1
|
Kalalah AA, Koenig SSK, Feng P, Bosilevac JM, Bono JL, Eppinger M. Pathogenomes of Shiga Toxin Positive and Negative Escherichia coli O157:H7 Strains TT12A and TT12B: Comprehensive Phylogenomic Analysis Using Closed Genomes. Microorganisms 2024; 12:699. [PMID: 38674643 PMCID: PMC11052207 DOI: 10.3390/microorganisms12040699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 03/18/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
Shiga toxin-producing Escherichia coli are zoonotic pathogens that cause food-borne human disease. Among these, the O157:H7 serotype has evolved from an enteropathogenic O55:H7 ancestor through the displacement of the somatic gene cluster and recurrent toxigenic conversion by Shiga toxin-converting bacteriophages. However, atypical strains that lack the Shiga toxin, the characteristic virulence hallmark, are circulating in this lineage. For this study, we analyzed the pathogenome and virulence inventories of the stx+ strain, TT12A, isolated from a patient with hemorrhagic colitis, and its respective co-isolated stx- strain, TT12B. Sequencing the genomes to closure proved critical to the cataloguing of subtle strain differentiating sequence and structural polymorphisms at a high-level of phylogenetic accuracy and resolution. Phylogenomic profiling revealed SNP and MLST profiles similar to the near clonal outbreak isolates. Their prophage inventories, however, were notably different. The attenuated atypical non-shigatoxigenic status of TT12B is explained by the absence of both the ΦStx1a- and ΦStx2a-prophages carried by TT12A, and we also recorded further alterations in the non-Stx prophage complement. Phenotypic characterization indicated that culture growth was directly impacted by the strains' distinct lytic phage complement. Altogether, our phylogenomic and phenotypic analyses show that these intimately related isogenic strains are on divergent Stx(+/stx-) evolutionary paths.
Collapse
Affiliation(s)
- Anwar A. Kalalah
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, TX 78249, USA
- South Texas Center for Emerging Infectious Diseases (STCEID), San Antonio, TX 78249, USA
| | - Sara S. K. Koenig
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, TX 78249, USA
- South Texas Center for Emerging Infectious Diseases (STCEID), San Antonio, TX 78249, USA
| | - Peter Feng
- U.S. Food and Drug Administration (FDA), College Park, MD 20740, USA
| | - Joseph M. Bosilevac
- U.S. Department of Agriculture (USDA), Agricultural Research Service (ARS), U.S. Meat Animal Research Center, Clay Center, NE 68933, USA
| | - James L. Bono
- U.S. Department of Agriculture (USDA), Agricultural Research Service (ARS), U.S. Meat Animal Research Center, Clay Center, NE 68933, USA
| | - Mark Eppinger
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, TX 78249, USA
- South Texas Center for Emerging Infectious Diseases (STCEID), San Antonio, TX 78249, USA
| |
Collapse
|
2
|
Gong C, Chakraborty D, Koudelka GB. A prophage encoded ribosomal RNA methyltransferase regulates the virulence of Shiga-toxin-producing Escherichia coli (STEC). Nucleic Acids Res 2024; 52:856-871. [PMID: 38084890 PMCID: PMC10810198 DOI: 10.1093/nar/gkad1150] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 11/09/2023] [Accepted: 11/14/2023] [Indexed: 01/26/2024] Open
Abstract
Shiga toxin (Stx) released by Shiga toxin producing Escherichia coli (STEC) causes life-threatening illness. Its production and release require induction of Stx-encoding prophage resident within the STEC genome. We identified two different STEC strains, PA2 and PA8, bearing Stx-encoding prophage whose sequences primarily differ by the position of an IS629 insertion element, yet differ in their abilities to kill eukaryotic cells and whose prophages differ in their spontaneous induction frequencies. The IS629 element in ϕPA2, disrupts an ORF predicted to encode a DNA adenine methyltransferase, whereas in ϕPA8, this element lies in an intergenic region. Introducing a plasmid expressing the methyltransferase gene product into ϕPA2 bearing-strains increases both the prophage spontaneous induction frequency and virulence to those exhibited by ϕPA8 bearing-strains. However, a plasmid bearing mutations predicted to disrupt the putative active site of the methyltransferase does not complement either of these defects. When complexed with a second protein, the methyltransferase holoenzyme preferentially uses 16S rRNA as a substrate. The second subunit is responsible for directing the preferential methylation of rRNA. Together these findings reveal a previously unrecognized role for rRNA methylation in regulating induction of Stx-encoding prophage.
Collapse
Affiliation(s)
- Chen Gong
- Department of Biological Sciences University at Buffalo, Buffalo, NY 14260, USA
| | | | - Gerald B Koudelka
- Department of Biological Sciences University at Buffalo, Buffalo, NY 14260, USA
| |
Collapse
|
3
|
Fang F, Xue Y, Xu X, Fang D, Liu W, Zhong Y, Han J, Li Y, Tao Q, Lu R, Ma C, Kumar A, Wang D. L-glutamine protects against enterohemorrhagic Escherichia coli infection by inhibiting bacterial virulence and enhancing host defense concurrently. Microbiol Spectr 2023; 11:e0097523. [PMID: 37815335 PMCID: PMC10714755 DOI: 10.1128/spectrum.00975-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 08/24/2023] [Indexed: 10/11/2023] Open
Abstract
IMPORTANCE The type 3 secretion system (T3SS) was obtained in many Gram-negative bacterial pathogens, and it is crucial for their pathogenesis. Environmental signals were found to be involved in the expression regulation of T3SS, which was vital for successful bacterial infection in the host. Here, we discovered that L-glutamine (Gln), the most abundant amino acid in the human body, could repress enterohemorrhagic Escherichia coli (EHEC) T3SS expression via nitrogen metabolism and therefore had potential as an antivirulence agent. Our in vitro and in vivo evidence demonstrated that Gln could decline EHEC infection by attenuating bacterial virulence and enhancing host defense simultaneously. We repurpose Gln as a potential treatment for EHEC infection accordingly.
Collapse
Affiliation(s)
- Fang Fang
- Department of Laboratory Medicine, Xiamen Key Laboratory of Perinatal-Neonatal Infection, Women and Children's Hospital, State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedical Laboratory, School of Public Health and School of Medicine, Xiamen University, Xiamen, Fujian Province, China
| | - Yunxin Xue
- Department of Laboratory Medicine, Xiamen Key Laboratory of Perinatal-Neonatal Infection, Women and Children's Hospital, State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedical Laboratory, School of Public Health and School of Medicine, Xiamen University, Xiamen, Fujian Province, China
| | - Xuefang Xu
- State Key Laboratory of Infectious Disease Prevention and Control and National Institute for Communicable Diseases Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, China
| | - Dingli Fang
- Department of Laboratory Medicine, Xiamen Key Laboratory of Perinatal-Neonatal Infection, Women and Children's Hospital, State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedical Laboratory, School of Public Health and School of Medicine, Xiamen University, Xiamen, Fujian Province, China
| | - Weijia Liu
- Department of Laboratory Medicine, Xiamen Key Laboratory of Perinatal-Neonatal Infection, Women and Children's Hospital, State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedical Laboratory, School of Public Health and School of Medicine, Xiamen University, Xiamen, Fujian Province, China
| | - Ying Zhong
- Department of Laboratory Medicine, Xiamen Key Laboratory of Perinatal-Neonatal Infection, Women and Children's Hospital, State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedical Laboratory, School of Public Health and School of Medicine, Xiamen University, Xiamen, Fujian Province, China
| | - Jinping Han
- Department of Laboratory Medicine, Xiamen Key Laboratory of Perinatal-Neonatal Infection, Women and Children's Hospital, State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedical Laboratory, School of Public Health and School of Medicine, Xiamen University, Xiamen, Fujian Province, China
| | - Yunhe Li
- Department of Laboratory Medicine, Xiamen Key Laboratory of Perinatal-Neonatal Infection, Women and Children's Hospital, State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedical Laboratory, School of Public Health and School of Medicine, Xiamen University, Xiamen, Fujian Province, China
| | - Qian Tao
- Department of Pathology, Women and Children's Hospital, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, Fujian Province, China
| | - Rong Lu
- Department of Laboratory Medicine, Xiamen Key Laboratory of Perinatal-Neonatal Infection, Women and Children's Hospital, State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedical Laboratory, School of Public Health and School of Medicine, Xiamen University, Xiamen, Fujian Province, China
| | - Cong Ma
- Department of Nephrology, Lishan Hospital, Anshan Central Hospital, Anshan, Liaoning Province, China
| | | | - Dai Wang
- Department of Laboratory Medicine, Xiamen Key Laboratory of Perinatal-Neonatal Infection, Women and Children's Hospital, State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedical Laboratory, School of Public Health and School of Medicine, Xiamen University, Xiamen, Fujian Province, China
| |
Collapse
|
4
|
Gaougaou G, Vincent AT, Krylova K, Habouria H, Bessaiah H, Baraketi A, Veyrier FJ, Dozois CM, Déziel E, Lacroix M. Adaptive Radioresistance of Enterohemorrhagic Escherichia coli O157:H7 Results in Genomic Loss of Shiga Toxin-Encoding Prophages. Appl Environ Microbiol 2023; 89:e0130622. [PMID: 37014232 PMCID: PMC10132102 DOI: 10.1128/aem.01306-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 03/10/2023] [Indexed: 04/05/2023] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) O157:H7 is a foodborne pathogen producing Shiga toxins (Stx1 and Stx2), which can cause hemorrhagic diarrhea and life-threatening infections. O157:H7 strain EDL933 carries prophages CP-933V and BP-933W, which encode Shiga toxin genes (stx1 and stx2, respectively). The aim of this work was to investigate the mechanisms of adaptive resistance of EHEC strain EDL933 to a typically lethal dose of gamma irradiation (1.5 kGy). Adaptive selection through six passages of exposure to 1.5 kGy resulted in the loss of CP-933V and BP-933W prophages from the genome and mutations within three genes: wrbA, rpoA, and Wt_02639 (molY). Three selected EHEC clones that became irradiation adapted to the 1.5-kGy dose (C1, C2, and C3) demonstrated increased resistance to oxidative stress, sensitivity to acid pH, and decreased cytotoxicity to Vero cells. To confirm that loss of prophages plays a role in increased radioresistance, clones C1 and C2 were exposed to bacteriophage-containing lysates. Although phage BP-933W could lysogenize C1, C2, and E. coli K-12 strain MG1655, it was not found to have integrated into the bacterial chromosome in C1-Φ and C2-Φ lysogens. Interestingly, for the E. coli K-12 lysogen (K-12-Φ), BP-933W DNA had integrated at the wrbA gene (K-12-Φ). Both C1-Φ and C2-Φ lysogens regained sensitivity to oxidative stress, were more effectively killed by a 1.5-kGy gamma irradiation dose, and had regained cytotoxicity and acid resistance phenotypes. Further, the K-12-Φ lysogen became cytotoxic, more sensitive to gamma irradiation and oxidative stress, and slightly more acid resistant. IMPORTANCE Gamma irradiation of food products can provide an effective means of eliminating bacterial pathogens such as enterohemorrhagic Escherichia coli (EHEC) O157:H7, a significant foodborne pathogen that can cause severe disease due to the production of Stx. To decipher the mechanisms of adaptive resistance of the O157:H7 strain EDL933, we evolved clones of this bacterium resistant to a lethal dose of gamma irradiation by repeatedly exposing bacterial cells to irradiation following a growth restoration over six successive passages. Our findings provide evidence that adaptive selection involved modifications in the bacterial genome, including deletion of the CP-933V and BP-933W prophages. These mutations in EHEC O157:H7 resulted in loss of stx1 and stx2, loss of cytotoxicity to epithelial cells, and decreased resistance to acidity, critical virulence determinants of EHEC, concomitant with increased resistance to lethal irradiation and oxidative stress. These findings demonstrate that the potential adaptation of EHEC to high doses of radiation would involve elimination of the Stx-encoding phages and likely lead to a substantial attenuation of virulence.
