1
|
Lieftüchter V, Vollmuth Y, Tacke M, Hoffmann F, Paolini M, Finck T, Liesche-Starnecker F, von Both U, Pörtner K, Tappe D, Grosse L. Bornavirus (BoDV-1) Encephalitis in Children: Update on Diagnosis and Treatment. Neuropediatrics 2025. [PMID: 40228529 DOI: 10.1055/a-2561-8303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/16/2025]
Abstract
Infectious encephalitis in children can be caused by several pathogens, very rarely this can be caused by bornaviruses (BoDV-1). Due to the recent discovery of the disease in humans and the small number of cases, especially pediatric infections, knowledge about the disease pathology as well as therapeutic options is limited. Therefore, this review shall help raise awareness of this rare and mostly fatal disease, promote an early diagnosis, and present current knowledge about possible treatment options.
Collapse
Affiliation(s)
- Victoria Lieftüchter
- Pediatric Intensive Care Unit, Dr. von Hauner Children's Hospital, University Hospital, LMU Munich, Germany
- Department of Pediatric Neurology, Dr. von Hauner Children's Hospital, University Hospital, LMU Munich, Germany
| | - Yannik Vollmuth
- Pediatric Intensive Care Unit, Dr. von Hauner Children's Hospital, University Hospital, LMU Munich, Germany
| | - Moritz Tacke
- Pediatric Intensive Care Unit, Dr. von Hauner Children's Hospital, University Hospital, LMU Munich, Germany
- Department of Pediatric Neurology, Dr. von Hauner Children's Hospital, University Hospital, LMU Munich, Germany
| | - Florian Hoffmann
- Pediatric Intensive Care Unit, Dr. von Hauner Children's Hospital, University Hospital, LMU Munich, Germany
| | - Marco Paolini
- Department of Radiology, Dr. von Hauner Children's Hospital, University Hospital, LMU Munich, Germany
| | - Tom Finck
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | | | - Ulrich von Both
- Department of Pediatric Infectious Diseases, Dr. von Hauner Children's Hospital, University Hospital, LMU Munich, Germany
| | - Kirsten Pörtner
- Department of Infectious Disease Epidemiology, Robert Koch Institute, Berlin, Germany
| | - Dennis Tappe
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Leonie Grosse
- Department of Pediatric Neurology, Dr. von Hauner Children's Hospital, University Hospital, LMU Munich, Germany
| |
Collapse
|
2
|
Eberhard JN, Shallberg LA, Winn A, Chandrasekaran S, Giuliano CJ, Merritt EF, Willis E, Konradt C, Christian DA, Aldridge DL, Bunkofske ME, Jacquet M, Dzierszinski F, Katifori E, Lourido S, Koshy AA, Hunter CA. Immune targeting and host-protective effects of the latent stage of Toxoplasma gondii. Nat Microbiol 2025; 10:992-1005. [PMID: 40148566 PMCID: PMC11964939 DOI: 10.1038/s41564-025-01967-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 02/19/2025] [Indexed: 03/29/2025]
Abstract
Latency is a microbial strategy for persistence. For Toxoplasma gondii the bradyzoite stage forms long-lived cysts critical for transmission, and its presence in neurons is considered important for immune evasion. However, the extent to which cyst formation escapes immune pressure and mediates persistence remained unclear. Here we developed a mathematical model highlighting that bradyzoite-directed immunity contributes to control of cyst numbers. In vivo studies demonstrated that transgenic CD8+ T cells recognized a cyst-derived antigen, and neuronal STAT1 signalling promoted cyst control in mice. Modelling and experiments with parasites unable to form bradyzoites (Δbfd1) revealed that the absence of cyst formation in the central nervous system did not prevent long-term persistence but resulted in increased tachyzoite replication with associated tissue damage and mortality. These findings suggest the latent form of T. gondii is under immune pressure, mitigates infection-induced damage and promotes survival of host and parasite.
Collapse
Affiliation(s)
- Julia N Eberhard
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Lindsey A Shallberg
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Aaron Winn
- Department of Physics and Astronomy, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Christopher J Giuliano
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Emily F Merritt
- Department of Immunology, University of Arizona, Tucson, AZ, USA
| | - Elinor Willis
- Comparative Pathology Core, Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Christoph Konradt
- Department of Comparative Pathobiology, Purdue University College of Veterinary Medicine, West Lafayette, IN, USA
| | - David A Christian
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Daniel L Aldridge
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Molly E Bunkofske
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Maxime Jacquet
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Florence Dzierszinski
- The Royal Ottawa Mental Health Center, Institute of Mental Health Research, Ottawa, Ontario, Canada
| | - Eleni Katifori
- Department of Physics and Astronomy, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA
- Center for Computational Biology, Flatiron Institute, New York, NY, USA
| | - Sebastian Lourido
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Anita A Koshy
- BIO5 Institute, University of Arizona, Tucson, AZ, USA
- Department of Immunology, University of Arizona, Tucson, AZ, USA
- Department of Neurology, University of Arizona, Tucson, AZ, USA
| | - Christopher A Hunter
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
3
|
Vollmuth Y, Jungbäck N, Mögele T, Schmidt-Graf F, Wunderlich S, Schimmel M, Rothe C, Stark L, Schlegel J, Rieder G, Richter T, Schaller T, Tappe D, Märkl B, Matiasek K, Liesche-Starnecker F. Comparative study of virus and lymphocyte distribution with clinical data suggests early high dose immunosuppression as potential key factor for the therapy of patients with BoDV-1 infection. Emerg Microbes Infect 2024; 13:2350168. [PMID: 38687703 PMCID: PMC11107860 DOI: 10.1080/22221751.2024.2350168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 04/26/2024] [Indexed: 05/02/2024]
Abstract
ABSTRACTBorna disease virus 1 (BoDV-1) was just recently shown to cause predominantly fatal encephalitis in humans. Despite its rarity, bornavirus encephalitis (BVE) can be considered a model disease for encephalitic infections caused by neurotropic viruses and understanding its pathomechanism is of utmost relevance. Aim of this study was to compare the extent and distribution pattern of cerebral inflammation with the clinical course of disease, and individual therapeutic procedures. For this, autoptic brain material from seven patients with fatal BVE was included in this study. Tissue was stained immunohistochemically for pan-lymphocytic marker CD45, the nucleoprotein of BoDV-1, as well as glial marker GFAP and microglial marker Iba1. Sections were digitalized and counted for CD45-positive and BoDV-1-positive cells. For GFAP and Iba1, a semiquantitative score was determined. Furthermore, detailed information about the individual clinical course and therapy were retrieved and summarized in a standardized way. Analysis of the distribution of lymphocytes shows interindividual patterns. In contrast, when looking at the BoDV-1-positive glial cells and neurons, a massive viral involvement in the brain stem was noticeable. Three of the seven patients received early high-dose steroids, which led to a significantly lower lymphocytic infiltration of the central nervous tissue and a longer survival compared to the patients who were treated with steroids later in the course of disease. This study highlights the potential importance of early high-dose immunosuppressive therapy in BVE. Our findings hint at a promising treatment option which should be corroborated in future observational or prospective therapy studies.ABBREVIATIONS: BoDV-1: Borna disease virus 1; BVE: bornavirus encephalitis; Cb: cerebellum; CNS: central nervous system; FL: frontal lobe; GFAP: glial fibrillary acid protein; Hc: hippocampus; Iba1: ionized calcium-binding adapter molecule 1; Iba1act: general activation of microglial cells; Iba1nod: formation of microglial nodules; IL: insula; Me: mesencephalon; Mo: medulla oblongata; OL: occipital lobe; pASS: per average of 10 screenshots; patearly: patients treated with early high dose steroid shot; patlate: patients treated with late or none high dose steroid shot; Po: pons; So: stria olfactoria; Str: striatum.
Collapse
Affiliation(s)
- Yannik Vollmuth
- Pathology, Medical Faculty, University of Augsburg, Augsburg, Germany
- Institute of Pathology, School of Medicine and Health, Technical University of Munich, Munich, Germany
- Department of Pediatrics, Dr. von Hauner Children’s Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Nicola Jungbäck
- Pathology, Medical Faculty, University of Augsburg, Augsburg, Germany
| | - Tatiana Mögele
- Pathology, Medical Faculty, University of Augsburg, Augsburg, Germany
| | - Friederike Schmidt-Graf
- Department of Neurology, Klinikum rechts der Isar, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Silke Wunderlich
- Department of Neurology, Klinikum rechts der Isar, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Mareike Schimmel
- Department of Pediatrics and Adolescent Medicine, Medical Faculty, University of Augsburg, Augsburg, Germany
| | - Camilla Rothe
- Division of Infectious Diseases and Tropical Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Leonhard Stark
- Institute of Pathology, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Jürgen Schlegel
- Pathology, Medical Faculty, University of Augsburg, Augsburg, Germany
- Institute of Pathology, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Georg Rieder
- Department of Neurology, InnKlinikum, Altötting, Germany
| | - Thomas Richter
- Clinic of Pathology, Pathology Rosenheim, Rosenheim, Germany
| | - Tina Schaller
- Pathology, Medical Faculty, University of Augsburg, Augsburg, Germany
| | - Dennis Tappe
- National Laboratory for Bornaviruses, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Bruno Märkl
- Pathology, Medical Faculty, University of Augsburg, Augsburg, Germany
| | - Kaspar Matiasek
- Section of Clinical and Comparative Neuropathology, Centre for Clinical Veterinary Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
| | | |
Collapse
|
4
|
Wang Y, Shen Y, Liang J, Wang S, Huang Y, Zhu Q, Zhang X, Yu K, Tong G, Yang C, Li Y, Wang J, Zhao Y. Neurons upregulate PD-L1 via IFN/STAT1/IRF1 to alleviate damage by CD8 + T cells in cerebral malaria. J Neuroinflammation 2024; 21:119. [PMID: 38715061 PMCID: PMC11077882 DOI: 10.1186/s12974-024-03114-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 04/29/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Cerebral malaria (CM) is the most lethal complication of malaria, and survivors usually endure neurological sequelae. Notably, the cytotoxic effect of infiltrating Plasmodium-activated CD8+ T cells on cerebral microvasculature endothelial cells is a prominent feature of the experimental CM (ECM) model with blood-brain barrier disruption. However, the damage effect of CD8+ T cells infiltrating the brain parenchyma on neurons remains unclear. Based on the immunosuppressive effect of the PD-1/PD-L1 pathway on T cells, our previous study demonstrated that the systemic upregulation of PD-L1 to inhibit CD8+ T cell function could effectively alleviate the symptoms of ECM mice. However, it has not been reported whether neurons can suppress the pathogenic effect of CD8+ T cells through the PD-1/PD-L1 negative immunomodulatory pathway. As the important inflammatory factor of CM, interferons can induce the expression of PD-L1 via different molecular mechanisms according to the neuro-immune microenvironment. Therefore, this study aimed to investigate the direct interaction between CD8+ T cells and neurons, as well as the mechanism of neurons to alleviate the pathogenic effect of CD8+ T cells through up-regulating PD-L1 induced by IFNs. METHODS Using the ECM model of C57BL/6J mice infected with Plasmodium berghei ANKA (PbA), morphological observations were conducted in vivo by electron microscope and IF staining. The interaction between the ECM CD8+ T cells (immune magnetic bead sorting from spleen of ECM mice) and primary cultured cortical neurons in vitro was observed by IF staining and time-lapse photography. RNA-seq was performed to analyze the signaling pathway of PD-L1 upregulation in neurons induced by IFNβ or IFNγ, and verified through q-PCR, WB, IF staining, and flow cytometry both in vitro and in vivo using IFNAR or IFNGR gene knockout mice. The protective effect of adenovirus-mediated PD-L1 IgGFc fusion protein expression was verified in ECM mice with brain stereotaxic injection in vivo and in primary cultured neurons via viral infection in vitro. RESULTS In vivo, ECM mice showed infiltration of activated CD8+ T cells and neuronal injury in the brain parenchyma. In vitro, ECM CD8+ T cells were in direct contact with neurons and induced axonal damage, as an active behavior. The PD-L1 protein level was elevated in neurons of ECM mice and in primary cultured neurons induced by IFNβ, IFNγ, or ECM CD8+ T cells in vitro. Furthermore, the IFNβ or IFNγ induced neuronal expression of PD-L1 was mediated by increasing STAT1/IRF1 pathway via IFN receptors. The increase of PD-L1 expression in neurons during PbA infection was weakened after deleting the IFNAR or IFNGR. Increased PD-L1 expression by adenovirus partially protected neurons from CD8+ T cell-mediated damage both in vitro and in vivo. CONCLUSION Our study demonstrates that both type I and type II IFNs can induce neurons to upregulate PD-L1 via the STAT1/IRF1 pathway mediated by IFN receptors to protect against activated CD8+ T cell-mediated damage, providing a targeted pathway to alleviate neuroinflammation during ECM.
Collapse
Affiliation(s)
- Yi Wang
- Department of Medical Microbiology and Parasitology, Air Force Medical University, 169# Changle West Road, Xi'an, 710032, China
| | - Yan Shen
- Department of Medical Microbiology and Parasitology, Air Force Medical University, 169# Changle West Road, Xi'an, 710032, China
| | - Jiao Liang
- Department of Medical Microbiology and Parasitology, Air Force Medical University, 169# Changle West Road, Xi'an, 710032, China
| | - Shubiao Wang
- Grade 2020 Clinical Medicine (Five-Year Program), Basic Medical College, Air Force Medical University, Xi'an, 710032, Shaanxi, China
| | - Yuxiao Huang
- Department of Medical Microbiology and Parasitology, Air Force Medical University, 169# Changle West Road, Xi'an, 710032, China
| | - Qinghao Zhu
- Department of Medical Microbiology and Parasitology, Air Force Medical University, 169# Changle West Road, Xi'an, 710032, China
| | - Xizhi Zhang
- Grade 2019 Clinical Medicine (Five-Year Program), Basic Medical College, Air Force Medical University, Xi'an, 710032, Shaanxi, China
| | - Kangjie Yu
- Department of Pathology, Air Force Hospital of Eastern Theater, Nanjing, Jiangsu, China
| | - Guodong Tong
- College of Life Sciences, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Chao Yang
- College of Life Sciences, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Yinghui Li
- Department of Medical Microbiology and Parasitology, Air Force Medical University, 169# Changle West Road, Xi'an, 710032, China.
| | - Jun Wang
- Department of Medical Microbiology and Parasitology, Air Force Medical University, 169# Changle West Road, Xi'an, 710032, China.
| | - Ya Zhao
- Department of Medical Microbiology and Parasitology, Air Force Medical University, 169# Changle West Road, Xi'an, 710032, China.
| |
Collapse
|
5
|
van Olst L, Kamermans A, Halters S, van der Pol SMA, Rodriguez E, Verberk IMW, Verberk SGS, Wessels DWR, Rodriguez-Mogeda C, Verhoeff J, Wouters D, Van den Bossche J, Garcia-Vallejo JJ, Lemstra AW, Witte ME, van der Flier WM, Teunissen CE, de Vries HE. Adaptive immune changes associate with clinical progression of Alzheimer's disease. Mol Neurodegener 2024; 19:38. [PMID: 38658964 PMCID: PMC11044380 DOI: 10.1186/s13024-024-00726-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 03/29/2024] [Indexed: 04/26/2024] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is the most frequent cause of dementia. Recent evidence suggests the involvement of peripheral immune cells in the disease, but the underlying mechanisms remain unclear. METHODS We comprehensively mapped peripheral immune changes in AD patients with mild cognitive impairment (MCI) or dementia compared to controls, using cytometry by time-of-flight (CyTOF). RESULTS We found an adaptive immune signature in AD, and specifically highlight the accumulation of PD1+ CD57+ CD8+ T effector memory cells re-expressing CD45RA in the MCI stage of AD. In addition, several innate and adaptive immune cell subsets correlated to cerebrospinal fluid (CSF) biomarkers of AD neuropathology and measures for cognitive decline. Intriguingly, subsets of memory T and B cells were negatively associated with CSF biomarkers for tau pathology, neurodegeneration and neuroinflammation in AD patients. Lastly, we established the influence of the APOE ε4 allele on peripheral immunity. CONCLUSIONS Our findings illustrate significant peripheral immune alterations associated with both early and late clinical stages of AD, emphasizing the necessity for further investigation into how these changes influence underlying brain pathology.
