (livestock or companion animals) do not form distinct populations but share a recent evolutionary history. Moreover, for C. difficile sequence type 11 and PCR ribotypes 078 and 014, major lineages of One Health importance, this approach has substantiated inter-species clonal transmission between animals and humans. These findings indicate either a zoonosis or anthroponosis. Moreover, they challenge the existing paradigm and the long-held misconception that CDI is primarily a healthcare-associated infection. In this article, evolutionary, and zoonotic aspects of CDI are discussed, including the anthropomorphic factors that contribute to the spread of C. difficile from the farm to the community.
Collapse
Affiliation(s)
- Daniel R Knight
- Medical, Molecular, and Forensic Sciences, Murdoch University, Perth, WA, Australia
| | - Thomas V Riley
- Medical, Molecular, and Forensic Sciences, Murdoch University, Perth, WA, Australia.,School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia.,School of Biomedical Sciences, The University of Western Australia, Nedlands, WA, Australia.,PathWest Laboratory Medicine, Department of Microbiology, Nedlands, WA, Australia
| |
Collapse
|
32
|
Kuehne SA, Rood JI, Lyras D. Clostridial Genetics: Genetic Manipulation of the Pathogenic Clostridia. Microbiol Spectr 2019; 7:10.1128/microbiolspec.gpp3-0040-2018. [PMID: 31172914 PMCID: PMC11315012 DOI: 10.1128/microbiolspec.gpp3-0040-2018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Indexed: 02/07/2023] Open
Abstract
The past 10 years have been revolutionary for clostridial genetics. The rise of next-generation sequencing led to the availability of annotated whole-genome sequences of the important pathogenic clostridia: Clostridium perfringens, Clostridioides (Clostridium) difficile, and Clostridium botulinum, but also Paeniclostridium (Clostridium) sordellii and Clostridium tetani. These sequences were a prerequisite for the development of functional, sophisticated genetic tools for the pathogenic clostridia. A breakthrough came in the early 2000s with the development of TargeTron-based technologies specific for the clostridia, such as ClosTron, an insertional gene inactivation tool. The following years saw a plethora of new technologies being developed, mostly for C. difficile, but also for other members of the genus, including C. perfringens. A range of tools is now available, allowing researchers to precisely delete genes, change single nucleotides in the genome, complement deletions, integrate novel DNA into genomes, or overexpress genes. There are tools for forward genetics, including an inducible transposon mutagenesis system for C. difficile. As the latest addition to the tool kit, clustered regularly interspaced short palindromic repeat (CRISPR)-Cas9 technologies have also been adopted for the construction of single and multiple gene deletions in C. difficile. This article summarizes the key genetic technologies available to manipulate, study, and understand the pathogenic clostridia.
Collapse
Affiliation(s)
- S A Kuehne
- School of Dentistry and Institute for Microbiology and Infection, University of Birmingham, Birmingham, UK
| | - J I Rood
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, Australia 3800
| | - D Lyras
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, Australia 3800
| |
Collapse
|
33
|
Mileto S, Das A, Lyras D. Enterotoxic Clostridia: Clostridioides difficile Infections. Microbiol Spectr 2019; 7:10.1128/microbiolspec.gpp3-0015-2018. [PMID: 31124432 PMCID: PMC11026080 DOI: 10.1128/microbiolspec.gpp3-0015-2018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Indexed: 12/17/2022] Open
Abstract
Clostridioides difficile is a Gram-positive, anaerobic, spore forming pathogen of both humans and animals and is the most common identifiable infectious agent of nosocomial antibiotic-associated diarrhea. Infection can occur following the ingestion and germination of spores, often concurrently with a disruption to the gastrointestinal microbiota, with the resulting disease presenting as a spectrum, ranging from mild and self-limiting diarrhea to severe diarrhea that may progress to life-threating syndromes that include toxic megacolon and pseudomembranous colitis. Disease is induced through the activity of the C. difficile toxins TcdA and TcdB, both of which disrupt the Rho family of GTPases in host cells, causing cell rounding and death and leading to fluid loss and diarrhea. These toxins, despite their functional and structural similarity, do not contribute to disease equally. C. difficile infection (CDI) is made more complex by a high level of strain diversity and the emergence of epidemic strains, including ribotype 027-strains which induce more severe disease in patients. With the changing epidemiology of CDI, our understanding of C. difficile disease, diagnosis, and pathogenesis continues to evolve. This article provides an overview of the current diagnostic tests available for CDI, strain typing, the major toxins C. difficile produces and their mode of action, the host immune response to each toxin and during infection, animal models of disease, and the current treatment and prevention strategies for CDI.