Collapse
Affiliation(s)
- Ghizlane Gaougaou
- INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, Québec, Canada
- Research Laboratories in Sciences Applied to Food, Canadian Irradiation Centre, INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, Québec, Canada
| | - Antony T. Vincent
- INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, Québec, Canada
| | - Kateryna Krylova
- INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, Québec, Canada
| | - Hajer Habouria
- INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, Québec, Canada
| | - Hicham Bessaiah
- INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, Québec, Canada
| | - Amina Baraketi
- Research Laboratories in Sciences Applied to Food, Canadian Irradiation Centre, INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, Québec, Canada
| | | | - Charles M. Dozois
- INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, Québec, Canada
| | - Eric Déziel
- INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, Québec, Canada
| | - Monique Lacroix
- INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, Québec, Canada
- Research Laboratories in Sciences Applied to Food, Canadian Irradiation Centre, INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, Québec, Canada
| |
Collapse
|
5
|
Im H, Lee JH, Choi SH. Independent Component Analysis Identifies the Modulons Expanding the Transcriptional Regulatory Networks of Enterohemorrhagic Escherichia coli. Front Microbiol 2022; 13:953404. [PMID: 35814713 PMCID: PMC9263587 DOI: 10.3389/fmicb.2022.953404] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 06/06/2022] [Indexed: 01/19/2023] Open
Abstract
The elucidation of the transcriptional regulatory networks (TRNs) of enterohemorrhagic Escherichia coli (EHEC) is critical to understand its pathogenesis and survival in the host. However, the analyses of current TRNs are still limited to comprehensively understand their target genes generally co-regulated under various conditions regardless of the genetic backgrounds. In this study, independent component analysis (ICA), a machine learning-based decomposition method, was used to decompose the large-scale transcriptome data of EHEC into the modulons, which contain the target genes of several TRNs. The locus of enterocyte effacement (LEE) and the Shiga toxin (Stx) modulons mainly consisted of the Ler regulon and the Stx prophage genes, respectively, confirming that ICA properly grouped the co-regulated major virulence genes of EHEC. Further investigation revealed that the LEE modulon contained the hypothetical Z0395 gene as a novel member of the Ler regulon, and the Stx modulon contained the thi and cus locus genes in addition to the Stx prophage genes. Correspondingly, the Stx prophage genes were also regulated by thiamine and copper ions known to control the thi and cus locus genes, respectively. The modulons effectively clustered the genes co-regulated regardless of the growth conditions and the genetic backgrounds of EHEC. The changed activities of the individual modulons successfully explained the differential expressions of the virulence and survival genes during the course of infection in bovines. Altogether, these results suggested that ICA of the large-scale transcriptome data can expand and enhance the current understanding of the TRNs of EHEC.
Collapse
Affiliation(s)
- Hanhyeok Im
- National Research Laboratory of Molecular Microbiology and Toxicology, Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, Seoul National University, Seoul, South Korea
- Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Science, Seoul National University, Seoul, South Korea
| | - Ju-Hoon Lee
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, Seoul National University, Seoul, South Korea
- Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Science, Seoul National University, Seoul, South Korea
- *Correspondence: Ju-Hoon Lee,
| | - Sang Ho Choi
- National Research Laboratory of Molecular Microbiology and Toxicology, Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, Seoul National University, Seoul, South Korea
- Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Science, Seoul National University, Seoul, South Korea
- Sang Ho Choi,
| |
Collapse
|
6
|
Fitzgerald SF, Lupolova N, Shaaban S, Dallman TJ, Greig D, Allison L, Tongue SC, Evans J, Henry MK, McNeilly TN, Bono JL, Gally DL. Genome structural variation in Escherichia coli O157:H7. Microb Genom 2021; 7. [PMID: 34751643 PMCID: PMC8743559 DOI: 10.1099/mgen.0.000682] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The human zoonotic pathogen Escherichia coli O157:H7 is defined by its extensive prophage repertoire including those that encode Shiga toxin, the factor responsible for inducing life-threatening pathology in humans. As well as introducing genes that can contribute to the virulence of a strain, prophage can enable the generation of large-chromosomal rearrangements (LCRs) by homologous recombination. This work examines the types and frequencies of LCRs across the major lineages of the O157:H7 serotype. We demonstrate that LCRs are a major source of genomic variation across all lineages of E. coli O157:H7 and by using both optical mapping and Oxford Nanopore long-read sequencing prove that LCRs are generated in laboratory cultures started from a single colony and that these variants can be recovered from colonized cattle. LCRs are biased towards the terminus region of the genome and are bounded by specific prophages that share large regions of sequence homology associated with the recombinational activity. RNA transcriptional profiling and phenotyping of specific structural variants indicated that important virulence phenotypes such as Shiga-toxin production, type-3 secretion and motility can be affected by LCRs. In summary, E. coli O157:H7 has acquired multiple prophage regions over time that act to continually produce structural variants of the genome. These findings raise important questions about the significance of this prophage-mediated genome contingency to enhance adaptability between environments.
Collapse
Affiliation(s)
- Stephen F Fitzgerald
- Division of Infection and Immunity, The Roslin Institute and R(D)SVS, The University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - Nadejda Lupolova
- Division of Infection and Immunity, The Roslin Institute and R(D)SVS, The University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - Sharif Shaaban
- Division of Infection and Immunity, The Roslin Institute and R(D)SVS, The University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - Timothy J Dallman
- Gastrointestinal Bacterial Reference Unit, 61 Colindale Avenue, Public Health England, NW9 5EQ London, UK
| | - David Greig
- Gastrointestinal Bacterial Reference Unit, 61 Colindale Avenue, Public Health England, NW9 5EQ London, UK
| | - Lesley Allison
- Scottish E. coli O157/VTEC Reference Laboratory, Department of Laboratory Medicine, Royal Infirmary of Edinburgh, 51 Little France Crescent, Edinburgh EH16 4SA, UK
| | - Sue C Tongue
- Epidemiology Research Unit (Inverness), Department of Veterinary and Animal Science, Northern Faculty, Scotland's Rural College (SRUC), Scotland, IV2 5NA, UK
| | - Judith Evans
- Epidemiology Research Unit (Inverness), Department of Veterinary and Animal Science, Northern Faculty, Scotland's Rural College (SRUC), Scotland, IV2 5NA, UK
| | - Madeleine K Henry
- Epidemiology Research Unit (Inverness), Department of Veterinary and Animal Science, Northern Faculty, Scotland's Rural College (SRUC), Scotland, IV2 5NA, UK
| | - Tom N McNeilly
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, EH26 OPZ, UK
| | - James L Bono
- United States Department of Agriculture, Agricultural Research Service, US Meat Animal Research Center, Clay Center, Nebraska, USA
| | - David L Gally
- Division of Infection and Immunity, The Roslin Institute and R(D)SVS, The University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| |
Collapse
|
7
|
Variability in the Occupancy of Escherichia coli O157 Integration Sites by Shiga Toxin-Encoding Prophages. Toxins (Basel) 2021; 13:toxins13070433. [PMID: 34206386 PMCID: PMC8309913 DOI: 10.3390/toxins13070433] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/18/2021] [Accepted: 06/20/2021] [Indexed: 11/17/2022] Open
Abstract
Escherichia coli O157:H7 strains often produce Shiga toxins encoded by genes on lambdoid bacteriophages that insert into multiple loci as prophages. O157 strains were classified into distinct clades that vary in virulence. Herein, we used PCR assays to examine Shiga toxin (Stx) prophage occupancy in yehV, argW, wrbA, and sbcB among 346 O157 strains representing nine clades. Overall, yehV was occupied in most strains (n = 334, 96.5%), followed by wrbA (n = 213, 61.6%), argW (n = 103, 29.8%), and sbcB (n = 93, 26.9%). Twelve occupancy profiles were identified that varied in frequency and differed across clades. Strains belonging to clade 8 were more likely to have occupied sbcB and argW sites compared to other clades (p < 0.0001), while clade 2 strains were more likely to have occupied wrbA sites (p < 0.0001). Clade 8 strains also had more than the expected number of occupied sites based on the presence of stx variants (p < 0.0001). Deletion of a 20 kb non-Stx prophage occupying yehV in a clade 8 strain resulted in an ~18-fold decrease in stx2 expression. These data highlight the complexity of Stx prophage integration and demonstrate that clade 8 strains, which were previously linked to hemolytic uremic syndrome, have unique Stx prophage occupancy profiles that can impact stx2 expression.
Collapse
|
8
|
Rodríguez-Rubio L, Haarmann N, Schwidder M, Muniesa M, Schmidt H. Bacteriophages of Shiga Toxin-Producing Escherichia coli and Their Contribution to Pathogenicity. Pathogens 2021; 10:404. [PMID: 33805526 PMCID: PMC8065619 DOI: 10.3390/pathogens10040404] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/18/2021] [Accepted: 03/24/2021] [Indexed: 12/25/2022] Open
Abstract
Shiga toxins (Stx) of Shiga toxin-producing Escherichia coli (STEC) are generally encoded in the genome of lambdoid bacteriophages, which spend the most time of their life cycle integrated as prophages in specific sites of the bacterial chromosome. Upon spontaneous induction or induction by chemical or physical stimuli, the stx genes are co-transcribed together with the late phase genes of the prophages. After being assembled in the cytoplasm, and after host cell lysis, mature bacteriophage particles are released into the environment, together with Stx. As members of the group of lambdoid phages, Stx phages share many genetic features with the archetypical temperate phage Lambda, but are heterogeneous in their DNA sequences due to frequent recombination events. In addition to Stx phages, the genome of pathogenic STEC bacteria may contain numerous prophages, which are either cryptic or functional. These prophages may carry foreign genes, some of them related to virulence, besides those necessary for the phage life cycle. Since the production of one or more Stx is considered the major pathogenicity factor of STEC, we aim to highlight the new insights on the contribution of Stx phages and other STEC phages to pathogenicity.
Collapse
Affiliation(s)
- Lorena Rodríguez-Rubio
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Diagonal 643, 08028 Barcelona, Spain; (L.R.-R.); (M.M.)
| | - Nadja Haarmann
- Department of Food Microbiology and Hygiene, Institute of Food Science and Biotechnology, University of Hohenheim, 70599 Stuttgart, Germany; (N.H.); (M.S.)
| | - Maike Schwidder
- Department of Food Microbiology and Hygiene, Institute of Food Science and Biotechnology, University of Hohenheim, 70599 Stuttgart, Germany; (N.H.); (M.S.)
| | - Maite Muniesa
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Diagonal 643, 08028 Barcelona, Spain; (L.R.-R.); (M.M.)
| | - Herbert Schmidt
- Department of Food Microbiology and Hygiene, Institute of Food Science and Biotechnology, University of Hohenheim, 70599 Stuttgart, Germany; (N.H.); (M.S.)
| |
Collapse
|
9
|
Mechanisms involved in the adaptation of Escherichia coli O157:H7 to the host intestinal microenvironment. Clin Sci (Lond) 2020; 134:3283-3301. [PMID: 33346356 DOI: 10.1042/cs20200971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 11/24/2020] [Accepted: 12/01/2020] [Indexed: 11/17/2022]
Abstract
Host adaptation of pathogens may increase intra- and interspecies transmission. We showed previously that the passage of a clinically isolated enterohemorrhagic Escherichia coli (EHEC) O157 strain (125/99) through the gastrointestinal tract of mice increases its pathogenicity in the same host. In this work, we aimed to elucidate the underlying mechanism(s) involved in the patho-adaptation of the stool-recovered (125RR) strain. We assessed the global transcription profile by microarray and found almost 100 differentially expressed genes in 125RR strain compared with 125/99 strain. We detected an overexpression of Type Three Secretion System (TTSS) proteins at the mRNA and protein levels and demonstrated increased adhesion to epithelial cell lines for the 125RR strain. Additional key attributes of the 125RR strain were: increased motility on semisolid agar, which correlated with an increased fliC mRNA level; reduced Stx2 production at the mRNA and protein levels; increased survival at pH 2.5, as determined by acid resistance assays. We tested whether the overexpression of the LEE-encoded regulator (ler) in trans in the 125/99 strain could recreate the increased pathogenicity observed in the 125RR strain. As anticipated ler overexpression led to increased expression of TTSS proteins and bacterial adhesion to epithelial cells in vitro but also increased mortality and intestinal colonization in vivo. We conclude that this host-adaptation process required changes in several mechanisms that improved EHEC O157 fitness in the new host. The research highlights some of the bacterial mechanisms required for horizontal transmission of these zoonotic pathogens between their animal and human populations.
Collapse
|
10
|
A Toxic Environment: a Growing Understanding of How Microbial Communities Affect Escherichia coli O157:H7 Shiga Toxin Expression. Appl Environ Microbiol 2020; 86:AEM.00509-20. [PMID: 32358004 DOI: 10.1128/aem.00509-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) strains, including E. coli O157:H7, cause severe illness in humans due to the production of Shiga toxin (Stx) and other virulence factors. Because Stx is coregulated with lambdoid prophage induction, its expression is especially susceptible to environmental cues. Infections with Stx-producing E. coli can be difficult to model due to the wide range of disease outcomes: some infections are relatively mild, while others have serious complications. Probiotic organisms, members of the gut microbiome, and organic acids can depress Stx production, in many cases by inhibiting the growth of EHEC strains. On the other hand, the factors currently known to amplify Stx act via their effect on the stx-converting phage. Here, we characterize two interactive mechanisms that increase Stx production by O157:H7 strains: first, direct interactions with phage-susceptible E. coli, and second, indirect amplification by secreted factors. Infection of susceptible strains by the stx-converting phage can expand the Stx-producing population in a human or animal host, and phage infection has been shown to modulate virulence in vitro and in vivo Acellular factors, particularly colicins and microcins, can kill O157:H7 cells but may also trigger Stx expression in the process. Colicins, microcins, and other bacteriocins have diverse cellular targets, and many such molecules remain uncharacterized. The identification of additional Stx-amplifying microbial interactions will improve our understanding of E. coli O157:H7 infections and help elucidate the intricate regulation of pathogenicity in EHEC strains.
