1
|
Márquez Rosales S, Bouchard PI, Olmstead EM, Parthasarathy R. UV-irradiated rotifers for the maintenance of gnotobiotic zebrafish larvae. mSphere 2025; 10:e0069824. [PMID: 39992155 PMCID: PMC11934316 DOI: 10.1128/msphere.00698-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 01/27/2025] [Indexed: 02/25/2025] Open
Abstract
Host-associated microbial communities profoundly impact the health of humans and other animals. Zebrafish have proven to be a useful model for uncovering mechanisms of host-microbe interactions, but the difficulty of maintaining germ-free or gnotobiotic zebrafish beyond 1 week post-fertilization has limited their utility. To address this, we have developed a simple protocol using UV irradiation of rotifers, a common and nutrient-rich prey species for larval zebrafish, to reduce the bacterial load associated with the rotifers by several orders of magnitude while maintaining their motility and viability. We find that though feeding with UV-treated rotifers does not preserve the sterility of germ-free fish, it enables the maintenance of pre-existing bacterial communities. Normal feeding, in striking contrast, leads to the near-total depletion of these prior populations. We measure the abundance of single- and three-species consortia of zebrafish-commensal bacteria inoculated into initially germ-free larvae in a series of experiments extending to 8 days of feeding, or 13 days post-fertilization. We find, in fish-fed UV-treated rotifers, the persistence of bacterial populations on timescales of days, together with strong species-specific variation. In addition, re-inoculation of differently labeled strains of the same zebrafish-commensal species alongside feeding leads to colonization by the new bacteria without displacement of earlier microbes. Our method will facilitate the use of gnotobiotic zebrafish for investigations of phenomena that emerge later in animal development and for studies that probe microbiome composition fluctuations and stability over extended timescales.IMPORTANCEAll animals, including humans, are host to vast microbial communities that contribute to health and disease through mechanisms that remain largely mysterious. These microbiomes are challenging to study, spurring the use of various model organisms, including zebrafish. Zebrafish, however, are difficult to raise beyond 1 week post-fertilization under gnotobiotic conditions, in other words, germ free or with known microbial constituents, a consequence of normally feeding on live prey that brings their own, generally unknown, microbes. Therefore, we developed a simple protocol in which UV irradiation of rotifers, a widely used small-animal food for larval zebrafish, facilitates the maintenance of gnotobiotic larvae. We show that pre-existing bacterial communities in larvae are minimally affected by feeding on UV-treated rotifers, in strong contrast to feeding on untreated rotifers. We demonstrate that this feeding method allows investigations of zebrafish-associated bacterial community stability over several days, allowing investigation of previously intractable questions about microbiome stability.
Collapse
Affiliation(s)
- Susana Márquez Rosales
- Department of Physics, Institute of Molecular Biology, and Materials Science Institute, University of Oregon, Eugene, Oregon, USA
| | - Peter I. Bouchard
- Department of Physics, Institute of Molecular Biology, and Materials Science Institute, University of Oregon, Eugene, Oregon, USA
| | - Emily M. Olmstead
- Department of Physics, Institute of Molecular Biology, and Materials Science Institute, University of Oregon, Eugene, Oregon, USA
| | - Raghuveer Parthasarathy
- Department of Physics, Institute of Molecular Biology, and Materials Science Institute, University of Oregon, Eugene, Oregon, USA
| |
Collapse
|
2
|
Erradhouani C, Bortoli S, Aït‐Aïssa S, Coumoul X, Brion F. Metabolic disrupting chemicals in the intestine: the need for biologically relevant models: Zebrafish: what can we learn from this small environment-sensitive fish? FEBS Open Bio 2024; 14:1397-1419. [PMID: 39218795 PMCID: PMC11492336 DOI: 10.1002/2211-5463.13878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 07/08/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024] Open
Abstract
Although the concept of endocrine disruptors first appeared almost 30 years ago, the relatively recent involvement of these substances in the etiology of metabolic pathologies (obesity, diabetes, hepatic steatosis, etc.) has given rise to the concept of Metabolic Disrupting Chemicals (MDCs). Organs such as the liver and adipose tissue have been well studied in the context of metabolic disruption by these substances. The intestine, however, has been relatively unexplored despite its close link with these organs. In vivo models are useful for the study of the effects of MDCs in the intestine and, in addition, allow investigations into interactions with the rest of the organism. In the latter respect, the zebrafish is an animal model which is used increasingly for the characterization of endocrine disruptors and its use as a model for assessing effects on the intestine will, no doubt, expand. This review aims to highlight the importance of the intestine in metabolism and present the zebrafish as a relevant alternative model for investigating the effect of pollutants in the intestine by focusing, in particular, on cytochrome P450 3A (CYP3A), one of the major molecular players in endogenous and MDCs metabolism in the gut.
Collapse
Affiliation(s)
- Chedi Erradhouani
- Ecotoxicologie des Substances et des MilieuxINERISVerneuil‐en‐HalatteFrance
- Université Paris CitéFrance
- Inserm UMR‐S 1124ParisFrance
| | | | - Selim Aït‐Aïssa
- Ecotoxicologie des Substances et des MilieuxINERISVerneuil‐en‐HalatteFrance
| | | | - François Brion
- Ecotoxicologie des Substances et des MilieuxINERISVerneuil‐en‐HalatteFrance
| |
Collapse
|
3
|
Jennings SAV, Clavel T. Synthetic Communities of Gut Microbes for Basic Research and Translational Approaches in Animal Health and Nutrition. Annu Rev Anim Biosci 2024; 12:283-300. [PMID: 37963399 DOI: 10.1146/annurev-animal-021022-025552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Microbes and animals have a symbiotic relationship that greatly influences nutrient uptake and animal health. This relationship can be studied using selections of microbes termed synthetic communities, or SynComs. SynComs are used in many different animal hosts, including agricultural animals, to investigate microbial interactions with nutrients and how these affect animal health. The most common host focuses for SynComs are currently mouse and human, from basic mechanistic research through to translational disease models and live biotherapeutic products (LBPs) as treatments. We discuss SynComs used in basic research models and findings that relate to human and animal health and nutrition. Translational use cases of SynComs are discussed, followed by LBPs, especially within the context of agriculture. SynComs still face challenges, such as standardization for reproducibility and contamination risks. However, the future of SynComs is hopeful, especially in the areas of genome-guided SynCom design and custom SynCom-based treatments.
Collapse
Affiliation(s)
- Susan A V Jennings
- Functional Microbiome Research Group, Institute of Medical Microbiology, RWTH University Hospital, Aachen, Germany;
| | - Thomas Clavel
- Functional Microbiome Research Group, Institute of Medical Microbiology, RWTH University Hospital, Aachen, Germany;
| |
Collapse
|
4
|
Stevick RJ, Audrain B, Bedu S, Dray N, Ghigo JM, Pérez-Pascual D. Anti-diarrheal drug loperamide induces dysbiosis in zebrafish microbiota via bacterial inhibition. MICROBIOME 2023; 11:252. [PMID: 37951983 PMCID: PMC10638762 DOI: 10.1186/s40168-023-01690-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 10/04/2023] [Indexed: 11/14/2023]
Abstract
BACKGROUND Perturbations of animal-associated microbiomes from chemical stress can affect host physiology and health. While dysbiosis induced by antibiotic treatments and disease is well known, chemical, nonantibiotic drugs have recently been shown to induce changes in microbiome composition, warranting further exploration. Loperamide is an opioid-receptor agonist widely prescribed for treating acute diarrhea in humans. Loperamide is also used as a tool to study the impact of bowel dysfunction in animal models by inducing constipation, but its effect on host-associated microbiota is poorly characterized. RESULTS We used conventional and gnotobiotic larval zebrafish models to show that in addition to host-specific effects, loperamide also has anti-bacterial activities that directly induce changes in microbiota diversity. This dysbiosis is due to changes in bacterial colonization, since gnotobiotic zebrafish mono-colonized with bacterial strains sensitive to loperamide are colonized up to 100-fold lower when treated with loperamide. Consistently, the bacterial diversity of gnotobiotic zebrafish colonized by a mix of 5 representative bacterial strains is affected by loperamide treatment. CONCLUSION Our results demonstrate that loperamide, in addition to host effects, also induces dysbiosis in a vertebrate model, highlighting that established treatments can have underlooked secondary effects on microbiota structure and function. This study further provides insights for future studies exploring how common medications directly induce changes in host-associated microbiota. Video Abstract.
Collapse
Affiliation(s)
- Rebecca J Stevick
- Genetics of Biofilms Laboratory, UMR 6047, Institut Pasteur Université Paris Cité, CNRS, Paris, France
| | - Bianca Audrain
- Genetics of Biofilms Laboratory, UMR 6047, Institut Pasteur Université Paris Cité, CNRS, Paris, France
| | - Sébastien Bedu
- Zebrafish Neurogenetics Laboratory, UMR 3738, Institut Pasteur Université Paris Cité, CNRS, Paris, France
| | - Nicolas Dray
- Zebrafish Neurogenetics Laboratory, UMR 3738, Institut Pasteur Université Paris Cité, CNRS, Paris, France
| | - Jean-Marc Ghigo
- Genetics of Biofilms Laboratory, UMR 6047, Institut Pasteur Université Paris Cité, CNRS, Paris, France.
| | - David Pérez-Pascual
- Genetics of Biofilms Laboratory, UMR 6047, Institut Pasteur Université Paris Cité, CNRS, Paris, France.
| |
Collapse
|
5
|
Liao XJ, He TT, Liu LY, Jiang XL, Sun SS, Deng YH, Zhang LQ, Xie HX, Nie P. Unraveling and characterization of novel T3SS effectors in Edwardsiella piscicida. mSphere 2023; 8:e0034623. [PMID: 37642418 PMCID: PMC10597406 DOI: 10.1128/msphere.00346-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 07/03/2023] [Indexed: 08/31/2023] Open
Abstract
Type III secretion system (T3SS) facilitates survival and replication of Edwardsiella piscicida in vivo. Identifying novel T3SS effectors and elucidating their functions are critical in understanding the pathogenesis of E. piscicida. E. piscicida T3SS effector EseG and EseJ was highly secreted when T3SS gatekeeper-containing protein complex EsaB-EsaL-EsaM was disrupted by EsaB deficiency. Based on this observation, concentrated secretomes of ΔesaB strain and ΔesaBΔesaN strain were purified by loading them into SDS-PAGE gel for a short electrophoresis to remove impurities prior to the in-the gel digestion and mass spectrometry. Four reported T3SS effectors and two novel T3SS effector candidates EseQ (ETAE_2009) and Trx2 (ETAE_0559) were unraveled by quantitative comparison of the identified peptides. EseQ and Trx2 were revealed to be secreted and translocated in a T3SS-dependent manner through CyaA-based translocation assay and immunofluorescent staining, demonstrating that EseQ and Trx2 are the novel T3SS effectors of E. piscicida. Trx2 was found to suppress macrophage apoptosis as revealed by TUNEL staining and cleaved caspase-3 of infected J774A.1 monolayers. Moreover, Trx2 has been shown to inhibit the p65 phosphorylation and p65 translocation into the nucleus, thus blocking the NF-κB pathway. Furthermore, depletion of Trx2 slightly but significantly attenuates E. piscicida virulence in a fish infection model. Taken together, an efficient method was established in unraveling T3SS effectors in E. piscicida, and Trx2, one of the novel T3SS effectors identified in this study, was demonstrated to suppress apoptosis and block NF- κB pathway during E. piscicida infection. IMPORTANCE Edwardsiella piscicida is an intracellular bacterial pathogen that causes intestinal inflammation and hemorrhagic sepsis in fish and human. Virulence depends on the Edwardsiella type III secretion system (T3SS). Identifying the bacterial effector proteins secreted by T3SS and defining their role is key to understanding Edwardsiella pathogenesis. EsaB depletion disrupts the T3SS gatekeeper-containing protein complex, resulting in increased secretion of T3SS effectors EseG and EseJ. EseQ and Trx2 were shown to be the novel T3SS effectors of E. piscicida by a secretome comparison between ∆esaB strain and ∆esaB∆esaN strain (T3SS mutant), together with CyaA-based translocation assay. In addition, Trx2 has been shown to suppress macrophage apoptosis and block the NF-κB pathway. Together, this work expands the known repertoire of T3SS effectors and sheds light on the pathogenic mechanism of E. piscicida.
Collapse
Affiliation(s)
- Xiao Jian Liao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Tian Tian He
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Lu Yi Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- Fisheries Research Institute, Wuhan Academy of Agricultural Sciences, Wuhan, China
| | - Xiu Long Jiang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Shan Shan Sun
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yu Hang Deng
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Li Qiang Zhang
- Fisheries Research Institute, Wuhan Academy of Agricultural Sciences, Wuhan, China
| | - Hai Xia Xie
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Pin Nie
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
6
|
Qi X, Zhang Y, Zhang Y, Luo F, Song K, Wang G, Ling F. Vitamin B 12 produced by Cetobacterium somerae improves host resistance against pathogen infection through strengthening the interactions within gut microbiota. MICROBIOME 2023; 11:135. [PMID: 37322528 PMCID: PMC10268390 DOI: 10.1186/s40168-023-01574-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 05/15/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Pathogen infections seriously affect host health, and the use of antibiotics increases the risk of the emergence of drug-resistant bacteria and also increases environmental and health safety risks. Probiotics have received much attention for their excellent ability to prevent pathogen infections. Particularly, explaining mechanism of action of probiotics against pathogen infections is important for more efficient and rational use of probiotics and the maintenance of host health. RESULTS Here, we describe the impacts of probiotic on host resistance to pathogen infections. Our findings revealed that (I) the protective effect of oral supplementation with B. velezensis against Aeromonas hydrophila infection was dependent on gut microbiota, specially the anaerobic indigenous gut microbe Cetobacterium; (II) Cetobacterium was a sensor of health, especially for fish infected with pathogenic bacteria; (III) the genome resolved the ability of Cetobacterium somerae CS2105-BJ to synthesize vitamin B12 de novo, while in vivo and in vitro metabolism assays also showed the ability of Cetobacterium somerae CS2105-BJ to produce vitamin B12; (IV) the addition of vitamin B12 significantly altered the gut redox status and the gut microbiome structure and function, and then improved the stability of the gut microbial ecological network, and enhanced the gut barrier tight junctions to prevent the pathogen infection. CONCLUSION Collectively, this study found that the effect of probiotics in enhancing host resistance to pathogen infections depended on function of B12 produced by an anaerobic indigenous gut microbe, Cetobacterium. Furthermore, as a gut microbial regulator, B12 exhibited the ability to strengthen the interactions within gut microbiota and gut barrier tight junctions, thereby improving host resistance against pathogen infection. Video Abstract.