Collapse
Affiliation(s)
- S Mileto
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, Australia, 3800
| | - A Das
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, Australia, 3800
| | - D Lyras
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, Australia, 3800
| |
Collapse
|
34
|
Plants-Paris K, Bishoff D, Oyaro MO, Mwinyi B, Chappell C, Kituyi A, Nyangao J, Mbatha D, Darkoh C. Prevalence of Clostridium difficile infections among Kenyan children with diarrhea. Int J Infect Dis 2019; 81:66-72. [PMID: 30660798 DOI: 10.1016/j.ijid.2019.01.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 12/09/2018] [Accepted: 01/10/2019] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Diarrhea causes significant morbidity and mortality among children worldwide. Regions most affected by diarrhea include Sub-Saharan Africa and Southeast Asia, where antibiotics are in common use and can make children more vulnerable to Clostridium difficile and pathogens that are not affected by these drugs. Indeed, C. difficile is a major diarrhea-associated pathogen and poses a significant threat to vulnerable and immunocompromised populations. Yet, little is known about the role and epidemiology of C. difficile in diarrhea-associated illness among young children. As a result, C. difficile is often neglected in regions such as Sub-Saharan Africa that are most impacted by childhood diarrhea. The purpose of this study was to establish the frequency of C. difficile in young children (<5 years) with diarrhea. METHODS Children presenting with diarrhea at a national hospital in Kenya from 2015 to 2018 were enrolled consecutively. Following informed consent by a parent or legal guardian, stool samples were obtained from the children and demographic data were collected. The stools were examined for the presence of four common pathogens known to cause diarrhea: C. difficile, rotavirus, Cryptosporidium parvum, and Giardia lamblia. C. difficile was verified by toxigenic culture and PCR. The presence of C. parvum and/or G. lamblia was determined using the ImmunoCard STAT! Crypto/Giardia Rapid assay. Rotavirus was detected by ELISA. RESULTS The study population comprised 157 children; 62.4% were male and 37.6% were female and their average age was 12.4 months. Of the 157 stool specimens investigated, 37.6% were positive for C. difficile, 33.8% for rotavirus, 5.1% for Cryptosporidium, and 5.1% for Giardia. PCR analysis identified at least one of the C. difficile-specific - genes (tcdA, tcdB, or tcdC). Further, 57.6% of the stools had C. difficile colonies bearing a frame-shift deletion in the tcdC gene, a mutation associated with increased toxin production. The frequency of C. difficile was 32.6% in children ≤12 months old and increased to 46.6% in children 12-24 months old. CONCLUSIONS In Kenyan children presenting with diarrhea, C. difficile is more prevalent than rotavirus or Cryptosporidium, two leading causes of childhood diarrhea. These findings underscore the need to better understand the role of C. difficile in children with diarrhea, especially in areas with antibiotic overuse. Understanding C. difficile epidemiology and its relationship to co-infecting pathogens among African children with diarrhea will help in devising ways of reducing diarrhea-associated illness.
Collapse
Affiliation(s)
- Kimberly Plants-Paris
- University of Texas Health Science Center, School of Public Health, Department of Epidemiology, Human Genetics, and Environmental Sciences, Center for Infectious Diseases, Houston, TX, USA
| | - Dayna Bishoff
- University of Texas Health Science Center, School of Public Health, Department of Epidemiology, Human Genetics, and Environmental Sciences, Center for Infectious Diseases, Houston, TX, USA
| | - Micah O Oyaro
- University of Nairobi, School of Medicine, College of Health Sciences, Nairobi, Kenya
| | | | - Cynthia Chappell
- University of Texas Health Science Center, School of Public Health, Department of Epidemiology, Human Genetics, and Environmental Sciences, Center for Infectious Diseases, Houston, TX, USA
| | | | - James Nyangao
- Centre for Viral Research, Kenya Medical Research Institute, Nairobi, Kenya
| | | | - Charles Darkoh
- University of Texas Health Science Center, School of Public Health, Department of Epidemiology, Human Genetics, and Environmental Sciences, Center for Infectious Diseases, Houston, TX, USA; MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Microbiology and Infectious Diseases Program, Houston, TX, USA.
| |
Collapse
|
35
|
Characterization of the virulence of a non-RT027, non-RT078 and binary toxin-positive Clostridium difficile strain associated with severe diarrhea. Emerg Microbes Infect 2018; 7:211. [PMID: 30542069 PMCID: PMC6291415 DOI: 10.1038/s41426-018-0211-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 11/01/2018] [Accepted: 11/11/2018] [Indexed: 02/06/2023]
Abstract
The expression of the Clostridium difficile binary toxin CDT is generally observed in the RT027 (ST1) and RT078 (ST11) C. difficile isolates, which are associated with severe C. difficile infection (CDI). However, we recently reported that the non-RT027 and non-RT078 C. difficile strain LC693 (TcdA+TcdB+ CDT+, ST201) caused severe diarrhea in a patient in Xiangya Hospital in China. C.difficile LC693 is a member of Clade 3, and in this study, we identified LC693 as RT871 and compared its virulence and pathogenicity to those of C.difficile R20291 (TcdA+TcdB+CDT+, ST1/RT027), UK6 (TcdA+TcdB+CDT+, ST35/RT027), CD630 (TcdA+TcdB+CDT−, ST54, RT012), and 1379 (TcdA+TcdB+CDT−, ST54/RT012), with strain 1379 being an epidemic C.difficile isolate from the same hospital. LC693 displayed a higher sporulation rate than R20291, CD630 or strain 1379. LC693 was comparable to R20291 with respect to spore germination, motility, and biofilm formation, but showed a faster germination rate, higher motility and a higher biofilm formation capability compared to CD630 and strain 1379. The adherence of spores to human gut epithelial cells was similar for all strains.The total toxin release of LC693 was lower than that of R20291, but higher than that of CD630 and strain 1379. Finally, in a mouse model of CDI, LC693 was capable of causing moderate to severe disease. Our findings demonstrate the pathogenicity of non-RT027 and non-RT078 binary toxin-positive C. difficile strains. Furthermore, our data indicate that LC693 may be more virulent than strain 1379, an epidemic strain from the same hospital, and provide the first phenotypic characterization of a non-RT027 and non-RT078 binary toxin-positive ST201 isolate.
Collapse
|
36
|
Ransom EM, Kaus GM, Tran PM, Ellermeier CD, Weiss DS. Multiple factors contribute to bimodal toxin gene expression in Clostridioides (Clostridium) difficile. Mol Microbiol 2018; 110:533-549. [PMID: 30125399 PMCID: PMC6446242 DOI: 10.1111/mmi.14107] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 08/10/2018] [Accepted: 08/11/2018] [Indexed: 12/14/2022]
Abstract
Clostridioides (formerly Clostridium) difficile produces two major toxins, TcdA and TcdB, upon entry into stationary phase. Transcription of tcdA and tcdB requires the specialized sigma factor, σTcdR , which also directs RNA Polymerase to transcribe tcdR itself. We fused a gene for a red fluorescent protein to the tcdA promoter to study toxin gene expression at the level of individual C. difficile cells. Surprisingly, only a subset of cells became red fluorescent upon entry into stationary phase. Breaking the positive feedback loop that controls σTcdR production by engineering cells to express tcdR from a tetracycline-inducible promoter resulted in uniform fluorescence across the population. Experiments with two regulators of tcdR expression, σD and CodY, revealed neither is required for bimodal toxin gene expression. However, σD biased cells toward the Toxin-ON state, while CodY biased cells toward the Toxin-OFF state. Finally, toxin gene expression was observed in sporulating cells. We conclude that (i) toxin production is regulated by a bistable switch governed by σTcdR , which only accumulates to high enough levels to trigger toxin gene expression in a subset of cells, and (ii) toxin production and sporulation are not mutually exclusive developmental programs.