Collapse
|
11
|
Menge C. The Role of Escherichia coli Shiga Toxins in STEC Colonization of Cattle. Toxins (Basel) 2020; 12:toxins12090607. [PMID: 32967277 PMCID: PMC7551371 DOI: 10.3390/toxins12090607] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/16/2020] [Accepted: 09/18/2020] [Indexed: 11/20/2022] Open
Abstract
Many cattle are persistently colonized with Shiga toxin-producing Escherichia coli (STEC) and represent a major source of human infections with human-pathogenic STEC strains (syn. enterohemorrhagic E. coli (EHEC)). Intervention strategies most effectively protecting humans best aim at the limitation of bovine STEC shedding. Mechanisms enabling STEC to persist in cattle are only partialy understood. Cattle were long believed to resist the detrimental effects of Shiga toxins (Stxs), potent cytotoxins acting as principal virulence factors in the pathogenesis of human EHEC-associated diseases. However, work by different groups, summarized in this review, has provided substantial evidence that different types of target cells for Stxs exist in cattle. Peripheral and intestinal lymphocytes express the Stx receptor globotriaosylceramide (Gb3syn. CD77) in vitro and in vivo in an activation-dependent fashion with Stx-binding isoforms expressed predominantly at early stages of the activation process. Subpopulations of colonic epithelial cells and macrophage-like cells, residing in the bovine mucosa in proximity to STEC colonies, are also targeted by Stxs. STEC-inoculated calves are depressed in mounting appropriate cellular immune responses which can be overcome by vaccination of the animals against Stxs early in life before encountering STEC. Considering Stx target cells and the resulting effects of Stxs in cattle, which significantly differ from effects implicated in human disease, may open promising opportunities to improve existing yet insufficient measures to limit STEC carriage and shedding by the principal reservoir host.
Collapse
Affiliation(s)
- Christian Menge
- Friedrich-Loeffler-Institut/Federal Research Institute for Animal Health, Institute of Molecular Pathogenesis, D-07743 Jena, Germany
| |
Collapse
|
12
|
Bloch S, Lewandowska N, Węgrzyn G, Nejman-Faleńczyk B. Bacteriophages as sources of small non-coding RNA molecules. Plasmid 2020; 113:102527. [PMID: 32768406 DOI: 10.1016/j.plasmid.2020.102527] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/19/2020] [Accepted: 07/20/2020] [Indexed: 01/10/2023]
Abstract
Bacteriophages play an essential role in the transferring of genes that contribute to the bacterial virulence and whose products are dangerous to human health. Interestingly, phages carrying virulence genes are mostly temperate and in contrast to lytic phages undergo both lysogenic and lytic cycles. Importantly, expression of the majority of phage genes and subsequent production of phage encoded proteins is suppressed during lysogeny. The expression of the majority of phage genes is tightly linked to lytic development. Among others, small non-coding RNAs (sRNAs) of phage origin are involved in the regulation of phage gene expression and thus play an important role in both phage and host development. In the case of bacteria, sRNAs affect processes such as virulence, colonization ability, motility and cell growth or death. In turn, in the case of phages, they play essential roles during the early stage of infection, maintaining the state of lysogeny and silencing the expression of late structural genes, thereby regulating the transition between phage life cycles. Interestingly, sRNAs have been identified in both lytic and temperate phages and they have been discussed in this work according to this classification. Particular attention was paid to viral sRNAs resembling eukaryotic microRNAs.
Collapse
Affiliation(s)
- Sylwia Bloch
- Laboratory of Molecular Biology, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Kładki 24, 80-822 Gdańsk, Poland
| | - Natalia Lewandowska
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland
| | - Bożena Nejman-Faleńczyk
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland.
| |
Collapse
|
13
|
Jarocki P, Komoń-Janczara E, Podleśny M, Kholiavskyi O, Pytka M, Kordowska-Wiater M. Genomic and Proteomic Characterization of Bacteriophage BH1 Spontaneously Released from Probiotic Lactobacillus rhamnosus Pen. Viruses 2019; 11:E1163. [PMID: 31888239 PMCID: PMC6950654 DOI: 10.3390/v11121163] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 12/10/2019] [Accepted: 12/13/2019] [Indexed: 02/06/2023] Open
Abstract
Lactobacillus rhamnosus Pen is a human endogenous strain used for the production of probiotic formula, which is effective in the prevention of antibiotic-associated diarrhoea. Our study showed that this probiotic strain releases bacteriophage BH1 without the addition of any inducing agent. Our research revealed that phage BH1 has a circular genome with a length of 40721 nt and a GC content of 44.8%. The genome of phage BH1 possesses 57 open reading frames which could be divided into functional modules associated with DNA packaging, morphogenesis, lysis, integration, genetic switch, and replication. In spite of similarity in morphology and genomic organization, comparative analysis revealed substantial genetic diversity and mosaic genomic architecture among phages described for the Lactobacillus casei group. Additionally, qPCR and ddPCR analysis confirmed earlier microscopic observations indicating that L. rhamnosus Pen liberates bacteriophage particles during growth. This occurs spontaneously, and is not a result of external inducing factors. For samples collected after 4 and 24 h of L. rhamnosus Pen culture, the number of attB and attP copies increased 2.5 and 12 times, respectively. This phenomenon, by introducing resistance to other phages or enhancing the biofilm-forming capabilities, may increase the survivability of microorganisms in their natural ecological niche. Conversely, spontaneous phage induction may be an important virulence factor for bacteria, posing a potential threat for the human host.
Collapse
Affiliation(s)
- Piotr Jarocki
- Department of Biotechnology, Microbiology and Human Nutrition, University of Life Sciences in Lublin, 8 Skromna St., 20-704 Lublin, Poland
| | - Elwira Komoń-Janczara
- Department of Biotechnology, Microbiology and Human Nutrition, University of Life Sciences in Lublin, 8 Skromna St., 20-704 Lublin, Poland
| | - Marcin Podleśny
- Process and Development Department, Al. Tysiąclecia Państwa Polskiego 13, Grupa Azoty Zakłady Azotowe “Puławy” S.A, 24-110 Puławy, Poland
| | - Oleksandr Kholiavskyi
- Department of Biotechnology, Microbiology and Human Nutrition, University of Life Sciences in Lublin, 8 Skromna St., 20-704 Lublin, Poland
| | - Monika Pytka
- Department of Biotechnology, Microbiology and Human Nutrition, University of Life Sciences in Lublin, 8 Skromna St., 20-704 Lublin, Poland
| | - Monika Kordowska-Wiater
- Department of Biotechnology, Microbiology and Human Nutrition, University of Life Sciences in Lublin, 8 Skromna St., 20-704 Lublin, Poland
| |
Collapse
|
14
|
Xu X, Zhang H, Huang Y, Zhang Y, Wu C, Gao P, Teng Z, Luo X, Peng X, Wang X, Wang D, Pu J, Zhao H, Lu X, Lu S, Ye C, Dong Y, Lan R, Xu J. Beyond a Ribosomal RNA Methyltransferase, the Wider Role of MraW in DNA Methylation, Motility and Colonization in Escherichia coli O157:H7. Front Microbiol 2019; 10:2520. [PMID: 31798540 PMCID: PMC6863780 DOI: 10.3389/fmicb.2019.02520] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 10/18/2019] [Indexed: 12/31/2022] Open
Abstract
MraW is a 16S rRNA methyltransferase and plays a role in the fine-tuning of the ribosomal decoding center. It was recently found to contribute to the virulence of Staphylococcus aureus. In this study, we examined the function of MraW in Escherichia coli O157:H7 and found that the deletion of mraW led to decreased motility, flagellar production and DNA methylation. Whole-genome bisulfite sequencing showed a genome wide decrease of methylation of 336 genes and 219 promoters in the mraW mutant including flagellar genes. The methylation level of flagellar genes was confirmed by bisulfite PCR sequencing. Quantitative reverse transcription PCR results indicated that the transcription of these genes was also affected. MraW was furtherly observed to directly bind to the four flagellar gene sequences by electrophoretic mobility shift assay (EMSA). A common flexible motif in differentially methylated regions (DMRs) of promoters and coding regions of the four flagellar genes was identified. Reduced methylation was correlated with altered expression of 21 of the 24 genes tested. DNA methylation activity of MraW was confirmed by DNA methyltransferase activity assay in vitro and repressed by DNA methylation inhibitor 5-aza-2'-deoxycytidine (5-aza). In addition, the mraW mutant colonized poorer than wild type in mice. We also found that the expression of mraZ in the mraW mutant was increased confirming the antagonistic effect of mraW on mraZ. In conclusion, mraW was found to be a DNA methylase and have a wide-ranging effect on E. coli O157:H7 including motility and virulence in vivo via genome wide methylation and mraZ antagonism.
Collapse
Affiliation(s)
- Xuefang Xu
- State Key Laboratory for Infectious Disease Prevention and Control and National Institute for Communicable Diseases Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Heng Zhang
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
| | - Ying Huang
- State Key Laboratory for Infectious Disease Prevention and Control and National Institute for Communicable Diseases Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Yuan Zhang
- China Institute of Veterinary Drug Control, Haidian, China
| | - Changde Wu
- College of Animal Sciences and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Pengya Gao
- State Key Laboratory for Infectious Disease Prevention and Control and National Institute for Communicable Diseases Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, China.,College of Animal Sciences and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Zhongqiu Teng
- State Key Laboratory for Infectious Disease Prevention and Control and National Institute for Communicable Diseases Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Xuelian Luo
- State Key Laboratory for Infectious Disease Prevention and Control and National Institute for Communicable Diseases Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Xiaojing Peng
- State Key Laboratory for Infectious Disease Prevention and Control and National Institute for Communicable Diseases Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Xiaoyuan Wang
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Dai Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - Ji Pu
- State Key Laboratory for Infectious Disease Prevention and Control and National Institute for Communicable Diseases Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Hongqing Zhao
- State Key Laboratory for Infectious Disease Prevention and Control and National Institute for Communicable Diseases Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Xuancheng Lu
- Laboratory Animal Center, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Shuangshuang Lu
- Laboratory Animal Center, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Changyun Ye
- State Key Laboratory for Infectious Disease Prevention and Control and National Institute for Communicable Diseases Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Yuhui Dong
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
| | - Ruiting Lan
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Jianguo Xu
- State Key Laboratory for Infectious Disease Prevention and Control and National Institute for Communicable Diseases Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| |
Collapse
|
15
|
Fitzgerald SF, Beckett AE, Palarea-Albaladejo J, McAteer S, Shaaban S, Morgan J, Ahmad NI, Young R, Mabbott NA, Morrison L, Bono JL, Gally DL, McNeilly TN. Shiga toxin sub-type 2a increases the efficiency of Escherichia coli O157 transmission between animals and restricts epithelial regeneration in bovine enteroids. PLoS Pathog 2019; 15:e1008003. [PMID: 31581229 PMCID: PMC6776261 DOI: 10.1371/journal.ppat.1008003] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 07/25/2019] [Indexed: 02/06/2023] Open
Abstract
Specific Escherichia coli isolates lysogenised with prophages that express Shiga toxin (Stx) can be a threat to human health, with cattle being an important natural reservoir. In many countries the most severe pathology is associated with enterohaemorrhagic E. coli (EHEC) serogroups that express Stx subtype 2a. In the United Kingdom, phage type (PT) 21/28 O157 strains have emerged as the predominant cause of life-threatening EHEC infections and this phage type commonly encodes both Stx2a and Stx2c toxin types. PT21/28 is also epidemiologically linked to super-shedding (>103 cfu/g of faeces) which is significant for inter-animal transmission and human infection as demonstrated using modelling studies. We demonstrate that Stx2a is the main toxin produced by stx2a+/stx2c+ PT21/28 strains induced with mitomycin C and this is associated with more rapid induction of gene expression from the Stx2a-encoding prophage compared to that from the Stx2c-encoding prophage. Bacterial supernatants containing either Stx2a and/or Stx2c were demonstrated to restrict growth of bovine gastrointestinal organoids with no restriction when toxin production was not induced or prevented by mutation. Isogenic strains that differed in their capacity to produce Stx2a were selected for experimental oral colonisation of calves to assess the significance of Stx2a for both super-shedding and transmission between animals. Restoration of Stx2a expression in a PT21/28 background significantly increased animal-to-animal transmission and the number of sentinel animals that became super-shedders. We propose that while both Stx2a and Stx2c can restrict regeneration of the epithelium, it is the relatively rapid and higher levels of Stx2a induction, compared to Stx2c, that have contributed to the successful emergence of Stx2a+ E. coli isolates in cattle in the last 40 years. We propose a model in which Stx2a enhances E. coli O157 colonisation of in-contact animals by restricting regeneration and turnover of the colonised gastrointestinal epithelium. Enterohaemorrhagic E. coli (EHEC) O157 strains are found in cattle where they are asymptomatic, while human exposure can lead to severe symptoms including bloody diarrhoea and kidney damage due to the activity of Shiga toxin (Stx). The most serious symptoms in humans are associated with isolates that encode Stx subtype 2a. The advantage of these toxins in the animal reservoir is still not clear, however there is experimental evidence implicating Stx with increased bacterial adherence, immune modulation and suppression of predatory protozoa. In this study, the hypothesis that Stx2a is important for super-shedding and calf-to-calf transmission was tested by comparing excretion and transmission dynamics of E. coli O157 strains with and without Stx2a. While Stx2a did not alter excretion levels when calfs were orally challenge, it enabled colonisation of more in contact ‘sentinel’ animals in our transmission model. We show that Stx2a is generally induced more rapidly than Stx2c, resulting in increased levels of Stx2a expression. Both Stx2a and Stx2c were able to restrict cellular proliferation of epithelial cells in cultured bovine enteroids. Taken together, we propose that rapid production of Stx2a and its role in establishing E. coli O157 colonisation in the bovine gastrointestinal tract facilitate effective transmission and have led to its expansion in the cattle E. coli O157 population.
