1
|
Kurilovich E, Geva-Zatorsky N. Effects of bacteriophages on gut microbiome functionality. Gut Microbes 2025; 17:2481178. [PMID: 40160174 PMCID: PMC11959909 DOI: 10.1080/19490976.2025.2481178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 01/28/2025] [Accepted: 03/13/2025] [Indexed: 04/02/2025] Open
Abstract
The gut microbiome, composed of bacteria, fungi, and viruses, plays a crucial role in maintaining the delicate balance of human health. Emerging evidence suggests that microbiome disruptions can have far-reaching implications, ranging from the development of inflammatory diseases and cancer to metabolic disorders. Bacteriophages, or "phages", are viruses that specifically infect bacterial cells, and their interactions with the gut microbiome are receiving increased attention. Despite the recently revived interest in the gut phageome, it is still considered the "dark matter" of the gut, with more than 80% of viral genomes remaining uncharacterized. Today, research is focused on understanding the mechanisms by which phages influence the gut microbiota and their potential applications. Bacteriophages may regulate the relative abundance of bacterial communities, affect bacterial functions in various ways, and modulate mammalian host immunity. This review explores how phages can regulate bacterial functionality, particularly in gut commensals and pathogens, emphasizing their role in gut health and disease.
Collapse
Affiliation(s)
- Elena Kurilovich
- Department of Cell Biology and Cancer Science, Rappaport Technion Integrated Cancer Center (RTICC), Rappaport Faculty of Medicine, Technion – Israel Institute of Technology, Haifa, Israel
| | - Naama Geva-Zatorsky
- Department of Cell Biology and Cancer Science, Rappaport Technion Integrated Cancer Center (RTICC), Rappaport Faculty of Medicine, Technion – Israel Institute of Technology, Haifa, Israel
- Humans and the Microbiome program, CIFAR, Toronto, ON, Canada
| |
Collapse
|
2
|
Niu M, Zhao L, Gong S, Liu X, Zheng C, Jiao J, Wang F, Wang L. Oral administration of probiotic spores-based biohybrid system for efficient attenuation of Salmonella Typhimurium-induced colitis. J Nanobiotechnology 2025; 23:378. [PMID: 40414932 DOI: 10.1186/s12951-025-03468-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 05/14/2025] [Indexed: 05/27/2025] Open
Abstract
Salmonella Typhimurium (S. Tm), a Gram-negative pathogenic bacterium, is one of the most common causes of invasive bacterial diseases. Antibiotic therapy remains the principal therapeutic modality for treating S. Tm infection. However, due to the difficulty in precisely targeted pathogenic bacteria after oral administration, the therapeutic effect remains unsatisfactory. Here, we developed an oral probiotic spores-based biohybrid delivery system (BCs@PME-Au) to treat S. Tm-induced colitis. By employing a one-pot metal deposition method, Polymyxin E (PME) acted as a reducing agent to promote the Au3+ rapid nucleation and growth into PME-capped Au NPs (PME-Au NPs). By forming Au-S and Au-N bonds with the active sites (-SH, -NH2) of Bacillus coagulans spores (BCs), PME-Au NPs were anchored onto the surface of BCs to construct the biohybrid system BCs@PME-Au. Following oral administration, BCs@PME-Au successfully passed through the gastric acid barrier. After absorbed water and nutrients, BCs germinated into Bacillus coagulans (BC) in the gut and PME-Au NPs were released. Based on the BC's targeting pathogen infection site and PME-Au NPs' targeting Gram-negative bacteria, the biohybrid system achieved significantly antibacterial effect of S. Tm. Mechanistically, by blocked the LPS-induced inflammatory pathway TLR4/MyD88/NF-κB, BCs@PME-Au exerted a powerful anti-inflammatory effect. With its robust antibacterial efficacy, targeted delivery, and excellent safety profile demonstrated both in vitro and in vivo, the biohybrid system BCs@PME-Au offers significant promise in treating bacterial colitis.
Collapse
Affiliation(s)
- Mengya Niu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
- Henan Key Laboratory of Nanomedicine for Targeting Diagnosis and Treatment, Zhengzhou, 450001, China
| | - Luo Zhao
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
- Henan Key Laboratory of Nanomedicine for Targeting Diagnosis and Treatment, Zhengzhou, 450001, China
| | - Shuang Gong
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
- Henan Key Laboratory of Nanomedicine for Targeting Diagnosis and Treatment, Zhengzhou, 450001, China
| | - Xinxin Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
- Henan Key Laboratory of Nanomedicine for Targeting Diagnosis and Treatment, Zhengzhou, 450001, China
| | - Cuixia Zheng
- Second Clinical Medical College, Translational Medicine Center, Henan University, Kaifeng, 475000, China
| | - Jiannan Jiao
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
- Henan Key Laboratory of Nanomedicine for Targeting Diagnosis and Treatment, Zhengzhou, 450001, China
| | - Fangfang Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
- Henan Key Laboratory of Nanomedicine for Targeting Diagnosis and Treatment, Zhengzhou, 450001, China
| | - Lei Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
- Henan Key Laboratory of Nanomedicine for Targeting Diagnosis and Treatment, Zhengzhou, 450001, China.
- Tumor Immunity and Biomaterials Advanced Medical Center, Luoyang Central Hospital, Affiliated to Zhengzhou University, Luoyang, 471009, China.
| |
Collapse
|
3
|
Roche B, Claudi B, Cunrath O, Bleck CKE, Antelo-Varela M, Li J, Bumann D. A Salmonella subset exploits erythrophagocytosis to subvert SLC11A1-imposed iron deprivation. Cell Host Microbe 2025; 33:632-642.e4. [PMID: 40373749 DOI: 10.1016/j.chom.2025.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/19/2025] [Accepted: 04/15/2025] [Indexed: 05/17/2025]
Abstract
Solute carrier family 11 member 1 (SLC11A1) is critical for host resistance to diverse intracellular pathogens. During infection, SLC11A1 limits Salmonella's access to iron, zinc, and magnesium, but only magnesium deprivation significantly impairs Salmonella replication. To understand the unexpected minor impact of iron, we determined Salmonella's iron access in infected SLC11A1-deficient and normal mice. Using reporter strains and mass spectrometry of Salmonella purified from the spleen, we found that SLC11A1 caused growth-restricting iron deprivation in a subset of Salmonella. Volume electron microscopy revealed that another Salmonella subset circumvented iron restriction by targeting iron-rich endosomes in macrophages degrading red blood cells (erythrophagocytosis). These iron-replete bacteria dominated overall Salmonella growth, masking the effects of the other Salmonella subset's iron deprivation. Thus, SLC11A1 effectively sequesters iron, but heterogeneous Salmonella populations partially bypass this nutritional immunity by targeting iron-rich tissue microenvironments.
Collapse
Affiliation(s)
- Béatrice Roche
- Biozentrum, University of Basel, 4056 Basel, Switzerland; Institut de Biologie Moléculaire et Cellulaire, UPR 9002 CNRS, 67084 Strasbourg, France
| | | | - Olivier Cunrath
- Biozentrum, University of Basel, 4056 Basel, Switzerland; Biotechnologie et signalisation cellulaire, Université de Strasbourg, 67412 Illkirch, France
| | - Christopher K E Bleck
- Biozentrum, University of Basel, 4056 Basel, Switzerland; HHMI Janelia Research Campus, Ashburn, VA 20147, USA
| | | | - Jiagui Li
- Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Dirk Bumann
- Biozentrum, University of Basel, 4056 Basel, Switzerland.
| |
Collapse
|
4
|
Byers SMH, Rocker A, Nguyen TNT, Rosas NC, Taiaroa G, Tan KS, Li Y, Wilksch JJ, Steele JR, Schittenhelm RB, Dunstan RA, Short FL, Lithgow T. Telomere bacteriophages are widespread and equip their bacterial hosts with potent interbacterial weapons. SCIENCE ADVANCES 2025; 11:eadt1627. [PMID: 40305614 PMCID: PMC12042878 DOI: 10.1126/sciadv.adt1627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 04/01/2025] [Indexed: 05/02/2025]
Abstract
Bacteriophages (phages) are viruses that can kill bacteria, thereby editing and shaping microbial communities. The telomere phages are a curious form using telomere-like structures to replicate their genomes as linear extrachromosomal elements. Here, we find that telomere phages are widely distributed in bacteria, being highly prevalent in Klebsiella species. We establish a model system to investigate telomere phage biology by isolating the virions of telomere phages and infecting naïve strains to create isogenic lines with and without a phage. We find that only a small set of telomere phage proteins is expressed in phage-host cells, including a toxin-the telocin-that kills other Klebsiella strains. We identify and validate a set of telocins in the genomes of other prevalent Klebsiella telomere phages. Thus, telomere phages are widespread elements encoding diverse antibacterial weapons and we discuss the prospect of using telocins for precision editing of microbial populations.