Collapse
Affiliation(s)
- Eric M. Ransom
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242
| | - Gabriela M. Kaus
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242
| | - Phuong M. Tran
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242
| | - Craig D. Ellermeier
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242
- Graduate Program in Genetics, University of Iowa, Iowa City, IA 52242
| | - David S. Weiss
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242
- Graduate Program in Genetics, University of Iowa, Iowa City, IA 52242
| |
Collapse
|
37
|
Hofmann JD, Otto A, Berges M, Biedendieck R, Michel AM, Becher D, Jahn D, Neumann-Schaal M. Metabolic Reprogramming of Clostridioides difficile During the Stationary Phase With the Induction of Toxin Production. Front Microbiol 2018; 9:1970. [PMID: 30186274 PMCID: PMC6110889 DOI: 10.3389/fmicb.2018.01970] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 08/03/2018] [Indexed: 12/20/2022] Open
Abstract
The obligate anaerobe, spore forming bacterium Clostridioides difficile (formerly Clostridium difficile) causes nosocomial and community acquired diarrhea often associated with antibiotic therapy. Major virulence factors of the bacterium are the two large clostridial toxins TcdA and TcdB. The production of both toxins was found strongly connected to the metabolism and the nutritional status of the growth environment. Here, we systematically investigated the changes of the gene regulatory, proteomic and metabolic networks of C. difficile 630Δerm underlying the adaptation to the non-growing state in the stationary phase. Integrated data from time-resolved transcriptome, proteome and metabolome investigations performed under defined growth conditions uncovered multiple adaptation strategies. Overall changes in the cellular processes included the downregulation of ribosome production, lipid metabolism, cold shock proteins, spermine biosynthesis, and glycolysis and in the later stages of riboflavin and coenzyme A (CoA) biosynthesis. In contrast, different chaperones, several fermentation pathways, and cysteine, serine, and pantothenate biosynthesis were found upregulated. Focusing on the Stickland amino acid fermentation and the central carbon metabolism, we discovered the ability of C. difficile to replenish its favored amino acid cysteine by a pathway starting from the glycolytic 3-phosphoglycerate via L-serine as intermediate. Following the growth course, the reductive equivalent pathways used were sequentially shifted from proline via leucine/phenylalanine to the central carbon metabolism first to butanoate fermentation and then further to lactate fermentation. The toxin production was found correlated mainly to fluxes of the central carbon metabolism. Toxin formation in the supernatant was detected when the flux changed from butanoate to lactate synthesis in the late stationary phase. The holistic view derived from the combination of transcriptome, proteome and metabolome data allowed us to uncover the major metabolic strategies that are used by the clostridial cells to maintain its cellular homeostasis and ensure survival under starvation conditions.
Collapse
Affiliation(s)
- Julia D Hofmann
- Department of Bioinformatics and Biochemistry, Technische Universität Braunschweig, Braunschweig, Germany.,Braunschweig Integrated Centre of Systems Biology (BRICS), Braunschweig, Germany
| | - Andreas Otto
- Department for Microbial Proteomics, University of Greifswald, Greifswald, Germany
| | - Mareike Berges
- Braunschweig Integrated Centre of Systems Biology (BRICS), Braunschweig, Germany.,Institute of Microbiology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Rebekka Biedendieck
- Braunschweig Integrated Centre of Systems Biology (BRICS), Braunschweig, Germany.,Institute of Microbiology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Annika-Marisa Michel
- Braunschweig Integrated Centre of Systems Biology (BRICS), Braunschweig, Germany.,Institute of Microbiology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Dörte Becher
- Department for Microbial Proteomics, University of Greifswald, Greifswald, Germany
| | - Dieter Jahn
- Braunschweig Integrated Centre of Systems Biology (BRICS), Braunschweig, Germany.,Institute of Microbiology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Meina Neumann-Schaal
- Department of Bioinformatics and Biochemistry, Technische Universität Braunschweig, Braunschweig, Germany.,Braunschweig Integrated Centre of Systems Biology (BRICS), Braunschweig, Germany.,Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| |
Collapse
|
38
|
Gu H, Shi K, Liao Z, Qi H, Chen S, Wang H, Li S, Ma Y, Wang J. Time-resolved transcriptome analysis of Clostridium difficile R20291 response to cysteine. Microbiol Res 2018; 215:114-125. [PMID: 30172297 DOI: 10.1016/j.micres.2018.07.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 05/21/2018] [Accepted: 07/07/2018] [Indexed: 01/05/2023]
Abstract
The incidence of Clostridium difficile infection has been steadily rising over the past decade. The increase in the rate of incidence is associated with the specific NAP1/BI/027 strains which are "hypervirulent" and have led to several large outbreaks since their emergence. However, the relation between these outbreaks and virulence regulation mechanisms remains unclear. It has been reported that the major virulence factor TcdA and TcdB in C. difficile could be repressed by cysteine. Here, we investigated the functional and virulence-associated regulation of C. difficile R20291 response to cysteine by using a time-resolved genome-wide transcriptome analysis. Dramatic changes of gene expression in C. difficile revealed functional processes related to transport, metabolism, and regulators in the presence of cysteine during different phases of growth. Flagellar and ribosomal genes were significantly down-regulated in long-term response to cysteine. Many NAP1/BI/027- specific genes were also modulated by cysteine. In addition, cdsB inactivation in C. difficile R20291 could remove the repression of toxin synthesis but could not remove the repression of butyrate production in the presence of cysteine. This suggests that toxin synthesis and butyrate production might have different regulatory controls in response to cysteine. Altogether, our research provides important insights into the regulatory mechanisms of C. difficile response to cysteine.
