1
|
Uprety T, Soni S, Sreenivasan C, Hause BM, Naveed A, Ni S, Graves AJ, Morrow JK, Meade N, Mellits KH, Adam E, Kennedy MA, Wang D, Li F. Genetic and antigenic characterization of two diarrhoeicdominant rotavirus A genotypes G3P[12] and G14P[12] circulating in the global equine population. J Gen Virol 2024; 105:002016. [PMID: 39163114 PMCID: PMC11335307 DOI: 10.1099/jgv.0.002016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 07/30/2024] [Indexed: 08/21/2024] Open
Abstract
Equine rotavirus species A (ERVA) G3P[12] and G14P[12] are two dominant genotypes that cause foal diarrhoea with a significant economic impact on the global equine industry. ERVA can also serve as a source of novel (equine-like) rotavirus species A (RVA) reassortants with zoonotic potential as those identified previously in 2013-2019 when equine G3-like RVA was responsible for worldwide outbreaks of severe gastroenteritis and hospitalizations in children. One hurdle to ERVA research is that the standard cell culture system optimized for human rotavirus replication is not efficient for isolating ERVA. Here, using an engineered cell line defective in antiviral innate immunity, we showed that both equine G3P[12] and G14P[12] strains can be rapidly isolated from diarrhoeic foals. The genome sequence analysis revealed that both G3P[12] and G14P[12] strains share the identical genotypic constellation except for VP7 and VP6 segments in which G3P[12] possessed VP7 of genotype G3 and VP6 of genotype I6 and G14P[12] had the combination of VP7 of genotype G14 and VP6 of genotype I2. Further characterization demonstrated that two ERVA genotypes have a limited cross-neutralization. The lack of an in vitro broad cross-protection between both genotypes supported the increased recent diarrhoea outbreaks due to equine G14P[12] in foals born to dams immunized with the inactivated monovalent equine G3P[12] vaccine. Finally, using the structural modelling approach, we provided the genetic basis of the antigenic divergence between ERVA G3P[12] and G14P[12] strains. The results of this study will provide a framework for further investigation of infection biology, pathogenesis and cross-protection of equine rotaviruses.
Collapse
Affiliation(s)
- Tirth Uprety
- Department of Veterinary Science, Maxwell H. Gluck Equine Research Center, University of Kentucky, Lexington, Kentucky 40546, USA
| | - Shalini Soni
- Department of Veterinary Science, Maxwell H. Gluck Equine Research Center, University of Kentucky, Lexington, Kentucky 40546, USA
| | - Chithra Sreenivasan
- Department of Veterinary Science, Maxwell H. Gluck Equine Research Center, University of Kentucky, Lexington, Kentucky 40546, USA
| | - Ben M. Hause
- Department of Veterinary and Biomedical Sciences, Animal Disease Research and Diagnostic Laboratory, South Dakota State University, Brookings, South Dakota, 57007, USA
| | - Ahsan Naveed
- Department of Veterinary Science, Maxwell H. Gluck Equine Research Center, University of Kentucky, Lexington, Kentucky 40546, USA
| | - Shuisong Ni
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA
| | - Amy J. Graves
- Equine Diagnostic Solutions, LLC, 1501 Bull Lea Rd, Suite 104, Lexington, Kentucky 40511, USA
| | - Jennifer K. Morrow
- Equine Diagnostic Solutions, LLC, 1501 Bull Lea Rd, Suite 104, Lexington, Kentucky 40511, USA
| | - Nathan Meade
- Division of Microbiology, Brewing, and Biotechnology, School of Biosciences, University of Nottingham, Sutton Bonington, UK
| | - Kenneth H. Mellits
- Division of Microbiology, Brewing, and Biotechnology, School of Biosciences, University of Nottingham, Sutton Bonington, UK
| | - Emma Adam
- Department of Veterinary Science, Maxwell H. Gluck Equine Research Center, University of Kentucky, Lexington, Kentucky 40546, USA
| | - Michael A. Kennedy
- Department of Veterinary and Biomedical Sciences, Animal Disease Research and Diagnostic Laboratory, South Dakota State University, Brookings, South Dakota, 57007, USA
| | - Dan Wang
- Department of Veterinary Science, Maxwell H. Gluck Equine Research Center, University of Kentucky, Lexington, Kentucky 40546, USA
| | - Feng Li
- Department of Veterinary Science, Maxwell H. Gluck Equine Research Center, University of Kentucky, Lexington, Kentucky 40546, USA
| |
Collapse
|
2
|
Hakim MS, Gazali FM, Widyaningsih SA, Parvez MK. Driving forces of continuing evolution of rotaviruses. World J Virol 2024; 13:93774. [PMID: 38984077 PMCID: PMC11229848 DOI: 10.5501/wjv.v13.i2.93774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/06/2024] [Accepted: 05/17/2024] [Indexed: 06/24/2024] Open
Abstract
Rotaviruses are non-enveloped double-stranded RNA virus that causes acute diarrheal diseases in children (< 5 years). More than 90% of the global rotavirus infection in humans was caused by Rotavirus group A. Rotavirus infection has caused more than 200000 deaths annually and predominantly occurs in the low-income countries. Rotavirus evolution is indicated by the strain dynamics or the emergence of the unprecedented strain. The major factors that drive the rotavirus evolution include the genetic shift that is caused by the reassortment mechanism, either in the intra- or the inter-genogroup. However, other factors are also known to have an impact on rotavirus evolution. This review discusses the structure and types, epidemiology, and evolution of rotaviruses. This article also reviews other supplemental factors of rotavirus evolution, such as genetic reassortment, mutation rate, glycan specificity, vaccine introduction, the host immune responses, and antiviral drugs.
Collapse
Affiliation(s)
- Mohamad Saifudin Hakim
- Postgraduate School of Molecular Medicine, Erasmus MC-University Medical Center, Rotterdam 3015GD, Netherlands
- Viral Infection Working Group, International Society of Antimicrobial Chemotherapy, London EC4R 9AN, United Kingdom
| | - Faris Muhammad Gazali
- Master Program in Biotechnology, Postgraduate School, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
| | - Suci Ardini Widyaningsih
- Master of Medical Sciences in Clinical Investigation, Harvard Medical School, Boston, MA 02115, United States
| | - Mohammad Khalid Parvez
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
3
|
Velderrain-Armenta F, González-Ochoa G, Tamez-Guerra P, Romero-Arguelles R, Romo-Sáenz CI, Gomez-Flores R, Flores-Mendoza L, Icedo-García R, Soñanez-Organis JG. Bifidobacterium longum and Chlorella sorokiniana Combination Modulates IFN-γ, IL-10, and SOCS3 in Rotavirus-Infected Cells. Int J Mol Sci 2024; 25:5514. [PMID: 38791551 PMCID: PMC11122607 DOI: 10.3390/ijms25105514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/14/2024] [Accepted: 05/17/2024] [Indexed: 05/26/2024] Open
Abstract
Rotavirus is the main cause of acute diarrhea in children up to five years of age. In this regard, probiotics are commonly used to treat or prevent gastroenteritis including viral infections. The anti-rotavirus effect of Bifidobacterium longum and Chlorella sorokiniana, by reducing viral infectivity and improving IFN-type I response, has been previously reported. The present study aimed to study the effect of B. longum and/or C. sorokiniana on modulating the antiviral cellular immune response mediated by IFN-γ, IL-10, SOCS3, STAT1, and STAT2 genes in rotavirus-infected cells. To determine the mRNA relative expression of these genes, HT-29 cells were treated with B. longum and C. sorokiniana alone or in combination, followed by rotavirus infection. In addition, infected cells were treated with B. longum and/or C. sorokiniana. Cellular RNA was purified, used for cDNA synthesis, and amplified by qPCR. Our results demonstrated that the combination of B. longum and C. sorokiniana stimulates the antiviral cellular immune response by upregulating IFN-γ and may block pro-inflammatory cytokines by upregulating IL-10 and SOCS3. The results of our study indicated that B. longum, C. sorokiniana, or their combination improve antiviral cellular immune response and might modulate pro-inflammatory responses.
Collapse
Affiliation(s)
- Felizardo Velderrain-Armenta
- Department of Chemistry-Biology and Agriculture, Interdisciplinary Faculty of Biology Sciences and Health, University of Sonora, Navojoa C.P. 85880, Mexico; (F.V.-A.); (L.F.-M.); (R.I.-G.); (J.G.S.-O.)
| | - Guadalupe González-Ochoa
- Department of Chemistry-Biology and Agriculture, Interdisciplinary Faculty of Biology Sciences and Health, University of Sonora, Navojoa C.P. 85880, Mexico; (F.V.-A.); (L.F.-M.); (R.I.-G.); (J.G.S.-O.)
| | - Patricia Tamez-Guerra
- Laboratory of Immunology and Virology, Falculty of Biological Sciences, Autonomous University of Nuevo Leon, San Nicolás de los Garza C.P. 66455, Mexico; (R.R.-A.); (C.I.R.-S.); (R.G.-F.)
| | - Ricardo Romero-Arguelles
- Laboratory of Immunology and Virology, Falculty of Biological Sciences, Autonomous University of Nuevo Leon, San Nicolás de los Garza C.P. 66455, Mexico; (R.R.-A.); (C.I.R.-S.); (R.G.-F.)
| | - César I. Romo-Sáenz
- Laboratory of Immunology and Virology, Falculty of Biological Sciences, Autonomous University of Nuevo Leon, San Nicolás de los Garza C.P. 66455, Mexico; (R.R.-A.); (C.I.R.-S.); (R.G.-F.)
| | - Ricardo Gomez-Flores
- Laboratory of Immunology and Virology, Falculty of Biological Sciences, Autonomous University of Nuevo Leon, San Nicolás de los Garza C.P. 66455, Mexico; (R.R.-A.); (C.I.R.-S.); (R.G.-F.)
| | - Lilian Flores-Mendoza
- Department of Chemistry-Biology and Agriculture, Interdisciplinary Faculty of Biology Sciences and Health, University of Sonora, Navojoa C.P. 85880, Mexico; (F.V.-A.); (L.F.-M.); (R.I.-G.); (J.G.S.-O.)
| | - Ramona Icedo-García
- Department of Chemistry-Biology and Agriculture, Interdisciplinary Faculty of Biology Sciences and Health, University of Sonora, Navojoa C.P. 85880, Mexico; (F.V.-A.); (L.F.-M.); (R.I.-G.); (J.G.S.-O.)
| | - José G. Soñanez-Organis
- Department of Chemistry-Biology and Agriculture, Interdisciplinary Faculty of Biology Sciences and Health, University of Sonora, Navojoa C.P. 85880, Mexico; (F.V.-A.); (L.F.-M.); (R.I.-G.); (J.G.S.-O.)
| |
Collapse
|
4
|
Kalugotla G, Marmerstein V, Baldridge MT. Regulation of host/pathogen interactions in the gastrointestinal tract by type I and III interferons. Curr Opin Immunol 2024; 87:102425. [PMID: 38763032 PMCID: PMC11162908 DOI: 10.1016/j.coi.2024.102425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 02/01/2024] [Accepted: 05/06/2024] [Indexed: 05/21/2024]
Abstract
Interferons (IFNs) are an integral component of the host innate immune response during viral infection. Recent advances in the study of type I and III IFNs suggest that though both types counteract viral infection, type III IFNs act predominantly at epithelial barrier sites, while type I IFNs drive systemic responses. The dynamics and specific roles of type I versus III IFNs have been studied in the context of infection by a variety of enteric pathogens, including reovirus, rotavirus, norovirus, astrovirus, and intestinal severe acute respiratory syndrome coronavirus 2, revealing shared patterns of regulatory influence. An important role for the gut microbiota, including the virome, in regulating homeostasis and priming of intestinal IFN responses has also recently emerged.
Collapse
Affiliation(s)
- Gowri Kalugotla
- Division of Infectious Diseases, Department of Medicine, Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Vivien Marmerstein
- Division of Infectious Diseases, Department of Medicine, Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Megan T Baldridge
- Division of Infectious Diseases, Department of Medicine, Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, USA; Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
5
|
Elsasser TH, Faulkenberg S. Physiology of Gut Water Balance and Pathomechanics of Diarrhea. PRODUCTION DISEASES IN FARM ANIMALS 2024:179-209. [DOI: 10.1007/978-3-031-51788-4_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
6
|
Asensio-Cob D, Rodríguez JM, Luque D. Rotavirus Particle Disassembly and Assembly In Vivo and In Vitro. Viruses 2023; 15:1750. [PMID: 37632092 PMCID: PMC10458742 DOI: 10.3390/v15081750] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/11/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
Rotaviruses (RVs) are non-enveloped multilayered dsRNA viruses that are major etiologic agents of diarrheal disease in humans and in the young in a large number of animal species. The viral particle is composed of three different protein layers that enclose the segmented dsRNA genome and the transcriptional complexes. Each layer defines a unique subparticle that is associated with a different phase of the replication cycle. Thus, while single- and double-layered particles are associated with the intracellular processes of selective packaging, genome replication, and transcription, the viral machinery necessary for entry is located in the third layer. This modular nature of its particle allows rotaviruses to control its replication cycle by the disassembly and assembly of its structural proteins. In this review, we examine the significant advances in structural, molecular, and cellular RV biology that have contributed during the last few years to illuminating the intricate details of the RV particle disassembly and assembly processes.
Collapse
Affiliation(s)
- Dunia Asensio-Cob
- Department of Molecular Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G0A4, Canada;
| | - Javier M. Rodríguez
- Department of Structure of Macromolecules, Centro Nacional de Biotecnología/CSIC, Cantoblanco, 28049 Madrid, Spain
| | - Daniel Luque
- Electron Microscopy Unit UCCT/ISCIII, 28220 Majadahonda, Spain
- School of Biomedical Sciences, The University of New South Wales, Sydney, NSW 2052, Australia
- Electron Microscope Unit, Mark Wainwright Analytical Centre, The University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
7
|
Romero-Arguelles R, Tamez-Guerra P, González-Ochoa G, Romo-Sáenz CI, Gomez-Flores R, Flores-Mendoza L, Aros-Uzarraga E. Bifidobacterium longum and Chlorella sorokiniana Improve the IFN Type I-Mediated Antiviral Response in Rotavirus-Infected Cells. Microorganisms 2023; 11:1237. [PMID: 37317211 DOI: 10.3390/microorganisms11051237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/05/2023] [Accepted: 05/07/2023] [Indexed: 06/16/2023] Open
Abstract
Probiotics are effective to treat or prevent gastrointestinal infections, and microalgae have demonstrated important health-promoting effects and in some cases function as prebiotics. In this regard, the anti-rotavirus effect of Bifidobacterium longum and Chlorella sorokiniana by reducing viral infectivity is well known. However, their effect on immune response against rotavirus has not yet been investigated. Therefore, the aim of this study was to determine the role of Bifidobacterium longum and/or Chlorella sorokiniana in influencing an IFN type I-mediated antiviral response in rotavirus-infected cells. In pre-infection experiments, HT-29 cells were treated with B. longum and C. sorokiniana alone or in combination, followed by rotavirus infection, whereas in post-infection assays, HT-29 cells were treated after infection. The cells' mRNA was then purified to determine the relative expression level of IFN-α, IFN-β, and precursors of interferons such as RIG-I, IRF-3, and IRF-5 by qPCR. We showed that combination of B. longum and C. sorokiniana significantly increased IFN-α levels in pre-infection and IFN-β in post-infection assays, as compared with individual effects. Results indicate that B. longum, C. sorokiniana, or their combination improve cellular antiviral immune response.
