1
|
Saviano A, Roehlen N, Baumert TF. Tight Junction Proteins as Therapeutic Targets to Treat Liver Fibrosis and Hepatocellular Carcinoma. Semin Liver Dis 2024; 44:180-190. [PMID: 38648796 DOI: 10.1055/s-0044-1785646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
In the last decade tight junction proteins exposed at the surface of liver or cancer cells have been uncovered as mediators of liver disease biology: Claudin-1 and Occludin are host factors for hepatitis C virus entry and Claudin-1 has been identified as a driver for liver fibrosis and hepatocellular carcinoma (HCC). Moreover, Claudins have emerged as therapeutic targets for liver disease and HCC. CLDN1 expression is upregulated in liver fibrosis and HCC. Monoclonal antibodies (mAbs) targeting Claudin-1 have completed preclinical proof-of-concept studies for treatment of liver fibrosis and HCC and are currently in clinical development for advanced liver fibrosis. Claudin-6 overexpression is associated with an HCC aggressive phenotype and treatment resistance. Claudin-6 mAbs or chimeric antigen receptor-T cells therapies are currently being clinically investigated for Claudin-6 overexpressing tumors. In conclusion, targeting Claudin proteins offers a novel clinical opportunity for the treatment of patients with advanced liver fibrosis and HCC.
Collapse
Affiliation(s)
- Antonio Saviano
- Inserm, U1110, Institute of Translational Medicine and Liver Disease, Strasbourg, France
- University of Strasbourg, Strasbourg, France
- Service d'hépato-gastroentérologie, Pôle Hépato-digestif, Institut-Hospitalo-Universitaire, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Natascha Roehlen
- Department of Medicine II, Gastroenterology, Hepatology, Endocrinology and Infectious Diseases, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Berta-Ottenstein-Programme, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Thomas F Baumert
- Inserm, U1110, Institute of Translational Medicine and Liver Disease, Strasbourg, France
- University of Strasbourg, Strasbourg, France
- Service d'hépato-gastroentérologie, Pôle Hépato-digestif, Institut-Hospitalo-Universitaire, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
- Institut Universitaire de France, Paris, France
| |
Collapse
|
2
|
So CW, Sourisseau M, Sarwar S, Evans MJ, Randall G. Roles of epidermal growth factor receptor, claudin-1 and occludin in multi-step entry of hepatitis C virus into polarized hepatoma spheroids. PLoS Pathog 2023; 19:e1011887. [PMID: 38157366 PMCID: PMC10756512 DOI: 10.1371/journal.ppat.1011887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 12/06/2023] [Indexed: 01/03/2024] Open
Abstract
The multi-step process of hepatitis C virus (HCV) entry is facilitated by various host factors, including epidermal growth factor receptor (EGFR) and the tight junction proteins claudin-1 (CLDN1) and occludin (OCLN), which are thought to function at later stages of the HCV entry process. Using single particle imaging of HCV infection of polarized hepatoma spheroids, we observed that EGFR performs multiple functions in HCV entry, both phosphorylation-dependent and -independent. We previously observed, and in this study confirmed, that EGFR is not required for HCV migration to the tight junction. EGFR is required for the recruitment of clathrin to HCV in a phosphorylation-independent manner. EGFR phosphorylation is required for virion internalization at a stage following the recruitment of clathrin. HCV entry activates the RAF-MEK-ERK signaling pathway downstream of EGFR phosphorylation. This signaling pathway regulates the sorting and maturation of internalized HCV into APPL1- and EEA1-associated early endosomes, which form the site of virion uncoating. The tight junction proteins, CLDN1 and OCLN, function at two distinct stages of HCV entry. Despite its appreciated function as a "late receptor" in HCV entry, CLDN1 is required for efficient HCV virion accumulation at the tight junction. Huh-7.5 cells lacking CLDN1 accumulate HCV virions primarily at the initial basolateral surface. OCLN is required for the late stages of virion internalization. This study produced further insight into the unusually complex HCV endocytic process.
Collapse
Affiliation(s)
- Chui-Wa So
- Department of Microbiology, The University of Chicago, Chicago, Illinois, United States of America
| | - Marion Sourisseau
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Shamila Sarwar
- Department of Microbiology, The University of Chicago, Chicago, Illinois, United States of America
| | - Matthew J. Evans
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Glenn Randall
- Department of Microbiology, The University of Chicago, Chicago, Illinois, United States of America
| |
Collapse
|
3
|
Carriquí-Madroñal B, Lasswitz L, von Hahn T, Gerold G. Genetic and pharmacological perturbation of hepatitis-C virus entry. Curr Opin Virol 2023; 62:101362. [PMID: 37678113 DOI: 10.1016/j.coviro.2023.101362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 06/30/2023] [Accepted: 08/08/2023] [Indexed: 09/09/2023]
Abstract
Hepatitis-C virus (HCV) chronically infects 58 million individuals worldwide with variable disease outcome. While a subfraction of individuals exposed to the virus clear the infection, the majority develop chronic infection if untreated. Another subfraction of chronically ill proceeds to severe liver disease. The underlying causes of this interindividual variability include genetic polymorphisms in interferon genes. Here, we review available data on the influence of genetic or pharmacological perturbation of HCV host dependency factors on the clinically observed interindividual differences in disease outcome. We focus on host factors mediating virus entry into human liver cells. We assess available data on genetic variants of the major entry factors scavenger receptor class-B type I, CD81, claudin-1, and occludin as well as pharmacological perturbation of these entry factors. We review cell culture experimental and clinical cohort study data and conclude that entry factor perturbation may contribute to disease outcome of hepatitis C.
Collapse
Affiliation(s)
- Belén Carriquí-Madroñal
- Department of Biochemistry & Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hanover, Hanover, Germany; Institute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Medical School Hannover and the Helmholtz Centre for Infection Research, Hanover, Germany
| | - Lisa Lasswitz
- Department of Biochemistry & Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hanover, Hanover, Germany; Institute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Medical School Hannover and the Helmholtz Centre for Infection Research, Hanover, Germany
| | - Thomas von Hahn
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, 30625 Hannover, Germany; Department of Gastroenterology, Hepatology and Interventional Endoscopy, Asklepios Hospital Barmbek, Semmelweis University, Campus Hamburg, 22307 Hamburg, Germany
| | - Gisa Gerold
- Department of Biochemistry & Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hanover, Hanover, Germany; Institute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Medical School Hannover and the Helmholtz Centre for Infection Research, Hanover, Germany; Wallenberg Centre for Molecular Medicine (WCMM), Umeå University, Umeå, Sweden; Department of Clinical Microbiology, Virology, Umeå University, Umeå, Sweden.
| |
Collapse
|
4
|
Song Y, Fan S, Zhang D, Li J, Li Z, Li Z, Xiao W, Wang J. Zebrafish maoc1 Attenuates Spring Viremia of Carp Virus Propagation by Promoting Autophagy-Lysosome-Dependent Degradation of Viral Phosphoprotein. J Virol 2023; 97:e0133822. [PMID: 36744960 PMCID: PMC9972956 DOI: 10.1128/jvi.01338-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 01/21/2023] [Indexed: 02/07/2023] Open
Abstract
Spring viremia of carp virus (SVCV) is the causative agent of spring viremia of carp (SVC), an important infectious disease that causes high mortality in aquaculture cyprinids. How the host defends against SVCV infection and the underlying mechanisms are still elusive. In this study, we identify that a novel gene named maoc1 is induced by SVCV infection. maoc1-deficient zebrafish are more susceptible to SVCV infection, with higher virus replication and antiviral gene induction. Further assays indicate that maoc1 interacts with the P protein of SVCV to trigger P protein degradation through the autophagy-lysosomal pathway, leading to the restriction of SVCV propagation. These findings reveal a unique zebrafish defense machinery in response to SVCV infection. IMPORTANCE SVCV P protein plays an essential role in the virus replication and viral immune evasion process. Here, we identify maoc1 as a novel SVCV-inducible gene and demonstrate its antiviral capacity through attenuating SVCV replication, by directly binding to P protein and mediating its degradation via the autophagy-lysosomal pathway. Therefore, this study not only reveals an essential role of maoc1 in fighting against SVCV infection but also demonstrates an unusual host defense mechanism in response to invading viruses.
Collapse
Affiliation(s)
- Yanan Song
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, People’s Republic of China
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, People’s Republic of China
| | - Sijia Fan
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, People’s Republic of China
| | - Dawei Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, People’s Republic of China
| | - Jun Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, People’s Republic of China
| | - Zhi Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, People’s Republic of China
| | - Ziyi Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, People’s Republic of China
| | - Wuhan Xiao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, People’s Republic of China
- The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, People’s Republic of China
- Hubei Hongshan Laboratory, Wuhan, People’s Republic of China
| | - Jing Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, People’s Republic of China
- The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| |
Collapse
|
5
|
A single mutation in the E2 glycoprotein of hepatitis C virus broadens the claudin specificity for its infection. Sci Rep 2022; 12:20243. [PMID: 36424447 PMCID: PMC9691748 DOI: 10.1038/s41598-022-23824-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 11/07/2022] [Indexed: 11/27/2022] Open
Abstract
Entry of the hepatitis C virus (HCV) into host cells is a multistep process mediated by several host factors, including a tight junction protein claudin-1 (CLDN1). We repeatedly passaged HCV-JFH1-tau, an HCV substrain with higher infectivity, on Huh7.5.1-8 cells. A multi-passaged HCV-JFH1-tau lot was infectious to CLDN1-defective S7-A cells, non-permissive to original HCV-JFH1-tau infection. We identified a single mutation, M706L, in the E2 glycoprotein of the HCV-JFH1-tau lot as an essential mutation for infectivity to S7-A cells. The pseudovirus JFH1/M706L mutant could not infect human embryonic kidney 293 T (HEK293T) cells lacking CLDN family but infected HEK293T cells expressing CLDN1, CLDN6, or CLDN9. Thus, this mutant virus could utilize CLDN1, and other CLDN6 and CLDN9, making HCV possible to infect cells other than hepatocytes. iPS cells, one of the stem cells, do not express CLDN1 but express CLDN6 and other host factors required for HCV infection. We confirmed that the HCV-JFH1-tau-derived mutant with an M706L mutation infected iPS cells in a CLDN6-dependent manner. These results demonstrated that a missense mutation in E2 could broaden the CLDN member specificity for HCV infection. HCV may change its receptor requirement through a single amino acid mutation and infect non-hepatic cells.
Collapse
|
6
|
Deffieu MS, Clément CMH, Dorobantu CM, Partiot E, Bare Y, Faklaris O, Rivière B, Ayala-Nunez NV, Baumert TF, Rondé P, Mély Y, Lucansky V, Gaudin R. Occludin stalls HCV particle dynamics apart from hepatocyte tight junctions, promoting virion internalization. Hepatology 2022; 76:1164-1179. [PMID: 35388524 DOI: 10.1002/hep.32514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 03/28/2022] [Accepted: 04/03/2022] [Indexed: 12/08/2022]
Abstract
BACKGROUND AND AIMS Numerous HCV entry factors have been identified, and yet information regarding their spatiotemporal dynamics is still limited. Specifically, one of the main entry factors of HCV is occludin (OCLN), a protein clustered at tight junctions (TJs), away from the HCV landing site. Thus, whether HCV particles slide toward TJs or, conversely, OCLN is recruited away from TJs remain debated. APPROACH AND RESULTS Here, we generated CRISPR/CRISPR-associated protein 9 edited Huh7.5.1 cells expressing endogenous levels of enhanced green fluorescent protein/OCLN and showed that incoming HCV particles recruit OCLN outside TJs, independently of claudin 1 (CLDN1) expression, another important HCV entry factor located at TJs. Using ex vivo organotypic culture of hepatic slices obtained from human liver explants, a physiologically relevant model that preserves the overall tissue architecture, we confirmed that HCV associates with OCLN away from TJs. Furthermore, we showed, by live cell imaging, that increased OCLN recruitment beneath HCV particles correlated with lower HCV motility. To decipher the mechanism underlying virus slow-down upon OCLN recruitment, we performed CRISPR knockout (KO) of CLDN1, an HCV entry factor proposed to act upstream of OCLN. Although CLDN1 KO potently inhibits HCV infection, OCLN kept accumulating underneath the particle, indicating that OCLN recruitment is CLDN1 independent. Moreover, inhibition of the phosphorylation of Ezrin, a protein involved in HCV entry that links receptors to the actin cytoskeleton, increased OCLN accumulation and correlated with more efficient HCV internalization. CONCLUSIONS Together, our data provide robust evidence that HCV particles interact with OCLN away from TJs and shed mechanistic insights regarding the manipulation of transmembrane receptor localization by extracellular virus particles.
