1
|
Girma A. Staphylococcus aureus: Current perspectives on molecular pathogenesis and virulence. Cell Surf 2025; 13:100137. [PMID: 39758277 PMCID: PMC11699754 DOI: 10.1016/j.tcsw.2024.100137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/04/2024] [Accepted: 12/07/2024] [Indexed: 01/07/2025] Open
Abstract
Staphylococcus aureus has evolved a sophisticated regulatory system to control its virulence. One of the main roles of this interconnected network is to sense and respond to diverse environmental signals by altering the synthesis of virulence components required for survival in the host, including cell surface adhesins, extracellular enzymes and toxins. The accessory gene regulator (agr), a quorum sensing system that detects the local concentration of a cyclic peptide signaling molecule, is one of the well-studied of these S. aureus regulatory mechanisms. By using this system, S. aureus is able to sense its own population density and translate this information into a specific pattern of gene expression. In addition to Agr, this pathogen senses specific stimuli through various two-component systems and synchronizes responses with alternative sigma factors and cytoplasmic regulators of the SarA protein family. These different regulatory mechanisms combine host and environmental information into a network that guarantees the best possible response of pathogens to changing circumstances. In this article, an overview of the most significant and thoroughly studied regulatory systems of S. aureus is provided, along with a summary of their roles in host interactions.
Collapse
Affiliation(s)
- Abayeneh Girma
- Department of Biology, College of Natural and Computational Science, Mekdela Amba University, P.O. Box 32, Tulu Awuliya, Ethiopia
| |
Collapse
|
2
|
Song L, Schwinn LS, Barthel J, Ketter V, Lechler P, Linne U, Rastan AJ, Vogt S, Ruchholtz S, Paletta JRJ, Günther M. Implant-Derived S. aureus Isolates Drive Strain-Specific Invasion Dynamics and Bioenergetic Alterations in Osteoblasts. Antibiotics (Basel) 2025; 14:119. [PMID: 40001363 PMCID: PMC11852183 DOI: 10.3390/antibiotics14020119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/10/2025] [Accepted: 01/15/2025] [Indexed: 02/27/2025] Open
Abstract
Background: Implants are integral to modern orthopedic surgery. The outcomes are good, but infections remain a serious issue. Staphylococcus aureus (S. aureus), along with Staphylococcus epidermidis, are predominant pathogens responsible for implant-associated infections, as conventional antibiotic treatments often fail due to biofilm formation or the pathogens' ability to invade cells and to persist intracellularly. Objectives: This study therefore focused on interactions of S. aureus isolates from infected implants with MG63 and SaOS2 osteoblasts by investigating the adhesion, invasion, and the impact on the bioenergetics of osteoblasts. Methods and Results: We found that the ability of S. aureus to adhere to osteoblasts depends on the isolate and was not associated with a single gene or expression pattern of characteristic adhesion proteins, and further, was not correlated with invasion. However, analysis of invasion capabilities identified better invasion conditions for S. aureus isolates with the SaOS2 osteoblastic cells. Interestingly, metabolic activity of osteoblasts remained unaffected by S. aureus infection, indicating cell survival. In contrast, respiration assays revealed an altered mitochondrial bioenergetic turnover in infected cells. While basal as well as maximal respiration in MG63 osteoblasts were not influenced statistically by S. aureus infections, we found increased non-mitochondrial respiration and enhanced glycolytic activity in the osteoblasts, which was again, more pronounced in the SaOS2 osteoblastic cells. Conclusions: Our findings highlight the complexity of S. aureus-host interactions, where both the pathogen and the host cell contribute to intracellular persistence and survival, representing a major factor for therapeutic failures.
Collapse
Affiliation(s)
- Lei Song
- Center of Orthopedics and Trauma Surgery, Philipps-University Marburg, Universitätsklinikum Gießen and Marburg GmbH, 35043 Marburg, Germany
| | - Lea-Sophie Schwinn
- Center of Orthopedics and Trauma Surgery, Philipps-University Marburg, Universitätsklinikum Gießen and Marburg GmbH, 35043 Marburg, Germany
| | - Juliane Barthel
- Center of Orthopedics and Trauma Surgery, Philipps-University Marburg, Universitätsklinikum Gießen and Marburg GmbH, 35043 Marburg, Germany
| | - Vanessa Ketter
- Center of Orthopedics and Trauma Surgery, Philipps-University Marburg, Universitätsklinikum Gießen and Marburg GmbH, 35043 Marburg, Germany
| | - Philipp Lechler
- Center of Orthopedics and Trauma Surgery, Philipps-University Marburg, Universitätsklinikum Gießen and Marburg GmbH, 35043 Marburg, Germany
| | - Uwe Linne
- Faculty of Chemistry, Philipps-University Marburg, 35032 Marburg, Germany
| | - Ardawan J. Rastan
- Department of Cardiac and Thoracic Vascular Surgery, Philipps-University Marburg, Universitätsklinikum Gießen and Marburg GmbH, 35043 Marburg, Germany
| | - Sebastian Vogt
- Department of Cardiac and Thoracic Vascular Surgery, Philipps-University Marburg, Universitätsklinikum Gießen and Marburg GmbH, 35043 Marburg, Germany
| | - Steffen Ruchholtz
- Center of Orthopedics and Trauma Surgery, Philipps-University Marburg, Universitätsklinikum Gießen and Marburg GmbH, 35043 Marburg, Germany
| | - Jürgen R. J. Paletta
- Center of Orthopedics and Trauma Surgery, Philipps-University Marburg, Universitätsklinikum Gießen and Marburg GmbH, 35043 Marburg, Germany
| | - Madeline Günther
- Department of Cardiac and Thoracic Vascular Surgery, Philipps-University Marburg, Universitätsklinikum Gießen and Marburg GmbH, 35043 Marburg, Germany
| |
Collapse
|
3
|
Kuijk MM, Tusveld E, Lehmann E, van Dalen R, Lasa I, Ingmer H, Pannekoek Y, van Sorge NM. The two-component system ArlRS is essential for wall teichoic acid glycoswitching in Staphylococcus aureus. mBio 2025; 16:e0266824. [PMID: 39611840 PMCID: PMC11708061 DOI: 10.1128/mbio.02668-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 11/18/2024] [Indexed: 11/30/2024] Open
Abstract
Staphylococcus aureus is among the leading causes of hospital-acquired infections. Critical to S. aureus biology and pathogenesis are the cell wall-anchored glycopolymers wall teichoic acids (WTA). Approximately one-third of S. aureus isolates decorates WTA with a mixture of α1,4- and β1,4-N-acetylglucosamine (GlcNAc), which requires the dedicated glycosyltransferases TarM and TarS, respectively. Environmental conditions, such as high salt concentrations, affect the abundance and ratio of α1,4- and β1,4-GlcNAc WTA decorations, thereby impacting biological properties such as antibody binding and phage infection. To identify regulatory mechanisms underlying WTA glycoswitching, we screened 1,920 S. aureus mutants (Nebraska Transposon Mutant Library) by immunoblotting for differential expression of WTA-linked α1,4- or β1,4-GlcNAc using specific monoclonal antibody Fab fragments. Three two-component systems (TCS), GraRS, ArlRS, and AgrCA, were among the 230 potential hits. Using isogenic TCS mutants, we demonstrated that ArlRS is essential for WTA β1,4-GlcNAc decoration. ArlRS repressed tarM expression through the transcriptional regulator MgrA. In bacteria lacking arlRS, the increased expression of tarM correlated with the absence of WTA β1,4-GlcNAc, likely by outcompeting TarS enzymatic activity. ArlRS was responsive to Mg2+, but not Na+, revealing its role in the previously reported salt-induced WTA glycoswitch from α1,4-GlcNAc to β1,4-GlcNAc. Importantly, ArlRS-mediated regulation of WTA glycosylation affected S. aureus interaction with the innate receptor langerin and lysis by β1,4-GlcNAc-dependent phages. Since WTA represents a promising target for future immune-based treatments and vaccines, our findings provide important insight to align strategies targeting S. aureus WTA glycosylation patterns during infection.IMPORTANCEStaphylococcus aureus is a common colonizer but can also cause severe infections in humans. The development of antibiotic resistance complicates the treatment of S. aureus infections, increasing the need for antibiotic alternatives such as vaccines and therapies with bacterial viruses also known as phages. Wall teichoic acids (WTA) are abundant glycosylated structures of the S. aureus cell wall that have gained attention as a promising target for new treatments. Importantly, WTA glycosylation patterns show variation depending on environmental conditions, thereby impacting phage binding and interaction with host factors, such as antibodies and innate pattern-recognition receptors. Here, we show that the two-component system ArlRS is involved in the regulation of WTA glycosylation by responding to environmental changes in Mg2+ concentration. These findings may support the design of new treatment strategies that target WTA glycosylation patterns of S. aureus during infection.
Collapse
Affiliation(s)
- Marieke M. Kuijk
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Emma Tusveld
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Esther Lehmann
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rob van Dalen
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Iñigo Lasa
- Laboratory of Microbial Pathogenesis, Navarrabiomed, Universidad Pública de Navarra, Complejo Hospitalario de Navarra, IdiSNA, Pamplona, Navarra, Spain
| | - Hanne Ingmer
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Yvonne Pannekoek
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Nina M. van Sorge
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
- Netherlands Reference Laboratory for Bacterial Meningitis, Amsterdam University Medical Center location AMC, Amsterdam, the Netherlands
| |
Collapse
|
4
|
Al-Bukhalifa MA, Al-Tameemi HM. First whole genome sequencing of Staphylococcus aureus isolates from Iraq: Insights into zoonotic relations and biofilm-related genes. Open Vet J 2024; 14:3269-3288. [PMID: 39927357 PMCID: PMC11799623 DOI: 10.5455/ovj.2024.v14.i12.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 11/12/2024] [Indexed: 02/11/2025] Open
Abstract
Background Staphylococcus aureus is a significant zoonotic pathogen capable of causing infections in both humans and animals. The bacterium's capacity to develop biofilms and resistance to many different antibiotics has raised significant concerns for public health. Furthermore, studies have demonstrated that horizontal gene transfer enables the transfer of deleterious features between strains found in humans and animals, consequently rendering treatment and control efforts more challenging. Aim This study aimed to investigate the relationships between human and animal isolates and biofilm-associated genes in local S. aureus strains using whole genome sequencing technique. Methods We examined 111 suspected cases of S. aureus infection in humans and in animals and screened all S. aureus -positive isolates (11 isolates) for biofilm formation and antimicrobial profiles. Additionally, we sequenced and studied five S. aureus genomes isolated from humans, cows, sheep, cats, and dogs for significant biofilm-related genes and predicted their loci following annotation and deposition in the NCBI database. Results The study showed that the isolates have genome sizes between 2.7 and 2.8 megabases, a GC content of 32.8%-33.1%, and a coding sequence count between 2,718 and 2,838. The cow isolate (MHB) and cat isolate (MHF) exhibited substantial genomic similarities with human isolates of S. aureus (N315) and the type strain of S. aureus (DSM 20231). The genomes of the human isolate (MHH) and the dog isolate (MHC) were comparable to S. aureus (N315). The sheep isolate (MHO) showed lesser genomic similarity and was closely related to S. aureus subsp. anaerobius. The genomes were submitted to the NCBI database with the following accession numbers: MHB (GCA_040196135.1), MHH (GCA_040196155.1), MHO (GCA_040195495.1), MHF (GCA_040195555.1), and MHC (GCA_040195445.1). The isolates were categorized by PubMLST typing into MHC (ST-1156), MHB (ST-6), MHF (ST-6), and MHO (a unique ST). We identified the accession numbers, locations, and lengths of biofilm-associated genes and regulators within the studied genomes. Conclusion The study is the first to conduct complete genome sequencing of Staphylococcus aureus in Iraq, allowing analysis of biofilm-associated genes in local isolates. It provides the first large-scale genomic investigation of genetic relationships among animal and human isolates in Iraq.
Collapse
Affiliation(s)
| | - Hassan M. Al-Tameemi
- Microbiology Department, College of Veterinary Medicine, Basrah University, Basrah, Iraq
| |
Collapse
|
5
|
Zhou J, Refat M, Guo Y, Zhang J, Jiao M, He W, He X, Rabie MA, Ouyang Z, Zheng F. The Functional Study of Response Regulator ArlR Mutants in Staphylococcus Aureus. Appl Biochem Biotechnol 2024; 196:7687-7702. [PMID: 38530540 PMCID: PMC11645427 DOI: 10.1007/s12010-024-04919-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2024] [Indexed: 03/28/2024]
Abstract
Staphylococcus aureus is a major cause of hospital-associated infections worldwide. The organism's ability to form biofilms has led to resistance against current treatment options such as beta-lactams, glycopeptides, and daptomycin. The ArlRS two-component system is a crucial regulatory system necessary for S. aureus autolysis, biofilm formation, capsule synthesis, and virulence. This study aims to investigate the role of the arlR deletion mutant in the detection and activation of S. aureus. We created an arlR deleted mutant and complementary strains and characterized their impact on the strains using partial growth measurement. The quantitative real-time PCR was performed to determine the expression of icaA, and the microscopic images of adherent cells were captured at the optical density of 600 to determine the primary bacterial adhesion. The biofilm formation assay was utilized to investigate the number of adherent cells using crystal violet staining. Eventually, the Triton X-100 autolysis assay was used to determine the influence of arlR on the cell autolytic activities. Our findings indicate that the deletion of arlR reduced the transcriptional expression of icaA but not icaR in the ica operon, leading to decrease in polysaccharide intercellular adhesin (PIA) synthesis. Compared to the wild-type and the complementary mutants, the arlR mutant exhibited decreased in biofilm production but increased autolysis. It concluded that the S. aureus response regulatory ArlR influences biofilm formation, agglutination, and autolysis. This work has significantly expanded our knowledge of the ArlRS two-component regulatory system and could aid in the development of novel antimicrobial strategies against S. aureus.