Collapse
Affiliation(s)
- Ricardo Romero-Arguelles
- Laboratorio de Inmunología y Virología, Facultad de Ciencias Biológicas, San Nicolás de los Garza, Universidad Autónoma de Nuevo León, San Nicolás de los Garza 66455, Mexico
| | - Patricia Tamez-Guerra
- Laboratorio de Inmunología y Virología, Facultad de Ciencias Biológicas, San Nicolás de los Garza, Universidad Autónoma de Nuevo León, San Nicolás de los Garza 66455, Mexico
| | - Guadalupe González-Ochoa
- Departamento de Ciencias Químico Biológicas y Agropecuarias, Universidad de Sonora, Navojoa 85880, Mexico
| | - César I Romo-Sáenz
- Laboratorio de Inmunología y Virología, Facultad de Ciencias Biológicas, San Nicolás de los Garza, Universidad Autónoma de Nuevo León, San Nicolás de los Garza 66455, Mexico
| | - Ricardo Gomez-Flores
- Laboratorio de Inmunología y Virología, Facultad de Ciencias Biológicas, San Nicolás de los Garza, Universidad Autónoma de Nuevo León, San Nicolás de los Garza 66455, Mexico
| | - Lilian Flores-Mendoza
- Departamento de Ciencias Químico Biológicas y Agropecuarias, Universidad de Sonora, Navojoa 85880, Mexico
| | - Elizama Aros-Uzarraga
- Departamento de Ciencias Químico Biológicas y Agropecuarias, Universidad de Sonora, Navojoa 85880, Mexico
| |
Collapse
|
8
|
Wang Y, Yu B, Luo Y, Zheng P, Mao X, Huang Z, Yu J, Luo J, Yan H, Wu A, He J. Interferon-λ3 alleviates intestinal epithelium injury induced by porcine rotavirus in mice. Int J Biol Macromol 2023; 240:124431. [PMID: 37060970 DOI: 10.1016/j.ijbiomac.2023.124431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 03/15/2023] [Accepted: 04/09/2023] [Indexed: 04/17/2023]
Abstract
Interferons are a group of glycoproteins that are expressed in various cell types in their inflammatory responses to infections. In this study, we explored the protective effects of porcine interferon-λ3 (PIFN-λ3) on intestinal inflammation and injury in mice induced by porcine rotavirus (PRV). BALB/c mice were administrated by PIFN-λ3 or phosphate buffer solution (PBS) for three days prior to PRV infection. We show that PRV infection caused acute inflammatory responses in mice, as indicated by increases in serum concentrations of inflammatory cytokines such as the interlukin-1β (IL-1β), interlukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) (P < 0.05). However, PIFN-λ3 administration not only decreased their concentrations but also elevated the concentrations of immunoglobulin (Ig) M and IgG in the PRV challenged mice (P < 0.05). PRV infection significantly decreased the jejunal villus height and the ratio of villus height to crypt depth (V/C); however, PIFN-λ3 treatment significantly elevated the villus height and the abundance of tight junction protein ZO-1 in the jejunum (P < 0.05). Moreover, PIFN-λ3 decreased the replication of PRV in the jejunal epithelium, but significantly increased the abundance of sIgA and the activities of maltase and sucrase in the PRV-challenged mice (P < 0.05). Interestingly, PIFN-λ3 elevated the expression levels of sodium/glucose cotransporter 1 (SGLT1) and mucin 2 (MUC2) in the PRV-challenged mice (P < 0.05). Moreover, PIFN-λ3 significantly increased the expression levels of IL-10, signal transducer and activator of transcription 1 (STAT1), and critical interferon-stimulated genes such as the 2'-5' oligoadenylate synthetase-like 1 (OASL1), interferon-induced protein with tetratricopeptide repeats 1 (IFIT1) and radical S-adenosyl methionine domain containing 2 (RSAD2) in the jejunum upon PRV infection (P < 0.05). The anti-virus and anti-inflammatory effect of PIFN-λ3 should make it an attractive candidate to prevent various pathogen-induced bowel diseases.
Collapse
Affiliation(s)
- Yuhan Wang
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan Province 611130, PR China; Key Laboratory of Animal Disease-resistant Nutrition, Chengdu, Sichuan Province 611130, PR China
| | - Bing Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan Province 611130, PR China; Key Laboratory of Animal Disease-resistant Nutrition, Chengdu, Sichuan Province 611130, PR China
| | - Yuheng Luo
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan Province 611130, PR China; Key Laboratory of Animal Disease-resistant Nutrition, Chengdu, Sichuan Province 611130, PR China
| | - Ping Zheng
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan Province 611130, PR China; Key Laboratory of Animal Disease-resistant Nutrition, Chengdu, Sichuan Province 611130, PR China
| | - Xiangbing Mao
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan Province 611130, PR China; Key Laboratory of Animal Disease-resistant Nutrition, Chengdu, Sichuan Province 611130, PR China
| | - Zhiqing Huang
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan Province 611130, PR China; Key Laboratory of Animal Disease-resistant Nutrition, Chengdu, Sichuan Province 611130, PR China
| | - Jie Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan Province 611130, PR China; Key Laboratory of Animal Disease-resistant Nutrition, Chengdu, Sichuan Province 611130, PR China
| | - Junqiu Luo
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan Province 611130, PR China; Key Laboratory of Animal Disease-resistant Nutrition, Chengdu, Sichuan Province 611130, PR China
| | - Hui Yan
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan Province 611130, PR China; Key Laboratory of Animal Disease-resistant Nutrition, Chengdu, Sichuan Province 611130, PR China
| | - Aimin Wu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan Province 611130, PR China; Key Laboratory of Animal Disease-resistant Nutrition, Chengdu, Sichuan Province 611130, PR China
| | - Jun He
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan Province 611130, PR China; Key Laboratory of Animal Disease-resistant Nutrition, Chengdu, Sichuan Province 611130, PR China.
| |
Collapse
|
9
|
Teimoori A, Mirshahabi H, Khansarinejad B, Soleimanjahi H, Karimi H, Rasti M, Shatizadeh Malekshahi S. Significant alteration of IFN stimulated genes expression in MA104 cells infected with bovine rotavirus RF strain. J Immunoassay Immunochem 2023; 44:56-65. [PMID: 36052996 DOI: 10.1080/15321819.2022.2118061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The pattern recognition receptors (PRRs) trigger signaling cascades, such as nuclear factor kappa B (NF-κB) and interferon regulatory factors (IRFs). Rotavirus (RV) countermeasures against innate responses and understanding of these processes will improve our knowledge regarding immunopathogenesis of RV infection. In this study, we investigated the effect of RV RF strain on the important ISG candidate genes engaging in virus infections for which little information is known in RV RF strain. To this end, MA104 cells were mock/infected with RF followed by incubation in the presence or absence of IFN-α and the expression of MX1, OAS1, STAT1, ISG15, and ISG56 mRNA was analyzed by real-time PCR. All of ISGs' mRNAs showed higher expression levels in IFN I treated cells compared to virus-infected cells except for ISG56. Infecting the cells with RV and treatment with IFN type I led to overexpression of ISG56 compared to cells were either infected with the virus or only treated with IFN I. In conclusion, we showed that the RV RF strain efficiently blocks type I IFN-induced gene expression particularly ISG15, MX1, STAT, and OSA1 as antiviral proteins. Furthermore, viruses may use some ISGs such as ISG 56 to regulate IFN I signaling pathway, negatively.
Collapse
Affiliation(s)
- Ali Teimoori
- Department of Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.,Department of Microbiology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Hessam Mirshahabi
- Department of Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.,Department of Microbiology and Virology, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Behzad Khansarinejad
- Department of Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.,Department of Microbiology and Immunology, Arak University of Medical Sciences, Arak, Iran
| | - Hoorieh Soleimanjahi
- Department of Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hesam Karimi
- Department of Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mojtaba Rasti
- Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | |
Collapse
|
10
|
Raev S, Amimo J, Saif L, Vlasova A. Intestinal mucin-type O-glycans: the major players in the host-bacteria-rotavirus interactions. Gut Microbes 2023; 15:2197833. [PMID: 37020288 PMCID: PMC10078158 DOI: 10.1080/19490976.2023.2197833] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 03/28/2023] [Indexed: 04/07/2023] Open
Abstract
Rotavirus (RV) causes severe diarrhea in young children and animals worldwide. Several glycans terminating in sialic acids (SAs) and histo-blood group antigens (HBGAs) on intestinal epithelial cell (IEC) surface have been recognized to act as attachment sites for RV. IECs are protected by the double layer of mucus of which O-glycans (including HBGAs and SAs) are a major organic component. Luminal mucins, as well as bacterial glycans, can act as decoy molecules removing RV particles from the gut. The composition of the intestinal mucus is regulated by complex O-glycan-specific interactions among the gut microbiota, RV and the host. In this review, we highlight O-glycan-mediated interactions within the intestinal lumen prior to RV attachment to IECs. A better understanding of the role of mucus is essential for the development of alternative therapeutic tools including the use of pre- and probiotics to control RV infection.
Collapse
Affiliation(s)
- S.A. Raev
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH, USA
| | - J.O. Amimo
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH, USA
- Department of Animal Production, Faculty of Veterinary Medicine, University of Nairobi, Nairobi, Kenya
| | - L.J. Saif
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH, USA
| | - A.N. Vlasova
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH, USA
| |
Collapse
|
11
|
Mochochoko BM, Pohl CH, O’Neill HG. Candida albicans-enteric viral interactions-The prostaglandin E 2 connection and host immune responses. iScience 2022; 26:105870. [PMID: 36647379 PMCID: PMC9839968 DOI: 10.1016/j.isci.2022.105870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The human microbiome comprises trillions of microorganisms residing within different mucosal cavities and across the body surface. The gut microbiota modulates host susceptibility to viral infections in several ways, and microbial interkingdom interactions increase viral infectivity within the gut. Candida albicans, a frequently encountered fungal species in the gut, produces highly structured biofilms and eicosanoids such as prostaglandin E2 (PGE2), which aid in viral protection and replication. These biofilms encompass viruses and provide a shield from antiviral drugs or the immune system. PGE2 is a key modulator of active inflammation with the potential to regulate interferon signaling upon microbial invasion or viral infections. In this review, we raise the perspective of gut interkingdom interactions involving C. albicans and enteric viruses, with a special focus on biofilms, PGE2, and viral replication. Ultimately, we discuss the possible implications of C. albicans-enteric virus associations on host immune responses, particularly the interferon signaling pathway.
Collapse
Affiliation(s)
- Bonang M. Mochochoko
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, 9301, South Africa
| | - Carolina H. Pohl
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, 9301, South Africa,Corresponding author
| | - Hester G. O’Neill
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, 9301, South Africa,Corresponding author
| |
Collapse
|
12
|
Park NY, Koh A. From the Dish to the Real World: Modeling Interactions between the Gut and Microorganisms in Gut Organoids by Tailoring the Gut Milieu. Int J Stem Cells 2022; 15:70-84. [PMID: 35220293 PMCID: PMC8889331 DOI: 10.15283/ijsc21243] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/25/2022] [Accepted: 01/26/2022] [Indexed: 11/11/2022] Open
Abstract
The advent of human intestinal organoid systems has revolutionized the way we understand the interactions between the human gut and microorganisms given the host tropism of human microorganisms. The gut microorganisms have regionality (i.e., small versus large intestine) and the expression of various virulence factors in pathogens is influenced by the gut milieu. However, the culture conditions, optimized for human intestinal organoids, often do not fully support the proliferation and functionality of gut microorganisms. In addition, the regional identity of human intestinal organoids has not been considered to study specific microorganisms with regional preference. In this review we provide an overview of current efforts to understand the role of microorganisms in human intestinal organoids. Specifically, we will emphasize the importance of matching the regional preference of microorganisms in the gut and tailoring the appropriate luminal environmental conditions (i.e., oxygen, pH, and biochemical levels) for modeling real interactions between the gut and the microorganisms with human intestinal organoids.
Collapse
Affiliation(s)
- Na-Young Park
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Korea
| | - Ara Koh
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Korea
| |
Collapse
|
13
|
Van Winkle JA, Peterson ST, Kennedy EA, Wheadon MJ, Ingle H, Desai C, Rodgers R, Constant DA, Wright AP, Li L, Artyomov MN, Lee S, Baldridge MT, Nice TJ. A homeostatic interferon-lambda response to bacterial microbiota stimulates preemptive antiviral defense within discrete pockets of intestinal epithelium. eLife 2022; 11:74072. [PMID: 35137688 PMCID: PMC8853662 DOI: 10.7554/elife.74072] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 02/04/2022] [Indexed: 11/13/2022] Open
Abstract
Interferon-lambda (IFN-λ) protects intestinal epithelial cells (IECs) from enteric viruses by inducing expression of antiviral IFN-stimulated genes (ISGs). Here, we find that bacterial microbiota stimulate a homeostatic ISG signature in the intestine of specific pathogen-free mice. This homeostatic ISG expression is restricted to IECs, depends on IEC-intrinsic expression of IFN-λ receptor (Ifnlr1), and is associated with IFN-λ production by leukocytes. Strikingly, imaging of these homeostatic ISGs reveals localization to pockets of the epithelium and concentration in mature IECs. Correspondingly, a minority of mature IECs express these ISGs in public single-cell RNA sequencing datasets from mice and humans. Furthermore, we assessed the ability of orally administered bacterial components to restore localized ISGs in mice lacking bacterial microbiota. Lastly, we find that IECs lacking Ifnlr1 are hyper-susceptible to initiation of murine rotavirus infection. These observations indicate that bacterial microbiota stimulate ISGs in localized regions of the intestinal epithelium at homeostasis, thereby preemptively activating antiviral defenses in vulnerable IECs to improve host defense against enteric viruses.