Collapse
Affiliation(s)
- Maika S Deffieu
- 27051Institut de Recherche en infectiologie de Montpellier (IRIM)CNRSMontpellierFrance
- Université de MontpellierMontpellierFrance
| | - Camille M H Clément
- 27051Institut de Recherche en infectiologie de Montpellier (IRIM)CNRSMontpellierFrance
- Université de MontpellierMontpellierFrance
- Université de StrasbourgStrasbourgFrance
- INSERMInstitut de Recherche sur les Maladies Virales et HépatiquesStrasbourgFrance
| | - Cristina M Dorobantu
- Université de StrasbourgStrasbourgFrance
- INSERMInstitut de Recherche sur les Maladies Virales et HépatiquesStrasbourgFrance
- Janssen Vaccines and Prevention B.V. Newtonweg 12333 CP Leiden PO Box 20482301CA LeidenThe Netherlands
| | - Emma Partiot
- 27051Institut de Recherche en infectiologie de Montpellier (IRIM)CNRSMontpellierFrance
- Université de MontpellierMontpellierFrance
| | - Yonis Bare
- 27051Institut de Recherche en infectiologie de Montpellier (IRIM)CNRSMontpellierFrance
- Université de MontpellierMontpellierFrance
| | | | - Benjamin Rivière
- CHU MontpellierLaboratoire d'Anatomie et Cytologie Pathologiques-CRBMontpellierFrance
| | - Nilda Vanesa Ayala-Nunez
- 27051Institut de Recherche en infectiologie de Montpellier (IRIM)CNRSMontpellierFrance
- Université de MontpellierMontpellierFrance
- Empa-Swiss Federal Laboratories for Materials Science and Technology. Lerchenfeldstrasse 59014St. GallenSwitzerland
| | - Thomas F Baumert
- Université de StrasbourgStrasbourgFrance
- INSERMInstitut de Recherche sur les Maladies Virales et HépatiquesStrasbourgFrance
- Pole Hépato-digestifHôpitaux Universitaires de StrasbourgInstitut Hospitalo-universitaireStrasbourgFrance
| | - Philippe Rondé
- Université de StrasbourgStrasbourgFrance
- UMR 7021 CNRSLaboratoire de Bioimagerie et PathologiesUniversité de StrasbourgFaculté de pharmacieIllkirchFrance
| | - Yves Mély
- Université de StrasbourgStrasbourgFrance
- UMR 7021 CNRSLaboratoire de Bioimagerie et PathologiesUniversité de StrasbourgFaculté de pharmacieIllkirchFrance
| | - Vincent Lucansky
- Université de StrasbourgStrasbourgFrance
- INSERMInstitut de Recherche sur les Maladies Virales et HépatiquesStrasbourgFrance
- Comenius University in Bratislavathe Jessenius Faculty of Medicine in Martin (JFMED CU)Biomedical Center MartinMala Hora 4C036 01MartinSlovakia
| | - Raphael Gaudin
- 27051Institut de Recherche en infectiologie de Montpellier (IRIM)CNRSMontpellierFrance
- Université de MontpellierMontpellierFrance
| |
Collapse
|
7
|
Salama II, Raslan HM, Abdel-Latif GA, Salama SI, Sami SM, Shaaban FA, Abdelmohsen AM, Fouad WA. Impact of direct-acting antiviral regimens on hepatic and extrahepatic manifestations of hepatitis C virus infection. World J Hepatol 2022; 14:1053-1073. [PMID: 35978668 PMCID: PMC9258264 DOI: 10.4254/wjh.v14.i6.1053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 04/01/2022] [Accepted: 05/22/2022] [Indexed: 02/06/2023] Open
Abstract
Hepatitis C virus (HCV) is a common cause of liver disease and is associated with various extrahepatic manifestations (EHMs). This mini-review outlines the currently available treatments for HCV infection and their prognostic effect on hepatic manifestations and EHMs. Direct-acting antiviral (DAA) regimens are considered pan-genotypic as they achieve a sustained virological response (SVR) > 85% after 12 wk through all the major HCV genotypes, with high percentages of SVR even in advanced fibrosis and cirrhosis. The risk factors for DAA failure include old males, cirrhosis, and the presence of resistance-associated substitutions (RAS) in the region targeted by the received DAAs. The effectiveness of DAA regimens is reduced in HCV genotype 3 with baseline RAS like A30K, Y93H, and P53del. Moreover, the European Association for the Study of the Liver recommended the identification of baseline RAS for HCV genotype 1a. The higher rate of hepatocellular carcinoma (HCC) after DAA therapy may be related to the fact that DAA regimens are offered to patients with advanced liver fibrosis and cirrhosis, where interferon was contraindicated to those patients. The change in the growth of pre-existing subclinical, undetectable HCC upon DAA treatment might be also a cause. Furthermore, after DAA therapy, the T cell-dependent immune response is much weaker upon HCV clearance, and the down-regulation of TNF-α or the elevated neutrophil to lymphocyte ratio might increase the risk of HCC. DAAs can result in reactivation of hepatitis B virus (HBV) in HCV co-infected patients. DAAs are effective in treating HCV-associated mixed cryoglobulinemia, with clinical and immunological responses, and have rapid and high effectiveness in thrombocytopenia. DAAs improve insulin resistance in 90% of patients, increase glomerular filtration rate, and decrease proteinuria, hematuria and articular manifestations. HCV clearance by DAAs allows a significant improvement in atherosclerosis and metabolic and immunological conditions, with a reduction of major cardiovascular events. They also improve physical function, fatigue, cognitive impairment, and quality of life. Early therapeutic approach with DAAs is recommended as it cure many of the EHMs that are still in a reversible stage and can prevent others that can develop due to delayed treatment.
Collapse
Affiliation(s)
- Iman Ibrahim Salama
- Department of Community Medicine Research, National Research Center, Giza 12622, Dokki, Egypt.
| | - Hala M Raslan
- Department of Internal Medicine, National Research Center, Giza 12622, Dokki, Egypt
| | - Ghada A Abdel-Latif
- Department of Community Medicine Research, National Research Center, Giza 12622, Dokki, Egypt
| | - Somaia I Salama
- Department of Community Medicine Research, National Research Center, Giza 12622, Dokki, Egypt
| | - Samia M Sami
- Department of Child Health, National Research Center, Giza 12622, Dokki, Egypt
| | - Fatma A Shaaban
- Department of Child Health, National Research Center, Giza 12622, Dokki, Egypt
| | - Aida M Abdelmohsen
- Department of Community Medicine Research, National Research Center, Giza 12622, Dokki, Egypt
| | - Walaa A Fouad
- Department of Community Medicine Research, National Research Center, Giza 12622, Dokki, Egypt
| |
Collapse
|
8
|
Li HC, Yang CH, Lo SY. Cellular factors involved in the hepatitis C virus life cycle. World J Gastroenterol 2021; 27:4555-4581. [PMID: 34366623 PMCID: PMC8326260 DOI: 10.3748/wjg.v27.i28.4555] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 04/04/2021] [Accepted: 07/09/2021] [Indexed: 02/06/2023] Open
Abstract
The hepatitis C virus (HCV), an obligatory intracellular pathogen, highly depends on its host cells to propagate successfully. The HCV life cycle can be simply divided into several stages including viral entry, protein translation, RNA replication, viral assembly and release. Hundreds of cellular factors involved in the HCV life cycle have been identified over more than thirty years of research. Characterization of these cellular factors has provided extensive insight into HCV replication strategies. Some of these cellular factors are targets for anti-HCV therapies. In this review, we summarize the well-characterized and recently identified cellular factors functioning at each stage of the HCV life cycle.
Collapse
Affiliation(s)
- Hui-Chun Li
- Department of Biochemistry, Tzu Chi University, Hualien 970, Taiwan
| | - Chee-Hing Yang
- Department of Laboratory Medicine and Biotechnology, Tzu Chi University, Hualien 970, Taiwan
| | - Shih-Yen Lo
- Department of Laboratory Medicine and Biotechnology, Tzu Chi University, Hualien 970, Taiwan
- Department of Laboratory Medicine, Buddhist Tzu Chi General Hospital, Hualien 970, Taiwan
| |
Collapse
|
9
|
Moreira-Soto A, Arroyo-Murillo F, Sander AL, Rasche A, Corman V, Tegtmeyer B, Steinmann E, Corrales-Aguilar E, Wieseke N, Avey-Arroyo J, Drexler JF. Cross-order host switches of hepatitis C-related viruses illustrated by a novel hepacivirus from sloths. Virus Evol 2020; 6:veaa033. [PMID: 32704383 PMCID: PMC7368370 DOI: 10.1093/ve/veaa033] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The genealogy of the hepatitis C virus (HCV) and the genus Hepacivirus remains elusive despite numerous recently discovered animal hepaciviruses (HVs). Viruses from evolutionarily ancient mammals might elucidate the HV macro-evolutionary patterns. Here, we investigated sixty-seven two-toed and nine three-toed sloths from Costa Rica for HVs using molecular and serological tools. A novel sloth HV was detected by reverse transcription polymerase chain reaction (RT-PCR) in three-toed sloths (2/9, 22.2%; 95% confidence interval (CI), 5.3-55.7). Genomic characterization revealed typical HV features including overall polyprotein gene structure, a type 4 internal ribosomal entry site in the viral 5'-genome terminus, an A-U-rich region and X-tail structure in the viral 3'-genome terminus. Different from other animal HVs, HV seropositivity in two-toed sloths was low at 4.5 per cent (3/67; CI, 1.0-12.9), whereas the RT-PCR-positive three-toed sloths were seronegative. Limited cross-reactivity of the serological assay implied exposure of seropositive two-toed sloths to HVs of unknown origin and recent infections in RT-PCR-positive animals preceding seroconversion. Recent infections were consistent with only 9 nucleotide exchanges between the two sloth HVs, located predominantly within the E1/E2 encoding regions. Translated sequence distances of NS3 and NS5 proteins and host comparisons suggested that the sloth HV represents a novel HV species. Event- and sequence distance-based reconciliations of phylogenies of HVs and of their hosts revealed complex macro-evolutionary patterns, including both long-term evolutionary associations and host switches, most strikingly from rodents into sloths. Ancestral state reconstructions corroborated rodents as predominant sources of HV host switches during the genealogy of extant HVs. Sequence distance comparisons, partial conservation of critical amino acid residues associated with HV entry and selection pressure signatures of host genes encoding entry and antiviral protein orthologs were consistent with HV host switches between genetically divergent mammals, including the projected host switch from rodents into sloths. Structural comparison of HCV and sloth HV E2 proteins suggested conserved modes of hepaciviral entry. Our data corroborate complex macro-evolutionary patterns shaping the genus Hepacivirus, highlight that host switches are possible across highly diverse host taxa, and elucidate a prominent role of rodent hosts during the Hepacivirus genealogy.
Collapse
Affiliation(s)
- Andres Moreira-Soto
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Virology, Berlin 10117, Germany.,Virology-CIET, Faculty of Microbiology, University of Costa Rica, San José, Costa Rica
| | | | - Anna-Lena Sander
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Virology, Berlin 10117, Germany
| | - Andrea Rasche
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Virology, Berlin 10117, Germany
| | - Victor Corman
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Virology, Berlin 10117, Germany
| | - Birthe Tegtmeyer
- Institute for Experimental Virology, TWINCORE Centre for Experimental and Clinical Infection Research, a Joint Venture Between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover 30625, Germany
| | - Eike Steinmann
- Department of Molecular and Medical Virology, Faculty of Medicine, Ruhr-University Bochum, Bochum 44801, Germany
| | | | - Nicolas Wieseke
- Swarm Intelligence and Complex Systems Group, Department of Computer Science, Leipzig University, Leipzig, Germany
| | | | - Jan Felix Drexler
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Virology, Berlin 10117, Germany.,German Centre for Infection Research (DZIF), Germany
| |
Collapse
|
10
|
Mailly L, Baumert TF. Hepatitis C virus infection and tight junction proteins: The ties that bind. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183296. [PMID: 32268133 DOI: 10.1016/j.bbamem.2020.183296] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/25/2020] [Accepted: 03/28/2020] [Indexed: 02/07/2023]
Abstract
The hepatitis C virus (HCV) is a major cause of liver diseases ranging from liver inflammation to advanced liver diseases like cirrhosis and hepatocellular carcinoma (HCC). HCV infection is restricted to the liver, and more specifically to hepatocytes, which represent around 80% of liver cells. The mechanism of HCV entry in human hepatocytes has been extensively investigated since the discovery of the virus 30 years ago. The entry mechanism is a multi-step process relying on several host factors including heparan sulfate proteoglycan (HSPG), low density lipoprotein receptor (LDLR), tetraspanin CD81, Scavenger Receptor class B type I (SR-BI), Epidermal Growth Factor Receptor (EGFR) and Niemann-Pick C1-like 1 (NPC1L1). Moreover, in order to establish a persistent infection, HCV entry is dependent on the presence of tight junction (TJ) proteins Claudin-1 (CLDN1) and Occludin (OCLN). In the liver, tight junction proteins play a role in architecture and homeostasis including sealing the apical pole of adjacent cells to form bile canaliculi and separating the basolateral domain drained by sinusoidal blood flow. In this review, we will highlight the role of liver tight junction proteins in HCV infection, and we will discuss the potential targeted therapeutic approaches to improve virus eradication.
Collapse
Affiliation(s)
- Laurent Mailly
- Université de Strasbourg, INSERM, UMR-S1110, Institut de Recherche sur les Maladies Virales et Hépatiques, F-67000 Strasbourg, France.
| | - Thomas F Baumert
- Université de Strasbourg, INSERM, UMR-S1110, Institut de Recherche sur les Maladies Virales et Hépatiques, F-67000 Strasbourg, France; Pôle Hépato-digestif, Hôpitaux Universitaires de Strasbourg, F-67000 Strasbourg, France; Institut Universitaire de France, F-75231 Paris, France.
| |
Collapse
|
11
|
Hepatitis C Virus Entry: An Intriguingly Complex and Highly Regulated Process. Int J Mol Sci 2020; 21:ijms21062091. [PMID: 32197477 PMCID: PMC7140000 DOI: 10.3390/ijms21062091] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/15/2020] [Accepted: 03/16/2020] [Indexed: 02/07/2023] Open
Abstract
Hepatitis C virus (HCV) is a major cause of chronic hepatitis and liver disease worldwide. Its tissue and species tropism are largely defined by the viral entry process that is required for subsequent productive viral infection and establishment of chronic infection. This review provides an overview of the viral and host factors involved in HCV entry into hepatocytes, summarizes our understanding of the molecular mechanisms governing this process and highlights the therapeutic potential of host-targeting entry inhibitors.
