1
|
Pando-Caciano A, Mamaní-Cajachagua PE, Ingunza-Tapia AA, Sánchez-García GJ, Caffo-Valentín XL, Rizo-Patrón E, Murillo-Vizcarra SA, Maita-Malpartida H. Saliva Samples as a Potential Tool for the Diagnosis and Monitoring of Cytomegalovirus Reactivation in Children Undergoing Transplantation. Transplant Proc 2025; 57:663-669. [PMID: 40069044 DOI: 10.1016/j.transproceed.2025.02.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 02/26/2025] [Accepted: 02/26/2025] [Indexed: 04/16/2025]
Abstract
BACKGROUND Regular monitoring of cytomegalovirus (CMV) reactivation in children who undergo transplantation is performed by molecular testing on blood samples. This highlights the need to explore noninvasive alternatives, such as saliva. The present study evaluated the usefulness of saliva samples for detecting and monitoring CMV reactivation in children undergoing transplantation at a referral center in Lima, Peru. METHODS A total of 85 paired samples of liquid saliva and whole blood and 91 paired samples of swab-collected saliva and whole blood from 16 children who underwent transplantation were analyzed by quantitative polymerase chain reaction (qPCR). RESULTS The positivity rates for whole blood, liquid, and swab-collected saliva were 12.59%, 15.29%, and 12.09%, respectively. No significant differences were observed in viral load among the samples, and there was no remarkable correlation or agreement between saliva and whole blood. However, 19 samples from 4 patients were positive in their saliva but negative in their respective whole blood pairs. One patient who was positive in both the saliva samples and negative in blood developed gastrointestinal CMV disease. CONCLUSIONS Saliva may serve as a promising diagnostic tool for detecting and monitoring CMV reactivation in pediatric transplant recipients. Further studies should explore the significance of the saliva viral load to guide pre-emptive therapy and predict disease development.
Collapse
Affiliation(s)
- Alejandra Pando-Caciano
- Sub Unidad de Investigación e Innovación Tecnológica, Instituto Nacional de Salud del Niño San Borja, Lima, Perú; Department of Cellular and Molecular Sciences, School of Science and Philosophy, Universidad Peruana Cayetano Heredia, Lima, Perú.
| | - Pauline E Mamaní-Cajachagua
- Department of Cellular and Molecular Sciences, School of Science and Philosophy, Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Alejandra A Ingunza-Tapia
- Department of Cellular and Molecular Sciences, School of Science and Philosophy, Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Gerardo J Sánchez-García
- Department of Cellular and Molecular Sciences, School of Science and Philosophy, Universidad Peruana Cayetano Heredia, Lima, Perú; Laboratory of Clinical Microbiology, KU Leuven, Department of Microbiology, Immunology and Transplantation, Leuven, Flanders, Belgium
| | - Xiomara L Caffo-Valentín
- Sub Unidad de Investigación e Innovación Tecnológica, Instituto Nacional de Salud del Niño San Borja, Lima, Perú
| | - Emiliana Rizo-Patrón
- Sub Unidad de Investigación e Innovación Tecnológica, Instituto Nacional de Salud del Niño San Borja, Lima, Perú
| | - Sergio A Murillo-Vizcarra
- Sub Unidad de Atención Integral Especializada del Paciente de Trasplante de Progenitores Hematopoyéticos, Instituto Nacional de Salud del Niño San Borja, Lima, Perú
| | - Holger Maita-Malpartida
- Sub Unidad de Investigación e Innovación Tecnológica, Instituto Nacional de Salud del Niño San Borja, Lima, Perú; Department of Cellular and Molecular Sciences, School of Science and Philosophy, Universidad Peruana Cayetano Heredia, Lima, Perú
| |
Collapse
|
2
|
Beeton K, Mitra D, Akinleye AA, Howell JA, Yu CS, Bidwell GL, Tandon R. An Elastin-like Polypeptide-fusion peptide targeting capsid-tegument interface as an antiviral against cytomegalovirus infection. Sci Rep 2024; 14:10253. [PMID: 38704431 PMCID: PMC11069587 DOI: 10.1038/s41598-024-60691-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 04/26/2024] [Indexed: 05/06/2024] Open
Abstract
The tegument protein pp150 of Human Cytomegalovirus (HCMV) is known to be essential for the final stages of virus maturation and mediates its functions by interacting with capsid proteins. Our laboratory has previously identified the critical regions in pp150 important for pp150-capsid interactions and designed peptides similar in sequence to these regions, with a goal to competitively inhibit capsid maturation. Treatment with a specific peptide (PepCR2 or P10) targeted to pp150 conserved region 2 led to a significant reduction in murine CMV (MCMV) growth in cell culture, paving the way for in vivo testing in a mouse model of CMV infection. However, the general pharmacokinetic parameters of peptides, including rapid degradation and limited tissue and cell membrane permeability, pose a challenge to their successful use in vivo. Therefore, we designed a biopolymer-stabilized elastin-like polypeptide (ELP) fusion construct (ELP-P10) to enhance the bioavailability of P10. Antiviral efficacy and cytotoxic effects of ELP-P10 were studied in cell culture, and pharmacokinetics, biodistribution, and antiviral efficacy were studied in a mouse model of CMV infection. ELP-P10 maintained significant antiviral activity in cell culture, and this conjugation significantly enhanced P10 bioavailability in mouse tissues. The fluorescently labeled ELP-P10 accumulated to higher levels in mouse liver and kidneys as compared to the unconjugated P10. Moreover, viral titers from vital organs of MCMV-infected mice indicated a significant reduction of virus load upon ELP-P10 treatment. Therefore, ELP-P10 has the potential to be developed into an effective antiviral against CMV infection.
Collapse
Affiliation(s)
- Komal Beeton
- Department of Cell and Molecular Biology, Center for Immunology and Microbial Research, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA
| | - Dipanwita Mitra
- Department of Cell and Molecular Biology, Center for Immunology and Microbial Research, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA
| | - Adesanya A Akinleye
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA
| | - John A Howell
- Department of Neurology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA
| | - Christian S Yu
- Department of Cell and Molecular Biology, Center for Immunology and Microbial Research, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA
| | - Gene L Bidwell
- Department of Cell and Molecular Biology, Center for Immunology and Microbial Research, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA
- Department of Neurology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA
| | - Ritesh Tandon
- Department of Cell and Molecular Biology, Center for Immunology and Microbial Research, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA.
- Office of Research Infrastructure Programs, National Institute of Health, 6701 Democracy Blvd., Bethesda, MD, 20892, USA.
| |
Collapse
|
3
|
Bomfim GF, Priviero F, Poole E, Tostes RC, Sinclair JH, Stamou D, Uline MJ, Wills MR, Webb RC. Cytomegalovirus and Cardiovascular Disease: A Hypothetical Role for Viral G-Protein-Coupled Receptors in Hypertension. Am J Hypertens 2023; 36:471-480. [PMID: 37148218 PMCID: PMC10403975 DOI: 10.1093/ajh/hpad045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 05/02/2023] [Indexed: 05/08/2023] Open
Abstract
Cytomegalovirus (CMV) is a member of the β-herpesviruses and is ubiquitous, infecting 50%-99% of the human population depending on ethnic and socioeconomic conditions. CMV establishes lifelong, latent infections in their host. Spontaneous reactivation of CMV is usually asymptomatic, but reactivation events in immunocompromised or immunosuppressed individuals can lead to severe morbidity and mortality. Moreover, herpesvirus infections have been associated with several cardiovascular and post-transplant diseases (stroke, atherosclerosis, post-transplant vasculopathy, and hypertension). Herpesviruses, including CMV, encode viral G-protein-coupled receptors (vGPCRs) that alter the host cell by hijacking signaling pathways that play important roles in the viral life cycle and these cardiovascular diseases. In this brief review, we discuss the pharmacology and signaling properties of these vGPCRs, and their contribution to hypertension. Overall, these vGPCRs can be considered attractive targets moving forward in the development of novel hypertensive therapies.