Collapse
Affiliation(s)
- Lynn van Olst
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, the Netherlands.
- Amsterdam Neuroscience, Neuroinfection & -Inflammation, Amsterdam, the Netherlands.
- Present address: The Ken & Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| | - Alwin Kamermans
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, the Netherlands
- Amsterdam Neuroscience, Neuroinfection & -Inflammation, Amsterdam, the Netherlands
| | - Sem Halters
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, the Netherlands
- Amsterdam Neuroscience, Neuroinfection & -Inflammation, Amsterdam, the Netherlands
| | - Susanne M A van der Pol
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, the Netherlands
- Amsterdam Neuroscience, Neuroinfection & -Inflammation, Amsterdam, the Netherlands
| | - Ernesto Rodriguez
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, the Netherlands
- Amsterdam Institute for Infection and Immunity, Cancer Immunology, Amsterdam, the Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, the Netherlands
| | - Inge M W Verberk
- Amsterdam Neuroscience, Neuroinfection & -Inflammation, Amsterdam, the Netherlands
- Department of Laboratory Medicine, Neurochemistry Laboratory, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, the Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, the Netherlands
| | - Sanne G S Verberk
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, the Netherlands
- Amsterdam Cardiovascular Sciences, Atherosclerosis & Ischemic Syndromes, Amsterdam, the Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, the Netherlands
| | - Danielle W R Wessels
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, the Netherlands
| | - Carla Rodriguez-Mogeda
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, the Netherlands
- Amsterdam Neuroscience, Neuroinfection & -Inflammation, Amsterdam, the Netherlands
| | - Jan Verhoeff
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, the Netherlands
- Amsterdam Institute for Infection and Immunity, Cancer Immunology, Amsterdam, the Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, the Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, the Netherlands
| | - Dorine Wouters
- Amsterdam Cardiovascular Sciences, Atherosclerosis & Ischemic Syndromes, Amsterdam, the Netherlands
| | - Jan Van den Bossche
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, the Netherlands
- Amsterdam Cardiovascular Sciences, Atherosclerosis & Ischemic Syndromes, Amsterdam, the Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, the Netherlands
| | - Juan J Garcia-Vallejo
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, the Netherlands
- Amsterdam Institute for Infection and Immunity, Cancer Immunology, Amsterdam, the Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, the Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, the Netherlands
| | - Afina W Lemstra
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, the Netherlands
- Department of Neurology, Amsterdam UMC Location VUmc, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Maarten E Witte
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, the Netherlands
- Amsterdam Neuroscience, Neuroinfection & -Inflammation, Amsterdam, the Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, the Netherlands
- Amsterdam Institute for Infection and Immunity, Inflammatory Diseases, Amsterdam, the Netherlands
| | - Wiesje M van der Flier
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, the Netherlands
- Department of Neurology, Amsterdam UMC Location VUmc, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Department of Epidemiology & Data Science, Amsterdam UMC Location VUmc, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Charlotte E Teunissen
- Amsterdam Neuroscience, Neuroinfection & -Inflammation, Amsterdam, the Netherlands
- Department of Laboratory Medicine, Neurochemistry Laboratory, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, the Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, the Netherlands
| | - Helga E de Vries
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, the Netherlands
- Amsterdam Institute for Infection and Immunity, Cancer Immunology, Amsterdam, the Netherlands
- Amsterdam Cardiovascular Sciences, Microcirculation, Amsterdam, the Netherlands
- Amsterdam Neuroscience, Neurovascular Disorders, Amsterdam, the Netherlands
| |
Collapse
|
6
|
Arya R, Jit BP, Kumar V, Kim JJ. Exploring the Potential of Exosomes as Biomarkers in Tuberculosis and Other Diseases. Int J Mol Sci 2024; 25:2885. [PMID: 38474139 DOI: 10.3390/ijms25052885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/23/2024] [Accepted: 02/29/2024] [Indexed: 03/14/2024] Open
Abstract
Tuberculosis (TB) is a major cause of morbidity and mortality and remains an important public health issue in developing countries worldwide. The existing methods and techniques available for the diagnosis of TB are based on combinations of laboratory (chemical and biological), radiological, and clinical tests. These methods are sophisticated and laborious and have limitations in terms of sensitivity, specificity, and accuracy. Clinical settings need improved diagnostic biomarkers to accurately detect biological changes due to pathogen invasion and pharmacological responses. Exosomes are membrane-bound vesicles and mediators of intercellular signaling processes that play a significant role in the pathogenesis of various diseases, such as tuberculosis, and can act as promising biomarkers for the monitoring of TB infection. Compared to conventional biomarkers, exosome-derived biomarkers are advantageous because they are easier to detect in different biofluids, are more sensitive and specific, and may be useful in tracking patients' reactions to therapy. This review provides insights into the types of biomarkers, methods of exosome isolation, and roles of the cargo (proteins) present in exosomes isolated from patients through omics studies, such as proteomics. These findings will aid in developing new prognostic and diagnostic biomarkers and could lead to the identification of new therapeutic targets in the clinical setting.
Collapse
Affiliation(s)
- Rakesh Arya
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Bimal Prasad Jit
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Vijay Kumar
- Department of Orthopaedic Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jong Joo Kim
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
7
|
van Olst L, Kamermans A, van der Pol SMA, Rodríguez E, Hulshof LA, van Dijk RE, Vonk DN, Schouten M, Witte ME, de Vries HE, Middeldorp J. Age-associated systemic factors change central and peripheral immunity in adult male mice. Brain Behav Immun 2023; 111:395-411. [PMID: 37169133 DOI: 10.1016/j.bbi.2023.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 05/01/2023] [Accepted: 05/05/2023] [Indexed: 05/13/2023] Open
Abstract
Aging coincides with major changes in brain immunity that aid in a decline in neuronal function. Here, we postulate that systemic, pro-aging factors contribute to immunological changes that occur within the brain during aging. To investigate this hypothesis, we comprehensively characterized the central and peripheral immune landscape of 20-month-old male mice using cytometry by time-of-flight (CyTOF) and investigated the role of age-associated circulating factors. We found that CD8+ T cells expressing programmed cell death protein 1 (PD1) and tissue-resident memory CD8+ T cells accumulated in the aged brain while levels of memory T cells rose in the periphery. Injections of plasma derived from 20-month-old mice into 5-month-old receiving mice decreased the frequency of splenic and circulating naïve T cells, increased memory CD8+ T cells, and non-classical, patrolling monocytes in the spleen, and elevated levels of regulatory T cells and non-classical monocytes in the blood. Notably, CD8+ T cells accumulated within white matter areas of plasma-treated mice, which coincided with the expression of vascular cell adhesion molecule 1 (VCAM-1), a mediator of immune cell trafficking, on the brain vasculature. Taken together, we here describe age-related immune cell changes in the mouse brain and circulation and show that age-associated systemic factors induce the expansion of CD8+ T cells in the aged brain.
Collapse
Affiliation(s)
- L van Olst
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, Amsterdam, the Netherlands; Amsterdam Neuroscience, Amsterdam, the Netherlands.
| | - A Kamermans
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, Amsterdam, the Netherlands; Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - S M A van der Pol
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, Amsterdam, the Netherlands; Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - E Rodríguez
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, Amsterdam, the Netherlands; Cancer Center Amsterdam, Amsterdam, the Netherlands; Amsterdam Infection and Immunity Institute, Amsterdam, the Netherlands
| | - L A Hulshof
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Centre Utrecht, University Utrecht, Utrecht, the Netherlands
| | - R E van Dijk
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Centre Utrecht, University Utrecht, Utrecht, the Netherlands
| | - D N Vonk
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Centre Utrecht, University Utrecht, Utrecht, the Netherlands
| | - M Schouten
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, Amsterdam, the Netherlands; Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - M E Witte
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, Amsterdam, the Netherlands; Amsterdam Neuroscience, Amsterdam, the Netherlands; Amsterdam Infection and Immunity Institute, Amsterdam, the Netherlands
| | - H E de Vries
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, Amsterdam, the Netherlands; Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - J Middeldorp
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Centre Utrecht, University Utrecht, Utrecht, the Netherlands; Department of Neurobiology and Aging, Biomedical Primate Research Centre, Rijswijk, the Netherlands
| |
Collapse
|
8
|
Jeong GU, Lee S, Kim DY, Lyu J, Yoon GY, Kim KD, Ku KB, Ko J, Kwon YC. Zika Virus Infection Induces Interleukin-1β-Mediated Inflammatory Responses by Macrophages in the Brain of an Adult Mouse Model. J Virol 2023; 97:e0055623. [PMID: 37191498 PMCID: PMC10308908 DOI: 10.1128/jvi.00556-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 04/23/2023] [Indexed: 05/17/2023] Open
Abstract
During the 2015-2016 Zika virus (ZIKV) epidemic, ZIKV-associated neurological diseases were reported in adults, including microcephaly, Guillain-Barre syndrome, myelitis, meningoencephalitis, and fatal encephalitis. However, the mechanisms underlying the neuropathogenesis of ZIKV infection are not yet fully understood. In this study, we used an adult ZIKV infection mouse model (Ifnar1-/-) to investigate the mechanisms underlying neuroinflammation and neuropathogenesis. ZIKV infection induced the expression of proinflammatory cytokines, including interleukin-1β (IL-1β), IL-6, gamma interferon, and tumor necrosis factor alpha, in the brains of Ifnar1-/- mice. RNA-seq analysis of the infected mouse brain also revealed that genes involved in innate immune responses and cytokine-mediated signaling pathways were significantly upregulated at 6 days postinfection. Furthermore, ZIKV infection induced macrophage infiltration and activation and augmented IL-1β expression, whereas microgliosis was not observed in the brain. Using human monocyte THP-1 cells, we confirmed that ZIKV infection promotes inflammatory cell death and increases IL-1β secretion. In addition, expression of the complement component C3, which is associated with neurodegenerative diseases and known to be upregulated by proinflammatory cytokines, was induced by ZIKV infection through the IL-1β-mediated pathway. An increase in C5a produced by complement activation in the brains of ZIKV-infected mice was also verified. Taken together, our results suggest that ZIKV infection in the brain of this animal model augments IL-1β expression in infiltrating macrophages and elicits IL-1β-mediated inflammation, which can lead to the destructive consequences of neuroinflammation. IMPORTANCE Zika virus (ZIKV) associated neurological impairments are an important global health problem. Our results suggest that ZIKV infection in the mouse brain can induce IL-1β-mediated inflammation and complement activation, thereby contributing to the development of neurological disorders. Thus, our findings reveal a mechanism by which ZIKV induces neuroinflammation in the mouse brain. Although we used adult type I interferon receptor IFNAR knockout (Ifnar1-/-) mice owing to the limited mouse models of ZIKV pathogenesis, our conclusions contributed to the understanding ZIKV-associated neurological diseases to develop treatment strategies for patients with ZIKV infection based on these findings.
Collapse
Affiliation(s)
- Gi Uk Jeong
- Department of Convergent Research for Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
- Division of Infectious Diseases, Department of Pediatrics, Boston Children’s Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Sumin Lee
- Department of Convergent Research for Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Do Yeon Kim
- Department of Convergent Research for Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
- Medical Chemistry and Pharmacology, University of Science and Technology, Daejeon, Republic of Korea
| | - Jaemyun Lyu
- Arontier Co., Ltd., Seoul, Republic of Korea
| | - Gun Young Yoon
- Department of Convergent Research for Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Kyun-Do Kim
- Department of Convergent Research for Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Keun Bon Ku
- Department of Convergent Research for Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Junsu Ko
- Arontier Co., Ltd., Seoul, Republic of Korea
| | - Young-Chan Kwon
- Department of Convergent Research for Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
- Medical Chemistry and Pharmacology, University of Science and Technology, Daejeon, Republic of Korea
| |
Collapse
|
9
|
Johnson HJ, Koshy AA. Understanding neuroinflammation through central nervous system infections. Curr Opin Neurobiol 2022; 76:102619. [PMID: 35985075 PMCID: PMC10147316 DOI: 10.1016/j.conb.2022.102619] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/09/2022] [Accepted: 07/08/2022] [Indexed: 11/28/2022]
Abstract
Neuroinflammation is now recognized to compound many central nervous system (CNS) pathologies, from stroke to dementia. As immune responses evolved to handle infections, studying CNS infections can offer unique insights into the CNS immune response and address questions such as: What defenses and strategies do CNS parenchymal cells deploy in response to a dangerous pathogen? How do CNS cells interact with each other and infiltrating immune cells to control microbes? What pathways are beneficial for the host or for the pathogen? Here, we review recent studies that use CNS-tropic infections in combination with cutting-edge techniques to delve into the complex relationships between microbes, immune cells, and cells of the CNS.