Collapse
Affiliation(s)
- Xiaozhou Qi
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Yong Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Yilin Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Fei Luo
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Kaige Song
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Gaoxue Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China.
| | - Fei Ling
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China.
| |
Collapse
|
7
|
Patel P, Nandi A, Verma SK, Kaushik N, Suar M, Choi EH, Kaushik NK. Zebrafish-based platform for emerging bio-contaminants and virus inactivation research. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 872:162197. [PMID: 36781138 PMCID: PMC9922160 DOI: 10.1016/j.scitotenv.2023.162197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/23/2023] [Accepted: 02/08/2023] [Indexed: 05/27/2023]
Abstract
Emerging bio-contaminants such as viruses have affected health and environment settings of every country. Viruses are the minuscule entities resulting in severe contagious diseases like SARS, MERS, Ebola, and avian influenza. Recent epidemic like the SARS-CoV-2, the virus has undergone mutations strengthen them and allowing to escape from the remedies. Comprehensive knowledge of viruses is essential for the development of targeted therapeutic and vaccination treatments. Animal models mimicking human biology like non-human primates, rats, mice, and rabbits offer competitive advantage to assess risk of viral infections, chemical toxins, nanoparticles, and microbes. However, their economic maintenance has always been an issue. Furthermore, the redundancy of experimental results due to aforementioned aspects is also in examine. Hence, exploration for the alternative animal models is crucial for risk assessments. The current review examines zebrafish traits and explores the possibilities to monitor emerging bio-contaminants. Additionally, a comprehensive picture of the bio contaminant and virus particle invasion and abatement mechanisms in zebrafish and human cells is presented. Moreover, a zebrafish model to investigate the emerging viruses such as coronaviridae and poxviridae has been suggested.
Collapse
Affiliation(s)
- Paritosh Patel
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, 01897 Seoul, South Korea
| | - Aditya Nandi
- School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India
| | - Suresh K Verma
- School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India; Condensed Matter Theory Group, Materials Theory Division, Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden
| | - Neha Kaushik
- Department of Biotechnology, College of Engineering, The University of Suwon, 18323 Hwaseong, Republic of Korea
| | - Mrutyunjay Suar
- School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India
| | - Eun Ha Choi
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, 01897 Seoul, South Korea.
| | - Nagendra Kumar Kaushik
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, 01897 Seoul, South Korea.
| |
Collapse
|
8
|
Gómez de la Torre Canny S, Nordgård CT, Mathisen AJH, Degré Lorentsen E, Vadstein O, Bakke I. A novel gnotobiotic experimental system for Atlantic salmon ( Salmo salar L.) reveals a microbial influence on mucosal barrier function and adipose tissue accumulation during the yolk sac stage. Front Cell Infect Microbiol 2023; 12:1068302. [PMID: 36817693 PMCID: PMC9929952 DOI: 10.3389/fcimb.2022.1068302] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/05/2022] [Indexed: 02/04/2023] Open
Abstract
Gnotobiotic models have had a crucial role in studying the effect that commensal microbiota has on the health of their animal hosts. Despite their physiological and ecological diversity, teleost fishes are still underrepresented in gnotobiotic research. Moreover, a better understanding of host-microbe interactions in farmed fish has the potential to contribute to sustainable global food supply. We have developed a novel gnotobiotic experimental system that includes the derivation of fertilized eggs of farmed and wild Atlantic salmon, and gnotobiotic husbandry of fry during the yolk sac stage. We used a microscopy-based approach to estimate the barrier function of the skin mucus layer and used this measurement to select the derivation procedure that minimized adverse effects on the skin mucosa. We also used this method to demonstrate that the mucus barrier was reduced in germ-free fry when compared to fry colonized with two different bacterial communities. This alteration in the mucus barrier was preceded by an increase in the number of cells containing neutral mucosubstances in the anterior segment of the body, but without changes in the number of cells containing acidic substances in any of the other segments studied along the body axis. In addition, we showed how the microbial status of the fry temporarily affected body size and the utilization of internal yolk stores during the yolk sac stage. Finally, we showed that the presence of bacterial communities associated with the fry, as well as their composition, affected the size of adipose tissue. Fry colonized with water from a lake had a larger visceral adipose tissue depot than both conventionally raised and germ-free fry. Together, our results show that this novel gnotobiotic experimental system is a useful tool for the study of host-microbe interactions in this species of aquacultural importance.
Collapse
Affiliation(s)
| | | | | | | | | | - Ingrid Bakke
- Department of Biotechnology and Food Science, Faculty of Natural Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
9
|
Winans JB, Wucher BR, Nadell CD. Multispecies biofilm architecture determines bacterial exposure to phages. PLoS Biol 2022; 20:e3001913. [PMID: 36548227 PMCID: PMC9778933 DOI: 10.1371/journal.pbio.3001913] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 11/14/2022] [Indexed: 12/24/2022] Open
Abstract
Numerous ecological interactions among microbes-for example, competition for space and resources, or interaction among phages and their bacterial hosts-are likely to occur simultaneously in multispecies biofilm communities. While biofilms formed by just a single species occur, multispecies biofilms are thought to be more typical of microbial communities in the natural environment. Previous work has shown that multispecies biofilms can increase, decrease, or have no measurable impact on phage exposure of a host bacterium living alongside another species that the phages cannot target. The reasons underlying this variability are not well understood, and how phage-host encounters change within multispecies biofilms remains mostly unexplored at the cellular spatial scale. Here, we study how the cellular scale architecture of model 2-species biofilms impacts cell-cell and cell-phage interactions controlling larger scale population and community dynamics. Our system consists of dual culture biofilms of Escherichia coli and Vibrio cholerae under exposure to T7 phages, which we study using microfluidic culture, high-resolution confocal microscopy imaging, and detailed image analysis. As shown previously, sufficiently mature biofilms of E. coli can protect themselves from phage exposure via their curli matrix. Before this stage of biofilm structural maturity, E. coli is highly susceptible to phages; however, we show that these bacteria can gain lasting protection against phage exposure if they have become embedded in the bottom layers of highly packed groups of V. cholerae in co-culture. This protection, in turn, is dependent on the cell packing architecture controlled by V. cholerae biofilm matrix secretion. In this manner, E. coli cells that are otherwise susceptible to phage-mediated killing can survive phage exposure in the absence of de novo resistance evolution. While co-culture biofilm formation with V. cholerae can confer phage protection to E. coli, it comes at the cost of competing with V. cholerae and a disruption of normal curli-mediated protection for E. coli even in dual species biofilms grown over long time scales. This work highlights the critical importance of studying multispecies biofilm architecture and its influence on the community dynamics of bacteria and phages.
Collapse
Affiliation(s)
- James B. Winans
- Department of Biological Sciences, Dartmouth, Hanover, New Hampshire, United States of America
| | - Benjamin R. Wucher
- Department of Biological Sciences, Dartmouth, Hanover, New Hampshire, United States of America
| | - Carey D. Nadell
- Department of Biological Sciences, Dartmouth, Hanover, New Hampshire, United States of America
| |
Collapse
|
10
|
Biofilms and Benign Colonic Diseases. Int J Mol Sci 2022; 23:ijms232214259. [PMID: 36430737 PMCID: PMC9698058 DOI: 10.3390/ijms232214259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/06/2022] [Accepted: 11/10/2022] [Indexed: 11/19/2022] Open
Abstract
The colon has a very large surface area that is covered by a dense mucus layer. The biomass in the colon includes 500-1000 bacterial species at concentrations of ~1012 colony-forming units per gram of feces. The intestinal epithelial cells and the commensal bacteria in the colon have a symbiotic relationship that results in nutritional support for the epithelial cells by the bacteria and maintenance of the optimal commensal bacterial population by colonic host defenses. Bacteria can form biofilms in the colon, but the exact frequency is uncertain because routine methods to undertake colonoscopy (i.e., bowel preparation) may dislodge these biofilms. Bacteria in biofilms represent a complex community that includes living and dead bacteria and an extracellular matrix composed of polysaccharides, proteins, DNA, and exogenous debris in the colon. The formation of biofilms occurs in benign colonic diseases, such as inflammatory bowel disease and irritable bowel syndrome. The development of a biofilm might serve as a marker for ongoing colonic inflammation. Alternatively, the development of biofilms could contribute to the pathogenesis of these disorders by providing sanctuaries for pathogenic bacteria and reducing the commensal bacterial population. Therapeutic approaches to patients with benign colonic diseases could include the elimination of biofilms and restoration of normal commensal bacteria populations. However, these studies will be extremely difficult unless investigators can develop noninvasive methods for measuring and identifying biofilms. These methods that might include the measurement of quorum sensing molecules, measurement of bile acids, and identification of bacteria uniquely associated with biofilms in the colon.
Collapse
|
11
|
Levraud JP, Rawls JF, Clatworthy AE. Using zebrafish to understand reciprocal interactions between the nervous and immune systems and the microbial world. J Neuroinflammation 2022; 19:170. [PMID: 35765004 PMCID: PMC9238045 DOI: 10.1186/s12974-022-02506-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 06/01/2022] [Indexed: 11/10/2022] Open
Abstract
Animals rely heavily on their nervous and immune systems to perceive and survive within their environment. Despite the traditional view of the brain as an immunologically privileged organ, these two systems interact with major consequences. Furthermore, microorganisms within their environment are major sources of stimuli and can establish relationships with animal hosts that range from pathogenic to mutualistic. Research from a variety of human and experimental animal systems are revealing that reciprocal interactions between microbiota and the nervous and immune systems contribute significantly to normal development, homeostasis, and disease. The zebrafish has emerged as an outstanding model within which to interrogate these interactions due to facile genetic and microbial manipulation and optical transparency facilitating in vivo imaging. This review summarizes recent studies that have used the zebrafish for analysis of bidirectional control between the immune and nervous systems, the nervous system and the microbiota, and the microbiota and immune system in zebrafish during development that promotes homeostasis between these systems. We also describe how the zebrafish have contributed to our understanding of the interconnections between these systems during infection in fish and how perturbations may result in pathology.
Collapse
Affiliation(s)
- Jean-Pierre Levraud
- Université Paris-Saclay, CNRS, Institut Pasteur, Université Paris-Cité, Institut des Neurosciences Paris-Saclay, 91400, Saclay, France.
| | - John F. Rawls
- grid.26009.3d0000 0004 1936 7961Department of Molecular Genetics and Microbiology, Duke Microbiome Center, Duke University School of Medicine, 213 Research Drive, Durham, NC 27710 USA
| | - Anne E. Clatworthy
- grid.66859.340000 0004 0546 1623Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142 USA ,grid.32224.350000 0004 0386 9924Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114 USA
| |
Collapse
|
12
|
AI-2/LuxS Quorum Sensing System Promotes Biofilm Formation of Lactobacillus rhamnosus GG and Enhances the Resistance to Enterotoxigenic Escherichia coli in Germ-Free Zebrafish. Microbiol Spectr 2022; 10:e0061022. [PMID: 35700135 PMCID: PMC9430243 DOI: 10.1128/spectrum.00610-22] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The LuxS enzyme plays a key role in both quorum sensing (QS) and the regulation of bacterial growth. It catalyzes the production of autoinducer-2 (AI-2) signaling molecule, which is a component of the methyl cycle and methionine metabolism. This study aimed at investigating the differences between the Lactobacillus rhamnosus GG (LGG) wild-type strain (WT) and its luxS mutant (ΔluxS) during biofilm formation and when resisting to inflammation caused by Enterotoxigenic Escherichia coli (ETEC) in germ-free zebrafish. Our results suggest that in the absence of luxS when LGG was knocked out, biofilm formation, extracellular polysaccharide secretion and adhesion were all compromised. Addition of synthetic AI-2 indeed rescued, at least partially, the deficiencies observed in the mutant strain. The colonizing and immunomodulatory function in WT versus ΔluxS mutants were further studied in a germ-free zebrafish model. The concentration of AI-2 signaling molecules decreased sharply in zebrafish infected with the ΔluxS. At the same time, compared with the ΔluxS, the wild-type strain could colonize the germ-free zebrafish more effectively. Our transcriptome results suggest that genes involved in immunity, signal transduction, and cell adhesion were downregulated in zebrafish infected with ΔluxS and WT. In the WT, the immune system of germ-free zebrafish was activated more effectively through the MAPK and NF-κB pathway, and its ability to fight the infection against ETEC was increased. Together, our results demonstrate that the AI-2/LuxS system plays an important role in biofilm formation to improve LGG and alleviate inflammation caused by ETEC in germ-free zebrafish. IMPORTANCELactobacillus rhamnosus GG is a widely used probiotic to improve host intestinal health, promote growth, reduce diarrhea, and modulate immunity. In recent years, the bacterial quorum sensing system has attracted much attention; however, there has not been much research on the effect of the LuxS/AI-2 quorum sensing system of Lactobacillus on bacteriostasis, microbial ecology balance, and immune regulation in intestine. In this study, we used germ-free zebrafish as an animal model to compare the differences between wild-type and luxS mutant strains. We showed how AI-2/LuxS QS affects the release of AI-2 and how QS regulates the colonization, EPS synthesis and biofilm formation of LGG. This study provides an idea for the targeted regulation of animal intestinal health with probiotics by controlling bacteria quorum sensing system.