Collapse
Affiliation(s)
- Huawei Gu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Kan Shi
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Zhengping Liao
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Haonan Qi
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Shuyi Chen
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Haiying Wang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Shan Li
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Yi Ma
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Jufang Wang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China.
| |
Collapse
|
39
|
Oyaro MO, Plants-Paris K, Bishoff D, Malonza P, Gontier CS, DuPont HL, Darkoh C. High rate of Clostridium difficile among young adults presenting with diarrhea at two hospitals in Kenya. Int J Infect Dis 2018; 74:24-28. [PMID: 29960098 PMCID: PMC6152928 DOI: 10.1016/j.ijid.2018.06.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 06/14/2018] [Accepted: 06/17/2018] [Indexed: 02/01/2023] Open
Abstract
Background: Clostridium difficile infection (CDI) is the leading cause of antibiotic-associated diarrhea worldwide. As a result, the US Centers for Disease Control and Prevention have designated C. difficile as an urgent threat. Despite the global public health risk posed by CDI, little is known about its epidemiology on the African continent. This article describes the common occurrence of CDI from a cross-section of consecutively seen, randomly enrolled patients presenting with diarrhea at two major hospitals in Kenya. Methods: Patients presenting with diarrhea at two major hospitals in Kenya from May to July 2017 were enrolled. After signing the informed consent, stool samples, demographic data, medical history, prior antibiotic use, and HIV status were obtained from the patients. C. difficile was detected and validated by toxigenic culture and PCR. Results: The average age of the patients was 35.5 years (range 3–86 years); 59% were male and 41% were female. Out of 105 patient s tools tested, 98 (93.3%) were positive for C. difficile by culture. PCR analysis confirmed C. Difficile-specific genes, tcdA, tcdB, and tcdC, in the strains isolated from the stools. Further, 82.5% of the stools had C. difficile isolates bearing the frame-shift delection associated with hypervirulent strains. Remarkably, 91.9% of the stools that tested positive for C. difficile came from patients under 60 years old, with 64.3% being less than 40 years of age.The majorityof the patients (85%) reported over-the-counter antibiotic use in the last 30 days before the hospital visit. Conclusions: Together, the results revealed an unusually high incidence of C. difficile in the stools analyzed, especially among young adults who are thought to be less vulnerable. Comprehensive research is urgently needed to examine the epidemiology, risk factors, pathogenesis, comorbidities, clinical outcomes, antibiotic susceptibility, and genetic makeup of C. difficile strains circulating on the African continent.
Collapse
Affiliation(s)
- Micah O Oyaro
- University of Nairobi, School of Medicine, College of Health Sciences, Nairobi, Kenya
| | - Kimberly Plants-Paris
- University of Texas Health Science Center, School of Public Health, Department of Epidemiology, Human Genetics, and Environmental Sciences, Center for Infectious Diseases, Houston, TX, USA
| | - Dayna Bishoff
- University of Texas Health Science Center, School of Public Health, Department of Epidemiology, Human Genetics, and Environmental Sciences, Center for Infectious Diseases, Houston, TX, USA
| | - Paul Malonza
- University of Nairobi, School of Medicine, College of Health Sciences, Nairobi, Kenya
| | - Christopher S Gontier
- University of Nairobi, School of Medicine, College of Health Sciences, Nairobi, Kenya
| | - Herbert L DuPont
- University of Texas Health Science Center, School of Public Health, Department of Epidemiology, Human Genetics, and Environmental Sciences, Center for Infectious Diseases, Houston, TX, USA; MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Microbiology and Infectious Diseases Program, Houston, TX, USA; University of Texas McGovern Medical School, Department of Internal Medicine, Houston, TX, USA
| | - Charles Darkoh
- University of Texas Health Science Center, School of Public Health, Department of Epidemiology, Human Genetics, and Environmental Sciences, Center for Infectious Diseases, Houston, TX, USA; MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Microbiology and Infectious Diseases Program, Houston, TX, USA.
| |
Collapse
|
40
|
Wei Y, Yang F, Wu Q, Gao J, Liu W, Liu C, Guo X, Suwal S, Kou Y, Zhang B, Wang Y, Zheng K, Tang R. Protective Effects of Bifidobacterial Strains Against Toxigenic Clostridium difficile. Front Microbiol 2018; 9:888. [PMID: 29867801 PMCID: PMC5952185 DOI: 10.3389/fmicb.2018.00888] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Accepted: 04/18/2018] [Indexed: 12/11/2022] Open
Abstract
Probiotics might offer an attractive alternative to prevent and control Clostridium difficile (C. difficile) infection (CDI). Limited information is available on the ability of commercially used bifidobacterial strains to inhibit C. difficile. This study examined the anti-clostridial effects of Bifidobacterium longum JDM301, a widely used commercial probiotic strain in China, in vitro and in vivo. In vitro evaluation revealed a significant reduction in C. difficile counts when JDM301 was co-cultured with C. difficile, which was correlated with the significant decrease in clostridial toxin titres (TcdA and TcdB). Furthermore, the cell-free culture supernatants (CFS) of JDM301 inhibited C. difficile growth and degraded TcdA and TcdB. Notably, the results showed that acid pH promoted the degradation of TcdA by CFS from JDM301. Furthermore, comparative studies among 10 B. longum strains were performed, which showed that the inhibitory effect of CFS from JDM301 was similar with the other 8 B. longum strains and higher than strain BLY1. However, when it was neutralized, the significant different was lost. When present together, it was suggested that the acid pH induced by probiotics not only played important roles in the growth inhibition against C. difficile resulting in the reduction of toxins titres, but also directly promoted the degradation of clostridial toxin. In vivo studies proved that JDM301 partially relieved damage to tissues caused by C. difficile and also decreased the number of C. difficile and toxin levels. In summary, our results demonstrated that the commercial strain, JDM301 could be considered a probiotic able to exert anti-toxin capability and most of the CFS from Bifidobacterium were able to inhibit the growth of C. difficile, depending on acid pH. These results highlighted a potential that JDM301 could be helpful in preventing CDI and that most of the bifidobacterial strains could (at least partially) exert protective effects by reducing toxin titres through growth inhibition against toxigenic C. difficile.