Collapse
Affiliation(s)
- Hannah J Johnson
- Neuroscience Graduate Interdisciplinary Program, University of Arizona, Tucson, AZ, USA
| | - Anita A Koshy
- Neuroscience Graduate Interdisciplinary Program, University of Arizona, Tucson, AZ, USA; Department of Neurology, University of Arizona, Tucson, AZ, USA; BIO5 Institute, University of Arizona, Tucson, AZ, USA; Department of Immunobiology, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
10
|
van Olst L, Coenen L, Nieuwland JM, Rodriguez-Mogeda C, de Wit NM, Kamermans A, Middeldorp J, de Vries HE. Crossing borders in Alzheimer's disease: A T cell's perspective. Adv Drug Deliv Rev 2022; 188:114398. [PMID: 35780907 DOI: 10.1016/j.addr.2022.114398] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/31/2022] [Accepted: 06/03/2022] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease (AD) is the most common form of dementia affecting millions of people worldwide. While different immunotherapies are imminent, currently only disease-modifying medications are available and a cure is lacking. Over the past decade, immunological interfaces of the central nervous system (CNS) and their role in neurodegenerative diseases received increasing attention. Specifically, emerging evidence shows that subsets of circulating CD8+ T cells cross the brain barriers and associate with AD pathology. To gain more insight into how the adaptive immune system is involved in disease pathogenesis, we here provide a comprehensive overview of the contribution of T cells to AD pathology, incorporating changes at the brain barriers. In addition, we review studies that provide translation of these findings by targeting T cells to combat AD pathology and cognitive decline. Importantly, these data show that immunological changes in AD are not confined to the CNS and that AD-associated systemic immune changes appear to affect brain homeostasis.
Collapse
Affiliation(s)
- L van Olst
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - L Coenen
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands; Department of Neurobiology and Aging, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | - J M Nieuwland
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands; Department of Neurobiology and Aging, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | - C Rodriguez-Mogeda
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - N M de Wit
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - A Kamermans
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - J Middeldorp
- Department of Neurobiology and Aging, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | - H E de Vries
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands.
| |
Collapse
|
11
|
Marty FH, Bettamin L, Thouard A, Bourgade K, Allart S, Larrieu G, Malnou CE, Gonzalez-Dunia D, Suberbielle E. Borna disease virus docks on neuronal DNA double-strand breaks to replicate and dampens neuronal activity. iScience 2022; 25:103621. [PMID: 35024577 PMCID: PMC8724971 DOI: 10.1016/j.isci.2021.103621] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 11/11/2021] [Accepted: 12/10/2021] [Indexed: 12/22/2022] Open
Abstract
Borna disease viruses (BoDV) have recently emerged as zoonotic neurotropic pathogens. These persistent RNA viruses assemble nuclear replication centers (vSPOT) in close interaction with the host chromatin. However, the topology of this interaction and its consequences on neuronal function remain unexplored. In neurons, DNA double-strand breaks (DSB) have been identified as novel epigenetic mechanisms regulating neurotransmission and cognition. Activity-dependent DSB contribute critically to neuronal plasticity processes, which could be impaired upon infection. Here, we show that BoDV-1 infection, or the singled-out expression of viral Nucleoprotein and Phosphoprotein, increases neuronal DSB levels. Of interest, inducing DSB promoted the recruitment anew of vSPOT colocalized with DSB and increased viral RNA replication. BoDV-1 persistence decreased neuronal activity and response to stimulation by dampening the surface expression of glutamate receptors. Taken together, our results propose an original mechanistic cross talk between persistence of an RNA virus and neuronal function, through the control of DSB levels. BoDV-1, its Nucleoprotein or Phosphoprotein cause neuronal DNA double-strand breaks (DSB) DNA double-strand breaks co-localize with BoDV-1 replication factories DNA DSB recruits BoDV-1 replication factories and promotes viral replication BoDV-1 inhibits neuronal activity by impeding surface expression of GluN2A receptors
Collapse
Affiliation(s)
| | - Luca Bettamin
- Infinity, Université Toulouse, CNRS, Inserm, UPS, Toulouse, France
- LAAS-CNRS, Toulouse, France
| | - Anne Thouard
- Infinity, Université Toulouse, CNRS, Inserm, UPS, Toulouse, France
| | - Karine Bourgade
- Infinity, Université Toulouse, CNRS, Inserm, UPS, Toulouse, France
| | - Sophie Allart
- Infinity, Université Toulouse, CNRS, Inserm, UPS, Toulouse, France
| | | | | | | | - Elsa Suberbielle
- Infinity, Université Toulouse, CNRS, Inserm, UPS, Toulouse, France
- Corresponding author
| |
Collapse
|
12
|
Hobson BD, Sulzer D. Neuronal Presentation of Antigen and Its Possible Role in Parkinson's Disease. JOURNAL OF PARKINSON'S DISEASE 2022; 12:S137-S147. [PMID: 35253783 PMCID: PMC9440948 DOI: 10.3233/jpd-223153] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Patients with Parkinson's disease (PD) and other synucleinopathies often exhibit autoimmune features, including CD4+ and some CD8+ T lymphocytes that recognize epitopes derived from alpha-synuclein. While neurons have long been considered to not present antigens, recent data indicate that they can be induced to do so, particularly in response to interferons and other forms of stress. Here, we review literature on neuronal antigen presentation and its potential role in PD. Although direct evidence for CD8+ T cell-mediated neuronal death is lacking in PD, neuronal antigen presentation appears central to the pathology of Rasmussen's encephalitis, a pediatric neurological disorder driven by cytotoxic T cell infiltration and neuroinflammation. Emerging data suggest that T cells enter the brain in PD and other synucleinopathies, where the majority of neuromelanin-containing substantia nigra and locus coeruleus neurons express MHC Class I molecules. In cell culture, CD8+ T cell recognition of antigen:MHC Class I complexes on neuronal membranes leads to cytotoxic responses and neuronal cell death. Recent animal models suggest the possibility of T cell autoreactivity to mitochondrial antigens in PD. It remains unclear if neuronal antigen presentation plays a role in PD or other neurodegenerative disorders, and efforts are underway to better elucidate the potential impact of autoimmune responses on neurodegeneration.
Collapse
Affiliation(s)
- Benjamin D. Hobson
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
- Medical Scientist Training Program, Columbia University Irving Medical Center, New York, NY, USA
| | - David Sulzer
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
- Department of Pharmacology, Columbia University Irving Medical Center, New York, NY, USA
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- Correspondence to: David Sultzer, Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA. E-mail:
| |
Collapse
|
13
|
Beneficial and detrimental functions of microglia during viral encephalitis. Trends Neurosci 2021; 45:158-170. [PMID: 34906391 DOI: 10.1016/j.tins.2021.11.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 10/28/2021] [Accepted: 11/16/2021] [Indexed: 12/11/2022]
Abstract
Microglia are resident immune cells of the central nervous system (CNS) with multiple functions in health and disease. Their response during encephalitis depends on whether inflammation is triggered in a sterile or infectious manner, and in the latter case on the type of the infecting pathogen. Even though recent technological innovations advanced the understanding of the broad spectrum of microglia responses during viral encephalitis (VE), it is not entirely clear which microglia gene expression profiles are associated with antiviral and detrimental activities. Here, we review novel approaches to study microglia and the latest concepts of their function in VE. Improved understanding of microglial functions will be essential for the development of new therapeutic interventions for VE.
Collapse
|
14
|
GRIK2 is a target for bladder cancer stem-like cell-targeting immunotherapy. Cancer Immunol Immunother 2021; 71:795-806. [PMID: 34405274 DOI: 10.1007/s00262-021-03025-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 07/29/2021] [Indexed: 10/20/2022]
Abstract
Recent studies have revealed that treatment-resistant cancer stem-like cells (CSCs)/cancer-initiating cells (CICs) can be targeted by cytotoxic T lymphocytes (CTLs). CTLs recognize antigenic peptides derived from tumor-associated antigens; thus, the identification of tumor-associated antigens expressed by CSCs/CICs is essential. Human leucocyte antigen (HLA) ligandome analysis using mass spectrometry enables the analysis of naturally expressed antigenic peptides; however, HLA ligandome analysis requires a large number of cells and is challenging for CSCs/CICs. In this study, we established a novel bladder CSC/CIC model from a bladder cancer cell line (UM-UC-3 cells) using an ALDEFLUOR assay. CSCs/CICs were isolated as aldehyde dehydrogenase (ALDH)-high cells and several ALDHhigh clone cells were established. ALDHhigh clone cells were enriched with CSCs/CICs by sphere formation and tumorigenicity in immunodeficient mice. HLA ligandome analysis and cap analysis of gene expression using ALDHhigh clone cells revealed a distinctive antigenic peptide repertoire in bladder CSCs/CICs, and we found that a glutamate receptor, ionotropic, kainite 2 (GRIK2)-derived antigenic peptide (LMYDAVHVV) was specifically expressed by CSCs/CICs. A GRIK2 peptide-specific CTL clone recognized GRIK2-overexpressing UM-UC-3 cells and ALDHhigh clone cells, indicating that GRIK2 peptide can be a novel target for bladder CSC/CIC-targeting immunotherapy.
Collapse
|
15
|
Matta SK, Rinkenberger N, Dunay IR, Sibley LD. Toxoplasma gondii infection and its implications within the central nervous system. Nat Rev Microbiol 2021; 19:467-480. [PMID: 33627834 DOI: 10.1038/s41579-021-00518-7] [Citation(s) in RCA: 117] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/19/2021] [Indexed: 01/31/2023]
Abstract
Toxoplasma gondii is a parasite that infects a wide range of animals and causes zoonotic infections in humans. Although it normally only results in mild illness in healthy individuals, toxoplasmosis is a common opportunistic infection with high mortality in individuals who are immunocompromised, most commonly due to reactivation of infection in the central nervous system. In the acute phase of infection, interferon-dependent immune responses control rapid parasite expansion and mitigate acute disease symptoms. However, after dissemination the parasite differentiates into semi-dormant cysts that form within muscle cells and neurons, where they persist for life in the infected host. Control of infection in the central nervous system, a compartment of immune privilege, relies on modified immune responses that aim to balance infection control while limiting potential damage due to inflammation. In response to the activation of interferon-mediated pathways, the parasite deploys an array of effector proteins to escape immune clearance and ensure latent survival. Although these pathways are best studied in the laboratory mouse, emerging evidence points to unique mechanisms of control in human toxoplasmosis. In this Review, we explore some of these recent findings that extend our understanding for proliferation, establishment and control of toxoplasmosis in humans.
Collapse
Affiliation(s)
- Sumit K Matta
- Department of Molecular Microbiology, School of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Nicholas Rinkenberger
- Department of Molecular Microbiology, School of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Ildiko R Dunay
- Institute of Inflammation and Neurodegeneration, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - L David Sibley
- Department of Molecular Microbiology, School of Medicine, Washington University in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
16
|
Bahouth MN, Venkatesan A. Acute Viral Illnesses and Ischemic Stroke: Pathophysiological Considerations in the Era of the COVID-19 Pandemic. Stroke 2021; 52:1885-1894. [PMID: 33794653 PMCID: PMC8078120 DOI: 10.1161/strokeaha.120.030630] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The severe acute respiratory syndrome coronavirus 2 or coronavirus disease 2019 (COVID-19) pandemic has raised concerns about the correlation with this viral illness and increased risk of stroke. Although it is too early in the pandemic to know the strength of the association between COVID-19 and stroke, it is an opportune time to review the relationship between acute viral illnesses and stroke. Here, we summarize pathophysiological principles and available literature to guide understanding of how viruses may contribute to ischemic stroke. After a review of inflammatory mechanisms, we summarize relevant pathophysiological principles of vasculopathy, hypercoagulability, and hemodynamic instability. We will end by discussing mechanisms by which several well-known viruses may cause stroke in an effort to inform our understanding of the relationship between COVID-19 and stroke.
Collapse
Affiliation(s)
- Mona N. Bahouth
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD
| | - Arun Venkatesan
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD
| |
Collapse
|
17
|
Role of Peripheral Immune Cells in Multiple Sclerosis and Experimental Autoimmune Encephalomyelitis. SCI 2021. [DOI: 10.3390/sci3010012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic autoimmune disease that affects the myelination of the neurons present in the central nervous system (CNS). The exact etiology of MS development is unclear, but various environmental and genetic factors might play a role in initiating the disease. Experimental autoimmune encephalomyelitis (EAE) is a mouse model that is used to study the pathophysiology of MS disease as well as the effects of possible therapeutic agents. In addition, autoreactive immune cells trigger an inflammatory process upon the recognition of CNS antigens, which leads to destruction of the neurons. These include innate immune cells such as macrophages, dendritic cells, and natural killer cells. Additionally, the activation and extravasation of adaptive immune cells such as CD4+ T cells into the CNS may lead to further exacerbation of the disease. However, many studies revealed that immune cells could have either a protective or pathological role in MS. In this review, we highlight the roles of innate and adaptive immune cellular and soluble players that contribute to the pathogenesis of MS and EAE, which may be used as potential targets for therapy.
Collapse
|
18
|
Transcriptional Profiling Suggests T Cells Cluster around Neurons Injected with Toxoplasma gondii Proteins. mSphere 2020; 5:5/5/e00538-20. [PMID: 32878927 PMCID: PMC7471001 DOI: 10.1128/msphere.00538-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Like other persistent intracellular pathogens, Toxoplasma gondii, a protozoan parasite, has evolved to evade the immune system and establish a chronic infection in specific cells and organs, including neurons in the CNS. Understanding T. gondii’s persistence in neurons holds the potential to identify novel, curative drug targets. The work presented here offers new insights into the neuron-T. gondii interaction in vivo. By transcriptionally profiling neurons manipulated by T. gondii, we unexpectedly revealed that immune cells, and specifically CD8+ T cells, appear to cluster around these neurons, suggesting that CD8+ T cells specifically recognize parasite-manipulated neurons. Such a possibility supports evidence from other labs that questions the long-standing dogma that neurons are often persistently infected because they are not directly recognized by immune cells such as CD8+ T cells. Collectively, these data suggest we reconsider the broader role of neurons in the context of infection and neuroinflammation. Toxoplasma gondii’s tropism for and persistence in the central nervous system (CNS) underlies the symptomatic disease that T. gondii causes in humans. Our recent work has shown that neurons are the primary CNS cell with which Toxoplasma interacts and which it infects in vivo. This predilection for neurons suggests that T. gondii’s persistence in the CNS depends specifically upon parasite manipulation of the host neurons. Yet, most work on T. gondii-host cell interactions has been done in vitro and in nonneuronal cells. We address this gap by utilizing our T. gondii-Cre system that allows permanent marking and tracking of neurons injected with parasite effector proteins in vivo. Using laser capture microdissection (LCM) and RNA sequencing using RNA-seq, we isolated and transcriptionally profiled T. gondii-injected neurons (TINs), Bystander neurons (nearby non-T. gondii-injected neurons), and neurons from uninfected mice (controls). These profiles show that TIN transcriptomes significantly differ from the transcriptomes of Bystander and control neurons and that much of this difference is driven by increased levels of transcripts from immune cells, especially CD8+ T cells and monocytes. These data suggest that when we used LCM to isolate neurons from infected mice, we also picked up fragments of CD8+ T cells and monocytes clustering in extreme proximity around TINs and, to a lesser extent, Bystander neurons. In addition, we found that T. gondii transcripts were primarily found in the TIN transcriptome, not in the Bystander transcriptome. Collectively, these data suggest that, contrary to common perception, neurons that directly interact with or harbor parasites can be recognized by CD8+ T cells. IMPORTANCE Like other persistent intracellular pathogens, Toxoplasma gondii, a protozoan parasite, has evolved to evade the immune system and establish a chronic infection in specific cells and organs, including neurons in the CNS. Understanding T. gondii’s persistence in neurons holds the potential to identify novel, curative drug targets. The work presented here offers new insights into the neuron-T. gondii interaction in vivo. By transcriptionally profiling neurons manipulated by T. gondii, we unexpectedly revealed that immune cells, and specifically CD8+ T cells, appear to cluster around these neurons, suggesting that CD8+ T cells specifically recognize parasite-manipulated neurons. Such a possibility supports evidence from other labs that questions the long-standing dogma that neurons are often persistently infected because they are not directly recognized by immune cells such as CD8+ T cells. Collectively, these data suggest we reconsider the broader role of neurons in the context of infection and neuroinflammation.