Collapse
Affiliation(s)
- Sally M. H. Byers
- Infection Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton 3800, Australia
- Centre to Impact AMR, Monash University, Clayton 3800, Australia
| | - Andrea Rocker
- Infection Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton 3800, Australia
| | - To N. T. Nguyen
- Infection Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton 3800, Australia
- Centre to Impact AMR, Monash University, Clayton 3800, Australia
| | - Natalia C. Rosas
- Infection Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton 3800, Australia
- Centre to Impact AMR, Monash University, Clayton 3800, Australia
| | - George Taiaroa
- Department of Microbiology and Immunology, The Peter Doherty Institute, The University of Melbourne, Parkville 3052, Australia
| | - Kher Shing Tan
- Infection Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton 3800, Australia
- Centre to Impact AMR, Monash University, Clayton 3800, Australia
| | - Yan Li
- Infection Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton 3800, Australia
- Centre to Impact AMR, Monash University, Clayton 3800, Australia
| | - Jonathan J. Wilksch
- Infection Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton 3800, Australia
- Centre to Impact AMR, Monash University, Clayton 3800, Australia
- Department of Microbiology and Immunology, The Peter Doherty Institute, The University of Melbourne, Parkville 3052, Australia
| | - Joel R. Steele
- Monash Proteomics & Metabolomics Platform, Monash University, Clayton 3800, Australia
| | - Ralf B. Schittenhelm
- Monash Proteomics & Metabolomics Platform, Monash University, Clayton 3800, Australia
| | - Rhys A. Dunstan
- Infection Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton 3800, Australia
- Centre to Impact AMR, Monash University, Clayton 3800, Australia
| | - Francesca L. Short
- Infection Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton 3800, Australia
- Centre to Impact AMR, Monash University, Clayton 3800, Australia
| | - Trevor Lithgow
- Infection Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton 3800, Australia
- Centre to Impact AMR, Monash University, Clayton 3800, Australia
| |
Collapse
|
5
|
Granato ET, Palmer JD, Kirk C, Sharp C, Shillcock G, Foster KR. Horizontal gene transfer of molecular weapons can reshape bacterial competition. PLoS Biol 2025; 23:e3003095. [PMID: 40397871 DOI: 10.1371/journal.pbio.3003095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 03/04/2025] [Indexed: 05/23/2025] Open
Abstract
Bacteria commonly use molecular weaponry to kill or inhibit competitors. Genes encoding many weapons and their associated immunity mechanisms can be transmitted horizontally. These transfer events are striking because they appear to undermine bacterial weapons when given to competing strains. Here, we develop an ecological model of bacterial warfare to understand the impacts of horizontal gene transfer. Our model predicts that weapon gene transfer from an attacker to a target strain is possible, but will typically occur at a low rate such that transfer has a negligible impact on competition outcomes. We tested the model empirically using a transmissible plasmid encoding colicin E2, a potent antibacterial toxin produced by Escherichia coli. As predicted by the model, we find that toxin plasmid transfer is feasible during warfare, but the resulting transconjugants remain rare. However, exploring the model further reveals realistic conditions where transfer is predicted to have major impacts. Specifically, the model predicts that whenever competing strains have access to unique nutrients, transconjugants can proliferate and reach high abundances. In support of these predictions, short- and long-term experiments show that transconjugants can thrive when nutrient competition is relaxed. Our work shows how horizontal gene transfer can reshape bacterial warfare in a way that benefits a weapon gene and strains that receive it. Interestingly, we also find that there is little cost to a strain that transfers a weapon gene, which is expected to further enable the horizontal gene transfer of molecular weapons.
Collapse
Affiliation(s)
- Elisa T Granato
- Department of Biology, University of Oxford, Oxford, United Kingdom
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Jacob D Palmer
- Department of Biological Sciences, Binghamton University, Binghamton, New York, United States of America
- Binghamton Biofilm Research Center, Binghamton University, Binghamton, New York, United States of America
| | - Christian Kirk
- Department of Biology, University of Oxford, Oxford, United Kingdom
| | - Connor Sharp
- School of Biological Sciences, University of Reading, Reading, United Kingdom
| | - George Shillcock
- Department of Biology, University of Oxford, Oxford, United Kingdom
| | - Kevin R Foster
- Department of Biology, University of Oxford, Oxford, United Kingdom
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
6
|
Chavez-Arroyo A, Radlinski LC, Bäumler AJ. Principles of gut microbiota assembly. Trends Microbiol 2025:S0966-842X(25)00071-X. [PMID: 40089422 DOI: 10.1016/j.tim.2025.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Revised: 02/20/2025] [Accepted: 02/24/2025] [Indexed: 03/17/2025]
Abstract
The gut microbiota plays a critical role in human health, yet its taxonomic complexity, interpersonal variability, and resistance to change in adulthood present challenges for understanding the factors driving shifts in its composition and function. Here, we propose a hierarchy of ecological factors governing gut microbiota assembly, stability, and resilience. At the apex of this hierarchy is habitat filtering by host-derived electron acceptors, which dictates the ecological guilds that dominate distinct gut regions. Host dietary behavior shapes niche availability within these ecological guilds by regulating nutrient availability. Priority effects preserve taxonomic stability whereas microbial antagonism governs competition for open ecological positions. This framework highlights how host control over microbial energy metabolism directs microbiota self-assembly and maintains gut homeostasis.
Collapse
Affiliation(s)
- Alfredo Chavez-Arroyo
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, One Shields Ave, Davis, CA 95616, USA
| | - Lauren C Radlinski
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, One Shields Ave, Davis, CA 95616, USA
| | - Andreas J Bäumler
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, One Shields Ave, Davis, CA 95616, USA.
| |
Collapse
|
7
|
Virgo M, Mostowy S, Ho BT. Emerging models to study competitive interactions within bacterial communities. Trends Microbiol 2025:S0966-842X(24)00325-1. [PMID: 39799088 DOI: 10.1016/j.tim.2024.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/13/2024] [Accepted: 12/16/2024] [Indexed: 01/15/2025]
Abstract
Within both abiotic and host environments, bacteria typically exist as diverse, multispecies communities and have crucial roles in human health, agriculture, and industry. In these communities, bacteria compete for resources, and these competitive interactions can shape the overall population structure and community function. Studying bacterial community dynamics requires experimental model systems that capture the different interaction networks between bacteria and their surroundings. We examine the recent literature advancing such systems, including (i) in silico models establishing the theoretical basis for how cell-to-cell interactions can influence population level dynamics, (ii) in vitro models characterizing specific interbacterial interactions, (iii) organ-on-a-chip models revealing the physiologically relevant parameters, such as spatial structure and mechanical forces, that bacteria encounter within a host, and (iv) in vivo plant and animal models connecting the host responses to interbacterial interactions. Each of these systems has greatly contributed to our understanding of bacterial community dynamics and can be used synergistically to understand how bacterial competition influences population architecture.