Collapse
|
13
|
Liu YL, He TT, Jiang XL, Sun SS, Wang LK, Nie P, Xie HX. Development of a hyper-adhesive and attenuated Edwardsiella ictaluri strain as a novel immersion vaccine candidate in yellow catfish (Pelteobagrus fulvidraco). Microb Pathog 2022; 167:105577. [PMID: 35561979 DOI: 10.1016/j.micpath.2022.105577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 05/05/2022] [Accepted: 05/08/2022] [Indexed: 10/18/2022]
Abstract
Edwardsiella ictaluri, a Gram-negative intracellular pathogen, is the causative agent of enteric septicemia in channel catfish, and catfish aquaculture in China suffers heavy economic losses due to E. ictaluri infection. Vaccination is an effective control measure for this disease. In this study, an attenuated E. ictaluri strain was acquired through deletion mutation of the T3SS protein eseJei, and the ΔeseJei strain fails to replicate in the epithelioma papillosum of carp cells. The type 1 fimbria plays a pivotal role in the adhesion of E. ictaluri, and it was found in this study that deletion of -245 to -50 nt upstream of fimA increases its adhesion to around five times that of the WT strain. A hyper-adhesive and highly attenuated double mutant (ΔeseJeiΔfimA-245--50 strain) was constructed, and it was used as a vaccine candidate in yellow catfish via bath immersion at a dosage of 1 × 105 CFU/mL. It was found that this vaccine candidate can stimulate protection when challenged with E. ictaluri HSN-1 at 5 × 107 CFU/mL (∼20 × LD50). The survival rate was 83.61% for the vaccinated group and 33.33% for the sham-vaccinated group. The RPS (relative percent of survival) of the vaccination trial reached 75.41%. In conclusion, the ΔeseJeiΔfimA-245--50 strain developed in this study can be used as a vaccine candidate. It excels in terms of ease of delivery (via bath immersion) and is highly efficient in stimulating protection against E. ictaluri infection.
Collapse
Affiliation(s)
- Ying Li Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, China
| | - Tian Tian He
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, China
| | - Xiu Long Jiang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Shan Shan Sun
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Long Kun Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, China
| | - Pin Nie
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, China
| | - Hai Xia Xie
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, China.
| |
Collapse
|
14
|
Lu Y, Zhang J, Zhou X, Guan M, Zhang Z, Liang X, Tong L, Yi H, Gong P, Bai L, Zhou H, Liu T, Zhang L. The edible Lactobacillus paracasei X11 with Konjac glucomannan promotes intestinal motility in zebrafish. Neurogastroenterol Motil 2021; 33:e14196. [PMID: 34337833 DOI: 10.1111/nmo.14196] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 04/13/2021] [Accepted: 05/13/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND Constipation is a gastrointestinal symptom with high incidence rate and large number of patients. It is becoming one of the urgent medical problems. Poor intestinal motility is one of the important causes of constipation. Current drug treatments for constipation are associated with many side effects; thus, it is necessary to study more effective treatment methods and potential mechanism. METHODS A zebrafish model of intestinal motility obstruction was established by loperamide hydrochloride to evaluate the effect of probiotic, food ingredients, and combination on intestinal peristalsis according to intestinal peristalsis frequency counts. The gastrointestinal survival ability of the best probiotics was evaluated by surface hydrophobicity, self-aggregation, acid and bile salt tolerance, and gastrointestinal transit tolerance. Interactions between probiotics and food ingredients were studied in vivo and in vitro. The expression of 5-HT was detected by ELISA and fluorescence immunoassay, and 5-HT related genes were detected by RT-PCR. KEY RESULTS We obtained the probiotics, food ingredients, and combination that effectively promoted intestinal peristalsis, X11 and YRL577, P. persica and KGM, KGM + X11, respectively. Both KGM and P. persica promoted colonization of probiotics in vivo. KGM + X11 could effectively promote the increase in 5-HT synthesis in zebrafish via up-regulating gene expression of TPH-1, TPH-2, and 5-HTR and down-regulating gene expression of SERT. The specific in-depth mechanism needs further study. CONCLUSIONS AND INFERENCES The combinations of KGM with X11 effectively promoted intestinal peristalsis. We provide a theoretical basis for new modalities that can promote intestinal peristalsis and alleviate constipation.
Collapse
Affiliation(s)
- Youyou Lu
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Junxue Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | | | - Meiyu Guan
- Qingdao Central Hospital, Qingdao, China
| | - Zhe Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Xi Liang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Lingjun Tong
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Huaxi Yi
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Pimin Gong
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Lu Bai
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Hui Zhou
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Tongjie Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Lanwei Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| |
Collapse
|
15
|
Kidess E, Kleerebezem M, Brugman S. Colonizing Microbes, IL-10 and IL-22: Keeping the Peace at the Mucosal Surface. Front Microbiol 2021; 12:729053. [PMID: 34603258 PMCID: PMC8484919 DOI: 10.3389/fmicb.2021.729053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 08/25/2021] [Indexed: 12/15/2022] Open
Abstract
Our world is filled with microbes. Each multicellular organism has developed ways to interact with this microbial environment. Microbes do not always pose a threat; they can contribute to many processes that benefit the host. Upon colonization both host and microbes adapt resulting in dynamic ecosystems in different host niches. Regulatory processes develop within the host to prevent overt inflammation to beneficial microbes, yet keeping the possibility to respond when pathogens attempt to adhere and invade tissues. This review will focus on microbial colonization and the early (innate) host immune response, with special emphasis on the microbiota-modifying roles of IL-10 and IL-22 in the intestine. IL-10 knock out mice show an altered microbial composition, and spontaneously develop enterocolitis over time. IL-22 knock out mice, although not developing enterocolitis spontaneously, also have an altered microbial composition and increase of epithelial-adherent bacteria, mainly caused by a decrease in mucin and anti-microbial peptide production. Recently interesting links have been found between the IL-10 and IL-22 pathways. While IL-22 can function as a regulatory cytokine at the mucosal surface, it also has inflammatory roles depending on the context. For example, lack of IL-22 in the IL-10–/– mice model prevents spontaneous colitis development. Additionally, the reduced microbial diversity observed in IL-10–/– mice was also reversed in IL-10/IL-22 double mutant mice (Gunasekera et al., 2020). Since in early life, host immunity develops in parallel and in interaction with colonizing microbes, there is a need for future studies that focus on the effect of the timing of colonization in relation to the developmental phase of the host. To illustrate this, examples from zebrafish research will be compared with studies performed in mammals. Since zebrafish develop from eggs and are directly exposed to the outside microbial world, timing of the development of host immunity and subsequent control of microbial composition, is different from mammals that develop in utero and only get exposed after birth. Likewise, colonization studies using adult germfree mice might yield different results from those using neonatal germfree mice. Lastly, special emphasis will be given to the need for host genotype and environmental (co-housing) control of experiments.
Collapse
Affiliation(s)
- Evelien Kidess
- Animal Sciences Group, Host-Microbe Interactomics, Wageningen University and Research, Wageningen, Netherlands
| | - Michiel Kleerebezem
- Animal Sciences Group, Host-Microbe Interactomics, Wageningen University and Research, Wageningen, Netherlands
| | - Sylvia Brugman
- Animal Sciences Group, Host-Microbe Interactomics, Wageningen University and Research, Wageningen, Netherlands
| |
Collapse
|
16
|
Shukla SK, Sharma AK, Gupta V, Kalonia A, Shaw P. Challenges with Wound Infection Models in Drug Development. Curr Drug Targets 2021; 21:1301-1312. [PMID: 32116189 DOI: 10.2174/1389450121666200302093312] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/06/2020] [Accepted: 02/06/2020] [Indexed: 01/05/2023]
Abstract
Wound research is an evolving science trying to unfold the complex untold mechanisms behind the wound healing cascade. In particular, interest is growing regarding the role of microorganisms in both acute and chronic wound healing. Microbial burden plays an important role in the persistence of chronic wounds, ultimately resulting in delayed wound healing. It is therefore important for clinicians to understand the evolution of infection science and its various etiologies. Therefore, to understand the role of bacterial biofilm in chronic wound pathogenesis, various in vitro and in vivo models are required to investigate biofilms in wound-like settings. Infection models should be refined comprising an important signet of biofilms. These models are eminent for translational research to obtain data for designing an improved wound care formulation. However, all the existing models possess limitations and do not fit properly in the model frame for developing wound care agents. Among various impediments, one of the major drawbacks of such models is that the wound they possess does not mimic the wound a human develops. Therefore, a novel wound infection model is required which can imitate the human wounds. This review article mainly discusses various in vitro and in vivo models showing microbial colonization, their advantages and challenges. Apart from these models, there are also present ex vivo wound infection models, but this review mainly focused on various in vitro and in vivo models available for studying wound infection in controlled conditions. This information might be useful in designing an ideal wound infection model for developing an effective wound healing formulation.
Collapse
Affiliation(s)
- Sandeep K Shukla
- Institute of Nuclear Medicine & Allied Sciences, Defence Research and Development Organization, SK Mazumdar Marg, Timarpur, Delhi-110054, India
| | - Ajay K Sharma
- Institute of Nuclear Medicine & Allied Sciences, Defence Research and Development Organization, SK Mazumdar Marg, Timarpur, Delhi-110054, India
| | - Vanya Gupta
- Graphic Era deemed to be University, Dehradun, India
| | - Aman Kalonia
- Institute of Nuclear Medicine & Allied Sciences, Defence Research and Development Organization, SK Mazumdar Marg, Timarpur, Delhi-110054, India
| | - Priyanka Shaw
- Institute of Nuclear Medicine & Allied Sciences, Defence Research and Development Organization, SK Mazumdar Marg, Timarpur, Delhi-110054, India
| |
Collapse
|
17
|
Bootorabi F, Saadat F, Falak R, Manouchehri H, Changizi R, Mohammadi H, Safavifar F, Khorramizadeh MR. Gut micobiota alteration by Lactobacillus rhamnosus reduces pro-inflammatory cytokines and glucose level in the adult model of Zebrafish. BMC Res Notes 2021; 14:302. [PMID: 34372916 PMCID: PMC8351095 DOI: 10.1186/s13104-021-05706-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 07/19/2021] [Indexed: 01/04/2023] Open
Abstract
Objective Type 2 diabetes mellitus (T2DM) is still a challenge for physicians to manage patient’s circumstances. It is assumed that alterations in the normal flora may be involved in the pathogenesis of T2DM through inducing chronic inflammation. To investigate the effect of Lactobacillus rhamnosus as a common probiotic on T2DM, we induced an experimental model of T2DM in adult male Zebrafish by gradient hyper-glucose accumulation methodology. Results In this trial 3-month old male adult Zebrafish were divided in to four groups including two control groups and T2DM induced groups with or without probiotic treatment. After 5 days of acclimation, T2DM was induced by a gradient hyper-glucose accumulation methodology. Diabetic fishes had statistically abnormal blood glucose and pro-inflammatory cytokine levels compared to control group (p = 0.0001). These results suggest that probiotic intervention decreased the blood glucose level in the T2DM-P group by decreasing pro-inflammatory cytokines responsible for signaling in T2DM therapeutic modalities. Supplementary Information The online version contains supplementary material available at 10.1186/s13104-021-05706-5.
Collapse
Affiliation(s)
- Fatemeh Bootorabi
- Biosensor Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Endocrinology and Metabolism Research Institute (EMRI), Next to Dr. Shariati Hospital,#10 Jalal Al-E-Ahmad Expy, 1411713119, Tehran, Iran
| | - Farshid Saadat
- Department of Immunology, Faculty of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Reza Falak
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hamed Manouchehri
- Department of Aquaculture, Babol Branch of Islamic Azad University, 47134, Babol, Iran
| | - Reza Changizi
- Department of Aquaculture, Babol Branch of Islamic Azad University, 47134, Babol, Iran
| | - Hasan Mohammadi
- Zebrafish Core Facility, Endocrinology and Metabolism Research Institute (EMRI), Tehran University of Medical Sciences, Tehran, Iran
| | - Farnaz Safavifar
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Khorramizadeh
- Biosensor Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Endocrinology and Metabolism Research Institute (EMRI), Next to Dr. Shariati Hospital,#10 Jalal Al-E-Ahmad Expy, 1411713119, Tehran, Iran. .,Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
18
|
Sun FJ, Crim MJ, Leblanc M. Edwardsiella ictaluri in a Colony of Zebrafish ( Danio rerio) Used in a Teaching Laboratory. Comp Med 2021; 71:318-322. [PMID: 34187617 DOI: 10.30802/aalas-cm-21-000034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
A small colony of zebrafish (Danio rerio) experienced 30% acute mortality within a few days after receipt from a commercial source. A few fish presented with small areas of raised scales or tissue necrosis, primarily near the caudal peduncle. Edwardsiella ictaluri (E. ictaluri) was identified by real-time PCR of pooled zebrafish and swabs of the pre-filter and fine filter pads, with subsequent sequence analysis. E. ictaluri is most commonly associated with an enteric septicemia in catfish species and can have significant economic impact on commercial catfish fisheries. However, several references report naturally occurring E. ictaluri infection of nonictalurid fishes, including zebrafish. Ours is the first report demonstrating the use of environmental sampling to identify E. ictaluri in a zebrafish colony by real-time PCR. Moreover, our report indicates that E. ictaluri is a relevant disease for institutions using zebrafish as research species and emphasizes the importance of carefully considering importation and quarantine practices.