Collapse
|
19
|
Salvioni A, Belloy M, Lebourg A, Bassot E, Cantaloube-Ferrieu V, Vasseur V, Blanié S, Liblau RS, Suberbielle E, Robey EA, Blanchard N. Robust Control of a Brain-Persisting Parasite through MHC I Presentation by Infected Neurons. Cell Rep 2020; 27:3254-3268.e8. [PMID: 31189109 DOI: 10.1016/j.celrep.2019.05.051] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 03/03/2019] [Accepted: 05/15/2019] [Indexed: 12/27/2022] Open
Abstract
Control of CNS pathogens by CD8 T cells is key to avoid fatal neuroinflammation. Yet, the modalities of MHC I presentation in the brain are poorly understood. Here, we analyze the antigen presentation mechanisms underlying CD8 T cell-mediated control of the Toxoplasma gondii parasite in the CNS. We show that MHC I presentation of an efficiently processed model antigen (GRA6-OVA), even when not expressed in the bradyzoite stage, reduces cyst burden and dampens encephalitis in C57BL/6 mice. Antigen presentation assays with infected primary neurons reveal a correlation between lower MHC I presentation of tachyzoite antigens by neurons and poor parasite control in vivo. Using conditional MHC I-deficient mice, we find that neuronal MHC I presentation is required for robust restriction of T. gondii in the CNS during chronic phase, showing the importance of MHC I presentation by CNS neurons in the control of a prevalent brain pathogen.
Collapse
Affiliation(s)
- Anna Salvioni
- Center for Pathophysiology Toulouse-Purpan (CPTP), INSERM, CNRS, University of Toulouse, 31024 Toulouse, France
| | - Marcy Belloy
- Center for Pathophysiology Toulouse-Purpan (CPTP), INSERM, CNRS, University of Toulouse, 31024 Toulouse, France
| | - Aurore Lebourg
- Center for Pathophysiology Toulouse-Purpan (CPTP), INSERM, CNRS, University of Toulouse, 31024 Toulouse, France
| | - Emilie Bassot
- Center for Pathophysiology Toulouse-Purpan (CPTP), INSERM, CNRS, University of Toulouse, 31024 Toulouse, France
| | - Vincent Cantaloube-Ferrieu
- Center for Pathophysiology Toulouse-Purpan (CPTP), INSERM, CNRS, University of Toulouse, 31024 Toulouse, France
| | - Virginie Vasseur
- Center for Pathophysiology Toulouse-Purpan (CPTP), INSERM, CNRS, University of Toulouse, 31024 Toulouse, France
| | - Sophie Blanié
- Center for Pathophysiology Toulouse-Purpan (CPTP), INSERM, CNRS, University of Toulouse, 31024 Toulouse, France
| | - Roland S Liblau
- Center for Pathophysiology Toulouse-Purpan (CPTP), INSERM, CNRS, University of Toulouse, 31024 Toulouse, France
| | - Elsa Suberbielle
- Center for Pathophysiology Toulouse-Purpan (CPTP), INSERM, CNRS, University of Toulouse, 31024 Toulouse, France
| | - Ellen A Robey
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Nicolas Blanchard
- Center for Pathophysiology Toulouse-Purpan (CPTP), INSERM, CNRS, University of Toulouse, 31024 Toulouse, France.
| |
Collapse
|
20
|
Nobach D, Müller J, Tappe D, Herden C. Update on immunopathology of bornavirus infections in humans and animals. Adv Virus Res 2020; 107:159-222. [PMID: 32711729 DOI: 10.1016/bs.aivir.2020.06.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Knowledge on bornaviruses has expanded tremendously during the last decade through detection of novel bornaviruses and endogenous bornavirus-like elements in many eukaryote genomes, as well as by confirmation of insectivores as reservoir species for classical Borna disease virus 1 (BoDV-1). The most intriguing finding was the demonstration of the zoonotic potential of lethal human bornavirus infections caused by a novel bornavirus of different squirrel species (variegated squirrel 1 bornavirus, VSBV-1) and by BoDV-1 known as the causative agent for the classical Borna disease in horses and sheep. Whereas a T cell-mediated immunopathology has already been confirmed as key disease mechanism for infection with BoDV-1 by experimental studies in rodents, the underlying pathomechanisms remain less clear for human bornavirus infections, infection with other bornaviruses or infection of reservoir species. Thus, an overview of current knowledge on the pathogenesis of bornavirus infections focusing on immunopathology is given.
Collapse
Affiliation(s)
- Daniel Nobach
- Institute of Veterinary Pathology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Jana Müller
- Institute of Veterinary Pathology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Dennis Tappe
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Christiane Herden
- Institute of Veterinary Pathology, Justus-Liebig-University Giessen, Giessen, Germany; Center for Brain, Mind and Behavior, Justus-Liebig-University Giessen, Giessen, Germany.
| |
Collapse
|
21
|
Moseman EA, Blanchard AC, Nayak D, McGavern DB. T cell engagement of cross-presenting microglia protects the brain from a nasal virus infection. Sci Immunol 2020; 5:eabb1817. [PMID: 32503876 PMCID: PMC7416530 DOI: 10.1126/sciimmunol.abb1817] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 04/17/2020] [Indexed: 12/11/2022]
Abstract
The neuroepithelium is a nasal barrier surface populated by olfactory sensory neurons that detect odorants in the airway and convey this information directly to the brain via axon fibers. This barrier surface is especially vulnerable to infection, yet respiratory infections rarely cause fatal encephalitis, suggesting a highly evolved immunological defense. Here, using a mouse model, we sought to understand the mechanism by which innate and adaptive immune cells thwart neuroinvasion by vesicular stomatitis virus (VSV), a potentially lethal virus that uses olfactory sensory neurons to enter the brain after nasal infection. Fate-mapping studies demonstrated that infected central nervous system (CNS) neurons were cleared noncytolytically, yet specific deletion of major histocompatibility complex class I (MHC I) from these neurons unexpectedly had no effect on viral control. Intravital imaging studies of calcium signaling in virus-specific CD8+ T cells revealed instead that brain-resident microglia were the relevant source of viral peptide-MHC I complexes. Microglia were not infected by the virus but were found to cross-present antigen after acquisition from adjacent neurons. Microglia depletion interfered with T cell calcium signaling and antiviral control in the brain after nasal infection. Collectively, these data demonstrate that microglia provide a front-line defense against a neuroinvasive nasal infection by cross-presenting antigen to antiviral T cells that noncytolytically cleanse neurons. Disruptions in this innate defense likely render the brain susceptible to neurotropic viruses like VSV that attempt to enter the CNS via the nose.
Collapse
Affiliation(s)
- E Ashley Moseman
- Viral Immunology and Intravital Imaging Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.
- Department of Immunology, Duke University School of Medicine, Durham, NC, USA
| | - Alexa C Blanchard
- Viral Immunology and Intravital Imaging Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Debasis Nayak
- Discipline of Bioscience and Biomedical Engineering, Indian Institute of Technology Indore, MP, India
| | - Dorian B McGavern
- Viral Immunology and Intravital Imaging Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
22
|
Funk KE, Lotz SK. Assessing the Expression of Major Histocompatibility Complex Class I on Primary Murine Hippocampal Neurons by Flow Cytometry. J Vis Exp 2020. [PMID: 32510500 DOI: 10.3791/61436] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Increasing evidence supports the hypothesis that neuro-immune interactions impact nervous system function in both homeostatic and pathologic conditions. A well-studied function of major histocompatibility complex class I (MHCI) is the presentation of cell-derived peptides to the adaptive immune system, particularly in response to infection. More recently it has been shown that the expression of MHCI molecules on neurons can modulate activity-dependent changes in the synaptic connectivity during normal development and neurologic disorders. The importance of these functions to the brain health supports the need for a sensitive assay that readily detects MHCI expression on neurons. Here we describe a method for primary culture of murine hippocampal neurons and then assessment of MHCI expression by flow cytometric analysis. Murine hippocampus is microdissected from prenatal mouse pups at the embryonic day 18. Tissue is dissociated into a single cell suspension using enzymatic and mechanical techniques, then cultured in a serum-free media that limits growth of non-neuronal cells. After 7 days in vitro, MHCI expression is stimulated by treating cultured cells pharmacologically with beta interferon. MHCI molecules are labeled in situ with a fluorescently tagged antibody, then cells are non-enzymatically dissociated into a single cell suspension. To confirm the neuronal identity, cells are fixed with paraformaldehyde, permeabilized, and labeled with a fluorescently tagged antibody that recognizes neuronal nuclear antigen NeuN. MHCI expression is then quantified on neurons by flow cytometric analysis. Neuronal cultures can easily be manipulated by either genetic modifications or pharmacologic interventions to test specific hypotheses. With slight modifications, these methods can be used to culture other neuronal populations or to assess expression of other proteins of interest.
Collapse
Affiliation(s)
- Kristen E Funk
- Department of Biological Sciences, University of North Carolina at Charlotte;
| | - Sarah K Lotz
- Department of Biological Sciences, University of North Carolina at Charlotte
| |
Collapse
|
23
|
Shaghaghi M, Shahmahmoodi S, Nili A, Abolhassani H, Madani SP, Nejati A, Yousefi M, Kandelousi YM, Irannejad M, Shaghaghi S, Zahraei SM, Mahmoudi S, Gouya MM, Yazdani R, Azizi G, Parvaneh N, Aghamohammadi A. Vaccine-Derived Poliovirus Infection among Patients with Primary Immunodeficiency and Effect of Patient Screening on Disease Outcomes, Iran. Emerg Infect Dis 2020; 25:2005-2012. [PMID: 31625840 PMCID: PMC6810208 DOI: 10.3201/eid2511.190540] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Patients with immunodeficiency-associated vaccine-derived poliovirus (iVDPV) are potential poliovirus reservoirs in the posteradication era that might reintroduce polioviruses into the community. We update the iVDPV registry in Iran by reporting 9 new patients. In addition to national acute flaccid paralysis surveillance, cases were identified by screening nonparalyzed primary immunodeficiency (PID) patients. Overall, 23 iVDPV patients have been identified since 1995. Seven patients (30%) never had paralysis. Poliovirus screening accelerated the iVDPV detection rate in Iran after 2014.The iVDPV infection rate among nonparalyzed patients with adaptive PID was 3.1% (7/224), several folds higher than previous estimates. Severe combined immunodeficiency patients had the highest risk for asymptomatic infection (28.6%) compared with other PIDs. iVDPV2 emergence has decreased after the switch from trivalent to bivalent oral poliovirus vaccine in 2016. However, emergence of iVDPV1 and iVDPV3 continued. Poliovirus screening in PID patients is an essential step in the endgame of polio eradication.
Collapse
|
24
|
Somamoto T, Nakanishi T. Mucosal delivery of fish vaccines: Local and systemic immunity following mucosal immunisations. FISH & SHELLFISH IMMUNOLOGY 2020; 99:199-207. [PMID: 31911291 DOI: 10.1016/j.fsi.2020.01.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 12/09/2019] [Accepted: 01/02/2020] [Indexed: 05/20/2023]
Abstract
The mucosal organs of fishes are directly exposed to their aquatic environment, which is suited to the colonization and growth of microorganisms, and thus these barriers are considered to play an important role in maintaining homeostasis and preventing entry of invasive pathogens. Research on fish mucosal immunity have shown that mucosal organs such as gills, skin, intestines and olfactory organs harbor lymphoid cells, including T and B cells as well as dendritic-like cells. Findings related to immune responses following direct administration of antigens into the mucosal organs could help to shed light upon the development of fish mucosal vaccines. The present review highlights vaccine delivery via mucosal organs, in particular focusing on methods other than those of typical mucosal vaccine platforms, such as oral and immersion vaccines. In addition, we propose the hypothesis that mucosal tissues are important sites for generating cell-mediated immunity following vaccination with extracellular antigens.
Collapse
Affiliation(s)
- Tomonori Somamoto
- Laboratory of Marine Biochemistry, Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Kyushu University, Motooka 744, Fukuoka, 819-0395, Japan.
| | - Teruyuki Nakanishi
- Goto Aquaculture Institute Co., Ltd, Sayama City, Saitama, 350-1332, Japan
| |
Collapse
|
25
|
Liesche F, Ruf V, Zoubaa S, Kaletka G, Rosati M, Rubbenstroth D, Herden C, Goehring L, Wunderlich S, Wachter MF, Rieder G, Lichtmannegger I, Permanetter W, Heckmann JG, Angstwurm K, Neumann B, Märkl B, Haschka S, Niller HH, Schmidt B, Jantsch J, Brochhausen C, Schlottau K, Ebinger A, Hemmer B, Riemenschneider MJ, Herms J, Beer M, Matiasek K, Schlegel J. The neuropathology of fatal encephalomyelitis in human Borna virus infection. Acta Neuropathol 2019; 138:653-665. [PMID: 31346692 PMCID: PMC6778062 DOI: 10.1007/s00401-019-02047-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/18/2019] [Accepted: 07/19/2019] [Indexed: 01/22/2023]
Abstract
After many years of controversy, there is now recent and solid evidence that classical Borna disease virus 1 (BoDV-1) can infect humans. On the basis of six brain autopsies, we provide the first systematic overview on BoDV-1 tissue distribution and the lesion pattern in fatal BoDV-1-induced encephalitis. All brains revealed a non-purulent, lymphocytic sclerosing panencephalomyelitis with detection of BoDV-1-typical eosinophilic, spherical intranuclear Joest–Degen inclusion bodies. While the composition of histopathological changes was constant, the inflammatory distribution pattern varied interindividually, affecting predominantly the basal nuclei in two patients, hippocampus in one patient, whereas two patients showed a more diffuse distribution. By immunohistochemistry and RNA in situ hybridization, BoDV-1 was detected in all examined brain tissue samples. Furthermore, infection of the peripheral nervous system was observed. This study aims at raising awareness to human bornavirus encephalitis as differential diagnosis in lymphocytic sclerosing panencephalomyelitis. A higher attention to human BoDV-1 infection by health professionals may likely increase the detection of more cases and foster a clearer picture of the disease.