Collapse
Affiliation(s)
- Gisele F Bomfim
- Institute of Health Sciences, Federal University of Mato Grosso, campus Sinop (UFMT), Sinop, MT, Brazil
- Cardiovascular Translational Research Center, University of South Carolina, Columbia, South Carolina, USA
| | - Fernanda Priviero
- Cardiovascular Translational Research Center, University of South Carolina, Columbia, South Carolina, USA
- Biomedical Engineering Program, University of South Carolina, Columbia, South Carolina, USA
- Department of Cell Biology and Anatomy, University of South Carolina, Columbia, South Carolina, USA
| | - Emma Poole
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Rita C Tostes
- Ribeirao Preto Medical School, University of Sao Paulo (FMRP-USP), Ribeirao Preto, SP, Brazil
| | - John H Sinclair
- Department of Pathology, University of Cambridge, Cambridge, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
| | | | - Mark J Uline
- Cardiovascular Translational Research Center, University of South Carolina, Columbia, South Carolina, USA
- Biomedical Engineering Program, University of South Carolina, Columbia, South Carolina, USA
- Department of Chemical Engineering, University of South Carolina, Columbia, South Carolina, USA
| | - Mark R Wills
- Department of Pathology, University of Cambridge, Cambridge, UK
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - R Clinton Webb
- Cardiovascular Translational Research Center, University of South Carolina, Columbia, South Carolina, USA
- Biomedical Engineering Program, University of South Carolina, Columbia, South Carolina, USA
- Department of Cell Biology and Anatomy, University of South Carolina, Columbia, South Carolina, USA
| |
Collapse
|
4
|
Bošnjak B, Lueder Y, Messerle M, Förster R. Imaging cytomegalovirus infection and ensuing immune responses. Curr Opin Immunol 2023; 82:102307. [PMID: 36996701 DOI: 10.1016/j.coi.2023.102307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 03/30/2023]
Abstract
Cytomegaloviruses (CMVs) possess exquisite mechanisms enabling colonization, replication, and release allowing spread to new hosts. Moreover, they developed ways to escape the control of the host immune responses and hide latently within the host cells. Here, we outline studies that visualized individual CMV-infected cells using reporter viruses. These investigations provided crucial insights into all steps of CMV infection and mechanisms the host's immune response struggles to control it. Uncovering complex viral and cellular interactions and underlying molecular as well as immunological mechanisms are a prerequisite for the development of novel therapeutic interventions for successful treatment of CMV-related pathologies in neonates and transplant patients.
Collapse
|
5
|
Singh K, Hamilton ST, Shand AW, Hannan NJ, Rawlinson WD. Receptors in host pathogen interactions between human cytomegalovirus and the placenta during congenital infection. Rev Med Virol 2021; 31:e2233. [PMID: 33709529 DOI: 10.1002/rmv.2233] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 02/26/2021] [Accepted: 02/26/2021] [Indexed: 11/09/2022]
Abstract
Cellular receptors in human cytomegalovirus (HCMV) mother to child transmission play an important role in congenital infection. Placental trophoblast cells are a significant cell type in placental development, placental functional processes, and in HCMV transmission. Different cells within the placental floating and chorionic villi present alternate receptors for HCMV cell entry. Syncytiotrophoblasts present neonatal Fc receptors that bind and transport circulating maternal immunoglobulin G across the placental interface which can also be bound to HCMV virions, facilitating viral entry into the placenta and foetal circulation. Cytotrophoblast express HCMV receptors including integrin-α1β1, integrin-αVβ3, epidermal growth factor receptor and platelet-derived growth factor receptor alpha. The latter interacts with HCMV glycoprotein-H, glycoprotein-L and glycoprotein-O (gH/gL/gO) trimers (predominantly in placental fibroblasts) and the gH/gL/pUL128, UL130-UL131A pentameric complex in other placental cell types. The pentameric complex allows viral tropism of placental trophoblasts, endothelial cells, epithelial cells, leukocytes and monocytes. This review outlines HCMV ligands and target receptor proteins in congenital HCMV infection.
Collapse
Affiliation(s)
- Krishneel Singh
- Serology and Virology Division, NSW Health Pathology, Prince of Wales Hospital, Sydney, New South Wales, Australia
| | - Stuart T Hamilton
- Serology and Virology Division, NSW Health Pathology, Prince of Wales Hospital, Sydney, New South Wales, Australia.,School of Women's and Children's Health, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Antonia W Shand
- School of Women's and Children's Health, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia.,Children's Hospital at Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Natalie J Hannan
- Therapeutics Discovery and Vascular Function in Pregnancy Group, Department of Obstetrics and Gynaecology, University of Melbourne, Victoria, Australia.,Mercy Perinatal, Mercy Hospital for Women Heidelberg, Victoria, Australia
| | - William D Rawlinson
- Serology and Virology Division, NSW Health Pathology, Prince of Wales Hospital, Sydney, New South Wales, Australia.,School of Women's and Children's Health, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia.,School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia.,School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
6
|
Holtappels R, Schader SI, Oettel O, Podlech J, Seckert CK, Reddehase MJ, Lemmermann NAW. Insufficient Antigen Presentation Due to Viral Immune Evasion Explains Lethal Cytomegalovirus Organ Disease After Allogeneic Hematopoietic Cell Transplantation. Front Cell Infect Microbiol 2020; 10:157. [PMID: 32351904 PMCID: PMC7174590 DOI: 10.3389/fcimb.2020.00157] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 03/24/2020] [Indexed: 01/21/2023] Open
Abstract
Reactivation of latent cytomegalovirus (CMV) poses a clinical problem in transiently immunocompromised recipients of hematopoietic cell (HC) transplantation (HCT) by viral histopathology that results in multiple organ manifestations. Compared to autologous HCT and to syngeneic HCT performed with identical twins as HC donor and recipient, lethal outcome of CMV infection is more frequent in allogeneic HCT with MHC/HLA or minor histocompatibility loci mismatch between donor and recipient. It is an open question if a graft-vs.-host (GvH) reaction exacerbates CMV disease, or if CMV exacerbates GvH disease (GvHD), or if interference is mutual. Here we have used a mouse model of experimental HCT and murine CMV (mCMV) infection with an MHC class-I mismatch by gene deletion, so that either HCT donor or recipient lack a single MHC class-I molecule, specifically H-2 Ld. This particular immunogenetic disparity has the additional advantage that it allows to experimentally separate GvH reaction of donor-derived T cells against recipient's tissues from host-vs.-graft (HvG) reaction of residual recipient-derived T cells against the transplanted HC and their progeny. While in HvG-HCT with Ld-plus donors and Ld-minus recipients almost all infected recipients were found to control the infection and survived, almost all infected recipients died of uncontrolled virus replication and consequent multiple-organ viral histopathology in case of GvH-HCT with Ld-minus donors and Ld-plus recipients. Unexpectedly, although anti-Ld-reactive CD8+ T cells were detected, mortality was not found to be associated with GvHD histopathology. By comparing HvG-HCT and GvH-HCT, investigation into the mechanism revealed an inefficient reconstitution of antiviral high-avidity CD8+ T cells, associated with lack of formation of protective nodular inflammatory foci (NIF) in host tissue, selectively in GvH-HCT. Most notably, mice infected with an immune evasion gene deletion mutant of mCMV survived under otherwise identical GvH-HCT conditions. Survival was associated with enhanced antigen presentation and formation of protective NIF by antiviral CD8+ T cells that control the infection and prevent viral histopathology. This is an impressive example of lethal viral disease in HCT recipients based on a failure of the immune control of CMV infection due to viral immune evasion in concert with an MHC class-I mismatch.