Collapse
Affiliation(s)
- Mollie Virgo
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck College, London, UK; Department of Infection Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London, UK
| | - Serge Mostowy
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London, UK.
| | - Brian T Ho
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck College, London, UK; Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, UK.
| |
Collapse
|
8
|
Lerminiaux NA, Kaufman JM, Schnell LJ, Workman SD, Suchan DM, Kröger C, Ingalls BP, Cameron ADS. Lysis of Escherichia coli by colicin Ib contributes to bacterial cross-feeding by releasing active β-galactosidase. THE ISME JOURNAL 2025; 19:wraf032. [PMID: 39969895 PMCID: PMC11896792 DOI: 10.1093/ismejo/wraf032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 11/21/2024] [Accepted: 02/18/2025] [Indexed: 02/20/2025]
Abstract
The diffusible toxin ColIb produced by Salmonella enterica serovar Typhimurium SL1344 is a potent inhibitor of Escherichia coli growth. To identify and parameterize metabolic cross-feeding in states of competition, we established defined communities in which E. coli was the only species able to access a sole carbon source, lactose. Although ColIb was predicted to undermine cross-feeding by killing the lactose-converting E. coli, S. enterica populations thrived in co-culture. We discovered that ColIb caused the release of active β-galactosidase from E. coli cells, which induced galactose uptake by S. enterica. Although iron limitation stimulates ColIb production and makes E. coli more sensitive to the toxin, ColIb killing in iron-limited conditions did not enhance iron acquisition or siderophore scavenging by S. enterica. Also unexpected was the rapid rate at which resistance to ColIb evolved in E. coli through spontaneous mutation of the ColIb receptor gene cirA or horizontal acquisition of the S. enterica colicin immunity gene imm. Mathematical modelling effectively predicted the growth kinetics of E. coli and S. enterica populations, revealing a tractable system in which ColIb can shrink a competitor population while simultaneously amplifying the metabolic contributions of the suppressed population.
Collapse
Affiliation(s)
- Nicole A Lerminiaux
- Institute for Microbial Systems and Society, Faculty of Science, University of Regina, Regina, Saskatchewan, S4S 0A2, Canada
- Department of Biology, Faculty of Science, University of Regina, Regina, Saskatchewan, S4S 0A2, Canada
| | - Jaycee M Kaufman
- Department of Applied Mathematics, University of Waterloo, Kitchener-Waterloo, Ontario, N2L 3G1, Canada
- Klick Applied Sciences, Klick Inc., Toronto
| | - Laura J Schnell
- Institute for Microbial Systems and Society, Faculty of Science, University of Regina, Regina, Saskatchewan, S4S 0A2, Canada
- Department of Biology, Faculty of Science, University of Regina, Regina, Saskatchewan, S4S 0A2, Canada
| | - Sean D Workman
- Institute for Microbial Systems and Society, Faculty of Science, University of Regina, Regina, Saskatchewan, S4S 0A2, Canada
- Department of Biology, Faculty of Science, University of Regina, Regina, Saskatchewan, S4S 0A2, Canada
| | - Danae M Suchan
- Institute for Microbial Systems and Society, Faculty of Science, University of Regina, Regina, Saskatchewan, S4S 0A2, Canada
- Department of Biology, Faculty of Science, University of Regina, Regina, Saskatchewan, S4S 0A2, Canada
| | - Carsten Kröger
- Department of Microbiology, School of Genetics and Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin, Dublin D02A2H0, Ireland
| | - Brian P Ingalls
- Department of Applied Mathematics, University of Waterloo, Kitchener-Waterloo, Ontario, N2L 3G1, Canada
| | - Andrew D S Cameron
- Institute for Microbial Systems and Society, Faculty of Science, University of Regina, Regina, Saskatchewan, S4S 0A2, Canada
- Department of Biology, Faculty of Science, University of Regina, Regina, Saskatchewan, S4S 0A2, Canada
| |
Collapse
|
9
|
Doranga S, Krogfelt KA, Cohen PS, Conway T. Nutrition of Escherichia coli within the intestinal microbiome. EcoSal Plus 2024; 12:eesp00062023. [PMID: 38417452 PMCID: PMC11636361 DOI: 10.1128/ecosalplus.esp-0006-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 11/03/2023] [Indexed: 03/01/2024]
Abstract
In this chapter, we update our 2004 review of "The Life of Commensal Escherichia coli in the Mammalian Intestine" (https://doi.org/10.1128/ecosalplus.8.3.1.2), with a change of title that reflects the current focus on "Nutrition of E. coli within the Intestinal Microbiome." The earlier part of the previous two decades saw incremental improvements in understanding the carbon and energy sources that E. coli and Salmonella use to support intestinal colonization. Along with these investigations of electron donors came a better understanding of the electron acceptors that support the respiration of these facultative anaerobes in the gastrointestinal tract. Hundreds of recent papers add to what was known about the nutrition of commensal and pathogenic enteric bacteria. The fact that each biotype or pathotype grows on a different subset of the available nutrients suggested a mechanism for succession of commensal colonizers and invasion by enteric pathogens. Competition for nutrients in the intestine has also come to be recognized as one basis for colonization resistance, in which colonized strain(s) prevent colonization by a challenger. In the past decade, detailed investigations of fiber- and mucin-degrading anaerobes added greatly to our understanding of how complex polysaccharides support the hundreds of intestinal microbiome species. It is now clear that facultative anaerobes, which usually cannot degrade complex polysaccharides, live in symbiosis with the anaerobic degraders. This concept led to the "restaurant hypothesis," which emphasizes that facultative bacteria, such as E. coli, colonize the intestine as members of mixed biofilms and obtain the sugars they need for growth locally through cross-feeding from polysaccharide-degrading anaerobes. Each restaurant represents an intestinal niche. Competition for those niches determines whether or not invaders are able to overcome colonization resistance and become established. Topics centered on the nutritional basis of intestinal colonization and gastrointestinal health are explored here in detail.
Collapse
Affiliation(s)
- Sudhir Doranga
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Karen A. Krogfelt
- Department of Science and Environment, Pandemix Center Roskilde University, Roskilde, Denmark
| | - Paul S. Cohen
- Department of Cell and Molecular Biology, University of Rhode Island, Kingston, Rhode Island, USA
| | - Tyrrell Conway
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| |
Collapse
|
10
|
Goh H, Choi S, Kim J. Synthetic translational coupling element for multiplexed signal processing and cellular control. Nucleic Acids Res 2024; 52:13469-13483. [PMID: 39526390 PMCID: PMC11602170 DOI: 10.1093/nar/gkae980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 10/09/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024] Open
Abstract
Repurposing natural systems to develop customized functions in biological systems is one of the main thrusts of synthetic biology. Translational coupling is a common phenomenon in diverse polycistronic operons for efficient allocation of limited genetic space and cellular resources. These beneficial features of translation coupling can provide exciting opportunities for creating novel synthetic biological devices. Here, we introduce a modular synthetic translational coupling element (synTCE) and integrate this design with de novo designed riboregulators, toehold switches. A systematic exploration of sequence domain variants for synTCEs led to the identification of critical design considerations for improving the system performance. Next, this design approach was seamlessly integrated into logic computations and applied to construct multi-output transcripts with well-defined stoichiometric control. This module was further applied to signaling cascades for combined signal transduction and multi-input/multi-output synthetic devices. Further, the synTCEs can precisely manipulate the N-terminal ends of output proteins, facilitating effective protein localization and cellular population control. Therefore, the synTCEs could enhance computational capability and applicability of riboregulators for reprogramming biological systems, leading to future applications in synthetic biology, metabolic engineering and biotechnology.
Collapse
Affiliation(s)
- Hyunseop Goh
- Department of Life Sciences, Pohang University of Science and Technology, 77 Cheongam-ro, Pohang 37673, Gyeongbuk, Korea
| | - Seungdo Choi
- Department of Life Sciences, Pohang University of Science and Technology, 77 Cheongam-ro, Pohang 37673, Gyeongbuk, Korea
| | - Jongmin Kim
- Department of Life Sciences, Pohang University of Science and Technology, 77 Cheongam-ro, Pohang 37673, Gyeongbuk, Korea
| |
Collapse
|
11
|
Woelfel S, Silva MS, Stecher B. Intestinal colonization resistance in the context of environmental, host, and microbial determinants. Cell Host Microbe 2024; 32:820-836. [PMID: 38870899 DOI: 10.1016/j.chom.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/07/2024] [Accepted: 05/07/2024] [Indexed: 06/15/2024]
Abstract
Microbial communities that colonize the human gastrointestinal (GI) tract defend against pathogens through a mechanism known as colonization resistance (CR). Advances in technologies such as next-generation sequencing, gnotobiotic mouse models, and bacterial cultivation have enhanced our understanding of the underlying mechanisms and the intricate microbial interactions involved in CR. Rather than being attributed to specific microbial clades, CR is now understood to arise from a dynamic interplay between microbes and the host and is shaped by metabolic, immune, and environmental factors. This evolving perspective underscores the significance of contextual factors, encompassing microbiome composition and host conditions, in determining CR. This review highlights recent research that has shifted its focus toward elucidating how these factors interact to either promote or impede enteric infections. It further discusses future research directions to unravel the complex relationship between host, microbiota, and environmental determinants in safeguarding against GI infections to promote human health.