Collapse
Affiliation(s)
- Stephen F. Fitzgerald
- Division of Immunity and Infection, The Roslin Institute and R(D)SVS, The University of Edinburgh, Midlothian, United Kingdom
- Moredun Research Institute, Penicuik, United Kingdom
| | - Amy E. Beckett
- Division of Immunity and Infection, The Roslin Institute and R(D)SVS, The University of Edinburgh, Midlothian, United Kingdom
- Moredun Research Institute, Penicuik, United Kingdom
| | | | - Sean McAteer
- Division of Immunity and Infection, The Roslin Institute and R(D)SVS, The University of Edinburgh, Midlothian, United Kingdom
| | - Sharif Shaaban
- Division of Immunity and Infection, The Roslin Institute and R(D)SVS, The University of Edinburgh, Midlothian, United Kingdom
| | - Jason Morgan
- Division of Immunity and Infection, The Roslin Institute and R(D)SVS, The University of Edinburgh, Midlothian, United Kingdom
- Moredun Research Institute, Penicuik, United Kingdom
| | | | - Rachel Young
- Division of Immunity and Infection, The Roslin Institute and R(D)SVS, The University of Edinburgh, Midlothian, United Kingdom
| | - Neil A. Mabbott
- Division of Immunity and Infection, The Roslin Institute and R(D)SVS, The University of Edinburgh, Midlothian, United Kingdom
| | - Liam Morrison
- Division of Immunity and Infection, The Roslin Institute and R(D)SVS, The University of Edinburgh, Midlothian, United Kingdom
| | - James L. Bono
- United States Department of Agriculture, Agricultural Research Service, Nebraska, United States of America
| | - David L. Gally
- Division of Immunity and Infection, The Roslin Institute and R(D)SVS, The University of Edinburgh, Midlothian, United Kingdom
- * E-mail: (DLG); (TNM)
| | - Tom N. McNeilly
- Moredun Research Institute, Penicuik, United Kingdom
- * E-mail: (DLG); (TNM)
| |
Collapse
|
16
|
Cortes MG, Krog J, Balázsi G. Optimality of the spontaneous prophage induction rate. J Theor Biol 2019; 483:110005. [PMID: 31525321 DOI: 10.1016/j.jtbi.2019.110005] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 08/30/2019] [Accepted: 09/10/2019] [Indexed: 10/26/2022]
Abstract
Lysogens are bacterial cells that have survived after genomically incorporating the DNA of temperate bacteriophages infecting them. If an infection results in lysogeny, the lysogen continues to grow and divide normally, seemingly unaffected by the integrated viral genome known as a prophage. However, the prophage can still have an impact on the host's phenotype and overall fitness in certain environments. Additionally, the prophage within the lysogen can activate the lytic pathway via spontaneous prophage induction (SPI), killing the lysogen and releasing new progeny phages. These new phages can then lyse or lysogenize other susceptible nonlysogens, thereby impacting the competition between lysogens and nonlysogens. In a scenario with differing growth rates, it is not clear whether SPI would be beneficial or detrimental to the lysogens since it kills the host cell but also attacks nonlysogenic competitors, either lysing or lysogenizing them. Here we study the evolutionary dynamics of a mixture of lysogens and nonlysogens and derive general conditions on SPI rates for lysogens to displace nonlysogens. We show that there exists an optimal SPI rate for bacteriophage λ and explain why it is so low. We also investigate the impact of stochasticity and conclude that even at low cell numbers SPI can still provide an advantage to the lysogens. These results corroborate recent experimental studies showing that lower SPI rates are advantageous for phage-phage competition, and establish theoretical bounds on the SPI rate in terms of ecological and environmental variables associated with lysogens having a competitive advantage over their nonlysogenic counterparts.
Collapse
Affiliation(s)
- Michael G Cortes
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY 11794, USA
| | - Jonathan Krog
- The Louis and Beatrice Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Gábor Balázsi
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794, USA.
| |
Collapse
|
17
|
Bufe T, Hennig A, Klumpp J, Weiss A, Nieselt K, Schmidt H. Differential transcriptome analysis of enterohemorrhagic Escherichia coli strains reveals differences in response to plant-derived compounds. BMC Microbiol 2019; 19:212. [PMID: 31488056 PMCID: PMC6729007 DOI: 10.1186/s12866-019-1578-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 08/25/2019] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Several serious vegetable-associated outbreaks of enterohemorrhagic Escherichia coli (EHEC) infections have occurred during the last decades. In this context, vegetables have been suggested to function as secondary reservoirs for EHEC strains. Increased knowledge about the interaction of EHEC with plants including gene expression patterns in response to plant-derived compounds is required. In the current study, EHEC O157:H7 strain Sakai, EHEC O157:H- strain 3072/96, and the EHEC/enteroaggregative E. coli (EAEC) hybrid O104:H4 strain C227-11φcu were grown in lamb's lettuce medium and in M9 minimal medium to study the differential transcriptional response of these strains to plant-derived compounds with RNA-Seq technology. RESULTS Many genes involved in carbohydrate degradation and peptide utilization were similarly upregulated in all three strains, suggesting that the lamb's lettuce medium provides sufficient nutrients for proliferation. In particular, the genes galET and rbsAC involved in galactose metabolism and D-ribose catabolism, respectively, were uniformly upregulated in the investigated strains. The most prominent differences in shared genome transcript levels were observed for genes involved in the expression of flagella. Transcripts of all three classes of the flagellar hierarchy were highly abundant in strain C227-11φcu. Strain Sakai expressed only genes encoding the basal flagellar structure. In addition, both strains showed increased motility in presence of lamb's lettuce extract. Moreover, strain 3072/96 showed increased transcription activity for genes encoding the type III secretion system (T3SS) including effectors, and was identified as a powerful biofilm-producer in M9 minimal medium. CONCLUSION The current study provides clear evidence that EHEC and EHEC/EAEC strains are able to adjust their gene expression patterns towards metabolization of plant-derived compounds, demonstrating that they may proliferate well in a plant-associated environment. Moreover, we propose that flagella and other surface structures play a fundamental role in the interaction of EHEC and EHEC/EAEC with plants.
Collapse
Affiliation(s)
- Thorsten Bufe
- Department of Food Microbiology and Hygiene, Institute of Food Science and Biotechnology, University of Hohenheim, Garbenstrasse 28, 70599 Stuttgart, Germany
| | - André Hennig
- Institute for Bioinformatics and Medical Informatics, University of Tübingen, Sand 14, 72076 Tübingen, Germany
| | - Jochen Klumpp
- Institute of Food, Nutrition and Health, ETH Zurich, Schmelzbergstrasse 7, 8092 Zurich, Switzerland
| | - Agnes Weiss
- Department of Food Microbiology and Hygiene, Institute of Food Science and Biotechnology, University of Hohenheim, Garbenstrasse 28, 70599 Stuttgart, Germany
| | - Kay Nieselt
- Institute for Bioinformatics and Medical Informatics, University of Tübingen, Sand 14, 72076 Tübingen, Germany
| | - Herbert Schmidt
- Department of Food Microbiology and Hygiene, Institute of Food Science and Biotechnology, University of Hohenheim, Garbenstrasse 28, 70599 Stuttgart, Germany
| |
Collapse
|
18
|
Berger P, Kouzel IU, Berger M, Haarmann N, Dobrindt U, Koudelka GB, Mellmann A. Carriage of Shiga toxin phage profoundly affects Escherichia coli gene expression and carbon source utilization. BMC Genomics 2019; 20:504. [PMID: 31208335 PMCID: PMC6580645 DOI: 10.1186/s12864-019-5892-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 06/10/2019] [Indexed: 02/03/2023] Open
Abstract
Background Enterohemorrhagic Escherichia coli (E. coli) are intestinal pathogenic bacteria that cause life-threatening disease in humans. Their cardinal virulence factor is Shiga toxin (Stx), which is encoded on lambdoid phages integrated in the chromosome. Stx phages can infect and lysogenize susceptible bacteria, thus either increasing the virulence of already pathogenic bacterial hosts or transforming commensal strains into potential pathogens. There is increasing evidence that Stx phage-encoded factors adaptively regulate bacterial host gene expression. Here, we investigated the effects of Stx phage carriage in E. coli K-12 strain MG1655. We compared the transcriptome and phenotype of naive MG1655 and two lysogens carrying closely related Stx2a phages: ϕO104 from the exceptionally pathogenic 2011 E. coli O104:H4 outbreak strain and ϕPA8 from an E. coli O157:H7 isolate. Results Analysis of quantitative RNA sequencing results showed that, in comparison to naive MG1655, genes involved in mixed acid fermentation were upregulated, while genes encoding NADH dehydrogenase I, TCA cycle enzymes and proteins involved in the transport and assimilation of carbon sources were downregulated in MG1655::ϕO104 and MG1655::ϕPA8. The majority of the changes in gene expression were found associated with the corresponding phenotypes. Notably, the Stx2a phage lysogens displayed moderate to severe growth defects in minimal medium supplemented with single carbon sources, e.g. galactose, ribose, L-lactate. In addition, in phenotype microarray assays, the Stx2a phage lysogens were characterized by a significant decrease in the cell respiration with gluconeogenic substrates such as amino acids, nucleosides, carboxylic and dicarboxylic acids. In contrast, MG1655::ϕO104 and MG1655::ϕPA8 displayed enhanced respiration with several sugar components of the intestinal mucus, e.g. arabinose, fucose, N-acetyl-D-glucosamine. We also found that prophage-encoded factors distinct from CI and Cro were responsible for the carbon utilization phenotypes of the Stx2a phage lysogens. Conclusions Our study reveals a profound impact of the Stx phage carriage on E. coli carbon source utilization. The Stx2a prophage appears to reprogram the carbon metabolism of its bacterial host by turning down aerobic metabolism in favour of mixed acid fermentation. Electronic supplementary material The online version of this article (10.1186/s12864-019-5892-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Petya Berger
- Institute of Hygiene, University of Münster, Münster, Germany.
| | - Ivan U Kouzel
- Institute of Hygiene, University of Münster, Münster, Germany.,Institute of Bioinformatics, University of Münster, Münster, Germany
| | - Michael Berger
- Institute of Hygiene, University of Münster, Münster, Germany
| | - Nadja Haarmann
- Institute of Hygiene, University of Münster, Münster, Germany
| | - Ulrich Dobrindt
- Institute of Hygiene, University of Münster, Münster, Germany
| | - Gerald B Koudelka
- Department of Biological Sciences, University at Buffalo, Buffalo, USA
| | | |
Collapse
|
19
|
Control freaks-signals and cues governing the regulation of virulence in attaching and effacing pathogens. Biochem Soc Trans 2018; 47:229-238. [PMID: 30559275 PMCID: PMC6393859 DOI: 10.1042/bst20180546] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 11/08/2018] [Accepted: 11/13/2018] [Indexed: 02/07/2023]
Abstract
Enterohaemorrhagic Escherichia coli (EHEC) mediates disease using a type 3 secretion system (T3SS), which is encoded on the locus of enterocyte effacement (LEE) and is tightly controlled by master regulators. This system is further modulated by a number of signals that help to fine-tune virulence, including metabolic, environmental and chemical signals. Since the LEE and its master regulator, Ler, were established, there have been numerous scientific advancements in understanding the regulation and expression of virulence factors in EHEC. This review will discuss the recent advancements in this field since our previous review, with a focus on the transcriptional regulation of the LEE.