Collapse
Affiliation(s)
- Friederike Liesche
- Department of Neuropathology, School of Medicine, Institute of Pathology, Technical University Munich, Trogerstraße 18, 81675, Munich, Germany.
| | - Viktoria Ruf
- Center for Neuropathology and Prion Research, Ludwig-Maximilians-Universitaet München, Munich, Germany
| | - Saida Zoubaa
- Department of Neuropathology, University of Regensburg, Regensburg, Germany
| | - Gwendolyn Kaletka
- Department of Neuropathology, School of Medicine, Institute of Pathology, Technical University Munich, Trogerstraße 18, 81675, Munich, Germany
| | - Marco Rosati
- Section of Clinical and Comparative Neuropathology, Centre for Clinical Veterinary Medicine, Ludwig-Maximilians Universitaet München, Munich, Germany
| | - Dennis Rubbenstroth
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Christiane Herden
- Institute of Veterinary Pathology, Justus Liebig University, Giessen, Germany
| | - Lutz Goehring
- Division of Medicine and Reproduction, Equine Hospital, Ludwig-Maximilians Universitaet München, Munich, Germany
| | - Silke Wunderlich
- Department of Neurology, Klinikum rechts der Isar, School of Medicine, Technical University Munich, Munich, Germany
| | | | - Georg Rieder
- Department of Neurology, Klinikum Traunstein, Traunstein, Germany
| | | | | | - Josef G Heckmann
- Department of Neurology, Municipal Hospital Landshut, Landshut, Germany
| | - Klemens Angstwurm
- Department of Neurology, Regensburg University Hospital, Regensburg, Germany
| | - Bernhard Neumann
- Department of Neurology, Regensburg University Hospital, Regensburg, Germany
| | - Bruno Märkl
- Institute of Pathology, Medical Faculty, Augsburg University, Augsburg, Germany
| | - Stefan Haschka
- Department of Internal Medicine II, Municipal Hospital Landshut, Landshut, Germany
| | - Hans-Helmut Niller
- Institute of Clinical Microbiology and Hygiene, Regensburg University Hospital, Regensburg, Germany
| | - Barbara Schmidt
- Institute of Clinical Microbiology and Hygiene, Regensburg University Hospital, Regensburg, Germany
| | - Jonathan Jantsch
- Institute of Clinical Microbiology and Hygiene, Regensburg University Hospital, Regensburg, Germany
| | | | - Kore Schlottau
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Arnt Ebinger
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Bernhard Hemmer
- Department of Neurology, Klinikum rechts der Isar, School of Medicine, Technical University Munich, Munich, Germany
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| | | | - Jochen Herms
- Center for Neuropathology and Prion Research, Ludwig-Maximilians-Universitaet München, Munich, Germany
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Kaspar Matiasek
- Section of Clinical and Comparative Neuropathology, Centre for Clinical Veterinary Medicine, Ludwig-Maximilians Universitaet München, Munich, Germany
| | - Jürgen Schlegel
- Department of Neuropathology, School of Medicine, Institute of Pathology, Technical University Munich, Trogerstraße 18, 81675, Munich, Germany
| |
Collapse
|
26
|
Krukowski K, Rosi S. The dark side of antiviral T cell responses. Nat Neurosci 2019; 22:1199-1200. [PMID: 31346293 DOI: 10.1038/s41593-019-0454-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Karen Krukowski
- Department of Physical Therapy and Rehabilitation Science, University of California, San Francisco, CA, USA.,Brain and Spinal Injury Center, University of California, San Francisco, San Francisco, CA, USA
| | - Susanna Rosi
- Department of Physical Therapy and Rehabilitation Science, University of California, San Francisco, CA, USA. .,Brain and Spinal Injury Center, University of California, San Francisco, San Francisco, CA, USA. .,Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA. .,Weill Institute for Neuroscience, University of California San Francisco, San Francisco, CA, USA. .,Kavli Institute of Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
27
|
Klein RS, Garber C, Funk KE, Salimi H, Soung A, Kanmogne M, Manivasagam S, Agner S, Cain M. Neuroinflammation During RNA Viral Infections. Annu Rev Immunol 2019; 37:73-95. [PMID: 31026414 PMCID: PMC6731125 DOI: 10.1146/annurev-immunol-042718-041417] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Neurotropic RNA viruses continue to emerge and are increasingly linked to diseases of the central nervous system (CNS) despite viral clearance. Indeed, the overall mortality of viral encephalitis in immunocompetent individuals is low, suggesting efficient mechanisms of virologic control within the CNS. Both immune and neural cells participate in this process, which requires extensive innate immune signaling between resident and infiltrating cells, including microglia and monocytes, that regulate the effector functions of antiviral T and B cells as they gain access to CNS compartments. While these interactions promote viral clearance via mainly neuroprotective mechanisms, they may also promote neuropathology and, in some cases, induce persistent alterations in CNS physiology and function that manifest as neurologic and psychiatric diseases. This review discusses mechanisms of RNA virus clearance and neurotoxicity during viral encephalitis with a focus on the cytokines essential for immune and neural cell inflammatory responses and interactions. Understanding neuroimmune communications in the setting of viral infections is essential for the development of treatments that augment neuroprotective processes while limiting ongoing immunopathological processes that cause ongoing CNS disease.
Collapse
Affiliation(s)
- Robyn S Klein
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA;
- Department of Neuroscience, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Charise Garber
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA;
| | - Kristen E Funk
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA;
| | - Hamid Salimi
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA;
| | - Allison Soung
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA;
| | - Marlene Kanmogne
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA;
| | - Sindhu Manivasagam
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA;
| | - Shannon Agner
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Matthew Cain
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA;
| |
Collapse
|
28
|
Yshii L, Pignolet B, Mauré E, Pierau M, Brunner-Weinzierl M, Hartley O, Bauer J, Liblau R. IFN-γ is a therapeutic target in paraneoplastic cerebellar degeneration. JCI Insight 2019; 4:127001. [PMID: 30944244 DOI: 10.1172/jci.insight.127001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 02/21/2019] [Indexed: 12/18/2022] Open
Abstract
Paraneoplastic neurological disorders result from an autoimmune response against neural self-antigens that are ectopically expressed in neoplastic cells. In paraneoplastic disorders associated to autoantibodies against intracellular proteins, such as paraneoplastic cerebellar degeneration (PCD), current data point to a major role of cell-mediated immunity. In an animal model, in which a neo-self-antigen was expressed in both Purkinje neurons and implanted breast tumor cells, immune checkpoint blockade led to complete tumor control at the expense of cerebellum infiltration by T cells and Purkinje neuron loss, thereby mimicking PCD. Here, we identify 2 potential therapeutic targets expressed by cerebellum-infiltrating T cells in this model, namely α4 integrin and IFN-γ. Mice with PCD were treated with anti-α4 integrin antibodies or neutralizing anti-IFN-γ antibodies at the onset of neurological signs. Although blocking α4 integrin had little or no impact on disease development, treatment using the anti-IFN-γ antibody led to almost complete protection from PCD. These findings strongly suggest that the production of IFN-γ by cerebellum-invading T cells plays a major role in Purkinje neuron death. Our successful preclinical use of neutralizing anti-IFN-γ antibody for the treatment of PCD offers a potentially new therapeutic opportunity for cancer patients at the onset of paraneoplastic neurological disorders.
Collapse
Affiliation(s)
- Lidia Yshii
- Centre de Physiopathologie Toulouse-Purpan (CPTP), Université de Toulouse, CNRS, Inserm, UPS, Toulouse, France
| | - Béatrice Pignolet
- Centre de Physiopathologie Toulouse-Purpan (CPTP), Université de Toulouse, CNRS, Inserm, UPS, Toulouse, France.,Department of Clinical Neurosciences, Toulouse University Hospital, Toulouse, France
| | - Emilie Mauré
- Centre de Physiopathologie Toulouse-Purpan (CPTP), Université de Toulouse, CNRS, Inserm, UPS, Toulouse, France
| | - Mandy Pierau
- Department of Experimental Pediatrics, University Hospital, Otto-von-Guericke University, Magdeburg, Germany
| | - Monika Brunner-Weinzierl
- Department of Experimental Pediatrics, University Hospital, Otto-von-Guericke University, Magdeburg, Germany
| | - Oliver Hartley
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Jan Bauer
- Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Roland Liblau
- Centre de Physiopathologie Toulouse-Purpan (CPTP), Université de Toulouse, CNRS, Inserm, UPS, Toulouse, France
| |
Collapse
|
29
|
Duarte LF, Farías MA, Álvarez DM, Bueno SM, Riedel CA, González PA. Herpes Simplex Virus Type 1 Infection of the Central Nervous System: Insights Into Proposed Interrelationships With Neurodegenerative Disorders. Front Cell Neurosci 2019; 13:46. [PMID: 30863282 PMCID: PMC6399123 DOI: 10.3389/fncel.2019.00046] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 01/30/2019] [Indexed: 12/21/2022] Open
Abstract
Herpes simplex virus type 1 (HSV-1) is highly prevalent in humans and can reach the brain without evident clinical symptoms. Once in the central nervous system (CNS), the virus can either reside in a quiescent latent state in this tissue, or eventually actively lead to severe acute necrotizing encephalitis, which is characterized by exacerbated neuroinflammation and prolonged neuroimmune activation producing a life-threatening disease. Although HSV-1 encephalitis can be treated with antivirals that limit virus replication, neurological sequelae are common and the virus will nevertheless remain for life in the neural tissue. Importantly, there is accumulating evidence that suggests that HSV-1 infection of the brain both, in symptomatic and asymptomatic individuals could lead to neuronal damage and eventually, neurodegenerative disorders. Here, we review and discuss acute and chronic infection of particular brain regions by HSV-1 and how this may affect neuron and cognitive functions in the host. We review potential cellular and molecular mechanisms leading to neurodegeneration, such as protein aggregation, dysregulation of autophagy, oxidative cell damage and apoptosis, among others. Furthermore, we discuss the impact of HSV-1 infection on brain inflammation and its potential relationship with neurodegenerative diseases.
Collapse
Affiliation(s)
- Luisa F Duarte
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Mónica A Farías
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Diana M Álvarez
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Susan M Bueno
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Claudia A Riedel
- Millennium Institute on Immunology and Immunotherapy, Departamento de Biología Celular, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Pablo A González
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
30
|
Lippert J, Young P, Gross C, Meuth SG, Dräger B, Schirmacher A, Heidbreder A. Specific T-cell activation in peripheral blood and cerebrospinal fluid in central disorders of hypersomnolence. Sleep 2018; 42:5185207. [DOI: 10.1093/sleep/zsy223] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Indexed: 12/20/2022] Open
Affiliation(s)
- Julian Lippert
- Institute for Sleep Medicine and Neuromuscular Disorders, University of Muenster, Germany
- Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Peter Young
- Institute for Sleep Medicine and Neuromuscular Disorders, University of Muenster, Germany
| | - Catharina Gross
- Clinic of Neurology with Institute for Translational Neurology, University of Muenster, Germany
| | - Sven G Meuth
- Clinic of Neurology with Institute for Translational Neurology, University of Muenster, Germany
| | - Bianca Dräger
- Institute for Sleep Medicine and Neuromuscular Disorders, University of Muenster, Germany
| | - Anja Schirmacher
- Institute for Sleep Medicine and Neuromuscular Disorders, University of Muenster, Germany
| | - Anna Heidbreder
- Institute for Sleep Medicine and Neuromuscular Disorders, University of Muenster, Germany
| |
Collapse
|
31
|
Di Liberto G, Pantelyushin S, Kreutzfeldt M, Page N, Musardo S, Coras R, Steinbach K, Vincenti I, Klimek B, Lingner T, Salinas G, Lin-Marq N, Staszewski O, Costa Jordão MJ, Wagner I, Egervari K, Mack M, Bellone C, Blümcke I, Prinz M, Pinschewer DD, Merkler D. Neurons under T Cell Attack Coordinate Phagocyte-Mediated Synaptic Stripping. Cell 2018; 175:458-471.e19. [PMID: 30173917 DOI: 10.1016/j.cell.2018.07.049] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 06/11/2018] [Accepted: 07/30/2018] [Indexed: 12/12/2022]
Abstract
Inflammatory disorders of the CNS are frequently accompanied by synaptic loss, which is thought to involve phagocytic microglia and complement components. However, the mechanisms accounting for aberrant synaptic connectivity in the context of CD8+ T cell-driven neuronal damage are poorly understood. Here, we profiled the neuronal translatome in a murine model of encephalitis caused by CD8+ T cells targeting antigenic neurons. Neuronal STAT1 signaling and downstream CCL2 expression were essential for apposition of phagocytes, ensuing synaptic loss and neurological disease. Analogous observations were made in the brains of Rasmussen's encephalitis patients. In this devastating CD8+ T cell-driven autoimmune disease, neuronal STAT1 phosphorylation and CCL2 expression co-clustered with infiltrating CD8+ T cells as well as phagocytes. Taken together, our findings uncover an active role of neurons in coordinating phagocyte-mediated synaptic loss and highlight neuronal STAT1 and CCL2 as critical steps in this process that are amenable to pharmacological interventions.