Collapse
Affiliation(s)
- Jinhong Zhou
- The Key Laboratory of Environment and Genes Related to Disease of Ministry of Education, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Moath Refat
- The Key Laboratory of Environment and Genes Related to Disease of Ministry of Education, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yucheng Guo
- The Key Laboratory of Environment and Genes Related to Disease of Ministry of Education, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
- Talent Highland, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Jiaxin Zhang
- The Key Laboratory of Environment and Genes Related to Disease of Ministry of Education, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Min Jiao
- Talent Highland, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Wenbo He
- Talent Highland, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Xiaoyu He
- The Key Laboratory of Environment and Genes Related to Disease of Ministry of Education, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Mai A Rabie
- The Key Laboratory of Environment and Genes Related to Disease of Ministry of Education, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Zhenlin Ouyang
- Talent Highland, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710061, China.
| | - Fang Zheng
- The Key Laboratory of Environment and Genes Related to Disease of Ministry of Education, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China.
| |
Collapse
|
6
|
Liu L, Wang L, Liu X, Wang B, Guo X, Wang Y, Xu Y, Guan J, Zhao Y. Elucidating the potential of isorhapontigenin in targeting the MgrA regulatory network: a paradigm shift for attenuating MRSA virulence. Antimicrob Agents Chemother 2024; 68:e0061124. [PMID: 39046236 PMCID: PMC11373206 DOI: 10.1128/aac.00611-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 07/06/2024] [Indexed: 07/25/2024] Open
Abstract
As methicillin-resistant Staphylococcus aureus (MRSA) exhibits formidable resistance to many drugs, the imperative for alternative therapeutic strategies becomes increasingly evident. At the heart of our study is the identification of a novel inhibitor through fluorescence anisotropy assays, specifically targeting the crucial multiple gene regulator A (MgrA) regulatory network in S. aureus. Isorhapontigenin (Iso), a natural compound, exhibits outstanding inhibitory efficacy, modulating bacterial virulence pathways without exerting direct bactericidal activity. This suggests a paradigm shift toward attenuating virulence instead of purely focusing on bacterial elimination. Through comprehensive in vitro and in vivo evaluations, we elucidated the complex interplay between Iso and MgrA, leading to reduced S. aureus adhesion, and overall virulence. At the cellular level, Iso offers significant protection to A549 cells infected with S. aureus, reducing cellular damage. Importantly, Iso augments the chemotaxis of neutrophils, curtailing the immune evasion capabilities of S. aureus. Furthermore, in vivo investigations highlight the notable effectiveness of Iso against MRSA-induced pneumonia and within the Galleria mellonella infection model, underscoring its pivotal role in the evolving realm of antibacterial drug discovery. Significantly, when Iso is used in combination with vancomycin, it outperforms its solo application, indicating a more pronounced therapeutic impact. This seminal research emphasizes Iso's potential as a primary defense against the surge of multidrug-resistant pathogens, heralding new prospects in antimicrobial therapy.
Collapse
Affiliation(s)
- Lihan Liu
- Department of Infectious Diseases and Center of Infectious Diseases and Pathogen Biology, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Jilin University, Changchun, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Li Wang
- Clinical Medical College, Changchun University of Chinese Medicine, Changchun, China
| | - Xiaolei Liu
- Department of Infectious Diseases and Center of Infectious Diseases and Pathogen Biology, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Jilin University, Changchun, China
| | - Bingmei Wang
- Clinical Medical College, Changchun University of Chinese Medicine, Changchun, China
| | - Xuerui Guo
- School of Pharmaceutical Science, Jilin University, Changchun, China
| | - Yueying Wang
- Department of Orthopedics, The Third Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Yueshan Xu
- Department of Orthopedics, The Third Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Jiyu Guan
- Department of Infectious Diseases and Center of Infectious Diseases and Pathogen Biology, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Jilin University, Changchun, China
| | - Yicheng Zhao
- Department of Infectious Diseases and Center of Infectious Diseases and Pathogen Biology, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Jilin University, Changchun, China
- China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
7
|
Lê-Bury P, Echenique-Rivera H, Pizarro-Cerdá J, Dussurget O. Determinants of bacterial survival and proliferation in blood. FEMS Microbiol Rev 2024; 48:fuae013. [PMID: 38734892 PMCID: PMC11163986 DOI: 10.1093/femsre/fuae013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 04/29/2024] [Accepted: 05/10/2024] [Indexed: 05/13/2024] Open
Abstract
Bloodstream infection is a major public health concern associated with high mortality and high healthcare costs worldwide. Bacteremia can trigger fatal sepsis whose prevention, diagnosis, and management have been recognized as a global health priority by the World Health Organization. Additionally, infection control is increasingly threatened by antimicrobial resistance, which is the focus of global action plans in the framework of a One Health response. In-depth knowledge of the infection process is needed to develop efficient preventive and therapeutic measures. The pathogenesis of bloodstream infection is a dynamic process resulting from the invasion of the vascular system by bacteria, which finely regulate their metabolic pathways and virulence factors to overcome the blood immune defenses and proliferate. In this review, we highlight our current understanding of determinants of bacterial survival and proliferation in the bloodstream and discuss their interactions with the molecular and cellular components of blood.
Collapse
Affiliation(s)
- Pierre Lê-Bury
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Yersinia Research Unit, 28 rue du Dr Roux, 75015 Paris, France
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Autoimmune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), 18 route du Panorama, 92260 Fontenay-aux-Roses, France
| | - Hebert Echenique-Rivera
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Yersinia Research Unit, 28 rue du Dr Roux, 75015 Paris, France
| | - Javier Pizarro-Cerdá
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Yersinia Research Unit, 28 rue du Dr Roux, 75015 Paris, France
- Institut Pasteur, Université Paris Cité, Yersinia National Reference Laboratory, WHO Collaborating Research & Reference Centre for Plague FRA-146, 28 rue du Dr Roux, 75015 Paris, France
| | - Olivier Dussurget
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Yersinia Research Unit, 28 rue du Dr Roux, 75015 Paris, France
| |
Collapse
|
8
|
Verma AK, Jaiswal G, Sultana KN, Srivastava SK. 'Computational studies on coumestrol-ArlR interaction to target ArlRS signaling cascade involved in MRSA virulence'. J Biomol Struct Dyn 2024; 42:3712-3730. [PMID: 37293938 DOI: 10.1080/07391102.2023.2220028] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 05/10/2023] [Indexed: 06/10/2023]
Abstract
Two component signaling system ArlRS (Autolysis-related locus) regulates adhesion, biofilm formation and virulence in methicillin resistant Staphylococcus aureus. It consists of a histidine kinase ArlS and response regulator ArlR. ArlR is composed of a N-terminal receiver domain and DNA-binding effector domain at C-terminal. ArlR receiver domain dimerizes upon signal recognition and activates DNA binding by effector domain and subsequent virulence expression. In silico simulation and structural data suggest that coumestrol, a phytochemical found in Pueraria montana, forges a strong intermolecular interaction with residues involved in dimer formation and destabilizes ArlR dimerization, an essential conformational switch required for downstream effector domain to bind to virulent loci. Structural and energy profiles of simulated ArlR-coumestrol complexes suggest lower affinity between ArlR monomers due to structural rigidity at the dimer interface hindering the conformational rearrangements relevant for dimer formation. These analyses could be an attractive strategy to develop therapeutics and potent leads molecules response regulators of two component systems in which are involved in MRSA virulence as well as other drug-resistant pathogens.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Abhishek Kumar Verma
- Structural Biology & Bioinformatics Laboratory, Department of Biosciences, Manipal University Jaipur, Jaipur, Rajasthan, India
| | - Grijesh Jaiswal
- Structural Biology & Bioinformatics Laboratory, Department of Biosciences, Manipal University Jaipur, Jaipur, Rajasthan, India
| | - Kazi Nasrin Sultana
- Structural Biology & Bioinformatics Laboratory, Department of Biosciences, Manipal University Jaipur, Jaipur, Rajasthan, India
| | - Sandeep Kumar Srivastava
- Structural Biology & Bioinformatics Laboratory, Department of Biosciences, Manipal University Jaipur, Jaipur, Rajasthan, India
| |
Collapse
|
9
|
Savin A, Anderson EE, Dyzenhaus S, Podkowik M, Shopsin B, Pironti A, Torres VJ. Staphylococcus aureus senses human neutrophils via PerR to coordinate the expression of the toxin LukAB. Infect Immun 2024; 92:e0052623. [PMID: 38235972 PMCID: PMC10863418 DOI: 10.1128/iai.00526-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 01/19/2024] Open
Abstract
Staphylococcus aureus is a gram-positive pathogen that poses a major health concern, in part due to its large array of virulence factors that allow infection and evasion of the immune system. One of these virulence factors is the bicomponent pore-forming leukocidin LukAB. The regulation of lukAB expression is not completely understood, especially in the presence of immune cells such as human polymorphonuclear neutrophils (hPMNs). Here, we screened for transcriptional regulators of lukAB during the infection of primary hPMNs. We uncovered that PerR, a peroxide sensor, is vital for hPMN-mediated induction of lukAB and that PerR upregulates cytotoxicity during the infection of hPMNs. Exposure of S. aureus to hydrogen peroxide (H2O2) alone also results in increased lukAB promoter activity, a phenotype dependent on PerR. Collectively, our data suggest that S. aureus uses PerR to sense the H2O2 produced by hPMNs to stimulate the expression of lukAB, allowing the bacteria to withstand these critical innate immune cells.IMPORTANCEStaphylococcus aureus utilizes a diverse set of virulence factors, such as leukocidins, to subvert human neutrophils, but how these toxins are regulated is incompletely defined. Here, we identified the peroxide-sensitive repressor, PerR, as a required protein involved in the induction of lukAB in the presence of primary human neutrophils, a phenotype directly linked to the ability of PerR to sense H2O2. Thus, we show that S. aureus coordinates sensing and resistance to oxidative stress with toxin production to promote pathogen survival.
Collapse
Affiliation(s)
- Avital Savin
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA
- Department of Biology, New York University, New York, New York, USA
| | - Exene E. Anderson
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA
| | - Sophie Dyzenhaus
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA
| | - Magdalena Podkowik
- Antimicrobial-Resistant Pathogens Program, New York University Grossman School of Medicine, New York, New York, USA
- Division of Infectious Diseases, Department of Medicine, New York University Grossman School of Medicine, New York, New York, USA
| | - Bo Shopsin
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA
- Antimicrobial-Resistant Pathogens Program, New York University Grossman School of Medicine, New York, New York, USA
- Division of Infectious Diseases, Department of Medicine, New York University Grossman School of Medicine, New York, New York, USA
| | - Alejandro Pironti
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA
- Antimicrobial-Resistant Pathogens Program, New York University Grossman School of Medicine, New York, New York, USA
| | - Victor J. Torres
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA
- Department of Host-Microbe Interactions, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| |
Collapse
|
10
|
Liu J, Huang T, Xu Z, Mao Y, Soteyome T, Liu G, Qu C, Yuan L, Ma Q, Zhou F, Seneviratne G. Sub-MIC streptomycin and tetracycline enhanced Staphylococcus aureus Guangzhou-SAU749 biofilm formation, an in-depth study on transcriptomics. Biofilm 2023; 6:100156. [PMID: 37779859 PMCID: PMC10539642 DOI: 10.1016/j.bioflm.2023.100156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 09/16/2023] [Accepted: 09/18/2023] [Indexed: 10/03/2023] Open
Abstract
Staphylococcus aureus is a major human pathogen, a potential "Super-bug" and a typical biofilm forming bacteria. With usage of large amount of antibiotics, the residual antibiotics in clinical settings further complicate the colonization, pathogenesis and resistance of S. aureus. This study aimed at investigating the phenotypical and global gene expression changes on biofilm formation of a clinical S. aureus isolate treated under different types of antibiotics. Firstly, an isolate Guangzhou-SAU749 was selected from a large sale of previously identified S. aureus isolates, which exhibited weak biofilm formation in terms of biomass and viability. Secondly, 9 commonly prescribed antibiotics for S. aureus infections treatment, together with 10 concentrations ranging from 1/128 to 4 minimum inhibitory concentration (MIC) with 2-fold serial dilution, were used as different antibiotic stress conditions. Then, biofilm formation of S. aureus Guangzhou-SAU749 at different stages including 8 h, 16 h, 24 h, and 48 h, was tested by crystal violet and MTS assays. Thirdly, the whole genome of S. aureus Guangzhou-SAU749 was investigated by genome sequencing on PacBio platform. Fourthly, since enhancement of biofilm formation occurred when treated with 1/2 MIC tetracycline (TCY) and 1/4 MIC streptomycin (STR) since 5 h, the relevant biofilm samples were selected and subjected to RNA-seq and bioinformatics analysis. Last, expression of two component system (TCS) and biofilm associated genes in 4 h, 8 h, 16 h, 24 h, and 48 h sub-MIC TCY and STR treated biofilm samples were performed by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Although most antibiotics lowered the biomass and cell viability of Guangzhou-SAU749 biofilm at concentrations higher than MIC, certain antibiotics including TCY and STR promoted biofilm formation at sub-MICs. Additionally, upon genome sequencing, RNA-seq and RT-qPCR on biofilm samples treated with sub-MIC of TCY and STR at key time points, genes lytR, arlR, hssR, tagA, clfB, atlA and cidA related to TCS and biofilm formation were identified to contribute to the enhanced biofilm formation, providing a theoretical basis for further controlling on S. aureus biofilm formation.
Collapse
Affiliation(s)
- Junyan Liu
- College of Light Industry and Food Science, Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Guangzhou, 510225, China
| | - Tengyi Huang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Zhenbo Xu
- Department of Laboratory Medicine, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Yuzhu Mao
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, South China University of Technology, Guangzhou, 510640, China
| | - Thanapop Soteyome
- Home Economics Technology, Rajamangala University of Technology Phra Nakhon, Bangkok, Thailand
| | - Gongliang Liu
- College of Light Industry and Food Science, Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Guangzhou, 510225, China
| | - Chunyun Qu
- College of Light Industry and Food Science, Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Guangzhou, 510225, China
| | - Lei Yuan
- School of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, 225127, PR China
| | - Qin Ma
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture /Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, 510610, China
| | - Fang Zhou
- The First Affiliated Hospital, Sun Yan-Sen University, Guangzhou, 510080, China
| | - Gamini Seneviratne
- National Institute of Fundamental Studies, Hantana road, Kandy, Sri Lanka
| |
Collapse
|
11
|
Weig AW, O'Conner PM, Kwiecinski JM, Marciano OM, Nunag A, Gutierrez AT, Melander RJ, Horswill AR, Melander C. A structure activity relationship study of 3,4'-dimethoxyflavone for ArlRS inhibition in Staphylococcus aureus. Org Biomol Chem 2023; 21:3373-3380. [PMID: 37013457 PMCID: PMC10192164 DOI: 10.1039/d3ob00123g] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Infections caused by methicillin-resistant Staphylococcus aureus (MRSA) are difficult to treat due to their resistance to many β-lactam antibiotics, and their highly coordinated excretion of virulence factors. One way in which MRSA accomplishes this is by responding to environmental stimuli using two-component systems (TCS). The ArlRS TCS has been identified as having a key role in regulating virulence in both systemic and local infections caused by S. aureus. We recently disclosed 3,4'-dimethoxyflavone as a selective ArlRS inhibitor. In this study we explore the structure-activity relationship (SAR) of the flavone scaffold for ArlRS inhibition and identify several compounds with increased activity compared to the parent. Additionally, we identify a compound that suppresses oxacillin resistance in MRSA, and begin to probe the mechanism of action behind this activity.