Collapse
Affiliation(s)
- Yanxia Wei
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou, China
| | - Fan Yang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou, China
| | - Qiong Wu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou, China
| | - Jing Gao
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou, China
| | - Wenli Liu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou, China
| | - Chang Liu
- Department of Microbiology and Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaokui Guo
- Department of Microbiology and Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Sharmila Suwal
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou, China
| | - Yanbo Kou
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou, China
| | - Bo Zhang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou, China
| | - Yugang Wang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou, China
| | - Kuiyang Zheng
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou, China
| | - Renxian Tang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
41
|
Liu XS, Li WG, Zhang WZ, Wu Y, Lu JX. Molecular Characterization of Clostridium difficile Isolates in China From 2010 to 2015. Front Microbiol 2018; 9:845. [PMID: 29760687 PMCID: PMC5936795 DOI: 10.3389/fmicb.2018.00845] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 04/12/2018] [Indexed: 12/19/2022] Open
Abstract
Clostridium difficile infection (CDI) has become a worldwide public health problem causing high mortality and a large disease burden. Molecular typing and analysis is important for surveillance and infection control of CDI. However, molecular characterization of C. difficile across China is extremely rare. Here, we report on the toxin profiles, molecular subtyping with multilocus sequence typing (MLST) and PCR ribotyping, and epidemiological characteristics of 199 C. difficile isolates collected between 2010 through 2015 from 13 participating centers across China. We identified 35 STs and 27 ribotypes (RTs) among the 199 C. difficile isolates: ST35 (15.58%), ST3 (15.08%), ST37 (12.06%), and RT017 (14.07%), RT001 (12.06%), RT012 (11.56%) are the most prevalent. One isolate with ST1 and 8 isolates with ST 11 were identified. We identified a new ST in this study, denoted ST332. The toxin profile tcdA+tcdB+tcdC+tcdR+tcdE+CDT- (65.83%) was the predominant profile. Furthermore, 11 isolates with positive binary toxin genes were discovered. According to the PCR ribotyping, one isolate with RT 027, and 6 isolates with RT 078 were confirmed. The epidemiological characteristics of C. difficile in China shows geographical differences, and both the toxin profile and molecular types exhibit great diversity across the different areas.
Collapse
Affiliation(s)
- Xiao-Shu Liu
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Wen-Ge Li
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Wen-Zhu Zhang
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yuan Wu
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jin-Xing Lu
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
42
|
Roberts AP, Smits WK. The evolving epidemic of Clostridium difficile 630. Anaerobe 2018; 53:2-4. [PMID: 29730161 DOI: 10.1016/j.anaerobe.2018.04.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 04/24/2018] [Accepted: 04/26/2018] [Indexed: 02/04/2023]
Abstract
Clostridium difficile is a major pathogen responsible for a range of diseases in humans and animals. The genetic tools used to explore C. difficile biology are a relatively recent development in comparison to those used to investigate some other pathogens. Consequently, a rapid and haphazard dispersal of strains throughout the scientific community has led to the evolution of different C. difficile lineages within strains in different geographical locations and these genotypic differences are likely to affect the phenotype of the organism. Here we review the history of C. difficile 630, the first genome-sequenced C. difficile isolate and the most widely distributed reference strain, and its derivatives. We also invite researchers to take part in a community wide genome sequencing study to trace the evolution of these strains as they have travelled between laboratories around the world.
Collapse
Affiliation(s)
- Adam P Roberts
- Department of Parasitology, Liverpool School of Tropical Medicine, Liverpool, UK; Research Centre for Drugs and Diagnostics, Liverpool School of Tropical Medicine, Liverpool, UK.
| | - Wiep Klaas Smits
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
43
|
Chandrasekaran R, Lacy DB. The role of toxins in Clostridium difficile infection. FEMS Microbiol Rev 2017; 41:723-750. [PMID: 29048477 PMCID: PMC5812492 DOI: 10.1093/femsre/fux048] [Citation(s) in RCA: 232] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 10/10/2017] [Indexed: 02/06/2023] Open
Abstract
Clostridium difficile is a bacterial pathogen that is the leading cause of nosocomial antibiotic-associated diarrhea and pseudomembranous colitis worldwide. The incidence, severity, mortality and healthcare costs associated with C. difficile infection (CDI) are rising, making C. difficile a major threat to public health. Traditional treatments for CDI involve use of antibiotics such as metronidazole and vancomycin, but disease recurrence occurs in about 30% of patients, highlighting the need for new therapies. The pathogenesis of C. difficile is primarily mediated by the actions of two large clostridial glucosylating toxins, toxin A (TcdA) and toxin B (TcdB). Some strains produce a third toxin, the binary toxin C. difficile transferase, which can also contribute to C. difficile virulence and disease. These toxins act on the colonic epithelium and immune cells and induce a complex cascade of cellular events that result in fluid secretion, inflammation and tissue damage, which are the hallmark features of the disease. In this review, we summarize our current understanding of the structure and mechanism of action of the C. difficile toxins and their role in disease.
Collapse
Affiliation(s)
- Ramyavardhanee Chandrasekaran
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - D. Borden Lacy
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- The Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN 37232, USA
| |
Collapse
|
44
|
Prevalence of Clostridium difficile infection and colonization in a tertiary hospital and elderly community of North-Eastern Peninsular Malaysia. Epidemiol Infect 2017; 145:3012-3019. [PMID: 28891459 DOI: 10.1017/s0950268817002011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Little is known about Clostridium difficile infection (CDI) in Asia. The aims of our study were to explore (i) the prevalence, risk factors and molecular epidemiology of CDI and colonization in a tertiary academic hospital in North-Eastern Peninsular Malaysia; (ii) the rate of carriage of C. difficile among the elderly in the region; (iii) the awareness level of this infection among the hospital staffs and students. For stool samples collected from hospital inpatients with diarrhea (n = 76) and healthy community members (n = 138), C. difficile antigen and toxins were tested by enzyme immunoassay. Stool samples were subsequently analyzed by culture and molecular detection of toxin genes, and PCR ribotyping of isolates. To examine awareness among hospital staff and students, participants were asked to complete a self-administered questionnaire. For the hospital and community studies, the prevalence of non-toxigenic C. difficile colonization was 16% and 2%, respectively. The prevalence of CDI among hospital inpatients with diarrhea was 13%. Out of 22 C. difficile strains from hospital inpatients, the toxigenic ribotypes 043 and 017 were most common (both 14%). In univariate analysis, C. difficile colonization in hospital inpatients was significantly associated with greater duration of hospitalization and use of penicillin (both P < 0·05). Absence of these factors was a possible reason for low colonization in the community. Only 3% of 154 respondents answered all questions correctly in the awareness survey. C. difficile colonization is prevalent in a Malaysian hospital setting but not in the elderly community with little or no contact with hospitals. Awareness of CDI is alarmingly poor.