Collapse
Affiliation(s)
- Giovanni Di Liberto
- Department of Pathology and Immunology, University of Geneva, 1211 Geneva, Switzerland
| | | | - Mario Kreutzfeldt
- Department of Pathology and Immunology, University of Geneva, 1211 Geneva, Switzerland
| | - Nicolas Page
- Department of Pathology and Immunology, University of Geneva, 1211 Geneva, Switzerland
| | - Stefano Musardo
- Department of Basic Neuroscience, University of Geneva, 1205 Geneva, Switzerland
| | - Roland Coras
- Department of Neuropathology, University Hospital Erlangen, 91054 Erlangen, Germany
| | - Karin Steinbach
- Department of Pathology and Immunology, University of Geneva, 1211 Geneva, Switzerland
| | - Ilena Vincenti
- Department of Pathology and Immunology, University of Geneva, 1211 Geneva, Switzerland
| | - Bogna Klimek
- Department of Pathology and Immunology, University of Geneva, 1211 Geneva, Switzerland
| | - Thomas Lingner
- Microarray and Deep-Sequencing Core Facility, Institute for Developmental Biochemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Gabriela Salinas
- Microarray and Deep-Sequencing Core Facility, Institute for Developmental Biochemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Nathalie Lin-Marq
- Division of Clinical Pathology, Geneva University Hospital, 1211 Geneva, Switzerland
| | - Ori Staszewski
- Institute of Neuropathology, Medical Faculty, University of Freiburg, Freiburg, Germany
| | | | - Ingrid Wagner
- Department of Pathology and Immunology, University of Geneva, 1211 Geneva, Switzerland
| | - Kristof Egervari
- Department of Pathology and Immunology, University of Geneva, 1211 Geneva, Switzerland; Division of Clinical Pathology, Geneva University Hospital, 1211 Geneva, Switzerland
| | - Matthias Mack
- Department of Internal Medicine II - Nephrology, Regensburg Center for Interventional Immunology, Regensburg, Germany
| | - Camilla Bellone
- Department of Basic Neuroscience, University of Geneva, 1205 Geneva, Switzerland
| | - Ingmar Blümcke
- Department of Neuropathology, University Hospital Erlangen, 91054 Erlangen, Germany
| | - Marco Prinz
- Institute of Neuropathology, Medical Faculty, University of Freiburg, Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Daniel D Pinschewer
- Department of Biomedicine - Haus Petersplatz, Division of Experimental Virology, University of Basel, Basel, Switzerland
| | - Doron Merkler
- Department of Pathology and Immunology, University of Geneva, 1211 Geneva, Switzerland; Division of Clinical Pathology, Geneva University Hospital, 1211 Geneva, Switzerland.
| |
Collapse
|
32
|
Casanova A, Blatche MC, Ferre CA, Martin H, Gonzalez-Dunia D, Nicu L, Larrieu G. Self-Aligned Functionalization Approach to Order Neuronal Networks at the Single-Cell Level. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:6612-6620. [PMID: 29754481 DOI: 10.1021/acs.langmuir.8b00529] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Despite significant progress, our knowledge of the functioning of the central nervous system still remains scarce to date. A better understanding of its behavior, in either normal or diseased conditions, goes through an increased knowledge of basic mechanisms involved in neuronal function, including at the single-cell level. This has motivated significant efforts for the development of miniaturized sensing devices to monitor neuronal activity with high spatial and signal resolution. One of the main challenges remaining to be addressed in this domain is, however, the ability to create in vitro spatially ordered neuronal networks at low density with a precise control of the cell location to ensure proper monitoring of the activity of a defined set of neurons. Here, we present a novel self-aligned chemical functionalization method, based on a repellant surface with patterned attractive areas, which permits the elaboration of low-density neuronal network down to individual cells with a high control of the soma location and axonal growth. This approach is compatible with complementary metal-oxide-semiconductor line technology at a wafer scale and allows performing the cell culture on packaged chip outside microelectronics facilities. Rat cortical neurons were cultured on such patterned surfaces for over one month and displayed a very high degree of organization in large networks. Indeed, more than 90% of the network nodes were settled by a soma and 100% of the connecting lines were occupied by a neurite, with a very good selectivity (low parasitic cell connections). After optimization, networks composed of 75% of unicellular nodes were obtained, together with a control at the micron scale of the location of the somas. Finally, we demonstrated that the dendritic neuronal growth was guided by the surface functionalization, even when micrometer scale topologies were encountered and we succeeded to control the extension growth along one-dimensional-aligned nanostructures with sub-micrometrical scale precision. This novel approach now opens the way for precise monitoring of neuronal network activity at the single-cell level.
Collapse
Affiliation(s)
- Adrien Casanova
- LAAS-CNRS , Université de Toulouse, CNRS , Toulouse 31031 , France
| | | | - Cécile A Ferre
- Centre de Physiopathologie Toulouse-Purpan, INSERM, CNRS, Université de Toulouse , Toulouse 31024 , France
| | - Hélène Martin
- Centre de Physiopathologie Toulouse-Purpan, INSERM, CNRS, Université de Toulouse , Toulouse 31024 , France
| | - Daniel Gonzalez-Dunia
- Centre de Physiopathologie Toulouse-Purpan, INSERM, CNRS, Université de Toulouse , Toulouse 31024 , France
| | - Liviu Nicu
- LAAS-CNRS , Université de Toulouse, CNRS , Toulouse 31031 , France
| | - Guilhem Larrieu
- LAAS-CNRS , Université de Toulouse, CNRS , Toulouse 31031 , France
| |
Collapse
|
33
|
Flores Saiffe Farías A, Mendizabal AP, Morales JA. An Ontology Systems Approach on Human Brain Expression and Metaproteomics. Front Microbiol 2018; 9:406. [PMID: 29568289 PMCID: PMC5852110 DOI: 10.3389/fmicb.2018.00406] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 02/21/2018] [Indexed: 12/21/2022] Open
Abstract
Research in the last decade has shown growing evidence of the gut microbiota influence on brain physiology. While many mechanisms of this influence have been proposed in animal models, most studies in humans are the result of a pathology-dysbiosis association and very few have related the presence of certain taxa with brain substructures or molecular pathways. In this paper, we associated the functional ontologies in the differential expression of brain substructures from the Allen Brain Atlas database, with those of the metaproteome from the Human Microbiome Project. Our results showed several coherent clustered ontologies where many taxa could influence brain expression and physiology. A detailed analysis of psychobiotics showed specific slim ontologies functionally associated with substructures in the basal ganglia and cerebellar cortex. Some of the most relevant slim ontology groups are related to Ion transport, Membrane potential, Synapse, DNA and RNA metabolism, and Antigen processing, while the most relevant neuropathology found was Parkinson disease. In some of these cases, new hypothetical gut microbiota-brain interaction pathways are proposed.
Collapse
|
34
|
Shaghaghi M, Soleyman-Jahi S, Abolhassani H, Yazdani R, Azizi G, Rezaei N, Barbouche MR, McKinlay MA, Aghamohammadi A. New insights into physiopathology of immunodeficiency-associated vaccine-derived poliovirus infection; systematic review of over 5 decades of data. Vaccine 2018; 36:1711-1719. [PMID: 29478755 DOI: 10.1016/j.vaccine.2018.02.059] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 01/26/2018] [Accepted: 02/15/2018] [Indexed: 12/25/2022]
Abstract
Widespread administration of oral poliovirus vaccine (OPV) has decreased global incidence of poliomyelitis by ≈99.9%. However, the emergence of vaccine-derived polioviruses (VDPVs) is threatening polio-eradication program. Primary immunodeficiency (PID) patients are at higher risks of vaccine-associated paralytic poliomyelitis (VAPP) and prolonged excretion of immunodeficiency-associated VDPV (iVDPV). We searched Embase, Medline, Science direct, Scopus, Web of Science, and CDC and WHO databases by 30 September 2016, for all reports of iVDPV cases. Patient-level data were extracted form eligible studies. Data on immunization coverage and income-level of countries were extracted from WHO/UNICEF and the WORLD BANK databases, respectively. We assessed bivariate associations between immunological, clinical, and virological parameters, and exploited multivariable modeling to identify independent determinants of poliovirus evolution and patients' outcomes. Study protocol was registered with PROSPERO (CRD42016052931). 4329 duplicate-removed titles were screened. A total of 107 iVDPV cases were identified from 68 eligible articles. The majority of cases were from higher income countries with high polio-immunization coverage. 74 (69.81%) patients developed VAPP. Combined immunodeficiency patients showed lower rates of VAPP (p < .001) and infection clearance (p = .02), compared to humoral immunodeficiency patients. The rate of poliovirus genomic evolution was higher at early stages of replication, decreasing over time until reaching a steady state. Independent of replication duration, higher extent (p = .04) and rates (p = .03) of genome divergence contributed to a less likelihood of virus clearance. PID type (p < .001), VAPP occurrence (p = .008), and income-level of country (p = .04) independently influenced patients' survival. With the use of OPV, new iVDPVs will emerge independent of the rate of immunization coverage. Inherent features of PIDs contribute to the clinical course of iVDPV infection and virus evolution. This finding could shed further light on poliomyelitis pathogenesis and iVDPV evolution pattern. It also has implications for public health, the polio eradication effort and the development of effective antiviral interventions.
Collapse
Affiliation(s)
- Mohammadreza Shaghaghi
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran; Network of Immunology in Infections, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Saeed Soleyman-Jahi
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran; Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Hassan Abolhassani
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran; Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Reza Yazdani
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
| | - Gholamreza Azizi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran; Network of Immunology in Infections, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohamed-Ridha Barbouche
- Department of Immunology, Institut Pasteur de Tunis and University Tunis El-Manar, Tunis, Tunisia
| | - Mark A McKinlay
- Center for Vaccine Equity, Task Force for Global Health, Atlanta, GA, United States
| | - Asghar Aghamohammadi
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran.
| |
Collapse
|
35
|
Klein RS, Hunter CA. Protective and Pathological Immunity during Central Nervous System Infections. Immunity 2017; 46:891-909. [PMID: 28636958 PMCID: PMC5662000 DOI: 10.1016/j.immuni.2017.06.012] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 06/05/2017] [Accepted: 06/05/2017] [Indexed: 02/08/2023]
Abstract
The concept of immune privilege of the central nervous system (CNS) has dominated the study of inflammatory processes in the brain. However, clinically relevant models have highlighted that innate pathways limit pathogen invasion of the CNS and adaptive immunity mediates control of many neural infections. As protective responses can result in bystander damage, there are regulatory mechanisms that balance protective and pathological inflammation, but these mechanisms might also allow microbial persistence. The focus of this review is to consider the host-pathogen interactions that influence neurotropic infections and to highlight advances in our understanding of innate and adaptive mechanisms of resistance as key determinants of the outcome of CNS infection. Advances in these areas have broadened our comprehension of how the immune system functions in the brain and can readily overcome immune privilege.
Collapse
Affiliation(s)
- Robyn S Klein
- Departments of Medicine, Pathology and Immunology, Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | - Christopher A Hunter
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
36
|
Nardo G, Trolese MC, Bendotti C. Major Histocompatibility Complex I Expression by Motor Neurons and Its Implication in Amyotrophic Lateral Sclerosis. Front Neurol 2016; 7:89. [PMID: 27379008 PMCID: PMC4904147 DOI: 10.3389/fneur.2016.00089] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 05/30/2016] [Indexed: 12/13/2022] Open
Abstract
Neuronal expression of major histocompatibility complex I (MHCI)-related molecules in adults and during CNS diseases is involved in the synaptic plasticity and axonal regeneration with mechanisms either dependent or independent of their immune functions. Motor neurons are highly responsive in triggering the expression of MHCI molecules during normal aging or following insults and diseases, and this has implications in the synaptic controls, axonal regeneration, and neuromuscular junction stability of these neurons. We recently reported that MHCI and immunoproteasome are strongly activated in spinal motor neurons and their peripheral motor axon in a mouse model of familial amyotrophic lateral sclerosis (ALS) during the course of the disease. This response was prominent in ALS mice with slower disease progression in which the axonal structure and function was better preserved than in fast-progressing mice. This review summarizes and discusses our observations in the light of knowledge about the possible role of MHCI in motor neurons providing additional insight into the pathophysiology of ALS.
Collapse
Affiliation(s)
- Giovanni Nardo
- Laboratory of Molecular Neurobiology, Department of Neuroscience, Mario Negri Institute for Pharmacological Research IRCCS , Milan , Italy
| | - Maria Chiara Trolese
- Laboratory of Molecular Neurobiology, Department of Neuroscience, Mario Negri Institute for Pharmacological Research IRCCS , Milan , Italy
| | - Caterina Bendotti
- Laboratory of Molecular Neurobiology, Department of Neuroscience, Mario Negri Institute for Pharmacological Research IRCCS , Milan , Italy
| |
Collapse
|
37
|
Golombeck KS, Bönte K, Mönig C, van Loo KM, Hartwig M, Schwindt W, Widman G, Lindenau M, Becker AJ, Glatzel M, Elger CE, Wiendl H, Meuth SG, Lohmann H, Gross CC, Melzer N. Evidence of a pathogenic role for CD8(+) T cells in anti-GABAB receptor limbic encephalitis. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2016; 3:e232. [PMID: 27213174 PMCID: PMC4853055 DOI: 10.1212/nxi.0000000000000232] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 03/17/2016] [Indexed: 12/29/2022]
Abstract
OBJECTIVES To characterize the cellular autoimmune response in patients with γ-aminobutyric acid (GABA)B receptor antibody-associated limbic encephalitis (GABAB-R LE). METHODS Patients underwent MRI, extensive neuropsychological assessment, and multiparameter flow cytometry of peripheral blood and CSF. RESULTS We identified a series of 3 cases of nonparaneoplastic GABAB-R LE and one case of paraneoplastic GABAB-R LE associated with small cell lung cancer. All patients exhibited temporal lobe epilepsy, neuropsychological deficits, and MRI findings typical of LE. Absolute numbers of CD19(+) B cells, CD138(+) CD19(+) plasma cells, CD4(+) T cells, activated HLADR(+) CD4(+) T cells, as well as CD8(+) T cells and HLADR(+) CD8(+) T cells did not differ in peripheral blood but were elevated in CSF of patients with GABAB-R LE compared to controls. Augmented absolute numbers of CD138(+) CD19(+) plasma cells and activated HLADR(+) CD8(+) T cells in CSF corresponded to higher overall neuropsychological and memory deficits in patients with GABAB-R LE. A histologic specimen of one patient following selective amygdalohippocampectomy revealed perivascular infiltrates of CD138(+) plasma cells and CD4(+) T cells, whereas cytotoxic CD8(+) T cells were detected within the brain parenchyma in close contact to neurons. CONCLUSION Our data suggest a pathogenic role for CD8(+) T cells in addition to the established role of plasma cell-derived autoantibodies in GABAB-R LE.