Collapse
Affiliation(s)
- Jacob A Van Winkle
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, United States
| | - Stefan T Peterson
- Department of Medicine, Washington University School of Medicine, St. Louis, United States
| | - Elizabeth A Kennedy
- Department of Medicine, Washington University School of Medicine, St. Louis, United States
| | - Michael J Wheadon
- Department of Medicine, Washington University School of Medicine, St. Louis, United States
| | - Harshad Ingle
- Department of Medicine, Washington University School of Medicine, St. Louis, United States
| | - Chandni Desai
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, United States
| | - Rachel Rodgers
- Department of Medicine, Washington University School of Medicine, St. Louis, United States
| | - David A Constant
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, United States
| | - Austin P Wright
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, United States
| | - Lena Li
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, United States
| | - Maxim N Artyomov
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, United States
| | - Sanghyun Lee
- Department of Medicine, Washington University School of Medicine, St. Louis, United States
| | - Megan T Baldridge
- Department of Medicine, Washington University School of Medicine, St Louis, United States
| | - Timothy J Nice
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, United States
| |
Collapse
|
14
|
Amimo JO, Raev SA, Chepngeno J, Mainga AO, Guo Y, Saif L, Vlasova AN. Rotavirus Interactions With Host Intestinal Epithelial Cells. Front Immunol 2021; 12:793841. [PMID: 35003114 PMCID: PMC8727603 DOI: 10.3389/fimmu.2021.793841] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/06/2021] [Indexed: 12/13/2022] Open
Abstract
Rotavirus (RV) is the foremost enteric pathogen associated with severe diarrheal illness in young children (<5years) and animals worldwide. RV primarily infects mature enterocytes in the intestinal epithelium causing villus atrophy, enhanced epithelial cell turnover and apoptosis. Intestinal epithelial cells (IECs) being the first physical barrier against RV infection employs a range of innate immune strategies to counteract RVs invasion, including mucus production, toll-like receptor signaling and cytokine/chemokine production. Conversely, RVs have evolved numerous mechanisms to escape/subvert host immunity, seizing translation machinery of the host for effective replication and transmission. RV cell entry process involve penetration through the outer mucus layer, interaction with cell surface molecules and intestinal microbiota before reaching the IECs. For successful cell attachment and entry, RVs use sialic acid, histo-blood group antigens, heat shock cognate protein 70 and cell-surface integrins as attachment factors and/or (co)-receptors. In this review, a comprehensive summary of the existing knowledge of mechanisms underlying RV-IECs interactions, including the role of gut microbiota, during RV infection is presented. Understanding these mechanisms is imperative for developing efficacious strategies to control RV infections, including development of antiviral therapies and vaccines that target specific immune system antagonists within IECs.
Collapse
Affiliation(s)
- Joshua Oluoch Amimo
- Center for Food Animal Health, Department of Animal Sciences, College of Food Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH, United States
- Department of Animal Production, Faculty of Veterinary Medicine, University of Nairobi, Nairobi, Kenya
| | - Sergei Alekseevich Raev
- Center for Food Animal Health, Department of Animal Sciences, College of Food Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH, United States
| | - Juliet Chepngeno
- Center for Food Animal Health, Department of Animal Sciences, College of Food Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH, United States
| | - Alfred Omwando Mainga
- Center for Food Animal Health, Department of Animal Sciences, College of Food Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH, United States
- Department of Public Health, Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Nairobi, Nairobi, Kenya
| | - Yusheng Guo
- Center for Food Animal Health, Department of Animal Sciences, College of Food Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH, United States
| | - Linda Saif
- Center for Food Animal Health, Department of Animal Sciences, College of Food Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH, United States
| | - Anastasia N. Vlasova
- Center for Food Animal Health, Department of Animal Sciences, College of Food Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH, United States
| |
Collapse
|
15
|
Arnold MM, Dijk A, López S. Double‐stranded RNA Viruses. Virology 2021. [DOI: 10.1002/9781119818526.ch2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
16
|
Chen X, Liu L, Chen W, Qin F, Zhou F, Yang H. Ziyuglycoside II Inhibits Rotavirus Induced Diarrhea Possibly via TLR4/NF-κB Pathways. Biol Pharm Bull 2021; 43:932-937. [PMID: 32475915 DOI: 10.1248/bpb.b19-00771] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Rotavirus (RV) induced diarrhea has been a major reason affecting children healthy under 5 years old especially in developing countries. Although specific vaccines have preventive effects, antiviral therapy is essential for the diarrhea patients. Ziyuglycoside II is a traditional Chinese herb which has been proven to possess anti-virus effects. This study aimed to investigate the roles of Ziyuglycoside II in rotavirus-induced diarrhea and the underlying molecular mechanism. We found that normal MA104 cells treated with RV became swollen and gather together. However, Ziyuglycoside II treatment inhibited cell growth in a dose- and time dependent manner and suppressed RV replication. Moreover, Ziyuglycoside II reversed RV-induced downregulation of anti-inflammatory cytokine interleukin (IL)-10 and upregulation of pro-inflammatory factors, such as interferon-γ (IFN-γ), IL-1β, IL-6, and tumor necrosis factor (TNF-α). Moreover, Ziyuglycoside II administration and ribavirin blocked toll-like receptor 4 (TLR4)/nuclear factor kappa-B (NF-κB) signaling pathway both in mRNA and protein level, which was paralleled with immunohistochemical assay. Additionally, Ziyuglycoside II administration improved diarrhea symptoms and decreased diarrhea scores. Ziyuglycoside II and ribavirin inhibited the apoptosis of small intestine epithelial cells induced by RV. Taken together, RV treatment induced diarrhea. Ziyuglycoside II administration inhibited TLR4/NF-κB pathway and inflammatory response and improved RV-induced diarrhea. The inhibitory effects of Ziyuglycoside II on RV-induced diarrhea predicted Ziyuglycoside II may be a promising drug for diarrhea.
Collapse
Affiliation(s)
- Xiaolan Chen
- College of Veterinary Pharmaceutical, Jiangsu Agri-animal Husbandry Vocational College
| | - Li Liu
- College of Veterinary Pharmaceutical, Jiangsu Agri-animal Husbandry Vocational College
| | - Wei Chen
- College of Veterinary Medicine, Jiangsu Agri-animal Husbandry Vocational College
| | - Feng Qin
- College of Veterinary Pharmaceutical, Jiangsu Agri-animal Husbandry Vocational College
| | - Fang Zhou
- College of Veterinary Pharmaceutical, Jiangsu Agri-animal Husbandry Vocational College
| | - Haifeng Yang
- College of Veterinary Pharmaceutical, Jiangsu Agri-animal Husbandry Vocational College
| |
Collapse
|
17
|
Cryo-electron Microscopy Structure, Assembly, and Mechanics Show Morphogenesis and Evolution of Human Picobirnavirus. J Virol 2020; 94:JVI.01542-20. [PMID: 32938763 DOI: 10.1128/jvi.01542-20] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 09/08/2020] [Indexed: 12/17/2022] Open
Abstract
Despite their diversity, most double-stranded-RNA (dsRNA) viruses share a specialized T=1 capsid built from dimers of a single protein that provides a platform for genome transcription and replication. This ubiquitous capsid remains structurally undisturbed throughout the viral cycle, isolating the genome to avoid triggering host defense mechanisms. Human picobirnavirus (hPBV) is a dsRNA virus frequently associated with gastroenteritis, although its pathogenicity is yet undefined. Here, we report the cryo-electron microscopy (cryo-EM) structure of hPBV at 2.6-Å resolution. The capsid protein (CP) is arranged in a single-shelled, ∼380-Å-diameter T=1 capsid with a rough outer surface similar to that of dsRNA mycoviruses. The hPBV capsid is built of 60 quasisymmetric CP dimers (A and B) stabilized by domain swapping, and only the CP-A N-terminal basic region interacts with the packaged nucleic acids. hPBV CP has an α-helical domain with a fold similar to that of fungal partitivirus CP, with many domain insertions in its C-terminal half. In contrast to dsRNA mycoviruses, hPBV has an extracellular life cycle phase like complex reoviruses, which indicates that its own CP probably participates in cell entry. Using an in vitro reversible assembly/disassembly system of hPBV, we isolated tetramers as possible assembly intermediates. We used atomic force microscopy to characterize the biophysical properties of hPBV capsids with different cargos (host nucleic acids or proteins) and found that the CP N-terminal segment not only is involved in nucleic acid interaction/packaging but also modulates the mechanical behavior of the capsid in conjunction with the cargo.IMPORTANCE Despite intensive study, human virus sampling is still sparse, especially for viruses that cause mild or asymptomatic disease. Human picobirnavirus (hPBV) is a double-stranded-RNA virus, broadly dispersed in the human population, but its pathogenicity is uncertain. Here, we report the hPBV structure derived from cryo-electron microscopy (cryo-EM) and reconstruction methods using three capsid protein variants (of different lengths and N-terminal amino acid compositions) that assemble as virus-like particles with distinct properties. The hPBV near-atomic structure reveals a quasisymmetric dimer as the structural subunit and tetramers as possible assembly intermediates that coassemble with nucleic acids. Our structural studies and atomic force microscopy analyses indicate that hPBV capsids are potentially excellent nanocages for gene therapy and targeted drug delivery in humans.
Collapse
|
18
|
Mata CP, Rodríguez JM, Suzuki N, Castón JR. Structure and assembly of double-stranded RNA mycoviruses. Adv Virus Res 2020; 108:213-247. [PMID: 33837717 DOI: 10.1016/bs.aivir.2020.08.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mycoviruses are a diverse group that includes ssRNA, dsRNA, and ssDNA viruses, with or without a protein capsid, as well as with a complex envelope. Most mycoviruses are transmitted by cytoplasmic interchange and are thought to lack an extracellular phase in their infection cycle. Structural analysis has focused on dsRNA mycoviruses, which usually package their genome in a 120-subunit T=1 icosahedral capsid, with a capsid protein (CP) dimer as the asymmetric unit. The atomic structure is available for four dsRNA mycovirus from different families: Saccharomyces cerevisiae virus L-A (ScV-L-A), Penicillium chrysogenum virus (PcV), Penicillium stoloniferum virus F (PsV-F), and Rosellinia necatrix quadrivirus 1 (RnQV1). Their capsids show structural variations of the same framework, with asymmetric or symmetric CP dimers respectively for ScV-L-A and PsV-F, dimers of similar domains of a single CP for PcV, or of two different proteins for RnQV1. The CP dimer is the building block, and assembly proceeds through dimers of dimers or pentamers of dimers, in which the genome is packed as ssRNA by interaction with CP and/or viral polymerase. These capsids remain structurally undisturbed throughout the viral cycle. The T=1 capsid participates in RNA synthesis, organizing the viral polymerase (1-2 copies) and a single loosely packaged genome segment. It also acts as a molecular sieve, to allow the passage of viral transcripts and nucleotides, but to prevent triggering of host defense mechanisms. Due to the close mycovirus-host relationship, CP evolved to allocate peptide insertions with enzyme activity, as reflected in a rough outer capsid surface.
Collapse
Affiliation(s)
- Carlos P Mata
- Department of Structure of Macromolecules, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain; Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Javier M Rodríguez
- Department of Structure of Macromolecules, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Nobuhiro Suzuki
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
| | - José R Castón
- Department of Structure of Macromolecules, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain.
| |
Collapse
|
19
|
Sánchez-Tacuba L, Feng N, Meade NJ, Mellits KH, Jaïs PH, Yasukawa LL, Resch TK, Jiang B, López S, Ding S, Greenberg HB. An Optimized Reverse Genetics System Suitable for Efficient Recovery of Simian, Human, and Murine-Like Rotaviruses. J Virol 2020; 94:e01294-20. [PMID: 32759316 PMCID: PMC7459567 DOI: 10.1128/jvi.01294-20] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 07/01/2020] [Indexed: 12/12/2022] Open
Abstract
An entirely plasmid-based reverse genetics (RG) system was recently developed for rotavirus (RV), opening new avenues for in-depth molecular dissection of RV biology, immunology, and pathogenesis. Several improvements to further optimize the RG efficiency have now been described. However, only a small number of individual RV strains have been recovered to date. None of the current methods have supported the recovery of murine RV, impeding the study of RV replication and pathogenesis in an in vivo suckling mouse model. Here, we describe useful modifications to the RG system that significantly improve rescue efficiency of multiple RV strains. In addition to the 11 group A RV segment-specific (+)RNAs [(+)ssRNAs], a chimeric plasmid was transfected, from which the capping enzyme NP868R of African swine fever virus (ASFV) and the T7 RNA polymerase were expressed. Second, a genetically modified MA104 cell line was used in which several components of the innate immunity were degraded. Using this RG system, we successfully recovered the simian RV RRV strain, the human RV CDC-9 strain, a reassortant between murine RV D6/2 and simian RV SA11 strains, and several reassortants and reporter RVs. All these recombinant RVs were rescued at a high efficiency (≥80% success rate) and could not be reliably rescued using several recently published RG strategies (<20%). This improved system represents an important tool and great potential for the rescue of other hard-to-recover RV strains such as low-replicating attenuated vaccine candidates or low-cell culture passage clinical isolates from humans or animals.IMPORTANCE Group A rotavirus (RV) remains as the single most important cause of severe acute gastroenteritis among infants and young children worldwide. An entirely plasmid-based reverse genetics (RG) system was recently developed, opening new ways for in-depth molecular study of RV. Despite several improvements to further optimize the RG efficiency, it has been reported that current strategies do not enable the rescue of all cultivatable RV strains. Here, we described a helpful modification to the current strategies and established a tractable RG system for the rescue of the simian RRV strain, the human CDC-9 strain, and a murine-like RV strain, which is suitable for both in vitro and in vivo studies. This improved RV reverse genetics system will facilitate study of RV biology in both in vitro and in vivo systems that will facilitate the improved design of RV vaccines, better antiviral therapies, and expression vectors.
Collapse
Affiliation(s)
- Liliana Sánchez-Tacuba
- Department of Medicine, Division of Gastroenterology and Hepatology, Stanford School of Medicine, Stanford, California, USA
- Department of Microbiology and Immunology, Stanford School of Medicine, Stanford, California, USA
- VA Palo Alto Health Care System, Department of Veterans Affairs, Palo Alto, California, USA
| | - Ningguo Feng
- Department of Medicine, Division of Gastroenterology and Hepatology, Stanford School of Medicine, Stanford, California, USA
- Department of Microbiology and Immunology, Stanford School of Medicine, Stanford, California, USA
- VA Palo Alto Health Care System, Department of Veterans Affairs, Palo Alto, California, USA
| | - Nathan J Meade
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- School of Biosciences, Division of Microbiology, Brewing, and Biotechnology, University of Nottingham, Sutton Bonington, UK
| | - Kenneth H Mellits
- School of Biosciences, Division of Microbiology, Brewing, and Biotechnology, University of Nottingham, Sutton Bonington, UK
| | | | - Linda L Yasukawa
- Department of Medicine, Division of Gastroenterology and Hepatology, Stanford School of Medicine, Stanford, California, USA
- Department of Microbiology and Immunology, Stanford School of Medicine, Stanford, California, USA
- VA Palo Alto Health Care System, Department of Veterans Affairs, Palo Alto, California, USA
| | - Theresa K Resch
- Cherokee Nation Assurance, contracted to Division of Viral Disease, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Baoming Jiang
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Susana López
- Departamento de Génetica del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, México
| | - Siyuan Ding
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Harry B Greenberg
- Department of Medicine, Division of Gastroenterology and Hepatology, Stanford School of Medicine, Stanford, California, USA
- Department of Microbiology and Immunology, Stanford School of Medicine, Stanford, California, USA
- VA Palo Alto Health Care System, Department of Veterans Affairs, Palo Alto, California, USA
| |
Collapse
|
20
|
Abad AT, Danthi P. Recognition of Reovirus RNAs by the Innate Immune System. Viruses 2020; 12:E667. [PMID: 32575691 PMCID: PMC7354570 DOI: 10.3390/v12060667] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 06/05/2020] [Accepted: 06/18/2020] [Indexed: 12/15/2022] Open
Abstract
Mammalian orthoreovirus (reovirus) is a dsRNA virus, which has long been used as a model system to study host-virus interactions. One of the earliest interactions during virus infection is the detection of the viral genomic material, and the consequent induction of an interferon (IFN) based antiviral response. Similar to the replication of related dsRNA viruses, the genomic material of reovirus is thought to remain protected by viral structural proteins throughout infection. Thus, how innate immune sensor proteins gain access to the viral genomic material, is incompletely understood. This review summarizes currently known information about the innate immune recognition of the reovirus genomic material. Using this information, we propose hypotheses about host detection of reovirus.