Collapse
Affiliation(s)
- Francis J Sun
- Division of Laboratory Animal Resources, Duke University Medical Center, Durham, North Carolina;,
| | | | - Mathias Leblanc
- Division of Laboratory Animal Resources, Duke University Medical Center, Durham, North Carolina
| |
Collapse
|
19
|
Vargas O, Gutiérrez MS, Caruffo M, Valderrama B, Medina DA, García K, Reyes-Jara A, Toro M, Feijóo CG, Navarrete P. Probiotic Yeasts and Vibrio anguillarum Infection Modify the Microbiome of Zebrafish Larvae. Front Microbiol 2021; 12:647977. [PMID: 34248866 PMCID: PMC8260990 DOI: 10.3389/fmicb.2021.647977] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 05/28/2021] [Indexed: 12/12/2022] Open
Abstract
The host microbiome plays an essential role in health and disease. Microbiome modification by pathogens or probiotics has been poorly explored especially in the case of probiotic yeasts. Next-generation sequencing currently provides the best tools for their characterization. Debaryomyces hansenii 97 (D. hansenii 97) and Yarrowia lipolytica 242 (Y. lipolytica 242) are yeasts that protect wildtype zebrafish (Danio rerio) larvae against a Vibrio anguillarum (V. anguillarum) infection, increasing their survival rate. We investigate the effect of these microorganisms on the microbiome and neutrophil response (inflammation) in zebrafish larvae line Tg(Bacmpx:GFP)i114. We postulated that preinoculation of larvae with yeasts would attenuate the intestinal neutrophil response and prevent modification of the larval microbiome induced by the pathogen. Microbiome study was performed by sequencing the V3-V4 region of the 16S rRNA gene and prediction of metabolic pathways by Piphillin in conventionally raised larvae. Survival and the neutrophil response were both evaluated in conventional and germ-free conditions. V. anguillarum infection resulted in higher neutrophil number in the intestinal area compared to non-infected larvae in both conditions. In germ-free conditions, infected larvae pre-inoculated with yeasts showed fewer neutrophil numbers than infected larvae. In both conditions, only D. hansenii 97 increased the survival of infected larvae. Beta diversity of the microbiota was modified by V. anguillarum and both yeasts, compared to non-inoculated larvae. At 3 days post-infection, V. anguillarum modified the relative abundance of 10 genera, and pre-inoculation with D. hansenii 97 and Y. lipolytica 242 prevented the modification of 5 and 6 of these genera, respectively. Both yeasts prevent the increase of Ensifer and Vogesella identified as negative predictors for larval survival (accounting for 40 and 27 of the variance, respectively). In addition, yeast pre-inoculation prevents changes in some metabolic pathways altered by V. anguillarum’s infection. These results suggest that both yeasts and V. anguillarum can shape the larval microbiota configuration in the early developmental stage of D. rerio. Moreover, modulation of key taxa or metabolic pathways of the larval microbiome by yeasts can be associated with the survival of infected larvae. This study contributes to the understanding of yeast–pathogen–microbiome interactions, although further studies are needed to elucidate the mechanisms involved.
Collapse
Affiliation(s)
- Orlando Vargas
- Laboratory of Microbiology and Probiotics, Institute of Nutrition and Food Technology (INTA), University of Chile, Santiago, Chile
| | - María Soledad Gutiérrez
- Laboratory of Microbiology and Probiotics, Institute of Nutrition and Food Technology (INTA), University of Chile, Santiago, Chile.,ANID - Millennium Science Initiative Program - Millennium Nucleus in the Biology of the Intestinal Microbiota, Santiago, Chile
| | - Mario Caruffo
- Laboratorio Inmunologia en Peces, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Benjamín Valderrama
- Laboratory of Microbiology and Probiotics, Institute of Nutrition and Food Technology (INTA), University of Chile, Santiago, Chile
| | - Daniel A Medina
- ANID - Millennium Science Initiative Program - Millennium Nucleus in the Biology of the Intestinal Microbiota, Santiago, Chile.,Laboratorio de Biotecnología Aplicada, Facultad de Medicina Veterinaria, Universidad San Sebastián, Puerto Montt, Chile
| | - Katherine García
- Facultad de Ciencias de la Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Angélica Reyes-Jara
- Laboratory of Microbiology and Probiotics, Institute of Nutrition and Food Technology (INTA), University of Chile, Santiago, Chile
| | - Magaly Toro
- Laboratory of Microbiology and Probiotics, Institute of Nutrition and Food Technology (INTA), University of Chile, Santiago, Chile
| | - Carmen G Feijóo
- ANID - Millennium Science Initiative Program - Millennium Nucleus in the Biology of the Intestinal Microbiota, Santiago, Chile.,Laboratorio Inmunologia en Peces, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Paola Navarrete
- Laboratory of Microbiology and Probiotics, Institute of Nutrition and Food Technology (INTA), University of Chile, Santiago, Chile.,ANID - Millennium Science Initiative Program - Millennium Nucleus in the Biology of the Intestinal Microbiota, Santiago, Chile
| |
Collapse
|
20
|
Jia PP, Junaid M, Wen PP, Yang YF, Li WG, Yang XG, Pei DS. Role of germ-free animal models in understanding interactions of gut microbiota to host and environmental health: A special reference to zebrafish. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 279:116925. [PMID: 33744636 DOI: 10.1016/j.envpol.2021.116925] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 02/22/2021] [Accepted: 03/03/2021] [Indexed: 05/07/2023]
Abstract
Numerous pieces of evidence documented the importance of gut microbiota in regulating human health and evaluating the toxicity of environmental pollutants, which are closely related to the host health in various aspects, including nutrition, energy translation, metabolism, pathogen resistance, and immune function. A variety of environmental factors can disrupt gut microbiota and their functions, and inevitably cause immune diseases, obesity and diabetes. However, deciphering the inner mechanisms involved in the functional interaction of gut microbes with host health is still needed extensive investigations. This review focused on the essential roles of intestinal microbes in host-related diseases and highlighted the development and applications of germ-free (GF) animal models, mainly zebrafish. Moreover, the generation, immunity characters, advantages and challenges of GF zebrafish models were also summarized. Importantly, the composition and isolation of zebrafish gut bacteria for further application and toxicity evaluation of aquatic environmental pollutants were also discussed. In conclusion, GF zebrafish play irreplaceable roles in understanding the potential functions and responses of customized microbiota towards human and environmental health implications.
Collapse
Affiliation(s)
- Pan-Pan Jia
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
| | - Muhammad Junaid
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
| | - Ping-Ping Wen
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China; College of Life Science, Henan Normal University, Xinxiang, 453007, China
| | - Yi-Fan Yang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China; College of Life Science, Henan Normal University, Xinxiang, 453007, China
| | - Wei-Guo Li
- College of Life Science, Henan Normal University, Xinxiang, 453007, China
| | - Xian-Guang Yang
- College of Life Science, Henan Normal University, Xinxiang, 453007, China
| | - De-Sheng Pei
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China; College of Life Science, Henan Normal University, Xinxiang, 453007, China.
| |
Collapse
|
21
|
Motta JP, Wallace JL, Buret AG, Deraison C, Vergnolle N. Gastrointestinal biofilms in health and disease. Nat Rev Gastroenterol Hepatol 2021; 18:314-334. [PMID: 33510461 DOI: 10.1038/s41575-020-00397-y] [Citation(s) in RCA: 160] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/25/2020] [Indexed: 01/30/2023]
Abstract
Microorganisms colonize various ecological niches in the human habitat, as they do in nature. Predominant forms of multicellular communities called biofilms colonize human tissue surfaces. The gastrointestinal tract is home to a profusion of microorganisms with intertwined, but not identical, lifestyles: as isolated planktonic cells, as biofilms and in biofilm-dispersed form. It is therefore of major importance in understanding homeostatic and altered host-microorganism interactions to consider not only the planktonic lifestyle, but also biofilms and biofilm-dispersed forms. In this Review, we discuss the natural organization of microorganisms at gastrointestinal surfaces, stratification of microbiota taxonomy, biogeographical localization and trans-kingdom interactions occurring within the biofilm habitat. We also discuss existing models used to study biofilms. We assess the contribution of the host-mucosa biofilm relationship to gut homeostasis and to diseases. In addition, we describe how host factors can shape the organization, structure and composition of mucosal biofilms, and how biofilms themselves are implicated in a variety of homeostatic and pathological processes in the gut. Future studies characterizing biofilm nature, physical properties, composition and intrinsic communication could shed new light on gut physiology and lead to potential novel therapeutic options for gastrointestinal diseases.
Collapse
Affiliation(s)
- Jean-Paul Motta
- Institute of Digestive Health Research, IRSD, INSERM U1220, Toulouse, France.
| | - John L Wallace
- Department of Physiology & Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Antibe Therapeutics Inc., Toronto, ON, Canada
| | - André G Buret
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Céline Deraison
- Institute of Digestive Health Research, IRSD, INSERM U1220, Toulouse, France
| | - Nathalie Vergnolle
- Institute of Digestive Health Research, IRSD, INSERM U1220, Toulouse, France. .,Department of Physiology & Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
22
|
Evenhuis JP, Lipscomb R, Birkett C. Virulence variations of Flavobacterium columnare in rainbow trout (Oncorhynchus mykiss) eyed eggs and alevin. JOURNAL OF FISH DISEASES 2021; 44:533-539. [PMID: 33647180 DOI: 10.1111/jfd.13343] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 06/12/2023]
Abstract
Flavobacterium columnare (Fc) is the causative agent for columnaris disease (CD) in several fish species and an emerging problem for rainbow trout aquaculture. We characterize the virulence phenotype of two Fc isolates, CSF-298-10 and MS-FC-4, against trout from two sources, NCCCWA and a production stock (PS), at the eyed egg and alevin life stages. Immersion challenges demonstrated that NCCCWA eyed eggs were susceptible to the Fc isolate MS-FC-4 (>97% mortality) but no mortality was observed against PS eyed eggs. The CSF-298-10 had little effect on any eyed eggs tested and was not highly virulent to any alevin till day six post-hatch, up to 38% for NCCCWA and ~80% PS alevin. The MS-FC-4 strain produced ≥80% mortality any day an immersion challenge occurred post-hatch. Significant difference in CFU counts was recorded between the Fc strains on 2 days post-hatch immersion challenges. Counts for the NCCCWA alevin were 4.4 × 103 CFU/ml-1 and 1.8 × 106 CFU/ml-1 for the CSF-298-10 strain and MS-FC-4 strain, respectively, and for the PS alevin CSF-298-10 measured 9.9 × 101 CFU/ml-1 and 3.8 × 105 CFU/ml-1 for MS-FC-4. These two Fc isolates present stark differences in virulence phenotypes to both eyed eggs and alevin and present an interesting model system for virulence kinetics and potentially alternative pathogenic pathways.
Collapse
Affiliation(s)
- Jason P Evenhuis
- National Center for Cool and Cold Water Aquaculture USDA/ARS, Kearneysville, WV, USA
| | - Ryan Lipscomb
- National Center for Cool and Cold Water Aquaculture USDA/ARS, Kearneysville, WV, USA
| | - Clayton Birkett
- National Center for Cool and Cold Water Aquaculture USDA/ARS, Kearneysville, WV, USA
| |
Collapse
|
23
|
Antibiofilm Activity of Antarctic Sponge-Associated Bacteria against Pseudomonas aeruginosa and Staphylococcus aureus. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2021. [DOI: 10.3390/jmse9030243] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Bioprospecting in unusual marine environments provides an innovative approach to search novel biomolecules with antibiofilm activity. Antarctic sponge-associated bacteria belonging to Colwellia, Pseudoalteromonas, Shewanella and Winogradskyella genera were evaluated for their ability to contrast the biofilm formation by Pseudomonas aeruginosa ATCC 27853 and Staphylococcus aureus ATCC 29213, as model organisms. All strains were able to produce biofilm at both 4 and 25 °C, with the highest production being for Colwellia, Shewanella and Winogradskyella strains at 4 °C after 24 h. Antibiofilm activity of cell-free supernatants (CFSs) differed among strains and on the basis of their incubation temperature (CFSs4°C and CFSs25°C). The major activity was observed by CFSs4°C against S. aureus and CFSs25°C against P. aeruginosa, without demonstrating a bactericidal effect on their growth. Furthermore, the antibiofilm activity of crude extracts from Colwellia sp. GW185, Shewanella sp. CAL606, and Winogradskyella sp. CAL396 was also evaluated and visualized by confocal laser scanning microscopic images. Results based on the surface-coating assay and surface tension measurements suggest that CFSs and the crude extracts may act as biosurfactants inhibiting the first adhesion of P. aeruginosa and S. aureus. The CFSs and the novel biopolymers may be useful in applicative perspectives for pharmaceutical and environmental purposes.
Collapse
|
24
|
Pérez-Pascual D, Vendrell-Fernández S, Audrain B, Bernal-Bayard J, Patiño-Navarrete R, Petit V, Rigaudeau D, Ghigo JM. Gnotobiotic rainbow trout (Oncorhynchus mykiss) model reveals endogenous bacteria that protect against Flavobacterium columnare infection. PLoS Pathog 2021; 17:e1009302. [PMID: 33513205 PMCID: PMC7875404 DOI: 10.1371/journal.ppat.1009302] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 02/10/2021] [Accepted: 12/24/2020] [Indexed: 11/18/2022] Open
Abstract
The health and environmental risks associated with antibiotic use in aquaculture have promoted bacterial probiotics as an alternative approach to control fish infections in vulnerable larval and juvenile stages. However, evidence-based identification of probiotics is often hindered by the complexity of bacteria-host interactions and host variability in microbiologically uncontrolled conditions. While these difficulties can be partially resolved using gnotobiotic models harboring no or reduced microbiota, most host-microbe interaction studies are carried out in animal models with little relevance for fish farming. Here we studied host-microbiota-pathogen interactions in a germ-free and gnotobiotic model of rainbow trout (Oncorhynchus mykiss), one of the most widely cultured salmonids. We demonstrated that germ-free larvae raised in sterile conditions displayed no significant difference in growth after 35 days compared to conventionally-raised larvae, but were extremely sensitive to infection by Flavobacterium columnare, a common freshwater fish pathogen causing major economic losses worldwide. Furthermore, re-conventionalization with 11 culturable species from the conventional trout microbiota conferred resistance to F. columnare infection. Using mono-re-conventionalized germ-free trout, we identified that this protection is determined by a commensal Flavobacterium strain displaying antibacterial activity against F. columnare. Finally, we demonstrated that use of gnotobiotic trout is a suitable approach for the identification of both endogenous and exogenous probiotic bacterial strains protecting teleostean hosts against F. columnare. This study therefore establishes an ecologically-relevant gnotobiotic model for the study of host-pathogen interactions and colonization resistance in farmed fish.