Collapse
Affiliation(s)
- Alexander W Weig
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Patrick M O'Conner
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Jakub M Kwiecinski
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| | - Orry M Marciano
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Angelica Nunag
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Andrew T Gutierrez
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Roberta J Melander
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Alexander R Horswill
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| | - Christian Melander
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.
| |
Collapse
|
12
|
Párraga Solórzano PK, Bastille TS, Radin JN, Kehl-Fie TE. A Manganese-independent Aldolase Enables Staphylococcus aureus To Resist Host-imposed Metal Starvation. mBio 2023; 14:e0322322. [PMID: 36598285 PMCID: PMC9973326 DOI: 10.1128/mbio.03223-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 12/05/2022] [Indexed: 01/05/2023] Open
Abstract
The preferred carbon source of Staphylococcus aureus and many other pathogens is glucose, and its consumption is critical during infection. However, glucose utilization increases the cellular demand for manganese, a nutrient sequestered by the host as a defense against invading pathogens. Therefore, bacteria must balance glucose metabolism with the increasing demand that metal-dependent processes, such as glycolysis, impose upon the cell. A critical regulator that enables S. aureus to resist nutritional immunity is the ArlRS two-component system. This work revealed that ArlRS regulates the expression of FdaB, a metal-independent fructose 1,6-bisphosphate aldolase. Further investigation revealed that when S. aureus is metal-starved by the host, FdaB functionally replaces the metal-dependent isozyme FbaA, thereby allowing S. aureus to resist host-imposed metal starvation in culture. Although metal-dependent aldolases are canonically zinc-dependent, this work uncovered that FbaA requires manganese for activity and that FdaB protects S. aureus from manganese starvation. Both FbaA and FdaB contribute to the ability of S. aureus to cause invasive disease in wild-type mice. However, the virulence defect of a strain lacking FdaB was reversed in calprotectin-deficient mice, which have defects in manganese sequestration, indicating that this isozyme contributes to the ability of this pathogen to overcome manganese limitation during infection. Cumulatively, these observations suggest that the expression of the metal-independent aldolase FdaB allows S. aureus to alleviate the increased demand for manganese that glucose consumption imposes, and highlights the cofactor flexibility of even established metalloenzyme families. IMPORTANCE Staphylococcus aureus and other pathogens consume glucose during infection. Glucose utilization increases the demand for transition metals, such as manganese, a nutrient that the host limits as a defense mechanism against invading pathogens. Therefore, pathogenic bacteria must balance glucose and manganese requirements during infection. The two-component system ArlRS is an important regulator that allows S. aureus to adapt to both glucose and manganese starvation. Among the genes regulated by ArlRS is the metal-independent fructose 1,6-bisphosphate aldolase fdaB, which functionally substitutes for the metal-dependent isoenzyme FbaA and enables S. aureus to survive host-imposed manganese starvation. Unexpectedly, and differing from most characterized metal-dependent aldolases, FbaA requires manganese for activity. Cumulatively, these findings reveal a new mechanism for overcoming nutritional immunity as well as the cofactor plasticity of even well-characterized metalloenzyme families.
Collapse
Affiliation(s)
| | - Talina S. Bastille
- Department of Microbiology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Jana N. Radin
- Department of Microbiology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Thomas E. Kehl-Fie
- Department of Microbiology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
13
|
Duran Ramirez JM, Gomez J, Hanson BM, Isa T, Myckatyn TM, Walker JN. Staphylococcus aureus Breast Implant Infection Isolates Display Recalcitrance To Antibiotic Pocket Irrigants. Microbiol Spectr 2023; 11:e0288422. [PMID: 36507629 PMCID: PMC9927092 DOI: 10.1128/spectrum.02884-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 11/08/2022] [Indexed: 12/15/2022] Open
Abstract
Breast implant-associated infections (BIAIs) are the primary complication following placement of breast prostheses in breast cancer reconstruction. Given the prevalence of breast cancer, reconstructive failure due to infection results in significant patient distress and health care expenditures. Thus, effective BIAI prevention strategies are urgently needed. This study tests the efficacy of one infection prevention strategy: the use of a triple antibiotic pocket irrigant (TAPI) against Staphylococcus aureus, the most common cause of BIAIs. TAPI, which consists of 50,000 U bacitracin, 1 g cefazolin, and 80 mg gentamicin diluted in 500 mL of saline, is used to irrigate the breast implant pocket during surgery. We used in vitro and in vivo assays to test the efficacy of each antibiotic in TAPI, as well as TAPI at the concentration used during surgery. We found that planktonically grown S. aureus BIAI isolates displayed susceptibility to gentamicin, cefazolin, and TAPI. However, TAPI treatment enhanced biofilm formation of BIAI strains. Furthermore, we compared TAPI treatment of a S. aureus reference strain (JE2) to a BIAI isolate (117) in a mouse BIAI model. TAPI significantly reduced infection of JE2 at 1 and 7 days postinfection (dpi). In contrast, BIAI strain 117 displayed high bacterial burdens in tissues and implants, which persisted to 14 dpi despite TAPI treatment. Lastly, we demonstrated that TAPI was effective against Pseudomonas aeruginosa reference (PAO1) and BIAI strains in vitro and in vivo. Together, these data suggest that S. aureus BIAI strains employ unique mechanisms to resist antibiotic prophylaxis treatment and promote chronic infection. IMPORTANCE The incidence of breast implant associated infections (BIAIs) following reconstructive surgery postmastectomy remains high, despite the use of prophylactic antibiotic strategies. Thus, surgeons have begun using additional antibiotic-based prevention strategies, including triple antibiotic pocket irrigants (TAPIs). However, these strategies fail to reduce BIAI rates for these patients. To understand why these therapies fail, we assessed the antimicrobial resistance patterns of Staphylococcus aureus strains, the most common cause of BIAI, to the antibiotics in TAPI (bacitracin, cefazolin, and gentamicin). We found that while clinically relevant BIAI isolates were more susceptible to the individual antibiotics compared to a reference strain, TAPI was effective at killing all the strains in vitro. However, in a mouse model, the BIAI isolates displayed recalcitrance to TAPI, which contrasted with the reference strain, which was susceptible. These data suggest that strains causing BIAI may encode specific recalcitrance mechanisms not present within reference strains.
Collapse
Affiliation(s)
- Jesus M. Duran Ramirez
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center, Houston, Texas, USA
- Department of Epidemiology, Human Genetics, and Environmental Sciences, Center for Infectious Diseases, School of Public Health, University of Texas Health Science Center, Houston, Texas, USA
| | - Jana Gomez
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center, Houston, Texas, USA
| | - Blake M. Hanson
- Department of Epidemiology, Human Genetics, and Environmental Sciences, Center for Infectious Diseases, School of Public Health, University of Texas Health Science Center, Houston, Texas, USA
- Center for Antimicrobial Resistance and Microbial Genomics, McGovern Medical School, University of Texas Health Science Center, Houston, Texas, USA
| | - Taha Isa
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center, Houston, Texas, USA
| | - Terence M. Myckatyn
- Division of Plastic and Reconstructive Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Jennifer N. Walker
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center, Houston, Texas, USA
- Department of Epidemiology, Human Genetics, and Environmental Sciences, Center for Infectious Diseases, School of Public Health, University of Texas Health Science Center, Houston, Texas, USA
| |
Collapse
|
14
|
PurN Is Involved in Antibiotic Tolerance and Virulence in Staphylococcus aureus. Antibiotics (Basel) 2022; 11:antibiotics11121702. [PMID: 36551359 PMCID: PMC9774800 DOI: 10.3390/antibiotics11121702] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/13/2022] [Accepted: 11/21/2022] [Indexed: 11/29/2022] Open
Abstract
Staphylococcus aureus can cause chronic infections which are closely related to persister formation. Purine metabolism is involved in S. aureus persister formation, and purN, encoding phosphoribosylglycinamide formyltransferase, is an important gene in the purine metabolism process. In this study, we generated a ΔpurN mutant of the S. aureus Newman strain and assessed its roles in antibiotic tolerance and virulence. The ΔpurN in the late exponential phase had a significant defect in persistence to antibiotics. Complementation of the ΔpurN restored its tolerance to different antibiotics. PurN significantly affected virulence gene expression, hemolytic ability, and biofilm formation in S. aureus. Moreover, the LD50 (3.28 × 1010 CFU/mL) of the ΔpurN for BALB/c mice was significantly higher than that of the parental strain (2.81 × 109 CFU/mL). Transcriptome analysis revealed that 58 genes that were involved in purine metabolism, alanine, aspartate, glutamate metabolism, and 2-oxocarboxylic acid metabolism, etc., were downregulated, while 24 genes involved in ABC transporter and transferase activity were upregulated in ΔpurN vs. parental strain. Protein-protein interaction network showed that there was a close relationship between PurN and GltB, and SaeRS. The study demonstrated that PurN participates in the formation of the late exponential phase S. aureus persisters via GltB and regulates its virulence by activating the SaeRS two-component system.
Collapse
|
15
|
Therapeutic Inhibition of Staphylococcus aureus ArlRS Two-Component Regulatory System Blocks Virulence. Antimicrob Agents Chemother 2022; 66:e0018722. [PMID: 35736133 PMCID: PMC9295591 DOI: 10.1128/aac.00187-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Staphylococcus aureus is a common cause of severe infections, and its widespread antibiotic resistance necessitates search for alternative therapies, such as inhibition of virulence. As S. aureus produces multiple individual virulence factors, inhibition of an entire regulatory system might provide better effects than targeting each virulence factor separately. Herein, we describe two novel inhibitors of S. aureus two-component regulatory system ArlRS: 3,4'-dimethoxyflavone and homopterocarpin. Unlike other putative ArlRS inhibitors previously identified, these two compounds were effective and specific. In vitro kinase assays indicated that 3,4'-dimethoxyflavone directly inhibits ArlS autophosphorylation, while homopterocarpin did not exhibit such effect, suggesting that two inhibitors work through distinct mechanisms. Application of the inhibitors to methicillin-resistant S. aureus (MRSA) in vitro blocked ArlRS signaling, inducing an abnormal gene expression pattern that was reflected in changes at the protein level, enhanced sensitivity to oxacillin, and led to the loss of numerous cellular virulence traits, including the ability to clump, adhere to host ligands, and evade innate immunity. The pleiotropic antivirulence effect of inhibiting a single regulatory system resulted in a marked therapeutic potential, demonstrated by the ability of inhibitors to decrease severity of MRSA infection in mice. Altogether, this study demonstrated the feasibility of ArlRS inhibition as anti-S. aureus treatment, and identified new lead compounds for therapeutic development.
Collapse
|
16
|
Ong ZX, Kannan B, Becker DL. Exploiting transposons in the study of Staphylococcus aureus pathogenesis and virulence. Crit Rev Microbiol 2022; 49:297-317. [PMID: 35438613 DOI: 10.1080/1040841x.2022.2052794] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The opportunistic pathogen Staphylococcus aureus has an extremely complex relationship with humans. While the bacteria can exist as a commensal in many, it can cause a wide range of diseases and infections when turned pathogenic. Its presence is a determinant of chronicity and poor prognosis in numerous diseases, and its genomic plasticity causes S. aureus antimicrobial resistance to be one of the most dire contemporary medical problems to solve. Genetic manipulation of S. aureus has led to numerous findings that are vital in the fight against its pathogenesis. The utilisation of transposon mutant libraries for the systematic inspection of the S. aureus genome led to many landmark discoveries pertaining to the bacteria's pathogenicity, antimicrobial resistance acquisition, and virulence regulation. In this review, we describe mutant libraries, and their significant contributions, from various S. aureus strains created with commonly used transposons. The general workflow for the construction of libraries will be presented, along with a discussion of the challenges of undertaking the task of large-scale library construction. As the accessibility of transposon mutant library construction, screening, and analysis increases, this genetic tool could be further exploited in the study of the S. aureus genome.
Collapse
Affiliation(s)
- Zi Xin Ong
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore.,Skin Research Institute, Singapore.,Nanyang Institute of Technology in Health and Medicine, Interdisciplinary Graduate Programme, Nanyang Technological University, Singapore
| | - Bavani Kannan
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore.,Skin Research Institute, Singapore
| | - David L Becker
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore.,Skin Research Institute, Singapore
| |
Collapse
|
17
|
Huang L, Wu C, Gao H, Xu C, Dai M, Huang L, Hao H, Wang X, Cheng G. Bacterial Multidrug Efflux Pumps at the Frontline of Antimicrobial Resistance: An Overview. Antibiotics (Basel) 2022; 11:antibiotics11040520. [PMID: 35453271 PMCID: PMC9032748 DOI: 10.3390/antibiotics11040520] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/01/2022] [Accepted: 04/08/2022] [Indexed: 02/06/2023] Open
Abstract
Multidrug efflux pumps function at the frontline to protect bacteria against antimicrobials by decreasing the intracellular concentration of drugs. This protective barrier consists of a series of transporter proteins, which are located in the bacterial cell membrane and periplasm and remove diverse extraneous substrates, including antimicrobials, organic solvents, toxic heavy metals, etc., from bacterial cells. This review systematically and comprehensively summarizes the functions of multiple efflux pumps families and discusses their potential applications. The biological functions of efflux pumps including their promotion of multidrug resistance, biofilm formation, quorum sensing, and survival and pathogenicity of bacteria are elucidated. The potential applications of efflux pump-related genes/proteins for the detection of antibiotic residues and antimicrobial resistance are also analyzed. Last but not least, efflux pump inhibitors, especially those of plant origin, are discussed.
Collapse
|
18
|
Duran Ramirez JM, Gomez J, Obernuefemann CLP, Gualberto NC, Walker JN. Semi-Quantitative Assay to Measure Urease Activity by Urinary Catheter-Associated Uropathogens. Front Cell Infect Microbiol 2022; 12:859093. [PMID: 35392611 PMCID: PMC8980526 DOI: 10.3389/fcimb.2022.859093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 02/23/2022] [Indexed: 11/13/2022] Open
Abstract
Catheter-associated urinary tract infections (CAUTIs) are one of the most common healthcare-associated infections in the US, accounting for over 1 million cases annually and totaling 450 million USD. CAUTIs have high morbidity and mortality rates and can be caused by a wide range of pathogens, making empiric treatment difficult. Furthermore, when urease-producing uropathogens cause symptomatic CAUTI or asymptomatic catheter colonization, the risk of catheter failure due to blockage increases. The enzyme urease promotes catheter blockage by hydrolyzing urea in urine into ammonia and carbon dioxide, which results in the formation of crystals that coat the catheter surface. If CAUTI is left untreated, the crystals can grow until they block the urinary catheter. Catheter blockage and subsequent failure reduces the quality of life for the chronically catheterized, as it requires frequent catheter exchanges and can promote more severe disease, including dissemination of the infection to the kidneys or bloodstream. Thus, understanding how urease contributes to catheter blockages and/or more severe disease among the broad range of urease-producing microbes may provide insights into better prevention or treatment strategies. However, clinical assays that detect urease production among clinical isolates are qualitative and prioritize the detection of urease from Proteus mirabilis, the most well-studied uropathogenic urease producer. While urease from other known urease producers, such as Morganella morganii, can also be detected with these methods, other uropathogens, including Staphylococcus aureus and Klebsiella pneumonia, are harder to detect. In this study, we developed a high throughput, semiquantitative assay capable of testing multiple uropathogens in a rapid and efficient way. We validated the assay using Jack Bean urease, the urease producing species: Proteus spp., M. morganii, K. pneumonia, and S. aureus strains, and the non-urease producer: Escherichia coli. This modified assay more rapidly detected urease-producing strains compared to the current clinical test, Christensen Urea Agar, and provided semiquantitative values that may be used to further investigate different aspects of urease regulation, production, or activity in these diverse species. Furthermore, this assay can be easily adapted to account for different environmental stimuli affecting urease production, including bacterial concentration, aeration, or addition of anti-urease compounds.