Collapse
Affiliation(s)
- Simon Woelfel
- Max von Pettenkofer-Institute for Hygiene and Clinical Microbiology, Ludwig Maximilian University of Munich, 80336 Munich, Germany
| | - Marta Salvado Silva
- Max von Pettenkofer-Institute for Hygiene and Clinical Microbiology, Ludwig Maximilian University of Munich, 80336 Munich, Germany
| | - Bärbel Stecher
- Max von Pettenkofer-Institute for Hygiene and Clinical Microbiology, Ludwig Maximilian University of Munich, 80336 Munich, Germany; German Center for Infection Research (DZIF), partner site LMU Munich, Munich, Germany.
| |
Collapse
|
12
|
Goult JD, Van DCL, Taylor YV, Inns PG, Kaminska R, Vesely M, Kleanthous C, Paci E. Structural constraints of pyocin S2 import through the ferripyoverdine receptor FpvAI. PNAS NEXUS 2024; 3:pgae124. [PMID: 38577260 PMCID: PMC10994204 DOI: 10.1093/pnasnexus/pgae124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 03/12/2024] [Indexed: 04/06/2024]
Abstract
TonB-dependent transporters (TBDTs) mediate energized transport of essential nutrients into gram-negative bacteria. TBDTs are increasingly being exploited for the delivery of antibiotics to drug-resistant bacteria. While much is known about ground state complexes of TBDTs, few details have emerged about the transport process itself. In this study, we exploit bacteriocin parasitization of a TBDT to probe the mechanics of transport. Previous work has shown that the N-terminal domain of Pseudomonas aeruginosa-specific bacteriocin pyocin S2 (PyoS2NTD) is imported through the pyoverdine receptor FpvAI. PyoS2NTD transport follows the opening of a proton-motive force-dependent pore through FpvAI and the delivery of its own TonB box that engages TonB. We use molecular models and simulations to formulate a complete translocation pathway for PyoS2NTD that we validate using protein engineering and cytotoxicity measurements. We show that following partial removal of the FpvAI plug domain which occludes the channel, the pyocin's N-terminus enters the channel by electrostatic steering and ratchets to the periplasm. Application of force, mimicking that exerted by TonB, leads to unraveling of PyoS2NTD as it squeezes through the channel. Remarkably, while some parts of PyoS2NTD must unfold, complete unfolding is not required for transport, a result we confirmed by disulfide bond engineering. Moreover, the section of the FpvAI plug that remains embedded in the channel appears to serve as a buttress against which PyoS2NTD is pushed to destabilize the domain. Our study reveals the limits of structural deformation that accompanies import through a TBDT and the role the TBDT itself plays in accommodating transport.
Collapse
Affiliation(s)
- Jonathan D Goult
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Daniel C L Van
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Yasmin V Taylor
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Patrick G Inns
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Renata Kaminska
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Martin Vesely
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Colin Kleanthous
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Emanuele Paci
- Dipartimento di Fisica e Astronomia, Università di Bologna, Bologna 40127, Italy
| |
Collapse
|
13
|
Kumwenda B, Canals R, Predeus AV, Zhu X, Kröger C, Pulford C, Wenner N, Lora LL, Li Y, Owen SV, Everett D, Hokamp K, Heyderman RS, Ashton PM, Gordon MA, Msefula CL, Hinton JCD. Salmonella enterica serovar Typhimurium ST313 sublineage 2.2 has emerged in Malawi with a characteristic gene expression signature and a fitness advantage. MICROLIFE 2024; 5:uqae005. [PMID: 38623411 PMCID: PMC11018118 DOI: 10.1093/femsml/uqae005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 03/27/2024] [Indexed: 04/17/2024]
Abstract
Invasive non-typhoidal Salmonella (iNTS) disease is a serious bloodstream infection that targets immune-compromised individuals, and causes significant mortality in sub-Saharan Africa. Salmonella enterica serovar Typhimurium ST313 causes the majority of iNTS in Malawi. We performed an intensive comparative genomic analysis of 608 S. Typhimurium ST313 isolates dating between 1996 and 2018 from Blantyre, Malawi. We discovered that following the arrival of the well-characterized S. Typhimurium ST313 lineage 2 in 1999, two multidrug-resistant variants emerged in Malawi in 2006 and 2008, designated sublineages 2.2 and 2.3, respectively. The majority of S. Typhimurium isolates from human bloodstream infections in Malawi now belong to sublineages 2.2 or 2.3. To understand the emergence of the prevalent ST313 sublineage 2.2, we studied two representative strains, D23580 (lineage 2) and D37712 (sublineage 2.2). The chromosome of ST313 lineage 2 and sublineage 2.2 only differed by 29 SNPs/small indels and a 3 kb deletion of a Gifsy-2 prophage region including the sseI pseudogene. Lineage 2 and sublineage 2.2 had distinctive plasmid profiles. The transcriptome was investigated in 15 infection-relevant in vitro conditions and within macrophages. During growth in physiological conditions that do not usually trigger S. Typhimurium SPI2 gene expression, the SPI2 genes of D37712 were transcriptionally active. We identified down-regulation of flagellar genes in D37712 compared with D23580. Following phenotypic confirmation of transcriptomic differences, we discovered that sublineage 2.2 had increased fitness compared with lineage 2 during mixed growth in minimal media. We speculate that this competitive advantage is contributing to the emergence of sublineage 2.2 in Malawi.