Collapse
|
12
|
Gerold G, Moeller R, Pietschmann T. Hepatitis C Virus Entry: Protein Interactions and Fusion Determinants Governing Productive Hepatocyte Invasion. Cold Spring Harb Perspect Med 2020; 10:cshperspect.a036830. [PMID: 31427285 DOI: 10.1101/cshperspect.a036830] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Hepatitis C virus (HCV) entry is among the best-studied uptake processes for human pathogenic viruses. Uptake follows a spatially and temporally tightly controlled program. Numerous host factors including proteins, lipids, and glycans promote productive uptake of HCV particles into human liver cells. The virus initially attaches to surface proteoglycans, lipid receptors such as the scavenger receptor BI (SR-BI), and to the tetraspanin CD81. After lateral translocation of virions to tight junctions, claudin-1 (CLDN1) and occludin (OCLN) are essential for entry. Clathrin-mediated endocytosis engulfs HCV particles, which fuse with endosomal membranes after pH drop. Uncoating of the viral RNA genome in the cytoplasm completes the entry process. Here we systematically review and classify HCV entry factors by their mechanistic role, relevance, and level of evidence. Finally, we report on more recent knowledge on determinants of membrane fusion and close with an outlook on future implications of HCV entry research.
Collapse
Affiliation(s)
- Gisa Gerold
- TWINCORE, Center for Experimental and Clinical Infection Research, Institute for Experimental Virology, 30625 Hannover, Germany.,Department of Clinical Microbiology, Virology & Wallenberg Centre for Molecular Medicine (WCMM), Umeå University, 901 85 Umeå, Sweden
| | - Rebecca Moeller
- TWINCORE, Center for Experimental and Clinical Infection Research, Institute for Experimental Virology, 30625 Hannover, Germany
| | - Thomas Pietschmann
- TWINCORE, Center for Experimental and Clinical Infection Research, Institute for Experimental Virology, 30625 Hannover, Germany
| |
Collapse
|
13
|
Roehlen N, Roca Suarez AA, El Saghire H, Saviano A, Schuster C, Lupberger J, Baumert TF. Tight Junction Proteins and the Biology of Hepatobiliary Disease. Int J Mol Sci 2020; 21:ijms21030825. [PMID: 32012812 PMCID: PMC7038100 DOI: 10.3390/ijms21030825] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/10/2020] [Accepted: 01/21/2020] [Indexed: 12/24/2022] Open
Abstract
Tight junctions (TJ) are intercellular adhesion complexes on epithelial cells and composed of integral membrane proteins as well as cytosolic adaptor proteins. Tight junction proteins have been recognized to play a key role in health and disease. In the liver, TJ proteins have several functions: they contribute as gatekeepers for paracellular diffusion between adherent hepatocytes or cholangiocytes to shape the blood-biliary barrier (BBIB) and maintain tissue homeostasis. At non-junctional localizations, TJ proteins are involved in key regulatory cell functions such as differentiation, proliferation, and migration by recruiting signaling proteins in response to extracellular stimuli. Moreover, TJ proteins are hepatocyte entry factors for the hepatitis C virus (HCV)—a major cause of liver disease and cancer worldwide. Perturbation of TJ protein expression has been reported in chronic HCV infection, cholestatic liver diseases as well as hepatobiliary carcinoma. Here we review the physiological function of TJ proteins in the liver and their implications in hepatobiliary diseases.
Collapse
Affiliation(s)
- Natascha Roehlen
- Institut de Recherche sur les Maladies Virales et Hépatiques, Inserm UMR1110, F-67000 Strasbourg, France; (N.R.); (A.A.R.S.); (H.E.S.); (A.S.); (C.S.); (J.L.)
- Université de Strasbourg, F-67000 Strasbourg, France
| | - Armando Andres Roca Suarez
- Institut de Recherche sur les Maladies Virales et Hépatiques, Inserm UMR1110, F-67000 Strasbourg, France; (N.R.); (A.A.R.S.); (H.E.S.); (A.S.); (C.S.); (J.L.)
- Université de Strasbourg, F-67000 Strasbourg, France
| | - Houssein El Saghire
- Institut de Recherche sur les Maladies Virales et Hépatiques, Inserm UMR1110, F-67000 Strasbourg, France; (N.R.); (A.A.R.S.); (H.E.S.); (A.S.); (C.S.); (J.L.)
- Université de Strasbourg, F-67000 Strasbourg, France
| | - Antonio Saviano
- Institut de Recherche sur les Maladies Virales et Hépatiques, Inserm UMR1110, F-67000 Strasbourg, France; (N.R.); (A.A.R.S.); (H.E.S.); (A.S.); (C.S.); (J.L.)
- Université de Strasbourg, F-67000 Strasbourg, France
- Pôle Hepato-digestif, Institut Hopitalo-universitaire, Hôpitaux Universitaires de Strasbourg, F-67000 Strasbourg, France
| | - Catherine Schuster
- Institut de Recherche sur les Maladies Virales et Hépatiques, Inserm UMR1110, F-67000 Strasbourg, France; (N.R.); (A.A.R.S.); (H.E.S.); (A.S.); (C.S.); (J.L.)
- Université de Strasbourg, F-67000 Strasbourg, France
| | - Joachim Lupberger
- Institut de Recherche sur les Maladies Virales et Hépatiques, Inserm UMR1110, F-67000 Strasbourg, France; (N.R.); (A.A.R.S.); (H.E.S.); (A.S.); (C.S.); (J.L.)
- Université de Strasbourg, F-67000 Strasbourg, France
| | - Thomas F. Baumert
- Institut de Recherche sur les Maladies Virales et Hépatiques, Inserm UMR1110, F-67000 Strasbourg, France; (N.R.); (A.A.R.S.); (H.E.S.); (A.S.); (C.S.); (J.L.)
- Université de Strasbourg, F-67000 Strasbourg, France
- Pôle Hepato-digestif, Institut Hopitalo-universitaire, Hôpitaux Universitaires de Strasbourg, F-67000 Strasbourg, France
- Correspondence: ; Tel.: +33-3688-53703
| |
Collapse
|
14
|
Deep Mutational Scanning Comprehensively Maps How Zika Envelope Protein Mutations Affect Viral Growth and Antibody Escape. J Virol 2019; 93:JVI.01291-19. [PMID: 31511387 DOI: 10.1128/jvi.01291-19] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Accepted: 09/06/2019] [Indexed: 12/11/2022] Open
Abstract
Functional constraints on viral proteins are often assessed by examining sequence conservation among natural strains, but this approach is relatively ineffective for Zika virus because all known sequences are highly similar. Here, we take an alternative approach to map functional constraints on Zika virus's envelope (E) protein by using deep mutational scanning to measure how all amino acid mutations to the E protein affect viral growth in cell culture. The resulting sequence-function map is consistent with existing knowledge about E protein structure and function but also provides insight into mutation-level constraints in many regions of the protein that have not been well characterized in prior functional work. In addition, we extend our approach to completely map how mutations affect viral neutralization by two monoclonal antibodies, thereby precisely defining their functional epitopes. Overall, our study provides a valuable resource for understanding the effects of mutations to this important viral protein and also offers a roadmap for future work to map functional and antigenic selection to Zika virus at high resolution.IMPORTANCE Zika virus has recently been shown to be associated with severe birth defects. The virus's E protein mediates its ability to infect cells and is also the primary target of the antibodies that are elicited by natural infection and vaccines that are being developed against the virus. Therefore, determining the effects of mutations to this protein is important for understanding its function, its susceptibility to vaccine-mediated immunity, and its potential for future evolution. We completely mapped how amino acid mutations to the E protein affected the virus's ability to grow in cells in the laboratory and escape from several antibodies. The resulting maps relate changes in the E protein's sequence to changes in viral function and therefore provide a valuable complement to existing maps of the physical structure of the protein.
Collapse
|
15
|
O’Hanlon R, Leyva-Grado VH, Sourisseau M, Evans MJ, Shaw ML. An Influenza Virus Entry Inhibitor Targets Class II PI3 Kinase and Synergizes with Oseltamivir. ACS Infect Dis 2019; 5:1779-1793. [PMID: 31448902 DOI: 10.1021/acsinfecdis.9b00230] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Two classes of antivirals targeting the viral neuraminidase (NA) and endonuclease are currently the only clinically useful drugs for the treatment of influenza. However, resistance to both antivirals has been observed in clinical isolates, and there was widespread resistance to oseltamivir (an NA inhibitor) among H1N1 viruses prior to 2009. This potential for resistance and lack of diversity for antiviral targets highlights the need for new influenza antivirals with a higher barrier to resistance. In this study, we identified an antiviral compound, M85, that targets host kinases, epidermal growth factor receptor (EGFR), and phosphoinositide 3 class II β (PIK3C2β) and is not susceptible to resistance by viral mutations. M85 blocks endocytosis of influenza viruses and inhibits a broad-spectrum of viruses with minimal cytotoxicity. In vitro, we found that combinations of M85 and oseltamivir have strong synergism. In the mouse model for influenza, treatment with the combination therapy was more protective against a lethal viral challenge than oseltamivir alone, indicating that development of M85 could lead to combination therapies for influenza. Finally, through this discovery of M85 and its antiviral mechanism, we present the first description of PIK3C2β as a necessary host factor for influenza virus entry.
Collapse
|
16
|
Lavie M, Linna L, Moustafa RI, Belouzard S, Fukasawa M, Dubuisson J. Role of the cytosolic domain of occludin in trafficking and hepatitis C virus infection. Traffic 2019; 20:753-773. [PMID: 31328852 DOI: 10.1111/tra.12680] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 07/17/2019] [Accepted: 07/17/2019] [Indexed: 12/12/2022]
Abstract
The role of the tight-junction (TJ) protein occludin (OCLN) in hepatitis C virus (HCV) entry remains elusive. Here, we investigated the OCLN C-terminal cytosolic domain in HCV infection. We expressed a series of C-terminal deletion mutants in Huh-7 cells KO for OCLN and characterized their functionality in HCV infection and trafficking. Deleting the OCLN cytosolic domain led to protein instability and intracellular retention. The first 15 residues (OCLN-C15 mutant) of the cytosolic domain were sufficient for OCLN stability, but led to its accumulation in the trans-Golgi network (TGN) due to a deficient cell surface export after synthesis. In contrast, the OCLN-C18 mutant, containing the first 18 residues of the cytosolic domain, was expressed at the cell surface and could mediate HCV infection. Point mutations in the context of C18 showed that I279 and W281 are crucial residues for cell surface expression of OCLN-C18. However, in the context of full-length OCLN, mutation of these residues only partially affected infection and cell surface localization. Importantly, the characterization of OCLN-C18 in human-polarized hepatocytes revealed a defect in its TJ localization without affecting HCV infection. These data suggest that TJ localization of OCLN is not a prerequisite for HCV infection in polarized hepatocytes.
Collapse
Affiliation(s)
- Muriel Lavie
- Universite de Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 8204-CIIL-Center for Infection and Immunity of Lille, Lille, France
| | - Lydia Linna
- Universite de Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 8204-CIIL-Center for Infection and Immunity of Lille, Lille, France
| | - Rehab I Moustafa
- Universite de Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 8204-CIIL-Center for Infection and Immunity of Lille, Lille, France.,Department of Microbial Biotechnology, Genetic Engineering and Biotechnology Division, National Research Center, Cairo, Egypt
| | - Sandrine Belouzard
- Universite de Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 8204-CIIL-Center for Infection and Immunity of Lille, Lille, France
| | - Masayoshi Fukasawa
- Department of Biochemistry & Cell Biology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Jean Dubuisson
- Universite de Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 8204-CIIL-Center for Infection and Immunity of Lille, Lille, France
| |
Collapse
|
17
|
Zeisel MB, Dhawan P, Baumert TF. Tight junction proteins in gastrointestinal and liver disease. Gut 2019; 68:547-561. [PMID: 30297438 PMCID: PMC6453741 DOI: 10.1136/gutjnl-2018-316906] [Citation(s) in RCA: 202] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 08/16/2018] [Accepted: 08/19/2018] [Indexed: 12/11/2022]
Abstract
Over the past two decades a growing body of evidence has demonstrated an important role of tight junction (TJ) proteins in the physiology and disease biology of GI and liver disease. On one side, TJ proteins exert their functional role as integral proteins of TJs in forming barriers in the gut and the liver. Furthermore, TJ proteins can also be expressed outside TJs where they play important functional roles in signalling, trafficking and regulation of gene expression. A hallmark of TJ proteins in disease biology is their functional role in epithelial-to-mesenchymal transition. A causative role of TJ proteins has been established in the pathogenesis of colorectal cancer and gastric cancer. Among the best characterised roles of TJ proteins in liver disease biology is their function as cell entry receptors for HCV-one of the most common causes of hepatocellular carcinoma. At the same time TJ proteins are emerging as targets for novel therapeutic approaches for GI and liver disease. Here we review our current knowledge of the role of TJ proteins in the pathogenesis of GI and liver disease biology and discuss their potential as therapeutic targets.