Collapse
Affiliation(s)
| | - Pranav Danthi
- Department of Biology, Indiana University, Bloomington, IN 47405, USA;
| |
Collapse
|
21
|
Sen A, Ding S, Greenberg HB. The Role of Innate Immunity in Regulating Rotavirus Replication, Pathogenesis, and Host Range Restriction and the Implications for Live Rotaviral Vaccine Development. MUCOSAL VACCINES 2020. [PMCID: PMC7148637 DOI: 10.1016/b978-0-12-811924-2.00041-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Rotaviruses (RVs) are important causative agents of viral gastroenteritis in the young of most mammalian species studied, including humans, in which they are the most important cause of severe gastroenteritis worldwide despite the availability of several safe and effective vaccines. Replication of RVs is restricted in a host species-specific manner, and this barrier is determined predominantly by the host interferon (IFN) signaling and the ability of different RV strains to successfully negate IFN activation and amplification pathways. In addition, viral attachment to the target intestinal epithelial cells also regulates host range restriction. Several studies have focused on the role of the innate immune response in regulating RV replication and pathogenesis. The knowledge accrued from these efforts is likely to result in rational attenuation of RV vaccines to closely match circulating (and host species-matched) virus strains. In this chapter, we review prevalent models of RV interactions with innate immune factors, viral strategies employed to regulate their function, and the implications of these findings for improved RV vaccine development.
Collapse
|
22
|
Avia M, Rojas JM, Miorin L, Pascual E, Van Rijn PA, Martín V, García‐Sastre A, Sevilla N. Virus-induced autophagic degradation of STAT2 as a mechanism for interferon signaling blockade. EMBO Rep 2019; 20:e48766. [PMID: 31603272 PMCID: PMC6831997 DOI: 10.15252/embr.201948766] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/27/2019] [Accepted: 09/09/2019] [Indexed: 12/31/2022] Open
Abstract
The mammalian interferon (IFN) signaling pathway is a primary component of the innate antiviral response, and viral pathogens have evolved multiple mechanisms to antagonize this pathway and to facilitate infection. Bluetongue virus (BTV), an orbivirus of the Reoviridae family, is transmitted by midges to ruminants and causes a disease that produces important economic losses and restriction to animal trade and is of compulsory notification to the World Organization for Animal Health (OIE). Here, we show that BTV interferes with IFN-I and IFN-II responses in two ways, by blocking STAT1 phosphorylation and by degrading STAT2. BTV-NS3 protein, which is involved in virion egress, interacts with STAT2, and induces its degradation by an autophagy-dependent mechanism. This STAT2 degradative process requires the recruitment of an E3-Ub-ligase to NS3 as well as NS3 K63 polyubiquitination. Taken together, our study identifies a new mechanism by which a virus degrades STAT2 for IFN signaling blockade, highlighting the diversity of mechanisms employed by viruses to subvert the IFN response.
Collapse
Affiliation(s)
- Miguel Avia
- Centro de Investigación en Sanidad Animal (CISA‐INIA)Instituto Nacional de Investigación y Tecnología Agraria y AlimentariaValdeolmos, MadridSpain
| | - José M Rojas
- Centro de Investigación en Sanidad Animal (CISA‐INIA)Instituto Nacional de Investigación y Tecnología Agraria y AlimentariaValdeolmos, MadridSpain
| | - Lisa Miorin
- Department of MicrobiologyIcahn School of Medicine at Mount SinaiNew YorkNYUSA
- Global Health and Emerging Pathogens InstituteIcahn School of Medicine at Mount SinaiNew YorkNYUSA
| | - Elena Pascual
- Centro de Investigación en Sanidad Animal (CISA‐INIA)Instituto Nacional de Investigación y Tecnología Agraria y AlimentariaValdeolmos, MadridSpain
| | - Piet A Van Rijn
- Department of VirologyWageningen Bioveterinary ResearchLelystadThe Netherlands
- Department of BiochemistryCentre for Human MetabolomicsLelystadThe Netherlands
- North‐West UniversityPotchefstroomSouth Africa
| | - Verónica Martín
- Centro de Investigación en Sanidad Animal (CISA‐INIA)Instituto Nacional de Investigación y Tecnología Agraria y AlimentariaValdeolmos, MadridSpain
| | - Adolfo García‐Sastre
- Department of MicrobiologyIcahn School of Medicine at Mount SinaiNew YorkNYUSA
- Global Health and Emerging Pathogens InstituteIcahn School of Medicine at Mount SinaiNew YorkNYUSA
- Division of Infectious DiseasesDepartment of MedicineIcahn School of Medicine at Mount SinaiNew YorkNYUSA
| | - Noemí Sevilla
- Centro de Investigación en Sanidad Animal (CISA‐INIA)Instituto Nacional de Investigación y Tecnología Agraria y AlimentariaValdeolmos, MadridSpain
| |
Collapse
|
23
|
Jaiswal SR, Bhakuni P, Chakrabarti A, Chakrabarti S. Rotavirus infection following post‐transplantation cyclophosphamide based haploidentical hematopoietic cell transplantation in children is associated with hemophagocytic syndrome and high mortality. Transpl Infect Dis 2019; 21:e13136. [DOI: 10.1111/tid.13136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 05/17/2019] [Accepted: 06/22/2019] [Indexed: 11/28/2022]
Affiliation(s)
- Sarita Rani Jaiswal
- Cellular Therapy and Immunology Manashi Chakrabarti Foundation Kolkata India
- Department of Blood and Marrow Transplantation Dharamshila Narayana Superspeciality Hospital and Research Centre New Delhi India
| | - Prakash Bhakuni
- Cellular Therapy and Immunology Manashi Chakrabarti Foundation Kolkata India
- Department of Blood and Marrow Transplantation Dharamshila Narayana Superspeciality Hospital and Research Centre New Delhi India
| | - Aditi Chakrabarti
- Cellular Therapy and Immunology Manashi Chakrabarti Foundation Kolkata India
| | - Suparno Chakrabarti
- Cellular Therapy and Immunology Manashi Chakrabarti Foundation Kolkata India
- Department of Blood and Marrow Transplantation Dharamshila Narayana Superspeciality Hospital and Research Centre New Delhi India
| |
Collapse
|
24
|
Kanmani P, Kim H. Immunobiotic Strains Modulate Toll-Like Receptor 3 Agonist Induced Innate Antiviral Immune Response in Human Intestinal Epithelial Cells by Modulating IFN Regulatory Factor 3 and NF-κB Signaling. Front Immunol 2019; 10:1536. [PMID: 31333667 PMCID: PMC6618302 DOI: 10.3389/fimmu.2019.01536] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 06/19/2019] [Indexed: 12/31/2022] Open
Abstract
Many studies have demonstrated that immunobiotics with immunoregulatory functions improve the outcomes of several bacterial and viral infections by modulating the mucosal immune system. However, the precise mechanisms underlying the immunoregulatory and antiviral activities of immunobiotics have not yet been elucidated in detail. The present study was conducted to determine whether selected lactic acid bacteria (LAB) modulate toll-like receptor 3 (TLR3) agonist polyinosinic:polycytidylic acid (PolyI:C) induced viral response in human intestinal epithelial cells (IECs). PolyI:C increased the expression of interferon-β (IFN-β), interleukin-6 (IL-6), interleukin-8 (IL-8), monocyte chemoattractant protein (MCP-1), and interleukin-1β (IL-1β) in HCT116 cells, and these up-regulations were significantly altered when cells were pre-stimulated with LAB isolated from Korean fermented foods. LAB strains were capable to up-regulate IFN-β but down-regulated IL-6, IL-8, MCP-1, and IL-1β mRNA levels as compared with PolyI: C. HCT-116 cell treatment with LABs beneficially modulated the mRNA levels of C-X-C motif chemokine 10 (CXCL-10), 2-5A oligoadenylate synthetase 1 (OSA1), myxovirus resistance protein (MxA), TLR3, and retinoic acid inducible gene-I (RIG-I), and TLR negative regulators. In addition, LABs increased IFN-β, IFN-α, and interleukin-10 (IL-10) and decreased tumor necrosis factor-α (TNF-α) and IL-1β protein/mRNA levels in THP-1 cells. LABs also protected the cells by maintaining tight-junction proteins (zonula occludens-1 and occludin). The beneficial effects of these LABs were mediated via modulation of the interferon regulatory factor 3 (IRF3) and nuclear factor-kappa B (NF-κB) pathways. Overall, the results of this study indicate that immunobiotics have potent antiviral and anti-inflammatory activities that may use as antiviral substitutes for human and animal applications.
Collapse
Affiliation(s)
- Paulraj Kanmani
- Department of Rehabilitation Medicine of Korean Medicine, Dongguk University Ilsan Hospital, Gyeongj-si, South Korea
| | - Hojun Kim
- Department of Rehabilitation Medicine of Korean Medicine, Dongguk University Ilsan Hospital, Gyeongj-si, South Korea
| |
Collapse
|
25
|
Pervolaraki K, Guo C, Albrecht D, Boulant S, Stanifer ML. Type-Specific Crosstalk Modulates Interferon Signaling in Intestinal Epithelial Cells. J Interferon Cytokine Res 2019; 39:650-660. [PMID: 31199715 DOI: 10.1089/jir.2019.0040] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Intestinal epithelial cells (IECs) are the primary target of enteric viruses. Their infection by viruses leads to the upregulation of both type I and type III interferons (IFNs). These IFNs then act in an autocrine and paracrine manner to protect IECs from viral propagation. To date, whether both IFNs use similar signaling pathways and whether these 2 cytokines can act synergistically to protect against viral infection remain unclear. Using human IECs depleted of either the type I or type III IFN receptor, we found that both signal transduction pathways are interconnected and influence each other at the level of interferon-stimulated gene (ISG) expression and efficiency of antiviral protection. Precisely, in human IECs, the presence of a functional type III IFN receptor negatively regulates type I IFN signaling and activity, whereas the presence of type I IFN receptor positively reinforces type III IFN signaling and function. We propose that this complex crosstalk allows for a preferential type III IFN-mediated protection of human intestinal cells.
Collapse
Affiliation(s)
- Kalliopi Pervolaraki
- Schaller Research Group at CellNetworks, Department of Infectious Diseases, Virology, Heidelberg University Hospital, Heidelberg, Germany.,Research Group "Cellular Polarity and Viral Infection" (F140), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Cuncai Guo
- Schaller Research Group at CellNetworks, Department of Infectious Diseases, Virology, Heidelberg University Hospital, Heidelberg, Germany
| | - Dorothee Albrecht
- Research Group "Cellular Polarity and Viral Infection" (F140), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Steeve Boulant
- Schaller Research Group at CellNetworks, Department of Infectious Diseases, Virology, Heidelberg University Hospital, Heidelberg, Germany.,Research Group "Cellular Polarity and Viral Infection" (F140), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Megan L Stanifer
- Schaller Research Group at CellNetworks, Department of Infectious Diseases, Virology, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
26
|
Rodríguez JM, Luque D. Structural Insights into Rotavirus Entry. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1215:45-68. [PMID: 31317495 DOI: 10.1007/978-3-030-14741-9_3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
27
|
Lanoie D, Côté S, Degeorges E, Lemay G. A single mutation in the mammalian orthoreovirus S1 gene is responsible for increased interferon sensitivity in a virus mutant selected in Vero cells. Virology 2018; 528:73-79. [PMID: 30578938 DOI: 10.1016/j.virol.2018.12.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 12/12/2018] [Accepted: 12/12/2018] [Indexed: 12/24/2022]
Abstract
In a previous study, a mammalian orthoreovirus mutant was isolated based on its increased ability to infect interferon-defective Vero cells and was referred to as Vero-cells-adapted virus (VeroAV). This virus exhibits reduced ability to resist the antiviral effect of interferon. In the present study, the complete genome sequence of VeroAV was first determined. Reverse genetics was then used to identify a unique mutation on the S1 gene, overlapping the σ1 and σ1 s reading frame, resulting in increased sensitivity to interferon. A virus lacking σ1 s expression consecutive to mutation of its initiation codon was then shown to exhibit a further increase in sensitivity to interferon, supporting the idea that σ1 s is the viral protein responsible. This identification of a new determinant of reovirus sensitivity to interferon gives credentials to the idea that multiple reovirus genes are responsible for the level of interferon induction and susceptibility to the interferon-induced antiviral activities.
Collapse
Affiliation(s)
- Delphine Lanoie
- Département de microbiologie, infectiologie et immunologie, Université de Montréal, Montréal, Canada H3C 3J7
| | - Stéphanie Côté
- Département de microbiologie, infectiologie et immunologie, Université de Montréal, Montréal, Canada H3C 3J7
| | - Emmanuelle Degeorges
- Département de microbiologie, infectiologie et immunologie, Université de Montréal, Montréal, Canada H3C 3J7
| | - Guy Lemay
- Département de microbiologie, infectiologie et immunologie, Université de Montréal, Montréal, Canada H3C 3J7.
| |
Collapse
|
28
|
Ding S, Zhu S, Ren L, Feng N, Song Y, Ge X, Li B, Flavell RA, Greenberg HB. Rotavirus VP3 targets MAVS for degradation to inhibit type III interferon expression in intestinal epithelial cells. eLife 2018; 7:39494. [PMID: 30460894 PMCID: PMC6289572 DOI: 10.7554/elife.39494] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Accepted: 11/16/2018] [Indexed: 12/31/2022] Open
Abstract
Rotaviruses (RVs), a leading cause of severe diarrhea in young children and many mammalian species, have evolved multiple strategies to counteract the host innate immunity, specifically interferon (IFN) signaling through RV non-structural protein 1 (NSP1). However, whether RV structural components also subvert antiviral response remains under-studied. Here, we found that MAVS, critical for the host RNA sensing pathway upstream of IFN induction, is degraded by the RV RNA methyl- and guanylyl-transferase (VP3) in a host-range-restricted manner. Mechanistically, VP3 localizes to the mitochondria and mediates the phosphorylation of a previously unidentified SPLTSS motif within the MAVS proline-rich region, leading to its proteasomal degradation and blockade of IFN-λ production in RV-infected intestinal epithelial cells. Importantly, VP3 inhibition of MAVS activity contributes to enhanced RV replication and to viral pathogenesis in vivo. Collectively, our findings establish RV VP3 as a viral antagonist of MAVS function in mammals and uncover a novel pathogen-mediated inhibitory mechanism of MAVS signaling.