Collapse
Affiliation(s)
- David Pérez-Pascual
- Unité de Génétique des Biofilms, Institut Pasteur, UMR CNRS2001, Paris, France
- * E-mail: (DPP); (JMG)
| | | | - Bianca Audrain
- Unité de Génétique des Biofilms, Institut Pasteur, UMR CNRS2001, Paris, France
| | | | - Rafael Patiño-Navarrete
- Ecologie et Evolution de la Résistance aux Antibiotiques, Institut Pasteur-APHP University Paris Sud, Paris, France
| | | | - Dimitri Rigaudeau
- Unité Infectiologie Expérimentale Rongeurs et Poissons, INRAE, Université Paris-Saclay, Jouy-en-Josas, France
| | - Jean-Marc Ghigo
- Unité de Génétique des Biofilms, Institut Pasteur, UMR CNRS2001, Paris, France
- * E-mail: (DPP); (JMG)
| |
Collapse
|
25
|
Weitekamp CA, Kvasnicka A, Keely SP, Brinkman NE, Howey XM, Gaballah S, Phelps D, Catron T, Zurlinden T, Wheaton E, Tal T. Monoassociation with bacterial isolates reveals the role of colonization, community complexity and abundance on locomotor behavior in larval zebrafish. Anim Microbiome 2021; 3:12. [PMID: 33499997 PMCID: PMC7818562 DOI: 10.1186/s42523-020-00069-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 12/15/2020] [Indexed: 12/13/2022] Open
Abstract
Background Across taxa, animals with depleted intestinal microbiomes show disrupted behavioral phenotypes. Axenic (i.e., microbe-free) mice, zebrafish, and fruit flies exhibit increased locomotor behavior, or hyperactivity. The mechanism through which bacteria interact with host cells to trigger normal neurobehavioral development in larval zebrafish is not well understood. Here, we monoassociated zebrafish with either one of six different zebrafish-associated bacteria, mixtures of these host-associates, or with an environmental bacterial isolate. Results As predicted, the axenic cohort was hyperactive. Monoassociation with three different host-associated bacterial species, as well as with the mixtures, resulted in control-like locomotor behavior. Monoassociation with one host-associate and the environmental isolate resulted in the hyperactive phenotype characteristic of axenic larvae, while monoassociation with two other host-associated bacteria partially blocked this phenotype. Furthermore, we found an inverse relationship between the total concentration of bacteria per larvae and locomotor behavior. Lastly, in the axenic and associated cohorts, but not in the larvae with complex communities, we detected unexpected bacteria, some of which may be present as facultative predators. Conclusions These data support a growing body of evidence that individual species of bacteria can have different effects on host behavior, potentially related to their success at intestinal colonization. Specific to the zebrafish model, our results suggest that differences in the composition of microbes in fish facilities could affect the results of behavioral assays within pharmacological and toxicological studies. Supplementary Information The online version contains supplementary material available at 10.1186/s42523-020-00069-x.
Collapse
Affiliation(s)
| | - Allison Kvasnicka
- Oak Ridge Institute for Science and Education, RTP, NC, USA.,, Center for Computational Toxicology and Exposure, US EPA, RTP, NC, USA
| | - Scott P Keely
- Center for Environmental Measurement and Modeling, US EPA, Cincinnati, OH, USA
| | - Nichole E Brinkman
- Center for Environmental Measurement and Modeling, US EPA, Cincinnati, OH, USA
| | - Xia Meng Howey
- Oak Ridge Institute for Science and Education, RTP, NC, USA.,, Center for Computational Toxicology and Exposure, US EPA, RTP, NC, USA
| | - Shaza Gaballah
- Oak Ridge Institute for Science and Education, RTP, NC, USA.,, Center for Computational Toxicology and Exposure, US EPA, RTP, NC, USA
| | - Drake Phelps
- Oak Ridge Institute for Science and Education, RTP, NC, USA.,, Center for Computational Toxicology and Exposure, US EPA, RTP, NC, USA
| | - Tara Catron
- Oak Ridge Institute for Science and Education, RTP, NC, USA.,, Center for Computational Toxicology and Exposure, US EPA, RTP, NC, USA
| | - Todd Zurlinden
- , Center for Computational Toxicology and Exposure, US EPA, RTP, NC, USA
| | - Emily Wheaton
- Center for Environmental Measurement and Modeling, US EPA, Cincinnati, OH, USA
| | - Tamara Tal
- , Center for Computational Toxicology and Exposure, US EPA, RTP, NC, USA. .,Bioanalytical Ecotoxicology Department, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany. .,Present Address: Bioanalytical Ecotoxicology Department, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany.
| |
Collapse
|
26
|
Stressmann FA, Bernal-Bayard J, Perez-Pascual D, Audrain B, Rendueles O, Briolat V, Bruchmann S, Volant S, Ghozlane A, Häussler S, Duchaud E, Levraud JP, Ghigo JM. Mining zebrafish microbiota reveals key community-level resistance against fish pathogen infection. ISME JOURNAL 2020; 15:702-719. [PMID: 33077888 DOI: 10.1038/s41396-020-00807-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 09/30/2020] [Accepted: 10/05/2020] [Indexed: 02/08/2023]
Abstract
The long-known resistance to pathogens provided by host-associated microbiota fostered the notion that adding protective bacteria could prevent or attenuate infection. However, the identification of endogenous or exogenous bacteria conferring such protection is often hindered by the complexity of host microbial communities. Here, we used zebrafish and the fish pathogen Flavobacterium columnare as a model system to study the determinants of microbiota-associated colonization resistance. We compared infection susceptibility in germ-free, conventional and reconventionalized larvae and showed that a consortium of 10 culturable bacterial species are sufficient to protect zebrafish. Whereas survival to F. columnare infection does not rely on host innate immunity, we used antibiotic dysbiosis to alter zebrafish microbiota composition, leading to the identification of two different protection strategies. We first identified that the bacterium Chryseobacterium massiliae individually protects both larvae and adult zebrafish. We also showed that an assembly of 9 endogenous zebrafish species that do not otherwise protect individually confer a community-level resistance to infection. Our study therefore provides a rational approach to identify key endogenous protecting bacteria and promising candidates to engineer resilient microbial communities. It also shows how direct experimental analysis of colonization resistance in low-complexity in vivo models can reveal unsuspected ecological strategies at play in microbiota-based protection against pathogens.
Collapse
Affiliation(s)
- Franziska A Stressmann
- Genetics of Biofilms Laboratory, Institut Pasteur, UMR CNRS2001, 75015, Paris, France.,Department of Chemical Analytics and Biogeochemistry, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, 12587, Berlin, Germany
| | - Joaquín Bernal-Bayard
- Genetics of Biofilms Laboratory, Institut Pasteur, UMR CNRS2001, 75015, Paris, France.,Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Apartado 1095, 41080, Sevilla, Spain
| | - David Perez-Pascual
- Genetics of Biofilms Laboratory, Institut Pasteur, UMR CNRS2001, 75015, Paris, France
| | - Bianca Audrain
- Genetics of Biofilms Laboratory, Institut Pasteur, UMR CNRS2001, 75015, Paris, France
| | - Olaya Rendueles
- Genetics of Biofilms Laboratory, Institut Pasteur, UMR CNRS2001, 75015, Paris, France.,Microbial Evolutionary Genomics Laboratory, Institut Pasteur, UMR3525, 75015, Paris, France
| | - Valérie Briolat
- Macrophages and Development of Immunity Laboratory, Institut Pasteur, UMR3738 CNRS, 75015, Paris, France
| | - Sebastian Bruchmann
- Department of Molecular Bacteriology, Helmholtz Centre for Infection Research, Braunschweig, Germany.,Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB3 0ES, UK
| | - Stevenn Volant
- Hub de Bioinformatique et Biostatistique - Département Biologie Computationnelle, Institut Pasteur, USR 3756 CNRS, Paris, France
| | - Amine Ghozlane
- Hub de Bioinformatique et Biostatistique - Département Biologie Computationnelle, Institut Pasteur, USR 3756 CNRS, Paris, France
| | - Susanne Häussler
- Department of Molecular Bacteriology, Helmholtz Centre for Infection Research, Braunschweig, Germany.,Department of Clinical Microbiology, Rigshospitalet, 2100, Copenhagen, Denmark
| | - Eric Duchaud
- Unité VIM, INRAE, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Jean-Pierre Levraud
- Macrophages and Development of Immunity Laboratory, Institut Pasteur, UMR3738 CNRS, 75015, Paris, France
| | - Jean-Marc Ghigo
- Genetics of Biofilms Laboratory, Institut Pasteur, UMR CNRS2001, 75015, Paris, France.
| |
Collapse
|
27
|
Siriyappagouder P, Galindo-Villegas J, Dhanasiri AKS, Zhang Q, Mulero V, Kiron V, Fernandes JMO. Pseudozyma Priming Influences Expression of Genes Involved in Metabolic Pathways and Immunity in Zebrafish Larvae. Front Immunol 2020; 11:978. [PMID: 32528473 PMCID: PMC7256946 DOI: 10.3389/fimmu.2020.00978] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 04/24/2020] [Indexed: 12/14/2022] Open
Abstract
Fungi, particularly yeasts, are known essential components of the host microbiota but their functional relevance in development of immunity and physiological processes of fish remains to be elucidated. In this study, we used a transcriptomic approach and a germ-free (GF) fish model to determine the response of newly hatched zebrafish larvae after 24 h exposure to Pseudozyma sp. when compared to conventionally-raised (CR) larvae. We observed 59 differentially expressed genes in Pseudozyma-exposed GF zebrafish larvae compared to their naïve control siblings. Surprisingly, in CR larvae, there was not a clear transcriptome difference between Pseudozyma-exposed and control larvae. Differentially expressed genes in GF larvae were involved in host metabolic pathways, mainly peroxisome proliferator-activated receptors, steroid hormone biosynthesis, drug metabolism and bile acid biosynthesis. We also observed a significant change in the transcript levels of immune-related genes, namely complement component 3a, galectin 2b, ubiquitin specific peptidase 21, and aquaporins. Nevertheless, we did not observe any significant response at the cellular level, since there were no differences between neutrophil migration or proliferation between control and yeast-exposed GF larvae. Our findings reveal that exposure to Pseudozyma sp. may affect metabolic pathways and immune-related processes in germ-free zebrafish, suggesting that commensal yeast likely play a significant part in the early development of fish larvae.
Collapse
Affiliation(s)
| | - Jorge Galindo-Villegas
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
- Department of Cell Biology and Histology, Faculty of Biology, Institute of Biomedical Research of Murcia-Arrixaca, Campus Universitario de Espinardo, University of Murcia, Murcia, Spain
| | | | - Qirui Zhang
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | - Victoriano Mulero
- Department of Cell Biology and Histology, Faculty of Biology, Institute of Biomedical Research of Murcia-Arrixaca, Campus Universitario de Espinardo, University of Murcia, Murcia, Spain
| | - Viswanath Kiron
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | | |
Collapse
|
28
|
López Nadal A, Ikeda-Ohtsubo W, Sipkema D, Peggs D, McGurk C, Forlenza M, Wiegertjes GF, Brugman S. Feed, Microbiota, and Gut Immunity: Using the Zebrafish Model to Understand Fish Health. Front Immunol 2020; 11:114. [PMID: 32117265 PMCID: PMC7014991 DOI: 10.3389/fimmu.2020.00114] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 01/16/2020] [Indexed: 12/12/2022] Open
Abstract
Aquafeed companies aim to provide solutions to the various challenges related to nutrition and health in aquaculture. Solutions to promote feed efficiency and growth, as well as improving the fish health or protect the fish gut from inflammation may include dietary additives such as prebiotics and probiotics. The general assumption is that feed additives can alter the fish microbiota which, in turn, interacts with the host immune system. However, the exact mechanisms by which feed influences host-microbe-immune interactions in fish still remain largely unexplored. Zebrafish rapidly have become a well-recognized animal model to study host-microbe-immune interactions because of the diverse set of research tools available for these small cyprinids. Genome editing technologies can create specific gene-deficient zebrafish that may contribute to our understanding of immune functions. Zebrafish larvae are optically transparent, which allows for in vivo imaging of specific (immune) cell populations in whole transgenic organisms. Germ-free individuals can be reared to study host-microbe interactions. Altogether, these unique zebrafish features may help shed light on the mechanisms by which feed influences host-microbe-immune interactions and ultimately fish health. In this review, we first describe the anatomy and function of the zebrafish gut: the main surface where feed influences host-microbe-immune interactions. Then, we further describe what is currently known about the molecular pathways that underlie this interaction in the zebrafish gut. Finally, we summarize and critically review most of the recent research on prebiotics and probiotics in relation to alterations of zebrafish microbiota and immune responses. We discuss the advantages and disadvantages of the zebrafish as an animal model for other fish species to study feed effects on host-microbe-immune interactions.
Collapse
Affiliation(s)
- Adrià López Nadal
- Cell Biology and Immunology Group, Wageningen University and Research, Wageningen, Netherlands.,Aquaculture and Fisheries Group, Wageningen University and Research, Wageningen, Netherlands
| | - Wakako Ikeda-Ohtsubo
- Laboratory of Animal Products Chemistry, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Detmer Sipkema
- Microbiology, Wageningen University and Research, Wageningen, Netherlands
| | - David Peggs
- Skretting Aquaculture Research Centre, Stavanger, Norway
| | - Charles McGurk
- Skretting Aquaculture Research Centre, Stavanger, Norway
| | - Maria Forlenza
- Cell Biology and Immunology Group, Wageningen University and Research, Wageningen, Netherlands
| | - Geert F Wiegertjes
- Aquaculture and Fisheries Group, Wageningen University and Research, Wageningen, Netherlands
| | - Sylvia Brugman
- Cell Biology and Immunology Group, Wageningen University and Research, Wageningen, Netherlands
| |
Collapse
|
29
|
Tan F, Limbu SM, Qian Y, Qiao F, Du ZY, Zhang M. The Responses of Germ-Free Zebrafish ( Danio rerio) to Varying Bacterial Concentrations, Colonization Time Points, and Exposure Duration. Front Microbiol 2019; 10:2156. [PMID: 31620110 PMCID: PMC6760068 DOI: 10.3389/fmicb.2019.02156] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 09/02/2019] [Indexed: 01/14/2023] Open
Abstract
Colonizing germ-free (GF) zebrafish with specific bacterial species provides the possibility of understanding the influence on host biological processes including gene expression, development, immunity, and behavioral responses. It also enlightens our understanding on the host-microbe interactions within the physiological context of a living host. However, the responses of GF zebrafish to various colonization conditions such as bacterial concentrations, colonization time points, and exposure duration remain unclear. To address this issue, we explored the responses of GF zebrafish by using two bacterial species at varying concentrations, colonization time points and exposure duration. Therefore, we mono-associated GF zebrafish with Escherichia coli DH5α or Bacillus subtilis WB800N at concentrations ranging from 102 to 107 CFU/ml either at 3 day post fertilization (dpf) or 5 dpf for 24 or 48 h. We evaluated the responses of GF zebrafish by analyzing the survival rate, colonization efficiency, nutrients metabolism, intestinal cell proliferation, innate immunity, stress, and behavior responses by comparing it to conventionally raised zebrafish (CONR) and GF zebrafish. The results indicated that the final bacteria concentrations ranging from 102 to 104 CFU/ml did not cause any mortality when GF mono-associated larvae were exposed to either E. coli DH5α or B. subtilis WB800N at 3 or 5 dpf, while concentrations ranging from 106 to 107 CFU/ml increased the mortality, particularly for 5 dpf owing to the decrease in dissolved oxygen level. The E. coli DH5α mainly induced the expression of genes related to nutrients metabolism, cell proliferation and immunity, while B. subtilis WB800N mainly upregulated the expression of genes related to immunity and stress responses. Moreover, our data revealed that GF zebrafish showed higher levels of physical activity than CONR and the microbial colonization reduced the hyperactivity of GF zebrafish, suggesting colonization of bacteria affected behavior characteristics. This study provides useful information on bacterial colonization of GF zebrafish and the interaction between the host and microbiota.