Collapse
Affiliation(s)
- Mirjam B. Zeisel
- Inserm U1052, CNRS UMR 5286, Cancer Research Center of Lyon (CRCL), Université de Lyon (UCBL), Lyon, France
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
| | - Punita Dhawan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE
- Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE
- VA Nebraska-Western Iowa Health Care System, Omaha, NE
| | - Thomas F. Baumert
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
- Institut Hospitalo-Universitaire, Pôle hépato-digestif, Nouvel Hôpital Civil, Strasbourg, France
| |
Collapse
|
18
|
Baktash Y, Madhav A, Coller KE, Randall G. Single Particle Imaging of Polarized Hepatoma Organoids upon Hepatitis C Virus Infection Reveals an Ordered and Sequential Entry Process. Cell Host Microbe 2018; 23:382-394.e5. [PMID: 29544098 DOI: 10.1016/j.chom.2018.02.005] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 01/30/2018] [Accepted: 02/16/2018] [Indexed: 12/12/2022]
Abstract
Hepatitis C virus (HCV) enters hepatocytes via various entry factors, including scavenger receptor BI (SR-B1), cluster of differentiation 81 (CD81), epidermal growth factor receptor (EGFR), claudin-1 (CLDN1), and occludin (OCLN). As CLDN1 and OCLN are not readily accessible due to their tight junctional localization, HCV likely accesses them by either disrupting cellular polarity or migrating to the tight junction. In this study, we image HCV entry into a three-dimensional polarized hepatoma system and reveal that the virus sequentially engages these entry factors through actin-dependent mechanisms. HCV initially localizes with the early entry factors SR-B1, CD81, and EGFR at the basolateral membrane and then accumulates at the tight junction in an actin-dependent manner. HCV associates with CLDN1 and then OCLN at the tight junction and is internalized via clathrin-mediated endocytosis by an active process requiring EGFR. Thus, HCV uses a dynamic and multi-step process to engage and enter host cells.
Collapse
Affiliation(s)
- Yasmine Baktash
- Department of Microbiology, The University of Chicago, Chicago, IL 60637, USA
| | - Anisha Madhav
- Department of Microbiology, The University of Chicago, Chicago, IL 60637, USA
| | - Kelly E Coller
- Department of Microbiology, The University of Chicago, Chicago, IL 60637, USA
| | - Glenn Randall
- Department of Microbiology, The University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
19
|
Curto MÁ, Moro S, Yanguas F, Gutiérrez-González C, Valdivieso MH. The ancient claudin Dni2 facilitates yeast cell fusion by compartmentalizing Dni1 into a membrane subdomain. Cell Mol Life Sci 2018; 75:1687-1706. [PMID: 29134248 PMCID: PMC11105288 DOI: 10.1007/s00018-017-2709-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 10/10/2017] [Accepted: 11/03/2017] [Indexed: 12/20/2022]
Abstract
Dni1 and Dni2 facilitate cell fusion during mating. Here, we show that these proteins are interdependent for their localization in a plasma membrane subdomain, which we have termed the mating fusion domain. Dni1 compartmentation in the domain is required for cell fusion. The contribution of actin, sterol-dependent membrane organization, and Dni2 to this compartmentation was analysed, and the results showed that Dni2 plays the most relevant role in the process. In turn, the Dni2 exit from the endoplasmic reticulum depends on Dni1. These proteins share the presence of a cysteine motif in their first extracellular loop related to the claudin GLWxxC(8-10 aa)C signature motif. Structure-function analyses show that mutating each Dni1 conserved cysteine has mild effects, and that only simultaneous elimination of several cysteines leads to a mating defect. On the contrary, eliminating each single cysteine and the C-terminal tail in Dni2 abrogates Dni1 compartmentation and cell fusion. Sequence alignments show that claudin trans-membrane helixes bear small-XXX-small motifs at conserved positions. The fourth Dni2 trans-membrane helix tends to form homo-oligomers in Escherichia plasma membrane, and two concatenated small-XXX-small motifs are required for efficient oligomerization and for Dni2 export from the yeast endoplasmic reticulum. Together, our results strongly suggest that Dni2 is an ancient claudin that blocks Dni1 diffusion from the intercellular region where two plasma membranes are in close proximity, and that this function is required for Dni1 to facilitate cell fusion.
Collapse
Affiliation(s)
- M-Ángeles Curto
- Departamento de Microbiología y Genética, Universidad de Salamanca, Calle Zacarías González 2, Lab P1.1, Edificio IBFG, 37007, Salamanca, Spain
- Instituto de Biología Funcional y Genómica (IBFG), Consejo Superior de Investigaciones Científicas (CSIC), Calle Zacarías González 2, 37007, Salamanca, Spain
| | - Sandra Moro
- Departamento de Microbiología y Genética, Universidad de Salamanca, Calle Zacarías González 2, Lab P1.1, Edificio IBFG, 37007, Salamanca, Spain
- Instituto de Biología Funcional y Genómica (IBFG), Consejo Superior de Investigaciones Científicas (CSIC), Calle Zacarías González 2, 37007, Salamanca, Spain
| | - Francisco Yanguas
- Departamento de Microbiología y Genética, Universidad de Salamanca, Calle Zacarías González 2, Lab P1.1, Edificio IBFG, 37007, Salamanca, Spain
- Instituto de Biología Funcional y Genómica (IBFG), Consejo Superior de Investigaciones Científicas (CSIC), Calle Zacarías González 2, 37007, Salamanca, Spain
| | - Carmen Gutiérrez-González
- Instituto de Biología Funcional y Genómica (IBFG), Consejo Superior de Investigaciones Científicas (CSIC), Calle Zacarías González 2, 37007, Salamanca, Spain
| | - M-Henar Valdivieso
- Departamento de Microbiología y Genética, Universidad de Salamanca, Calle Zacarías González 2, Lab P1.1, Edificio IBFG, 37007, Salamanca, Spain.
- Instituto de Biología Funcional y Genómica (IBFG), Consejo Superior de Investigaciones Científicas (CSIC), Calle Zacarías González 2, 37007, Salamanca, Spain.
| |
Collapse
|
20
|
CD81 Receptor Regions outside the Large Extracellular Loop Determine Hepatitis C Virus Entry into Hepatoma Cells. Viruses 2018; 10:v10040207. [PMID: 29677132 PMCID: PMC5923501 DOI: 10.3390/v10040207] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 04/14/2018] [Accepted: 04/19/2018] [Indexed: 02/07/2023] Open
Abstract
Hepatitis C virus (HCV) enters human hepatocytes using four essential entry factors, one of which is human CD81 (hCD81). The tetraspanin hCD81 contains a large extracellular loop (LEL), which interacts with the E2 glycoprotein of HCV. The role of the non-LEL regions of hCD81 (intracellular tails, four transmembrane domains, small extracellular loop and intracellular loop) is poorly understood. Here, we studied the contribution of these domains to HCV susceptibility of hepatoma cells by generating chimeras of related tetraspanins with the hCD81 LEL. Our results show that non-LEL regions in addition to the LEL determine susceptibility of cells to HCV. While closely related tetraspanins (X. tropicalis CD81 and D. rerio CD81) functionally complement hCD81 non-LEL regions, distantly related tetraspanins (C. elegans TSP9 amd D. melanogaster TSP96F) do not and tetraspanins with intermediate homology (hCD9) show an intermediate phenotype. Tetraspanin homology and susceptibility to HCV correlate positively. For some chimeras, infectivity correlates with surface expression. In contrast, the hCD9 chimera is fully surface expressed, binds HCV E2 glycoprotein but is impaired in HCV receptor function. We demonstrate that a cholesterol-coordinating glutamate residue in CD81, which hCD9 lacks, promotes HCV infection. This work highlights the hCD81 non-LEL regions as additional HCV susceptibility-determining factors.
Collapse
|
21
|
Monoclonal Antibodies against Occludin Completely Prevented Hepatitis C Virus Infection in a Mouse Model. J Virol 2018; 92:JVI.02258-17. [PMID: 29437969 DOI: 10.1128/jvi.02258-17] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 02/01/2018] [Indexed: 02/07/2023] Open
Abstract
Hepatitis C virus (HCV) entry into host cells is a multistep process requiring various host factors, including the tight junction protein occludin (OCLN), which has been shown to be essential for HCV infection in in vitro cell culture systems. However, it remains unclear whether OCLN is an effective and safe target for HCV therapy, owing to the lack of binders that can recognize the intact extracellular loop domains of OCLN and prevent HCV infection. In this study, we successfully generated four rat anti-OCLN monoclonal antibodies (MAbs) by the genetic immunization method and unique cell differential screening. These four MAbs bound to human OCLN with a very high affinity (antibody dissociation constant of <1 nM). One MAb recognized the second loop of human and mouse OCLN, whereas the three other MAbs recognized the first loop of human OCLN. All MAbs inhibited HCV infection in Huh7.5.1-8 cells in a dose-dependent manner without apparent cytotoxicity. Additionally, the anti-OCLN MAbs prevented both cell-free HCV infection and cell-to-cell HCV transmission. Kinetic studies with anti-OCLN and anti-claudin-1 (CLDN1) MAbs demonstrated that OCLN interacts with HCV after CLDN1 in the internalization step. Two selected MAbs completely inhibited HCV infection in human liver chimeric mice without apparent adverse effects. Therefore, OCLN would be an appropriate host target for anti-HCV entry inhibitors, and anti-OCLN MAbs may be promising candidates for novel anti-HCV agents, particularly in combination with direct-acting HCV antiviral agents.IMPORTANCE HCV entry into host cells is thought to be a very complex process involving various host entry factors, such as the tight junction proteins claudin-1 and OCLN. In this study, we developed novel functional MAbs that recognize intact extracellular domains of OCLN, which is essential for HCV entry into host cells. The established MAbs against OCLN, which had very high affinity and selectivity for intact OCLN, strongly inhibited HCV infection both in vitro and in vivo Using these anti-OCLN MAbs, we found that OCLN is necessary for the later stages of HCV entry. These anti-OCLN MAbs are likely to be very useful for understanding the OCLN-mediated HCV entry mechanism and might be promising candidates for novel HCV entry inhibitors.
Collapse
|
22
|
Gauberg J, Wu N, Cramp RL, Kelly SP, Franklin CE. A lethal fungal pathogen directly alters tight junction proteins in the skin of a susceptible amphibian. J Exp Biol 2018; 222:jeb.192245. [DOI: 10.1242/jeb.192245] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 12/05/2018] [Indexed: 01/01/2023]
Abstract
Bacterial and viral pathogens can weaken epithelial barriers by targeting and disrupting tight junction (TJ) proteins. Comparatively, however, little is known about the direct effects of fungal pathogens on TJ proteins and their expression. The disease, chytridiomycosis, caused by the fungal pathogen Batrachochytrium dendrobatidis (Bd), is threatening amphibian populations worldwide. Bd is known to infect amphibian skin and disrupt cutaneous osmoregulation. However, exactly how this occurs is poorly understood. This study considered the impact of Bd infection on the barrier properties of the Australian green tree frog (Litoria caerulea) epidermis by examining how inoculation of animals with Bd influenced the paracellular movement of FITC-dextran (4 kDa, FD-4) across the skin in association with alterations in the mRNA and protein abundance of select TJ proteins of the epidermal TJ complex. It was observed that Bd infection increased paracellular movement of FD-4 across the skin linearly with fungal infection load. In addition, Bd infection increased transcript abundance of the tricellular TJ (tTJ) protein tricellulin (tric) as well as the bicellular TJ (bTJ) proteins occludin (ocln), claudin (cldn) -1, -4 and the scaffolding TJ protein zonula occludens-1 (zo-1). However, while Tric protein abundance increased in accord with changes in transcript abundance, protein abundance of Cldn-1 was significantly reduced and Ocln protein abundance was unchanged. Data indicate that disruption of cutaneous osmoregulation in L. caerulea following Bd infection occurs, at least in part, by an increase in epidermal paracellular permeability in association with compromised integrity of the epidermal TJ complex.
Collapse
Affiliation(s)
- J. Gauberg
- School of Biological Sciences, The University of Queensland, Brisbane, QLD, Australia
- Department of Biology, York University, Toronto, ON, Canada
| | - N. Wu
- School of Biological Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - R. L. Cramp
- School of Biological Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - S. P. Kelly
- Department of Biology, York University, Toronto, ON, Canada
| | - C. E. Franklin
- School of Biological Sciences, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
23
|
King B, Tarr AW. How have retrovirus pseudotypes contributed to our understanding of viral entry? Future Virol 2017. [DOI: 10.2217/fvl-2017-0062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Study of virus entry into host cells is important for understanding viral tropism and pathogenesis. Studying the entry of in vitro cultured viruses is not always practicable. Study of highly pathogenic viruses, viruses that do not grow in culture, and viruses that rapidly change phenotype in vitro can all benefit from alternative models of entry. Retrovirus particles can be engineered to display the envelope proteins of heterologous enveloped viruses. This approach, broadly termed ‘pseudotyping’, is an important technique for interrogating virus entry. In this perspective we consider how retrovirus pseudotypes have addressed these challenges and improved our understanding of the entry pathways of diverse virus species, including Ebolavirus, human immunodeficiency virus and hepatitis C virus.
Collapse
Affiliation(s)
- Barnabas King
- National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust & the University of Nottingham, Nottingham, UK
- School of Life Sciences, Faculty of Medicine & Health Sciences, University of Nottingham, Nottingham, UK
| | - Alexander W Tarr
- National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust & the University of Nottingham, Nottingham, UK
- School of Life Sciences, Faculty of Medicine & Health Sciences, University of Nottingham, Nottingham, UK
| |
Collapse
|
24
|
Ectopic delivery of miR-200c diminishes hepatitis C virus infectivity through transcriptional and translational repression of Occludin. Arch Virol 2017. [PMID: 28642978 DOI: 10.1007/s00705-017-3449-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Occludin (OCLN) is an essential factor for HCV entry through interacting with other surface receptors. The aim of this study was to investigate the epigenetic regulation of Occludin expression and to study its impact on viral infectivity. microRNAs expression was assessed using qRT-PCR, while OCLN protein expression was investigated by indirect immunofluorescence and Western blotting. Viral infectivity was assessed by measuring viral-load using qRT-PCR. In silico analysis predicted that miR-200c targeted the OCLN 3'UTR, which was further experimentally confirmed. miR-122 was previously validated to target the 3'UTR of OCLN and was used as a control. We report a significant down-regulation of miR-200c in liver tissues of HCV-infected patients. Ectopic expression of both miR-122 and miR-200c in Huh7 cells reduced OCLN mRNA and protein levels. Viral infectivity was significantly reduced by miR-200c but enhanced by miR-122. This work sheds light on miR-200c as a novel regulator of HCV infectivity through the regulation of OCLN.