Collapse
Affiliation(s)
- Jesus M. Duran Ramirez
- Department of Microbiology and Molecular Genetics, McGovern Medical School, The University of Texas Health Science Center, Houston, TX, United States
- Department of Epidemiology, Human Genetics, and Environmental Sciences, Center for Infectious Diseases, School of Public Health, The University of Texas Health Science Center, Houston, TX, United States
| | - Jana Gomez
- Department of Microbiology and Molecular Genetics, McGovern Medical School, The University of Texas Health Science Center, Houston, TX, United States
| | - Chloe L. P. Obernuefemann
- The Center for Women’s Infectious Disease Research, Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Nathaniel C. Gualberto
- The Center for Women’s Infectious Disease Research, Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Jennifer N. Walker
- Department of Microbiology and Molecular Genetics, McGovern Medical School, The University of Texas Health Science Center, Houston, TX, United States
- Department of Epidemiology, Human Genetics, and Environmental Sciences, Center for Infectious Diseases, School of Public Health, The University of Texas Health Science Center, Houston, TX, United States
| |
Collapse
|
19
|
Expression, Purification, and Characterization of the Recombinant, Two-Component, Response Regulator ArlR from Fusobacterium nucleatum. Appl Biochem Biotechnol 2022; 194:2093-2107. [PMID: 35029789 DOI: 10.1007/s12010-021-03785-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2021] [Indexed: 11/02/2022]
Abstract
Fusobacterium nucleatum is associated with the incidence and development of multiple diseases, such as periodontitis and colorectal cancer (CRC). Until now, studies have proved only a few proteins to be associated with such pathogenic diseases. The two-component system is one of the most prevalent forms of bacterial signal transduction related to intestinal diseases. Here, we report a novel, recombinant, two-component, response regulator protein ArlR from the genome of F. nucleatum strain ATCC 25,586. We optimized the expression and purification conditions of ArlR; in addition, we characterized the interaction of this response regulator protein with the corresponding histidine kinase and DNA sequence. The full-length ArlR was successfully expressed in six E. coli host strains. However, optimum expression conditions of ArlR were present only in E. coli strain BL21 CodonPlus (DE3) RIL that was later induced with isopropyl β-D-1-thiogalactopyranoside (IPTG) for 8 h at 25 °C. The SDS-PAGE analysis revealed the molecular weight of the recombinant protein as 27.3 kDa with approximately 90% purity after gel filtration chromatography. Because ArlR was biologically active after its purification, it accepted the corresponding phosphorylated histidine kinase phosphate group and bound to the analogous DNA sequence. The binding constant between ArlR and the corresponding histidine kinase was about 2.1 μM, whereas the binding constant between ArlR and its operon was 6.4 μM. Altogether, these results illustrate an effective expression and purification method for the novel two-component system protein ArlR.
Collapse
|
20
|
Párraga Solórzano PK, Shupe AC, Kehl-Fie TE. The Sensor Histidine Kinase ArlS Is Necessary for Staphylococcus aureus To Activate ArlR in Response to Nutrient Availability. J Bacteriol 2021; 203:e0042221. [PMID: 34606376 PMCID: PMC8604075 DOI: 10.1128/jb.00422-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 09/25/2021] [Indexed: 12/12/2022] Open
Abstract
Staphylococcus aureus is a versatile opportunistic pathogen whose success is driven by its ability to adapt to diverse environments and host-imposed stresses. Two-component signal transduction systems, such as ArlRS, often mediate these adaptations. Loss of ArlRS or the response regulator ArlR alone impairs the ability of S. aureus to respond to host-imposed manganese starvation and glucose limitation. As sensor histidine kinases and response regulators frequently work as pairs, it has been assumed that ArlS senses and activates ArlR in response to these stimuli. However, recent work suggests that the sensor histidine kinase GraS can also activate ArlR, calling the contribution of ArlS in responding to manganese and glucose availability into question. The results of current studies reveal that ArlS is necessary to activate ArlR in response to manganese sequestration by the host immune effector calprotectin and glucose limitation. Although the loss of ArlS does not completely eliminate ArlR activity, this response regulator is no longer responsive to manganese or glucose availability in the absence of its cognate histidine kinase. Despite the residual activity of ArlR in the absence of ArlS, ArlR phosphorylation by ArlS is required for S. aureus to resist calprotectin-imposed metal starvation. Cumulatively, these findings contribute to the understanding of S. aureus signal transduction in response to nutritional immunity and support the previous observation indicating that ArlRS is activated by a common signal derived from host-imposed manganese and glucose limitation. IMPORTANCE The ability of pathogens, including Staphylococcus aureus, to sense and adapt to diverse environments partially relies on two-component systems, such as ArlRS. Recent work revealed that the response regulator ArlR can be cross-activated by the sensor histidine kinase GraS, rendering the role of its cognate partner, ArlS, in response to manganese and glucose limitation uncertain. The results of this study reveal that ArlS is necessary for the activation of ArlR in response to calprotectin and glucose limitation. Although a low level of ArlR activity remains in the absence of ArlS, ArlS phosphotransfer to ArlR is required for S. aureus to overcome calprotectin-induced nutritional stress. Collectively, this study provides fundamental information to understand how ArlRS mediates staphylococcal adaptation during infection.
Collapse
Affiliation(s)
| | - Angela C. Shupe
- Department of Microbiology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Thomas E. Kehl-Fie
- Department of Microbiology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
21
|
Yan H, Li M, Meng L, Zhao F. Formation of viable but nonculturable state of Staphylococcus aureus under frozen condition and its characteristics. Int J Food Microbiol 2021; 357:109381. [PMID: 34492585 DOI: 10.1016/j.ijfoodmicro.2021.109381] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 08/20/2021] [Accepted: 08/23/2021] [Indexed: 11/24/2022]
Abstract
Viable but nonculturable (VBNC) state of microorganisms has attracted much attention due to its characteristics, including the difficulty in detection by culture-based methods, virulence retention, high resistance, and so on. As a foodborne pathogen, Staphylococcus aureus is widely distributed, and has been found to enter the VBNC state under some environmental stresses, posing a potential threat to human health. Freezing is a common condition for food storage. This study investigated whether citric acid, a common food additive, could induce S. aureus into the VBNC state at -20 °C. By measuring the number of culturable and viable cells, it was found that S. aureus entered the VBNC state after 72 days of induction in citric acid buffer at -20 °C. The VBNC cells were then successfully resuscitated at 37 °C in trypsin soybean medium (TSB) with or without heat shock treatment, and TSB supplemented with sodium pyruvate and Tween 80 after 48 h. Heat shock resulted in an excellent resuscitation effect. Observed by transmission electron microscopy, the internal structure of VBNC cells was found markedly changed, compared with that of exponential phase cells. API ZYM kit was used to compare the intracellular enzyme activity of S. aureus in the exponential phase with that in the VBNC state. The results showed that the enzyme activity decreased significantly in VBNC cells, and that the VBNC cells were more resistant to simulated gastrointestinal fluid through flow cytometry analysis. Quantitative reverse-transcription polymerase chain reaction results suggested that the ability of adhesion and biofilm formation of VBNC cells might be decreased due to the down-regulation of related genes. However, it should not be ignored the recovery potential of biofilm-forming ability of VBNC cells caused by the high expression of sarA. In conclusion, S. aureus could be induced into the VBNC state in citric acid buffer at -20 °C, which showed changes in some biological characteristics and could resuscitate successfully by many conditions. Food industry needs to pay attention to the potential hazard by VBNC S. aureus under frozen conditions.
Collapse
Affiliation(s)
- Haiyang Yan
- College of Food Science and Engineering, Jilin University, 5333 Xi'an Road, Changchun 130062, PR China
| | - Meng Li
- College of Food Science and Engineering, Jilin University, 5333 Xi'an Road, Changchun 130062, PR China
| | - Lingling Meng
- College of Food Science and Engineering, Jilin University, 5333 Xi'an Road, Changchun 130062, PR China
| | - Feng Zhao
- College of Food Science and Engineering, Jilin University, 5333 Xi'an Road, Changchun 130062, PR China.
| |
Collapse
|
22
|
Abstract
Staphylococcus aureus interacts with fibrinogen in plasma to form macroscopic clumps of cells. A simple and rapid slide agglutination test using rabbit plasma has been employed in clinical labs to distinguish S. aureus from most coagulase-negative Staphylococci. The method described here is a quantitative clumping assay in which S. aureus cells are mixed with either plasma or purified fibrinogen, and clumps are allowed to sediment out of solution. Clearing of the overlying solution is monitored over time by measuring the optical density at 600 nm and comparing these values to the initial turbidity. This simple assay can be used to study regulation and expression of various cell wall-anchored adhesins.
Collapse
|
23
|
Kwiecinski JM, Kratofil RM, Parlet CP, Surewaard BGJ, Kubes P, Horswill AR. Staphylococcus aureus uses the ArlRS and MgrA cascade to regulate immune evasion during skin infection. Cell Rep 2021; 36:109462. [PMID: 34320352 PMCID: PMC8450000 DOI: 10.1016/j.celrep.2021.109462] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 05/01/2021] [Accepted: 07/09/2021] [Indexed: 01/20/2023] Open
Abstract
Skin is one of the most common sites of host immune response against Staphylococcus aureus infection. Here, through a combination of in vitro assays, mouse models, and intravital imaging, we find that S. aureus immune evasion in skin is controlled by a cascade composed of the ArlRS two-component regulatory system and its downstream effector, MgrA. S. aureus lacking either ArlRS or MgrA is less virulent and unable to form correct abscess structure due to de-repression of a giant surface protein, Ebh. These S. aureus mutants also have decreased expression of immune evasion factors (leukocidins, chemotaxis-inhibitory protein of S. aureus [CHIPS], staphylococcal complement inhibitor [SCIN], and nuclease) and are unable to kill neutrophils, block their chemotaxis, degrade neutrophil extracellular traps, and survive direct neutrophil attack. The combination of disrupted abscess structure and reduced immune evasion factors makes S. aureus susceptible to host defenses. ArlRS and MgrA are therefore the main regulators of S. aureus immune evasion and promising treatment targets.
Collapse
Affiliation(s)
- Jakub M Kwiecinski
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA; Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow 30387, Poland
| | - Rachel M Kratofil
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB T2N 4Z6, Canada; Calvin, Phoebe, and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB T2N 4Z6, Canada
| | - Corey P Parlet
- Department of Veterans Affairs, Iowa City VA Medical Center, Iowa City, IA 52246, USA; Department of Microbiology and Immunology, University of Iowa, Iowa City, IA 52242, USA
| | - Bas G J Surewaard
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB T2N 4Z6, Canada; Calvin, Phoebe, and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB T2N 4Z6, Canada
| | - Paul Kubes
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB T2N 4Z6, Canada; Calvin, Phoebe, and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB T2N 4Z6, Canada
| | - Alexander R Horswill
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA; Department of Veterans Affairs, Eastern Colorado Health Care System, Aurora, CO 80045, USA.
| |
Collapse
|
24
|
Human Urine Alters Methicillin-Resistant Staphylococcus aureus Virulence and Transcriptome. Appl Environ Microbiol 2021; 87:e0074421. [PMID: 34105987 DOI: 10.1128/aem.00744-21] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Gram-positive methicillin-resistant Staphylococcus aureus (MRSA) is an emerging cause of hospital-associated urinary tract infections (UTI), especially in catheterized individuals. Despite being rare, MRSA UTI are prone to potentially life-threatening exacerbations such as bacteremia that can be refractory to routine antibiotic therapy. To delineate the molecular mechanisms governing MRSA urinary pathogenesis, we exposed three S. aureus clinical isolates, including two MRSA strains, to human urine for 2 h and analyzed virulence characteristics and changes in gene expression. The in vitro virulence assays showed that human urine rapidly alters adherence to human bladder epithelial cells and fibronectin, hemolysis of sheep red blood cells (RBCs), and surface hydrophobicity in a staphylococcal strain-specific manner. In addition, transcriptome sequencing (RNA-Seq) analysis of uropathogenic strain MRSA-1369 revealed that 2-h-long exposure to human urine alters MRSA transcriptome by modifying expression of genes encoding enzymes catalyzing metabolic pathways, virulence factors, and transcriptional regulators. In summary, our results provide important insights into how human urine specifically and rapidly alters MRSA physiology and facilitates MRSA survival in the nutrient-limiting and hostile urinary microenvironment. IMPORTANCE Methicillin-resistant Staphylococcus aureus (MRSA) is an uncommon cause of urinary tract infections (UTI) in the general population. However, it is important to understand MRSA pathophysiology in the urinary tract because isolation of MRSA in urine samples often precedes potentially life-threatening MRSA bacteremia. In this report, we describe how exposure to human urine alters MRSA global gene expression and virulence. We hypothesize that these alterations may aid MRSA in acclimating to the nutrient-limiting, immunologically hostile conditions within the urinary tract leading to MRSA UTI.
Collapse
|
25
|
Knott S, Curry D, Zhao N, Metgud P, Dastgheyb SS, Purtill C, Harwood M, Chen AF, Schaer TP, Otto M, Hickok NJ. Staphylococcus aureus Floating Biofilm Formation and Phenotype in Synovial Fluid Depends on Albumin, Fibrinogen, and Hyaluronic Acid. Front Microbiol 2021; 12:655873. [PMID: 33995317 PMCID: PMC8117011 DOI: 10.3389/fmicb.2021.655873] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 03/19/2021] [Indexed: 11/13/2022] Open
Abstract
Biofilms are typically studied in bacterial media that allow the study of important properties such as bacterial growth. However, the results obtained in such media cannot take into account the bacterial localization/clustering caused by bacteria-protein interactions in vivo and the accompanying alterations in phenotype, virulence factor production, and ultimately antibiotic tolerance. We and others have reported that methicillin-resistant or methicillin-susceptible Staphylococcus aureus (MRSA or MSSA, respectively) and other pathogens assemble a proteinaceous matrix in synovial fluid. This proteinaceous bacterial aggregate is coated by a polysaccharide matrix as is characteristic of biofilms. In this study, we identify proteins important for this aggregation and determine the concentration ranges of these proteins that can reproduce bacterial aggregation. We then test this protein combination for its ability to cause marked aggregation, antibacterial tolerance, preservation of morphology, and expression of the phenol-soluble modulin (PSM) virulence factors. In the process, we create a viscous fluid that models bacterial behavior in synovial fluid. We suggest that our findings and, by extension, use of this fluid can help to better model bacterial behavior of new antimicrobial therapies, as well as serve as a starting point to study host protein-bacteria interactions characteristic of physiological fluids.