Collapse
Affiliation(s)
- Fang Tan
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai, China
| | - Samwel Mchele Limbu
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai, China.,Department of Aquatic Sciences and Fisheries Technology, University of Dar es Salaam, Dar es Salaam, Tanzania
| | - Ye Qian
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai, China
| | - Fang Qiao
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai, China
| | - Zhen-Yu Du
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai, China
| | - Meiling Zhang
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai, China
| |
Collapse
|
30
|
Biofilms: Novel Strategies Based on Antimicrobial Peptides. Pharmaceutics 2019; 11:pharmaceutics11070322. [PMID: 31295834 PMCID: PMC6680976 DOI: 10.3390/pharmaceutics11070322] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 06/24/2019] [Accepted: 07/06/2019] [Indexed: 01/11/2023] Open
Abstract
The problem of drug resistance is very worrying and ever increasing. Resistance is due not only to the reckless use of antibiotics but also to the fact that pathogens are able to adapt to different conditions and develop self-defense mechanisms such as living in biofilms; altogether these issues make the search for alternative drugs a real challenge. Antimicrobial peptides appear as promising alternatives but they have disadvantages that do not make them easily applicable in the medical field; thus many researches look for solutions to overcome the disadvantages and ensure that the advantages can be exploited. This review describes the biofilm characteristics and identifies the key features that antimicrobial peptides should have. Recalcitrant bacterial infections caused by the most obstinate bacterial species should be treated with a strategy to combine conventional peptides functionalized with nano-tools. This approach could effectively disrupt high density infections caused by biofilms. Moreover, the importance of using in vivo non mammalian models for biofilm studies is described. In particular, here we analyze the use of amphibians as a model to substitute the rodent model.
Collapse
|
31
|
Molecular Cloning and Expression Analysis of Interleukin-8 and -10 in Yellow Catfish and in Response to Bacterial Pathogen Infection. BIOMED RESEARCH INTERNATIONAL 2019; 2019:9617659. [PMID: 31317044 PMCID: PMC6601492 DOI: 10.1155/2019/9617659] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 04/15/2019] [Indexed: 01/22/2023]
Abstract
The yellow catfish (Pelteobagrus fulvidraco) is an important economic freshwater aquaculture species in Asia. However, little is known about its immune response to bacterial pathogen infection. Here, two cytokines, the proinflammatory cytokine interleukin-8 (IL-8) and the anti-inflammatory cytokine interleukin-10 (IL-10), were identified and characterized in the yellow catfish for the first time. We found that the full length of the IL-8 cDNA was 784 bp and contained an open reading frame (ORF) of 336 bp, while the IL-10 gene was 973 bp in length with a 549 bp of ORF. In addition, both the IL-8 and the IL-10 had similar tissue-specific expression patterns. They were more abundant in the spleen and lowest expressed in the liver. Furthermore, IL-10 but not IL-8 was significantly upregulated in the intestine of yellow catfish by feed supplementation of Clostridium butyricum (CB). More importantly, the expression levels of intestinal IL-10 and IL-8 were up- and downregulated by pathogen Aeromonas punctata stimuli with the presence of CB, respectively. Collectively, these results suggest that IL-10 and IL-8 mediate important roles in the immunity of yellow catfish, and feed supplementation of CB may able to reduce the intestinal inflammation caused by bacteria infections through regulating the expression of IL-10 and IL-8.
Collapse
|
32
|
Warne RW, Kirschman L, Zeglin L. Manipulation of gut microbiota during critical developmental windows affects host physiological performance and disease susceptibility across ontogeny. J Anim Ecol 2019; 88:845-856. [PMID: 30828805 DOI: 10.1111/1365-2656.12973] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 01/17/2019] [Indexed: 11/29/2022]
Abstract
Colonization of gut microbiomes during early life can shape metabolism and immunity of adult animals. However, most data are derived from antibiotic-treated or germ-free laboratory mammals. Furthermore, few studies have explored how microbial colonization during critical windows influences a suite of other fitness-related traits in wild animals. This study tested whether hatching constitutes a critical developmental window for gut microbiome colonization in wild-caught amphibians and whether perturbations to gut microbiota at hatching shape fitness-related traits of larval growth, metabolism, metamorphosis and disease susceptibility. We sterilized wood frog eggs and then inoculated them with microbes from differing sources, including from another species (bullfrogs) that differ in disease resistance and life history. We measured development, growth and metabolic rates through metamorphosis among individuals from each microbial treatment. A separate group was exposed to an LD50 dose of ranavirus-an emerging disease-to test for microbiome effects on disease susceptibility. We also quantified rates of deformities to test for microbial treatment effects on overall health. Manipulation of microbiota on eggs altered the trajectory of gut microbiome communities across larval ontogeny, though disruption appeared to be transitory. While microbiome structure converged among the treatments by metamorphosis, the effects of disruption on host phenotypes persisted. Larvae inoculated with the bullfrog gut microbiota exhibited accelerated growth and development rates compared to controls. By contrast, sterilized larvae maintained in sterile water for several days after hatching exhibited greater disruption to their gut microbiota across ontogeny, as well as altered metabolism, more tail deformities, and were more likely to die when exposed to an LD50 dose of ranavirus compared to the other treatments. These results suggest perturbations to the microbiota during critical developmental windows can alter the trajectory of the gut microbiome, and have long-term effects on fitness-related traits in larval amphibians. These results suggest that explicit tests of how changes in the composition and abundance of the microbial community shape phenotypes across ontogeny in amphibians could shed light on host-microbe interactions in wildlife, as well as inform conservation efforts to mitigate emerging diseases.
Collapse
Affiliation(s)
- Robin W Warne
- Department of Zoology, Southern Illinois University, Carbondale, Illinois
| | - Lucas Kirschman
- Department of Zoology, Southern Illinois University, Carbondale, Illinois
| | - Lydia Zeglin
- Biology Department, Kansas State University, Manhattan, Kansas
| |
Collapse
|
33
|
Flores E, Thompson L, Sirisaengtaksin N, Nguyen AT, Ballard A, Krachler AM. Using the Protozoan Paramecium caudatum as a Vehicle for Food-borne Infections in Zebrafish Larvae. J Vis Exp 2019. [PMID: 30663701 DOI: 10.3791/58949] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Due to their transparency, genetic tractability, and ease of maintenance, zebrafish (Danio rerio) have become a widely-used vertebrate model for infectious diseases. Larval zebrafish naturally prey on the unicellular protozoan Paramecium caudatum. This protocol describes the use of P. caudatum as a vehicle for food-borne infection in larval zebrafish. P. caudatum internalize a wide range of bacteria and bacterial cells remain viable for several hours. Zebrafish then prey on P. caudatum, the bacterial load is released in the foregut upon digestion of the paramecium vehicle, and the bacteria colonize the intestinal tract. The protocol includes a detailed description of paramecia maintenance, loading with bacteria, determination of bacterial degradation and dose, as well as infection of zebrafish by feeding with paramecia. The advantage of using this method of food-borne infection is that it closely mimics the mode of infection observed in human disease, leads to more robust colonization compared to immersion protocols, and allows the study of a wide range of pathogens. Food-borne infection in the zebrafish model can be used to investigate bacterial gene expression within the host, host-pathogen interactions, and hallmarks of pathogenicity including bacterial burden, localization, dissemination and morbidity.
Collapse
Affiliation(s)
- Erika Flores
- McGovern Medical School, Department of Microbiology and Molecular Genetics, University of Texas Health Science Center at Houston
| | - Laurel Thompson
- McGovern Medical School, Department of Microbiology and Molecular Genetics, University of Texas Health Science Center at Houston
| | - Natalie Sirisaengtaksin
- McGovern Medical School, Department of Microbiology and Molecular Genetics, University of Texas Health Science Center at Houston
| | - Anh Trinh Nguyen
- McGovern Medical School, Department of Microbiology and Molecular Genetics, University of Texas Health Science Center at Houston
| | - Abigail Ballard
- McGovern Medical School, Department of Microbiology and Molecular Genetics, University of Texas Health Science Center at Houston
| | - Anne-Marie Krachler
- McGovern Medical School, Department of Microbiology and Molecular Genetics, University of Texas Health Science Center at Houston;
| |
Collapse
|
34
|
Arias-Jayo N, Abecia L, Alonso-Sáez L, Ramirez-Garcia A, Rodriguez A, Pardo MA. High-Fat Diet Consumption Induces Microbiota Dysbiosis and Intestinal Inflammation in Zebrafish. MICROBIAL ECOLOGY 2018; 76:1089-1101. [PMID: 29736898 DOI: 10.1007/s00248-018-1198-9] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 04/27/2018] [Indexed: 05/26/2023]
Abstract
Energy-dense foods and overnutrition represent major starting points altering lipid metabolism, systemic inflammation and gut microbiota. The aim of this work was to investigate the effects of a high-fat diet (HFD) over a period of 25 days on intestinal microbiota and inflammation in zebrafish. Microbial composition of HFD-fed animals was analysed and compared to controls by 16S rRNA sequencing and quantitative PCR. The expression level on several genes related to inflammation was tested. Furthermore, microscopic assessment of the intestine was performed in both conditions. The consumption of the HFD resulted in microbial dysbiosis, characterised by an increase in the relative abundance of the phylum Bacteroidetes. Moreover, an emerging intestinal inflammation via NF-κβ activation was confirmed by the overexpression of several genes related to signalling receptors, antimicrobial metabolism and the inflammatory cascade. The intestinal barrier was also damaged, with an increase of goblet cell mucin production. This is the first study performed in zebrafish which suggests that the consumption of a diet enriched with 10% fat changes the intestinal microbial community composition, which was correlated with low-grade inflammation.
Collapse
Affiliation(s)
- Nerea Arias-Jayo
- Food research, Azti, Parque tecnológico de Bizkaia, Astondo Bidea 609, 48160, Derio, Spain.
| | - Leticia Abecia
- CIC bioGUNE, Parque Tecnológico de Bizkaia, Edificio 801A, 48160, Derio, Spain
| | - Laura Alonso-Sáez
- Marine research, Azti, Txatxarramendi ugartea z/g, 48395, Txatxarramendi, Spain
| | - Andoni Ramirez-Garcia
- Departmento de Immunología, Microbiología y Parasitología, Facultad de Ciencia y Tecnología, Universidad del País Vasco (UPV/EHU), 48940, Leioa, Spain
| | - Alfonso Rodriguez
- St Luke's General Hospital, Freshford Road, Friarsinch, Kilkenny, R95 FY71, Ireland
| | - Miguel A Pardo
- Food research, Azti, Parque tecnológico de Bizkaia, Astondo Bidea 609, 48160, Derio, Spain
| |
Collapse
|
35
|
Zarour K, Prieto A, Pérez-Ramos A, Kihal M, López P. Analysis of technological and probiotic properties of Algerian L. mesenteroides strains isolated from dairy and non-dairy products. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.09.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
36
|
Ran C, Qin C, Xie M, Zhang J, Li J, Xie Y, Wang Y, Li S, Liu L, Fu X, Lin Q, Li N, Liles MR, Zhou Z. Aeromonas veroniiand aerolysin are important for the pathogenesis of motile aeromonad septicemia in cyprinid fish. Environ Microbiol 2018; 20:3442-3456. [DOI: 10.1111/1462-2920.14390] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 08/01/2018] [Accepted: 08/17/2018] [Indexed: 02/05/2023]
Affiliation(s)
- Chao Ran
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture; Feed Research Institute, Chinese Academy of Agricultural Sciences; Beijing 100081 People's Republic of China
| | - Chubin Qin
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture; Feed Research Institute, Chinese Academy of Agricultural Sciences; Beijing 100081 People's Republic of China
| | - Mingxu Xie
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture; Feed Research Institute, Chinese Academy of Agricultural Sciences; Beijing 100081 People's Republic of China
| | - Jinxiong Zhang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture; Feed Research Institute, Chinese Academy of Agricultural Sciences; Beijing 100081 People's Republic of China
| | - Jie Li
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture; Feed Research Institute, Chinese Academy of Agricultural Sciences; Beijing 100081 People's Republic of China
| | - Yadong Xie
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture; Feed Research Institute, Chinese Academy of Agricultural Sciences; Beijing 100081 People's Republic of China
| | - Yibing Wang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture; Feed Research Institute, Chinese Academy of Agricultural Sciences; Beijing 100081 People's Republic of China
| | - Shuning Li
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture; Feed Research Institute, Chinese Academy of Agricultural Sciences; Beijing 100081 People's Republic of China
| | - Lihui Liu
- Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology; Pearl River Fisheries Research Institute; Guangdong Province, Guangzhou 510380 People's Republic of China
| | - Xiaozhe Fu
- Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology; Pearl River Fisheries Research Institute; Guangdong Province, Guangzhou 510380 People's Republic of China
| | - Qiang Lin
- Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology; Pearl River Fisheries Research Institute; Guangdong Province, Guangzhou 510380 People's Republic of China
| | - Ningqiu Li
- Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology; Pearl River Fisheries Research Institute; Guangdong Province, Guangzhou 510380 People's Republic of China
| | - Mark R. Liles
- Department of Biological Sciences; Auburn University; Auburn AL 36849 USA
| | - Zhigang Zhou
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture; Feed Research Institute, Chinese Academy of Agricultural Sciences; Beijing 100081 People's Republic of China
| |
Collapse
|
37
|
Pérez-Ramos A, Mohedano ML, Pardo MÁ, López P. β-Glucan-Producing Pediococcus parvulus 2.6: Test of Probiotic and Immunomodulatory Properties in Zebrafish Models. Front Microbiol 2018; 9:1684. [PMID: 30090096 PMCID: PMC6068264 DOI: 10.3389/fmicb.2018.01684] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 07/06/2018] [Indexed: 12/14/2022] Open
Abstract
Lactic acid bacteria synthesize exopolysaccharides (EPS), which could benefit the host's health as immunomodulators. Furthermore, EPS could protect bacteria against gastrointestinal stress, favoring gut colonization, thus protecting the host against pathogenic infections. Pediococcus parvulus 2.6, produces a 2-substituted (1,3)-β-D-glucan and, in this work, its probiotic properties as well as the immunomodulatory capability of its EPS have been investigated using Danio rerio (zebrafish). To this end and for a comparative analysis, P. parvulus 2.6 and its isogenic β-glucan-non-producing 2.6NR strain were fluorescently labeled by transfer of the pRCR12 plasmid, which encodes the mCherry protein. For the in vivo studies, there were used: (i) a gnotobiotic larvae zebrafish model for bacterial colonization, pathogen competition, and evaluation of the β-glucan immunomodulation capability and (ii) a transgenic (mpx:GFP) zebrafish model to determine the EPS influence in the recruitment of neutrophils under an induced inflammation. The results revealed a positive effect of the β-glucan on colonization of the zebrafish gut by P. parvulus, as well as in competition of the bacterium with the pathogen Vibrio anguillarum in this environment. The larvae treatment with the purified β-glucan resulted in a decrease of expression of genes encoding pro-inflammatory cytokines. Moreover, the β-glucan had an anti-inflammatory effect, when it was evaluated in an induced inflammation model of Tg(mpx:GFP) zebrafish. Therefore, P. parvulus 2.6 and its EPS showed positive health properties in in vivo fish models, supporting their potential usage in aquaculture.