Collapse
|
25
|
Attachment and Postattachment Receptors Important for Hepatitis C Virus Infection and Cell-to-Cell Transmission. J Virol 2017; 91:JVI.00280-17. [PMID: 28404852 DOI: 10.1128/jvi.00280-17] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 04/10/2017] [Indexed: 02/07/2023] Open
Abstract
Hepatitis C virus (HCV) requires multiple receptors for its attachment to and entry into cells. Our previous studies found that human syndecan-1 (SDC-1), SDC-2, and T cell immunoglobulin and mucin domain-containing protein 1 (TIM-1) are HCV attachment receptors. Other cell surface molecules, such as CD81, Claudin-1 (CLDN1), Occludin (OCLN), SR-BI, and low-density lipoprotein receptor (LDLR), function mainly at postattachment steps and are considered postattachment receptors. The underlying molecular mechanisms of different receptors in HCV cell-free and cell-to-cell transmission remain elusive. In the present study, we used a clustered regularly interspaced short palindromic repeat (CRISPR)-Cas9 technology, gene-specific small interfering RNAs, and a newly developed luciferase-based reporter system to quantitatively determine the importance of individual receptors in HCV cell-free and cell-to-cell transmission. Knockouts of SDC-1 and SDC-2 resulted in remarkable reductions of HCV infection and cell attachment, whereas SDC-3 and SDC-4 knockouts did not affect HCV infection. Defective HCV attachment to SDC-1 and/or SDC-2 knockout cells was completely restored by SDC-1 and SDC-2 but not SDC-4 expression. Knockout of the attachment receptors SDC-1, SDC-2, and TIM-1 also modestly decreased HCV cell-to-cell transmission. In contrast, silencing and knockout of the postattachment receptors CD81, CLDN1, OCLN, SR-BI, and LDLR greatly impaired both HCV cell-free and cell-to-cell transmission. Additionally, apolipoprotein E was found to be important for HCV cell-to-cell spread, but very-low-density lipoprotein (VLDL)-containing mouse serum did not affect HCV cell-to-cell transmission, although it inhibited cell-free infection. These findings demonstrate that attachment receptors are essential for initial HCV binding and that postattachment receptors are important for both HCV cell-free and cell-to-cell transmission.IMPORTANCE The importance and underlying molecular mechanisms of cell surface receptors in HCV cell-free and cell-to-cell transmission are poorly understood. The role of some of the HCV attachment and postattachment receptors in HCV infection and cell-to-cell spread remains controversial. Using CRISPR-Cas9-mediated knockouts of specific cellular genes, we demonstrate that both SDC-1 and SDC-2, but not SDC-3 or SDC-4, are bona fide HCV attachment receptors. We also used a newly developed luciferase-based reporter system to quantitatively determine the importance of attachment and postattachment receptors in HCV cell-to-cell transmission. SDC-1, SDC-2, TIM-1, and SR-BI were found to modestly promote HCV cell-to-cell spread. CD81, CLDN1, OCLN, and LDLR play more important roles in HCV cell-to-cell transmission. Likewise, apolipoprotein E (apoE) is critically important for HCV cell-to-cell spread, unlike VLDL-containing mouse serum, which did not affect HCV cell-to-cell spread. These findings suggest that the mechanism(s) of HCV cell-to-cell spread differs from that of cell-free infection.
Collapse
|
26
|
Fletcher NF, Clark AR, Balfe P, McKeating JA. TNF superfamily members promote hepatitis C virus entry via an NF-κB and myosin light chain kinase dependent pathway. J Gen Virol 2017; 98:405-412. [PMID: 27983476 PMCID: PMC5797950 DOI: 10.1099/jgv.0.000689] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Preventing virally induced liver disease begins with an understanding of the host factors that define susceptibility to infection. Hepatitis C virus (HCV) is a global health issue, with an estimated 170 million infected individuals at risk of developing liver disease including fibrosis and hepatocellular carcinoma. The liver is the major reservoir supporting HCV replication and this hepatocellular tropism is defined by HCV engagement of cellular entry receptors. Hepatocytes are polarized in vivo and this barrier function limits HCV entry. We previously reported that activated macrophages promote HCV entry into polarized hepatocytes via a TNF-α-dependent process; however, the underlying mechanism was not defined. In this study, we show that several TNF superfamily members, including TNF-α, TNF-β, TWEAK and LIGHT, promote HCV entry via NF-κB-mediated activation of myosin light chain kinase (MLCK) and disruption of tight junctions. These observations support a model where HCV hijacks an inflammatory immune response to stimulate infection and uncovers a role for NF-κB-MLCK signalling in maintaining hepatocellular tight junctions.
Collapse
Affiliation(s)
- N F Fletcher
- Centre for Human Virology, Institute for Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - A R Clark
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - P Balfe
- Centre for Human Virology, Institute for Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - J A McKeating
- Present address: Nuffield Department of Medicine, University of Oxford, UK.,Centre for Human Virology, Institute for Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| |
Collapse
|
27
|
TIM-1 Promotes Hepatitis C Virus Cell Attachment and Infection. J Virol 2017; 91:JVI.01583-16. [PMID: 27807228 DOI: 10.1128/jvi.01583-16] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 10/20/2016] [Indexed: 02/08/2023] Open
Abstract
Human TIM and TAM family proteins were recently found to serve as phosphatidylserine (PS) receptors which promote infections by many different viruses, including dengue virus, West Nile virus, Ebola virus, Marburg virus, and Zika virus. In the present study, we provide substantial evidence demonstrating that TIM-1 is important for efficient infection by hepatitis C virus (HCV). The knockdown of TIM-1 expression significantly reduced HCV infection but not HCV RNA replication. Likewise, TIM-1 knockout in Huh-7.5 cells remarkably lowered HCV cell attachment and subsequent HCV infection. More significantly, the impairment of HCV infection in the TIM-1 knockout cells could be restored completely by ectopic expression of TIM-1 but not TIM-3 or TIM-4. Additionally, HCV infection and cell attachment were inhibited by PS but not by phosphatidylcholine (PC), demonstrating that TIM-1-mediated enhancement of HCV infection is PS dependent. The exposure of PS on the HCV envelope was confirmed by immunoprecipitation of HCV particles with a PS-specific monoclonal antibody. Collectively, these findings demonstrate that TIM-1 promotes HCV infection by serving as an attachment receptor for binding to PS exposed on the HCV envelope. IMPORTANCE TIM family proteins were recently found to enhance infections by many different viruses, including several members of the Flaviviridae family. However, their importance in HCV infection has not previously been examined experimentally. The TIM family proteins include three members in humans: TIM-1, TIM-3, and TIM-4. The findings derived from our studies demonstrate that TIM-1, but not TIM-3 or TIM-4, promotes HCV infection by functioning as an HCV attachment factor. Knockout of the TIM-1 gene resulted in a remarkable reduction of HCV cell attachment and infection. PS-containing liposomes blocked HCV cell attachment and subsequent HCV infection. HCV particles could also be precipitated with a PS-specific monoclonal antibody. These findings suggest that TIM-1 and its binding ligand, PS, may serve as novel targets for antiviral intervention.
Collapse
|
28
|
Rescue of the 1947 Zika Virus Prototype Strain with a Cytomegalovirus Promoter-Driven cDNA Clone. mSphere 2016; 1:mSphere00246-16. [PMID: 27704051 PMCID: PMC5040786 DOI: 10.1128/msphere.00246-16] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 09/06/2016] [Indexed: 12/22/2022] Open
Abstract
The study of ZIKV, which has become increasingly important with the recent association of this virus with microcephaly and Guillain-Barré syndrome, would benefit from an efficient strategy to genetically manipulate the virus. This work describes a model system to produce infectious virus in cell culture. We created a plasmid carrying the prototype 1947 Uganda MR766 ZIKV genome that both was stable in bacteria and could produce high levels of infectious virus in mammalian cells through direct delivery of this DNA. Furthermore, growth properties of this rescued virus closely resembled those of the viral isolate from which it was derived. This model system will provide a simple and effective means to study how ZIKV genetics impact viral replication and pathogenesis. The recent Zika virus (ZIKV) outbreak has been linked to severe pathogenesis. Here, we report the construction of a plasmid carrying a cytomegalovirus (CMV) promoter-expressed prototype 1947 Uganda MR766 ZIKV cDNA that can initiate infection following direct plasmid DNA transfection of mammalian cells. Incorporation of a synthetic intron in the nonstructural protein 1 (NS1) region of the ZIKV polyprotein reduced viral cDNA-associated toxicity in bacteria. High levels of infectious virus were produced following transfection of the plasmid bearing the wild-type MR766 ZIKV genome, but not one with a disruption to the viral nonstructural protein 5 (NS5) polymerase active site. Multicycle growth curve and plaque assay experiments indicated that the MR766 virus resulting from plasmid transfection exhibited growth characteristics that were more similar to its parental isolate than previously published 2010 Cambodia and 2015 Brazil cDNA-rescued ZIKV. This ZIKV infectious clone will be useful for investigating the genetic determinants of ZIKV infection and pathogenesis and should be amenable to construction of diverse infectious clones expressing reporter proteins and representing a range of ZIKV isolates. IMPORTANCE The study of ZIKV, which has become increasingly important with the recent association of this virus with microcephaly and Guillain-Barré syndrome, would benefit from an efficient strategy to genetically manipulate the virus. This work describes a model system to produce infectious virus in cell culture. We created a plasmid carrying the prototype 1947 Uganda MR766 ZIKV genome that both was stable in bacteria and could produce high levels of infectious virus in mammalian cells through direct delivery of this DNA. Furthermore, growth properties of this rescued virus closely resembled those of the viral isolate from which it was derived. This model system will provide a simple and effective means to study how ZIKV genetics impact viral replication and pathogenesis.
Collapse
|
29
|
Yamamoto S, Fukuhara T, Ono C, Uemura K, Kawachi Y, Shiokawa M, Mori H, Wada M, Shima R, Okamoto T, Hiraga N, Suzuki R, Chayama K, Wakita T, Matsuura Y. Lipoprotein Receptors Redundantly Participate in Entry of Hepatitis C Virus. PLoS Pathog 2016; 12:e1005610. [PMID: 27152966 PMCID: PMC4859476 DOI: 10.1371/journal.ppat.1005610] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 04/12/2016] [Indexed: 02/07/2023] Open
Abstract
Scavenger receptor class B type 1 (SR-B1) and low-density lipoprotein receptor (LDLR) are known to be involved in entry of hepatitis C virus (HCV), but their precise roles and their interplay are not fully understood. In this study, deficiency of both SR-B1 and LDLR in Huh7 cells was shown to impair the entry of HCV more strongly than deficiency of either SR-B1 or LDLR alone. In addition, exogenous expression of not only SR-B1 and LDLR but also very low-density lipoprotein receptor (VLDLR) rescued HCV entry in the SR-B1 and LDLR double-knockout cells, suggesting that VLDLR has similar roles in HCV entry. VLDLR is a lipoprotein receptor, but the level of its hepatic expression was lower than those of SR-B1 and LDLR. Moreover, expression of mutant lipoprotein receptors incapable of binding to or uptake of lipid resulted in no or slight enhancement of HCV entry in the double-knockout cells, suggesting that binding and/or uptake activities of lipid by lipoprotein receptors are essential for HCV entry. In addition, rescue of infectivity in the double-knockout cells by the expression of the lipoprotein receptors was not observed following infection with pseudotype particles bearing HCV envelope proteins produced in non-hepatic cells, suggesting that lipoproteins associated with HCV particles participate in the entry through their interaction with lipoprotein receptors. Buoyant density gradient analysis revealed that HCV utilizes these lipoprotein receptors in a manner dependent on the lipoproteins associated with HCV particles. Collectively, these results suggest that lipoprotein receptors redundantly participate in the entry of HCV. Hepatitis C virus (HCV) utilizes several receptors to enter hepatocytes, including scavenger receptor class B type 1 (SR-B1) receptor and low-density lipoprotein receptor (LDLR). HCV particles interact with lipoprotein and apolipoproteins to form complexes termed lipoviroparticles. Several reports have shown that SR-B1 and LDLR participate in the entry of lipoviroparticles through interaction with lipoproteins. However, the precise roles of SR-B1 and LDLR in HCV entry have not been fully clarified. In this study, we showed that SR-B1 and LDLR have a redundant role in HCV entry. In addition, we showed that very low-density lipoprotein receptor (VLDLR) played a role in HCV entry similar to the roles of SR-B1 and LDLR. Interestingly, VLDLR expression was low in the liver in contrast to the abundant expressions of SR-B1 and LDLR, but high in several extrahepatic tissues. Our data suggest that lipoprotein receptors participate in the entry of HCV particles associated with various lipoproteins.