Collapse
Affiliation(s)
- Benjamin Kumwenda
- School of Life Sciences and Allied Health Professions, Kamuzu University of Health Sciences Blantyre, Blantyre, 265, Malawi
- Institute of Infection, Veterinary & Ecological Sciences, University of Liverpool, Liverpool, L69 7ZB, United Kingdom
- Malawi–Liverpool–Wellcome Programme, Blantyre, 3, Malawi
| | - Rocío Canals
- Institute of Infection, Veterinary & Ecological Sciences, University of Liverpool, Liverpool, L69 7ZB, United Kingdom
| | - Alexander V Predeus
- Institute of Infection, Veterinary & Ecological Sciences, University of Liverpool, Liverpool, L69 7ZB, United Kingdom
| | - Xiaojun Zhu
- Institute of Infection, Veterinary & Ecological Sciences, University of Liverpool, Liverpool, L69 7ZB, United Kingdom
| | - Carsten Kröger
- Institute of Infection, Veterinary & Ecological Sciences, University of Liverpool, Liverpool, L69 7ZB, United Kingdom
- Department of Microbiology, Moyne Institute of Preventive Medicine, School of Genetics and Microbiology, Trinity College Dublin, Dublin, D02 PN40, Ireland
| | - Caisey Pulford
- Institute of Infection, Veterinary & Ecological Sciences, University of Liverpool, Liverpool, L69 7ZB, United Kingdom
| | - Nicolas Wenner
- Institute of Infection, Veterinary & Ecological Sciences, University of Liverpool, Liverpool, L69 7ZB, United Kingdom
| | - Lizeth Lacharme Lora
- Institute of Infection, Veterinary & Ecological Sciences, University of Liverpool, Liverpool, L69 7ZB, United Kingdom
| | - Yan Li
- Institute of Infection, Veterinary & Ecological Sciences, University of Liverpool, Liverpool, L69 7ZB, United Kingdom
| | - Siân V Owen
- Institute of Infection, Veterinary & Ecological Sciences, University of Liverpool, Liverpool, L69 7ZB, United Kingdom
| | - Dean Everett
- Department of Public Health and Epidemiology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, P.O. Box 127788, United Arab Emirates
| | - Karsten Hokamp
- Smurfit Institute of Genetics, School of Genetics and Microbiology, Trinity College Dublin, Dublin, D02 PN40, Ireland
| | - Robert S Heyderman
- Malawi–Liverpool–Wellcome Programme, Blantyre, 3, Malawi
- Research Department of Infection, Division of Infection & Immunity, University College London, London, WC1E 6BT, United Kingdom
| | | | - Melita A Gordon
- Institute of Infection, Veterinary & Ecological Sciences, University of Liverpool, Liverpool, L69 7ZB, United Kingdom
- Malawi–Liverpool–Wellcome Programme, Blantyre, 3, Malawi
| | - Chisomo L Msefula
- School of Life Sciences and Allied Health Professions, Kamuzu University of Health Sciences Blantyre, Blantyre, 265, Malawi
- Malawi–Liverpool–Wellcome Programme, Blantyre, 3, Malawi
| | - Jay C D Hinton
- Institute of Infection, Veterinary & Ecological Sciences, University of Liverpool, Liverpool, L69 7ZB, United Kingdom
| |
Collapse
|
14
|
Sivasankaran SK, Bearson BL, Trachsel JM, Nielsen DW, Looft T, Bearson SMD. Genomic and phenotypic characterization of multidrug-resistant Salmonella enterica serovar Reading isolates involved in a turkey-associated foodborne outbreak. Front Microbiol 2024; 14:1304029. [PMID: 38304860 PMCID: PMC10830755 DOI: 10.3389/fmicb.2023.1304029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 11/20/2023] [Indexed: 02/03/2024] Open
Abstract
Salmonella is a global bacterial foodborne pathogen associated with a variety of contaminated food products. Poultry products are a common source of Salmonella-associated foodborne illness, and an estimated 7% of human illnesses in the United States are attributed to turkey products. From November 2017 to March 2019, the Centers for Disease Control and Prevention reported a turkey-associated outbreak of multidrug-resistant (MDR; resistant to ≥3 antimicrobial classes) Salmonella enterica serovar Reading (S. Reading) linked to 358 human infections in 42 US states and Canada. Since S. Reading was seldom linked to human illness prior to this outbreak, the current study compared genomic sequences of S. Reading isolates prior to the outbreak (pre-outbreak) to isolates identified during the outbreak period, focusing on genes that were different between the two groups but common within a group. Following whole-genome sequence analysis of five pre-outbreak and five outbreak-associated turkey/turkey product isolates of S. Reading, 37 genes located within two distinct chromosomal regions were identified only in the pre-outbreak isolates: (1) an ~5 kb region containing four protein-coding genes including uidA which encodes beta-glucuronidase, pgdA encoding peptidoglycan deacetylase, and two hypothetical proteins and (2) an ~28 kb region comprised of 32 phage-like genes and the xerC gene, which encodes tyrosine recombinase (frequently associated with phage genes). The five outbreak isolates also had a deletional event within the cirA gene, introducing a translational frame shift and premature stop codon. The cirA gene encodes a protein with dual receptor functions: a siderophore receptor for transport of dihydroxybenzoylserine as well as a colicin Ia/b receptor. Significant differences for the identified genetic variations were also detected in 75 S. Reading human isolates. Of the 41 S. Reading isolates collected before or in 2017, 81 and 90% of the isolates contained the uidA and pgdA genes, respectively, but only 24% of the isolates collected after 2017 harbored the uidA and pgdA genes. The truncation event within the cirA gene was also significantly higher in isolates collected after 2017 (74%) compared to before or in 2017 (5%). Phenotypic analysis of the S. Reading isolates for colicin and cefiderocol sensitivities (CirA) and β-methyl-D-glucuronic acid utilization (UidA and accessory proteins) supported the genomic data. Overall, a similar genome reduction pattern was generally observed in both the turkey and human isolates of S. Reading during the outbreak period, and the genetic differences were present in genes that could potentially promote pathogen dissemination due to variation in Salmonella colonization, fitness, and/or virulence.
Collapse
Affiliation(s)
- Sathesh K. Sivasankaran
- USDA, ARS, National Animal Disease Center, Food Safety and Enteric Pathogens, Ames, IA, United States
- Genome Informatics Facility, Iowa State University, Ames, IA, United States
| | - Bradley L. Bearson
- Agroecosystems Management Research Unit, USDA, ARS, National Laboratory for Agriculture and the Environment, Ames, IA, United States
| | - Julian M. Trachsel
- USDA, ARS, National Animal Disease Center, Food Safety and Enteric Pathogens, Ames, IA, United States
| | - Daniel W. Nielsen
- USDA, ARS, National Animal Disease Center, Food Safety and Enteric Pathogens, Ames, IA, United States
- ARS Research Participation Program, Oak Ridge Institute for Science and Education (ORISE), Oak Ridge, TN, United States
| | - Torey Looft
- USDA, ARS, National Animal Disease Center, Food Safety and Enteric Pathogens, Ames, IA, United States
| | - Shawn M. D. Bearson
- USDA, ARS, National Animal Disease Center, Food Safety and Enteric Pathogens, Ames, IA, United States
| |
Collapse
|
15
|
Wang S, Mu L, Yu C, He Y, Hu X, Jiao Y, Xu Z, You S, Liu SL, Bao H. Microbial collaborations and conflicts: unraveling interactions in the gut ecosystem. Gut Microbes 2024; 16:2296603. [PMID: 38149632 PMCID: PMC10761165 DOI: 10.1080/19490976.2023.2296603] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 12/14/2023] [Indexed: 12/28/2023] Open
Abstract
The human gut microbiota constitutes a vast and complex community of microorganisms. The myriad of microorganisms present in the intestinal tract exhibits highly intricate interactions, which play a crucial role in maintaining the stability and balance of the gut microbial ecosystem. These interactions, in turn, influence the overall health of the host. The mammalian gut microbes have evolved a wide range of mechanisms to suppress or even eliminate their competitors for nutrients and space. Simultaneously, extensive cooperative interactions exist among different microbes to optimize resource utilization and enhance their own fitness. This review will focus on the competitive mechanisms among members of the gut microorganisms and discuss key modes of actions, including bacterial secretion systems, bacteriocins, membrane vesicles (MVs) etc. Additionally, we will summarize the current knowledge of the often-overlooked positive interactions within the gut microbiota, and showcase representative machineries. This information will serve as a reference for better understanding the complex interactions occurring within the mammalian gut environment. Understanding the interaction dynamics of competition and cooperation within the gut microbiota is crucial to unraveling the ecology of the mammalian gut microbial communities. Targeted interventions aimed at modulating these interactions may offer potential therapeutic strategies for disease conditions.