Collapse
|
20
|
Haarmann N, Berger M, Kouzel IU, Mellmann A, Berger P. Comparative virulence characterization of the Shiga toxin phage-cured Escherichia coli O104:H4 and enteroaggregative Escherichia coli. Int J Med Microbiol 2018; 308:912-920. [DOI: 10.1016/j.ijmm.2018.06.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 06/04/2018] [Accepted: 06/16/2018] [Indexed: 12/26/2022] Open
|
21
|
Martorelli L, Garimano N, Fiorentino GA, Vilte DA, Garbaccio SG, Barth SA, Menge C, Ibarra C, Palermo MS, Cataldi A. Efficacy of a recombinant Intimin, EspB and Shiga toxin 2B vaccine in calves experimentally challenged with Escherichia coli O157:H7. Vaccine 2018; 36:3949-3959. [PMID: 29807709 DOI: 10.1016/j.vaccine.2018.05.059] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 05/09/2018] [Accepted: 05/11/2018] [Indexed: 11/30/2022]
Abstract
Escherichia coli O157:H7 is a zoonotic pathogen of global importance and the serotype of Shiga toxin-producing E.coli (STEC) most frequently associated with Hemolytic Uremic Syndrome (HUS) in humans. The main STEC reservoir is cattle. Vaccination of calves with the carboxy-terminal fraction of Intimin γ (IntC280) and EspB can reduce E.coli O157:H7 fecal shedding after experimental challenge. Shiga toxin (Stx) exerts local immunosuppressive effects in the bovine intestine and Stx2B fused to Brucella lumazine synthase (BLS-Stx2B) induces Stx2-neutralizing antibodies. To determine if an immune response against Stx could improve a vaccine's effect on fecal shedding, groups of calves were immunized with EspB + IntC280, with EspB + IntC280 + BLS-Stx2B, or kept as controls. At 24 days post vaccination calves were challenged with E.coli O157:H7. Shedding of E.coli O157:H7 was assessed in recto-anal mucosal swabs by direct plating and enrichment followed by immunomagnetic separation and multiplex PCR. Calves were euthanized 15 days after the challenge and intestinal segments were obtained to assess mucosal antibodies. Vaccination induced a significant increase of IntC280 and EspB specific antibodies in serum and intestinal mucosa in both vaccinated groups. Antibodies against Stx2B were detected in serum and intestinal mucosa of animals vaccinated with 3 antigens. Sera and intestinal homogenates were able to neutralize Stx2 verocytotoxicity compared to the control and the 2-antigens vaccinated group. Both vaccines reduced E.coli O157:H7 shedding compared to the control group. The addition of Stx2B to the vaccine formulation did not result in a superior level of protection compared to the one conferred by IntC280 and EspB alone. It remains to be determined if the inclusion of Stx2B in the vaccine alters E.coli O157:H7 shedding patterns in the long term and after recurrent low dose exposure as occurring in cattle herds.
Collapse
Affiliation(s)
- Luisina Martorelli
- Instituto de Patobiología, Centro de Investigación en Ciencias Veterinarias y Agronómicas, Instituto Nacional de Tecnología Agropecuaria (INTA), Hurlingham, Argentina
| | - Nicolás Garimano
- Laboratorio de Fisiopatogenia, Departamento de Fisiología, Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO Houssay-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Gabriela A Fiorentino
- Laboratorio de Patogénesis e Inmunología de Procesos Infecciosos, Instituto de Medicina Experimental, (IMEX), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Daniel A Vilte
- Instituto de Patobiología, Centro de Investigación en Ciencias Veterinarias y Agronómicas, Instituto Nacional de Tecnología Agropecuaria (INTA), Hurlingham, Argentina
| | - Sergio G Garbaccio
- Instituto de Patobiología, Centro de Investigación en Ciencias Veterinarias y Agronómicas, Instituto Nacional de Tecnología Agropecuaria (INTA), Hurlingham, Argentina
| | - Stefanie A Barth
- Friedrich-Loeffler-Institut/Federal Research Institute for Animal Health, Institute of Molecular Pathogenesis, Jena, Germany
| | - Christian Menge
- Friedrich-Loeffler-Institut/Federal Research Institute for Animal Health, Institute of Molecular Pathogenesis, Jena, Germany
| | - Cristina Ibarra
- Laboratorio de Fisiopatogenia, Departamento de Fisiología, Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO Houssay-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Marina S Palermo
- Laboratorio de Patogénesis e Inmunología de Procesos Infecciosos, Instituto de Medicina Experimental, (IMEX), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Angel Cataldi
- Instituto de Biotecnología, Centro de Investigación en Ciencias Veterinarias y Agronómicas, Instituto Nacional de Tecnología Agropecuaria, Hurlingham, Argentina.
| |
Collapse
|
22
|
Loftsdóttir H, Söderlund R, Jinnerot T, Eriksson E, Bongcam-Rudloff E, Aspán A. Dynamics of insertion sequence element IS629 inactivation of verotoxin 2 genes in Escherichia coli O157:H7. FEMS Microbiol Lett 2018; 364:3586778. [PMID: 28402463 DOI: 10.1093/femsle/fnx074] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 04/10/2017] [Indexed: 11/14/2022] Open
Abstract
There are several anecdotal reports of insertion sequence (IS) element inactivation of verotoxin genes among enterohaemorrhagic Escherichia coli of the serotype O157:H7, a pathogen causing severe gastrointestinal disease in infected humans. These insertions can be expected to drastically reduce the virulence of the bacteria. IS element inactivation has been shown to be reversible in model systems, suggesting the possibility of spontaneous restoration of virulence. In this study, traditional and high-throughput sequencing was used to characterise three patterns of IS629 inactivation of verotoxin 2 genes in EHEC O157:H7, caused by insertion or insertion followed by partial deletion. At least one of the patterns of inactivation appears to have persisted several years among cattle O157:H7, indicating it has no major effect on fitness in the animal reservoir. Digital PCR was used to directly quantify the reversal rates of the insertional inactivation of a selected isolate under laboratory conditions. Inserts were found to be absent from in the order of 1/105 of individual genomes, with significantly higher loss frequencies observed in cultures under nutrient-poor conditions. We conclude that strains with this type of inactivation found in food or animal samples should be considered a threat to human health, and may pose a challenge for PCR-based detection methods.
Collapse
Affiliation(s)
- Heiður Loftsdóttir
- Department of Microbiology, National Veterinary Institute (SVA), 75189 Uppsala, Sweden
| | - Robert Söderlund
- Department of Microbiology, National Veterinary Institute (SVA), 75189 Uppsala, Sweden.,SLU Global Bioinformatics Centre, Swedish University of Agricultural Sciences, 75007 Uppsala, Sweden
| | - Tomas Jinnerot
- Department of Microbiology, National Veterinary Institute (SVA), 75189 Uppsala, Sweden
| | - Erik Eriksson
- Department of Microbiology, National Veterinary Institute (SVA), 75189 Uppsala, Sweden
| | - Erik Bongcam-Rudloff
- SLU Global Bioinformatics Centre, Swedish University of Agricultural Sciences, 75007 Uppsala, Sweden
| | - Anna Aspán
- Department of Microbiology, National Veterinary Institute (SVA), 75189 Uppsala, Sweden
| |
Collapse
|
23
|
Wang D, McAteer SP, Wawszczyk AB, Russell CD, Tahoun A, Elmi A, Cockroft SL, Tollervey D, Granneman S, Tree JJ, Gally DL. An RNA-dependent mechanism for transient expression of bacterial translocation filaments. Nucleic Acids Res 2018; 46:3366-3381. [PMID: 29432565 PMCID: PMC5909449 DOI: 10.1093/nar/gky096] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 01/28/2018] [Accepted: 02/06/2018] [Indexed: 12/31/2022] Open
Abstract
The prokaryotic RNA chaperone Hfq mediates sRNA-mRNA interactions and plays a significant role in post-transcriptional regulation of the type III secretion (T3S) system produced by a range of Escherichia coli pathotypes. UV-crosslinking was used to map Hfq-binding under conditions that promote T3S and multiple interactions were identified within polycistronic transcripts produced from the locus of enterocyte effacement (LEE) that encodes the T3S system. The majority of Hfq binding was within the LEE5 and LEE4 operons, the latter encoding the translocon apparatus (SepL-EspADB) that is positively regulated by the RNA binding protein, CsrA. Using the identified Hfq-binding sites and a series of sRNA deletions, the sRNA Spot42 was shown to directly repress translation of LEE4 at the sepL 5' UTR. In silico and in vivo analyses of the sepL mRNA secondary structure combined with expression studies of truncates indicated that the unbound sepL mRNA is translationally inactive. Based on expression studies with site-directed mutants, an OFF-ON-OFF toggle model is proposed that results in transient translation of SepL and EspA filament assembly. Under this model, the nascent mRNA is translationally off, before being activated by CsrA, and then repressed by Hfq and Spot42.
Collapse
Affiliation(s)
- Dai Wang
- Division of Infection and Immunity, The Roslin Institute and R(D)SVS, University of Edinburgh, Edinburgh EH25 9RG, UK
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, South Xiangan Rd., Xiangan District, Xiamen, Fujian Province 361102, China
| | - Sean P McAteer
- Division of Infection and Immunity, The Roslin Institute and R(D)SVS, University of Edinburgh, Edinburgh EH25 9RG, UK
| | - Agata B Wawszczyk
- Division of Infection and Immunity, The Roslin Institute and R(D)SVS, University of Edinburgh, Edinburgh EH25 9RG, UK
- Centre for Synthetic and Systems Biology, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Clark D Russell
- Division of Infection and Immunity, The Roslin Institute and R(D)SVS, University of Edinburgh, Edinburgh EH25 9RG, UK
| | - Amin Tahoun
- Division of Infection and Immunity, The Roslin Institute and R(D)SVS, University of Edinburgh, Edinburgh EH25 9RG, UK
- Faculty of Veterinary Medicine, Kafrelsheikh University, 33516 Kafrel-Sheikh, Egypt
| | - Alex Elmi
- EaStCHEM School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh EH9 3FJ, UK
| | - Scott L Cockroft
- EaStCHEM School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh EH9 3FJ, UK
| | - David Tollervey
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Sander Granneman
- Centre for Synthetic and Systems Biology, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Jai J Tree
- Division of Infection and Immunity, The Roslin Institute and R(D)SVS, University of Edinburgh, Edinburgh EH25 9RG, UK
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3BF, UK
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney 2052, NSW, Australia
| | - David L Gally
- Division of Infection and Immunity, The Roslin Institute and R(D)SVS, University of Edinburgh, Edinburgh EH25 9RG, UK
| |
Collapse
|
24
|
McAteer SP, Sy BM, Wong JL, Tollervey D, Gally DL, Tree JJ. Ribosome maturation by the endoribonuclease YbeY stabilizes a type 3 secretion system transcript required for virulence of enterohemorrhagic Escherichia coli. J Biol Chem 2018; 293:9006-9016. [PMID: 29678883 PMCID: PMC5995498 DOI: 10.1074/jbc.ra117.000300] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 04/17/2018] [Indexed: 12/11/2022] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) is a significant human pathogen that colonizes humans and its reservoir host, cattle. Colonization requires the expression of a type 3 secretion (T3S) system that injects a mixture of effector proteins into host cells to promote bacterial attachment and disease progression. The T3S system is tightly regulated by a complex network of transcriptional and post-transcriptional regulators. Using transposon mutagenesis, here we identified the ybeZYX-Int operon as being required for normal T3S levels. Deletion analyses localized the regulation to the endoribonuclease YbeY, previously linked to 16S rRNA maturation and small RNA (sRNA) function. Loss of ybeY in EHEC had pleiotropic effects on EHEC cells, including reduced motility and growth and cold sensitivity. Using UV cross-linking and RNA-Seq (CRAC) analysis, we identified YbeY-binding sites throughout the transcriptome and discovered specific binding of YbeY to the "neck" and "beak" regions of 16S rRNA but identified no significant association of YbeY with sRNA, suggesting that YbeY modulates T3S by depleting mature ribosomes. In E. coli, translation is strongly linked to mRNA stabilization, and subinhibitory concentrations of the translation-initiation inhibitor kasugamycin provoked rapid degradation of a polycistronic mRNA encoding needle filament and needle tip proteins of the T3S system. We conclude that T3S is particularly sensitive to depletion of initiating ribosomes, explaining the inhibition of T3S in the ΔybeY strain. Accessory virulence transcripts may be preferentially degraded in cells with reduced translational capacity, potentially reflecting prioritization in protein production.
Collapse
Affiliation(s)
- Sean P McAteer
- From the Division of Infection and Immunity, The Roslin Institute, University of Edinburgh, Edinburgh EH25 9RG, Scotland, United Kingdom
| | - Brandon M Sy
- School of Biotechnology and Biomolecular Sciences, University of New South Wales Sydney, Sydney 2033, Australia, and
| | - Julia L Wong
- School of Biotechnology and Biomolecular Sciences, University of New South Wales Sydney, Sydney 2033, Australia, and
| | - David Tollervey
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3BF, Scotland, United Kingdom
| | - David L Gally
- From the Division of Infection and Immunity, The Roslin Institute, University of Edinburgh, Edinburgh EH25 9RG, Scotland, United Kingdom,
| | - Jai J Tree
- School of Biotechnology and Biomolecular Sciences, University of New South Wales Sydney, Sydney 2033, Australia, and
| |
Collapse
|
25
|
Runte CS, Jain U, Getz LJ, Secord S, Kuwae A, Abe A, LeBlanc JJ, Stadnyk AW, Kaper JB, Hansen AM, Thomas NA. Tandem tyrosine phosphosites in the Enteropathogenic Escherichia coli chaperone CesT are required for differential type III effector translocation and virulence. Mol Microbiol 2018; 108:536-550. [PMID: 29509331 DOI: 10.1111/mmi.13948] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/05/2018] [Indexed: 11/29/2022]
Abstract
Enteropathogenic Escherichia coli (EPEC) use a type 3 secretion system (T3SS) for injection of effectors into host cells and intestinal colonization. Here, we demonstrate that the multicargo chaperone CesT has two strictly conserved tyrosine phosphosites, Y152 and Y153 that regulate differential effector secretion in EPEC. Conservative substitution of both tyrosine residues to phenylalanine strongly attenuated EPEC type 3 effector injection into host cells, and limited Tir effector mediated intimate adherence during infection. EPEC expressing a CesT Y152F variant were deficient for NleA effector expression and exhibited significantly reduced translocation of NleA into host cells during infection. Other effectors were observed to be dependent on CesT Y152 for maximal translocation efficiency. Unexpectedly, EPEC expressing a CesT Y153F variant exhibited significantly enhanced effector translocation of many CesT-interacting effectors, further implicating phosphosites Y152 and Y153 in CesT functionality. A mouse infection model of intestinal disease using Citrobacter rodentium revealed that CesT tyrosine substitution variants displayed delayed colonization and were more rapidly cleared from the intestine. These data demonstrate genetically separable functions for tandem tyrosine phosphosites within CesT. Therefore, CesT via its C-terminal tyrosine phosphosites, has relevant roles beyond typical type III secretion chaperones that interact and stabilize effector proteins.