Collapse
Affiliation(s)
- Satomi Yamamoto
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Takasuke Fukuhara
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Chikako Ono
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Kentaro Uemura
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Yukako Kawachi
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Mai Shiokawa
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Hiroyuki Mori
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Masami Wada
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Ryoichi Shima
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Toru Okamoto
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Nobuhiko Hiraga
- Department of Gastroenterology and Metabolism, Applied Life Sciences, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Ryosuke Suzuki
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kazuaki Chayama
- Department of Gastroenterology and Metabolism, Applied Life Sciences, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Takaji Wakita
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yoshiharu Matsuura
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- * E-mail:
| |
Collapse
|
30
|
Hamilton JR, Sachs D, Lim JK, Langlois RA, Palese P, Heaton NS. Club cells surviving influenza A virus infection induce temporary nonspecific antiviral immunity. Proc Natl Acad Sci U S A 2016; 113:3861-6. [PMID: 27001854 PMCID: PMC4833272 DOI: 10.1073/pnas.1522376113] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
A brief window of antigen-nonspecific protection has been observed after influenza A virus (IAV) infection. Although this temporary immunity has been assumed to be the result of residual nonspecific inflammation, this period of induced immunity has not been fully studied. Because IAV has long been characterized as a cytopathic virus (based on its ability to rapidly lyse most cell types in culture), it has been a forgone conclusion that directly infected cells could not be contributing to this effect. Using a Cre recombinase-expressing IAV, we have previously shown that club cells can survive direct viral infection. We show here not only that these cells can eliminate all traces of the virus and survive but also that they acquire a heightened antiviral response phenotype after surviving. Moreover, we experimentally demonstrate temporary nonspecific viral immunity after IAV infection and show that surviving cells are required for this phenotype. This work characterizes a virally induced modulation of the innate immune response that may represent a new mechanism to prevent viral diseases.
Collapse
Affiliation(s)
- Jennifer R Hamilton
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - David Sachs
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Jean K Lim
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Ryan A Langlois
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029; Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, MN 55455
| | - Peter Palese
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029; Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Nicholas S Heaton
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029; Department of Molecular Genetics and Microbiology, Duke University, Durham, NC 27710
| |
Collapse
|
31
|
Shirasago Y, Shimizu Y, Tanida I, Suzuki T, Suzuki R, Sugiyama K, Wakita T, Hanada K, Yagi K, Kondoh M, Fukasawa M. Occludin-Knockout Human Hepatic Huh7.5.1-8-Derived Cells Are Completely Resistant to Hepatitis C Virus Infection. Biol Pharm Bull 2016; 39:839-48. [PMID: 26887345 DOI: 10.1248/bpb.b15-01023] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
It is well known that occludin (OCLN) is involved in hepatitis C virus (HCV) entry into hepatocytes, but there has been no conclusive evidence that OCLN is essential for HCV infection. In this study, we first established an OCLN-knockout cell line derived from human hepatic Huh7.5.1-8 cells using the clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9 system, in which two independent targeting plasmids expressing single-guide RNAs were used. One established cell clone, named OKH-4, had the OCLN gene truncated in the N-terminal region, and a complete defect of the OCLN protein was shown using immunoblot analysis. Infection of OKH-4 cells with various genotypes of HCV was abolished, and exogenous expression of the OCLN protein in OKH-4 cells completely reversed permissiveness to HCV infection. In addition, using a co-culture system of HCV-infected Huh7.5.1-8 cells with OKH-4 cells, we showed that OCLN is also critical for cell-to-cell HCV transmission. Thus, we concluded that OCLN is essential for HCV infection of human hepatic cells. Further experiments using HCV genomic RNA-transfected OKH-4 cells or HCV subgenomic replicon-harboring OKH-4 cells suggested that OCLN is mainly involved in the entry step of the HCV life cycle. It was also demonstrated that the second extracellular loop of OCLN, especially the two cysteine residues, is critical for HCV infection of hepatic cells. OKH-4 cells may be a useful tool for understanding not only the entire mechanism of HCV entry, but also the biological functions of OCLN.
Collapse
Affiliation(s)
- Yoshitaka Shirasago
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Grassi G, Di Caprio G, Fimia GM, Ippolito G, Tripodi M, Alonzi T. Hepatitis C virus relies on lipoproteins for its life cycle. World J Gastroenterol 2016; 22:1953-1965. [PMID: 26877603 PMCID: PMC4726671 DOI: 10.3748/wjg.v22.i6.1953] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 10/19/2015] [Accepted: 12/21/2015] [Indexed: 02/06/2023] Open
Abstract
Hepatitis C virus (HCV) infects over 150 million people worldwide. In most cases, HCV infection becomes chronic causing liver disease ranging from fibrosis to cirrhosis and hepatocellular carcinoma. Viral persistence and pathogenesis are due to the ability of HCV to deregulate specific host processes, mainly lipid metabolism and innate immunity. In particular, HCV exploits the lipoprotein machineries for almost all steps of its life cycle. The aim of this review is to summarize current knowledge concerning the interplay between HCV and lipoprotein metabolism. We discuss the role played by members of lipoproteins in HCV entry, replication and virion production.
Collapse
|
33
|
Viral Determinants of miR-122-Independent Hepatitis C Virus Replication. mSphere 2015; 1:mSphere00009-15. [PMID: 27303683 PMCID: PMC4863629 DOI: 10.1128/msphere.00009-15] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 10/28/2015] [Indexed: 01/20/2023] Open
Abstract
Hepatitis C virus (HCV) is the leading cause of liver cancer in the Western Hemisphere. HCV infection requires miR-122, which is expressed only in liver cells, and thus is one reason that replication of this virus occurs efficiently only in cells of hepatic origin. To understand how HCV genetics impact miR-122 usage, we knocked out miR-122 using clustered regularly interspaced short palindromic repeat (CRISPR) technology and adapted virus to replicate in the presence of noncognate miR-122 RNAs. In doing so, we identified viral mutations that allow replication in the complete absence of miR-122. This work provides new insights into how HCV genetics influence miR-122 requirements and proves that replication can occur without this miRNA, which has broad implications for how HCV tropism is maintained. Hepatitis C virus (HCV) replication requires binding of the liver-specific microRNA (miRNA) miR-122 to two sites in the HCV 5′ untranslated region (UTR). Although we and others have shown that viral genetics impact the amount of active miR-122 required for replication, it is unclear if HCV can replicate in the complete absence of this miRNA. To probe the absolute requirements for miR-122 and the genetic basis for those requirements, we used clustered regularly interspaced short palindromic repeat (CRISPR) technology to knock out miR-122 in Huh-7.5 cells and reconstituted these knockout (KO) cells with either wild-type miR-122 or a mutated version of this miRNA. We then characterized the replication of the wild-type virus, as well as a mutated HCV bearing 5′ UTR substitutions to restore binding to the mutated miR-122, in miR-122 KO Huh-7.5 cells expressing no, wild-type, or mutated miR-122. We found that while replication was most efficient when wild-type or mutated HCV was provided with the matched miR-122, inefficient replication could be observed in cells expressing the mismatched miR-122 or no miR-122. We then selected viruses capable of replicating in cells expressing noncognate miR-122 RNAs. Unexpectedly, these viruses contained multiple mutations throughout their first 42 nucleotides that would not be predicted to enhance binding of the provided miR-122. These mutations increased HCV RNA replication in cells expressing either the mismatched miR-122 or no miR-122. These data provide new evidence that HCV replication can occur independently of miR-122 and provide unexpected insights into how HCV genetics influence miR-122 requirements. IMPORTANCE Hepatitis C virus (HCV) is the leading cause of liver cancer in the Western Hemisphere. HCV infection requires miR-122, which is expressed only in liver cells, and thus is one reason that replication of this virus occurs efficiently only in cells of hepatic origin. To understand how HCV genetics impact miR-122 usage, we knocked out miR-122 using clustered regularly interspaced short palindromic repeat (CRISPR) technology and adapted virus to replicate in the presence of noncognate miR-122 RNAs. In doing so, we identified viral mutations that allow replication in the complete absence of miR-122. This work provides new insights into how HCV genetics influence miR-122 requirements and proves that replication can occur without this miRNA, which has broad implications for how HCV tropism is maintained.
Collapse
|
34
|
Fénéant L, Ghosn J, Fouquet B, Helle F, Belouzard S, Vausselin T, Séron K, Delfraissy JF, Dubuisson J, Misrahi M, Cocquerel L. Claudin-6 and Occludin Natural Variants Found in a Patient Highly Exposed but Not Infected with Hepatitis C Virus (HCV) Do Not Confer HCV Resistance In Vitro. PLoS One 2015; 10:e0142539. [PMID: 26561856 PMCID: PMC4643007 DOI: 10.1371/journal.pone.0142539] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 10/22/2015] [Indexed: 12/12/2022] Open
Abstract
The clinical course of Hepatitis C Virus (HCV) infection is highly variable between infected individual hosts: up to 80% of acutely HCV infected patients develop a chronic infection while 20% clear infection spontaneously. Spontaneous clearance of HCV infection can be predicted by several factors, including symptomatic acute infection, favorable IFNL3 polymorphisms and gender. In our study, we explored the possibility that variants in HCV cell entry factors might be involved in resistance to HCV infection. In a same case patient highly exposed but not infected by HCV, we previously identified one mutation in claudin-6 (CLDN6) and a rare variant in occludin (OCLN), two tight junction proteins involved in HCV entry into hepatocytes. Here, we conducted an extensive functional study to characterize the ability of these two natural variants to prevent HCV entry. We used lentiviral vectors to express Wildtype or mutated CLDN6 and OCLN in different cell lines and primary human hepatocytes. HCV infection was then investigated using cell culture produced HCV particles (HCVcc) as well as HCV pseudoparticles (HCVpp) expressing envelope proteins from different genotypes. Our results show that variants of CLDN6 and OCLN expressed separately or in combination did not affect HCV infection nor cell-to-cell transmission. Hence, our study highlights the complexity of HCV resistance mechanisms supporting the fact that this process probably not primarily involves HCV entry factors and that other unknown host factors may be implicated.
Collapse
Affiliation(s)
- Lucie Fénéant
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019—UMR 8204—CIIL—Centre d'Infection et d'Immunité de Lille, F-59000 Lille, France
| | - Jade Ghosn
- Assistance Publique—Hôpitaux de Paris, Unité Fonctionnelle de Thérapeutique en Immuno-Infectiologie, Hôpital Universitaire Hôtel Dieu, Paris, France
- Université Paris Descartes, EA 7327, Faculté de Médecine site Necker, Paris, France
| | - Baptiste Fouquet
- Univ Paris Sud, Faculté de Médecine, Hôpitaux Universitaires Paris Sud, Le Kremlin-Bicêtre and Inserm-U1193, Hôpital Paul Brousse, F-94800 Villejuif, France
| | - François Helle
- Virology Department, Amiens University Hospital, Amiens, France
| | - Sandrine Belouzard
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019—UMR 8204—CIIL—Centre d'Infection et d'Immunité de Lille, F-59000 Lille, France
| | - Thibaut Vausselin
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019—UMR 8204—CIIL—Centre d'Infection et d'Immunité de Lille, F-59000 Lille, France
| | - Karin Séron
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019—UMR 8204—CIIL—Centre d'Infection et d'Immunité de Lille, F-59000 Lille, France
| | - Jean-François Delfraissy
- Assistance Publique—Hôpitaux de Paris, Service de Médecine Interne et Maladies Infectieuses, Centre Hospitalier Universitaire de Bicêtre, Le Kremlin-Bicêtre, France
| | - Jean Dubuisson
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019—UMR 8204—CIIL—Centre d'Infection et d'Immunité de Lille, F-59000 Lille, France
| | - Micheline Misrahi
- Univ Paris Sud, Faculté de Médecine, Hôpitaux Universitaires Paris Sud, Le Kremlin-Bicêtre and Inserm-U1193, Hôpital Paul Brousse, F-94800 Villejuif, France
| | - Laurence Cocquerel
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019—UMR 8204—CIIL—Centre d'Infection et d'Immunité de Lille, F-59000 Lille, France
- * E-mail:
| |
Collapse
|
35
|
Host-Targeting Agents to Prevent and Cure Hepatitis C Virus Infection. Viruses 2015; 7:5659-85. [PMID: 26540069 PMCID: PMC4664971 DOI: 10.3390/v7112898] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 09/25/2015] [Accepted: 10/19/2015] [Indexed: 12/13/2022] Open
Abstract
Chronic hepatitis C virus (HCV) infection is a major cause of liver cirrhosis and hepatocellular carcinoma (HCC) which are leading indications of liver transplantation (LT). To date, there is no vaccine to prevent HCV infection and LT is invariably followed by infection of the liver graft. Within the past years, direct-acting antivirals (DAAs) have had a major impact on the management of chronic hepatitis C, which has become a curable disease in the majority of DAA-treated patients. In contrast to DAAs that target viral proteins, host-targeting agents (HTAs) interfere with cellular factors involved in the viral life cycle. By acting through a complementary mechanism of action and by exhibiting a generally higher barrier to resistance, HTAs offer a prospective option to prevent and treat viral resistance. Indeed, given their complementary mechanism of action, HTAs and DAAs can act in a synergistic manner to reduce viral loads. This review summarizes the different classes of HTAs against HCV infection that are in preclinical or clinical development and highlights their potential to prevent HCV infection, e.g., following LT, and to tailor combination treatments to cure chronic HCV infection.