Collapse
Affiliation(s)
- Shuang Wang
- Genomics Research Center, Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province, State-Province Key Laboratory of Biomedicine-Pharmaceutics of China, College of Pharmacy, Harbin Medical University, Harbin, China
- Department of Biopharmaceutical Sciences (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD) College of Pharmacy, Harbin Medical University, Harbin, China
| | - Lingyi Mu
- Genomics Research Center, Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province, State-Province Key Laboratory of Biomedicine-Pharmaceutics of China, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Chong Yu
- Genomics Research Center, Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province, State-Province Key Laboratory of Biomedicine-Pharmaceutics of China, College of Pharmacy, Harbin Medical University, Harbin, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD) College of Pharmacy, Harbin Medical University, Harbin, China
- Harbin Medical University-University of Calgary Cumming School of Medicine Centre for Infection and Genomics, Harbin Medical University, Harbin, China
| | - Yuting He
- Genomics Research Center, Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province, State-Province Key Laboratory of Biomedicine-Pharmaceutics of China, College of Pharmacy, Harbin Medical University, Harbin, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD) College of Pharmacy, Harbin Medical University, Harbin, China
- Harbin Medical University-University of Calgary Cumming School of Medicine Centre for Infection and Genomics, Harbin Medical University, Harbin, China
| | - Xinliang Hu
- Genomics Research Center, Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province, State-Province Key Laboratory of Biomedicine-Pharmaceutics of China, College of Pharmacy, Harbin Medical University, Harbin, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD) College of Pharmacy, Harbin Medical University, Harbin, China
- Harbin Medical University-University of Calgary Cumming School of Medicine Centre for Infection and Genomics, Harbin Medical University, Harbin, China
| | - Yanlei Jiao
- Genomics Research Center, Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province, State-Province Key Laboratory of Biomedicine-Pharmaceutics of China, College of Pharmacy, Harbin Medical University, Harbin, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD) College of Pharmacy, Harbin Medical University, Harbin, China
- Harbin Medical University-University of Calgary Cumming School of Medicine Centre for Infection and Genomics, Harbin Medical University, Harbin, China
| | - Ziqiong Xu
- Genomics Research Center, Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province, State-Province Key Laboratory of Biomedicine-Pharmaceutics of China, College of Pharmacy, Harbin Medical University, Harbin, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD) College of Pharmacy, Harbin Medical University, Harbin, China
- Harbin Medical University-University of Calgary Cumming School of Medicine Centre for Infection and Genomics, Harbin Medical University, Harbin, China
| | - Shaohui You
- Genomics Research Center, Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province, State-Province Key Laboratory of Biomedicine-Pharmaceutics of China, College of Pharmacy, Harbin Medical University, Harbin, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD) College of Pharmacy, Harbin Medical University, Harbin, China
- Harbin Medical University-University of Calgary Cumming School of Medicine Centre for Infection and Genomics, Harbin Medical University, Harbin, China
| | - Shu-Lin Liu
- Genomics Research Center, Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province, State-Province Key Laboratory of Biomedicine-Pharmaceutics of China, College of Pharmacy, Harbin Medical University, Harbin, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD) College of Pharmacy, Harbin Medical University, Harbin, China
- Harbin Medical University-University of Calgary Cumming School of Medicine Centre for Infection and Genomics, Harbin Medical University, Harbin, China
| | - Hongxia Bao
- Genomics Research Center, Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province, State-Province Key Laboratory of Biomedicine-Pharmaceutics of China, College of Pharmacy, Harbin Medical University, Harbin, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD) College of Pharmacy, Harbin Medical University, Harbin, China
- Harbin Medical University-University of Calgary Cumming School of Medicine Centre for Infection and Genomics, Harbin Medical University, Harbin, China
| |
Collapse
|
16
|
Deng L, Wang S. Colonization resistance: the role of gut microbiota in preventing Salmonella invasion and infection. Gut Microbes 2024; 16:2424914. [PMID: 39514544 PMCID: PMC11552263 DOI: 10.1080/19490976.2024.2424914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/21/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
The human gastrointestinal tract is colonized by a complex microbial ecosystem, the gut microbiota, which is pivotal in maintaining host health and mediating resistance to diseases. This review delineates colonization resistance (CR), a critical defensive mechanism employed by the gut microbiota to safeguard against pathogenic bacterial invasions, notably by Salmonella. We detail the mechanisms through which the gut microbiota impedes Salmonella colonization, including nutrient competition, production of antimicrobial peptides, synthesis of microbial-derived metabolites, and modulation of the host immune response. Additionally, we examine how dietary interventions can influence these mechanisms, thereby augmenting the protective role of the gut microbiota. The review also discusses the sophisticated strategies utilized by Salmonella to overcome these microbial defenses. A thorough understanding of these complex interactions between microbial symbionts and pathogens is crucial for the development of innovative therapeutic strategies that enhance CR, aiming to prevent or treat microbial infections effectively.
Collapse
Affiliation(s)
- Lei Deng
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA, USA
| | - Shaohui Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| |
Collapse
|
17
|
Wu R, Xiong R, Li Y, Chen J, Yan R. Gut microbiome, metabolome, host immunity associated with inflammatory bowel disease and intervention of fecal microbiota transplantation. J Autoimmun 2023; 141:103062. [PMID: 37246133 DOI: 10.1016/j.jaut.2023.103062] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 05/05/2023] [Accepted: 05/08/2023] [Indexed: 05/30/2023]
Abstract
Gut dysbiosis has been associated with inflammatory bowel disease (IBD), one of the most common gastrointestinal diseases. The microbial communities play essential roles in host physiology, with profound effects on immune homeostasis, directly or via their metabolites and/or components. There are increasing clinical trials applying fecal microbiota transplantation (FMT) with Crohn's disease (CD) and ulcerative colitis (UC). The restoration of dysbiotic gut microbiome is considered as one of the mechanisms of FMT therapy. In this work, latest advances in the alterations in gut microbiome and metabolome features in IBD patients and experimental mechanistic understanding on their contribution to the immune dysfunction were reviewed. Then, the therapeutic outcomes of FMT on IBD were summarized based on clinical remission, endoscopic remission and histological remission of 27 clinical trials retrieved from PubMed which have been registered on ClinicalTrials.gov with the results been published in the past 10 years. Although FMT is established as an effective therapy for both subtypes of IBD, the promising outcomes are not always achieved. Among the 27 studies, only 11 studies performed gut microbiome profiling, 5 reported immune response alterations and 3 carried out metabolome analysis. Generally, FMT partially restored typical changes in IBD, resulted in increased α-diversity and species richness in responders and similar but less pronounced shifts of patient microbial and metabolomics profiles toward donor profiles. Measurements of immune responses to FMT mainly focused on T cells and revealed divergent effects on pro-/anti-inflammatory functions. The very limited information and the extremely confounding factors in the designs of the FMT trials significantly hindered a reasonable conclusion on the mechanistic involvement of gut microbiota and metabolites in clinical outcomes and an analysis of the inconsistencies.
Collapse
Affiliation(s)
- Rongrong Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, China.
| | - Rui Xiong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, China.
| | - Yan Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, China.
| | - Junru Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, China.
| | - Ru Yan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, China.
| |
Collapse
|
18
|
Tsai YY, Franca M, Camus A, Stabler LJ, Barbieri N, Logue CM. Laser Capture Microdissection, Culture Analysis, and Bacterial Sequencing to Evaluate the Microbiota of Focal Duodenal Necrosis in Egg Layers. Avian Dis 2023; 67:177-185. [PMID: 37556297 DOI: 10.1637/aviandiseases-d-22-00088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 05/05/2023] [Indexed: 08/11/2023]
Abstract
Focal duodenal necrosis (FDN) is a common intestinal disease of table egg layers. In this research we aimed to identify the bacteria commonly found in FDN lesions as seen with histopathological analysis. Fifty-nine ethanol-fixed duodenum samples were collected from egg layers on eight FDN-affected farms, and 42 samples had typical FDN lesions. Excision of bacteria-containing lesions using laser capture microdissection was performed, followed by 16S rRNA gene sequencing of extracted DNA for bacterial identification. Bacterial sequencing analysis revealed no consistent bacterial species identified from samples with FDN. However, analysis of the relative phylum abundance revealed differences in the duodenal microbiota between layers with FDN and healthy birds. There were differences in the abundance of Proteobacteria, Firmicutes, and Actinobacteria between FDN-positive and FDN-negative control samples compatible with intestinal dysbiosis. In addition, 10 duodenal samples with FDN lesions were collected for bacteriological analysis, yielding 47 colonies on tryptone soy agar, MacConkey agar, and blood agar plates. Using 16S rRNA gene PCR, 39/47 (53.8%) colonies were identified as Escherichia coli. PCR for E. coli virulence genes identified 21/39 (53.8%) E. coli isolates as avian pathogenic E. coli-like. PCR analysis for 19 E. coli virulence genes associated with intestinal disease strains including inflammatory bowel disease found 11/39 (28.2%) isolates containing more than 10 of these virulence genes. In conclusion, FDN appears to be a multifactorial inflammatory intestinal disease associated with intestinal dysbiosis, and Gram-negative bacteria including E. coli may contribute to the pathogenesis of this disease.