Collapse
|
45
|
Peng Z, Liu S, Meng X, Liang W, Xu Z, Tang B, Wang Y, Duan J, Fu C, Wu B, Wu A, Li C. Genome characterization of a novel binary toxin-positive strain of Clostridium difficile and comparison with the epidemic 027 and 078 strains. Gut Pathog 2017; 9:42. [PMID: 28794800 PMCID: PMC5547579 DOI: 10.1186/s13099-017-0191-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 07/25/2017] [Indexed: 12/13/2022] Open
Abstract
Background Clostridium difficile is an anaerobic Gram-positive spore-forming gut pathogen that causes antibiotic-associated diarrhea worldwide. A small number of C. difficile strains express the binary toxin (CDT), which is generally found in C. difficile 027 (ST1) and/or 078 (ST11) in clinic. However, we isolated a binary toxin-positive non-027, non-078 C. difficile LC693 that is associated with severe diarrhea in China. The genotype of this strain was determined as ST201. To understand the pathogenesis-basis of C. difficile ST201, the strain LC693 was chosen for whole genome sequencing, and its genome sequence was analyzed together with the other two ST201 strains VL-0104 and VL-0391 and compared to the epidemic 027/ST1 and 078/ST11 strains. Results The project finally generated an estimated genome size of approximately 4.07 Mbp for strain LC693. Genome size of the three ST201 strains ranged from 4.07 to 4.16 Mb, with an average GC content between 28.5 and 28.9%. Phylogenetic analysis demonstrated that the ST201 strains belonged to clade 3. The ST201 genomes contained more than 40 antibiotic resistance genes and 15 of them were predicted to be associated with vancomycin-resistance. The ST201 strains contained a larger PaLoc with a Tn6218 element inserted than the 027/ST1 and 078/ST11 strains, and encoded a truncated TcdC. In addition, the ST201 strains contained intact binary toxin coding and regulation genes which are highly homologous to the 027/ST1 strain. Genome comparison of the ST201 strains with the epidemic 027 and 078 strain identified 641 genes specific for C. difficile ST201, and a number of them were predicted as fitness and virulence associated genes. The presence of those genes also contributes to the pathogenesis of the ST201 strains. Conclusions In this study, the genomic characterization of three binary toxin-positive C. difficile ST201 strains in clade 3 was discussed and compared to the genomes of the epidemic 027 and the 078 strains. Our analysis identified a number fitness and virulence associated genes/loci in the ST201 genomes that contribute to the pathogenesis of C. difficile ST201. Electronic supplementary material The online version of this article (doi:10.1186/s13099-017-0191-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zhong Peng
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070 Hubei China
| | - Sidi Liu
- Infection Control Center, Xiangya Hospital of Central South University, Changsha, 410008 Hunan China
| | - Xiujuan Meng
- Infection Control Center, Xiangya Hospital of Central South University, Changsha, 410008 Hunan China
| | - Wan Liang
- MOE Key Laboratory of Animal Genetics, Breeding, and Reproduction, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070 Hubei China
| | - Zhuofei Xu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070 Hubei China
| | - Biao Tang
- Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang China
| | - Yuanguo Wang
- The Hormel Institute, University of Minnesota, Austin, MN 55912 USA
| | - Juping Duan
- Infection Control Center, Xiangya Hospital of Central South University, Changsha, 410008 Hunan China.,Department of Pharmacy, Changsha Hospital of Traditional Chinese Medicine, Changsha, 410000 Hunan China
| | - Chenchao Fu
- Infection Control Center, Xiangya Hospital of Central South University, Changsha, 410008 Hunan China
| | - Bin Wu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070 Hubei China
| | - Anhua Wu
- Infection Control Center, Xiangya Hospital of Central South University, Changsha, 410008 Hunan China
| | - Chunhui Li
- Infection Control Center, Xiangya Hospital of Central South University, Changsha, 410008 Hunan China
| |
Collapse
|
46
|
Hutton ML, Cunningham BA, Mackin KE, Lyon SA, James ML, Rood JI, Lyras D. Bovine antibodies targeting primary and recurrent Clostridium difficile disease are a potent antibiotic alternative. Sci Rep 2017. [PMID: 28623367 PMCID: PMC5473923 DOI: 10.1038/s41598-017-03982-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The increased incidence of antibiotic resistant 'superbugs' has amplified the use of broad spectrum antibiotics worldwide. An unintended consequence of antimicrobial treatment is disruption of the gastrointestinal microbiota, resulting in susceptibility to opportunistic pathogens, such as Clostridium difficile. Paradoxically, treatment of C. difficile infections (CDI) also involves antibiotic use, leaving patients susceptible to re-infection. This serious health threat has led to an urgent call for the development of new therapeutics to reduce or replace the use of antibiotics to treat bacterial infections. To address this need, we have developed colostrum-derived antibodies for the prevention and treatment of CDI. Pregnant cows were immunised to generate hyperimmune bovine colostrum (HBC) containing antibodies that target essential C. difficile virulence components, specifically, spores, vegetative cells and toxin B (TcdB). Mouse infection and relapse models were used to compare the capacity of HBC to prevent or treat primary CDI as well as prevent recurrence. Administration of TcdB-specific colostrum alone, or in combination with spore or vegetative cell-targeted colostrum, prevents and treats C. difficile disease in mice and reduces disease recurrence by 67%. C. difficile-specific colostrum should be re-considered as an immunotherapeutic for the prevention or treatment of primary or recurrent CDI.