Collapse
Affiliation(s)
- Siyuan Ding
- Department of Medicine, Division of Gastroenterology and Hepatology, Stanford University, Stanford, United States.,Department of Microbiology and Immunology, Stanford University, Stanford, United States.,Palo Alto Veterans Institute of Research, VA Palo Alto Health Care System, Palo Alto, United States
| | - Shu Zhu
- Institute of Immunology, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, China
| | - Lili Ren
- Department of Medicine, Division of Gastroenterology and Hepatology, Stanford University, Stanford, United States.,Department of Microbiology and Immunology, Stanford University, Stanford, United States.,Palo Alto Veterans Institute of Research, VA Palo Alto Health Care System, Palo Alto, United States.,School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, China
| | - Ningguo Feng
- Department of Medicine, Division of Gastroenterology and Hepatology, Stanford University, Stanford, United States.,Department of Microbiology and Immunology, Stanford University, Stanford, United States.,Palo Alto Veterans Institute of Research, VA Palo Alto Health Care System, Palo Alto, United States
| | - Yanhua Song
- Department of Medicine, Division of Gastroenterology and Hepatology, Stanford University, Stanford, United States.,Department of Microbiology and Immunology, Stanford University, Stanford, United States.,Palo Alto Veterans Institute of Research, VA Palo Alto Health Care System, Palo Alto, United States.,Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Xiaomei Ge
- Palo Alto Veterans Institute of Research, VA Palo Alto Health Care System, Palo Alto, United States.,Department of Medicine, Division of Hematology, Stanford University, Stanford, United States
| | - Bin Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Richard A Flavell
- Department of Immunobiology, Yale University, New Haven, United States.,Howard Hughes Medical Institute, Chevy Chase, United States
| | - Harry B Greenberg
- Department of Medicine, Division of Gastroenterology and Hepatology, Stanford University, Stanford, United States.,Department of Microbiology and Immunology, Stanford University, Stanford, United States.,Palo Alto Veterans Institute of Research, VA Palo Alto Health Care System, Palo Alto, United States
| |
Collapse
|
29
|
Jiménez-Zaragoza M, Yubero MP, Martín-Forero E, Castón JR, Reguera D, Luque D, de Pablo PJ, Rodríguez JM. Biophysical properties of single rotavirus particles account for the functions of protein shells in a multilayered virus. eLife 2018; 7:37295. [PMID: 30201094 PMCID: PMC6133545 DOI: 10.7554/elife.37295] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 08/01/2018] [Indexed: 12/27/2022] Open
Abstract
The functions performed by the concentric shells of multilayered dsRNA viruses require specific protein interactions that can be directly explored through their mechanical properties. We studied the stiffness, breaking force, critical strain and mechanical fatigue of individual Triple, Double and Single layered rotavirus (RV) particles. Our results, in combination with Finite Element simulations, demonstrate that the mechanics of the external layer provides the resistance needed to counteract the stringent conditions of extracellular media. Our experiments, in combination with electrostatic analyses, reveal a strong interaction between the two outer layers and how it is suppressed by the removal of calcium ions, a key step for transcription initiation. The intermediate layer presents weak hydrophobic interactions with the inner layer that allow the assembly and favor the conformational dynamics needed for transcription. Our work shows how the biophysical properties of the three shells are finely tuned to produce an infective RV virion.
Collapse
Affiliation(s)
- Manuel Jiménez-Zaragoza
- Departamento de Física de la Materia Condensada, Universidad Autónoma de Madrid, Madrid, Spain
| | - Marina Pl Yubero
- Departamento de Física de la Materia Condensada, Universidad Autónoma de Madrid, Madrid, Spain
| | | | - Jose R Castón
- Department of Structure of Macromolecules, Centro Nacional de Biotecnología/CSIC, Madrid, Spain
| | - David Reguera
- Departament de Física de la Matèria Condensada, Facultat de Física, Universitat de Barcelona, Barcelona, Spain
| | - Daniel Luque
- Centro Nacional de Microbiología/ISCIII, Majadahonda, Spain
| | - Pedro J de Pablo
- Departamento de Física de la Materia Condensada, Universidad Autónoma de Madrid, Madrid, Spain.,Instituto de Física de la Materia Condensada (IFIMAC), Universidad Autónoma de Madrid, Madrid, Spain
| | | |
Collapse
|
30
|
Capsid Structure of dsRNA Fungal Viruses. Viruses 2018; 10:v10090481. [PMID: 30205532 PMCID: PMC6164181 DOI: 10.3390/v10090481] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 09/05/2018] [Accepted: 09/05/2018] [Indexed: 01/27/2023] Open
Abstract
Most fungal, double-stranded (ds) RNA viruses lack an extracellular life cycle stage and are transmitted by cytoplasmic interchange. dsRNA mycovirus capsids are based on a 120-subunit T = 1 capsid, with a dimer as the asymmetric unit. These capsids, which remain structurally undisturbed throughout the viral cycle, nevertheless, are dynamic particles involved in the organization of the viral genome and the viral polymerase necessary for RNA synthesis. The atomic structure of the T = 1 capsids of four mycoviruses was resolved: the L-A virus of Saccharomyces cerevisiae (ScV-L-A), Penicillium chrysogenum virus (PcV), Penicillium stoloniferum virus F (PsV-F), and Rosellinia necatrix quadrivirus 1 (RnQV1). These capsids show structural variations of the same framework, with 60 asymmetric or symmetric homodimers for ScV-L-A and PsV-F, respectively, monomers with a duplicated similar domain for PcV, and heterodimers of two different proteins for RnQV1. Mycovirus capsid proteins (CP) share a conserved α-helical domain, although the latter may carry different peptides inserted at preferential hotspots. Insertions in the CP outer surface are likely associated with enzymatic activities. Within the capsid, fungal dsRNA viruses show a low degree of genome compaction compared to reoviruses, and contain one to two copies of the RNA-polymerase complex per virion.
Collapse
|
31
|
Hakim MS, Ding S, Chen S, Yin Y, Su J, van der Woude CJ, Fuhler GM, Peppelenbosch MP, Pan Q, Wang W. TNF-α exerts potent anti-rotavirus effects via the activation of classical NF-κB pathway. Virus Res 2018; 253:28-37. [PMID: 29859235 DOI: 10.1016/j.virusres.2018.05.022] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 05/11/2018] [Accepted: 05/29/2018] [Indexed: 12/29/2022]
Abstract
Active virus-host interactions determine the outcome of pathogen invasions. It has been shown that in isolated dendritic cells (DCs), rotavirus can induce the expression of tumor necrosis factor α (TNF-α), a vital cytokine mediating host immune responses. However, the role of TNF-α in rotavirus infection is unknown. In this study, we demonstrated that TNF-α has potent anti-rotavirus effects, independent of type I interferon production. Blocking of TNF-α by infliximab, a clinically available TNFα antibody, totally abrogated this effect. Mechanistic studies revealed that the anti-rotavirus effect of TNF-α was achieved by NFκB-regulated genes via the activation of classical nuclear factor κB (NF-κB) signaling. Our study reveals the pivotal role and the mechanism-of-actions of TNF-α in the host defense against rotavirus. Thus, this knowledge may contribute to the better understanding of the complexity of rotavirus-host interactions.
Collapse
Affiliation(s)
- Mohamad S Hakim
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center and Postgraduate School Molecular Medicine, Rotterdam, The Netherlands; Department of Microbiology, Faculty of Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Shihao Ding
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center and Postgraduate School Molecular Medicine, Rotterdam, The Netherlands
| | - Sunrui Chen
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center and Postgraduate School Molecular Medicine, Rotterdam, The Netherlands
| | - Yuebang Yin
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center and Postgraduate School Molecular Medicine, Rotterdam, The Netherlands
| | - Junhong Su
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center and Postgraduate School Molecular Medicine, Rotterdam, The Netherlands; Medical Faculty, Kunming University of Science and Technology, Kunming, PR China
| | - C Janneke van der Woude
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center and Postgraduate School Molecular Medicine, Rotterdam, The Netherlands
| | - Gwenny M Fuhler
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center and Postgraduate School Molecular Medicine, Rotterdam, The Netherlands
| | - Maikel P Peppelenbosch
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center and Postgraduate School Molecular Medicine, Rotterdam, The Netherlands
| | - Qiuwei Pan
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center and Postgraduate School Molecular Medicine, Rotterdam, The Netherlands
| | - Wenshi Wang
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center and Postgraduate School Molecular Medicine, Rotterdam, The Netherlands.
| |
Collapse
|
32
|
Basal interferon signaling and therapeutic use of interferons in controlling rotavirus infection in human intestinal cells and organoids. Sci Rep 2018; 8:8341. [PMID: 29844362 PMCID: PMC5974418 DOI: 10.1038/s41598-018-26784-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 05/21/2018] [Indexed: 12/12/2022] Open
Abstract
Rotavirus (RV) primarily infects enterocytes and results in severe diarrhea, particularly in children. It is known that the host immune responses determine the outcome of viral infections. Following infections, interferons (IFNs) are produced as the first and the main anti-viral cytokines to combat the virus. Here we showed that RV predominantly induced type III IFNs (IFN-λ1), and to a less extent, type I IFNs (IFN-α and IFN-β) in human intestinal cells. However, it did not produce detectable IFN proteins and thus, was not sufficient to inhibit RV replication. In contrast, we revealed the essential roles of the basal IFN signaling in limiting RV replication by silencing STAT1, STAT2 and IRF9 genes. In addition, exogenous IFN treatment demonstrated that RV replication was able to be inhibited by all types of IFNs, both in human intestinal Caco2 cell line and in primary intestinal organoids. In these models, IFNs significantly upregulated a panel of well-known anti-viral IFN-stimulated genes (ISGs). Importantly, inhibition of the JAK-STAT cascade abrogated ISG induction and the anti-RV effects of IFNs. Thus, our study shall contribute to better understanding of the complex RV-host interactions and provide rationale for therapeutic development of IFN-based treatment against RV infection.
Collapse
|
33
|
Gómez-Rial J, Curras-Tuala MJ, Rivero-Calle I, Rodríguez-Tenreiro C, Redondo-Collazo L, Gómez-Carballa A, Pardo-Seco J, Salas A, Martinón-Torres F. Rotavirus intestinal infection induces an oral mucosa cytokine response. PLoS One 2018; 13:e0195314. [PMID: 29621276 PMCID: PMC5886481 DOI: 10.1371/journal.pone.0195314] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 03/20/2018] [Indexed: 01/16/2023] Open
Abstract
INTRODUCTION Salivary glands are known immune effector sites and considered to be part of the whole mucosal immune system. The aim of the present study was to assess the salivary immune response to rotavirus (RV) infection through the analysis of the cytokine immune profile in saliva. MATERIAL AND METHODS A prospective comparative study of serial saliva samples from 27 RV-infected patients (sampled upon admission to the hospital during acute phase and at convalescence-i.e. at least three months after recovery) and 36 healthy controls was performed. Concentrations of 11 salivary cytokines (IFN-γ, IFN-α2, IL-1β, IL-6, IL-8, IL-10, IL-15, IL12p70, TNF-α, IFN-λ1, IL-22) were determined. Cytokine levels were compared between healthy controls acute infection and convalescence. The correlation between clinical data and salivary cytokine profile in infected children was assessed. RESULTS The salivary cytokine profile changes significantly in response to acute RV infection. In RV-infected patients, IL-22 levels were increased in the acute phase with respect to convalescence (P-value < 0.001). Comparisons between infected and control group showed significant differences in salivary IFN-α2, IL-1β, IL-6, IL-8, IL-10 and IL-22. Although acute-phase levels of IL-12, IL-10, IL-6 and IFN-γ showed nominal association with Vesikari's severity, this trend did not reach statistical significance after multiple test adjustment. CONCLUSIONS RV infection induces a host salivary immune response, indicating that immune mucosal response to RV infection is not confined to the intestinal mucosa. Our data point to a whole mucosal implication in the RV infection as a result of the integrative mucosal immune response, and suggest the salivary gland as effector site for RV infection.
Collapse
Affiliation(s)
- José Gómez-Rial
- Grupo de Investigación en Genética, Vacunas, Infecciones y Pediatría (GENVIP), Hospital Clínico Universitario de Santiago de Compostela, Galicia, Spain
- Laboratorio de Inmunología, Servicio de Análisis Clínicos, Hospital Clínico Universitario de Santiago de Compostela, Galicia, Spain
| | - María José Curras-Tuala
- Grupo de Investigación en Genética, Vacunas, Infecciones y Pediatría (GENVIP), Hospital Clínico Universitario de Santiago de Compostela, Galicia, Spain
| | - Irene Rivero-Calle
- Grupo de Investigación en Genética, Vacunas, Infecciones y Pediatría (GENVIP), Hospital Clínico Universitario de Santiago de Compostela, Galicia, Spain
- Translational Pediatrics and Infectious Diseases, Department of Pediatrics, Hospital Clínico Universitario de Santiago de Compostela, Galicia, Spain
| | - Carmen Rodríguez-Tenreiro
- Grupo de Investigación en Genética, Vacunas, Infecciones y Pediatría (GENVIP), Hospital Clínico Universitario de Santiago de Compostela, Galicia, Spain
| | - Lorenzo Redondo-Collazo
- Grupo de Investigación en Genética, Vacunas, Infecciones y Pediatría (GENVIP), Hospital Clínico Universitario de Santiago de Compostela, Galicia, Spain
- Translational Pediatrics and Infectious Diseases, Department of Pediatrics, Hospital Clínico Universitario de Santiago de Compostela, Galicia, Spain
| | - Alberto Gómez-Carballa
- Grupo de Investigación en Genética, Vacunas, Infecciones y Pediatría (GENVIP), Hospital Clínico Universitario de Santiago de Compostela, Galicia, Spain
- GenPoB Research Group, Instituto de Investigaciones Sanitarias (IDIS), Hospital Clínico Universitario de Santiago de Compostela, Galicia, Spain
| | - Jacobo Pardo-Seco
- Grupo de Investigación en Genética, Vacunas, Infecciones y Pediatría (GENVIP), Hospital Clínico Universitario de Santiago de Compostela, Galicia, Spain
- GenPoB Research Group, Instituto de Investigaciones Sanitarias (IDIS), Hospital Clínico Universitario de Santiago de Compostela, Galicia, Spain
| | - Antonio Salas
- Grupo de Investigación en Genética, Vacunas, Infecciones y Pediatría (GENVIP), Hospital Clínico Universitario de Santiago de Compostela, Galicia, Spain
- GenPoB Research Group, Instituto de Investigaciones Sanitarias (IDIS), Hospital Clínico Universitario de Santiago de Compostela, Galicia, Spain
- Unidade de Xenética, Departamento de Anatomía Patolóxica e Ciencias Forenses, Instituto de Ciencias Forenses, Facultade de Medicina, Universidade de Santiago de Compostela, Galicia, Spain
| | - Federico Martinón-Torres
- Grupo de Investigación en Genética, Vacunas, Infecciones y Pediatría (GENVIP), Hospital Clínico Universitario de Santiago de Compostela, Galicia, Spain
- Translational Pediatrics and Infectious Diseases, Department of Pediatrics, Hospital Clínico Universitario de Santiago de Compostela, Galicia, Spain
| |
Collapse
|
34
|
Villena J, Aso H, Rutten VPMG, Takahashi H, van Eden W, Kitazawa H. Immunobiotics for the Bovine Host: Their Interaction with Intestinal Epithelial Cells and Their Effect on Antiviral Immunity. Front Immunol 2018; 9:326. [PMID: 29599767 PMCID: PMC5863502 DOI: 10.3389/fimmu.2018.00326] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 02/06/2018] [Indexed: 12/11/2022] Open
Abstract
The scientific community has reported several cases of microbes that exhibit elevated rates of antibiotic resistance in different regions of the planet. Due to this emergence of antimicrobial resistant microorganisms, the use of antibiotics as promoters of livestock animals' growth is being banned in most countries around the world. One of the challenges of agricultural immunology therefore is to find alternatives by modulating the immune system of animals in drug-independent safe food production systems. In this regard, in an effort to supplant antibiotics from bovine feeds, several alternatives were proposed including the use of immunomodulatory probiotics (immunobiotics). The purpose of this review is to provide an update of the status of the modulation of intestinal antiviral innate immunity of the bovine host by immunobiotics, and the beneficial impact of immunobiotics on viral infections, focused on intestinal epithelial cells (IECs). The results of our group, which demonstrate the capacity of immunobiotic strains to beneficially modulate Toll-like receptor 3-triggered immune responses in bovine IECs and improve the resistance to viral infections, are highlighted. This review provides comprehensive information on the innate immune response of bovine IECs against virus, which can be further investigated for the development of strategies aimed to improve defenses in the bovine host.