Collapse
Affiliation(s)
- Samantha Knott
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College of Thomas Jefferson University, Philadelphia, PA, United States
| | - Dylan Curry
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College of Thomas Jefferson University, Philadelphia, PA, United States
| | - Neil Zhao
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College of Thomas Jefferson University, Philadelphia, PA, United States
| | - Pallavi Metgud
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College of Thomas Jefferson University, Philadelphia, PA, United States
| | - Sana S. Dastgheyb
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College of Thomas Jefferson University, Philadelphia, PA, United States
| | - Caroline Purtill
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College of Thomas Jefferson University, Philadelphia, PA, United States
| | - Marc Harwood
- Rothman Orthopaedic Institute, Philadelphia, PA, United States
| | - Antonia F. Chen
- Department of Orthopaedic Surgery, Brigham and Women’s Hospital, Boston, PA, United States
| | - Thomas P. Schaer
- Department of Clinical Studies, New Bolton Center, School of Veterinary Medicine, University of Pennsylvania, Kennett Square, PA, United States
| | - Michael Otto
- Pathogen Molecular Genetics Section, Laboratory of Human Bacterial Pathogenesis, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Noreen J. Hickok
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College of Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
26
|
Petrie LE, Leonard AC, Murphy J, Cox G. Development and validation of a high-throughput whole cell assay to investigate Staphylococcus aureus adhesion to host ligands. J Biol Chem 2020; 295:16700-16712. [PMID: 32978256 PMCID: PMC7864066 DOI: 10.1074/jbc.ra120.015360] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/22/2020] [Indexed: 12/20/2022] Open
Abstract
Staphylococcus aureus adhesion to the host's skin and mucosae enables asymptomatic colonization and the establishment of infection. This process is facilitated by cell wall-anchored adhesins that bind to host ligands. Therapeutics targeting this process could provide significant clinical benefits; however, the development of anti-adhesives requires an in-depth knowledge of adhesion-associated factors and an assay amenable to high-throughput applications. Here, we describe the development of a sensitive and robust whole cell assay to enable the large-scale profiling of S. aureus adhesion to host ligands. To validate the assay, and to gain insight into cellular factors contributing to adhesion, we profiled a sequence-defined S. aureus transposon mutant library, identifying mutants with attenuated adhesion to human-derived fibronectin, keratin, and fibrinogen. Our screening approach was validated by the identification of known adhesion-related proteins, such as the housekeeping sortase responsible for covalently linking adhesins to the cell wall. In addition, we also identified genetic loci that could represent undescribed anti-adhesive targets. To compare and contrast the genetic requirements of adhesion to each host ligand, we generated a S. aureus Genetic Adhesion Network, which identified a core gene set involved in adhesion to all three host ligands, and unique genetic signatures. In summary, this assay will enable high-throughput chemical screens to identify anti-adhesives and our findings provide insight into the target space of such an approach.
Collapse
Affiliation(s)
- Laurenne E Petrie
- College of Biological Sciences, Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Allison C Leonard
- College of Biological Sciences, Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Julia Murphy
- College of Biological Sciences, Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Georgina Cox
- College of Biological Sciences, Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada.
| |
Collapse
|
27
|
Domnin P, Arkhipova A, Petrov S, Sysolyatina E, Parfenov V, Karalkin P, Mukhachev A, Gusarov A, Moisenovich M, Khesuani Y, Ermolaeva S. An In Vitro Model of Nonattached Biofilm-Like Bacterial Aggregates Based on Magnetic Levitation. Appl Environ Microbiol 2020; 86:e01074-20. [PMID: 32680859 PMCID: PMC7480373 DOI: 10.1128/aem.01074-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 07/10/2020] [Indexed: 12/27/2022] Open
Abstract
Chronic infections are associated with the formation of nonattached biofilm-like aggregates. In vitro models of surface-attached biofilms do not always accurately mimic these processes. Here, we tested a new approach to create in vitro nonattached bacterial aggregates using the principle of magnetic levitation of biological objects placed into a magnetic field gradient. Bacteria grown under magnetic levitation conditions formed nonattached aggregates that were studied with confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM) and characterized quantitatively. Nonattached aggregates consisted of bacteria submerged into an extracellular matrix and demonstrated features characteristic of biofilms, such as a polymeric matrix that binds Ruby Red and Congo red dyes, a prerequisite of bacterial growth, and increased resistance to gentamicin. Three quantitative parameters were explored to characterize strain-specific potential to form nonattached aggregates: geometric sizes, relative quantities of aggregated and free-swimming bacteria, and Congo red binding. Among three tested Escherichia coli strains, one strain formed nonattached aggregates poorly, and for this strain, all three of the considered parameters were different from those of the other two strains (P < 0.05). Further, we characterized biofilm formation on plastic and agar surfaces by these strains and found that good biofilm formation ability does not necessarily indicate good nonattached aggregate formation ability, and vice versa. The model and quantitative methods can be applied for in vitro studies of nonattached aggregates and modeling bacterial behavior in chronic infections, as it is important to increase our understanding of the role that nonattached bacterial aggregates play in the pathogenesis of chronic diseases.IMPORTANCE An increasing amount of evidence indicates that chronic infections are associated with nonattached biofilm-like aggregates formed by pathogenic bacteria. These aggregates differ from biofilms because they form under low-shear conditions within the volume of biological fluids and they do not attach to surfaces. Here, we describe an in vitro model that provides nonattached aggregate formation within the liquid volume due to magnetic levitation. Using this model, we demonstrated that despite morphological and functional similarities of nonattached aggregates and biofilms, strains that exhibit good biofilm formation might exhibit poor nonattached aggregate formation, suggesting that mechanisms underlying the formation of biofilms and nonattached aggregates are not identical. The magnetic levitation approach can be useful for in vitro studies of nonattached aggregate formation and simulation of bacterial behavior in chronic infections.
Collapse
Affiliation(s)
- Pavel Domnin
- Gamaleya Research Centre of Epidemiology and Microbiology, Moscow, Russia
- Lomonosov Moscow State University, Moscow, Russia
| | | | | | - Elena Sysolyatina
- Gamaleya Research Centre of Epidemiology and Microbiology, Moscow, Russia
| | | | | | - Andrey Mukhachev
- Gamaleya Research Centre of Epidemiology and Microbiology, Moscow, Russia
| | - Alexey Gusarov
- Gamaleya Research Centre of Epidemiology and Microbiology, Moscow, Russia
| | | | | | - Svetlana Ermolaeva
- Gamaleya Research Centre of Epidemiology and Microbiology, Moscow, Russia
| |
Collapse
|
28
|
Tatta ER, Kumavath R. Rhodethrin and Rubrivivaxin as potential source of anti-biofilm agents against vancomycin resistant Enterococcus faecalis (ATCC 19443). Microb Pathog 2020; 148:104457. [PMID: 32828902 DOI: 10.1016/j.micpath.2020.104457] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 08/14/2020] [Accepted: 08/14/2020] [Indexed: 01/06/2023]
Abstract
Enterococcus faecalis is frequently present in the hospital environment and readily forms a biofilm that protects from antibiotics and resistance against environmental stress conditions, thereby increasing nosocomial chronic infections. This study aims to assess antimicrobial and antibiofilm activities of two novel terpenoid derivatives Rhodethrin (Rdn) and Rubrivivaxin (Rbn) against vancomycin resistant Enterococcus faecalis strain (ATCC19443). Both terpenoids effectively prevent biofilm formation with >75% attenuation in cell biomass and significantly decrease the production of exopolysaccharides (EPSs) (p = 0.005) and besides their expansion on different surface media. The findings provide new evidence that such terpenoid derivatives could be developed as novel antibacterial drugs.
Collapse
Affiliation(s)
- Eswar Rao Tatta
- Department of Genomic Science, School of Biological Sciences, Central University of Kerala, Tejaswini Hills, Periya (P.O), Kasaragod, Kerala, 671320, India
| | - Ranjith Kumavath
- Department of Genomic Science, School of Biological Sciences, Central University of Kerala, Tejaswini Hills, Periya (P.O), Kasaragod, Kerala, 671320, India.
| |
Collapse
|
29
|
SpoVG Modulates Cell Aggregation in Staphylococcus aureus by Regulating sasC Expression and Extracellular DNA Release. Appl Environ Microbiol 2020; 86:AEM.00591-20. [PMID: 32444467 PMCID: PMC7376557 DOI: 10.1128/aem.00591-20] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 05/06/2020] [Indexed: 11/20/2022] Open
Abstract
This study revealed that SpoVG can modulate cell aggregation by repressing sasC expression and extracellular DNA (eDNA) release. Furthermore, we have demonstrated the potential linkage between cell aggregation and antibiotic resistance. Our findings provide novel insights into the regulatory mechanisms of SpoVG involved in cell aggregation and in biofilm development and formation in Staphylococcus aureus. Biofilm formation is involved in numerous Staphylococcus aureus infections such as endocarditis, septic arthritis, osteomyelitis, and infections of indwelling medical devices. In these diseases, S. aureus forms biofilms as cell aggregates interspersed in host matrix material. Here, we have observed that the level of cell aggregation was significantly higher in the isogenic spoVG-deletion strain than in the wild-type strain. Reverse transcription-quantitative PCR data indicated that SpoVG could repress the expression of sasC, which codes for S. aureus surface protein C and is involved in cell aggregation and biofilm accumulation. Electromagnetic mobility shift assay demonstrated that SpoVG could specifically bind to the promoter region of sasC, indicating that SpoVG is a negative regulator and directly represses the expression of sasC. In addition, deletion of the SasC aggregation domain in the spoVG-deletion strain indicated that high-level expression of sasC could be the underlying cause of significantly increased cell aggregation formation. Our previous study showed that SpoVG is involved in oxacillin resistance of methicillin-resistant S. aureus by regulating the expression of genes involved in cell wall synthesis and degradation. In this study, we also found that SpoVG was able to negatively modulate the S. aureus drug tolerance under conditions of a high concentration of oxacillin treatment. These findings can broaden our understanding of the regulation of biofilm formation and drug tolerance in S. aureus. IMPORTANCE This study revealed that SpoVG can modulate cell aggregation by repressing sasC expression and extracellular DNA (eDNA) release. Furthermore, we have demonstrated the potential linkage between cell aggregation and antibiotic resistance. Our findings provide novel insights into the regulatory mechanisms of SpoVG involved in cell aggregation and in biofilm development and formation in Staphylococcus aureus.
Collapse
|
30
|
Abril AG, Carrera M, Böhme K, Barros-Velázquez J, Cañas B, Rama JLR, Villa TG, Calo-Mata P. Characterization of Bacteriophage Peptides of Pathogenic Streptococcus by LC-ESI-MS/MS: Bacteriophage Phylogenomics and Their Relationship to Their Host. Front Microbiol 2020; 11:1241. [PMID: 32582130 PMCID: PMC7296060 DOI: 10.3389/fmicb.2020.01241] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 05/14/2020] [Indexed: 01/21/2023] Open
Abstract
The present work focuses on LC-ESI-MS/MS (liquid chromatography-electrospray ionization-tandem mass spectrometry) analysis of phage-origin tryptic digestion peptides from mastitis-causing Streptococcus spp. isolated from milk. A total of 2,546 non-redundant peptides belonging to 1,890 proteins were identified and analyzed. Among them, 65 phage-origin peptides were determined as specific Streptococcus spp. peptides. These peptides belong to proteins such as phage repressors, phage endopeptidases, structural phage proteins, and uncharacterized phage proteins. Studies involving bacteriophage phylogeny and the relationship between phages encoding the peptides determined and the bacteria they infect were also performed. The results show how specific peptides are present in closely related phages, and a link exists between bacteriophage phylogeny and the Streptococcus spp. they infect. Moreover, the phage peptide M∗ATNLGQAYVQIM∗PSAK is unique and specific for Streptococcus agalactiae. These results revealed that diagnostic peptides, among others, could be useful for the identification and characterization of mastitis-causing Streptococcus spp., particularly peptides that belong to specific functional proteins, such as phage-origin proteins, because of their specificity to bacterial hosts.
Collapse
Affiliation(s)
- Ana G. Abril
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Mónica Carrera
- Department of Food Technology, Spanish National Research Council, Marine Research Institute, Vigo, Spain
| | - Karola Böhme
- Agroalimentary Technological Center of Lugo, Lugo, Spain
| | - Jorge Barros-Velázquez
- Department of Analytical Chemistry, Nutrition and Food Science, School of Veterinary Sciences, University of Santiago de Compostela, Lugo, Spain
| | - Benito Cañas
- Department of Analytical Chemistry, Complutense University of Madrid, Madrid, Spain
| | - Jose L. R. Rama
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Tomás G. Villa
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Pilar Calo-Mata
- Department of Analytical Chemistry, Nutrition and Food Science, School of Veterinary Sciences, University of Santiago de Compostela, Lugo, Spain
| |
Collapse
|
31
|
Ouyang Z, Zheng F, Chew JY, Pei Y, Zhou J, Wen K, Han M, Lemieux MJ, Hwang PM, Wen Y. Deciphering the activation and recognition mechanisms of Staphylococcus aureus response regulator ArlR. Nucleic Acids Res 2020; 47:11418-11429. [PMID: 31598698 PMCID: PMC6868441 DOI: 10.1093/nar/gkz891] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 09/21/2019] [Accepted: 10/01/2019] [Indexed: 01/22/2023] Open
Abstract
Staphylococcus aureus ArlRS is a key two-component regulatory system necessary for adhesion, biofilm formation, and virulence. The response regulator ArlR consists of a C-terminal DNA-binding effector domain and an N-terminal receiver domain that is phosphorylated by ArlS, the cognate transmembrane sensor histidine kinase. We demonstrate that the receiver domain of ArlR adopts the canonical α5β5 response regulator assembly, which dimerizes upon activation, using beryllium trifluoride as an aspartate phosphorylation mimic. Activated ArlR recognizes a 20-bp imperfect inverted repeat sequence in the ica operon, which is involved in intercellular adhesion polysaccharide production. Crystal structures of the inactive and activated forms reveal that activation induces a significant conformational change in the β4-α4 and β5-α5-connecting loops, in which the α4 and α5 helices constitute the homodimerization interface. Crystal structures of the DNA-binding ArlR effector domain indicate that it is able to dimerize via a non-canonical β1–β2 hairpin domain swapping, raising the possibility of a new mechanism for signal transduction from the receiver domain to effector domain. Taken together, the current study provides structural insights into the activation of ArlR and its recognition, adding to the diversity of response regulation mechanisms that may inspire novel antimicrobial strategies specifically targeting Staphylococcus.
Collapse
Affiliation(s)
- Zhenlin Ouyang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Department of Biochemistry and Molecular Biology, The Key Laboratory of Environment and Genes Related to Disease of Ministry of Education, Health Science Center, Xi'an Jiaotong University, Xi'an, China.,Institute of Medical Research, Northwestern Polytechnical University, Xi'an, China
| | - Fang Zheng
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Department of Biochemistry and Molecular Biology, The Key Laboratory of Environment and Genes Related to Disease of Ministry of Education, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Jared Y Chew
- Department of Biochemistry, Faculty of Medicine & Dentistry, University of Alberta, Edmonton T6G 2R3, Alberta, Canada
| | - Yingmei Pei
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Department of Biochemistry and Molecular Biology, The Key Laboratory of Environment and Genes Related to Disease of Ministry of Education, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Jinhong Zhou
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Department of Biochemistry and Molecular Biology, The Key Laboratory of Environment and Genes Related to Disease of Ministry of Education, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Keqing Wen
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Department of Biochemistry and Molecular Biology, The Key Laboratory of Environment and Genes Related to Disease of Ministry of Education, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Miao Han
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Department of Biochemistry and Molecular Biology, The Key Laboratory of Environment and Genes Related to Disease of Ministry of Education, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - M Joanne Lemieux
- Department of Biochemistry, Faculty of Medicine & Dentistry, University of Alberta, Edmonton T6G 2R3, Alberta, Canada
| | - Peter M Hwang
- Department of Biochemistry, Faculty of Medicine & Dentistry, University of Alberta, Edmonton T6G 2R3, Alberta, Canada
| | - Yurong Wen
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Department of Biochemistry and Molecular Biology, The Key Laboratory of Environment and Genes Related to Disease of Ministry of Education, Health Science Center, Xi'an Jiaotong University, Xi'an, China.,Institute of Medical Research, Northwestern Polytechnical University, Xi'an, China.,Department of Biochemistry, Faculty of Medicine & Dentistry, University of Alberta, Edmonton T6G 2R3, Alberta, Canada
| |
Collapse
|
32
|
Rao RT, Sivakumar N, Jayakumar K. Analyses of Livestock-Associated Staphylococcus aureus Pan-Genomes Suggest Virulence Is Not Primary Interest in Evolution of Its Genome. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2020; 23:224-236. [PMID: 31009331 DOI: 10.1089/omi.2019.0005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Staphylococcus aureus is not only part of normal flora but also an opportunistic pathogen relevant to microbial genomics, public health, and veterinary medicine. In addition to being a well-known human pathogen, S. aureus causes various infections in economically important livestock animals such as cows, sheep, goats, and pigs. There are very few studies that have examined the pan-genome of S. aureus or the host-specific strains' pan-genomes. We report on livestock-associated S. aureus' (LA-SA) pan-genome and suggest that virulence is not the primary interest in evolution of its genome. LA-SA' complete genomes were retrieved from the NCBI and pan-genome was constructed by high-speed Roary pipeline. The pan-genome size was 4637 clusters, whereas 42.46% of the pan-genome was associated with the core genome. We found 1268 genes were associated with the strain-unique genome, and the remaining 1432 cluster with the accessory genome. COG (clusters of orthologous group of proteins) analysis of the core genes revealed 34% of clusters related to metabolism responsible for amino acid and inorganic ion transport (COG categories E and P), followed by carbohydrate metabolism (category G). Virulent gene analysis revealed the core genes responsible for antiphagocytosis and iron uptake. The fluidity of pan-genome was calculated as 0.082 ± 0.025. Importantly, the positive selection analysis suggested a slower rate of evolution among the LA-SA genomes. We call for comparative microbial and pan-genome research between human and LA-SA that can help further understand the evolution of virulence and thus inform future microbial diagnostics and drug discovery.