Collapse
Affiliation(s)
| | | | | | | | | | - Matthias J. Reddehase
- Institute for Virology and Research Center for Immunotherapy (FZI) at the University Medical Center of the Johannes Gutenberg-University of Mainz, Mainz, Germany
| | - Niels A. W. Lemmermann
- Institute for Virology and Research Center for Immunotherapy (FZI) at the University Medical Center of the Johannes Gutenberg-University of Mainz, Mainz, Germany
| |
Collapse
|
7
|
Bourgeois C, Gorwood J, Barrail-Tran A, Lagathu C, Capeau J, Desjardins D, Le Grand R, Damouche A, Béréziat V, Lambotte O. Specific Biological Features of Adipose Tissue, and Their Impact on HIV Persistence. Front Microbiol 2019; 10:2837. [PMID: 31921023 PMCID: PMC6927940 DOI: 10.3389/fmicb.2019.02837] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 11/22/2019] [Indexed: 12/19/2022] Open
Abstract
Although white AT can contribute to anti-infectious immune responses, it can also be targeted and perturbed by pathogens. The AT's immune involvement is primarily due to strong pro-inflammatory responses (with both local and paracrine effects), and the large number of fat-resident macrophages. Adipocytes also exert direct antimicrobial responses. In recent years, it has been found that memory T cells accumulate in AT, where they provide efficient secondary responses against viral pathogens. These observations have prompted researchers to re-evaluate the links between obesity and susceptibility to infections. In contrast, AT serves as a reservoir for several persistence pathogens, such as human adenovirus Ad-36, Trypanosoma gondii, Mycobacterium tuberculosis, influenza A virus, and cytomegalovirus (CMV). The presence and persistence of bacterial DNA in AT has led to the concept of a tissue-specific microbiota. The unexpected coexistence of immune cells and pathogens within the specific AT environment is intriguing, and its impact on anti-infectious immune responses requires further evaluation. AT has been recently identified as a site of HIV persistence. In the context of HIV infection, AT is targeted by both the virus and the antiretroviral drugs. AT's intrinsic metabolic features, large overall mass, and wide distribution make it a major tissue reservoir, and one that may contribute to the pathophysiology of chronic HIV infections. Here, we review the immune, metabolic, viral, and pharmacological aspects that contribute to HIV persistence in AT. We also evaluate the respective impacts of both intrinsic and HIV-induced factors on AT's involvement as a viral reservoir. Lastly, we examine the potential consequences of HIV persistence on the metabolic and immune activities of AT.
Collapse
Affiliation(s)
- Christine Bourgeois
- Center for Immunology of Viral Infections and Autoimmune Diseases, IDMIT Department, IBFJ, CEA, Université Paris Sud, INSERM U1184, Fontenay-aux-Roses, France
| | - Jennifer Gorwood
- INSERM UMR_S 938, Centre de Recherche Saint-Antoine, Institut Hospitalo-Universitaire de Cardio-Métabolisme et Nutrition (ICAN), Sorbonne Université, Paris, France
| | - Aurélie Barrail-Tran
- Center for Immunology of Viral Infections and Autoimmune Diseases, IDMIT Department, IBFJ, CEA, Université Paris Sud, INSERM U1184, Fontenay-aux-Roses, France
- AP-HP, Service de Médecine Interne et Immunologie Clinique, Hôpital Bicêtre, Groupe Hospitalier Universitaire Paris Sud, Le Kremlin-Bicêtre, France
| | - Claire Lagathu
- INSERM UMR_S 938, Centre de Recherche Saint-Antoine, Institut Hospitalo-Universitaire de Cardio-Métabolisme et Nutrition (ICAN), Sorbonne Université, Paris, France
| | - Jacqueline Capeau
- INSERM UMR_S 938, Centre de Recherche Saint-Antoine, Institut Hospitalo-Universitaire de Cardio-Métabolisme et Nutrition (ICAN), Sorbonne Université, Paris, France
| | - Delphine Desjardins
- Center for Immunology of Viral Infections and Autoimmune Diseases, IDMIT Department, IBFJ, CEA, Université Paris Sud, INSERM U1184, Fontenay-aux-Roses, France
| | - Roger Le Grand
- Center for Immunology of Viral Infections and Autoimmune Diseases, IDMIT Department, IBFJ, CEA, Université Paris Sud, INSERM U1184, Fontenay-aux-Roses, France
| | - Abderaouf Damouche
- Center for Immunology of Viral Infections and Autoimmune Diseases, IDMIT Department, IBFJ, CEA, Université Paris Sud, INSERM U1184, Fontenay-aux-Roses, France
| | - Véronique Béréziat
- INSERM UMR_S 938, Centre de Recherche Saint-Antoine, Institut Hospitalo-Universitaire de Cardio-Métabolisme et Nutrition (ICAN), Sorbonne Université, Paris, France
| | - Olivier Lambotte
- Center for Immunology of Viral Infections and Autoimmune Diseases, IDMIT Department, IBFJ, CEA, Université Paris Sud, INSERM U1184, Fontenay-aux-Roses, France
- AP-HP, Service de Médecine Interne et Immunologie Clinique, Hôpital Bicêtre, Groupe Hospitalier Universitaire Paris Sud, Le Kremlin-Bicêtre, France
| |
Collapse
|
8
|
An investigation of the utility of plasma Cytomegalovirus (CMV) microRNA detection to predict CMV DNAemia in allogeneic hematopoietic stem cell transplant recipients. Med Microbiol Immunol 2019; 209:15-21. [DOI: 10.1007/s00430-019-00632-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Accepted: 08/26/2019] [Indexed: 12/12/2022]
|
9
|
Krmpotić A, Podlech J, Reddehase MJ, Britt WJ, Jonjić S. Role of antibodies in confining cytomegalovirus after reactivation from latency: three decades' résumé. Med Microbiol Immunol 2019; 208:415-429. [PMID: 30923898 PMCID: PMC6705608 DOI: 10.1007/s00430-019-00600-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 03/18/2019] [Indexed: 12/16/2022]
Abstract
Cytomegaloviruses (CMVs) are highly prevalent herpesviruses, characterized by strict species specificity and the ability to establish non-productive latent infection from which reactivation can occur. Reactivation of latent human CMV (HCMV) represents one of the most important clinical challenges in transplant recipients secondary to the strong immunosuppression. In addition, HCMV is the major viral cause of congenital infection with severe sequelae including brain damage. The accumulated evidence clearly shows that cellular immunity plays a major role in the control of primary CMV infection as well as establishment and maintenance of latency. However, the efficiency of antiviral antibodies in virus control, particularly in prevention of congenital infection and virus reactivation from latency in immunosuppressed hosts, is much less understood. Because of a strict species specificity of HCMV, the role of antibodies in controlling CMV disease has been addressed using murine CMV (MCMV) as a model. Here, we review and discuss the role played by the antiviral antibody response during CMV infections with emphasis on latency and reactivation not only in the MCMV model, but also in relevant clinical settings. We provide evidence to conclude that antiviral antibodies do not prevent the initiating molecular event of virus reactivation from latency but operate by preventing intra-organ spread and inter-organ dissemination of recurrent virus.