Collapse
|
36
|
Hopcraft SE, Evans MJ. Selection of a hepatitis C virus with altered entry factor requirements reveals a genetic interaction between the E1 glycoprotein and claudins. Hepatology 2015; 62:1059-69. [PMID: 25820616 PMCID: PMC4587996 DOI: 10.1002/hep.27815] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 03/23/2015] [Indexed: 01/08/2023]
Abstract
UNLABELLED Hepatitis C virus (HCV) cell entry is a complex, multistep process requiring numerous host cell factors, including the tight junction protein claudin-1 (CLDN1). It is not known whether CLDN1 and the HCV glycoproteins physically interact. Therefore, the focus of this work was to study genetic interactions between CLDN1 and HCV. We used CRISPR technology to generate CLDN1 knockout (KO) Huh-7.5 cells, which could not be infected by genotype 2a Jc1 HCV unless CLDN1 expression was restored. Passage of Jc1-transfected CLDN1 KO cells resulted in the selection of a virus that could infect these cells. This virus encoded a single mutation, H316N (numbered relative to the HCV polyprotein), in the E1 glycoprotein. Whereas Jc1 H316N efficiently infected cells lacking CLDN1, such infection was blocked by an antibody targeting CLDN6, another member of the claudin family that is expressed in these cells. Furthermore, HuH6 cells, which express CLDN6, but not CLDN1, were infectable only with the mutant virus. Thus, this mutant virus adapted to the loss of CLDN1 by developing the capacity to utilize other CLDNs. Indeed, CLDN1/CLDN6 double-KO Huh-7.5 cells supported infection by the mutant virus only when CLDN1, CLDN6, or CLDN9 was expressed. Finally, this phenotype was not genotype dependent, given that the H316N mutation rendered a Japanese fulminant hepatitis 1 chimeric HCV genome encoding the genotype 5a glycoproteins able to utilize CLDN6 for host cell entry. CONCLUSION These data demonstrate plasticity of HCV virus-host interactions, where a previously CLDN1-dependent virus was capable of evolving to use CLDN6. They also reveal a role for E1 in determining entry factor usage and imply a direct, physical interaction between E1 and CLDNs.
Collapse
Affiliation(s)
- Sharon E Hopcraft
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Matthew J Evans
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|
37
|
Tarr AW, Khera T, Hueging K, Sheldon J, Steinmann E, Pietschmann T, Brown RJP. Genetic Diversity Underlying the Envelope Glycoproteins of Hepatitis C Virus: Structural and Functional Consequences and the Implications for Vaccine Design. Viruses 2015; 7:3995-4046. [PMID: 26193307 PMCID: PMC4517138 DOI: 10.3390/v7072809] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 06/19/2015] [Accepted: 07/08/2015] [Indexed: 12/13/2022] Open
Abstract
In the 26 years since the discovery of Hepatitis C virus (HCV) a major global research effort has illuminated many aspects of the viral life cycle, facilitating the development of targeted antivirals. Recently, effective direct-acting antiviral (DAA) regimens with >90% cure rates have become available for treatment of chronic HCV infection in developed nations, representing a significant advance towards global eradication. However, the high cost of these treatments results in highly restricted access in developing nations, where the disease burden is greatest. Additionally, the largely asymptomatic nature of infection facilitates continued transmission in at risk groups and resource constrained settings due to limited surveillance. Consequently a prophylactic vaccine is much needed. The HCV envelope glycoproteins E1 and E2 are located on the surface of viral lipid envelope, facilitate viral entry and are the targets for host immunity, in addition to other functions. Unfortunately, the extreme global genetic and antigenic diversity exhibited by the HCV glycoproteins represents a significant obstacle to vaccine development. Here we review current knowledge of HCV envelope protein structure, integrating knowledge of genetic, antigenic and functional diversity to inform rational immunogen design.
Collapse
Affiliation(s)
- Alexander W Tarr
- School of Life Sciences, Nottingham Digestive Diseases Biomedical Research Unit, University of Nottingham, Nottingham NG7 2RD, UK.
| | - Tanvi Khera
- Institute of Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture between the Medical School Hannover (MHH) and the Helmholtz Centrefor Infection Research (HZI), Hannover D-30625, Germany.
| | - Kathrin Hueging
- Institute of Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture between the Medical School Hannover (MHH) and the Helmholtz Centrefor Infection Research (HZI), Hannover D-30625, Germany.
| | - Julie Sheldon
- Institute of Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture between the Medical School Hannover (MHH) and the Helmholtz Centrefor Infection Research (HZI), Hannover D-30625, Germany.
| | - Eike Steinmann
- Institute of Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture between the Medical School Hannover (MHH) and the Helmholtz Centrefor Infection Research (HZI), Hannover D-30625, Germany.
| | - Thomas Pietschmann
- Institute of Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture between the Medical School Hannover (MHH) and the Helmholtz Centrefor Infection Research (HZI), Hannover D-30625, Germany.
- German Centre for Infection Research (DZIF), partner site Hannover-Braunschweig, Braunschweig 38124, Germany.
| | - Richard J P Brown
- Institute of Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture between the Medical School Hannover (MHH) and the Helmholtz Centrefor Infection Research (HZI), Hannover D-30625, Germany.
| |
Collapse
|
38
|
Abstract
Hepatitis C virus (HCV) is a leading cause of chronic hepatitis and infects approximately three to four million people per year, about 170 million infected people in total, making it one of the major global health problems. In a minority of cases HCV is cleared spontaneously, but in most of the infected individuals infection progresses to a chronic state associated with high risk to develop liver cirrhosis, hepatocellular cancer, or liver failure. The treatment of HCV infection has evolved over the years. Interferon (IFN)-α in combination with ribavirin has been used for decades as standard therapy. More recently, a new standard-of-care treatment has been approved based on a triple combination with either HCV protease inhibitor telaprevir or boceprevir. In addition, various options for all-oral, IFN-free regimens are currently being evaluated. Despite substantial improvement of sustained virological response rates, some intrinsic limitations of these new direct-acting antivirals, including serious side effects, the risk of resistance development and high cost, urge the development of alternative or additional therapeutic strategies. Gene therapy represents a feasible alternative treatment. Small RNA technology, including RNA interference (RNAi) techniques and antisense approaches, is one of the potentially promising ways to investigate viral and host cell factors that are involved in HCV infection and replication. With this, newly developed gene therapy regimens will be provided to treat HCV. In this chapter, a comprehensive overview guides you through the current developments and applications of RNAi and microRNA-based gene therapy strategies in HCV treatment.
Collapse
|
39
|
The Serum Very-Low-Density Lipoprotein Serves as a Restriction Factor against Hepatitis C Virus Infection. J Virol 2015; 89:6782-91. [PMID: 25903344 DOI: 10.1128/jvi.00194-15] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 04/10/2015] [Indexed: 02/06/2023] Open
Abstract
UNLABELLED Recent studies demonstrated that transgenic mice expressing key human hepatitis C virus (HCV) receptors are susceptible to HCV infection, albeit at very low efficiency. Robust mouse models of HCV infection and replication are needed to determine the importance of host factors in HCV replication, pathogenesis, and carcinogenesis as well as to facilitate the development of antiviral agents and vaccines. The low efficiency of HCV replication in the humanized mouse models is likely due to either the lack of essential host factors or the presence of restriction factors for HCV infection and/or replication in mouse hepatocytes. To determine whether HCV infection is affected by restriction factors present in serum, we examined the effects of mouse and human sera on HCV infectivity. Strikingly, we found that mouse and human sera potently inhibited HCV infection. Mechanistic studies demonstrated that mouse serum blocked HCV cell attachment without significant effect on HCV replication. Fractionation analysis of mouse serum in conjunction with targeted mass spectrometric analysis suggested that serum very-low-density lipoprotein (VLDL) was responsible for the blockade of HCV cell attachment, as VLDL-depleted mouse serum lost HCV-inhibitory activity. Both purified mouse and human VLDL could efficiently inhibit HCV infection. Collectively, these findings suggest that serum VLDL serves as a major restriction factor of HCV infection in vivo. The results also imply that reduction or elimination of VLDL production will likely enhance HCV infection in the humanized mouse model of HCV infection and replication. IMPORTANCE HCV is a major cause of liver diseases, such as chronic hepatitis, cirrhosis, and hepatocellular carcinoma. Recently, several studies suggested that humanized mouse or transgenic mouse expressing key HCV human receptors became susceptible to HCV infection. However, HCV infection and replication in the humanized animals were very inefficient, suggesting either the lack of cellular genes important for HCV replication or the presence of restriction factors inhibiting HCV infection and replication in the mouse. In this study, we found that both mouse and human sera effectively inhibited HCV infection. Mechanistic studies demonstrated that VLDL is the major restriction factor that blocks HCV infection. These findings suggest that VLDL is beneficial to patients by restricting HCV infection. More importantly, our findings suggest that elimination of VLDL will lead to the development of more robust mouse models for the study of HCV pathogenesis, host response to HCV infection, and evaluation of HCV vaccines.
Collapse
|
40
|
Abstract
ABSTRACT HCV encodes two envelope glycoproteins, E1 and E2, which assemble as a non-covalent heterodimer in infected cells. During HCV morphogenesis, these proteins are incorporated into viral particles and they are the major viral determinants of HCV entry. Functional studies have revealed unique features in these viral envelope glycoproteins. Indeed, E1–E2 interaction, mediated by their transmembrane domain, is essential for HCV assembly and entry. Furthermore, recent data also show that these glycoproteins interact with apolipoproteins. Recent crystallography data provide some structural support to better understand how these proteins interact with the host. In this review, we summarize the biogenesis of HCV envelope glycoproteins and their role in HCV morphogenesis in the context of the hijacking of the very low-density lipoprotein assembly pathway by this virus. We also describe the functions of HCV glycoproteins during virus entry with a special focus on the unexpected structural features of E2 glycoprotein. Finally, we discuss the major neutralizing epitopes in the light of E2 structure.
Collapse
Affiliation(s)
- Muriel Lavie
- Center for Infection & Immunity of Lille, Institut Pasteur of Lille, Inserm U1019, CNRS UMR-8204, University of Lille, F-59021 Lille, France
| | - François Penin
- Institut de Biologie & Chimie des Protéines, Bases Moléculaires & Structurales des Systèmes Infectieux, UMR-5086-CNRS, Labex Ecofect, Université de Lyon, Lyon, France
| | - Jean Dubuisson
- Center for Infection & Immunity of Lille, Institut Pasteur of Lille, Inserm U1019, CNRS UMR-8204, University of Lille, F-59021 Lille, France
| |
Collapse
|
41
|
Hepatitis C virus life cycle and lipid metabolism. BIOLOGY 2014; 3:892-921. [PMID: 25517881 PMCID: PMC4280516 DOI: 10.3390/biology3040892] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 12/04/2014] [Accepted: 12/08/2014] [Indexed: 12/12/2022]
Abstract
Hepatitis C Virus (HCV) infects over 150 million people worldwide. In most cases HCV infection becomes chronic, causing liver disease ranging from fibrosis to cirrhosis and hepatocellular carcinoma. HCV affects the cholesterol homeostasis and at the molecular level, every step of the virus life cycle is intimately connected to lipid metabolism. In this review, we present an update on the lipids and apolipoproteins that are involved in the HCV infectious cycle steps: entry, replication and assembly. Moreover, the result of the assembly process is a lipoviroparticle, which represents a peculiarity of hepatitis C virion. This review illustrates an example of an intricate virus-host interaction governed by lipid metabolism.
Collapse
|
42
|
The mechanism of HCV entry into host cells. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2014; 129:63-107. [PMID: 25595801 DOI: 10.1016/bs.pmbts.2014.10.003] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Hepatitis C virus (HCV) is an enveloped, positive strand RNA virus classified within the Flaviviridae family and is a major cause of liver disease worldwide. HCV life cycle and propagation are tightly linked to several aspects of lipid metabolism. HCV propagation depends on and also shapes several aspects of lipid metabolism such as cholesterol uptake and efflux through different lipoprotein receptors during its entry into cells, lipid metabolism modulating HCV genome replication, lipid droplets acting as a platform for recruitment of viral components, and very low density lipoprotein assembly pathway resulting in incorporation of neutral lipids and apolipoproteins into viral particles. During the first steps of infection, HCV enters hepatocytes through a multistep and slow process. The initial capture of HCV particles by glycosaminoglycans and/or lipoprotein receptors is followed by coordinated interactions with the scavenger receptor class B type I, a major receptor of high-density lipoprotein, the CD81 tetraspanin, and the tight junction proteins Claudin-1 and Occludin. This tight concert of receptor interactions ultimately leads to uptake and cellular internalization of HCV through a process of clathrin-dependent endocytosis. Over the years, the identification of the HCV entry receptors and cofactors has led to a better understanding of HCV entry and of the narrow tropism of HCV for the liver. Yet, the role of the two HCV envelope glycoproteins, E1 and E2, remains ill-defined, particularly concerning their involvement in the membrane fusion process. Here, we review the current knowledge and advances addressing the mechanism of HCV cell entry within hepatocytes and we highlight the challenges that remain to be addressed.
Collapse
|
43
|
Israelow B, Mullokandov G, Agudo J, Sourisseau M, Bashir A, Maldonado AY, Dar AC, Brown BD, Evans MJ. Hepatitis C virus genetics affects miR-122 requirements and response to miR-122 inhibitors. Nat Commun 2014; 5:5408. [PMID: 25403145 PMCID: PMC4236719 DOI: 10.1038/ncomms6408] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2014] [Accepted: 09/29/2014] [Indexed: 12/19/2022] Open
Abstract
Hepatitis C virus (HCV) replication is dependent on a liver-specific microRNA (miRNA), miR-122. A recent clinical trial reported that transient inhibition of miR-122 reduced viral titers in HCV infected patients. Here we set out to better understand how miR-122 inhibition influences HCV replication over time. Unexpectedly, we observed the emergence of a HCV variant that is resistant to miR-122 knockdown. Next-generation sequencing revealed that this was due to a single nucleotide change at position 28 (G28A) of the HCV genome, which falls between the two miR-122 seed-binding sites. Naturally occurring HCV isolates encoding G28A are similarly resistant to miR-122 inhibition, indicating that subtle differences in viral sequence, even outside the seed-binding site, greatly influence HCV’s miR-122 concentration requirement. Additionally, we found that HCV itself reduces miR-122’s activity in the cell, possibly through binding and sequestering miR-122. Our study provides insight into the interaction between miR-122 and HCV, including viral adaptation to reduced miR-122 bioavailability, and has implications for the development of anti-miR-122-based HCV drugs.