Collapse
Affiliation(s)
- Julio Villena
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), Tucuman, Argentina.,Immunobiotics Research Group, Tucuman, Argentina.,Food and Feed Immunology Group, Laboratory of Animal Products Chemistry, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Hisashi Aso
- Cell Biology Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan.,Livestock Immunology Unit, International Education and Research Center for Food Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Victor P M G Rutten
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Hideki Takahashi
- Laboratory of Plant Pathology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan.,Plant Immunology Unit, International Education and Research Center for Food Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Willem van Eden
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Haruki Kitazawa
- Food and Feed Immunology Group, Laboratory of Animal Products Chemistry, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan.,Livestock Immunology Unit, International Education and Research Center for Food Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| |
Collapse
|
35
|
Arnold MM. Rotavirus vaccines: why continued investment in research is necessary. CURRENT CLINICAL MICROBIOLOGY REPORTS 2018; 5:73-81. [PMID: 29805958 PMCID: PMC5967271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
PURPOSE OF REVIEW Rotavirus vaccines were first introduced more than a decade ago and have had a tremendous impact on reducing the number of hospitalizations and deaths due to rotavirus-associated diarrhea. This review will discuss current rotavirus vaccines, post-licensure surveillance, progress in non-replicating vaccine development, and why continued research is important for understanding a virus that remains a globally leading cause of death due to diarrhea. RECENT FINDINGS Research advances have enhanced our understanding of how vaccines induce protection against subsequent severe disease, how the virus replicates and spreads in the face of the host immune system, and basic mechanisms governing the viral life cycle. SUMMARY Much remains to be learned about how to improve vaccine success, what are the molecular determinants of host range and virulence, and what are the interactions of the virus with the host that drive its replicative success, among many other important questions.
Collapse
Affiliation(s)
- Michelle M. Arnold
- Corresponding author: Michelle M. Arnold, , Telephone: 318-675-4731, ORCID: 0000-0001-9219-3097
| |
Collapse
|
36
|
Shared and organism-specific host responses to childhood diarrheal diseases revealed by whole blood transcript profiling. PLoS One 2018; 13:e0192082. [PMID: 29377961 PMCID: PMC5788382 DOI: 10.1371/journal.pone.0192082] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 01/16/2018] [Indexed: 12/21/2022] Open
Abstract
Globally, diarrheal diseases are a leading cause of death in children under five and disproportionately affect children in developing countries. Children who contract diarrheal diseases are rarely screened to identify the etiologic agent due to time and cost considerations associated with pathogen-specific screening and hence pathogen-directed therapy is uncommon. The development of biomarkers to rapidly identify underlying pathogens could improve treatment options and clinical outcomes in childhood diarrheal diseases. Here, we perform RNA sequencing on blood samples collected from children evaluated in an emergency room setting with diarrheal disease where the pathogen(s) present are known. We determine host response gene signatures specific to Salmonella, Shigella and rotavirus, but not E. coli, infections that distinguish them from each other and from healthy controls. Specifically, we observed differential expression of genes related to chemokine receptors or inflammasome signaling in Shigella cases, such as CCR3, CXCR8, and NLRC4, and interferon response genes, such as IFI44 and OASL, in rotavirus cases. Our findings add insight into the host peripheral immune response to these pathogens, and suggest strategies and limitations for the use host response transcript signatures for diagnosing the etiologic agent of childhood diarrheal diseases.
Collapse
|
37
|
Zou WY, Blutt SE, Zeng XL, Chen MS, Lo YH, Castillo-Azofeifa D, Klein OD, Shroyer NF, Donowitz M, Estes MK. Epithelial WNT Ligands Are Essential Drivers of Intestinal Stem Cell Activation. Cell Rep 2018; 22:1003-1015. [PMID: 29386123 DOI: 10.1016/j.celrep.2017.12.093] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 11/16/2017] [Accepted: 12/24/2017] [Indexed: 12/25/2022] Open
Abstract
Intestinal stem cells (ISCs) maintain and repair the intestinal epithelium. While regeneration after ISC-targeted damage is increasingly understood, injury-repair mechanisms that direct regeneration following injuries to differentiated cells remain uncharacterized. The enteric pathogen, rotavirus, infects and damages differentiated cells while sparing all ISC populations, thus allowing the unique examination of the response of intact ISC compartments during injury-repair. Upon rotavirus infection in mice, ISC compartments robustly expand and proliferating cells rapidly migrate. Infection results specifically in stimulation of the active crypt-based columnar ISCs, but not alternative reserve ISC populations, as is observed after ISC-targeted damage. Conditional ablation of epithelial WNT secretion diminishes crypt expansion and ISC activation, demonstrating a previously unknown function of epithelial-secreted WNT during injury-repair. These findings indicate a hierarchical preference of crypt-based columnar cells (CBCs) over other potential ISC populations during epithelial restitution and the importance of epithelial-derived signals in regulating ISC behavior.
Collapse
Affiliation(s)
- Winnie Y Zou
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sarah E Blutt
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xi-Lei Zeng
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Min-Shan Chen
- Section of Gastroenterology and Hepatology, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yuan-Hung Lo
- Section of Gastroenterology and Hepatology, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - David Castillo-Azofeifa
- Departments of Orofacial Sciences and Pediatrics, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Ophir D Klein
- Departments of Orofacial Sciences and Pediatrics, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Noah F Shroyer
- Section of Gastroenterology and Hepatology, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Mark Donowitz
- Division of Gastroenterology and Hepatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA
| | - Mary K Estes
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA; Section of Gastroenterology and Hepatology, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
38
|
Arnold MM. Rotavirus Vaccines: Why Continued Investment in Research Is Necessary. CURRENT CLINICAL MICROBIOLOGY REPORTS 2018. [DOI: 10.1007/s40588-018-0079-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
39
|
Rotavirus Degrades Multiple Interferon (IFN) Type Receptors To Inhibit IFN Signaling and Protects against Mortality from Endotoxin in Suckling Mice. J Virol 2017; 92:JVI.01394-17. [PMID: 29070687 DOI: 10.1128/jvi.01394-17] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 10/17/2017] [Indexed: 02/07/2023] Open
Abstract
STAT1 phosphorylation in response to exogenous interferon (IFN) administration can be inhibited by rotaviral replication both in vitro and in vivo In addition many rotavirus strains are resistant to the actions of different IFN types. The regulation by rotaviruses (RVs) of antiviral pathways mediated by multiple IFN types is not well understood. In this study, we find that during infection in vitro and in vivo, RVs significantly deplete IFN type I, II, and III receptors (IFNRs). Regulation of IFNRs occurred exclusively within RV-infected cells and could be abrogated by inhibiting the lysosomal-endosomal degradation pathway. In vitro, IFNR degradation was conserved across multiple RV strains that differ in their modes of regulating IFN induction. In suckling mice, exogenously administered type I, II, or III IFN induced phosphorylation of STAT1-Y701 within intestinal epithelial cells (IECs) of suckling mice. Murine EW strain RV infection transiently activated intestinal STAT1 at 1 day postinfection (dpi) but not subsequently at 2 to 3 dpi. In response to injection of purified IFN-α/β or -λ, IECs in EW-infected mice exhibited impaired STAT1-Y701 phosphorylation, correlating with depletion of different intestinal IFNRs and impaired IFN-mediated transcription. The ability of EW murine RV to inhibit multiple IFN types led us to test protection of suckling mice from endotoxin-mediated shock, an outcome that is dependent on the host IFN response. Compared to mortality in controls, mice infected with EW murine RV were substantially protected against mortality following parenteral endotoxin administration. These studies identify a novel mechanism of IFN subversion by RV and reveal an unexpected protective effect of RV infection on endotoxin-mediated shock in suckling mice.IMPORTANCE Antiviral functions of types I, II, and III IFNs are mediated by receptor-dependent activation of STAT1. Here, we find that RV degrades the types I, II, and III IFN receptors (IFNRs) in vitro In a suckling mouse model, RV effectively blocked STAT1 activation and transcription following injection of different purified IFNs. This correlated with significantly decreased protein expression of intestinal types I and II IFNRs. Recent studies demonstrate that in mice lipopolysaccharide (LPS)-induced lethality is prevented by genetic ablation of IFN signaling genes such as IFNAR1 and STAT1. When suckling mice were infected with RV, they were substantially protected from lethal exposure to endotoxin. These findings provide novel insights into the mechanisms underlying rotavirus regulation of different interferons and are likely to stimulate new research into both rotavirus pathogenesis and endotoxemia.
Collapse
|
40
|
Ye L, Jiang Y, Yang G, Yang W, Hu J, Cui Y, Shi C, Liu J, Wang C. Murine bone marrow-derived DCs activated by porcine rotavirus stimulate the Th1 subtype response in vitro. Microb Pathog 2017; 110:325-334. [PMID: 28710013 DOI: 10.1016/j.micpath.2017.07.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 12/18/2016] [Accepted: 07/10/2017] [Indexed: 11/22/2022]
Abstract
Rotavirus (RV) infection causes acute, watery dehydrating diarrhea and even death in infants and other young animals, resulting in a severe economic burden; however, little is known about the innate immune mechanisms associated with RV infection. Dendritic cells (DCs), which are professional antigen-presenting cells (APCs), serve as a bridge connecting the innate and adaptive immune system. In this study, the interaction between murine bone marrow-derived DCs (BMDCs) and porcine rotavirus (PRV) was investigated in vitro. Upon stimulation, the expression levels of MHC-II, CD40, CD80, CD86 and CD83 in BMDCs increased in a time-dependent manner, indicating activation and maturation by PRV. In addition, up-regulated Toll-like receptor 2 (TLR2), TLR3 and NF-κB increased the production of interleukin-12 and interferon-γ. The PRV-stimulated BMDCs also showed increased stimulatory capacity in mixed lymphocyte reactions and promoted the Th1 subtype response.
Collapse
Affiliation(s)
- Liping Ye
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Yanlong Jiang
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Guilian Yang
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Wentao Yang
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Jingtao Hu
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Yulin Cui
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Chunwei Shi
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Jing Liu
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Chunfeng Wang
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, 130118, China.
| |
Collapse
|
41
|
Rotavirus NSP1 Requires Casein Kinase II-Mediated Phosphorylation for Hijacking of Cullin-RING Ligases. mBio 2017; 8:mBio.01213-17. [PMID: 28851847 PMCID: PMC5574712 DOI: 10.1128/mbio.01213-17] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The rotavirus nonstructural protein NSP1 repurposes cullin-RING E3 ubiquitin ligases (CRLs) to antagonize innate immune responses. By functioning as substrate adaptors of hijacked CRLs, NSP1 causes ubiquitination and proteasomal degradation of host proteins that are essential for expression of interferon (IFN) and IFN-stimulated gene products. The target of most human and porcine rotaviruses is the β-transducin repeat-containing protein (β-TrCP), a regulator of NF-κB activation. β-TrCP recognizes a phosphorylated degron (DSGΦXS) present in the inhibitor of NF-κB (IκB); phosphorylation of the IκB degron is mediated by IκB kinase (IKK). Because NSP1 contains a C-terminal IκB-like degron (ILD; DSGXS) that recruits β-TrCP, we investigated whether the NSP1 ILD is similarly activated by phosphorylation and whether this modification is required to trigger the incorporation of NSP1 into CRLs. Based on mutagenesis and phosphatase treatment studies, we found that both serine residues of the NSP1 ILD are phosphorylated, a pattern mimicking phosphorylation of IκB. A three-pronged approach using small-molecule inhibitors, small interfering RNAs, and mutagenesis demonstrated that NSP1 phosphorylation is mediated by the constitutively active casein kinase II (CKII), rather than IKK. In coimmunoprecipitation assays, we found that this modification was essential for NSP1 recruitment of β-TrCP and induced changes involving the NSP1 N-terminal RING motif that allowed formation of Cul3-NSP1 complexes. Taken together, our results indicate a highly regulated stepwise process in the formation of NSP1-Cul3 CRLs that is initiated by CKII phosphorylation of NSP1, followed by NSP1 recruitment of β-TrCP and ending with incorporation of the NSP1–β-TrCP complex into the CRL via interactions dependent on the highly conserved NSP1 RING motif. Rotavirus is a segmented double-stranded RNA virus that causes severe diarrhea in young children. A primary mechanism used by the virus to inhibit host innate immune responses is to hijack cellular cullin-RING E3 ubiquitin ligases (CRLs) and redirect their targeting activity to the degradation of cellular proteins crucial for interferon expression. This task is accomplished through the rotavirus nonstructural protein NSP1, which incorporates itself into a CRL and serves as a substrate recognition subunit. The substrate recognized by the NSP1 of many human and porcine rotaviruses is β-TrCP, a protein that regulates the transcription factor NF-κB. In this study, we show that formation of NSP1 CRLs is a highly regulated stepwise process initiated by CKII phosphorylation of the β-TrCP recognition motif in NSP1. This modification triggers recruitment of the β-TrCP substrate and induces subsequent changes in a highly conserved NSP1 RING domain that allow anchoring of the NSP1–β-TrCP complex to a cullin scaffold.