Collapse
Affiliation(s)
- Cameron S Runte
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Umang Jain
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Landon J Getz
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Sabrina Secord
- Department of Pediatrics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Asaomi Kuwae
- Laboratory of Bacterial Infection, Graduate School of Infection Control Sciences, Kitasato University, Tokyo, Japan
| | - Akio Abe
- Laboratory of Bacterial Infection, Graduate School of Infection Control Sciences, Kitasato University, Tokyo, Japan
| | - Jason J LeBlanc
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada.,Department of Medicine, Division of Infectious Diseases, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Andrew W Stadnyk
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada.,Department of Pediatrics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - James B Kaper
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Anne-Marie Hansen
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Nikhil A Thomas
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada.,Department of Medicine, Division of Infectious Diseases, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
26
|
Krüger A, Burgán J, Friedrich AW, Rossen JWA, Lucchesi PMA. ArgO145, a Stx2a prophage of a bovine O145:H- STEC strain, is closely related to phages of virulent human strains. INFECTION GENETICS AND EVOLUTION 2018; 60:126-132. [PMID: 29476813 DOI: 10.1016/j.meegid.2018.02.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 01/18/2018] [Accepted: 02/17/2018] [Indexed: 01/08/2023]
Abstract
Shiga toxins (Stx) are the main virulence factor of a pathogroup of Escherichia coli strains that cause severe human diseases. These toxins are encoded in prophages (Stx prophages), and generally their expression depends on prophage induction. Several studies have reported high diversity among both Stx prophages and Stx. In particular, the toxin subtype Stx2a is associated with high virulence and HUS. Here, we report the genome of ArgO145, an inducible Stx2a prophage identified in a bovine O145:H- strain which produced high levels of Shiga toxin and Stx phage particles. The ArgO145 genome shared lambda phage organization, with recombination, regulation, replication, lysis, and head and tail structural gene regions, although some lambda genes encoding regulatory proteins could not be identified. Remarkably, some Stx2a phages of strains isolated from patients in other countries showed high similarity to ArgO145.
Collapse
Affiliation(s)
- A Krüger
- Centro de Investigación Veterinaria de Tandil (CIVETAN), UNCPBA-CONICET-CIC, Laboratorio de Inmunoquímica y Biotecnología, Argentina.
| | - J Burgán
- Centro de Investigación Veterinaria de Tandil (CIVETAN), UNCPBA-CONICET-CIC, Laboratorio de Inmunoquímica y Biotecnología, Argentina
| | - A W Friedrich
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology, The Netherlands
| | - J W A Rossen
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology, The Netherlands
| | - P M A Lucchesi
- Centro de Investigación Veterinaria de Tandil (CIVETAN), UNCPBA-CONICET-CIC, Laboratorio de Inmunoquímica y Biotecnología, Argentina
| |
Collapse
|
27
|
Mitsunaka S, Sudo N, Sekine Y. Lysogenisation of Shiga toxin-encoding bacteriophage represses cell motility. J GEN APPL MICROBIOL 2017; 64:34-41. [PMID: 29225287 DOI: 10.2323/jgam.2017.05.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Bacteriophages are genetic elements that play key roles in the evolution and diversification of bacterial genomes. The Shiga toxin (Stx)-encoding phage plays an important role in the horizontal transfer of the stx gene. However, the influence of the Stx phage integration on the physiological properties and gene expression pattern of the host have not been clearly resolved. In this study, we constructed the Sp5 lysogen through lysogenisation of E. coli K-12 by Sp5, an Stx2 phage in enterohaemorrhagic E. coli (EHEC) O157:H7 Sakai, and examined the effect of the resulting lysogen on cell motility under various growth conditions. Sp5 lysogenisation decreased cell motility and the expression of fliC, which encodes flagellin, under anaerobic conditions at 37°C. Sp5 also lowered the expression of fliA, which encodes the FliA-sigma factor responsible for the transcription of fliC, and flhD, which facilitates the expression of fliA. Sp5 lysogenisation reduced the amount of FlhD and FlhC expressed from the araBAD promoter, suggesting that one or more genes present in Sp5 represses flhDC at the post-transcriptional level. Flagellin is highly antigenic and triggers an immune response in the host. Thus, Sp5 might enhance its viability by repressing the expression of the flagellar regulon to circumvent the immune response of host cells.
Collapse
Affiliation(s)
| | - Naoki Sudo
- Department of Life Science, College of Science, Rikkyo University
| | - Yasuhiko Sekine
- Department of Life Science, College of Science, Rikkyo University
| |
Collapse
|
28
|
Owen SV, Wenner N, Canals R, Makumi A, Hammarlöf DL, Gordon MA, Aertsen A, Feasey NA, Hinton JCD. Characterization of the Prophage Repertoire of African Salmonella Typhimurium ST313 Reveals High Levels of Spontaneous Induction of Novel Phage BTP1. Front Microbiol 2017; 8:235. [PMID: 28280485 PMCID: PMC5322425 DOI: 10.3389/fmicb.2017.00235] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 02/02/2017] [Indexed: 01/30/2023] Open
Abstract
In the past 30 years, Salmonella bloodstream infections have become a significant health problem in sub-Saharan Africa and are responsible for the deaths of an estimated 390,000 people each year. The disease is predominantly caused by a recently described sequence type of Salmonella Typhimurium: ST313, which has a distinctive set of prophage sequences. We have thoroughly characterized the ST313-associated prophages both genetically and experimentally. ST313 representative strain D23580 contains five full-length prophages: BTP1, Gifsy-2D23580, ST64BD23580, Gifsy-1D23580, and BTP5. We show that common S. Typhimurium prophages Gifsy-2, Gifsy-1, and ST64B are inactivated in ST313 by mutations. Prophage BTP1 was found to be a functional novel phage, and the first isolate of the proposed new species "Salmonella virus BTP1", belonging to the P22virus genus. Surprisingly, ∼109 BTP1 virus particles per ml were detected in the supernatant of non-induced, stationary-phase cultures of strain D23580, representing the highest spontaneously induced phage titer so far reported for a bacterial prophage. High spontaneous induction is shown to be an intrinsic property of prophage BTP1, and indicates the phage-mediated lysis of around 0.2% of the lysogenic population. The fact that BTP1 is highly conserved in ST313 poses interesting questions about the potential fitness costs and benefits of novel prophages in epidemic S. Typhimurium ST313.
Collapse
Affiliation(s)
- Siân V Owen
- Institute of Integrative Biology, University of Liverpool Liverpool, UK
| | - Nicolas Wenner
- Institute of Integrative Biology, University of Liverpool Liverpool, UK
| | - Rocío Canals
- Institute of Integrative Biology, University of Liverpool Liverpool, UK
| | - Angela Makumi
- Laboratory of Food Microbiology, Department of Microbial and Molecular Systems, Faculty of Bioscience Engineering, KU Leuven Leuven, Belgium
| | - Disa L Hammarlöf
- Department of Cell and Molecular Biology, Uppsala University Uppsala, Sweden
| | - Melita A Gordon
- Institute of Infection and Global Health, University of LiverpoolLiverpool, UK; Malawi-Liverpool-Wellcome Trust Clinical Research ProgrammeBlantyre, Malawi
| | - Abram Aertsen
- Laboratory of Food Microbiology, Department of Microbial and Molecular Systems, Faculty of Bioscience Engineering, KU Leuven Leuven, Belgium
| | | | - Jay C D Hinton
- Institute of Integrative Biology, University of Liverpool Liverpool, UK
| |
Collapse
|
29
|
Intracellular d-Serine Accumulation Promotes Genetic Diversity via Modulated Induction of RecA in Enterohemorrhagic Escherichia coli. J Bacteriol 2016; 198:3318-3328. [PMID: 27698085 DOI: 10.1128/jb.00548-16] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Accepted: 09/27/2016] [Indexed: 01/28/2023] Open
Abstract
We recently discovered that exposure of enterohemorrhagic Escherichia coli (EHEC) to d-serine resulted in accumulation of this unusual amino acid, induction of the SOS regulon, and downregulation of the type III secretion system that is essential for efficient colonization of the host. Here, we have investigated the physiological relevance of this elevated SOS response, which is of particular interest given the presence of Stx toxin-carrying lysogenic prophages on the EHEC chromosome that are activated during the SOS response. We found that RecA elevation in response to d-serine, while being significant, was heterogeneous and not capable of activating stx expression or stx phage transduction to a nonlysogenic recipient. This "SOS-like response" was, however, capable of increasing the mutation frequency associated with low-level RecA activity, thus promoting genetic diversity. Furthermore, this response was entirely dependent on RecA and enhanced in the presence of a DNA-damaging agent, indicating a functional SOS response, but did not result in observable cleavage of the LexA repressor alone, indicating a controlled mechanism of induction. This work demonstrates that environmental factors not usually associated with DNA damage are capable of promoting an SOS-like response. We propose that this modulated induction of RecA allows EHEC to adapt to environmental insults such as d-serine while avoiding unwanted phage-induced lysis. IMPORTANCE The SOS response is a global stress network that is triggered by the presence of DNA damage due to breakage or stalled replication forks. Activation of the SOS response can trigger the replication of lytic bacteriophages and promote genetic diversification through error-prone polymerases. We have demonstrated that the host-associated metabolite d-serine contributes to Escherichia coli niche specification and accumulates inside cells that cannot catabolize it. This results in a modulated activation of the SOS antirepressor RecA that is insufficient to trigger lytic bacteriophage but capable of increasing the SOS-associated mutation frequency. These findings describe how relevant signals not normally associated with DNA damage can hijack the SOS response, promoting diversity as E. coli strains adapt while avoiding unwanted phage lysis.
Collapse
|
30
|
Characterization of Five Novel Brevibacillus Bacteriophages and Genomic Comparison of Brevibacillus Phages. PLoS One 2016; 11:e0156838. [PMID: 27304881 PMCID: PMC4909266 DOI: 10.1371/journal.pone.0156838] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 05/20/2016] [Indexed: 12/31/2022] Open
Abstract
Brevibacillus laterosporus is a spore-forming bacterium that causes a secondary infection in beehives following European Foulbrood disease. To better understand the contributions of Brevibacillus bacteriophages to the evolution of their hosts, five novel phages (Jenst, Osiris, Powder, SecTim467, and Sundance) were isolated and characterized. When compared with the five Brevibacillus phages currently in NCBI, these phages were assigned to clusters based on whole genome and proteome synteny. Powder and Osiris, both myoviruses, were assigned to the previously described Jimmer-like cluster. SecTim467 and Jenst, both siphoviruses, formed a novel phage cluster. Sundance, a siphovirus, was assigned as a singleton phage along with the previously isolated singleton, Emery. In addition to characterizing the basic relationships between these phages, several genomic features were observed. A motif repeated throughout phages Jenst and SecTim467 was frequently upstream of genes predicted to function in DNA replication, nucleotide metabolism, and transcription, suggesting transcriptional co-regulation. In addition, paralogous gene pairs that encode a putative transcriptional regulator were identified in four Brevibacillus phages. These paralogs likely evolved to bind different DNA sequences due to variation at amino acid residues predicted to bind specific nucleotides. Finally, a putative transposable element was identified in SecTim467 and Sundance that carries genes homologous to those found in Brevibacillus chromosomes. Remnants of this transposable element were also identified in phage Jenst. These discoveries provide a greater understanding of the diversity of phages, their behavior, and their evolutionary relationships to one another and to their host. In addition, they provide a foundation with which further Brevibacillus phages can be compared.