Collapse
Affiliation(s)
- Yu-Yang Tsai
- Department of Population Health, Athens GA 30602
| | | | - Alvin Camus
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602
| | | | | | | |
Collapse
|
19
|
Mason S, Vornhagen J, Smith SN, Mike LA, Mobley HLT, Bachman MA. The Klebsiella pneumoniae ter Operon Enhances Stress Tolerance. Infect Immun 2023; 91:e0055922. [PMID: 36651775 PMCID: PMC9933665 DOI: 10.1128/iai.00559-22] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 01/19/2023] Open
Abstract
Healthcare-acquired infections are a leading cause of disease in patients that are hospitalized or in long-term-care facilities. Klebsiella pneumoniae (Kp) is a leading cause of bacteremia, pneumonia, and urinary tract infections in these settings. Previous studies have established that the ter operon, a genetic locus that confers tellurite oxide (K2TeO3) resistance, is associated with infection in colonized patients. Rather than enhancing fitness during infection, the ter operon increases Kp fitness during gut colonization; however, the biologically relevant function of this operon is unknown. First, using a murine model of urinary tract infection, we demonstrate a novel role for the ter operon protein TerC as a bladder fitness factor. To further characterize TerC, we explored a variety of functions, including resistance to metal-induced stress, resistance to radical oxygen species-induced stress, and growth on specific sugars, all of which were independent of TerC. Then, using well-defined experimental guidelines, we determined that TerC is necessary for tolerance to ofloxacin, polymyxin B, and cetylpyridinium chloride. We used an ordered transposon library constructed in a Kp strain lacking the ter operon to identify the genes that are required to resist K2TeO3-induced and polymyxin B-induced stress, which suggested that K2TeO3-induced stress is experienced at the bacterial cell envelope. Finally, we confirmed that K2TeO3 disrupts the Kp cell envelope, though these effects are independent of ter. Collectively, the results from these studies indicate a novel role for the ter operon as a stress tolerance factor, thereby explaining its role in enhancing fitness in the gut and bladder.
Collapse
Affiliation(s)
- Sophia Mason
- Department of Pathology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Jay Vornhagen
- Department of Pathology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Department of Microbiology & Immunology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Sara N. Smith
- Department of Microbiology & Immunology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Laura A. Mike
- Department of Medical Microbiology & Immunology, University of Toledo, Toledo, Ohio, USA
| | - Harry L. T. Mobley
- Department of Microbiology & Immunology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Michael A. Bachman
- Department of Pathology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Department of Microbiology & Immunology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
20
|
Ehau‐Taumaunu H, Hockett KL. The plant host environment influences competitive interactions between bacterial pathogens. ENVIRONMENTAL MICROBIOLOGY REPORTS 2022; 14:785-794. [PMID: 35700743 PMCID: PMC9796116 DOI: 10.1111/1758-2229.13103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 05/31/2022] [Accepted: 06/02/2022] [Indexed: 06/15/2023]
Abstract
Bacteria compete for resources in diverse environments using an array of antagonistic strategies, including the production of narrow-spectrum protein antibacterials termed bacteriocins. Although significant research has focused on bacteriocin-mediated dynamics in culture environments, little research has explored bacteriocin-mediated dynamics within a host context, particularly in plant environments. Here, we show that a bacterial plant pathogen, Pseudomonas syringae pv. syringae (Psy), expresses a bacteriocin both in culture and in leaf apoplast when co-inoculated with a bacteriocin-sensitive competitor, P. syringae pv. phaseolicola (Pph). Although there is an observable negative effect of the bacteriocin on the Pph population at most time points both in culture and in the leaf apoplast, a bacteriocin-mediated benefit to Psy was only observed when the producing strain was co-infiltrated at a low population frequency (1:9) into the leaf apoplast. At 6 days post-infiltration, Psy achieved an eightfold population increase compared to a bacteriocin-deficient mutant in the apoplast. No bacteriocin-mediated benefit for Psy was observed under the culture conditions tested. Additionally, we found that the bacteriocin-mediated benefit for Psy was dependent on the Type III Secretion System. Taken together, our results demonstrate that the fitness benefit of bacteriocin-mediated antagonism is influenced by interactions within the host plant.
Collapse
Affiliation(s)
- Hanareia Ehau‐Taumaunu
- Department of Plant Pathology and Environmental MicrobiologyThe Pennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| | - Kevin L. Hockett
- Department of Plant Pathology and Environmental MicrobiologyThe Pennsylvania State UniversityUniversity ParkPennsylvaniaUSA
- Center for Infectious Diseases DynamicsThe Pennsylvania State UniversityUniversity ParkPennsylvaniaUSA
- The Huck Institutes of the Life SciencesThe Pennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| |
Collapse
|
21
|
Marković KG, Grujović MŽ, Koraćević MG, Nikodijević DD, Milutinović MG, Semedo-Lemsaddek T, Djilas MD. Colicins and Microcins Produced by Enterobacteriaceae: Characterization, Mode of Action, and Putative Applications. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:11825. [PMID: 36142096 PMCID: PMC9517006 DOI: 10.3390/ijerph191811825] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/12/2022] [Accepted: 09/15/2022] [Indexed: 06/15/2023]
Abstract
Enterobacteriaceae are widely present in many environments related to humans, including the human body and the food that they consume, from both plant or animal origin. Hence, they are considered relevant members of the gastrointestinal tract microbiota. On the other hand, these bacteria are also recognized as putative pathogens, able to impair human health and, in food, they are considered indicators for the microbiological quality and hygiene status of a production process. Nevertheless, beneficial properties have also been associated with Enterobacteriaceae, such as the ability to synthesize peptides and proteins, which can have a role in the structure of microbial communities. Among these antimicrobial molecules, those with higher molecular mass are called colicins, while those with lower molecular mass are named microcins. In recent years, some studies show an emphasis on molecules that can help control the development of pathogens. However, not enough data are available on this subject, especially related to microcins. Hence, this review gathers and summarizes current knowledge on colicins and microcins, potential usage in the treatment of pathogen-associated diseases and cancer, as well as putative applications in food biotechnology.
Collapse
Affiliation(s)
- Katarina G. Marković
- Institute for Information Technologies, Department of Science, University of Kragujevac, Jovana Cvijića bb, 34000 Kragujevac, Serbia
| | - Mirjana Ž. Grujović
- Institute for Information Technologies, Department of Science, University of Kragujevac, Jovana Cvijića bb, 34000 Kragujevac, Serbia
| | - Maja G. Koraćević
- Innovation Center, University of Niš, 18000 Niš, Serbia
- Faculty of Medicine, Department of Pharmacy, University of Niš, 18000 Niš, Serbia
| | - Danijela D. Nikodijević
- Faculty of Science, Department of Biology and Ecology, University of Kragujevac, Radoja Domanovića 12, 34000 Kragujevac, Serbia
| | - Milena G. Milutinović
- Faculty of Science, Department of Biology and Ecology, University of Kragujevac, Radoja Domanovića 12, 34000 Kragujevac, Serbia
| | - Teresa Semedo-Lemsaddek
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Milan D. Djilas
- Institute for Public Health of Vojvodina, Futoška 121, 21000 Novi Sad, Serbia
| |
Collapse
|
22
|
Su WL, Bredèche MF, Dion S, Dauverd J, Condamine B, Gutierrez A, Denamur E, Matic I. TisB Protein Protects Escherichia coli Cells Suffering Massive DNA Damage from Environmental Toxic Compounds. mBio 2022; 13:e0038522. [PMID: 35377167 PMCID: PMC9040746 DOI: 10.1128/mbio.00385-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 02/18/2022] [Indexed: 12/29/2022] Open
Abstract
Toxin-antitoxin systems are genetic elements that are widespread in prokaryotes. Although molecular mode of action of many of these toxins has been identified, their biological functions are mostly unknown. We investigated the functional integration of the TisB/IstR toxin-antitoxin system in the Escherichia coli SOS genotoxic stress response network. We showed that the tisB gene is induced in cells exposed to high doses of the genotoxic antibiotic trimethoprim. However, we also found that TisB contributes to trimethoprim-induced lethality. This is a consequence of the TisB-induced drop in the proton motive force (PMF), which results in blocking the thymine import and therefore the functioning of the pyrimidine salvage pathway. Conversely, a TisB-induced PMF drop protects cells by preventing the import of some other toxic compounds, like the aminoglycoside antibiotic gentamicin and colicin M, in the SOS-induced cells. Colicins are cytotoxic molecules produced by Enterobacterales when they are exposed to strong genotoxic stresses in order to compete with other microbiota members. We indeed found that TisB contributes to E. coli's fitness during mouse gut colonization. Based on the results obtained here, we propose that the primary biological role of the TisB toxin is to increase the probability of survival and maintenance in the mammalian gut of their bacterial hosts when they have to simultaneously deal with massive DNA damages and a fierce chemical warfare with other microbiota members. IMPORTANCE The contribution of toxin-antitoxin systems to the persistence of bacteria to antibiotics has been intensively studied. This is also the case with the E. coli TisB/IstR toxin-antitoxin system, but the contribution of TisB to the persistence to antibiotics turned out to be not as straightforward as anticipated. In this study, we show that TisB can decrease, but also increase, cytotoxicity of different antibiotics. This inconsistency has a common origin, i.e., TisB-induced collapse of the PMF, which impacts the import and the action of different antibiotics. By taking into account the natural habitat of TisB bacterial hosts, the facts that this toxin-antitoxin system is integrated into the genotoxic stress response regulon SOS and that both SOS regulon and TisB are required for E. coli to colonize the host intestine, and the phenotypic consequences of the collapse of the PMF, we propose that TisB protects its hosts from cytotoxic molecules produced by competing intestinal bacteria.