Collapse
Affiliation(s)
- Astrid Krmpotić
- Department of Histology and Embryology and Center for Proteomics, University of Rijeka, Faculty of Medicine, Braće Branchetta 20, 51000 Rijeka, Croatia
| | - Jürgen Podlech
- Institute for Virology and Research Center for Immunotherapy, University Medical Center of the Johannes Gutenberg-University Mainz, Obere Zahlbacher Strasse 67, 55131, Mainz, Germany
| | - Matthias J. Reddehase
- Institute for Virology and Research Center for Immunotherapy, University Medical Center of the Johannes Gutenberg-University Mainz, Obere Zahlbacher Strasse 67, 55131, Mainz, Germany
| | - William J. Britt
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA and Department of Pediatrics Infectious Disease, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Stipan Jonjić
- Department of Histology and Embryology and Center for Proteomics, University of Rijeka, Faculty of Medicine, Braće Branchetta 20, 51000 Rijeka, Croatia
| |
Collapse
|
10
|
Life-long control of cytomegalovirus (CMV) by T resident memory cells in the adipose tissue results in inflammation and hyperglycemia. PLoS Pathog 2019; 15:e1007890. [PMID: 31220189 PMCID: PMC6605679 DOI: 10.1371/journal.ppat.1007890] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 07/02/2019] [Accepted: 06/03/2019] [Indexed: 12/13/2022] Open
Abstract
Cytomegalovirus (CMV) is a ubiquitous herpesvirus infecting most of the world’s population. CMV has been rigorously investigated for its impact on lifelong immunity and potential complications arising from lifelong infection. A rigorous adaptive immune response mounts during progression of CMV infection from acute to latent states. CD8 T cells, in large part, drive this response and have very clearly been demonstrated to take up residence in the salivary gland and lungs of infected mice during latency. However, the role of tissue resident CD8 T cells as an ongoing defense mechanism against CMV has not been studied in other anatomical locations. Therefore, we sought to identify additional locations of anti-CMV T cell residency and the physiological consequences of such a response. Through RT-qPCR we found that mouse CMV (mCMV) infected the visceral adipose tissue and that this resulted in an expansion of leukocytes in situ. We further found, through flow cytometry, that adipose tissue became enriched in cytotoxic CD8 T cells that are specific for mCMV antigens from day 7 post infection through the lifespan of an infected animal (> 450 days post infection) and that carry markers of tissue residence. Furthermore, we found that inflammatory cytokines are elevated alongside the expansion of CD8 T cells. Finally, we show a correlation between the inflammatory state of adipose tissue in response to mCMV infection and the development of hyperglycemia in mice. Overall, this study identifies adipose tissue as a location of viral infection leading to a sustained and lifelong adaptive immune response mediated by CD8 T cells that correlates with hyperglycemia. These data potentially provide a mechanistic link between metabolic syndrome and chronic infection. Mouse cytomegalovirus (mCMV) infection results in initial systemic viremia that is thereafter controlled by the adaptive immune system. Control is mediated in part by T cells that render the virus undetectable systemically, and latent in specific organs, including the lungs and salivary glands. It remains unclear how latent virus is controlled across tissues given the large pool of systemic mCMV-specific T cells. We explored mCMV control in the adipose tissue, whose cellular constituents are potentially susceptible to infection. We found that mCMV infects the adipose tissue during the acute phase, causing local inflammation and a lifelong mCMV-specific CD8 T cell immune response. The response consisted largely from non-recirculating, tissue-resident T cells. The infected adipose tissue showed signs of metabolic changes, that may potentially predispose the infected host to metabolic dysregulation as evidenced by hyperglycemia. Accumulation and persistence of mCMV specific non-circulating resident CD8 T cells (Trm) in adipose tissue reveal a likely generalized mechanism of mCMV tissue reservoir control by Trm cells and identify the adipose tissue as a persistent mCMV reservoir, with potential implications for metabolic health.
Collapse
|
11
|
Reddehase MJ, Lemmermann NAW. Mouse Model of Cytomegalovirus Disease and Immunotherapy in the Immunocompromised Host: Predictions for Medical Translation that Survived the "Test of Time". Viruses 2018; 10:v10120693. [PMID: 30563202 PMCID: PMC6315540 DOI: 10.3390/v10120693] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 11/26/2018] [Accepted: 12/03/2018] [Indexed: 12/14/2022] Open
Abstract
Human Cytomegalovirus (hCMV), which is the prototype member of the β-subfamily of the herpesvirus family, is a pathogen of high clinical relevance in recipients of hematopoietic cell transplantation (HCT). hCMV causes multiple-organ disease and interstitial pneumonia in particular upon infection during the immunocompromised period before hematopoietic reconstitution restores antiviral immunity. Clinical investigation of pathomechanisms and of strategies for an immune intervention aimed at restoring antiviral immunity earlier than by hematopoietic reconstitution are limited in patients to observational studies mainly because of ethical issues including the imperative medical indication for chemotherapy with antivirals. Aimed experimental studies into mechanisms, thus, require animal models that match the human disease as close as possible. Any model for hCMV disease is, however, constrained by the strict host-species specificity of CMVs that prevents the study of hCMV in any animal model including non-human primates. During eons of co-speciation, CMVs each have evolved a set of "private genes" in adaptation to their specific mammalian host including genes that have no homolog in the CMV virus species of any other host species. With a focus on the mouse model of CD8 T cell-based immunotherapy of CMV disease after experimental HCT and infection with murine CMV (mCMV), we review data in support of the phenomenon of "biological convergence" in virus-host adaptation. This includes shared fundamental principles of immune control and immune evasion, which allows us to at least make reasoned predictions from the animal model as an experimental "proof of concept." The aim of a model primarily is to define questions to be addressed by clinical investigation for verification, falsification, or modification and the results can then give feedback to refine the experimental model for research from "bedside to bench".
Collapse
Affiliation(s)
- Matthias J Reddehase
- Institute for Virology, University Medical Center and Center for Immunotherapy of the Johannes Gutenberg-University Mainz, Obere Zahlbacher Str. 67, D-55131 Mainz, Germany.
| | - Niels A W Lemmermann
- Institute for Virology, University Medical Center and Center for Immunotherapy of the Johannes Gutenberg-University Mainz, Obere Zahlbacher Str. 67, D-55131 Mainz, Germany.
| |
Collapse
|
12
|
Wanjalla CN, McDonnell WJ, Koethe JR. Adipose Tissue T Cells in HIV/SIV Infection. Front Immunol 2018; 9:2730. [PMID: 30559739 PMCID: PMC6286992 DOI: 10.3389/fimmu.2018.02730] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 11/05/2018] [Indexed: 12/12/2022] Open
Abstract
Adipose tissue comprises one of the largest organs in the body and performs diverse functions including energy storage and release, regulation of appetite and other neuroendocrine signaling, and modulation of immuity, among others. Adipocytes reside in a complex compartment where antigen, antigen presenting cells, innate immune cells, and adaptive immune cells interact locally and exert systemic effects on inflammation, circulating immune cell profiles, and metabolic homeostasis. T lymphocytes are a major component of the adipose tissue milieu which are altered in disease states such as obesity and human immunodeficiency virus (HIV) infection. While obesity, HIV infection, and simian immunodeficiency virus (SIV; a non-human primate virus similar to HIV) infection are accompanied by enrichment of CD8+ T cells in the adipose tissue, major phenotypic differences in CD4+ T cells and other immune cell populations distinguish HIV/SIV infection from obesity. Furthermore, DNA and RNA species of HIV and SIV can be detected in the stromal vascular fraction of visceral and subcutaneous adipose tissue, and replication-competent HIV resides in local CD4+ T cells. Here, we review studies of adipose tissue CD4+ and CD8+ T cell populations in HIV and SIV, and contrast the findings with those reported in obesity.
Collapse
Affiliation(s)
- Celestine N Wanjalla
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States.,Center for Translational Immunology and Infectious Disease, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Wyatt J McDonnell
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States.,Center for Translational Immunology and Infectious Disease, Vanderbilt University Medical Center, Nashville, TN, United States.,Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, TN, United States
| | - John R Koethe
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States.,Center for Translational Immunology and Infectious Disease, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
13
|
Jackson JW, Sparer T. There Is Always Another Way! Cytomegalovirus' Multifaceted Dissemination Schemes. Viruses 2018; 10:v10070383. [PMID: 30037007 PMCID: PMC6071125 DOI: 10.3390/v10070383] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 07/17/2018] [Accepted: 07/18/2018] [Indexed: 12/12/2022] Open
Abstract
Human cytomegalovirus (HCMV) is a β-herpes virus that is a significant pathogen within immune compromised populations. HCMV morbidity is induced through viral dissemination and inflammation. Typically, viral dissemination is thought to follow Fenner's hypothesis where virus replicates at the site of infection, followed by replication in the draining lymph nodes, and eventually replicating within blood filtering organs. Although CMVs somewhat follow Fenner's hypothesis, they deviate from it by spreading primarily through innate immune cells as opposed to cell-free virus. Also, in vivo CMVs infect new cells via cell-to-cell spread and disseminate directly to secondary organs through novel mechanisms. We review the historic and recent literature pointing to CMV's direct dissemination to secondary organs and the genes that it has evolved for increasing its ability to disseminate. We also highlight aspects of CMV infection for studying viral dissemination when using in vivo animal models.