Collapse
Affiliation(s)
- Benjamin Israelow
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1124, New York, New York 10029, USA
| | - Gavriel Mullokandov
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1124, New York, New York 10029, USA
| | - Judith Agudo
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1124, New York, New York 10029, USA
| | - Marion Sourisseau
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1124, New York, New York 10029, USA
| | - Ali Bashir
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1124, New York, New York 10029, USA
| | - Andres Y Maldonado
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1124, New York, New York 10029, USA
| | - Arvin C Dar
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1124, New York, New York 10029, USA
| | - Brian D Brown
- 1] Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1124, New York, New York 10029, USA [2] Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1124, New York, New York 10029, USA [3] Diabetes, Metabolism and Obesity Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1124, New York, New York 10029, USA [4] Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1124, New York, New York 10029, USA
| | - Matthew J Evans
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1124, New York, New York 10029, USA
| |
Collapse
|
44
|
Ding Q, von Schaewen M, Ploss A. The impact of hepatitis C virus entry on viral tropism. Cell Host Microbe 2014; 16:562-8. [PMID: 25525789 DOI: 10.1016/j.chom.2014.10.009] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Uptake of hepatitis C virus (HCV) into hepatocytes is an orchestrated process, involving numerous host factors, virion-associated lipoproteins, and a growing number of cell-associated factors. Several of these factors likely contribute to the hepatotropism and limited host range of this virus. Discerning the minimal set of human-specific factors required for viral uptake into nonhuman cells has facilitated the development of small animal models with inheritable HCV susceptibility. This review summarizes current knowledge of host factors required for HCV entry, the molecular mechanisms underlying HCV entry into hepatocytes, and aspects of viral entry contributing to HCV host tropism.
Collapse
Affiliation(s)
- Qiang Ding
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Markus von Schaewen
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Alexander Ploss
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
45
|
Cashman SB, Marsden BD, Dustin LB. The Humoral Immune Response to HCV: Understanding is Key to Vaccine Development. Front Immunol 2014; 5:550. [PMID: 25426115 PMCID: PMC4226226 DOI: 10.3389/fimmu.2014.00550] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 10/16/2014] [Indexed: 12/15/2022] Open
Abstract
Hepatitis C virus (HCV) remains a global problem, despite advances in treatment. The low cost and high benefit of vaccines have made them the backbone of modern public health strategies, and the fight against HCV will not be won without an effective vaccine. Achievement of this goal will benefit from a robust understanding of virus-host interactions and protective immunity in HCV infection. In this review, we summarize recent findings on HCV-specific antibody responses associated with chronic and spontaneously resolving human infection. In addition, we discuss specific epitopes within HCV's envelope glycoproteins that are targeted by neutralizing antibodies. Understanding what prompts or prevents a successful immune response leading to viral clearance or persistence is essential to designing a successful vaccine.
Collapse
Affiliation(s)
- Siobhán B Cashman
- Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, Kennedy Institute of Rheumatology, University of Oxford , Oxford , UK
| | - Brian D Marsden
- Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, Kennedy Institute of Rheumatology, University of Oxford , Oxford , UK ; Nuffield Department of Medicine, Structural Genomics Consortium, University of Oxford , Oxford , UK
| | - Lynn B Dustin
- Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, Kennedy Institute of Rheumatology, University of Oxford , Oxford , UK
| |
Collapse
|
46
|
Ramanan V, Scull MA, Sheahan TP, Rice CM, Bhatia SN. New Methods in Tissue Engineering: Improved Models for Viral Infection. Annu Rev Virol 2014; 1:475-499. [PMID: 25893203 PMCID: PMC4398347 DOI: 10.1146/annurev-virology-031413-085437] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
New insights in the study of virus and host biology in the context of viral infection are made possible by the development of model systems that faithfully recapitulate the in vivo viral life cycle. Standard tissue culture models lack critical emergent properties driven by cellular organization and in vivo-like function, whereas animal models suffer from limited susceptibility to relevant human viruses and make it difficult to perform detailed molecular manipulation and analysis. Tissue engineering techniques may enable virologists to create infection models that combine the facile manipulation and readouts of tissue culture with the virus-relevant complexity of animal models. Here, we review the state of the art in tissue engineering and describe how tissue engineering techniques may alleviate some common shortcomings of existing models of viral infection, with a particular emphasis on hepatotropic viruses. We then discuss possible future applications of tissue engineering to virology, including current challenges and potential solutions.
Collapse
Affiliation(s)
- Vyas Ramanan
- Harvard-MIT Division of Health Sciences and Technology, Institute for Medical Engineering and Science, Cambridge, Massachusetts 02139
| | - Margaret A Scull
- Center for the Study of Hepatitis C, Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065
| | - Timothy P Sheahan
- Center for the Study of Hepatitis C, Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065
| | - Charles M Rice
- Center for the Study of Hepatitis C, Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065
| | - Sangeeta N Bhatia
- Harvard-MIT Division of Health Sciences and Technology, Institute for Medical Engineering and Science, Cambridge, Massachusetts 02139
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
- Division of Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115
| |
Collapse
|
47
|
Eyre NS, Helbig KJ, Beard MR. Current and future targets of antiviral therapy in the hepatitis C virus life cycle. Future Virol 2014. [DOI: 10.2217/fvl.14.83] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
ABSTRACT Advances in our understanding of the hepatitis C virus (HCV) life cycle have enabled the development of numerous clinically advanced direct-acting antivirals. Indeed, the recent approval of first-generation direct-acting antivirals that target the viral NS3–4A protease and NS5B RNA-dependent RNA polymerase brings closer the possibility of universally efficacious and well-tolerated antiviral therapies for this insidious infection. However, the complexities of comorbidities, unforeseen side effects or drug–drug interactions, viral diversity, the high mutation rate of HCV RNA replication and the elegant and constantly evolving mechanisms employed by HCV to evade host and therapeutically implemented antiviral strategies remain as significant obstacles to this goal. Here, we review advances in our understanding of the HCV life cycle and associated opportunities for antiviral therapy.
Collapse
Affiliation(s)
- Nicholas S Eyre
- School of Molecular & Biomedical Science, The University of Adelaide & Centre for Cancer Biology, SA Pathology, Adelaide, South Australia, Australia
| | - Karla J Helbig
- School of Molecular & Biomedical Science, The University of Adelaide & Centre for Cancer Biology, SA Pathology, Adelaide, South Australia, Australia
| | - Michael R Beard
- School of Molecular & Biomedical Science, The University of Adelaide & Centre for Cancer Biology, SA Pathology, Adelaide, South Australia, Australia
| |
Collapse
|
48
|
Dubuisson J, Cosset FL. Virology and cell biology of the hepatitis C virus life cycle: an update. J Hepatol 2014; 61:S3-S13. [PMID: 25443344 DOI: 10.1016/j.jhep.2014.06.031] [Citation(s) in RCA: 126] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 06/25/2014] [Accepted: 06/26/2014] [Indexed: 02/07/2023]
Abstract
Hepatitis C virus (HCV) is an important human pathogen that causes hepatitis, liver cirrhosis and hepatocellular carcinoma. It imposes a serious problem to public health in the world as the population of chronically infected HCV patients who are at risk of progressive liver disease is projected to increase significantly in the next decades. However, the arrival of new antiviral molecules is progressively changing the landscape of hepatitis C treatment. The search for new anti-HCV therapies has also been a driving force to better understand how HCV interacts with its host, and major progresses have been made on the various steps of the HCV life cycle. Here, we review the most recent advances in the fast growing knowledge on HCV life cycle and interaction with host factors and pathways.
Collapse
Affiliation(s)
- Jean Dubuisson
- Institut Pasteur de Lille, Center for Infection & Immunity of Lille (CIIL), F-59019 Lille, France; CNRS UMR8204, F-59021 Lille, France; Inserm U1019, F-59019 Lille, France; Université Lille Nord de France, F-59000 Lille, France.
| | - François-Loïc Cosset
- CIRI - International Center for Infectiology Research, Team EVIR, Université de Lyon, Lyon, France; Inserm, U1111, Lyon, France; Ecole Normale Supérieure de Lyon, Lyon, France; CNRS, UMR5308, Lyon, France; Université Lyon 1, Centre International de Recherche en Infectiologie, Lyon, France; LabEx Ecofect, Université de Lyon, Lyon, France.
| |
Collapse
|
49
|
Israelow B, Narbus CM, Sourisseau M, Evans MJ. HepG2 cells mount an effective antiviral interferon-lambda based innate immune response to hepatitis C virus infection. Hepatology 2014; 60:1170-9. [PMID: 24833036 PMCID: PMC4176518 DOI: 10.1002/hep.27227] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 05/14/2014] [Indexed: 12/14/2022]
Abstract
UNLABELLED Hepatitis C virus (HCV) exposure leads to persistent life-long infections characterized by chronic inflammation often developing into cirrhosis and hepatocellular carcinoma. The mechanism by which HCV remains in the liver while inducing an inflammatory and antiviral response remains unclear. Though the innate immune response to HCV in patients seems to be quite active, HCV has been shown in cell culture to employ a diverse array of innate immune antagonists, which suggests that current model systems to study interactions between HCV and the innate immune system are not representative of what happens in vivo. We recently showed that hepatoma-derived HepG2 cells support the entire HCV life cycle if the liver-specific microRNA, miR-122, is expressed along with the entry factor, CD81 (termed HepG2-HFL cells). We found that there was a striking difference in these cells' ability to sustain HCV infection and spread when compared with Huh-7 and Huh-7.5 cells. Additionally, HepG2-HFL cells exhibited a more robust antiviral response when challenged with other RNA viruses and viral mimetics than Huh-7 and Huh-7.5 cells. HCV infection elicited a potent interferon-lambda (IFN-λ), IFN-stimulated gene, and cytokine response in HepG2-HFL cells, but not in Huh-7 cells, suggesting that HepG2-HFL cells more faithfully recapitulate the innate immune response to HCV infection in vivo. Using this model, we found that blocking the retinoic acid-inducible gene I (RIG-I)-like receptor pathway or the IFN-λ-signaling pathway promoted HCV infection and spread in HepG2-HFL cells. CONCLUSION HepG2-HFL cells represent a new system to study the interaction between HCV and the innate immune system, solidifying the importance of IFN-λ in hepatic response to HCV infection and revealing non-redundant roles of RIG-I and melanoma differentiation-associated protein 5 in HCV recognition and repression of infection.
Collapse
Affiliation(s)
- Benjamin Israelow
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029
| | - Christopher M. Narbus
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029
| | - Marion Sourisseau
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029
| | - Matthew J. Evans
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029
| |
Collapse
|
50
|
Doerrbecker J, Friesland M, Riebesehl N, Ginkel C, Behrendt P, Brown RJP, Ciesek S, Wedemeyer H, Sarrazin C, Kaderali L, Pietschmann T, Steinmann E. Incorporation of primary patient-derived glycoproteins into authentic infectious hepatitis C virus particles. Hepatology 2014; 60:508-20. [PMID: 24771613 DOI: 10.1002/hep.27190] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 04/23/2014] [Indexed: 01/22/2023]
Abstract
UNLABELLED The Japanese fulminant hepatitis-1 (JFH1)-based hepatitis C virus (HCV) infection system has permitted analysis of the complete viral replication cycle in vitro. However, lack of robust infection systems for primary, patient-derived isolates limits systematic functional studies of viral intrahost variation and vaccine development. Therefore, we aimed at developing cell culture models for incorporation of primary patient-derived glycoproteins into infectious HCV particles for in-depth mechanistic studies of envelope gene function. To this end, we first constructed a packaging cell line expressing core, p7, and NS2 based on the highly infectious Jc1 genotype (GT) 2a chimeric genome. We show that this packaging cell line can be transfected with HCV replicons encoding cognate Jc1-derived glycoprotein genes for production of single-round infectious particles by way of trans-complementation. Testing replicons expressing representative envelope protein genes from all major HCV genotypes, we observed that virus production occurred in a genotype- and isolate-dependent fashion. Importantly, primary GT 2 patient-derived glycoproteins were efficiently incorporated into infectious particles. Moreover, replacement of J6 (GT 2a) core, p7, and NS2 with GT 1a-derived H77 proteins allowed production of infectious HCV particles with GT 1 patient-derived glycoproteins. Notably, adaptive mutations known to enhance virus production from GT 1a-2a chimeric genomes further increased virus release. Finally, virus particles with primary patient-derived E1-E2 proteins possessed biophysical properties comparable to Jc1 HCVcc particles, used CD81 for cell entry, were associated with ApoE and could be neutralized by immune sera. CONCLUSION This work describes cell culture systems for production of infectious HCV particles with primary envelope protein genes from GT 1 and GT 2-infected patients, thus opening up new opportunities to dissect envelope gene function in an individualized fashion.
Collapse
Affiliation(s)
- Juliane Doerrbecker
- Institute for Experimental Virology, Twincore, and Hannover Medical School Hannover, Germany, and Helmholtz Centre for Infection Research, Braunschweig, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|