Collapse
Affiliation(s)
- Relangi Tulasi Rao
- 1 Department of Animal Behaviour & Physiology, School of Biological Sciences, Madurai Kamaraj University, Madurai, Tamil Nadu, India
| | - Natesan Sivakumar
- 2 Department of Molecular Microbiology, School of Biotechnology, Madurai Kamaraj University, Madurai, Tamil Nadu, India
| | - Kannan Jayakumar
- 1 Department of Animal Behaviour & Physiology, School of Biological Sciences, Madurai Kamaraj University, Madurai, Tamil Nadu, India
| |
Collapse
|
33
|
Kwiecinski JM, Horswill AR. Staphylococcus aureus bloodstream infections: pathogenesis and regulatory mechanisms. Curr Opin Microbiol 2020; 53:51-60. [PMID: 32172183 DOI: 10.1016/j.mib.2020.02.005] [Citation(s) in RCA: 174] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/03/2020] [Accepted: 02/05/2020] [Indexed: 12/15/2022]
Abstract
Staphylococcus aureus is an opportunistic pathogen that normally colonizes the human anterior nares. At the same time, this pathogen is one of the leading causes of life-threatening bloodstream infections, such as sepsis and endocarditis. In this review we will present the current understanding of the pathogenesis of these invasive infections, focusing on the mechanisms of S. aureus clearance from the bloodstream by the immune system, and how this pathogen hijacks the host defense and coagulation systems and further interacts with the blood vessel endothelium. Additionally, we will delve into the regulatory mechanisms S. aureus employs during an invasive infection. These new insights into host-pathogen interactions show promising avenues for the development of novel therapies for treating bloodstream infections.
Collapse
Affiliation(s)
- Jakub M Kwiecinski
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, USA
| | - Alexander R Horswill
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, USA; Department of Veterans Affairs, Eastern Colorado Health Care System, Denver, USA.
| |
Collapse
|
34
|
Urinary tract infections: microbial pathogenesis, host-pathogen interactions and new treatment strategies. Nat Rev Microbiol 2020; 18:211-226. [PMID: 32071440 DOI: 10.1038/s41579-020-0324-0] [Citation(s) in RCA: 275] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2020] [Indexed: 12/14/2022]
Abstract
Urinary tract infections (UTIs) are common, recurrent infections that can be mild to life-threatening. The continued emergence of antibiotic resistance, together with our increasing understanding of the detrimental effects conferred by broad-spectrum antibiotic use on the health of the beneficial microbiota of the host, has underscored the weaknesses in our current treatment paradigm for UTIs. In this Review, we discuss how recent microbiological, structural, genetic and immunological studies have expanded our understanding of host-pathogen interactions during UTI pathogenesis. These basic scientific findings have the potential to shift the strategy for UTI treatment away from broad-spectrum antibiotics targeting conserved aspects of bacterial replication towards pathogen-specific antibiotic-sparing therapeutics that target core determinants of bacterial virulence at the host-pathogen interface.
Collapse
|
35
|
Crosby HA, Tiwari N, Kwiecinski JM, Xu Z, Dykstra A, Jenul C, Fuentes EJ, Horswill AR. The Staphylococcus aureus ArlRS two-component system regulates virulence factor expression through MgrA. Mol Microbiol 2020; 113:103-122. [PMID: 31618469 PMCID: PMC7175635 DOI: 10.1111/mmi.14404] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The Gram-positive bacterium, Staphylococcus aureus, is a versatile pathogen that can sense and adapt to a wide variety of environments within the human host, in part through its 16 two-component regulatory systems. The ArlRS two-component system has been shown to affect many cellular processes in S. aureus, including autolysis, biofilm formation, capsule synthesis and virulence. Yet the molecular details of this regulation remained largely unknown. We used RNA sequencing to identify the ArlRS regulon, and found 70% overlap with that of the global regulator MgrA. These genes included cell wall-anchored adhesins (ebh, sdrD), polysaccharide and capsule synthesis genes, cell wall remodeling genes (lytN, ddh), the urease operon, genes involved in metal transport (feoA, mntH, sirA), anaerobic metabolism genes (adhE, pflA, nrdDG) and a large number of virulence factors (lukSF, lukAB, nuc, gehB, norB, chs, scn and esxA). We show that ArlR directly activates expression of mgrA and identify a probable ArlR-binding site (TTTTCTCAT-N4 -TTTTAATAA). A highly similar sequence is also found in the spx P2 promoter, which was recently shown to be regulated by ArlRS. We also demonstrate that ArlS has kinase activity toward ArlR in vitro, although it has slower kinetics than other similar histidine kinases.
Collapse
Affiliation(s)
- Heidi A. Crosby
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO
| | - Nitija Tiwari
- Department of Biochemistry, University of Iowa Carver College of Medicine, Iowa City, IA
| | - Jakub M. Kwiecinski
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO
| | - Zhen Xu
- Department of Biochemistry, University of Iowa Carver College of Medicine, Iowa City, IA
| | - Allison Dykstra
- Department of Biochemistry, University of Iowa Carver College of Medicine, Iowa City, IA
| | - Christian Jenul
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO
| | - Ernesto J Fuentes
- Department of Biochemistry, University of Iowa Carver College of Medicine, Iowa City, IA
| | - Alexander R. Horswill
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO
- Department of Veterans Affairs Eastern Colorado Health Care System, Denver, CO
| |
Collapse
|
36
|
Abstract
Staphylococcus aureus is an important pathogen responsible for nosocomial and community-acquired infections in humans, and methicillin-resistant S. aureus (MRSA) infections have continued to increase despite widespread preventative measures. S. aureus can colonize the female vaginal tract, and reports have suggested an increase in MRSA infections in pregnant and postpartum women as well as outbreaks in newborn nurseries. Currently, little is known about specific factors that promote MRSA vaginal colonization and subsequent infection. To study S. aureus colonization of the female reproductive tract in a mammalian system, we developed a mouse model of S. aureus vaginal carriage and demonstrated that both hospital-associated and community-associated MRSA isolates can colonize the murine vaginal tract. Immunohistochemical analysis revealed an increase in neutrophils in the vaginal lumen during MRSA colonization. Additionally, we observed that a mutant lacking fibrinogen binding adhesins exhibited decreased persistence within the mouse vagina. To further identify novel factors that promote vaginal colonization, we performed RNA sequencing to determine the transcriptome of MRSA growing in vivo during vaginal carriage at 5 h, 1 day, and 3 days postinoculation. Over 25% of the bacterial genes were differentially regulated at all time points during colonization compared to laboratory cultures. The most highly induced genes were those involved in iron acquisition, including the Isd system and siderophore transport systems. Mutants deficient in these pathways did not persist as well during in vivo colonization. These results reveal that fibrinogen binding and the capacity to overcome host nutritional limitation are important determinants of MRSA vaginal colonization.IMPORTANCE Staphylococcus aureus is an opportunistic pathogen able to cause a wide variety of infections in humans. Recent reports have suggested an increasing prevalence of MRSA in pregnant and postpartum women, coinciding with the increased incidence of MRSA infections in neonatal intensive care units (NICUs) and newborn nurseries. Vertical transmission from mothers to infants at delivery is a likely route of MRSA acquisition by the newborn; however, essentially nothing is known about host and bacterial factors that influence MRSA carriage in the vagina. Here, we established a mouse model of vaginal colonization and observed that multiple MRSA strains can persist in the vaginal tract. Additionally, we determined that MRSA interactions with fibrinogen and iron uptake can promote vaginal persistence. This study is the first to identify molecular mechanisms which govern vaginal colonization by MRSA, the critical initial step preceding infection and neonatal transmission.
Collapse
|
37
|
Singh V, Phukan UJ. Interaction of host and Staphylococcus aureus protease-system regulates virulence and pathogenicity. Med Microbiol Immunol 2019; 208:585-607. [PMID: 30483863 DOI: 10.1007/s00430-018-0573-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 11/22/2018] [Indexed: 02/06/2023]
Abstract
Staphylococcus aureus causes various health care- and community-associated infections as well as certain chronic TH2 driven inflammatory diseases. It is a potent pathogen with serious virulence and associated high morbidity. Severe pathogenicity is accredited to the S. aureus secreted virulence factors such as proteases and host protease modulators. These virulence factors promote adhesion and invasion of bacteria through damage of tight junction barrier and keratinocytes. They inhibit activation and transmigration of various immune cells such as neutrophils (and neutrophil proteases) to evade opsono-phagocytosis and intracellular bacterial killing. Additionally, they protect the bacteria from extracellular killing by disrupting integrity of extracellular matrix. Platelet activation and agglutination is also impaired by these factors. They also block the classical as well as alternative pathways of complement activation and assist in spread of infection through blood and tissue. As these factors are exquisite factors of S. aureus mediated disease development, we have focused on review of diversification of various protease-system associated virulence factors, their structural building, diverse role in disease development and available therapeutic counter measures. This review summarises the role of protease-associated virulence factors during invasion and progression of disease.
Collapse
Affiliation(s)
- Vigyasa Singh
- Molecular Bioprospection Department, CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Lucknow, 226015, India
| | - Ujjal Jyoti Phukan
- School of Life Science, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
38
|
Párraga Solórzano PK, Yao J, Rock CO, Kehl-Fie TE. Disruption of Glycolysis by Nutritional Immunity Activates a Two-Component System That Coordinates a Metabolic and Antihost Response by Staphylococcus aureus. mBio 2019; 10:e01321-19. [PMID: 31387906 PMCID: PMC6686040 DOI: 10.1128/mbio.01321-19] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 07/09/2019] [Indexed: 02/01/2023] Open
Abstract
During infection, bacteria use two-component signal transduction systems to sense and adapt to the dynamic host environment. Despite critically contributing to infection, the activating signals of most of these regulators remain unknown. This also applies to the Staphylococcus aureus ArlRS two-component system, which contributes to virulence by coordinating the production of toxins, adhesins, and a metabolic response that enables the bacterium to overcome host-imposed manganese starvation. Restricting the availability of essential transition metals, a strategy known as nutritional immunity, constitutes a critical defense against infection. In this work, expression analysis revealed that manganese starvation imposed by the immune effector calprotectin or by the absence of glycolytic substrates activates ArlRS. Manganese starvation imposed by calprotectin also activated the ArlRS system even when glycolytic substrates were present. A combination of metabolomics, mutational analysis, and metabolic feeding experiments revealed that ArlRS is activated by alterations in metabolic flux occurring in the latter half of the glycolytic pathway. Moreover, calprotectin was found to induce expression of staphylococcal leukocidins in an ArlRS-dependent manner. These studies indicated that ArlRS is a metabolic sensor that allows S. aureus to integrate multiple environmental stresses that alter glycolytic flux to coordinate an antihost response and to adapt to manganese starvation. They also established that the latter half of glycolysis represents a checkpoint to monitor metabolic state in S. aureus Altogether, these findings contribute to understanding how invading pathogens, such as S. aureus, adapt to the host during infection and suggest the existence of similar mechanisms in other bacterial species.IMPORTANCE Two-component regulatory systems enable bacteria to adapt to changes in their environment during infection by altering gene expression and coordinating antihost responses. Despite the critical role of two-component systems in bacterial survival and pathogenesis, the activating signals for most of these regulators remain unidentified. This is exemplified by ArlRS, a Staphylococcus aureus global regulator that contributes to virulence and to resisting host-mediated restriction of essential nutrients, such as manganese. In this report, we demonstrate that manganese starvation and the absence of glycolytic substrates activate ArlRS. Further investigations revealed that ArlRS is activated when the latter half of glycolysis is disrupted, suggesting that S. aureus monitors flux through the second half of this pathway. Host-imposed manganese starvation also induced the expression of pore-forming toxins in an ArlRS-dependent manner. Cumulatively, this work reveals that ArlRS acts as a sensor that links nutritional status, cellular metabolism, and virulence regulation.
Collapse
Affiliation(s)
- Paola K Párraga Solórzano
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Departmento de Ciencias de la Vida, Universidad de las Fuerzas Armadas ESPE, Sangolquí, Ecuador
| | - Jiangwei Yao
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Charles O Rock
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Thomas E Kehl-Fie
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
39
|
Postantibiotic and Sub-MIC Effects of Exebacase (Lysin CF-301) Enhance Antimicrobial Activity against Staphylococcus aureus. Antimicrob Agents Chemother 2019; 63:AAC.02616-18. [PMID: 30936103 DOI: 10.1128/aac.02616-18] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 03/24/2019] [Indexed: 12/13/2022] Open
Abstract
CF-301 (exebacase) is a recombinantly produced bacteriophage-derived lysin (cell wall hydrolase) and is the first agent of this class to enter clinical development in the United States for treating bacteremia including endocarditis due to Staphylococcus aureus Whereas rapid bactericidal activity is the hallmark in vitro and in vivo response to CF-301 at exposures higher than the MIC, prolonged antimicrobial activity, mediated by cell wall damage, is predicted at concentrations less than the MIC. In the current study, a series of in vitro pharmacodynamic parameters, including the postantibiotic effect (PAE), postantibiotic sub-MIC effect (PA-SME), and sub-MIC effect (SME), were studied to determine how short-duration and sub-MIC CF-301 exposures affect the growth of surviving staphylococci and extend its antimicrobial activity. Mean PAE, PA-SME, and SME values up to 4.8, 9.3, and 9.8 h, respectively, were observed against 14 staphylococcal strains tested in human serum; growth delays were extended by 6 h in the presence of daptomycin. Exposures to CF-301 at sub-MIC levels as low as 0.001× to 0.01× MIC (∼1 to 10 ng/ml) resulted in aberrant cell wall ultrastructure, increased membrane permeability, dissipation of membrane potential, and inhibition of virulence phenotypes, including agglutination and biofilm formation. A mouse thigh infection model designed to study the PAE was used to confirm our findings and demonstrate in vivo growth delays of ≥19.3 h. Our findings suggest that at CF-301 concentrations less than the MIC during therapeutic use, sustained reductions in bacterial fitness and virulence may substantially enhance efficacy.