Collapse
Affiliation(s)
- Joseph W Jackson
- Department of Microbiology, University of Tennessee Knoxville, Knoxville, TN 37996, USA.
| | - Tim Sparer
- Department of Microbiology, University of Tennessee Knoxville, Knoxville, TN 37996, USA.
| |
Collapse
|
14
|
Pascual T, Solano C, Torres I, Talaya A, Giménez E, Vinuesa V, Piñana JL, Hernández-Boluda JC, Pérez A, Navarro D. Monitoring of oral cytomegalovirus DNA shedding for the prediction of viral DNAemia in allogeneic hematopoietic stem cell transplant recipients. J Med Virol 2018; 90:1375-1382. [PMID: 29663435 DOI: 10.1002/jmv.25185] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 03/31/2018] [Indexed: 02/03/2023]
Abstract
Preemptive antiviral therapy based on detecting cytomegalovirus (CMV) DNAemia above a preestablished threshold is the mainstay strategy for the prevention of CMV disease in allogeneic hematopoietic stem cell transplant (allo-HSCT) recipients; nevertheless, CMV DNAemia, even at low levels, may increase mortality. We investigated whether surveillance of saliva for the presence of CMV DNA may anticipate the occurrence of CMV DNAemia. This was a prospective observational study with 53 consecutively enrolled allo-HSCT recipients. Saliva and plasma specimens were collected on a weekly basis from Day 0 to Day 100 after transplantation. CMV DNA was quantified in both specimen types using the Abbott Real-Time PCR assay (Abbott Molecular, Des Plaines, IL). CMV DNA was quantifiable in 44 (83%) patients: either in saliva (n = 1) or plasma (n = 12) only, or in both specimen types (n = 31). CMV oral shedding preceded the occurrence of CMV DNAemia in eight patients (18.2%), while the opposite pattern was observed in 21 patients (47.7%). The CMV DNA loads quantified in saliva and plasma correlated modestly (P = 0.33; P = 0.013) and did not differ in magnitude (P = 0.527). No transplantation factors, other than recipient CMV seropositivity, were associated with oral CMV DNA shedding; serum CMV IgG levels were comparable, regardless of the timing of the detection of CMV DNA at both sites. In summary, screening of saliva specimens for the presence of CMV DNA appear to be of limited value for anticipating the occurrence of CMV DNAemia in allo-HSCT recipients.
Collapse
Affiliation(s)
- Tania Pascual
- Microbiology Service, Hospital Clínico Universitario, Institute for Research INCLIVA, Valencia, Spain
| | - Carlos Solano
- Hematology Service, Hospital Clínico Universitario, Institute for Research INCLIVA, Valencia, Spain.,Department of Medicine, School of Medicine, University of Valencia, Valencia, Spain
| | - Ignacio Torres
- Microbiology Service, Hospital Clínico Universitario, Institute for Research INCLIVA, Valencia, Spain
| | - Alberto Talaya
- Microbiology Service, Hospital Clínico Universitario, Institute for Research INCLIVA, Valencia, Spain
| | - Estela Giménez
- Microbiology Service, Hospital Clínico Universitario, Institute for Research INCLIVA, Valencia, Spain
| | - Víctor Vinuesa
- Microbiology Service, Hospital Clínico Universitario, Institute for Research INCLIVA, Valencia, Spain
| | - José L Piñana
- Hematology Service, Hospital Clínico Universitario, Institute for Research INCLIVA, Valencia, Spain
| | - Juan C Hernández-Boluda
- Hematology Service, Hospital Clínico Universitario, Institute for Research INCLIVA, Valencia, Spain
| | - Ariadna Pérez
- Hematology Service, Hospital Clínico Universitario, Institute for Research INCLIVA, Valencia, Spain
| | - David Navarro
- Microbiology Service, Hospital Clínico Universitario, Institute for Research INCLIVA, Valencia, Spain.,Department of Microbiology, School of Medicine, University of Valencia, Valencia, Spain
| |
Collapse
|
15
|
Adler B, Sattler C, Adler H. Herpesviruses and Their Host Cells: A Successful Liaison. Trends Microbiol 2017; 25:229-241. [DOI: 10.1016/j.tim.2016.11.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 11/08/2016] [Accepted: 11/15/2016] [Indexed: 12/11/2022]
|
16
|
Bruns T, Zimmermann HW, Pachnio A, Li KK, Trivedi PJ, Reynolds G, Hubscher S, Stamataki Z, Badenhorst PW, Weston CJ, Moss PA, Adams DH. CMV infection of human sinusoidal endothelium regulates hepatic T cell recruitment and activation. J Hepatol 2015; 63:38-49. [PMID: 25770658 DOI: 10.1016/j.jhep.2015.02.046] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 02/16/2015] [Accepted: 02/18/2015] [Indexed: 12/30/2022]
Abstract
BACKGROUND & AIMS Human cytomegalovirus infection (HCMV) is associated with an increased morbidity after liver transplantation, by facilitating allograft rejection and accelerating underlying hepatic inflammation. We hypothesized that human hepatic sinusoidal endothelial cells infected with HCMV possess the capacity to modulate allogeneic T cell recruitment and activation, thereby providing a plausible mechanism of how HCMV infection is able to enhance hepatic immune activation. METHODS Human hepatic sinusoidal endothelial cells were isolated from explanted livers and infected with recombinant endotheliotropic HCMV. We used static and flow-based models to quantify adhesion and transendothelial migration of allogeneic T cell subsets and determine their post-migratory phenotype and function. RESULTS HCMV infection of primary human hepatic sinusoidal endothelial cells facilitated ICAM-1 and CXCL10-dependent CD4 T cell transendothelial migration under physiological levels of shear stress. Recruited T cells were primarily non-virus-specific CXCR3(hi) effector memory T cells, which demonstrated features of LFA3-dependent Th1 activation after migration, and activated regulatory T cells, which retained a suppressive phenotype following transmigration. CONCLUSIONS The ability of infected hepatic endothelium to recruit distinct functional CD4 T cell subsets shows how HCMV facilitates hepatic inflammation and immune activation and may simultaneously favor virus persistence.
Collapse
Affiliation(s)
- Tony Bruns
- NIHR Biomedical Research Unit and Centre for Liver Research, University of Birmingham, Birmingham, United Kingdom; Department of Internal Medicine IV, Jena University Hospital, Friedrich Schiller University of Jena, Jena, Germany; Center for Sepsis Control and Care, Jena University Hospital, Friedrich Schiller University of Jena, Jena, Germany.
| | - Henning W Zimmermann
- NIHR Biomedical Research Unit and Centre for Liver Research, University of Birmingham, Birmingham, United Kingdom; Department of Medicine III, University Hospital Aachen, RWTH Aachen University, Aachen, Germany
| | - Annette Pachnio
- School of Cancer Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Ka-Kit Li
- NIHR Biomedical Research Unit and Centre for Liver Research, University of Birmingham, Birmingham, United Kingdom
| | - Palak J Trivedi
- NIHR Biomedical Research Unit and Centre for Liver Research, University of Birmingham, Birmingham, United Kingdom
| | - Gary Reynolds
- NIHR Biomedical Research Unit and Centre for Liver Research, University of Birmingham, Birmingham, United Kingdom; Department of Cellular Pathology, Queen Elizabeth Hospital Birmingham, Birmingham, United Kingdom
| | - Stefan Hubscher
- NIHR Biomedical Research Unit and Centre for Liver Research, University of Birmingham, Birmingham, United Kingdom; Department of Cellular Pathology, Queen Elizabeth Hospital Birmingham, Birmingham, United Kingdom
| | - Zania Stamataki
- NIHR Biomedical Research Unit and Centre for Liver Research, University of Birmingham, Birmingham, United Kingdom
| | - Paul W Badenhorst
- School of Immunity and Infection, University of Birmingham, Birmingham, United Kingdom
| | - Christopher J Weston
- NIHR Biomedical Research Unit and Centre for Liver Research, University of Birmingham, Birmingham, United Kingdom
| | - Paul A Moss
- School of Cancer Sciences, University of Birmingham, Birmingham, United Kingdom
| | - David H Adams
- NIHR Biomedical Research Unit and Centre for Liver Research, University of Birmingham, Birmingham, United Kingdom.