Collapse
|
42
|
Chethan GE, Garkhal J, Sircar S, Malik YPS, Mukherjee R, Sahoo NR, Agarwal RK, De UK. Immunomodulatory potential of β-glucan as supportive treatment in porcine rotavirus enteritis. Vet Immunol Immunopathol 2017; 191:36-43. [PMID: 28895864 DOI: 10.1016/j.vetimm.2017.07.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 07/28/2017] [Accepted: 07/30/2017] [Indexed: 01/26/2023]
Abstract
A non-blinded randomized clinical trial was conducted to assess the immunomodulatory potential of β-glucan (BG) in piglet diarrhoea associated with type A rotavirus infection. A total of 12 rotavirus-infected diarrheic piglets were randomly divided into two groups: wherein six rotavirus-infected piglets were treated with supportive treatment (ST) and other six rotavirus-infected piglets were treated with BG along with ST (ST-BG). Simultaneously, six healthy piglets were also included in the study which served as control. In rotavirus-infected piglets, marked increase of Intestinal Fatty Acid Binding Protein-2 (I-FABP2), nitric oxide (NOx), Interferon-γ (IFN-γ) concentrations and decrease of immunoglobulin G (IgG) were noticed compared to healthy piglets. The faecal consistency and dehydration scores were significantly higher in rotavirus-infected piglets than healthy piglets. The ST-BG treatment progressively reduced the I-FABP2 and increased the IgG concentrations over the time in rotavirus-infected piglets compared to piglets received only ST. A pronounced enhancement of NOx and IFN-γ concentrations was observed initially on day 3 and thereafter the values reduced on day 5 in ST-BG treated piglets in comparison to piglets which received only ST. Additionally, ST-BG treatment significantly reduced faecal consistency and dehydration scores on day 3 compared to ST in rotavirus-infected piglets. These findings point that BG represents a potential additional therapeutic option to improve the health condition and reduce the piglet mortality from rotavirus associated diarrhoea where porcine rotavirus vaccine is not available.
Collapse
Affiliation(s)
- Gollahalli Eregowda Chethan
- Division of Medicine, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, Uttar Pradesh, India
| | - Jugal Garkhal
- Division of Medicine, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, Uttar Pradesh, India
| | - Shubhankar Sircar
- Division of Biological Standardisation, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, Uttar Pradesh, India
| | - Yash Pal Singh Malik
- Division of Biological Standardisation, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, Uttar Pradesh, India
| | - Reena Mukherjee
- Division of Medicine, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, Uttar Pradesh, India
| | - Nihar Ranjan Sahoo
- Livestock Production and Management Section, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, Uttar Pradesh, India
| | - Rajesh Kumar Agarwal
- Division of Bacteriology and Mycology, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, Uttar Pradesh, India
| | - Ujjwal Kumar De
- Division of Medicine, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, Uttar Pradesh, India.
| |
Collapse
|
43
|
Lee S, Baldridge MT. Interferon-Lambda: A Potent Regulator of Intestinal Viral Infections. Front Immunol 2017; 8:749. [PMID: 28713375 PMCID: PMC5491552 DOI: 10.3389/fimmu.2017.00749] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 06/13/2017] [Indexed: 12/12/2022] Open
Abstract
Interferon-lambda (IFN-λ) is a recently described cytokine found to be of critical importance in innate immune regulation of intestinal viruses. Endogenous IFN-λ has potent antiviral effects and has been shown to control multiple intestinal viruses and may represent a factor that contributes to human variability in response to infection. Importantly, recombinant IFN-λ has therapeutic potential against enteric viral infections, many of which lack other effective treatments. In this mini-review, we describe recent advances regarding IFN-λ-mediated regulation of enteric viruses with important clinical relevance including rotavirus, reovirus, and norovirus. We also briefly discuss IFN-λ interactions with other cytokines important in the intestine, and how IFN-λ may play a role in regulation of intestinal viruses by the commensal microbiome. Finally, we indicate currently outstanding questions regarding IFN-λ control of enteric infections that remain to be explored to enhance our understanding of this important immune molecule.
Collapse
Affiliation(s)
- Sanghyun Lee
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, United States
| | - Megan T Baldridge
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
44
|
Yin Y, Dang W, Zhou X, Xu L, Wang W, Cao W, Chen S, Su J, Cai X, Xiao S, Peppelenbosch MP, Pan Q. PI3K-Akt-mTOR axis sustains rotavirus infection via the 4E-BP1 mediated autophagy pathway and represents an antiviral target. Virulence 2017; 9:83-98. [PMID: 28475412 PMCID: PMC5955461 DOI: 10.1080/21505594.2017.1326443] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Rotavirus infection is a major cause of severe dehydrating diarrhea in infants younger than 5 y old and in particular cases of immunocompromised patients irrespective to the age of the patients. Although vaccines have been developed, antiviral therapy is an important complement that cannot be substituted. Because of the lack of specific approved treatment, it is urgent to facilitate the cascade of further understanding of the infection biology, identification of druggable targets and the final development of effective antiviral therapies. PI3K-Akt-mTOR signaling pathway plays a vital role in regulating the infection course of many viruses. In this study, we have dissected the effects of PI3K-Akt-mTOR signaling pathway on rotavirus infection using both conventional cell culture models and a 3D model of human primary intestinal organoids. We found that PI3K-Akt-mTOR signaling is essential in sustaining rotavirus infection. Thus, blocking the key elements of this pathway, including PI3K, mTOR and 4E-BP1, has resulted in potent anti-rotavirus activity. Importantly, a clinically used mTOR inhibitor, rapamycin, potently inhibited both experimental and patient-derived rotavirus strains. This effect involves 4E-BP1 mediated induction of autophagy, which in turn exerts anti-rotavirus effects. These results revealed new insights on rotavirus-host interactions and provided new avenues for antiviral drug development.
Collapse
Affiliation(s)
- Yuebang Yin
- a Department of Gastroenterology and Hepatology , Erasmus MC-University Medical Center , Rotterdam , The Netherlands
| | - Wen Dang
- a Department of Gastroenterology and Hepatology , Erasmus MC-University Medical Center , Rotterdam , The Netherlands
| | - Xinying Zhou
- a Department of Gastroenterology and Hepatology , Erasmus MC-University Medical Center , Rotterdam , The Netherlands
| | - Lei Xu
- a Department of Gastroenterology and Hepatology , Erasmus MC-University Medical Center , Rotterdam , The Netherlands
| | - Wenshi Wang
- a Department of Gastroenterology and Hepatology , Erasmus MC-University Medical Center , Rotterdam , The Netherlands
| | - Wanlu Cao
- a Department of Gastroenterology and Hepatology , Erasmus MC-University Medical Center , Rotterdam , The Netherlands
| | - Sunrui Chen
- a Department of Gastroenterology and Hepatology , Erasmus MC-University Medical Center , Rotterdam , The Netherlands
| | - Junhong Su
- b Medical Faculty, Kunming University of Science and Technology , Kunming , P. R. China
| | - Xuepeng Cai
- c State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS) , Lanzhou , P. R. China
| | - Shaobo Xiao
- d State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University , Wuhan , P. R. China
| | - Maikel P Peppelenbosch
- a Department of Gastroenterology and Hepatology , Erasmus MC-University Medical Center , Rotterdam , The Netherlands
| | - Qiuwei Pan
- a Department of Gastroenterology and Hepatology , Erasmus MC-University Medical Center , Rotterdam , The Netherlands
| |
Collapse
|
45
|
Pervolaraki K, Stanifer ML, Münchau S, Renn LA, Albrecht D, Kurzhals S, Senís E, Grimm D, Schröder-Braunstein J, Rabin RL, Boulant S. Type I and Type III Interferons Display Different Dependency on Mitogen-Activated Protein Kinases to Mount an Antiviral State in the Human Gut. Front Immunol 2017; 8:459. [PMID: 28484457 PMCID: PMC5399069 DOI: 10.3389/fimmu.2017.00459] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 04/04/2017] [Indexed: 12/17/2022] Open
Abstract
Intestinal epithelial cells (IECs) are constantly exposed to commensal flora and pathogen challenges. How IECs regulate their innate immune response to maintain gut homeostasis remains unclear. Interferons (IFNs) are cytokines produced during infections. While type I IFN receptors are ubiquitously expressed, type III IFN receptors are expressed only on epithelial cells. This epithelium specificity strongly suggests exclusive functions at epithelial surfaces, but the relative roles of type I and III IFNs in the establishment of an antiviral innate immune response in human IECs are not clearly defined. Here, we used mini-gut organoids to define the functions of types I and III IFNs to protect the human gut against viral infection. We show that primary non-transformed human IECs, upon viral challenge, upregulate the expression of both type I and type III IFNs at the transcriptional level but only secrete type III IFN in the supernatant. However, human IECs respond to both type I and type III IFNs by producing IFN-stimulated genes that in turn induce an antiviral state. Using genetic ablation of either type I or type III IFN receptors, we show that either IFN can independently restrict virus infection in human IECs. Importantly, we report, for the first time, differences in the mechanisms by which each IFN establishes the antiviral state. Contrary to type I IFN, the antiviral activity induced by type III IFN is strongly dependent on the mitogen-activated protein kinases signaling pathway, suggesting a pathway used by type III IFNs that non-redundantly contributes to the antiviral state. In conclusion, we demonstrate that human intestinal epithelial cells specifically regulate their innate immune response favoring type III IFN-mediated signaling, which allows for efficient protection against pathogens without producing excessive inflammation. Our results strongly suggest that type III IFN constitutes the frontline of antiviral response in the human gut. We propose that mucosal surfaces, particularly the gastrointestinal tract, have evolved to favor type III IFN-mediated response to pathogen infections as it allows for spatial segregation of signaling and moderate production of inflammatory signals which we propose are key to maintain gut homeostasis.
Collapse
Affiliation(s)
- Kalliopi Pervolaraki
- Schaller Research Group at CellNetworks, Department of Infectious Diseases, Virology, Heidelberg University Hospital, Heidelberg, Germany.,Research Group "Cellular Polarity and Viral Infection" (F140), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Megan L Stanifer
- Schaller Research Group at CellNetworks, Department of Infectious Diseases, Virology, Heidelberg University Hospital, Heidelberg, Germany
| | - Stephanie Münchau
- Schaller Research Group at CellNetworks, Department of Infectious Diseases, Virology, Heidelberg University Hospital, Heidelberg, Germany
| | - Lynnsey A Renn
- Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, USA
| | - Dorothee Albrecht
- Schaller Research Group at CellNetworks, Department of Infectious Diseases, Virology, Heidelberg University Hospital, Heidelberg, Germany
| | - Stefan Kurzhals
- Institute of Immunology, Heidelberg University Hospital, Heidelberg, Germany
| | - Elena Senís
- Department of Infectious Diseases, Virology, BioQuant, Heidelberg University Hospital, Heidelberg, Germany
| | - Dirk Grimm
- Department of Infectious Diseases, Virology, BioQuant, Heidelberg University Hospital, Heidelberg, Germany
| | | | - Ronald L Rabin
- Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, USA
| | - Steeve Boulant
- Schaller Research Group at CellNetworks, Department of Infectious Diseases, Virology, Heidelberg University Hospital, Heidelberg, Germany.,Research Group "Cellular Polarity and Viral Infection" (F140), German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
46
|
Saxena K, Simon LM, Zeng XL, Blutt SE, Crawford SE, Sastri NP, Karandikar UC, Ajami NJ, Zachos NC, Kovbasnjuk O, Donowitz M, Conner ME, Shaw CA, Estes MK. A paradox of transcriptional and functional innate interferon responses of human intestinal enteroids to enteric virus infection. Proc Natl Acad Sci U S A 2017; 114:E570-E579. [PMID: 28069942 PMCID: PMC5278484 DOI: 10.1073/pnas.1615422114] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The intestinal epithelium can limit enteric pathogens by producing antiviral cytokines, such as IFNs. Type I IFN (IFN-α/β) and type III IFN (IFN-λ) function at the epithelial level, and their respective efficacies depend on the specific pathogen and site of infection. However, the roles of type I and type III IFN in restricting human enteric viruses are poorly characterized as a result of the difficulties in cultivating these viruses in vitro and directly obtaining control and infected small intestinal human tissue. We infected nontransformed human intestinal enteroid cultures from multiple individuals with human rotavirus (HRV) and assessed the host epithelial response by using RNA-sequencing and functional assays. The dominant transcriptional pathway induced by HRV infection is a type III IFN-regulated response. Early after HRV infection, low levels of type III IFN protein activate IFN-stimulated genes. However, this endogenous response does not restrict HRV replication because replication-competent HRV antagonizes the type III IFN response at pre- and posttranscriptional levels. In contrast, exogenous IFN treatment restricts HRV replication, with type I IFN being more potent than type III IFN, suggesting that extraepithelial sources of type I IFN may be the critical IFN for limiting enteric virus replication in the human intestine.
Collapse
Affiliation(s)
- Kapil Saxena
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030
| | - Lukas M Simon
- Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, TX 77030
| | - Xi-Lei Zeng
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030
| | - Sarah E Blutt
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030
| | - Sue E Crawford
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030
| | - Narayan P Sastri
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030
| | - Umesh C Karandikar
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030
| | - Nadim J Ajami
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030
| | - Nicholas C Zachos
- Department of Medicine, Gastroenterology Division, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Olga Kovbasnjuk
- Department of Medicine, Gastroenterology Division, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Mark Donowitz
- Department of Medicine, Gastroenterology Division, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Margaret E Conner
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030
| | - Chad A Shaw
- Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, TX 77030
| | - Mary K Estes
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030;
| |
Collapse
|
47
|
Kobayashi H, Kanmani P, Ishizuka T, Miyazaki A, Soma J, Albarracin L, Suda Y, Nochi T, Aso H, Iwabuchi N, Xiao JZ, Saito T, Villena J, Kitazawa H. Development of an in vitro immunobiotic evaluation system against rotavirus infection in bovine intestinal epitheliocytes. Benef Microbes 2017; 8:309-321. [PMID: 28042704 DOI: 10.3920/bm2016.0155] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The bovine intestinal epithelial cell line (BIE cells) expresses the Toll-like receptor (TLR)3 and is able to mount an antiviral immune response after the stimulation with poly(I:C). In the present study, we aimed to further characterise the antiviral defence mechanisms in BIE cells by evaluating the innate immune response triggered by rotavirus (RV) infection. In addition, we attempted to determine whether immunobiotic bifidobacteria are able to confer protection of BIE cells against RV infection by beneficially modulating the antiviral immune response. RV OSU (porcine) and UK (bovine) effectively infected BIE cells, while a significant lower capacity to infect BIE cells was observed for human (Wa) and murine (EW) RV. We observed that viral infection in BIE cells triggered TLR3/RIG-I-mediated immune responses with activation of IRF3 and TRAF3, induction of interferon beta (IFN-β) and up-regulation of inflammatory cytokines. Our results also demonstrated that preventive treatments with Bifidobacterium infantis MCC12 or Bifidobacterium breve MCC1274 significantly reduced RV titres in infected BIE cells and differentially modulated the innate immune response. Of note, both strains significantly improved the production of the antiviral factor IFN-β in RV-infected BIE cells. In conclusion, this work provides comprehensive information on the antiviral immune response of BIE cells against RV, that can be further studied for the development of strategies aimed to improve antiviral defences in bovine intestinal epithelial cells. Our results also demonstrate that BIE cells could be used as a newly immunobiotic evaluation system against RV infection for application in the bovine host.