Collapse
Affiliation(s)
- Adrián Pérez-Ramos
- Laboratory of Molecular Biology of Gram-positive Bacteria, Department of Microorganisms and Plant Biotechnology, Biological Research Center, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Maria L. Mohedano
- Laboratory of Molecular Biology of Gram-positive Bacteria, Department of Microorganisms and Plant Biotechnology, Biological Research Center, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Miguel Á. Pardo
- Food Research Division, Centro Tecnológico de Investigación Marina y Alimentaria (AZTI), Derio, Spain
| | - Paloma López
- Laboratory of Molecular Biology of Gram-positive Bacteria, Department of Microorganisms and Plant Biotechnology, Biological Research Center, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| |
Collapse
|
38
|
Magana M, Sereti C, Ioannidis A, Mitchell CA, Ball AR, Magiorkinis E, Chatzipanagiotou S, Hamblin MR, Hadjifrangiskou M, Tegos GP. Options and Limitations in Clinical Investigation of Bacterial Biofilms. Clin Microbiol Rev 2018; 31:e00084-16. [PMID: 29618576 PMCID: PMC6056845 DOI: 10.1128/cmr.00084-16] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Bacteria can form single- and multispecies biofilms exhibiting diverse features based upon the microbial composition of their community and microenvironment. The study of bacterial biofilm development has received great interest in the past 20 years and is motivated by the elegant complexity characteristic of these multicellular communities and their role in infectious diseases. Biofilms can thrive on virtually any surface and can be beneficial or detrimental based upon the community's interplay and the surface. Advances in the understanding of structural and functional variations and the roles that biofilms play in disease and host-pathogen interactions have been addressed through comprehensive literature searches. In this review article, a synopsis of the methodological landscape of biofilm analysis is provided, including an evaluation of the current trends in methodological research. We deem this worthwhile because a keyword-oriented bibliographical search reveals that less than 5% of the biofilm literature is devoted to methodology. In this report, we (i) summarize current methodologies for biofilm characterization, monitoring, and quantification; (ii) discuss advances in the discovery of effective imaging and sensing tools and modalities; (iii) provide an overview of tailored animal models that assess features of biofilm infections; and (iv) make recommendations defining the most appropriate methodological tools for clinical settings.
Collapse
Affiliation(s)
- Maria Magana
- Department of Clinical Microbiology, Athens Medical School, Aeginition Hospital, Athens, Greece
| | - Christina Sereti
- Department of Clinical Microbiology, Athens Medical School, Aeginition Hospital, Athens, Greece
- Department of Microbiology, Thriassio General Hospital, Attiki, Greece
| | - Anastasios Ioannidis
- Department of Clinical Microbiology, Athens Medical School, Aeginition Hospital, Athens, Greece
- Department of Nursing, Faculty of Human Movement and Quality of Life Sciences, University of Peloponnese, Sparta, Greece
| | - Courtney A Mitchell
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | - Anthony R Ball
- Gliese 623b, Mendon, Massachusetts, USA
- GAMA Therapeutics LLC, Pepperell, Massachusetts, USA
| | - Emmanouil Magiorkinis
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, University of Athens, Athens-Goudi, Greece
| | | | - Michael R Hamblin
- Harvard-MIT Division of Health Science and Technology, Cambridge, Massachusetts, USA
- Department of Dermatology, Harvard Medical School, Boston, Massachusetts, USA
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Maria Hadjifrangiskou
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - George P Tegos
- Gliese 623b, Mendon, Massachusetts, USA
- GAMA Therapeutics LLC, Pepperell, Massachusetts, USA
| |
Collapse
|
39
|
Warne RW, Kirschman L, Zeglin L. Manipulation of Gut Microbiota Reveals Shifting Community Structure Shaped by Host Developmental Windows in Amphibian Larvae. Integr Comp Biol 2018; 57:786-794. [PMID: 28985317 DOI: 10.1093/icb/icx100] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Exploration of the importance of developmental windows for microbial colonization in diverse animal taxa, and tests of how these shape both animal microbiomes as well as host phenotypes promise to shed needed light on host-microbe interactions. The aims of this study were to explore how gut microbiota diversity of larval amphibians varies among species and across ontogeny, and to test if manipulation of gut colonization can reveal how microbiomes develop. We found that gut microbiomes differ among species and change across larval ontogeny, with distinctive differences between larvae, metamorphic animals, and juvenile frogs. Through applying a gnotobiotic protocol to eggs and cross-inoculating gut microbiomes between species, we demonstrated that microbiota can be transplanted among species and developmental stages. These results also demonstrated that microbial colonization at hatching is potentially formative for long term composition and function of amphibian gut microbiomes, suggesting that hatching may be a critical developmental window for colonization, similar to the effects of birth mode on human microbiomes. Specifically, our results suggest that either the egg jelly and/or capsules surrounding amphibian eggs are likely important sources for initial microbiome inoculation. Furthermore, we speculate these results suggest that vertical transmission may be important to amphibian microbiome establishment and development, as is common among many animal taxa. Taken together, our results suggest that explicit tests of how host developmental windows influence microbial colonization, and shape amphibian microbiomes across life stages promise to provide insight into the ecological and evolutionary dynamics of host-microbe interactions.
Collapse
Affiliation(s)
- Robin W Warne
- Department of Zoology, Southern Illinois University, 1125 Lincoln Dr., Carbondale, IL 62901-6501, USA
| | - Lucas Kirschman
- Department of Zoology, Southern Illinois University, 1125 Lincoln Dr., Carbondale, IL 62901-6501, USA
| | - Lydia Zeglin
- Biology Department, Kansas State University, Manhattan, KS, USA
| |
Collapse
|
40
|
Arias-Jayo N, Alonso-Saez L, Ramirez-Garcia A, Pardo MA. Zebrafish Axenic Larvae Colonization with Human Intestinal Microbiota. Zebrafish 2017; 15:96-106. [PMID: 29261035 DOI: 10.1089/zeb.2017.1460] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The human intestine hosts a vast and complex microbial community that is vital for maintaining several functions related with host health. The processes that determine the gut microbiome composition are poorly understood, being the interaction between species, the external environment, and the relationship with the host the most feasible. Animal models offer the opportunity to understand the interactions between the host and the microbiota. There are different gnotobiotic mice or rat models colonized with the human microbiota, however, to our knowledge, there are no reports on the colonization of germ-free zebrafish with a complex human intestinal microbiota. In the present study, we have successfully colonized 5 days postfertilization germ-free zebrafish larvae with the human intestinal microbiota previously extracted from a donor and analyzed by high-throughput sequencing the composition of the transferred microbial communities that established inside the zebrafish gut. Thus, we describe for first time which human bacteria phylotypes are able to colonize the zebrafish digestive tract. Species with relevant interest because of their linkage to dysbiosis in different human diseases, such as Akkermansia muciniphila, Eubacterium rectale, Faecalibacterium prausnitzii, Prevotella spp., or Roseburia spp. have been successfully transferred inside the zebrafish digestive tract.
Collapse
Affiliation(s)
- Nerea Arias-Jayo
- 1 Azti, Food Quality, Safety and Identity Department, Derio, Spain
| | | | - Andoni Ramirez-Garcia
- 3 Fungal and Bacterial Biomics Research Group, Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU) , Leioa, Spain
| | - Miguel A Pardo
- 1 Azti, Food Quality, Safety and Identity Department, Derio, Spain
| |
Collapse
|
41
|
Mukherjee S, Ramesh A. Dual-label flow cytometry-based host cell adhesion assay to ascertain the prospect of probiotic Lactobacillus plantarum in niche-specific antibacterial therapy. MICROBIOLOGY-SGM 2017; 163:1822-1834. [PMID: 29091578 DOI: 10.1099/mic.0.000561] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Host cell adhesion assays that provide quantitative insight on the potential of lactic acid bacteria (LAB) to inhibit adhesion of intestinal pathogens can be leveraged for the development of niche-specific anti-adhesion therapy. Herein, we report a dual-colour flow cytometry (FCM) analysis to assess the ability of probiotic Lactobacillus plantarum strains to impede adhesion of Enterococcus faecalis, Listeria monocytogenes and Staphylococcus aureus onto HT-29 cells. FCM in conjunction with a hierarchical cluster analysis could discern the anti-adhesion potential of L. plantarum strains, wherein the efficacy of L. plantarum DF9 was on a par with the probiotic L. rhamnosus GG. Combination of FCM with principal component analysis illustrated the relative influence of LAB strains on adhesion parameters kd and em of the pathogen and identified probiotic LAB suitable for anti-adhesion intervention. The analytical merit of the FCM analysis was captured in host cell adhesion assays that measured relative elimination of adhered LAB vis-à-vis pathogens, on exposure to either LAB bacteriocins or therapeutic antibiotics. It is envisaged that the dual-colour FCM-based adhesion assay described herein would enable a fundamental understanding of the host cell adhesion process and stimulate interest in probiotic LAB as safe anti-adhesion therapeutic agents against gastrointestinal pathogens.
Collapse
Affiliation(s)
- Sandipan Mukherjee
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Aiyagari Ramesh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| |
Collapse
|
42
|
Zebrafish ( Danio rerio) as a Vertebrate Model Host To Study Colonization, Pathogenesis, and Transmission of Foodborne Escherichia coli O157. mSphere 2017; 2:mSphere00365-17. [PMID: 28959735 PMCID: PMC5607324 DOI: 10.1128/mspheredirect.00365-17] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 09/05/2017] [Indexed: 12/12/2022] Open
Abstract
Foodborne infections with enterohemorrhagic Escherichia coli (EHEC) are a major cause of diarrheal illness in humans and can lead to severe complications such as hemolytic uremic syndrome. Cattle and other ruminants are the main reservoir of EHEC, which enters the food chain through contaminated meat, dairy, or vegetables. Here, we describe the establishment of a vertebrate model for foodborne EHEC infection, using larval zebrafish (Danio rerio) as a host and the protozoan prey Paramecium caudatum as a vehicle. We follow pathogen release from the vehicle, intestinal colonization, microbe-host interactions, and microbial gene induction within a live vertebrate host, in real time, throughout the course of infection. We demonstrate that foodborne EHEC colonizes the gastrointestinal tract faster and establishes a higher burden than waterborne infection. Expression of the locus of enterocyte effacement (LEE), a key EHEC virulence factor, was observed early during infection, mainly at sites that experience fluid shear, and required tight control to enable successful host colonization. EHEC infection led to strain- and LEE-dependent mortality in the zebrafish host. Despite the presence of the endogenous microbiota limiting EHEC colonization levels, EHEC colonization and virulence can be studied either under gnotobiotic conditions or against the backdrop of an endogenous (and variable) host microbiota. Finally, we show that the model can be used for investigation of factors affecting shedding and transmission of bacteria to naive hosts. Overall, this constitutes a useful model, which ideally complements the strengths of existing EHEC vertebrate models. IMPORTANCE Enterohemorrhagic Escherichia coli (EHEC) is a foodborne pathogen which can cause diarrhea, vomiting, and, in some cases, severe complications such as kidney failure in humans. Up to 30% of cattle are colonized with EHEC, which can enter the food chain through contaminated meat, dairy, and vegetables. In order to control infections and stop transmission, it is important to understand what factors allow EHEC to colonize its hosts, cause virulence, and aid transmission. Since this cannot be systematically studied in humans, it is important to develop animal models of infection and transmission. We developed a model which allows us to study foodborne infection in zebrafish, a vertebrate host that is transparent and genetically tractable. Our results show that foodborne infection is more efficient than waterborne infection and that the locus of enterocyte effacement is a key virulence determinant in the zebrafish model. It is induced early during infection, and loss of tight LEE regulation leads to a decreased bacterial burden and decreased host mortality. Overall, the zebrafish model allows us to study foodborne infection, including pathogen release from the food vehicle and gene regulation and its context of host-microbe interactions, as well as environmental shedding and transmission to naive hosts.