| |
Collapse
|
17
|
Increased Viral Dissemination in the Brain and Lethality in MCMV-Infected, Dicer-Deficient Neonates. Viruses 2015; 7:2308-20. [PMID: 25955106 PMCID: PMC4452907 DOI: 10.3390/v7052308] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 03/23/2015] [Accepted: 04/30/2015] [Indexed: 12/15/2022] Open
Abstract
Among Herpesviruses, Human Cytomegalovirus (HCMV or HHV-5) represents a major threat during congenital or neonatal infections, which may lead to encephalitis with serious neurological consequences. However, as opposed to other less prevalent pathogens, the mechanisms and genetic susceptibility factors for CMV encephalitis are poorly understood. This lack of information considerably reduces the prognostic and/or therapeutic possibilities. To easily monitor the effects of genetic defects on brain dissemination following CMV infection we used a recently developed in vivo mouse model based on the neonatal inoculation of a MCMV genetically engineered to express Luciferase. Here, we further validate this protocol for live imaging, and demonstrate increased lethality associated with viral infection and encephalitis in mutant mice lacking Dicer activity. Our data indicate that miRNAs are important players in the control of MCMV pathogenesis and suggest that miRNA-based endothelial functions and integrity are crucial for CMV encephalitis.
Collapse
|
18
|
Human Cytomegalovirus UL135 and UL136 Genes Are Required for Postentry Tropism in Endothelial Cells. J Virol 2015; 89:6536-50. [PMID: 25878111 DOI: 10.1128/jvi.00284-15] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 04/10/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Endothelial cells (ECs) are a critical target of viruses, and infection of the endothelium represents a defining point in viral pathogenesis. Human cytomegalovirus (HCMV), the prototypical betaherpesvirus, encodes proteins specialized for entry into ECs and delivery of the genome to the nuclei of ECs. Virus strains competent to enter ECs replicate with differing efficiencies, suggesting that the virus encodes genes for postentry tropism in ECs. We previously reported a specific requirement for the UL133/8 locus of HCMV for replication in ECs. The UL133/8 locus harbors four genes: UL133, UL135, UL136, and UL138. In this study, we find that while UL133 and UL138 are dispensable for replication in ECs, both UL135 and UL136 are important. These genes are not required for virus entry or the expression of viral genes. The phenotypes associated with disruption of either gene reflect phenotypes observed for the UL133/8NULL virus, which lacks the entire UL133/8 locus, but are largely distinct from one another. Viruses lacking UL135 fail to properly envelop capsids in the cytoplasm, produce fewer dense bodies (DB) than the wild-type (WT) virus, and are unable to incorporate viral products into multivesicular bodies (MVB). Viruses lacking UL136 also fail to properly envelop virions and produce larger dense bodies than the WT virus. Our results indicate roles for the UL135 and UL136 proteins in commandeering host membrane-trafficking pathways for virus maturation. UL135 and UL136 represent the first HCMV genes crucial for early- to late-stage tropism in ECs. IMPORTANCE Human cytomegalovirus (HCMV) persists in the majority of the world's population. While typically asymptomatic in healthy hosts, HCMV can cause significant morbidity and mortality in immunocompromised or naïve individuals, particularly transplant patients and patients with congenital infections, respectively. Lifelong persistence of the virus may also contribute to age-related pathologies, such as vascular disease. One aspect of HCMV infection contributing to complex and varied pathogenesis is the diverse array of cell types that this virus infects in the host. The vascular endothelium is a particularly important target of infection, contributing to viral dissemination and likely leading to CMV complications following transplantation. In this work, we identify two viral gene products required for postentry tropism in endothelial cells. Identifying tropism factors required for replication in critical cell targets of infection is important for the development of strategies to restrict virus replication.
Collapse
|
19
|
Stockmann C, Roberts JK, Knackstedt ED, Spigarelli MG, Sherwin CM. Clinical pharmacokinetics and pharmacodynamics of ganciclovir and valganciclovir in children with cytomegalovirus infection. Expert Opin Drug Metab Toxicol 2014; 11:205-19. [PMID: 25428442 DOI: 10.1517/17425255.2015.988139] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
INTRODUCTION Among infants and immunocompromised children cytomegalovirus (CMV) is associated with significant morbidity and mortality. AREAS COVERED This review describes the clinical pharmacokinetics and pharmacodynamics of ganciclovir and valganciclovir for the treatment and prevention of CMV infection in children. EXPERT OPINION A 24-h ganciclovir area under the concentration versus time curve (AUC₀₋₂₄) of 40 - 60 μg h/ml decreased the risk of CMV infection for adults undergoing CMV prophylaxis. For adults undergoing treatment for active CMV disease, a target AUC₀₋₁₂ of 40 - 60 μg h/ml has been suggested. The applicability of these targets to children remains uncertain; however, with the most sophisticated dosing regimens developed to date only 21% of patients are predicted to reach these targets. Moving forward, identification of optimal pediatric ganciclovir and valganciclovir dosing regimens may involve the use of an externally validated pediatric population pharmacokinetic model for empirical dosing, an optimal sampling strategy for collecting a minimal number of blood samples for each patient and Bayesian updating of the dosing regimen based on an individual patient's pharmacokinetic profile.
Collapse
Affiliation(s)
- Chris Stockmann
- University of Utah School of Medicine, Division of Clinical Pharmacology, Department of Pediatrics , 295 Chipeta Way, Salt Lake City, UT 84108 , USA +1 801 587 7404 ; +1 801 585 9410 ;
| | | | | | | | | |
Collapse
|
20
|
Drori A, Messerle M, Brune W, Tirosh B. Lack of XBP-1 impedes murine cytomegalovirus gene expression. PLoS One 2014; 9:e110942. [PMID: 25333725 PMCID: PMC4205010 DOI: 10.1371/journal.pone.0110942] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 09/26/2014] [Indexed: 11/17/2022] Open
Abstract
The unfolded protein response (UPR) is an endoplasmic reticulum (ER)-to-nucleus signaling cascade induced in response to ER stress. The UPR aims at restoring homeostasis, but can also induce apoptosis if stress persists. Infection by human and murine cytomegaloviruses (CMVs) provokes ER stress and induces the UPR. However, both CMVs manipulate the UPR to promote its prosurvival activity and delay apoptosis. The underlying mechanisms remain largely unknown. Recently, we demonstrated that MCMV and HCMV encode a late protein to target IRE1 for degradation. However, the importance of its downstream effector, X Box binding protein 1 (XBP-1), has not been directly studied. Here we show that deletion of XBP-1 prior to or early after infection confers a transient delay in viral propagation in fibroblasts that can be overcome by increasing the viral dose. A similar phenotype was demonstrated in peritoneal macrophages. In vivo, acute infection by MCMV is reduced in the absence of XBP-1. Our data indicate that removal of XBP-1 confers a kinetic delay in early stages of MCMV infection and suggest that the late targeting of IRE1 is aimed at inhibiting activities other than the splicing of XBP-1 mRNA.