Collapse
Affiliation(s)
- H Kobayashi
- 1 Food and Feed Immunology Group, Laboratory of Animal Products Chemistry, Graduate School of Agricultural Science, Tohoku University, 468-1, Aoba, Aramaki, Aoba-ku, Sendai, Miyagi, 980-0845, Japan.,2 Livestock Immunology Unit, International Education and Research Center for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, 468-1, Aoba, Aramaki, Aoba-ku, Sendai, Miyagi, 980-0845, Japan
| | - P Kanmani
- 1 Food and Feed Immunology Group, Laboratory of Animal Products Chemistry, Graduate School of Agricultural Science, Tohoku University, 468-1, Aoba, Aramaki, Aoba-ku, Sendai, Miyagi, 980-0845, Japan.,2 Livestock Immunology Unit, International Education and Research Center for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, 468-1, Aoba, Aramaki, Aoba-ku, Sendai, Miyagi, 980-0845, Japan
| | - T Ishizuka
- 1 Food and Feed Immunology Group, Laboratory of Animal Products Chemistry, Graduate School of Agricultural Science, Tohoku University, 468-1, Aoba, Aramaki, Aoba-ku, Sendai, Miyagi, 980-0845, Japan
| | - A Miyazaki
- 3 Viral Disease and Epidemiology Research Division, National Institute of Animal Health, National Agriculture and Food Research Organization, 3-1-5 Kannondai, Tsukuba, Ibaraki 305-0856, Japan
| | - J Soma
- 4 Research and Development Section, Zen-noh Institute of Animal Health, Sakura, Chiba 285-0043, Japan
| | - L Albarracin
- 1 Food and Feed Immunology Group, Laboratory of Animal Products Chemistry, Graduate School of Agricultural Science, Tohoku University, 468-1, Aoba, Aramaki, Aoba-ku, Sendai, Miyagi, 980-0845, Japan.,5 Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELACONICET), Chacabuco 145, San Miguel de Tucuman, 4000 Tucuman, Argentina
| | - Y Suda
- 6 Department of Food, Agriculture and Environment, Miyagi University, 2-2-1 Hatadate, Taihaku-ku, Sendai, Miyagi 982-0215 Japan
| | - T Nochi
- 7 Infection Immunology Unit, International Education and Research Center for Food Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, 468-1 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi, 980-0845, Japan.,8 Cell Biology Laboratory, Graduate School of Agricultural Science, Tohoku University, 468-1, Aoba, Aramaki, Aoba-ku, Sendai, Miyagi, 980-0845, Japan
| | - H Aso
- 2 Livestock Immunology Unit, International Education and Research Center for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, 468-1, Aoba, Aramaki, Aoba-ku, Sendai, Miyagi, 980-0845, Japan.,8 Cell Biology Laboratory, Graduate School of Agricultural Science, Tohoku University, 468-1, Aoba, Aramaki, Aoba-ku, Sendai, Miyagi, 980-0845, Japan
| | - N Iwabuchi
- 9 Food Ingredients Institute, Morinaga Milk Industry Co. Ltd., 5-Chome, Higashihara, 252-8583 Zama-City, Kanagawa, Japan
| | - J-Z Xiao
- 10 Next Generation Science Institute, Morinaga Milk Industry Co. Ltd., 5-Chome, Higashihara, 252-8583 Zama-City, Kanagawa, Japan
| | - T Saito
- 1 Food and Feed Immunology Group, Laboratory of Animal Products Chemistry, Graduate School of Agricultural Science, Tohoku University, 468-1, Aoba, Aramaki, Aoba-ku, Sendai, Miyagi, 980-0845, Japan
| | - J Villena
- 1 Food and Feed Immunology Group, Laboratory of Animal Products Chemistry, Graduate School of Agricultural Science, Tohoku University, 468-1, Aoba, Aramaki, Aoba-ku, Sendai, Miyagi, 980-0845, Japan.,5 Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELACONICET), Chacabuco 145, San Miguel de Tucuman, 4000 Tucuman, Argentina
| | - H Kitazawa
- 1 Food and Feed Immunology Group, Laboratory of Animal Products Chemistry, Graduate School of Agricultural Science, Tohoku University, 468-1, Aoba, Aramaki, Aoba-ku, Sendai, Miyagi, 980-0845, Japan.,2 Livestock Immunology Unit, International Education and Research Center for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, 468-1, Aoba, Aramaki, Aoba-ku, Sendai, Miyagi, 980-0845, Japan
| |
Collapse
|
48
|
Villena J, Vizoso-Pinto MG, Kitazawa H. Intestinal Innate Antiviral Immunity and Immunobiotics: Beneficial Effects against Rotavirus Infection. Front Immunol 2016; 7:563. [PMID: 27994593 PMCID: PMC5136547 DOI: 10.3389/fimmu.2016.00563] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 11/22/2016] [Indexed: 12/13/2022] Open
Abstract
The mucosal tissues of the gastrointestinal tract are the main portal entry of pathogens such as rotavirus (RV), which is a leading cause of death due to diarrhea among young children across the globe and a major cause of severe acute intestinal infection in livestock animals. The interactions between intestinal epithelial cells (IECs) and immune cells with RVs have been studied for several years, and now, it is known that the innate immune responses triggered by this virus can have both beneficial and detrimental effects for the host. It was demonstrated that natural RV infection in infants and experimental challenges in mice result in the intestinal activation of pattern recognition receptors (PRRs) such as toll-like receptor 3 (TLR3) and striking secretion of proinflammatory mediators that can lead to increased local tissue damage and immunopathology. Therefore, modulating desregulated intestinal immune responses triggered by PRRs activation are a significant promise for reducing the burden of RV diseases. The ability of immunoregulatory probiotic microorganisms (immunobiotics) to protect against intestinal infections, such as those caused by RVs, is among the oldest effects studied for these important group of beneficial microbes. In this review, we provide an update of the current status on the modulation of intestinal antiviral innate immunity by immunobiotics and their beneficial impact on RV infection. In addition, we describe the research of our group that demonstrated the capacity of immunobiotic strains to beneficially modulated TLR3-triggered immune response in IECs, reduce the disruption of intestinal homeostasis caused by intraepithelial lymphocytes, and improve the resistance to RV infections.
Collapse
Affiliation(s)
- Julio Villena
- Immunobiotics Research Group, Tucuman, Argentina; Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), Tucuman, Argentina; Food and Feed Immunology Group, Laboratory of Animal Products Chemistry, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Maria Guadalupe Vizoso-Pinto
- Immunobiotics Research Group, Tucuman, Argentina; Faculty of Medicine, INSIBIO (UNT-CONICET), National University of Tucuman, Tucuman, Argentina
| | - Haruki Kitazawa
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), Tucuman, Argentina; Food and Feed Immunology Group, Laboratory of Animal Products Chemistry, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan; Livestock Immunology Unit, International Education and Research Center for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| |
Collapse
|
49
|
Ding S, Mooney N, Li B, Kelly MR, Feng N, Loktev AV, Sen A, Patton JT, Jackson PK, Greenberg HB. Comparative Proteomics Reveals Strain-Specific β-TrCP Degradation via Rotavirus NSP1 Hijacking a Host Cullin-3-Rbx1 Complex. PLoS Pathog 2016; 12:e1005929. [PMID: 27706223 PMCID: PMC5051689 DOI: 10.1371/journal.ppat.1005929] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 09/10/2016] [Indexed: 11/18/2022] Open
Abstract
Rotaviruses (RVs) are the leading cause of severe gastroenteritis in young children, accounting for half a million deaths annually worldwide. RV encodes non-structural protein 1 (NSP1), a well-characterized interferon (IFN) antagonist, which facilitates virus replication by mediating the degradation of host antiviral factors including IRF3 and β-TrCP. Here, we utilized six human and animal RV NSP1s as baits and performed tandem-affinity purification coupled with high-resolution mass spectrometry to comprehensively characterize NSP1-host protein interaction network. Multiple Cullin-RING ubiquitin ligase (CRL) complexes were identified. Importantly, inhibition of cullin-3 (Cul3) or RING-box protein 1 (Rbx1), by siRNA silencing or chemical perturbation, significantly impairs strain-specific NSP1-mediated β-TrCP degradation. Mechanistically, we demonstrate that NSP1 localizes to the Golgi with the host Cul3-Rbx1 CRL complex, which targets β-TrCP and NSP1 for co-destruction at the proteasome. Our study uncovers a novel mechanism that RV employs to promote β-TrCP turnover and provides molecular insights into virus-mediated innate immunity inhibition.
Collapse
Affiliation(s)
- Siyuan Ding
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Medicine, Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, California, United States of America
- Palo Alto Veterans Institute of Research, VA Palo Alto Health Care System, Palo Alto, California, United States of America
| | - Nancie Mooney
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
- Baxter Laboratory for Stem Cell Biology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Bin Li
- Department of Medicine, Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, California, United States of America
- Palo Alto Veterans Institute of Research, VA Palo Alto Health Care System, Palo Alto, California, United States of America
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Marcus R. Kelly
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
- Baxter Laboratory for Stem Cell Biology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Ningguo Feng
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Medicine, Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, California, United States of America
- Palo Alto Veterans Institute of Research, VA Palo Alto Health Care System, Palo Alto, California, United States of America
| | - Alexander V. Loktev
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
- Baxter Laboratory for Stem Cell Biology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Adrish Sen
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Medicine, Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, California, United States of America
- Palo Alto Veterans Institute of Research, VA Palo Alto Health Care System, Palo Alto, California, United States of America
| | - John T. Patton
- Department of Veterinary Medicine, University of Maryland, College Park, Maryland, United States of America
| | - Peter K. Jackson
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
- Baxter Laboratory for Stem Cell Biology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Harry B. Greenberg
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Medicine, Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, California, United States of America
- Palo Alto Veterans Institute of Research, VA Palo Alto Health Care System, Palo Alto, California, United States of America
- * E-mail:
| |
Collapse
|
50
|
Salas A, Marco-Puche G, Triviño JC, Gómez-Carballa A, Cebey-López M, Rivero-Calle I, Vilanova-Trillo L, Rodríguez-Tenreiro C, Gómez-Rial J, Martinón-Torres F. Strong down-regulation of glycophorin genes: A host defense mechanism against rotavirus infection. INFECTION GENETICS AND EVOLUTION 2016; 44:403-411. [PMID: 27491455 DOI: 10.1016/j.meegid.2016.07.044] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 07/29/2016] [Accepted: 07/30/2016] [Indexed: 12/19/2022]
Abstract
The mechanisms of rotavirus (RV) infection have been analyzed from different angles but the way in which RV modifies the transcriptome of the host is still unknown. Whole transcriptome shotgun sequencing of peripheral blood samples was used to reveal patterns of expression from the genome of RV-infected patients. RV provokes global changes in the transcriptome of infected cells, involving an over-expression of genes involved in cell cycle and chromatin condensation. While interferon IFI27 was hyper-activated, interferon type II was not suggesting that RV has developed mechanisms to evade the innate response by host cells after virus infection. Most interesting was the inhibition of genes of the glycophorins A and B (GYPA/B) family, which are the major sialoglycoproteins of the human erythrocyte membrane and receptor of several viruses for host invasion. RV infection induces a complex and global response in the host. The strong inhibition of glycophorins suggests a novel defense mechanism of the host to prevent viral infection, inhibiting the expression of receptors used by the virus for infection. The present results add further support to the systemic nature of RV infection.
Collapse
Affiliation(s)
- Antonio Salas
- Unidade de Xenética, Departamento de Anatomía Patolóxica e Ciencias Forenses, Instituto de Ciencias Forenses, Facultade de Medicina, Universidade de Santiago de Compostela, and GENPOB Research Group, Instituto de Investigaciones Sanitarias (IDIS), Hospital Clínico Universitario de Santiago, Galicia, Spain; Grupo de Investigación en Genética, Vacunas, Infecciones y Pediatría (GENVIP), Hospital Clínico Universitario, Universidade de Santiago de Compostela (USC), Galicia, Spain,.
| | | | | | - Alberto Gómez-Carballa
- Unidade de Xenética, Departamento de Anatomía Patolóxica e Ciencias Forenses, Instituto de Ciencias Forenses, Facultade de Medicina, Universidade de Santiago de Compostela, and GENPOB Research Group, Instituto de Investigaciones Sanitarias (IDIS), Hospital Clínico Universitario de Santiago, Galicia, Spain; Grupo de Investigación en Genética, Vacunas, Infecciones y Pediatría (GENVIP), Hospital Clínico Universitario, Universidade de Santiago de Compostela (USC), Galicia, Spain
| | - Miriam Cebey-López
- Grupo de Investigación en Genética, Vacunas, Infecciones y Pediatría (GENVIP), Hospital Clínico Universitario, Universidade de Santiago de Compostela (USC), Galicia, Spain
| | - Irene Rivero-Calle
- Grupo de Investigación en Genética, Vacunas, Infecciones y Pediatría (GENVIP), Hospital Clínico Universitario, Universidade de Santiago de Compostela (USC), Galicia, Spain,; Translational Pediatrics and Infectious Diseases, Department of Pediatrics, Hospital Clínico Universitario de Santiago de Compostela, Galicia, Spain
| | - Lucía Vilanova-Trillo
- Grupo de Investigación en Genética, Vacunas, Infecciones y Pediatría (GENVIP), Hospital Clínico Universitario, Universidade de Santiago de Compostela (USC), Galicia, Spain,; Translational Pediatrics and Infectious Diseases, Department of Pediatrics, Hospital Clínico Universitario de Santiago de Compostela, Galicia, Spain
| | - Carmen Rodríguez-Tenreiro
- Grupo de Investigación en Genética, Vacunas, Infecciones y Pediatría (GENVIP), Hospital Clínico Universitario, Universidade de Santiago de Compostela (USC), Galicia, Spain,; Translational Pediatrics and Infectious Diseases, Department of Pediatrics, Hospital Clínico Universitario de Santiago de Compostela, Galicia, Spain
| | - José Gómez-Rial
- Grupo de Investigación en Genética, Vacunas, Infecciones y Pediatría (GENVIP), Hospital Clínico Universitario, Universidade de Santiago de Compostela (USC), Galicia, Spain,; Translational Pediatrics and Infectious Diseases, Department of Pediatrics, Hospital Clínico Universitario de Santiago de Compostela, Galicia, Spain
| | - Federico Martinón-Torres
- Grupo de Investigación en Genética, Vacunas, Infecciones y Pediatría (GENVIP), Hospital Clínico Universitario, Universidade de Santiago de Compostela (USC), Galicia, Spain,; Translational Pediatrics and Infectious Diseases, Department of Pediatrics, Hospital Clínico Universitario de Santiago de Compostela, Galicia, Spain
| |
Collapse
|