Collapse
|
40
|
Kwiecinski JM, Crosby HA, Valotteau C, Hippensteel JA, Nayak MK, Chauhan AK, Schmidt EP, Dufrêne YF, Horswill AR. Staphylococcus aureus adhesion in endovascular infections is controlled by the ArlRS-MgrA signaling cascade. PLoS Pathog 2019; 15:e1007800. [PMID: 31116795 PMCID: PMC6548404 DOI: 10.1371/journal.ppat.1007800] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 06/04/2019] [Accepted: 04/30/2019] [Indexed: 12/31/2022] Open
Abstract
Staphylococcus aureus is a leading cause of endovascular infections. This bacterial pathogen uses a diverse array of surface adhesins to clump in blood and adhere to vessel walls, leading to endothelial damage, development of intravascular vegetations and secondary infectious foci, and overall disease progression. In this work, we describe a novel strategy used by S. aureus to control adhesion and clumping through activity of the ArlRS two-component regulatory system, and its downstream effector MgrA. Utilizing a combination of in vitro cellular assays, and single-cell atomic force microscopy, we demonstrated that inactivation of this ArlRS—MgrA cascade inhibits S. aureus adhesion to a vast array of relevant host molecules (fibrinogen, fibronectin, von Willebrand factor, collagen), its clumping with fibrinogen, and its attachment to human endothelial cells and vascular structures. This impact on S. aureus adhesion was apparent in low shear environments, and in physiological levels of shear stress, as well as in vivo in mouse models. These effects were likely mediated by the de-repression of giant surface proteins Ebh, SraP, and SasG, caused by inactivation of the ArlRS—MgrA cascade. In our in vitro assays, these giant proteins collectively shielded the function of other surface adhesins and impaired their binding to cognate ligands. Finally, we demonstrated that the ArlRS—MgrA regulatory cascade is a druggable target through the identification of a small-molecule inhibitor of ArlRS signaling. Our findings suggest a novel approach for the pharmacological treatment and prevention of S. aureus endovascular infections through targeting the ArlRS—MgrA regulatory system. Adhesion is central to the success of Staphylococcus aureus as a bacterial pathogen. We describe a novel mechanism through which S. aureus alters adhesion to ligands by regulating expression of giant inhibitory surface proteins. These giant proteins shield normal surface adhesins, preventing binding to ligands commonly found in the bloodstream and vessel walls. Using this unique regulatory scheme, S. aureus can bypass the need for individualized regulation of numerous adhesins to control overall adhesive properties. Our study establishes the importance of these giant proteins for S. aureus pathogenesis and demonstrates that a single regulatory cascade can be targeted for treating infections.
Collapse
Affiliation(s)
- Jakub M. Kwiecinski
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Heidi A. Crosby
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Claire Valotteau
- Institute of Life Sciences, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Joseph A. Hippensteel
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Manasa K. Nayak
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Anil K. Chauhan
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Eric P. Schmidt
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Yves F. Dufrêne
- Institute of Life Sciences, Université catholique de Louvain, Louvain-la-Neuve, Belgium
- Walloon Excellence in Life Sciences and Biotechnology (WELBIO), Wallonia, Belgium
| | - Alexander R. Horswill
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, United States of America
- Department of Veterans Affairs Eastern Colorado Healthcare System, Denver, Colorado, United States of America
- * E-mail:
| |
Collapse
|
41
|
MroQ Is a Novel Abi-Domain Protein That Influences Virulence Gene Expression in Staphylococcus aureus via Modulation of Agr Activity. Infect Immun 2019; 87:IAI.00002-19. [PMID: 30833335 DOI: 10.1128/iai.00002-19] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 02/23/2019] [Indexed: 01/07/2023] Open
Abstract
Numerous factors have, to date, been identified as playing a role in the regulation of Agr activity in Staphylococcus aureus, including transcription factors, antisense RNAs, and host elements. Herein we investigated the product of SAUSA300_1984 (termed MroQ), a transmembrane Abi-domain/M79 protease-family protein, as a novel effector of this system. Using a USA300 mroQ mutant, we observed a drastic reduction in proteolysis, hemolysis, and pigmentation that was fully complementable. This appears to result from diminished agr activity, as transcriptional analysis revealed significant decreases in expression of both RNAII and RNAIII in the mroQ mutant. Such effects appear to be direct, rather than indirect, as known agr effectors demonstrated limited alterations in their activity upon mroQ disruption. A comparison of RNA sequencing data sets for both mroQ and agr mutants revealed a profound overlap in their regulomes, with the majority of factors affected being known virulence determinants. Importantly, the preponderance of alterations in expression were more striking in the agr mutant, indicating that MroQ is necessary, but not sufficient, for Agr function. Mechanism profiling revealed that putative residues for metalloprotease activity within MroQ are required for its Agr-controlling effect; however, this was not wielded at the level of AgrD processing. Virulence assessment demonstrated that both mroQ and agr mutants exhibited increased formation of renal abscesses but decreased skin abscess formation alongside diminished dermonecrosis. Collectively, we present the characterization of a novel agr effector in S. aureus which would appear to be a direct regulator, potentially functioning via interaction with the AgrC histidine kinase.
Collapse
|
42
|
Jenul C, Horswill AR. Regulation of Staphylococcus aureus Virulence. Microbiol Spectr 2019; 7:10.1128/microbiolspec.gpp3-0031-2018. [PMID: 30953424 PMCID: PMC6452892 DOI: 10.1128/microbiolspec.gpp3-0031-2018] [Citation(s) in RCA: 307] [Impact Index Per Article: 51.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Indexed: 01/15/2023] Open
Abstract
Staphylococcus aureus is a Gram-positive opportunistic pathogen that has evolved a complex regulatory network to control virulence. One of the main functions of this interconnected network is to sense various environmental cues and respond by altering the production of virulence factors necessary for survival in the host, including cell surface adhesins and extracellular enzymes and toxins. Of these S. aureus regulatory systems, one of the best studied is the accessory gene regulator (agr), which is a quorum-sensing system that senses the local concentration of a cyclic peptide signaling molecule. This system allows S. aureus to sense its own population density and translate this information into a specific gene expression pattern. Besides agr, this pathogen uses other two-component systems to sense specific cues and coordinates responses with cytoplasmic regulators of the SarA protein family and alternative sigma factors. These divergent regulatory systems integrate the various environmental and host-derived signals into a network that ensures optimal pathogen response to the changing conditions. This article gives an overview of the most important and best-studied S. aureus regulatory systems and summarizes the functions of these regulators during host interactions. The regulatory systems discussed include the agr quorum-sensing system; the SaeRS, SrrAB, and ArlRS two-component systems, the cytoplasmic SarA-family regulators (SarA, Rot, and MgrA); and the alternative sigma factors (SigB and SigH).
Collapse
Affiliation(s)
- Christian Jenul
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Alexander R Horswill
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| |
Collapse
|
43
|
Cosgriff CJ, White CR, Teoh WP, Grayczyk JP, Alonzo F. Control of Staphylococcus aureus Quorum Sensing by a Membrane-Embedded Peptidase. Infect Immun 2019; 87:e00019-19. [PMID: 30833334 PMCID: PMC6479040 DOI: 10.1128/iai.00019-19] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 02/23/2019] [Indexed: 02/08/2023] Open
Abstract
Gram-positive bacteria process and release small peptides, or pheromones, that act as signals for the induction of adaptive traits, including those involved in pathogenesis. One class of small signaling pheromones is the cyclic autoinducing peptides (AIPs), which regulate expression of genes that orchestrate virulence and persistence in a range of microbes, including staphylococci, listeriae, clostridia, and enterococci. In a genetic screen for Staphylococcus aureus secreted virulence factors, we identified an S. aureus mutant containing an insertion in the gene SAUSA300_1984 (mroQ), which encodes a putative membrane-embedded metalloprotease. A ΔmroQ mutant exhibited impaired induction of Toll-like receptor 2-dependent inflammatory responses from macrophages but elicited greater production of the inflammatory cytokine interleukin-1β and was attenuated in a murine skin and soft tissue infection model. The ΔmroQ mutant phenocopies an S. aureus mutant containing a deletion of the accessory gene regulatory system (Agr), wherein both strains have significantly reduced production of secreted toxins and virulence factors but increased surface protein A abundance. The Agr system controls virulence factor gene expression in S. aureus by sensing the accumulation of AIP via the histidine kinase AgrC and the response regulator AgrA. We provide evidence to suggest that MroQ acts within the Agr pathway to facilitate the optimal processing or export of AIP for signal amplification through AgrC/A and induction of virulence factor gene expression. Mutation of MroQ active-site residues significantly reduces AIP signaling and attenuates virulence. Altogether, this work identifies a new component of the Agr quorum-sensing circuit that is critical for the production of S. aureus virulence factors.
Collapse
Affiliation(s)
- Chance J Cosgriff
- Department of Microbiology and Immunology, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois, USA
| | - Chelsea R White
- Department of Microbiology and Immunology, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois, USA
| | - Wei Ping Teoh
- Department of Microbiology and Immunology, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois, USA
| | - James P Grayczyk
- Department of Microbiology and Immunology, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois, USA
| | - Francis Alonzo
- Department of Microbiology and Immunology, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois, USA
| |
Collapse
|
44
|
Głowacka-Rutkowska A, Gozdek A, Empel J, Gawor J, Żuchniewicz K, Kozińska A, Dębski J, Gromadka R, Łobocka M. The Ability of Lytic Staphylococcal Podovirus vB_SauP_phiAGO1.3 to Coexist in Equilibrium With Its Host Facilitates the Selection of Host Mutants of Attenuated Virulence but Does Not Preclude the Phage Antistaphylococcal Activity in a Nematode Infection Model. Front Microbiol 2019; 9:3227. [PMID: 30713528 PMCID: PMC6346686 DOI: 10.3389/fmicb.2018.03227] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 12/12/2018] [Indexed: 12/22/2022] Open
Abstract
Phage vB_SauP_phiAGO1.3 (phiAGO1.3) is a polyvalent Staphylococcus lytic podovirus with a 17.6-kb genome (Gozdek et al., 2018). It can infect most of the Staphylococcus aureus human isolates of dominant clonal complexes. We show that a major factor contributing to the wide host range of phiAGO1.3 is a lack or sparcity of target sites for certain restriction-modification systems of types I and II in its genome. Phage phiAGO1.3 requires for adsorption β-O-GlcNAcylated cell wall teichoic acid, which is also essential for the expression of methicillin resistance. Under certain conditions an exposure of S. aureus to phiAGO1.3 can lead to the establishment of a mixed population in which the bacteria and phages remain in equilibrium over multiple generations. This is reminiscent of the so called phage carrier state enabling the co-existence of phage-resistant and phage-sensitive cells supporting a continuous growth of the bacterial and phage populations. The stable co-existence of bacteria and phage favors the emergence of phage-resistant variants of the bacterium. All phiAGO1.3-resistant cells isolated from the phage-carrier-state cultures contained a mutation inactivating the two-component regulatory system ArlRS, essential for efficient expression of numerous S. aureus virulence-associated traits. Moreover, the mutants were unaffected in their susceptibility to infection with an unrelated, polyvalent S. aureus phage of the genus Kayvirus. The ability of phiAGO1.3 to establish phage-carrier-state cultures did not preclude its antistaphylococcal activity in vivo in an S. aureus nematode infection model. Taken together our results suggest that phiAGO1.3 could be suitable for the therapeutic application in humans and animals, alone or in cocktails with Kayvirus phages. It might be especially useful in the treatment of infections with the majority of methicillin-resistant S. aureus strains.
Collapse
Affiliation(s)
- Aleksandra Głowacka-Rutkowska
- Department of Microbial Biochemistry, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Agnieszka Gozdek
- Department of Microbial Biochemistry, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Joanna Empel
- Department of Epidemiology and Clinical Microbiology, National Medicines Institute, Warsaw, Poland
| | - Jan Gawor
- Laboratory of DNA Sequencing and Oligonucleotide Synthesis, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Karolina Żuchniewicz
- Laboratory of DNA Sequencing and Oligonucleotide Synthesis, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Aleksandra Kozińska
- Department of Epidemiology and Clinical Microbiology, National Medicines Institute, Warsaw, Poland
| | - Janusz Dębski
- Laboratory of Mass Spectrometry, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Robert Gromadka
- Laboratory of DNA Sequencing and Oligonucleotide Synthesis, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Małgorzata Łobocka
- Department of Microbial Biochemistry, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
- Autonomous Department of Microbial Biology, Faculty of Agriculture and Biology, Warsaw University of Life Sciences, Warsaw, Poland
| |
Collapse
|
45
|
Jin Z, Jiang Q, Fang B, Sun B. The ArlR-MgrA regulatory cascade regulates PIA-dependent and protein-mediated biofilm formation in Rbf-dependent and Rbf-independent pathways. Int J Med Microbiol 2018; 309:85-96. [PMID: 30606691 DOI: 10.1016/j.ijmm.2018.12.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 12/01/2018] [Accepted: 12/28/2018] [Indexed: 12/11/2022] Open
Abstract
The two-component system response regulator ArlR and the global regulator MgrA in Staphylococcus aureus participated in numerous biological processes including biofilm formation inhibition. Previous studies have shown that these two regulators could function as a regulatory cascade. Rbf is a positive regulator of biofilm formation enhancing the production of PIA (polysaccharide intercellular adhesin). Here we have demonstrated that both ArlR and MgrA can directly bind to the promoter of rbf and repress its expression. ArlR and MgrA can also directly bind to the promoter of ica operon and enhance the expression of icaA and PIA production, revealing that the ArlR-MgrA regulatory cascade controls PIA-dependent biofilm formation. In addition, we have found that Rbf can directly bind to the aur promoter and repress the expression of aur, which encodes a protease initiating a protease cascade to inhibit protein-mediated biofilm formation. Moreover, our data indicate that the ArlR-MgrA regulatory cascade can promote the expression of aur by directly binding to its promoter and inhibit protein-mediated biofilm formation. These findings shed light on the molecular mechanisms of both PIA-dependent and protein-mediated biofilm formation modulated by the ArlR-MgrA regulatory cascade and the new role of Rbf in protein-mediated biofilm formation, and broaden our understanding of the biofilm formation regulation in S. aureus.