Collapse
|
31
|
The Locus of Enterocyte Effacement and Associated Virulence Factors of Enterohemorrhagic Escherichia coli. Microbiol Spectr 2016; 2:EHEC-0007-2013. [PMID: 26104209 DOI: 10.1128/microbiolspec.ehec-0007-2013] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A subset of Shiga toxin-producing Escherichia coli strains, termed enterohemorrhagic E. coli (EHEC), is defined in part by the ability to produce attaching and effacing (A/E) lesions on intestinal epithelia. Such lesions are characterized by intimate bacterial attachment to the apical surface of enterocytes, cytoskeletal rearrangements beneath adherent bacteria, and destruction of proximal microvilli. A/E lesion formation requires the locus of enterocyte effacement (LEE), which encodes a Type III secretion system that injects bacterial proteins into host cells. The translocated proteins, termed effectors, subvert a plethora of cellular pathways to the benefit of the pathogen, for example, by recruiting cytoskeletal proteins, disrupting epithelial barrier integrity, and interfering with the induction of inflammation, phagocytosis, and apoptosis. The LEE and selected effectors play pivotal roles in intestinal persistence and virulence of EHEC, and it is becoming clear that effectors may act in redundant, synergistic, and antagonistic ways during infection. Vaccines that target the function of the Type III secretion system limit colonization of reservoir hosts by EHEC and may thus aid control of zoonotic infections. Here we review the features and functions of the LEE-encoded Type III secretion system and associated effectors of E. coli O157:H7 and other Shiga toxin-producing E. coli strains.
Collapse
|
32
|
Escherichia coli O104:H4 Pathogenesis: an Enteroaggregative E. coli/Shiga Toxin-Producing E. coli Explosive Cocktail of High Virulence. Microbiol Spectr 2016; 2. [PMID: 26104460 DOI: 10.1128/microbiolspec.ehec-0008-2013] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
A major outbreak caused by Escherichia coli of serotype O104:H4 spread throughout Europe in 2011. This large outbreak was caused by an unusual strain that is most similar to enteroaggregative E. coli (EAEC) of serotype O104:H4. A significant difference, however, is the presence of a prophage encoding the Shiga toxin, which is characteristic of enterohemorrhagic E. coli (EHEC) strains. This combination of genomic features, associating characteristics from both EAEC and EHEC, represents a new pathotype. The 2011 E. coli O104:H4 outbreak of hemorrhagic diarrhea in Germany is an example of the explosive cocktail of high virulence and resistance that can emerge in this species. A total of 46 deaths, 782 cases of hemolytic-uremic syndrome, and 3,128 cases of acute gastroenteritis were attributed to this new clone of EAEC/EHEC. In addition, recent identification in France of similar O104:H4 clones exhibiting the same virulence factors suggests that the EHEC O104:H4 pathogen has become endemically established in Europe after the end of the outbreak. EAEC strains of serotype O104:H4 contain a large set of virulence-associated genes regulated by the AggR transcription factor. They include, among other factors, the pAA plasmid genes encoding the aggregative adherence fimbriae, which anchor the bacterium to the intestinal mucosa (stacked-brick adherence pattern on epithelial cells). Furthermore, sequencing studies showed that horizontal genetic exchange allowed for the emergence of the highly virulent Shiga toxin-producing EAEC O104:H4 strain that caused the German outbreak. This article discusses the role these virulence factors could have in EAEC/EHEC O104:H4 pathogenesis.
Collapse
|
33
|
Imamovic L, Ballesté E, Martínez-Castillo A, García-Aljaro C, Muniesa M. Heterogeneity in phage induction enables the survival of the lysogenic population. Environ Microbiol 2016; 18:957-69. [PMID: 26626855 DOI: 10.1111/1462-2920.13151] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 11/24/2015] [Indexed: 11/29/2022]
Abstract
Lysogeny by temperate phages provides novel functions for bacteria and shelter for phages. However, under conditions that activate the phage lytic cycle, the benefit of lysogeny becomes a paradox that poses a threat for bacterial population survival. Using Escherichia coli lysogens for Shiga toxin (Stx) phages as model, we demonstrate how lysogenic bacterial populations circumvent extinction after phage induction. A fraction of cells maintains lysogeny, allowing population survival, whereas the other fraction of cells lyse, increasing Stx production and spreading Stx phages. The uninduced cells were still lysogenic for the Stx phage and equally able to induce phages as the original cells, suggesting heterogeneity of the E. coli lysogenic population. The bacterial population can modulate phage induction under stress conditions by the stress regulator RpoS. Cells overexpressing RpoS reduce Stx phage induction and compete with and survive better than cells with baseline RpoS levels. Our observations suggest that population heterogeneity in phage induction could be widespread among other bacterial genera and we propose this is a mechanism positively selected to prevent the extinction of the lysogenic population that can be modulated by environmental conditions.
Collapse
Affiliation(s)
- Lejla Imamovic
- Department of Microbiology, University of Barcelona, Diagonal 643, Annex, Floor 0, E-08028, Barcelona, Spain
| | - Elisenda Ballesté
- Department of Microbiology, University of Barcelona, Diagonal 643, Annex, Floor 0, E-08028, Barcelona, Spain
| | - Alexandre Martínez-Castillo
- Department of Microbiology, University of Barcelona, Diagonal 643, Annex, Floor 0, E-08028, Barcelona, Spain
| | - Cristina García-Aljaro
- Department of Microbiology, University of Barcelona, Diagonal 643, Annex, Floor 0, E-08028, Barcelona, Spain
| | - Maite Muniesa
- Department of Microbiology, University of Barcelona, Diagonal 643, Annex, Floor 0, E-08028, Barcelona, Spain
| |
Collapse
|
34
|
Transcriptomic analysis of Shiga-toxigenic bacteriophage carriage reveals a profound regulatory effect on acid resistance in Escherichia coli. Appl Environ Microbiol 2015; 81:8118-25. [PMID: 26386055 PMCID: PMC4651098 DOI: 10.1128/aem.02034-15] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 09/12/2015] [Indexed: 12/16/2022] Open
Abstract
Shiga-toxigenic bacteriophages are converting lambdoid phages that impart the ability to produce Shiga toxin to their hosts. Little is known about the function of most of the genes carried by these phages or the impact that lysogeny has on the Escherichia coli host. Here we use next-generation sequencing to compare the transcriptomes of E. coli strains infected with an Stx phage, before and after triggering of the bacterial SOS response that initiates the lytic cycle of the phage. We were able to discriminate between bacteriophage genes expressed in the lysogenic and lytic cycles, and we describe transcriptional changes that occur in the bacterial host as a consequence of Stx phage carriage. Having identified upregulation of the glutamic acid decarboxylase (GAD) operon, confirmed by reverse transcription-quantitative PCR (RT-qPCR), we used phenotypic assays to establish the ability of the Stx prophage to confer a greater acid resistance phenotype on the E. coli host. Known phage regulators were overexpressed in E. coli, and the acid resistance of the recombinant strains was tested. The phage-encoded transcriptional regulator CII was identified as the controller of the acid response in the lysogen. Infection of an E. coli O157 strain, from which integrated Stx prophages were previously removed, showed increased acid resistance following infection with a nontoxigenic phage, ϕ24B. In addition to demonstrating this link between Stx phage carriage and E. coli acid resistance, with its implications for survival postingestion, the data set provides a number of other potential insights into the impact of lambdoid phage carriage on the biology of E. coli.
Collapse
|
35
|
Dallman TJ, Ashton PM, Byrne L, Perry NT, Petrovska L, Ellis R, Allison L, Hanson M, Holmes A, Gunn GJ, Chase-Topping ME, Woolhouse MEJ, Grant KA, Gally DL, Wain J, Jenkins C. Applying phylogenomics to understand the emergence of Shiga-toxin-producing Escherichia coli O157:H7 strains causing severe human disease in the UK. Microb Genom 2015; 1:e000029. [PMID: 28348814 PMCID: PMC5320567 DOI: 10.1099/mgen.0.000029] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Accepted: 07/22/2015] [Indexed: 11/18/2022] Open
Abstract
Shiga-toxin-producing Escherichia coli (STEC) O157:H7 is a recently emerged zoonotic pathogen with considerable morbidity. Since the emergence of this serotype in the 1980s, research has focussed on unravelling the evolutionary events from the E. coli O55:H7 ancestor to the contemporaneous globally dispersed strains observed today. In this study, the genomes of over 1000 isolates from both human clinical cases and cattle, spanning the history of STEC O157:H7 in the UK, were sequenced. Phylogenetic analysis revealed the ancestry, key acquisition events and global context of the strains. Dated phylogenies estimated the time to evolution of the most recent common ancestor of the current circulating global clone to be 175 years ago. This event was followed by rapid diversification. We show the acquisition of specific virulence determinates has occurred relatively recently and coincides with its recent detection in the human population. We used clinical outcome data from 493 cases of STEC O157:H7 to assess the relative risk of severe disease including haemolytic uraemic syndrome from each of the defined clades in the population and show the dramatic effect Shiga toxin repertoire has on virulence. We describe two strain replacement events that have occurred in the cattle population in the UK over the last 30 years, one resulting in a highly virulent strain that has accounted for the majority of clinical cases in the UK over the last decade. There is a need to understand the selection pressures maintaining Shiga-toxin-encoding bacteriophages in the ruminant reservoir and the study affirms the requirement for close surveillance of this pathogen in both ruminant and human populations.
Collapse
Affiliation(s)
| | - Philip M Ashton
- Public Health England, 61 Colindale Avenue, London NW9 5EQ, UK
| | - Lisa Byrne
- Public Health England, 61 Colindale Avenue, London NW9 5EQ, UK
| | - Neil T Perry
- Public Health England, 61 Colindale Avenue, London NW9 5EQ, UK
| | - Liljana Petrovska
- Animal Laboratories and Plant Health Agency, Woodham Lane, Surrey KT15 3NB, UK
| | - Richard Ellis
- Animal Laboratories and Plant Health Agency, Woodham Lane, Surrey KT15 3NB, UK
| | - Lesley Allison
- Scottish E. coli O157/VTEC Reference Laboratory, Department of Laboratory Medicine, Royal Infirmary of Edinburgh, 51 Little France Crescent, Edinburgh EH16 4SA, UK
| | - Mary Hanson
- Scottish E. coli O157/VTEC Reference Laboratory, Department of Laboratory Medicine, Royal Infirmary of Edinburgh, 51 Little France Crescent, Edinburgh EH16 4SA, UK
| | - Anne Holmes
- Scottish E. coli O157/VTEC Reference Laboratory, Department of Laboratory Medicine, Royal Infirmary of Edinburgh, 51 Little France Crescent, Edinburgh EH16 4SA, UK
| | - George J Gunn
- Future Farming Systems, R&D Division, SRUC, Drummondhill, Stratherrick Rd., Inverness IV2 4JZ, Scotland, UK
| | - Margo E Chase-Topping
- Centre for Immunity, Infection and Evolution, Kings Buildings, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Mark E J Woolhouse
- Centre for Immunity, Infection and Evolution, Kings Buildings, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Kathie A Grant
- Public Health England, 61 Colindale Avenue, London NW9 5EQ, UK
| | - David L Gally
- Division of Infection and Immunity, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Roslin EH25 9RG, UK
| | - John Wain
- University of East Anglia, Norwich NR4 7TJ, UK
| | - Claire Jenkins
- Public Health England, 61 Colindale Avenue, London NW9 5EQ, UK
| |
Collapse
|
36
|
Pielaat A, Boer MP, Wijnands LM, van Hoek AHAM, Bouw E, Barker GC, Teunis PFM, Aarts HJM, Franz E. First step in using molecular data for microbial food safety risk assessment; hazard identification of Escherichia coli O157:H7 by coupling genomic data with in vitro adherence to human epithelial cells. Int J Food Microbiol 2015; 213:130-8. [PMID: 25910947 PMCID: PMC4613885 DOI: 10.1016/j.ijfoodmicro.2015.04.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 03/31/2015] [Accepted: 04/03/2015] [Indexed: 12/11/2022]
Abstract
The potential for using whole genome sequencing (WGS) data in microbiological risk assessment (MRA) has been discussed on several occasions since the beginning of this century. Still, the proposed heuristic approaches have never been applied in a practical framework. This is due to the non-trivial problem of mapping microbial information consisting of thousands of loci onto a probabilistic scale for risks. The paradigm change for MRA involves translation of multidimensional microbial genotypic information to much reduced (integrated) phenotypic information and onwards to a single measure of human risk (i.e. probability of illness). In this paper a first approach in methodology development is described for the application of WGS data in MRA; this is supported by a practical example. That is, combining genetic data (single nucleotide polymorphisms; SNPs) for Shiga toxin-producing Escherichia coli (STEC) O157 with phenotypic data (in vitro adherence to epithelial cells as a proxy for virulence) leads to hazard identification in a Genome Wide Association Study (GWAS). This application revealed practical implications when using SNP data for MRA. These can be summarized by considering the following main issues: optimum sample size for valid inference on population level, correction for population structure, quantification and calibration of results, reproducibility of the analysis, links with epidemiological data, anchoring and integration of results into a systems biology approach for the translation of molecular studies to human health risk. Future developments in genetic data analysis for MRA should aim at resolving the mapping problem of processing genetic sequences to come to a quantitative description of risk. The development of a clustering scheme focusing on biologically relevant information of the microbe involved would be a useful approach in molecular data reduction for risk assessment.