Collapse
Affiliation(s)
- Adi Drori
- Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Martin Messerle
- Department of Virology, Hannover Medical School, Hannover, Germany
| | - Wolfram Brune
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Boaz Tirosh
- Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
21
|
The M33 G protein-coupled receptor encoded by murine cytomegalovirus is dispensable for hematogenous dissemination but is required for growth within the salivary gland. J Virol 2014; 88:11811-24. [PMID: 25100846 DOI: 10.1128/jvi.01006-14] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Human cytomegalovirus (HCMV) is a pathogen found worldwide and is a serious threat to immunocompromised individuals and developing fetuses. Due to the species specificity of cytomegaloviruses, murine cytomegalovirus (MCMV) has been used as a model for in vivo studies of HCMV pathogenesis. The MCMV genome, like the genomes of other beta- and gammaherpesviruses, encodes G protein-coupled receptors (GPCRs) that modulate host signaling pathways presumably to facilitate viral replication and dissemination. Among these viral receptors, the M33 GPCR carried by MCMV is an activator of CREB, NF-κB, and phospholipase C-β signaling pathways and has been implicated in aspects of pathogenesis in vivo, including persistence in the salivary glands of BALB/c mice. In this study, we used immunocompetent nonobese diabetic (NOD) and immunocompromised NOD-scid-gamma (NSG) mice to further investigate the salivary gland defect exhibited by M33 deficiency. Interestingly, we demonstrate that virus with an M33 deletion (ΔM33) can replicate in the salivary gland of immunocompromised animals, albeit with a 400-fold growth defect compared with the growth of wild-type virus. Moreover, we determined that M33 does not have a role in cell-associated hematogenous dissemination but is required for viral amplification once the virus reaches the salivary gland. We conclude that the reduced replicative capacity of the ΔM33 virus is due to a specific defect occurring within the localized environment of the salivary gland. Importantly, since the salivary gland represents a site essential for persistence and horizontal transmission, an understanding of the mechanisms of viral replication within this site could lead to the generation of novel therapeutics useful for the prevention of HCMV spread. Importance: Human cytomegalovirus infects the majority of the American people and can reside silently in infected individuals for the duration of their lives. Under a number of circumstances, the virus can reactivate, leading to a variety of diseases in both adults and developing babies, and therefore, identifying the function of viral proteins is essential to understand how the virus spreads and causes disease. We aim to utilize animal models to study the function of an important class of viral proteins termed G protein-coupled receptors with the ultimate goal of developing inhibitors to these proteins that could one day be used to prevent viral spread.
Collapse
|
22
|
Ebert S, Becker M, Lemmermann NAW, Büttner JK, Michel A, Taube C, Podlech J, Böhm V, Freitag K, Thomas D, Holtappels R, Reddehase MJ, Stassen M. Mast cells expedite control of pulmonary murine cytomegalovirus infection by enhancing the recruitment of protective CD8 T cells to the lungs. PLoS Pathog 2014; 10:e1004100. [PMID: 24763809 PMCID: PMC3999167 DOI: 10.1371/journal.ppat.1004100] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 03/17/2014] [Indexed: 12/13/2022] Open
Abstract
The lungs are a noted predilection site of acute, latent, and reactivated cytomegalovirus (CMV) infections. Interstitial pneumonia is the most dreaded manifestation of CMV disease in the immunocompromised host, whereas in the immunocompetent host lung-infiltrating CD8 T cells confine the infection in nodular inflammatory foci and prevent viral pathology. By using murine CMV infection as a model, we provide evidence for a critical role of mast cells (MC) in the recruitment of protective CD8 T cells to the lungs. Systemic infection triggered degranulation selectively in infected MC. The viral activation of MC was associated with a wave of CC chemokine ligand 5 (CCL5) in the serum of C57BL/6 mice that was MC-derived as verified by infection of MC-deficient KitW-sh/W-sh “sash” mutants. In these mutants, CD8 T cells were recruited less efficiently to the lungs, correlating with enhanced viral replication and delayed virus clearance. A causative role for MC was verified by MC reconstitution of “sash” mice restoring both, efficient CD8 T-cell recruitment and infection control. These results reveal a novel crosstalk axis between innate and adaptive immune defense against CMV, and identify MC as a hitherto unconsidered player in the immune surveillance at a relevant site of CMV disease. Being strategically located beneath endothelial and epithelial surfaces, mast cells (MC) serve as sentinels for invading pathogens at host-environment boundaries as part of the innate defense against infection. Host genetic resistance against cytomegaloviruses (CMV) is largely determined by the innate immune response, but an implication of MC in the adaptive immune defense against CMV has not been considered so far and is almost impossible to address in human infection. Using murine CMV as a model that in the past has already pioneered the discovery of fundamental principles in CMV-host interactions, our data reveal MC as central part of a novel crosstalk-axis between the innate and adaptive immune response to CMV. We found that upon host infection MC become rapidly activated and promote the recruitment of protective CD8 T cells to the lungs, a noted critical site of CMV pathogenesis in humans as well as in the mouse model. Enhanced tissue infiltration of CD8 T cells results in a reduced peak viral load and a faster clearance of productive infection. Realizing the importance of MC in the control of pulmonary CMV infection may help to develop new strategies for preventing CMV pneumonia by MC supplementation in recipients of hematopoietic cell transplantation.
Collapse
Affiliation(s)
- Stefan Ebert
- Institute for Virology and Research Center for Immunology (FZI), University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Marc Becker
- Institute for Immunology and Research Center for Immunology (FZI), University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Niels A W Lemmermann
- Institute for Virology and Research Center for Immunology (FZI), University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Julia K Büttner
- Institute for Virology and Research Center for Immunology (FZI), University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Anastasija Michel
- Institute for Immunology and Research Center for Immunology (FZI), University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Christian Taube
- Department of Pulmonology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jürgen Podlech
- Institute for Virology and Research Center for Immunology (FZI), University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Verena Böhm
- Institute for Virology and Research Center for Immunology (FZI), University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Kirsten Freitag
- Institute for Virology and Research Center for Immunology (FZI), University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Doris Thomas
- Institute for Virology and Research Center for Immunology (FZI), University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Rafaela Holtappels
- Institute for Virology and Research Center for Immunology (FZI), University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Matthias J Reddehase
- Institute for Virology and Research Center for Immunology (FZI), University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Michael Stassen
- Institute for Immunology and Research Center for Immunology (FZI), University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
23
|
Abstract
Bloodstream spread is a critical step in the pathogenesis of many viruses. However, mechanisms that promote viremia are not well understood. Reoviruses are neurotropic viruses that disseminate hematogenously to the central nervous system. Junctional adhesion molecule A (JAM-A) is a tight junction protein that serves as a receptor for reovirus. JAM-A is required for establishment of viremia in infected newborn mice and viral spread to sites of secondary replication. To determine how viruses gain access to the circulatory system, we examined reovirus infection of polarized human brain microvascular endothelial cells (HBMECs). Reovirus productively infects polarized HBMECs, but infection does not alter tight junction integrity. Apical infection of polarized HBMECs is more efficient than basolateral infection, which is attributable to viral engagement of sialic acid and JAM-A. Viral release occurs exclusively from the apical surface via a mechanism that is not associated with lysis or apoptosis of infected cells. These data suggest that infection of endothelial cells routes reovirus apically into the bloodstream for systemic dissemination in the host. Understanding how viruses invade the bloodstream may aid in the development of therapeutics that block this step in viral pathogenesis. IMPORTANCE Bloodstream spread of viruses within infected hosts is a critical but poorly understood step in viral disease. Reoviruses first enter the host through the oral or respiratory route and infect cells in the central nervous system. Spread of reoviruses to the brain occurs by blood or nerves, which makes reoviruses useful models for studies of systemic viral dissemination. In this study, we examined how reoviruses infect endothelial cells, which form the walls of blood vessels. We found that reovirus infection of endothelial cells allows the virus to enter blood vessels and serves as a means for the virus to reach high titers in the circulation. Understanding how reovirus is routed through endothelial cells may aid in the design of antiviral drugs that target this important step in systemic viral infections. Bloodstream spread of viruses within infected hosts is a critical but poorly understood step in viral disease. Reoviruses first enter the host through the oral or respiratory route and infect cells in the central nervous system. Spread of reoviruses to the brain occurs by blood or nerves, which makes reoviruses useful models for studies of systemic viral dissemination. In this study, we examined how reoviruses infect endothelial cells, which form the walls of blood vessels. We found that reovirus infection of endothelial cells allows the virus to enter blood vessels and serves as a means for the virus to reach high titers in the circulation. Understanding how reovirus is routed through endothelial cells may aid in the design of antiviral drugs that target this important step in systemic viral infections.