Collapse
Affiliation(s)
- Kristin S Golombeck
- Departments of Neurology (K.S.G., K.B., C.M., M.H., H.W., S.G.M., H.L., C.C.G., N.M.) and Clinical Radiology (W.S.), and Institute of Physiology I-Neuropathophysiology (S.G.M.), University of Münster; Departments of Epileptology (G.W., C.E.E.) and Neuropathology (K.M.v.L., A.J.B.), University of Bonn; Epilepsy Center Hamburg (M.L.), Evangelisches Krankenhaus Alsterdorf, Hamburg; and Department of Neuropathology (M.G.), University of Hamburg, Germany
| | - Kathrin Bönte
- Departments of Neurology (K.S.G., K.B., C.M., M.H., H.W., S.G.M., H.L., C.C.G., N.M.) and Clinical Radiology (W.S.), and Institute of Physiology I-Neuropathophysiology (S.G.M.), University of Münster; Departments of Epileptology (G.W., C.E.E.) and Neuropathology (K.M.v.L., A.J.B.), University of Bonn; Epilepsy Center Hamburg (M.L.), Evangelisches Krankenhaus Alsterdorf, Hamburg; and Department of Neuropathology (M.G.), University of Hamburg, Germany
| | - Constanze Mönig
- Departments of Neurology (K.S.G., K.B., C.M., M.H., H.W., S.G.M., H.L., C.C.G., N.M.) and Clinical Radiology (W.S.), and Institute of Physiology I-Neuropathophysiology (S.G.M.), University of Münster; Departments of Epileptology (G.W., C.E.E.) and Neuropathology (K.M.v.L., A.J.B.), University of Bonn; Epilepsy Center Hamburg (M.L.), Evangelisches Krankenhaus Alsterdorf, Hamburg; and Department of Neuropathology (M.G.), University of Hamburg, Germany
| | - Karen M van Loo
- Departments of Neurology (K.S.G., K.B., C.M., M.H., H.W., S.G.M., H.L., C.C.G., N.M.) and Clinical Radiology (W.S.), and Institute of Physiology I-Neuropathophysiology (S.G.M.), University of Münster; Departments of Epileptology (G.W., C.E.E.) and Neuropathology (K.M.v.L., A.J.B.), University of Bonn; Epilepsy Center Hamburg (M.L.), Evangelisches Krankenhaus Alsterdorf, Hamburg; and Department of Neuropathology (M.G.), University of Hamburg, Germany
| | - Marvin Hartwig
- Departments of Neurology (K.S.G., K.B., C.M., M.H., H.W., S.G.M., H.L., C.C.G., N.M.) and Clinical Radiology (W.S.), and Institute of Physiology I-Neuropathophysiology (S.G.M.), University of Münster; Departments of Epileptology (G.W., C.E.E.) and Neuropathology (K.M.v.L., A.J.B.), University of Bonn; Epilepsy Center Hamburg (M.L.), Evangelisches Krankenhaus Alsterdorf, Hamburg; and Department of Neuropathology (M.G.), University of Hamburg, Germany
| | - Wolfram Schwindt
- Departments of Neurology (K.S.G., K.B., C.M., M.H., H.W., S.G.M., H.L., C.C.G., N.M.) and Clinical Radiology (W.S.), and Institute of Physiology I-Neuropathophysiology (S.G.M.), University of Münster; Departments of Epileptology (G.W., C.E.E.) and Neuropathology (K.M.v.L., A.J.B.), University of Bonn; Epilepsy Center Hamburg (M.L.), Evangelisches Krankenhaus Alsterdorf, Hamburg; and Department of Neuropathology (M.G.), University of Hamburg, Germany
| | - Guido Widman
- Departments of Neurology (K.S.G., K.B., C.M., M.H., H.W., S.G.M., H.L., C.C.G., N.M.) and Clinical Radiology (W.S.), and Institute of Physiology I-Neuropathophysiology (S.G.M.), University of Münster; Departments of Epileptology (G.W., C.E.E.) and Neuropathology (K.M.v.L., A.J.B.), University of Bonn; Epilepsy Center Hamburg (M.L.), Evangelisches Krankenhaus Alsterdorf, Hamburg; and Department of Neuropathology (M.G.), University of Hamburg, Germany
| | - Matthias Lindenau
- Departments of Neurology (K.S.G., K.B., C.M., M.H., H.W., S.G.M., H.L., C.C.G., N.M.) and Clinical Radiology (W.S.), and Institute of Physiology I-Neuropathophysiology (S.G.M.), University of Münster; Departments of Epileptology (G.W., C.E.E.) and Neuropathology (K.M.v.L., A.J.B.), University of Bonn; Epilepsy Center Hamburg (M.L.), Evangelisches Krankenhaus Alsterdorf, Hamburg; and Department of Neuropathology (M.G.), University of Hamburg, Germany
| | - Albert J Becker
- Departments of Neurology (K.S.G., K.B., C.M., M.H., H.W., S.G.M., H.L., C.C.G., N.M.) and Clinical Radiology (W.S.), and Institute of Physiology I-Neuropathophysiology (S.G.M.), University of Münster; Departments of Epileptology (G.W., C.E.E.) and Neuropathology (K.M.v.L., A.J.B.), University of Bonn; Epilepsy Center Hamburg (M.L.), Evangelisches Krankenhaus Alsterdorf, Hamburg; and Department of Neuropathology (M.G.), University of Hamburg, Germany
| | - Markus Glatzel
- Departments of Neurology (K.S.G., K.B., C.M., M.H., H.W., S.G.M., H.L., C.C.G., N.M.) and Clinical Radiology (W.S.), and Institute of Physiology I-Neuropathophysiology (S.G.M.), University of Münster; Departments of Epileptology (G.W., C.E.E.) and Neuropathology (K.M.v.L., A.J.B.), University of Bonn; Epilepsy Center Hamburg (M.L.), Evangelisches Krankenhaus Alsterdorf, Hamburg; and Department of Neuropathology (M.G.), University of Hamburg, Germany
| | - Christian E Elger
- Departments of Neurology (K.S.G., K.B., C.M., M.H., H.W., S.G.M., H.L., C.C.G., N.M.) and Clinical Radiology (W.S.), and Institute of Physiology I-Neuropathophysiology (S.G.M.), University of Münster; Departments of Epileptology (G.W., C.E.E.) and Neuropathology (K.M.v.L., A.J.B.), University of Bonn; Epilepsy Center Hamburg (M.L.), Evangelisches Krankenhaus Alsterdorf, Hamburg; and Department of Neuropathology (M.G.), University of Hamburg, Germany
| | - Heinz Wiendl
- Departments of Neurology (K.S.G., K.B., C.M., M.H., H.W., S.G.M., H.L., C.C.G., N.M.) and Clinical Radiology (W.S.), and Institute of Physiology I-Neuropathophysiology (S.G.M.), University of Münster; Departments of Epileptology (G.W., C.E.E.) and Neuropathology (K.M.v.L., A.J.B.), University of Bonn; Epilepsy Center Hamburg (M.L.), Evangelisches Krankenhaus Alsterdorf, Hamburg; and Department of Neuropathology (M.G.), University of Hamburg, Germany
| | - Sven G Meuth
- Departments of Neurology (K.S.G., K.B., C.M., M.H., H.W., S.G.M., H.L., C.C.G., N.M.) and Clinical Radiology (W.S.), and Institute of Physiology I-Neuropathophysiology (S.G.M.), University of Münster; Departments of Epileptology (G.W., C.E.E.) and Neuropathology (K.M.v.L., A.J.B.), University of Bonn; Epilepsy Center Hamburg (M.L.), Evangelisches Krankenhaus Alsterdorf, Hamburg; and Department of Neuropathology (M.G.), University of Hamburg, Germany
| | - Hubertus Lohmann
- Departments of Neurology (K.S.G., K.B., C.M., M.H., H.W., S.G.M., H.L., C.C.G., N.M.) and Clinical Radiology (W.S.), and Institute of Physiology I-Neuropathophysiology (S.G.M.), University of Münster; Departments of Epileptology (G.W., C.E.E.) and Neuropathology (K.M.v.L., A.J.B.), University of Bonn; Epilepsy Center Hamburg (M.L.), Evangelisches Krankenhaus Alsterdorf, Hamburg; and Department of Neuropathology (M.G.), University of Hamburg, Germany
| | - Catharina C Gross
- Departments of Neurology (K.S.G., K.B., C.M., M.H., H.W., S.G.M., H.L., C.C.G., N.M.) and Clinical Radiology (W.S.), and Institute of Physiology I-Neuropathophysiology (S.G.M.), University of Münster; Departments of Epileptology (G.W., C.E.E.) and Neuropathology (K.M.v.L., A.J.B.), University of Bonn; Epilepsy Center Hamburg (M.L.), Evangelisches Krankenhaus Alsterdorf, Hamburg; and Department of Neuropathology (M.G.), University of Hamburg, Germany
| | - Nico Melzer
- Departments of Neurology (K.S.G., K.B., C.M., M.H., H.W., S.G.M., H.L., C.C.G., N.M.) and Clinical Radiology (W.S.), and Institute of Physiology I-Neuropathophysiology (S.G.M.), University of Münster; Departments of Epileptology (G.W., C.E.E.) and Neuropathology (K.M.v.L., A.J.B.), University of Bonn; Epilepsy Center Hamburg (M.L.), Evangelisches Krankenhaus Alsterdorf, Hamburg; and Department of Neuropathology (M.G.), University of Hamburg, Germany
| |
Collapse
|
38
|
Immune Responses to Viruses in the CNS. ENCYCLOPEDIA OF IMMUNOBIOLOGY 2016. [PMCID: PMC7151986 DOI: 10.1016/b978-0-12-374279-7.14022-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
For recovery from infection, the immune response in the central nervous system (CNS) must eliminate or control virus replication without destroying nonrenewable, essential cells. Thus, upon intracellular virus detection, the infected cell must initiate clearance pathways without triggering neuronal cell death. As a result, the inflammatory response must be tightly regulated and unique mechanisms contribute to the immune response in the CNS. Early restriction of virus replication is accomplished by the innate immune response upon activation of pattern recognition receptors in resident cells. Infiltrating immune cells enter from the periphery to clear virus. Antibodies and interferon-γ are primary contributors to noncytolytic clearance of virus in the CNS. Lymphocytes are retained in the CNS after the acute phase of infection presumably to block reactivation of virus replication.
Collapse
|
39
|
Amorim JH, dos Santos Alves RP, Bizerra R, Araújo Pereira S, Ramos Pereira L, Nascimento Fabris DL, Santos RA, Romano CM, de Souza Ferreira LC. Antibodies are not required to a protective immune response against dengue virus elicited in a mouse encephalitis model. Virology 2015; 487:41-9. [PMID: 26496698 DOI: 10.1016/j.virol.2015.10.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 09/28/2015] [Accepted: 10/05/2015] [Indexed: 10/22/2022]
Abstract
Generating neutralizing antibodies have been considered a prerequisite to control dengue virus (DENV) infection. However, T lymphocytes have also been shown to be important in a protective immune state. In order to investigate the contribution of both humoral and cellular immune responses in DENV immunity, we used an experimental model in which a non-lethal DENV2 strain (ACS46) is used to intracranially prime Balb/C mice which develop protective immunity against a lethal DENV2 strain (JHA1). Primed mice generated envelope-specific antibodies and CD8(+) T cell responses targeting mainly non-structural proteins. Immune sera from protected mice did not confer passive protection to naïve mice challenged with the JHA1 strain. In contrast, depletion of CD4(+) and CD8(+) T lymphocytes significantly reduced survival of ACS46-primed mice challenged with the JHA1 strain. Collectively, results presented in this study show that a cellular immune response targeting non-structural proteins are a promising way in vaccine development against dengue.
Collapse
Affiliation(s)
- Jaime Henrique Amorim
- Laboratório de Desenvolvimento de Vacinas, Departamento de Microbiologia, Universidade de São Paulo, Brasil.
| | | | - Raíza Bizerra
- Laboratório de Desenvolvimento de Vacinas, Departamento de Microbiologia, Universidade de São Paulo, Brasil
| | - Sara Araújo Pereira
- Laboratório de Desenvolvimento de Vacinas, Departamento de Microbiologia, Universidade de São Paulo, Brasil
| | - Lennon Ramos Pereira
- Laboratório de Desenvolvimento de Vacinas, Departamento de Microbiologia, Universidade de São Paulo, Brasil
| | | | - Robert Andreata Santos
- Laboratório de Desenvolvimento de Vacinas, Departamento de Microbiologia, Universidade de São Paulo, Brasil
| | - Camila Malta Romano
- Instituto de Medicina Tropical de São Paulo e Faculdade de Medicina, Departamento de Moléstias Infecciosas e Parasitárias (LIMHC), Universidade de São Paulo, Brasil
| | | |
Collapse
|
40
|
Lack of Major Histocompatibility Complex Class I Upregulation and Restrictive Infection by JC Virus Hamper Detection of Neurons by T Lymphocytes in the Central Nervous System. J Neuropathol Exp Neurol 2015; 74:791-803. [PMID: 26115192 DOI: 10.1097/nen.0000000000000218] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The human polyomavirus JC (JCV) infects glial cells in immunosuppressed individuals, leading to progressive multifocal leukoencephalopathy. Polyomavirus JC can also infect neurons in patients with JCV granule cell neuronopathy and JCV encephalopathy. CD8-positive T cells play a crucial role in viral containment and outcome in progressive multifocal leukoencephalopathy, but whether CD8-positive T cells can also recognize JCV-infected neurons is unclear. We used immunohistochemistry to determine the prevalence of T cells in neuron-rich areas of archival brain samples from 77 patients with JCV CNS infections and 94 control subjects. Neurons predominantly sustained a restrictive infection with expression of JCV regulatory protein T antigen (T Ag), whereas glial cells were productively infected and expressed both T Ag and the capsid protein VP1. T cells were more prevalent near JCV-infected cells with intact nuclei expressing both T Ag and VP1 compared with those expressing either protein alone. CD8-positive T cells also colocalized more with JCV-infected glial cells than with JCV-infected neurons. Major histocompatibility complex class I expression was upregulated in JCV-infected areas but could only be detected in rare neurons interspersed with infected glial cells. These results suggest that isolated neurons harboring restrictive JCV infection do not upregulate major histocompatibility complex class I and thus may escape recognition by CD8-positive T cells.
Collapse
|
41
|
Yshii L, Gebauer C, Bernard-Valnet R, Liblau R. Neurons and T cells: Understanding this interaction for inflammatory neurological diseases. Eur J Immunol 2015; 45:2712-20. [DOI: 10.1002/eji.201545759] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 08/26/2015] [Accepted: 09/02/2015] [Indexed: 12/24/2022]
Affiliation(s)
- Lidia Yshii
- INSERM U1043 - CNRS UMR 5282; Centre de Physiopathologie Toulouse-Purpan; Toulouse France
- Université Toulouse III; Toulouse France
- Institute of Biomedical Sciences I; University of Sao Paulo; Sao Paulo Brazil
| | - Christina Gebauer
- INSERM U1043 - CNRS UMR 5282; Centre de Physiopathologie Toulouse-Purpan; Toulouse France
- Université Toulouse III; Toulouse France
| | - Raphaël Bernard-Valnet
- INSERM U1043 - CNRS UMR 5282; Centre de Physiopathologie Toulouse-Purpan; Toulouse France
- Université Toulouse III; Toulouse France
| | - Roland Liblau
- INSERM U1043 - CNRS UMR 5282; Centre de Physiopathologie Toulouse-Purpan; Toulouse France
- Université Toulouse III; Toulouse France
| |
Collapse
|
42
|
Martin-Blondel G, Pignolet B, Liblau RS. [Migration and pathogenicity of CD8 T cells in central nervous system diseases]. Med Sci (Paris) 2015; 31:748-55. [PMID: 26340834 DOI: 10.1051/medsci/20153108013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The implication of CD8 T cells in infectious and inflammatory diseases of the central nervous system has received increasing attention. CD8 T cells are crucial players of the adaptive immune system against neurotropic infections, but can also trigger tissue damage. Here we review the molecular mechanisms used by CD8 T cells to migrate into the central nervous system, and describe diseases that imply CD8 T cell-mediated pathogenicity. We also suggest therapeutic strategies targeting this population.