Collapse
|
43
|
Microbial colonization is required for normal neurobehavioral development in zebrafish. Sci Rep 2017; 7:11244. [PMID: 28894128 PMCID: PMC5593827 DOI: 10.1038/s41598-017-10517-5] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 08/10/2017] [Indexed: 12/18/2022] Open
Abstract
Changes in resident microbiota may have wide-ranging effects on human health. We investigated whether early life microbial disruption alters neurodevelopment and behavior in larval zebrafish. Conventionally colonized, axenic, and axenic larvae colonized at 1 day post fertilization (dpf) were evaluated using a standard locomotor assay. At 10 dpf, axenic zebrafish exhibited hyperactivity compared to conventionalized and conventionally colonized controls. Impairment of host colonization using antibiotics also caused hyperactivity in conventionally colonized larvae. To determine whether there is a developmental requirement for microbial colonization, axenic embryos were serially colonized on 1, 3, 6, or 9 dpf and evaluated on 10 dpf. Normal activity levels were observed in axenic larvae colonized on 1–6 dpf, but not on 9 dpf. Colonization of axenic embryos at 1 dpf with individual bacterial species Aeromonas veronii or Vibrio cholerae was sufficient to block locomotor hyperactivity at 10 dpf. Exposure to heat-killed bacteria or microbe-associated molecular patterns pam3CSK4 or Poly(I:C) was not sufficient to block hyperactivity in axenic larvae. These data show that microbial colonization during early life is required for normal neurobehavioral development and support the concept that antibiotics and other environmental chemicals may exert neurobehavioral effects via disruption of host-associated microbial communities.
Collapse
|
44
|
Mushegian AA, Walser JC, Sullam KE, Ebert D. The microbiota of diapause: How host-microbe associations are formed after dormancy in an aquatic crustacean. J Anim Ecol 2017; 87:400-413. [DOI: 10.1111/1365-2656.12709] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 05/08/2017] [Indexed: 01/28/2023]
Affiliation(s)
| | - Jean-Claude Walser
- Zoological Institute; University of Basel; Basel Switzerland
- Genetic Diversity Centre; ETH Zürich; Zürich Switzerland
| | - Karen E. Sullam
- Zoological Institute; University of Basel; Basel Switzerland
| | - Dieter Ebert
- Zoological Institute; University of Basel; Basel Switzerland
| |
Collapse
|
45
|
Dextran production by Lactobacillus sakei MN1 coincides with reduced autoagglutination, biofilm formation and epithelial cell adhesion. Carbohydr Polym 2017; 168:22-31. [DOI: 10.1016/j.carbpol.2017.03.024] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 02/12/2017] [Accepted: 03/08/2017] [Indexed: 01/04/2023]
|
46
|
Burns AR, Guillemin K. The scales of the zebrafish: host-microbiota interactions from proteins to populations. Curr Opin Microbiol 2017; 38:137-141. [PMID: 28618368 DOI: 10.1016/j.mib.2017.05.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 05/06/2017] [Accepted: 05/29/2017] [Indexed: 01/08/2023]
Abstract
The interactions between animal hosts and their associated microbiota can be studied at multiple spatial and conceptual scales, with each providing unique perspectives on the processes structuring host-microbe systems. Recently, zebrafish, Danio rerio, has emerged as a powerful model in which to study these interactions at many different scales. Controlled but simplified gnotobiotic experiments enable discovery of the molecules and cellular dynamics that shape host-microbe system development, whereas population level investigations of bacterial dispersal and transmission are beginning to reveal the processes shaping microbiota assembly across hosts. Here we review recent examples of these studies and discuss how the results can be integrated to better understand host-microbiota systems.
Collapse
Affiliation(s)
- Adam R Burns
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403, United States
| | - Karen Guillemin
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, United States; Humans and the Microbiome Program, Canadian Institute for Advanced Research, Toronto, Ontario M5G 1Z8, Canada.
| |
Collapse
|
47
|
Thomason CA, Leon A, Kirkpatrick LT, Belden LK, Hawley DM. Eye of the Finch: characterization of the ocular microbiome of house finches in relation to mycoplasmal conjunctivitis. Environ Microbiol 2017; 19:1439-1449. [PMID: 27871125 PMCID: PMC6292521 DOI: 10.1111/1462-2920.13625] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 10/17/2016] [Accepted: 11/16/2016] [Indexed: 12/29/2022]
Abstract
Vertebrate ocular microbiomes are poorly characterized and virtually unexplored in wildlife species. Pathogen defense is considered a key function of microbiomes, but determining microbiome stability during disease is critical for understanding the role of resident microbial communities in infectious disease dynamics. Here, we characterize the ocular bacterial microbiome of house finches (Haemorhous mexicanus), prior to and during experimental infection with an inflammatory ocular disease, Mycoplasmal conjunctivitis, caused by Mycoplasma gallisepticum. In ocular tissues of healthy house finches, we identified 526 total bacterial operational taxonomic units (OTUs, 97% similarity), primarily from Firmicutes (92.6%) and Proteobacteria (6.9%), via 16S rRNA gene amplicon sequencing. Resident ocular communities of healthy female finches were characterized by greater evenness and phylogenetic diversity compared to healthy male finches. Regardless of sex, ocular microbiome community structure significantly shifted 11 days after experimental inoculation with M. gallisepticum. A suite of OTUs, including taxa from the genera Methylobacterium, Acinetobacter and Mycoplasma, appear to drive these changes, indicating that the whole finch ocular microbiome responds to infection. Further study is needed to quantify changes in absolute abundance of resident taxa and to elucidate potential functional roles of the resident ocular microbiome in mediating individual responses to this common songbird bacterial pathogen.
Collapse
Affiliation(s)
| | - Ariel Leon
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
| | | | - Lisa K Belden
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Dana M Hawley
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
| |
Collapse
|
48
|
Banerjee G, Ray AK. The advancement of probiotics research and its application in fish farming industries. Res Vet Sci 2017; 115:66-77. [PMID: 28157611 DOI: 10.1016/j.rvsc.2017.01.016] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 01/16/2017] [Accepted: 01/20/2017] [Indexed: 12/11/2022]
Abstract
Fish are always susceptible to a variety of lethal diseases caused by different types of bacterial, fungal, viral and parasitic agents. The unscientific management practises such as, over feeding, high stock densities and destructive fishing techniques increase the probability of disease symptoms in aquaculture industries. According to Food and Agriculture Association (FAO), each and every year several countries such as China, India, Norway, Indonesia, etc. face a huge loss in aquaculture production due to mainly bacterial and viral diseases. The use of antibiotics is a common practise in fish farming sectors to control the disease outbreak. However, the antibiotics are not long term friend because it creates selective pressure for emergence of drug resistant bacteria. Probiotics are live microorganisms that confer several beneficial effects to host (enhances immunity, helps in digestion, protects from pathogens, improves water quality, promotes growth and reproduction) and can be used as an alternative of antibiotics. In recent year, a wide range of bacteria have reported as potential probiotics candidates in fish farming sectors, however, Lactobacillus sp. and Bacillus sp. gain special attention due to their high antagonistic activities, extracellular enzyme production and availability. In this present review, we have summarized the recent advancement in aquaculture probiotics research and its impact on fish health, nutrition, immunity, reproduction and water quality.
Collapse
Affiliation(s)
- Goutam Banerjee
- Department of Zoology, Visva-Bharati University, Santiniketan, West Bengal 731235, India; Center for Nature Conservation and Biosafety (CNCB Pvt. Ltd.; cncb.co.in), Cuttack, Odisha 754132, India.
| | - Arun Kumar Ray
- Department of Zoology, Visva-Bharati University, Santiniketan, West Bengal 731235, India
| |
Collapse
|
49
|
Melancon E, De La Torre Canny SG, Sichel S, Kelly M, Wiles T, Rawls J, Eisen J, Guillemin K. Best practices for germ-free derivation and gnotobiotic zebrafish husbandry. Methods Cell Biol 2017; 138:61-100. [PMID: 28129860 PMCID: PMC5568843 DOI: 10.1016/bs.mcb.2016.11.005] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
All animals are ecosystems with resident microbial communities, referred to as microbiota, which play profound roles in host development, physiology, and evolution. Enabled by new DNA sequencing technologies, there is a burgeoning interest in animal-microbiota interactions, but dissecting the specific impacts of microbes on their hosts is experimentally challenging. Gnotobiology, the study of biological systems in which all members are known, enables precise experimental analysis of the necessity and sufficiency of microbes in animal biology by deriving animals germ-free (GF) and inoculating them with defined microbial lineages. Mammalian host models have long dominated gnotobiology, but we have recently adapted gnotobiotic approaches to the zebrafish (Danio rerio), an important aquatic model. Zebrafish offer several experimental attributes that enable rapid, large-scale gnotobiotic experimentation with high replication rates and exquisite optical resolution. Here we describe detailed protocols for three procedures that form the foundation of zebrafish gnotobiology: derivation of GF embryos, microbial association of GF animals, and long-term, GF husbandry. Our aim is to provide sufficient guidance in zebrafish gnotobiotic methodology to expand and enrich this exciting field of research.
Collapse
Affiliation(s)
- E. Melancon
- University of Oregon, Eugene, OR, Unites States
| | | | - S. Sichel
- University of Oregon, Eugene, OR, Unites States
| | - M. Kelly
- University of Oregon, Eugene, OR, Unites States
| | - T.J. Wiles
- University of Oregon, Eugene, OR, Unites States
| | - J.F. Rawls
- Duke University, Durham, NC, United States
| | - J.S. Eisen
- University of Oregon, Eugene, OR, Unites States
| | - K. Guillemin
- University of Oregon, Eugene, OR, Unites States
- Canadian Institute for Advanced Research, Toronto, ON, Canada
| |
Collapse
|
50
|
Caruffo M, Navarrete NC, Salgado OA, Faúndez NB, Gajardo MC, Feijóo CG, Reyes-Jara A, García K, Navarrete P. Protective Yeasts Control V. anguillarum Pathogenicity and Modulate the Innate Immune Response of Challenged Zebrafish ( Danio rerio) Larvae. Front Cell Infect Microbiol 2016; 6:127. [PMID: 27790411 PMCID: PMC5063852 DOI: 10.3389/fcimb.2016.00127] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Accepted: 09/27/2016] [Indexed: 12/19/2022] Open
Abstract
We investigated mechanisms involved in the protection of zebrafish (Danio rerio) larvae by two probiotic candidate yeasts, Debaryomyces hansenii 97 (Dh97) and Yarrowia lypolitica 242 (Yl242), against a Vibrio anguillarum challenge. We determined the effect of different yeast concentrations (104-107 CFU/mL) to: (i) protect larvae from the challenge, (ii) reduce the in vivo pathogen concentration and (iii) modulate the innate immune response of the host. To evaluate the role of zebrafish microbiota in protection, the experiments were performed in conventionally raised and germ-free larvae. In vitro co-aggregation assays were performed to determine a direct yeast-pathogen interaction. Results showed that both yeasts significantly increased the survival rate of conventionally raised larvae challenged with V. anguillarum. The concentration of yeasts in larvae tended to increase with yeast inoculum, which was more pronounced for Dh97. Better protection was observed with Dh97 at a concentration of 106 CFU/mL compared to 104 CFU/mL. In germ-free conditions V. anguillarum reached higher concentrations in larvae and provoked significantly more mortality than in conventional conditions, revealing the protective role of the host microbiota. Interestingly, yeasts were equally (Dh97) or more effective (Yl242) in protecting germ-free than conventionally-raised larvae, showing that protection can be exerted only by yeasts and is not necessarily related to modulation of the host microbiota. Although none of the yeasts co-aggregated with V. anguillarum, they were able to reduce its proliferation in conventionally raised larvae, reduce initial pathogen concentration in germ-free larvae and prevent the upregulation of key components of the inflammatory/anti-inflammatory response (il1b, tnfa, c3, mpx, and il10, respectively). These results show that protection by yeasts of zebrafish larvae challenged with V. anguillarum relates to an in vivo anti-pathogen effect, the modulation of the innate immune system, and suggests that yeasts avoid the host-pathogen interaction through mechanisms independent of co-aggregation. This study shows, for the first time, the protective role of zebrafish microbiota against V. anguillarum infection, and reveals mechanisms involved in protection by two non-Saccharomyces yeasts against this pathogen.
Collapse
Affiliation(s)
- Mario Caruffo
- Laboratorio de Microbiología y Probióticos, Instituto de Nutrición y Tecnología de los Alimentos, Universidad de ChileSantiago, Chile
| | - Natalie C. Navarrete
- Laboratorio de Microbiología y Probióticos, Instituto de Nutrición y Tecnología de los Alimentos, Universidad de ChileSantiago, Chile
| | - Oscar A. Salgado
- Laboratorio de Microbiología y Probióticos, Instituto de Nutrición y Tecnología de los Alimentos, Universidad de ChileSantiago, Chile
| | - Nelly B. Faúndez
- Laboratorio de Microbiología y Probióticos, Instituto de Nutrición y Tecnología de los Alimentos, Universidad de ChileSantiago, Chile
| | - Miguel C. Gajardo
- Laboratorio de Microbiología y Probióticos, Instituto de Nutrición y Tecnología de los Alimentos, Universidad de ChileSantiago, Chile
| | - Carmen G. Feijóo
- Departamento de Ciencias Biologicas, Facultad de Ciencias Biologicas, Universidad Andres BelloSantiago, Chile
| | - Angélica Reyes-Jara
- Laboratorio de Microbiología y Probióticos, Instituto de Nutrición y Tecnología de los Alimentos, Universidad de ChileSantiago, Chile
| | - Katherine García
- Instituto de Ciencias Biomédicas, Universidad Autónoma de ChileSantiago, Chile
| | - Paola Navarrete
- Laboratorio de Microbiología y Probióticos, Instituto de Nutrición y Tecnología de los Alimentos, Universidad de ChileSantiago, Chile
| |
Collapse
|