Collapse
|
24
|
Systemic and local infection routes govern different cellular dissemination pathways during gammaherpesvirus infection in vivo. J Virol 2013; 87:4596-608. [PMID: 23408606 DOI: 10.1128/jvi.03135-12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Human gammaherpesviruses cause morbidity and mortality associated with infection and transformation of lymphoid and endothelial cells. Knowledge of cell types involved in virus dissemination from primary virus entry to virus latency is fundamental for the understanding of gammaherpesvirus pathogenesis. However, the inability to directly trace cell types with respect to virus dissemination pathways has prevented definitive conclusions regarding the relative contribution of individual cell types. Here, we describe that the route of infection affects gammaherpesvirus dissemination pathways. We constructed a recombinant murine gammaherpesvirus 68 (MHV-68) variant harboring a cassette which switches fluorescent markers in a Cre-dependent manner. Since the recombinant virus which was constructed on the wild-type background was attenuated, in this study we used an M1-deleted version, which infected mice with normal kinetics. Infection of Cre-transgenic mice with this convertible virus was used to estimate the quantitative contribution of defined cell types to virus productivity and dissemination during the acute phase of MHV-68 infection. In systemic infection, we found splenic vascular endothelial cells (EC) among the first and main cells to produce virus. After local infection, the contribution of EC to splenic virus production did not represent such early kinetics. However, at later time points, B cell-derived viruses dominated splenic productivity independently of systemic or local infection. Systemic versus local infection also governed the cell types involved in loading peritoneal exudate cells, leading to latency in F4/80- and CD11b-positive target cells. Systemic infection supported EC-driven dissemination, whereas local infection supported B cell-driven dissemination.
Collapse
|
25
|
An endothelial cell-specific requirement for the UL133-UL138 locus of human cytomegalovirus for efficient virus maturation. J Virol 2013; 87:3062-75. [PMID: 23283945 DOI: 10.1128/jvi.02510-12] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Human cytomegalovirus (HCMV) infects a variety of cell types in humans, resulting in a varied pathogenesis in the immunocompromised host. Endothelial cells (ECs) are considered an important target of HCMV infection that may contribute to viral pathogenesis. Although the viral determinants important for entry into ECs are well defined, the molecular determinants regulating postentry tropism in ECs are not known. We previously identified the UL133-UL138 locus encoded within the clinical strain-specific ULb' region of the HCMV genome as important for the latent infection in CD34(+) hematopoietic progenitor cells (HPCs). Interestingly, this locus, while dispensable for replication in fibroblasts, was required for efficient replication in ECs infected with the TB40E or fusion-inducing factor X (FIX) HCMV strains. ECs infected with a virus lacking the entire locus (UL133-UL138(NULL) virus) complete the immediate-early and early phases of infection but are defective for infectious progeny virus production. ECs infected with UL133-UL138(NULL) virus exhibited striking differences in the organization of intracellular membranes and in the assembly of mature virions relative to ECs infected with wild-type (WT) virus. In UL133-UL138(NULL) virus-infected ECs, Golgi stacks were disrupted, and the viral assembly compartment characteristic of HCMV infection failed to form. Further, progeny virions in UL133-UL138(NULL) virus-infected ECs inefficiently acquired the virion tegument and secondary envelope. These defects were specific to infection in ECs and not observed in fibroblasts infected with UL133-UL138(NULL) virus, suggesting an EC-specific requirement for the UL133-UL138 locus for late stages of replication. To our knowledge, the UL133-UL138 locus represents the first cell-type-dependent, postentry tropism determinant required for viral maturation.
Collapse
|
26
|
Seckert CK, Griessl M, Büttner JK, Scheller S, Simon CO, Kropp KA, Renzaho A, Kühnapfel B, Grzimek NKA, Reddehase MJ. Viral latency drives 'memory inflation': a unifying hypothesis linking two hallmarks of cytomegalovirus infection. Med Microbiol Immunol 2012; 201:551-66. [PMID: 22991040 DOI: 10.1007/s00430-012-0273-y] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Accepted: 08/29/2012] [Indexed: 11/29/2022]
Abstract
Low public awareness of cytomegalovirus (CMV) results from the only mild and transient symptoms that it causes in the healthy immunocompetent host, so that primary infection usually goes unnoticed. The virus is not cleared, however, but stays for the lifetime of the host in a non-infectious, replicatively dormant state known as 'viral latency'. Medical interest in CMV results from the fact that latent virus can reactivate to cytopathogenic, tissue-destructive infection causing life-threatening end-organ disease in immunocompromised recipients of solid organ transplantation (SOT) or hematopoietic cell transplantation (HCT). It is becoming increasingly clear that CMV latency is not a static state in which the viral genome is silenced at all its genetic loci making the latent virus immunologically invisible, but rather is a dynamic state characterized by stochastic episodes of transient viral gene desilencing. This gene expression can lead to the presentation of antigenic peptides encoded by 'antigenicity-determining transcripts expressed in latency (ADTELs)' sensed by tissue-patrolling effector-memory CD8 T cells for immune surveillance of latency [In Reddehase et al., Murine model of cytomegalovirus latency and reactivation, Current Topics in Microbiology and Immunology, vol 325. Springer, Berlin, pp 315-331, 2008]. A hallmark of the CD8 T cell response to CMV is the observation that with increasing time during latency, CD8 T cells specific for certain viral epitopes increase in numbers, a phenomenon that has gained much attention in recent years and is known under the catchphrase 'memory inflation.' Here, we provide a unifying hypothesis linking stochastic viral gene desilencing during latency to 'memory inflation.'
Collapse
Affiliation(s)
- Christof K Seckert
- Institute for Virology, University Medical Center of the Johannes Gutenberg-University Mainz, Obere Zahlbacher Strasse 67, Hochhaus am Augustusplatz, 55131 Mainz, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
Evaluation of: Sacher T, Andrassy J, Kalnins A et al. Shedding light on the elusive role of endothelial cells in cytomegalovirus dissemination. PLoS Pathog. 7(11), E1002366 (2011). Using the murine CMV animal model and the well-established model of Cre-lox-P-mediated green-fluorescence tagging of endothelial cell (EC)-derived mouse CMV to quantify the role of infected ECs in transplantation-associated CMV dissemination (in mice expressing Cre recombinase under the control of either the Tie2 or the Tek promoter selectively expressed in vascular EC-Tie-Cre and Tek-Cre mice), it was shown that EC-derived virus contributed to 50% of the total viral load during primary infection, and there was no preference for dissemination of EC-derived viruses over viruses produced by other cell types. In addition, during secondary viremia, there was only a negligible contribution of EC-derived virus to dissemination to other organs. These results are novel in the methodology employed and are somewhat interesting. However, the data are limited to the mouse model with a short-term follow-up, and the immunodeficient host has not yet been studied. In humans, these conclusions must be taken with caution. First, in primary infection occurring through natural routes, epithelial cells are infected first, then ECs, unless primary infection occurs through blood transfusion, in which case endothelial vascular cells may become infected first. In both cases, the virus transport occurs through the intervention of leukocytes, namely monocytes and polymorphonuclear leukocytes. As monocytes differentiate to macrophages, they become highly susceptible to human CMV replication inside organ tissues, while polymorphonuclear leukocytes are active in virus capturing from infected endothelial vascular cells and transporting to distant sites.
Collapse
Affiliation(s)
- Giuseppe Gerna
- Laboratori Sperimentali di Ricerca, Area Trapiantologica, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| |
Collapse
|