Collapse
Affiliation(s)
- Zeyu Jin
- CAS Key Laboratory of Innate Immunity and Chronic Disease and School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Qiu Jiang
- CAS Key Laboratory of Innate Immunity and Chronic Disease and School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Bo Fang
- CAS Key Laboratory of Innate Immunity and Chronic Disease and School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Baolin Sun
- CAS Key Laboratory of Innate Immunity and Chronic Disease and School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui, 230027, China; Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, Hefei, Anhui 230027, China.
| |
Collapse
|
46
|
Horn J, Klepsch M, Manger M, Wolz C, Rudel T, Fraunholz M. Long Noncoding RNA SSR42 Controls Staphylococcus aureus Alpha-Toxin Transcription in Response to Environmental Stimuli. J Bacteriol 2018; 200:e00252-18. [PMID: 30150231 PMCID: PMC6199474 DOI: 10.1128/jb.00252-18] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 08/22/2018] [Indexed: 02/02/2023] Open
Abstract
Staphylococcus aureus is a human pathogen causing a variety of diseases by versatile expression of a large set of virulence factors that most prominently features the cytotoxic and hemolytic pore-forming alpha-toxin. Expression of alpha-toxin is regulated by an intricate network of transcription factors. These include two-component systems sensing quorum and environmental signals as well as regulators reacting to the nutritional status of the pathogen. We previously identified the repressor of surface proteins (Rsp) as a virulence regulator. Acute cytotoxicity and hemolysis are strongly decreased in rsp mutants, which are characterized by decreased transcription of toxin genes as well as loss of transcription of a 1,232-nucleotide (nt)-long noncoding RNA (ncRNA), SSR42. Here, we show that SSR42 is the effector of Rsp in transcription regulation of the alpha-toxin gene, hla SSR42 transcription is enhanced after exposure of S. aureus to subinhibitory concentrations of oxacillin which thus leads to an SSR42-dependent increase in hemolysis. Aside from Rsp, SSR42 transcription is under the control of additional global regulators, such as CodY, AgrA, CcpE, and σB, but is positioned upstream of the two-component system SaeRS in the regulatory cascade leading to alpha-toxin production. Thus, alpha-toxin expression depends on two long ncRNAs, SSR42 and RNAIII, which control production of the cytolytic toxin on the transcriptional and translational levels, respectively, with SSR42 as an important regulator of SaeRS-dependent S. aureus toxin production in response to environmental and metabolic signals.IMPORTANCEStaphylococcus aureus is a major cause of life-threatening infections. The bacterium expresses alpha-toxin, a hemolysin and cytotoxin responsible for many of the pathologies of S. aureus Alpha-toxin production is enhanced by subinhibitory concentrations of antibiotics. Here, we show that this process is dependent on the long noncoding RNA, SSR42. Further, SSR42 itself is regulated by several global regulators, thereby integrating environmental and nutritional signals that modulate hemolysis of the pathogen.
Collapse
Affiliation(s)
- Jessica Horn
- Biocenter, Chair of Microbiology, University of Würzburg, Würzburg, Germany
| | - Maximilian Klepsch
- Biocenter, Chair of Microbiology, University of Würzburg, Würzburg, Germany
| | - Michelle Manger
- Biocenter, Chair of Microbiology, University of Würzburg, Würzburg, Germany
| | - Christiane Wolz
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Thomas Rudel
- Biocenter, Chair of Microbiology, University of Würzburg, Würzburg, Germany
- Helmholtz Institute for RNA-based Infection Research (HIRI), Würzburg, Germany
| | - Martin Fraunholz
- Biocenter, Chair of Microbiology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
47
|
Burgui S, Gil C, Solano C, Lasa I, Valle J. A Systematic Evaluation of the Two-Component Systems Network Reveals That ArlRS Is a Key Regulator of Catheter Colonization by Staphylococcus aureus. Front Microbiol 2018; 9:342. [PMID: 29563900 PMCID: PMC5845881 DOI: 10.3389/fmicb.2018.00342] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Accepted: 02/12/2018] [Indexed: 12/29/2022] Open
Abstract
Two-component systems (TCS) are modular signal transduction pathways that allow cells to adapt to prevailing environmental conditions by modifying cellular physiology. Staphylococcus aureus has 16 TCSs to adapt to the diverse microenvironments encountered during its life cycle, including host tissues and implanted medical devices. S. aureus is particularly prone to cause infections associated to medical devices, whose surfaces coated by serum proteins constitute a particular environment. Identification of the TCSs involved in the adaptation of S. aureus to colonize and survive on the surface of implanted devices remains largely unexplored. Here, using an in vivo catheter infection model and a collection of mutants in each non-essential TCS of S. aureus, we investigated the requirement of each TCS for colonizing the implanted catheter. Among the 15 mutants in non-essential TCSs, the arl mutant exhibited the strongest deficiency in the capacity to colonize implanted catheters. Moreover, the arl mutant was the only one presenting a major deficit in PNAG production, the main exopolysaccharide of the S. aureus biofilm matrix whose synthesis is mediated by the icaADBC locus. Regulation of PNAG synthesis by ArlRS occurred through repression of IcaR, a transcriptional repressor of icaADBC operon expression. Deficiency in catheter colonization was restored when the arl mutant was complemented with the icaADBC operon. MgrA, a global transcriptional regulator downstream ArlRS that accounts for a large part of the arlRS regulon, was unable to restore PNAG expression and catheter colonization deficiency of the arlRS mutant. These findings indicate that ArlRS is the key TCS to biofilm formation on the surface of implanted catheters and that activation of PNAG exopolysaccharide production is, among the many traits controlled by the ArlRS system, a major contributor to catheter colonization.
Collapse
Affiliation(s)
- Saioa Burgui
- Laboratory of Microbial Pathogenesis, Navarrabiomed-Universidad Pública de Navarra (UPNA)-Complejo Hospitalario de Navarra (CHN), Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| | - Carmen Gil
- Laboratory of Microbial Pathogenesis, Navarrabiomed-Universidad Pública de Navarra (UPNA)-Complejo Hospitalario de Navarra (CHN), Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| | - Cristina Solano
- Laboratory of Microbial Pathogenesis, Navarrabiomed-Universidad Pública de Navarra (UPNA)-Complejo Hospitalario de Navarra (CHN), Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| | - Iñigo Lasa
- Laboratory of Microbial Pathogenesis, Navarrabiomed-Universidad Pública de Navarra (UPNA)-Complejo Hospitalario de Navarra (CHN), Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| | - Jaione Valle
- Laboratory of Microbial Pathogenesis, Navarrabiomed-Universidad Pública de Navarra (UPNA)-Complejo Hospitalario de Navarra (CHN), Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| |
Collapse
|
48
|
Harper L, Balasubramanian D, Ohneck EA, Sause WE, Chapman J, Mejia-Sosa B, Lhakhang T, Heguy A, Tsirigos A, Ueberheide B, Boyd JM, Lun DS, Torres VJ. Staphylococcus aureus Responds to the Central Metabolite Pyruvate To Regulate Virulence. mBio 2018; 9:e02272-17. [PMID: 29362239 PMCID: PMC5784258 DOI: 10.1128/mbio.02272-17] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 12/20/2017] [Indexed: 01/08/2023] Open
Abstract
Staphylococcus aureus is a versatile bacterial pathogen that can cause significant disease burden and mortality. Like other pathogens, S. aureus must adapt to its environment to produce virulence factors to survive the immune responses evoked by infection. Despite the importance of environmental signals for S. aureus pathogenicity, only a limited number of these signals have been investigated in detail for their ability to modulate virulence. Here we show that pyruvate, a central metabolite, causes alterations in the overall metabolic flux of S. aureus and enhances its pathogenicity. We demonstrate that pyruvate induces the production of virulence factors such as the pore-forming leucocidins and that this induction results in increased virulence of community-acquired methicillin-resistant S. aureus (CA-MRSA) clone USA300. Specifically, we show that an efficient "pyruvate response" requires the activation of S. aureus master regulators AgrAC and SaeRS as well as the ArlRS two-component system. Altogether, our report further establishes a strong relationship between metabolism and virulence and identifies pyruvate as a novel regulatory signal for the coordination of the S. aureus virulon through intricate regulatory networks.IMPORTANCE Delineation of the influence of host-derived small molecules on the makeup of human pathogens is a growing field in understanding host-pathogen interactions. S. aureus is a prominent pathogen that colonizes up to one-third of the human population and can cause serious infections that result in mortality in ~15% of cases. Here, we show that pyruvate, a key nutrient and central metabolite, causes global changes to the metabolic flux of S. aureus and activates regulatory networks that allow significant increases in the production of leucocidins. These and other virulence factors are critical for S. aureus to infect diverse host niches, initiate infections, and effectively subvert host immune responses. Understanding how environmental signals, particularly ones that are essential to and prominent in the human host, affect virulence will allow us to better understand pathogenicity and consider more-targeted approaches to tackling the current S. aureus epidemic.
Collapse
Affiliation(s)
- Lamia Harper
- Department of Microbiology, New York University School of Medicine, Alexandria Center for Life Science, New York, New York, USA
| | - Divya Balasubramanian
- Department of Microbiology, New York University School of Medicine, Alexandria Center for Life Science, New York, New York, USA
| | - Elizabeth A Ohneck
- Department of Microbiology, New York University School of Medicine, Alexandria Center for Life Science, New York, New York, USA
| | - William E Sause
- Department of Microbiology, New York University School of Medicine, Alexandria Center for Life Science, New York, New York, USA
| | - Jessica Chapman
- Proteomics Resource Center, Office of Collaborative Science, NYU School of Medicine, New York, New York, USA
| | - Bryan Mejia-Sosa
- Center for Computational and Integrative Biology and Department of Computer Science, Rutgers University, Camden, New Jersey, USA
| | - Tenzin Lhakhang
- Applied Bioinformatics Center, Office of Collaborative Science, NYU School of Medicine, New York, New York, USA
| | - Adriana Heguy
- Genome Technology Center, Office of Collaborative Science, NYU School of Medicine, New York, New York, USA
| | - Aristotelis Tsirigos
- Applied Bioinformatics Center, Office of Collaborative Science, NYU School of Medicine, New York, New York, USA
| | - Beatrix Ueberheide
- Proteomics Resource Center, Office of Collaborative Science, NYU School of Medicine, New York, New York, USA
| | - Jeffrey M Boyd
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, New Jersey, USA
| | - Desmond S Lun
- Center for Computational and Integrative Biology and Department of Computer Science, Rutgers University, Camden, New Jersey, USA
| | - Victor J Torres
- Department of Microbiology, New York University School of Medicine, Alexandria Center for Life Science, New York, New York, USA
| |
Collapse
|
49
|
Müller A, Grein F, Otto A, Gries K, Orlov D, Zarubaev V, Girard M, Sher X, Shamova O, Roemer T, François P, Becher D, Schneider T, Sahl HG. Differential daptomycin resistance development in Staphylococcus aureus strains with active and mutated gra regulatory systems. Int J Med Microbiol 2017; 308:335-348. [PMID: 29429584 DOI: 10.1016/j.ijmm.2017.12.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 12/13/2017] [Accepted: 12/18/2017] [Indexed: 02/03/2023] Open
Abstract
The first-in-class lipopeptide antibiotic daptomycin (DAP) is highly active against Gram-positive pathogens including ß-lactam and glycopeptide resistant strains. Its molecular mode of action remains enigmatic, since a defined target has not been identified so far and multiple effects, primarily on the cell envelope have been observed. Reduced DAP susceptibility has been described in S. aureus and enterococci after prolonged treatment courses. In line with its pleiotropic antibiotic activities, a unique, defined molecular mechanism of resistance has not emerged, instead non-susceptibility appears often accompanied by alterations in membrane composition and changes in cell wall homeostasis. We compared S. aureus strains HG001 and SG511, which differ primarily in the functionality of the histidine kinase GraS, to evaluate the impact of the GraRS regulatory system on the development of DAP non-susceptibility. After extensive serial passing, both DAPR variants reached a minimal inhibitory concentration of 31 μg/ml and shared some phenotypic characteristics (e.g. thicker cell wall, reduced autolysis). However, based on comprehensive analysis of the underlying genetic, transcriptomic and proteomic changes, we found that both strains took different routes to achieve DAP resistance. Our study highlights the impressive genetic and physiological capacity of S. aureus to counteract pleiotropic activities of cell wall- and membrane-active compounds even when a major cell wall regulatory system is dysfunctional.
Collapse
Affiliation(s)
- Anna Müller
- Institute for Pharmaceutical Microbiology, University Hospital Bonn, University of Bonn, Bonn, Germany; German Center for Infection Research (DZIF), partner site Bonn-Cologne, Bonn.
| | - Fabian Grein
- Institute for Pharmaceutical Microbiology, University Hospital Bonn, University of Bonn, Bonn, Germany; German Center for Infection Research (DZIF), partner site Bonn-Cologne, Bonn
| | - Andreas Otto
- Institute for Microbiology, University of Greifswald, Greifswald, Germany
| | - Kathrin Gries
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Dmitriy Orlov
- Institute for Experimental Medicine, Saint Petersburg, Russia; Saint Petersburg University, Saint Petersburg, Russia
| | - Vladimir Zarubaev
- Pasteur Institute of Epidemiology and Microbiology, Saint Petersburg Russia
| | - Myriam Girard
- Genomic Research Laboratory, Department of Medical Specialties, University Hospitals of Geneva, University of Geneva, Geneva, Switzerland
| | - Xinwei Sher
- Merck & Co., Infectious Diseases, Kenilworth, NJ, USA
| | - Olga Shamova
- Institute for Experimental Medicine, Saint Petersburg, Russia; Saint Petersburg University, Saint Petersburg, Russia
| | | | - Patrice François
- Genomic Research Laboratory, Department of Medical Specialties, University Hospitals of Geneva, University of Geneva, Geneva, Switzerland
| | - Dörte Becher
- Institute for Microbiology, University of Greifswald, Greifswald, Germany
| | - Tanja Schneider
- Institute for Pharmaceutical Microbiology, University Hospital Bonn, University of Bonn, Bonn, Germany; German Center for Infection Research (DZIF), partner site Bonn-Cologne, Bonn
| | - Hans-Georg Sahl
- German Center for Infection Research (DZIF), partner site Bonn-Cologne, Bonn; Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, University of Bonn, Bonn, Germany
| |
Collapse
|
50
|
Seidl K, Leemann M, Zinkernagel AS. The ArlRS two-component system is a regulator of Staphylococcus aureus-induced endothelial cell damage. Eur J Clin Microbiol Infect Dis 2017; 37:289-292. [PMID: 29177635 DOI: 10.1007/s10096-017-3130-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 10/30/2017] [Indexed: 01/23/2023]
Abstract
Staphylococcus aureus endovascular infections retain a high morbidity and mortality despite antibiotics and supportive care. The destruction of endothelial cells (ECs) is a critical step in the pathogenesis of S. aureus endovascular infections. In order to better understand S. aureus-induced EC damage, we systematically screened a collection of two-component regulatory system mutants of methicillin-resistant S. aureus (MRSA) USA300 strain JE2 for damage induction in human umbilical vein ECs (HUVECs). This screen revealed that the two-component regulatory system ArlRS is required for maximum damage: arlRS inactivation leads to a > 70% reduction in damage. In a different genetic S. aureus background (RN6390, MSSA strain) arlRS inactivation had a smaller but also significant effect on EC damage. In both strains, the reduction in EC damage was accompanied by a significant reduction in internalization. In conclusion, we determined a novel role of ArlRS in S. aureus-induced EC damage, which will help to better understand the pathogenesis of S. aureus endovascular infection.
Collapse
Affiliation(s)
- Kati Seidl
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Rämistr. 100, RAE U, 8091, Zurich, Switzerland.
| | - Michèle Leemann
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Rämistr. 100, RAE U, 8091, Zurich, Switzerland
| | - Annelies S Zinkernagel
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Rämistr. 100, RAE U, 8091, Zurich, Switzerland
| |
Collapse
|