Collapse
Affiliation(s)
- Melanie L Hutton
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, 3800, Australia
| | - Bliss A Cunningham
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, 3800, Australia
| | - Kate E Mackin
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, 3800, Australia
| | - Shelley A Lyon
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, 3800, Australia
| | - Meagan L James
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, 3800, Australia
| | - Julian I Rood
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, 3800, Australia
| | - Dena Lyras
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, 3800, Australia.
| |
Collapse
|
47
|
Riedel T, Wetzel D, Hofmann JD, Plorin SPEO, Dannheim H, Berges M, Zimmermann O, Bunk B, Schober I, Spröer C, Liesegang H, Jahn D, Overmann J, Groß U, Neumann-Schaal M. High metabolic versatility of different toxigenic and non-toxigenic Clostridioides difficile isolates. Int J Med Microbiol 2017; 307:311-320. [PMID: 28619474 DOI: 10.1016/j.ijmm.2017.05.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 05/22/2017] [Accepted: 05/28/2017] [Indexed: 12/14/2022] Open
Abstract
Clostridioides difficile (formerly Clostridium difficile) is a major nosocomial pathogen with an increasing number of community-acquired infections causing symptoms from mild diarrhea to life-threatening colitis. The pathogenicity of C. difficile is considered to be mainly associated with the production of genome-encoded toxins A and B. In addition, some strains also encode and express the binary toxin CDT. However; a large number of non-toxigenic C. difficile strains have been isolated from the human gut and the environment. In this study, we characterized the growth behavior, motility and fermentation product formation of 17 different C. difficile isolates comprising five different major genomic clades and five different toxin inventories in relation to the C. difficile model strains 630Δerm and R20291. Within 33 determined fermentation products, we identified two yet undescribed products (5-methylhexanoate and 4-(methylthio)-butanoate) of C. difficile. Our data revealed major differences in the fermentation products obtained after growth in a medium containing casamino acids and glucose as carbon and energy source. While the metabolism of branched chain amino acids remained comparable in all isolates, the aromatic amino acid uptake and metabolism and the central carbon metabolism-associated fermentation pathways varied strongly between the isolates. The patterns obtained followed neither the classification of the clades nor the ribotyping patterns nor the toxin distribution. As the toxin formation is strongly connected to the metabolism, our data allow an improved differentiation of C. difficile strains. The observed metabolic flexibility provides the optimal basis for the adaption in the course of infection and to changing conditions in different environments including the human gut.
Collapse
Affiliation(s)
- Thomas Riedel
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, 38124 Braunschweig, Germany
| | - Daniela Wetzel
- University Medical Center Göttingen, Institute of Medical Microbiology, Kreuzbergring 57, 37075 Göttingen, Germany
| | - Julia Danielle Hofmann
- Technische Universität Braunschweig, Department of Bioinformatics and Biochemistry, Rebenring 56, 38106 Braunschweig, Germany; Braunschweig Integrated Centre of Systems Biology (BRICS), Braunschweig, Germany
| | - Simon Paul Erich Otto Plorin
- University Medical Center Göttingen, Institute of Medical Microbiology, Kreuzbergring 57, 37075 Göttingen, Germany
| | - Henning Dannheim
- Technische Universität Braunschweig, Department of Bioinformatics and Biochemistry, Rebenring 56, 38106 Braunschweig, Germany; Braunschweig Integrated Centre of Systems Biology (BRICS), Braunschweig, Germany
| | - Mareike Berges
- Braunschweig Integrated Centre of Systems Biology (BRICS), Braunschweig, Germany; Technische Universität Braunschweig, Department of Microbiology, Rebenring 56, 38106 Braunschweig, Germany
| | - Ortrud Zimmermann
- University Medical Center Göttingen, Institute of Medical Microbiology, Kreuzbergring 57, 37075 Göttingen, Germany
| | - Boyke Bunk
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, 38124 Braunschweig, Germany; German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Inhoffenstraße 7B, 38124 Braunschweig, Germany
| | - Isabel Schober
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, 38124 Braunschweig, Germany
| | - Cathrin Spröer
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, 38124 Braunschweig, Germany; German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Inhoffenstraße 7B, 38124 Braunschweig, Germany
| | - Heiko Liesegang
- Department of Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Georg-August-University Göttingen, Grisebachstraße 8, 37077 Göttingen, Germany
| | - Dieter Jahn
- Braunschweig Integrated Centre of Systems Biology (BRICS), Braunschweig, Germany; Technische Universität Braunschweig, Department of Microbiology, Rebenring 56, 38106 Braunschweig, Germany
| | - Jörg Overmann
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, 38124 Braunschweig, Germany; Braunschweig Integrated Centre of Systems Biology (BRICS), Braunschweig, Germany; German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Inhoffenstraße 7B, 38124 Braunschweig, Germany
| | - Uwe Groß
- University Medical Center Göttingen, Institute of Medical Microbiology, Kreuzbergring 57, 37075 Göttingen, Germany; Göttingen International Health Network, Göttingen, Germany
| | - Meina Neumann-Schaal
- Technische Universität Braunschweig, Department of Bioinformatics and Biochemistry, Rebenring 56, 38106 Braunschweig, Germany; Braunschweig Integrated Centre of Systems Biology (BRICS), Braunschweig, Germany.