Collapse
Affiliation(s)
- Annemarie Pielaat
- National Institute for Public Health and the Environment (RIVM), Centre for Infectious Disease Control, A. van Leeuwenhoeklaan 9, 3720 BA Bilthoven, The Netherlands.
| | - Martin P Boer
- Wageningen UR Biometris, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Lucas M Wijnands
- National Institute for Public Health and the Environment (RIVM), Centre for Infectious Disease Control, A. van Leeuwenhoeklaan 9, 3720 BA Bilthoven, The Netherlands
| | - Angela H A M van Hoek
- National Institute for Public Health and the Environment (RIVM), Centre for Infectious Disease Control, A. van Leeuwenhoeklaan 9, 3720 BA Bilthoven, The Netherlands
| | - El Bouw
- National Institute for Public Health and the Environment (RIVM), Centre for Infectious Disease Control, A. van Leeuwenhoeklaan 9, 3720 BA Bilthoven, The Netherlands
| | - Gary C Barker
- IFR, Institute of Food Research, Norwich Research Park, Norwich, UK
| | - Peter F M Teunis
- National Institute for Public Health and the Environment (RIVM), Centre for Infectious Disease Control, A. van Leeuwenhoeklaan 9, 3720 BA Bilthoven, The Netherlands; Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Henk J M Aarts
- National Institute for Public Health and the Environment (RIVM), Centre for Infectious Disease Control, A. van Leeuwenhoeklaan 9, 3720 BA Bilthoven, The Netherlands
| | - Eelco Franz
- National Institute for Public Health and the Environment (RIVM), Centre for Infectious Disease Control, A. van Leeuwenhoeklaan 9, 3720 BA Bilthoven, The Netherlands
| |
Collapse
|
37
|
|
38
|
Impact of spontaneous prophage induction on the fitness of bacterial populations and host-microbe interactions. J Bacteriol 2014; 197:410-9. [PMID: 25404701 DOI: 10.1128/jb.02230-14] [Citation(s) in RCA: 196] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Bacteriophages and genetic elements, such as prophage-like elements, pathogenicity islands, and phage morons, make up a considerable amount of bacterial genomes. Their transfer and subsequent activity within the host's genetic circuitry have had a significant impact on bacterial evolution. In this review, we consider what underlying mechanisms might cause the spontaneous activity of lysogenic phages in single bacterial cells and how the spontaneous induction of prophages can lead to competitive advantages for and influence the lifestyle of bacterial populations or the virulence of pathogenic strains.
Collapse
|
39
|
Strain-dependent cellular immune responses in cattle following Escherichia coli O157:H7 colonization. Infect Immun 2014; 82:5117-31. [PMID: 25267838 DOI: 10.1128/iai.02462-14] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) O157:H7 causes hemorrhagic diarrhea and potentially fatal renal failure in humans. Ruminants are considered to be the primary reservoir for human infection. Vaccines that reduce shedding in cattle are only partially protective, and their underlying protective mechanisms are unknown. Studies investigating the response of cattle to colonization generally focus on humoral immunity, leaving the role of cellular immunity unclear. To inform future vaccine development, we studied the cellular immune responses of cattle during EHEC O157:H7 colonization. Calves were challenged either with a phage type 21/28 (PT21/28) strain possessing the Shiga toxin 2a (Stx2a) and Stx2c genes or with a PT32 strain possessing the Stx2c gene only. T-helper cell-associated transcripts at the terminal rectum were analyzed by reverse transcription-quantitative PCR (RT-qPCR). Induction of gamma interferon (IFN-γ) and T-bet was observed with peak expression of both genes at 7 days in PT32-challenged calves, while upregulation was delayed, peaking at 21 days, in PT21/28-challenged calves. Cells isolated from gastrointestinal lymph nodes demonstrated antigen-specific proliferation and IFN-γ release in response to type III secreted proteins (T3SPs); however, responsiveness was suppressed in cells isolated from PT32-challenged calves. Lymph node cells showed increased expression of the proliferation marker Ki67 in CD4(+) T cells from PT21/28-challenged calves, NK cells from PT32-challenged calves, and CD8(+) and γδ T cells from both PT21/28- and PT32-challenged calves following ex vivo restimulation with T3SPs. This study demonstrates that cattle mount cellular immune responses during colonization with EHEC O157:H7, the temporality of which is strain dependent, with further evidence of strain-specific immunomodulation.
Collapse
|
40
|
Franz E, Delaquis P, Morabito S, Beutin L, Gobius K, Rasko DA, Bono J, French N, Osek J, Lindstedt BA, Muniesa M, Manning S, LeJeune J, Callaway T, Beatson S, Eppinger M, Dallman T, Forbes KJ, Aarts H, Pearl DL, Gannon VP, Laing CR, Strachan NJ. Exploiting the explosion of information associated with whole genome sequencing to tackle Shiga toxin-producing Escherichia coli (STEC) in global food production systems. Int J Food Microbiol 2014; 187:57-72. [DOI: 10.1016/j.ijfoodmicro.2014.07.002] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 06/27/2014] [Accepted: 07/04/2014] [Indexed: 12/24/2022]
|
41
|
Tree JJ, Granneman S, McAteer SP, Tollervey D, Gally DL. Identification of bacteriophage-encoded anti-sRNAs in pathogenic Escherichia coli. Mol Cell 2014; 55:199-213. [PMID: 24910100 PMCID: PMC4104026 DOI: 10.1016/j.molcel.2014.05.006] [Citation(s) in RCA: 180] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 03/21/2014] [Accepted: 05/01/2014] [Indexed: 11/19/2022]
Abstract
In bacteria, Hfq is a core RNA chaperone that catalyzes the interaction of mRNAs with regulatory small RNAs (sRNAs). To determine in vivo RNA sequence requirements for Hfq interactions, and to study riboregulation in a bacterial pathogen, Hfq was UV crosslinked to RNAs in enterohemorrhagic Escherichia coli (EHEC). Hfq bound repeated trinucleotide motifs of A-R-N (A-A/G-any nucleotide) often associated with the Shine-Dalgarno translation initiation sequence in mRNAs. These motifs overlapped or were adjacent to the mRNA sequences bound by sRNAs. In consequence, sRNA-mRNA duplex formation will displace Hfq, promoting recycling. Fifty-five sRNAs were identified within bacteriophage-derived regions of the EHEC genome, including some of the most abundant Hfq-interacting sRNAs. One of these (AgvB) antagonized the function of the core genome regulatory sRNA, GcvB, by mimicking its mRNA substrate sequence. This bacteriophage-encoded "anti-sRNA" provided EHEC with a growth advantage specifically in bovine rectal mucus recovered from its primary colonization site in cattle.
Collapse
Affiliation(s)
- Jai J Tree
- Wellcome Trust Centre for Cell Biology, The University of Edinburgh, Edinburgh EH9 3JR, UK; The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh EH25 9RG, UK
| | - Sander Granneman
- Wellcome Trust Centre for Cell Biology, The University of Edinburgh, Edinburgh EH9 3JR, UK; Centre for Synthetic and Systems Biology (SynthSys), University of Edinburgh, Edinburgh EH9 3JD, UK
| | - Sean P McAteer
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh EH25 9RG, UK
| | - David Tollervey
- Wellcome Trust Centre for Cell Biology, The University of Edinburgh, Edinburgh EH9 3JR, UK.
| | - David L Gally
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh EH25 9RG, UK.
| |
Collapse
|
42
|
Identification and characterization of a peculiar vtx2-converting phage frequently present in verocytotoxin-producing Escherichia coli O157 isolated from human infections. Infect Immun 2014; 82:3023-32. [PMID: 24799627 DOI: 10.1128/iai.01836-14] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Certain verocytotoxin-producing Escherichia coli (VTEC) O157 phage types (PTs), such as PT8 and PT2, are associated with severe human infections, while others, such as PT21, seem to be restricted to cattle. In an attempt to delve into the mechanisms underlying such a differential distribution of PTs, we performed microarray comparison of human PT8 and animal PT21 VTEC O157 isolates. The main differences observed were in the vtx2-converting phages, with the PT21 strains bearing a phage identical to that present in the reference strain EDL933, BP933W, and all the PT8 isolates displaying lack of hybridization in some regions of the phage genome. We focused on the region spanning the gam and cII genes and developed a PCR tool to investigate the presence of PT8-like phages in a panel of VTEC O157 strains belonging to different PTs and determined that a vtx2 phage reacting with the primers deployed, which we named Φ8, was more frequent in VTEC O157 strains from human disease than in bovine strains. No differences were observed in the production of the VT2 mRNA when Φ8-positive strains were compared with VTEC O157 possessing BP933W. Nevertheless, we show that the gam-cII region of phage Φ8 might carry genetic determinants downregulating the transcription of the genes encoding the components of the type III secretion system borne on the locus of enterocyte effacement pathogenicity island.
Collapse
|
43
|
Rossez Y, Holmes A, Wolfson EB, Gally DL, Mahajan A, Pedersen HL, Willats WG, Toth IK, Holden NJ. Flagella interact with ionic plant lipids to mediate adherence of pathogenicEscherichia colito fresh produce plants. Environ Microbiol 2013; 16:2181-95. [DOI: 10.1111/1462-2920.12315] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 10/08/2013] [Indexed: 12/21/2022]
Affiliation(s)
- Yannick Rossez
- Cellular and Molecular Sciences; James Hutton Institute; Dundee Scotland UK
| | - Ashleigh Holmes
- Cellular and Molecular Sciences; James Hutton Institute; Dundee Scotland UK
| | - Eliza B. Wolfson
- The Roslin Institute Division of Infection and Immunity; University of Edinburgh, R(D)SVS; Edinburgh EH25 9RG UK
| | - David L. Gally
- The Roslin Institute Division of Infection and Immunity; University of Edinburgh, R(D)SVS; Edinburgh EH25 9RG UK
| | - Arvind Mahajan
- The Roslin Institute Division of Infection and Immunity; University of Edinburgh, R(D)SVS; Edinburgh EH25 9RG UK
| | | | - William G.T. Willats
- Department of Plant Biology and Biotechnology; University of Copenhagen; Denmark
| | - Ian K. Toth
- Cellular and Molecular Sciences; James Hutton Institute; Dundee Scotland UK
| | - Nicola J. Holden
- Cellular and Molecular Sciences; James Hutton Institute; Dundee Scotland UK
| |
Collapse
|
44
|
Predicting the public health benefit of vaccinating cattle against Escherichia coli O157. Proc Natl Acad Sci U S A 2013; 110:16265-70. [PMID: 24043803 DOI: 10.1073/pnas.1304978110] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Identifying the major sources of risk in disease transmission is key to designing effective controls. However, understanding of transmission dynamics across species boundaries is typically poor, making the design and evaluation of controls particularly challenging for zoonotic pathogens. One such global pathogen is Escherichia coli O157, which causes a serious and sometimes fatal gastrointestinal illness. Cattle are the main reservoir for E. coli O157, and vaccines for cattle now exist. However, adoption of vaccines is being delayed by conflicting responsibilities of veterinary and public health agencies, economic drivers, and because clinical trials cannot easily test interventions across species boundaries, lack of information on the public health benefits. Here, we examine transmission risk across the cattle-human species boundary and show three key results. First, supershedding of the pathogen by cattle is associated with the genetic marker stx2. Second, by quantifying the link between shedding density in cattle and human risk, we show that only the relatively rare supershedding events contribute significantly to human risk. Third, we show that this finding has profound consequences for the public health benefits of the cattle vaccine. A naïve evaluation based on efficacy in cattle would suggest a 50% reduction in risk; however, because the vaccine targets the major source of human risk, we predict a reduction in human cases of nearly 85%. By accounting for nonlinearities in transmission across the human-animal interface, we show that adoption of these vaccines by the livestock industry could prevent substantial numbers of human E. coli O157 cases.
Collapse
|
45
|
Shiga toxin 2-encoding bacteriophages in human fecal samples from healthy individuals. Appl Environ Microbiol 2013; 79:4862-8. [PMID: 23747705 DOI: 10.1128/aem.01158-13] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Shiga toxin-converting bacteriophages (Stx phages) carry the stx gene and convert nonpathogenic bacterial strains into Shiga toxin-producing bacteria. Previous studies have shown that high densities of free and infectious Stx phages are found in environments polluted with feces and also in food samples. Taken together, these two findings suggest that Stx phages could be excreted through feces, but this has not been tested to date. In this study, we purified Stx phages from 100 fecal samples from 100 healthy individuals showing no enteric symptoms. The phages retrieved from each sample were then quantified by quantitative PCR (qPCR). In total, 62% of the samples carried Stx phages, with an average value of 2.6 × 10(4) Stx phages/g. This result confirms the excretion of free Stx phages by healthy humans. Moreover, the Stx phages from feces were able to propagate in enrichment cultures of stx-negative Escherichia coli (strains C600 and O157:H7) and in Shigella sonnei, indicating that at least a fraction of the Stx phages present were infective. Plaque blot hybridization revealed lysis by Stx phages from feces. Our results confirm the presence of infectious free Stx phages in feces from healthy persons, possibly explaining the environmental prevalence observed in previous studies. It cannot be ruled out, therefore, that some positive stx results obtained during the molecular diagnosis of Shiga toxin-producing Escherichia coli (STEC)-related diseases using stool samples are due to the presence of Stx phages.
Collapse
|