Collapse
Affiliation(s)
- Guillaume Martin-Blondel
- Département des maladies infectieuses et tropicales, hôpital universitaire de Toulouse, France - Inserm U1043, CNRS UMR 5282, centre de physiopathologie Toulouse-Purpan, hôpital Purpan, place du Docteur Baylac, 31024 Toulouse, France - Université Toulouse III, Toulouse, F-31000, France
| | - Béatrice Pignolet
- Inserm U1043, CNRS UMR 5282, centre de physiopathologie Toulouse-Purpan, hôpital Purpan, place du Docteur Baylac, 31024 Toulouse, France - Département des neurosciences, hôpital universitaire de Toulouse, France
| | - Roland S Liblau
- Inserm U1043, CNRS UMR 5282, centre de physiopathologie Toulouse-Purpan, hôpital Purpan, place du Docteur Baylac, 31024 Toulouse, France - Université Toulouse III, Toulouse, F-31000, France
| |
Collapse
|
43
|
Melzer N, Budde T, Stork O, Meuth SG. Limbic Encephalitis: Potential Impact of Adaptive Autoimmune Inflammation on Neuronal Circuits of the Amygdala. Front Neurol 2015; 6:171. [PMID: 26284026 PMCID: PMC4522870 DOI: 10.3389/fneur.2015.00171] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 07/20/2015] [Indexed: 12/31/2022] Open
Abstract
Limbic encephalitis is characterized by adaptive autoimmune inflammation of the gray matter structures of the limbic system. It has recently been identified as a major cause of temporal lobe epilepsy accompanied by progressive declarative – mainly episodic – memory disturbance as well as a variety of rather poorly defined emotional and behavioral changes. While autoimmune inflammation of the hippocampus is likely to be responsible for declarative memory disturbance, consequences of autoimmune inflammation of the amygdala are largely unknown. The amygdala is central for the generation of adequate homoeostatic behavioral responses to emotionally significant external stimuli following processing in a variety of parallel neuronal circuits. Here, we hypothesize that adaptive cellular and humoral autoimmunity may target and modulate distinct inhibitory or excitatory neuronal networks within the amygdala, and thereby strongly impact processing of emotional stimuli and corresponding behavioral responses. This may explain some of the rather poorly understood neuropsychiatric symptoms in limbic encephalitis.
Collapse
Affiliation(s)
- Nico Melzer
- Department of Neurology, University of Münster , Münster , Germany
| | - Thomas Budde
- Institute of Physiology I, University of Münster , Münster , Germany
| | - Oliver Stork
- Department of Genetics and Molecular Neurobiology, Institute of Biology, Otto-von-Guericke University Magdeburg , Magdeburg , Germany
| | - Sven G Meuth
- Department of Neurology, University of Münster , Münster , Germany ; Department of Neuropathophysiology, Institute of Physiology I, University of Münster , Münster , Germany
| |
Collapse
|
44
|
Ehling P, Melzer N, Budde T, Meuth SG. CD8(+) T Cell-Mediated Neuronal Dysfunction and Degeneration in Limbic Encephalitis. Front Neurol 2015; 6:163. [PMID: 26236280 PMCID: PMC4502349 DOI: 10.3389/fneur.2015.00163] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 07/02/2015] [Indexed: 12/31/2022] Open
Abstract
Autoimmune inflammation of the limbic gray matter structures of the human brain has recently been identified as major cause of mesial temporal lobe epilepsy with interictal temporal epileptiform activity and slowing of the electroencephalogram, progressive memory disturbances, as well as a variety of other behavioral, emotional, and cognitive changes. Magnetic resonance imaging exhibits volume and signal changes of the amygdala and hippocampus, and specific anti-neuronal antibodies binding to either intracellular or plasma membrane neuronal antigens can be detected in serum and cerebrospinal fluid. While effects of plasma cell-derived antibodies on neuronal function and integrity are increasingly becoming characterized, potentially contributing effects of T cell-mediated immune mechanisms remain poorly understood. CD8+ T cells are known to directly interact with major histocompatibility complex class I-expressing neurons in an antigen-specific manner. Here, we summarize current knowledge on how such direct CD8+ T cell–neuron interactions may impact neuronal excitability, plasticity, and integrity on a single cell and network level and provide an overview on methods to further corroborate the in vivo relevance of these mechanisms mainly obtained from in vitro studies.
Collapse
Affiliation(s)
- Petra Ehling
- Department of Neurology, Westfälische Wilhelms-University of Münster , Münster , Germany ; Institute of Physiology I - Neuropathophysiology, Westfälische Wilhelms-University , Münster , Germany
| | - Nico Melzer
- Department of Neurology, Westfälische Wilhelms-University of Münster , Münster , Germany
| | - Thomas Budde
- Institute of Physiology I, Westfälische Wilhelms-University , Münster , Germany
| | - Sven G Meuth
- Department of Neurology, Westfälische Wilhelms-University of Münster , Münster , Germany ; Institute of Physiology I - Neuropathophysiology, Westfälische Wilhelms-University , Münster , Germany
| |
Collapse
|
45
|
Abstract
Type 1 narcolepsy is a sleep disorder characterized by excessive daytime sleepiness with unintentional sleep attacks and cataplexy. The disorder is caused by a loss of hypocretinergic neurons in the brain. The specific loss of these neurons in narcolepsy is thought to result from an autoimmune attack, and this is supported by evidence of both environmental and genetic factors pointing toward an involvement of the immune system. However, definitive proof of an autoimmune etiology is still missing. Several different immune-mediated disorders targeting neurons are known, and many of these are believed to be caused by autoreactive CD8(+) T cells. In this paper, we review the current knowledge on CD8(+) T cell-mediated neuronal damage on the basis of our understanding of other autoimmune disorders and experimental studies. We identify major histocompatibility complex class I presentation of autoantigens on neurons as a possible mechanism in the development of the disease, and propose T cell-mediated pathogenesis, with cytotoxic CD8(+) T cells targeting the hypocretinergic neurons, as a central element.
Collapse
Affiliation(s)
- Matilda Degn
- Department of Diagnostics, Molecular Sleep Laboratory, Rigshospitalet Glostrup, Glostrup, Denmark
| | - Birgitte Rahbek Kornum
- Department of Diagnostics, Molecular Sleep Laboratory, Rigshospitalet Glostrup, Glostrup, Denmark.,Department of Neurophysiology, Danish Center for Sleep Medicine, Rigshospitalet Glostrup, Glostrup, Denmark
| |
Collapse
|
46
|
Mycobacterium tuberculosis
infection of the ‘non‐classical immune cell’. Immunol Cell Biol 2015; 93:789-95. [PMID: 25801479 DOI: 10.1038/icb.2015.43] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 03/02/2015] [Accepted: 03/18/2015] [Indexed: 01/29/2023]
|
47
|
Borna disease virus phosphoprotein modulates epigenetic signaling in neurons to control viral replication. J Virol 2015; 89:5996-6008. [PMID: 25810554 DOI: 10.1128/jvi.00454-15] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 03/17/2015] [Indexed: 01/08/2023] Open
Abstract
UNLABELLED Understanding the modalities of interaction of neurotropic viruses with their target cells represents a major challenge that may improve our knowledge of many human neurological disorders for which viral origin is suspected. Borna disease virus (BDV) represents an ideal model to analyze the molecular mechanisms of viral persistence in neurons and its consequences for neuronal homeostasis. It is now established that BDV ensures its long-term maintenance in infected cells through a stable interaction of viral components with the host cell chromatin, in particular, with core histones. This has led to our hypothesis that such an interaction may trigger epigenetic changes in the host cell. Here, we focused on histone acetylation, which plays key roles in epigenetic regulation of gene expression, notably for neurons. We performed a comparative analysis of histone acetylation patterns of neurons infected or not infected by BDV, which revealed that infection decreases histone acetylation on selected lysine residues. We showed that the BDV phosphoprotein (P) is responsible for these perturbations, even when it is expressed alone independently of the viral context, and that this action depends on its phosphorylation by protein kinase C. We also demonstrated that BDV P inhibits cellular histone acetyltransferase activities. Finally, by pharmacologically manipulating cellular acetylation levels, we observed that inhibiting cellular acetyl transferases reduces viral replication in cell culture. Our findings reveal that manipulation of cellular epigenetics by BDV could be a means to modulate viral replication and thus illustrate a fascinating example of virus-host cell interaction. IMPORTANCE Persistent DNA viruses often subvert the mechanisms that regulate cellular chromatin dynamics, thereby benefitting from the resulting epigenetic changes to create a favorable milieu for their latent and persistent states. Here, we reasoned that Borna disease virus (BDV), the only RNA virus known to durably persist in the nucleus of infected cells, notably neurons, might employ a similar mechanism. In this study, we uncovered a novel modality of virus-cell interaction in which BDV phosphoprotein inhibits cellular histone acetylation by interfering with histone acetyltransferase activities. Manipulation of cellular histone acetylation is accompanied by a modulation of viral replication, revealing a perfect adaptation of this "ancient" virus to its host that may favor neuronal persistence and limit cellular damage.
Collapse
|
48
|
Antigen dependently activated cluster of differentiation 8-positive T cells cause perforin-mediated neurotoxicity in experimental stroke. J Neurosci 2015; 34:16784-95. [PMID: 25505331 DOI: 10.1523/jneurosci.1867-14.2014] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Neuroinflammation plays a key role in secondary brain damage after stroke. Although deleterious effects of proinflammatory cytokines are well characterized, direct cytotoxic effects of invading immune cells on the ischemic brain and the importance of their antigen-dependent activation are essentially unknown. Here we examined the effects of adaptive and innate immune cells-cytotoxic T lymphocytes (CTLs) and natural killer (NK) cells-that share the direct perforin-mediated cytotoxic pathway on outcome after cerebral ischemia in mice. Although CTLs and NK cells both invaded the ischemic brain, only brain-infiltrating CTLs but not NK cells were more activated than their splenic counterparts. Depletion of CTLs decreased infarct volumes and behavioral deficit in two ischemia models, whereas NK cell depletion had no effect. Correspondingly, adoptive CTL transfer from wild-type into Rag1 knock-out mice increased infarct size. Adoptive CTL transfer from perforin knock-out or interferon-γ knock-out mice into Rag1 knock-out mice revealed that CTL neurotoxicity was mediated by perforin. Accordingly, CTLs isolated from wild-type or interferon-γ knock-out but not from perforin knock-out mice induced neuronal cell death in vitro. CTLs derived from ovalbumin-specific T-cell receptor transgenic mice were not activated and infiltrated less into the ischemic brain compared with wild-type CTLs. Their transfer did not increase the infarct size of Rag1 knock-out mice, indicating antigen-dependent activation as an essential component of CTL neurotoxicity. Our findings underscore the importance of antigen-dependent, direct cytotoxic immune responses in stroke and suggest modulation of CTLs and their effector pathways as a potential new strategy for stroke therapy.
Collapse
|
49
|
Cebrián C, Loike JD, Sulzer D. Neuronal MHC-I expression and its implications in synaptic function, axonal regeneration and Parkinson's and other brain diseases. Front Neuroanat 2014; 8:114. [PMID: 25352786 PMCID: PMC4195363 DOI: 10.3389/fnana.2014.00114] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 09/23/2014] [Indexed: 11/28/2022] Open
Abstract
Neuronal expression of major histocompatibility complex I (MHC-I) has been implicated in developmental synaptic plasticity and axonal regeneration in the central nervous system (CNS), but recent findings demonstrate that constitutive neuronal MHC-I can also be involved in neurodegenerative diseases by playing a neuroinflammtory role. Recent reports demonstrate its expression in vitro and in human postmortem samples and support a role in neurodegeneration involving proinflammatory cytokines, activated microglia and increased cytosolic oxidative stress. Major histocompatibility complex I may be important for both normal development and pathogenesis of some CNS diseases including Parkinson's.
Collapse
Affiliation(s)
- Carolina Cebrián
- Department of Neurology, Columbia University Medical CenterNew York, NY, USA
| | - John D. Loike
- Department of Physiology and Cellular Biophysics, Columbia University Medical CenterNew York, NY, USA
| | - David Sulzer
- Department of Neurology, Columbia University Medical CenterNew York, NY, USA
- Departments of Psychiatry and Pharmacology, Columbia University Medical CenterNew York, NY, USA
| |
Collapse
|
50
|
Spatola M, Du Pasquier RA. Immune system's role in viral encephalitis. Rev Neurol (Paris) 2014; 170:577-83. [PMID: 25189678 DOI: 10.1016/j.neurol.2014.07.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 07/25/2014] [Indexed: 10/24/2022]
Abstract
Viral infections can be a major thread for the central nervous system (CNS), therefore, the immune system must be able to mount a highly proportionate immune response, not too weak, which would allow the virus to proliferate, but not too strong either, to avoid collateral damages. Here, we aim at reviewing the immunological mechanisms involved in the host defense in viral CNS infections. First, we review the specificities of the innate as well as the adaptive immune responses in the CNS, using several examples of various viral encephalitis. Then, we focus on three different modes of interactions between viruses and immune responses, namely human Herpes virus-1 encephalitis with the defect in innate immune response which favors this disease; JC virus-caused progressive multifocal leukoencephalopathy and the crucial role of adaptive immune response in this example; and finally, HIV infection with the accompanying low grade chronic inflammation in the CNS in some patients, which may be an explanation for the presence of cognitive disorders, even in some well-treated HIV-infected patients. We also emphasize that, although the immune response is generally associated with viral replication control and limited cellular death, an exaggerated inflammatory reaction can lead to tissue damage and can be detrimental for the host, a feature of the immune reconstitution inflammatory syndrome (IRIS). We will briefly address the indication of steroids in this situation.
Collapse
Affiliation(s)
- M Spatola
- Service of Neurology, BH.10.131, Bugnon 44, 1010 Lausanne, Switzerland
| | - R A Du Pasquier
- Service of Neurology, BH.10.131, Bugnon 44, 1010 Lausanne, Switzerland; Laboratory of neuro-immunology, Centre of clinical neurosciences, Department of Clinical Neurosciences, University Hospital of Lausanne (CHUV), rue du Bugnon 46, 1011 Lausanne, Switzerland.
| |
Collapse
|