| |
Collapse
|
48
|
Whole genome sequences of three Clade 3 Clostridium difficile strains carrying binary toxin genes in China. Sci Rep 2017; 7:43555. [PMID: 28262711 PMCID: PMC5337907 DOI: 10.1038/srep43555] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 01/25/2017] [Indexed: 02/05/2023] Open
Abstract
Clostridium difficile consists of six clades but studies on Clade 3 are limited. Here, we report genome sequences of three Clade 3 C. difficile strains carrying genes encoding toxin A and B and the binary toxin. Isolates 103 and 133 (both of ST5) and isolate 106 (ST285) were recovered from three ICU patients. Whole genome sequencing using HiSeq 2500 revealed 4.1-Mb genomes with 28–29% GC content. There were ≥1,104 SNP between the isolates, suggesting they were not of a single clone. The toxin A and B gene-carrying pathogenicity locus (PaLoc) of the three isolates were identical and had the insertion of the transposon Tn6218. The genetic components of PaLoc among Clade 3 strains were the same with only a few nucleotide mutations and deletions/insertions, suggesting that the Tn6218 insertion might have occurred before the divergence within Clade 3. The binary toxin-genes carrying CDT locus (CdtLoc) of the three isolates were identical and were highly similar to those of other Clade 3 strains, but were more divergent from those of other clades. In conclusion, Clade 3 has an unusual clade-specific PaLoc characteristic of a Tn6218 insertion which appears to be the main feature to distinguish Clade 3 from other C. difficile.
Collapse
|
49
|
Anjuwon-Foster BR, Tamayo R. A genetic switch controls the production of flagella and toxins in Clostridium difficile. PLoS Genet 2017; 13:e1006701. [PMID: 28346491 PMCID: PMC5386303 DOI: 10.1371/journal.pgen.1006701] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 04/10/2017] [Accepted: 03/16/2017] [Indexed: 12/15/2022] Open
Abstract
In the human intestinal pathogen Clostridium difficile, flagella promote adherence to intestinal epithelial cells. Flagellar gene expression also indirectly impacts production of the glucosylating toxins, which are essential to diarrheal disease development. Thus, factors that regulate the expression of the flgB operon will likely impact toxin production in addition to flagellar motility. Here, we report the identification a "flagellar switch" that controls the phase variable production of flagella and glucosylating toxins. The flagellar switch, located upstream of the flgB operon containing the early stage flagellar genes, is a 154 bp invertible sequence flanked by 21 bp inverted repeats. Bacteria with the sequence in one orientation expressed flagellum and toxin genes, produced flagella, and secreted the toxins ("flg phase ON"). Bacteria with the sequence in the inverse orientation were attenuated for flagellar and toxin gene expression, were aflagellate, and showed decreased toxin secretion ("flg phase OFF"). The orientation of the flagellar switch is reversible during growth in vitro. We provide evidence that gene regulation via the flagellar switch occurs post-transcription initiation and requires a C. difficile-specific regulatory factor to destabilize or degrade the early flagellar gene mRNA when the flagellar switch is in the OFF orientation. Lastly, through mutagenesis and characterization of flagellar phase locked isolates, we determined that the tyrosine recombinase RecV, which catalyzes inversion at the cwpV switch, is also responsible for inversion at the flagellar switch in both directions. Phase variable flagellar motility and toxin production suggests that these important virulence factors have both advantageous and detrimental effects during the course of infection.
Collapse
Affiliation(s)
- Brandon R. Anjuwon-Foster
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Rita Tamayo
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina, United States of America
| |
Collapse
|
50
|
Aptekorz M, Szczegielniak A, Wiechuła B, Harmanus C, Kuijper E, Martirosian G. Occurrence of Clostridium difficile ribotype 027 in hospitals of Silesia, Poland. Anaerobe 2017; 45:106-113. [PMID: 28216085 DOI: 10.1016/j.anaerobe.2017.02.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 01/24/2017] [Accepted: 02/03/2017] [Indexed: 12/16/2022]
Abstract
Clostridium difficile is an important healthcare-associated pathogen, responsible for a broad spectrum of diarrheal diseases. The aim of this prospective study was to determine the occurrence of C. difficile infection (CDI), to characterize cultured C. difficile strains and to investigate the association of fecal lactoferrin with CDI. Between January 2013 and June 2014, 148 stool samples were obtained from adult diarrheal patients (C. difficile as a suspected pathogen) hospitalized in different healthcare facilities of 15 Silesian hospitals. Out of 134 isolated C. difficile strains, 108 were ribotyped: 82.4% belonged to Type 027, 2.8% to Type 176, 2.8% to Type 014, 1.9% to Type 010 and 0.9% to Types 001, 018, 020 and 046 each. In total, 6.5% non-typable strains were identified. All Type 027 isolates contained both toxin genes tcdA & tcdB, and binary toxin genes (cdtA &cdtB). Susceptibility testing revealed that all Type 027 isolates were sensitive to metronidazole and vancomycin and resistant to moxifloxacin, ciprofloxacin, imipenem and erythromycin. Of 89 Type 027 strains, 16 had a ermB (688 bp) gene coinciding with high levels of erythromycin resistance (MIC >256 μg/mL). Of 16 ermB positive strains, 14 demonstrated also high level of resistance to clindamycin (>256 μg/mL). A significant difference (p = 0.004) in lactoferrin level was found between C. difficile toxin-positive (n = 123; median 185.9 μg/mL; IQR 238.8) and toxin-negative (n = 25; median 22.4 μg/mL; IQR 141.7) fecal samples. Stool samples from n = 89 patients with CDI caused by Type 027 demonstrated significantly higher (p = 0.03) lactoferrin level (median 173.0 μg/mL; IQR 237.3) than from patients with CDI caused by other ribotypes and non-typable C. difficile strains (median 189.4 μg/mL; IQR 190.8).
Collapse
Affiliation(s)
- Małgorzata Aptekorz
- Department of Medical Microbiology, School of Medicine in Katowice, Medical University of Silesia, Poland
| | - Anna Szczegielniak
- Department of Medical Microbiology, School of Medicine in Katowice, Medical University of Silesia, Poland
| | - Barbara Wiechuła
- Department of Medical Microbiology, School of Medicine in Katowice, Medical University of Silesia, Poland
| | - Celine Harmanus
- Department of Microbiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Ed Kuijper
- Department of Microbiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Gayane Martirosian
- Department of Medical Microbiology, School of Medicine in Katowice, Medical University of Silesia, Poland.
| |
Collapse
|