Collapse
Affiliation(s)
- Wei-Lin Su
- Institut Cochin, Université de Paris, INSERM U1016, CNRS UMR 8104, Paris, France
| | | | - Sara Dion
- IAME, Université de Paris, INSERM U1137, Université Sorbonne Paris Nord, Paris, France
| | - Julie Dauverd
- Institut Cochin, Université de Paris, INSERM U1016, CNRS UMR 8104, Paris, France
| | - Bénédicte Condamine
- IAME, Université de Paris, INSERM U1137, Université Sorbonne Paris Nord, Paris, France
| | - Arnaud Gutierrez
- Institut Cochin, Université de Paris, INSERM U1016, CNRS UMR 8104, Paris, France
| | - Erick Denamur
- IAME, Université de Paris, INSERM U1137, Université Sorbonne Paris Nord, Paris, France
- AP-HP, Laboratoire de Génétique Moléculaire, Hôpital Bichat, Paris, France
| | - Ivan Matic
- Institut Cochin, Université de Paris, INSERM U1016, CNRS UMR 8104, Paris, France
| |
Collapse
|
23
|
Kong C, de Jong A, de Haan BJ, Kok J, de Vos P. Human milk oligosaccharides and non-digestible carbohydrates reduce pathogen adhesion to intestinal epithelial cells by decoy effects or by attenuating bacterial virulence. Food Res Int 2022; 151:110867. [PMID: 34980402 DOI: 10.1016/j.foodres.2021.110867] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/14/2021] [Accepted: 12/02/2021] [Indexed: 12/18/2022]
Abstract
This work investigated the effects of different chemical structures of human milk oligosaccharides (hMOs) and non-digestible carbohydrates (NDCs) on pathogen adhesion by serving as decoy receptors. Pre-exposure of pathogens to inulins and low degree of methylation (DM) pectin prevented binding to gut epithelial Caco2-cells, but effects were dependent on the molecules' chemistry, pathogen strain and growth phase. Pre-exposure to 3-fucosyllactose increased E. coli WA321 adhesion (28%, p < 0.05), and DM69 pectin increased E. coli ET8 (15 fold, p < 0.05) and E. coli WA321 (50%, p < 0.05) adhesion. Transcriptomics analysis revealed that DM69 pectin upregulated flagella and cell membrane associated genes. However, the top 10 downregulated genes were associated with lowering of bacteria virulence. DM69 pectin increased pathogen adhesion but bacterial virulence was attenuated illustrating different mechanisms may lower pathogen adhesion. Our study illustrates that both hMOs and NDCs can reduce adhesion or attenuate virulence of pathogens but that these effects are chemistry dependent.
Collapse
Affiliation(s)
- Chunli Kong
- School of Food and Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, 100048 Beijing, China; Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen and University Medical Center Groningen, Hanzeplein 1, 9700 RB Groningen, the Netherlands.
| | - Anne de Jong
- Groningen Biomolecular Sciences and Biotechnology Institute, Department of Molecular Genetics, University of Groningen, Nijenborgh 7, 9747 AG Groningen, the Netherlands
| | - Bart J de Haan
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen and University Medical Center Groningen, Hanzeplein 1, 9700 RB Groningen, the Netherlands
| | - Jan Kok
- Groningen Biomolecular Sciences and Biotechnology Institute, Department of Molecular Genetics, University of Groningen, Nijenborgh 7, 9747 AG Groningen, the Netherlands
| | - Paul de Vos
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen and University Medical Center Groningen, Hanzeplein 1, 9700 RB Groningen, the Netherlands
| |
Collapse
|
24
|
Mcc1229, an Stx2a-amplifying microcin, is produced in vivo and requires CirA for activity. Infect Immun 2021; 90:e0058721. [PMID: 34871041 PMCID: PMC8853679 DOI: 10.1128/iai.00587-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) strains, including the foodborne pathogen E. coli O157:H7, are responsible for thousands of hospitalizations each year. Various environmental triggers can modulate pathogenicity in EHEC by inducing the expression of Shiga toxin (Stx), which is encoded on a lambdoid prophage and transcribed together with phage late genes. Cell-free supernatants of the sequence type 73 (ST73) E. coli strain 0.1229 are potent inducers of Stx2a production in EHEC, suggesting that 0.1229 secretes a factor that activates the SOS response and leads to phage lysis. We previously demonstrated that this factor, designated microcin 1229 (Mcc1229), was proteinaceous and plasmid-encoded. To further characterize Mcc1229 and support its classification as a microcin, we investigated its regulation, determined its receptor, and identified loci providing immunity. The production of Mcc1229 was increased upon iron limitation, as determined by an enzyme-linked immunosorbent assay (ELISA), lacZ fusions, and quantitative real-time PCR (qRT-PCR). Spontaneous Mcc1229-resistant mutants and targeted gene deletion revealed that CirA was the Mcc1229 receptor. TonB, which interacts with CirA in the periplasm, was also essential for Mcc1229 import. Subcloning of the Mcc1229 plasmid indicated that Mcc activity was neutralized by two open reading frames (ORFs), each predicted to encode a domain of unknown function (DUF)-containing protein. In a germfree mouse model of infection, colonization with 0.1229 suppressed subsequent colonization by EHEC. Although Mcc1229 was produced in vivo, it was dispensable for colonization suppression. The regulation, import, and immunity determinants identified here are consistent with features of other Mccs, suggesting that Mcc1229 should be included in this class of small molecules.
Collapse
|
25
|
Heilbronner S, Krismer B, Brötz-Oesterhelt H, Peschel A. The microbiome-shaping roles of bacteriocins. Nat Rev Microbiol 2021; 19:726-739. [PMID: 34075213 DOI: 10.1038/s41579-021-00569-w] [Citation(s) in RCA: 200] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2021] [Indexed: 02/05/2023]
Abstract
The microbiomes on human body surfaces affect health in multiple ways. They include not only commensal or mutualistic bacteria but also potentially pathogenic bacteria, which can enter sterile tissues to cause invasive infection. Many commensal bacteria produce small antibacterial molecules termed bacteriocins that have the capacity to eliminate specific colonizing pathogens; as such, bacteriocins have attracted increased attention as potential microbiome-editing tools. Metagenome-based and activity-based screening approaches have strongly expanded our knowledge of the abundance and diversity of bacteriocin biosynthetic gene clusters and the properties of a continuously growing list of bacteriocin classes. The dynamic acquisition, diversification or loss of bacteriocin genes can shape the fitness of a bacterial strain that is in competition with bacteriocin-susceptible bacteria. However, a bacteriocin can only provide a competitive advantage if its fitness benefit exceeds the metabolic cost of production, if it spares crucial mutualistic partner strains and if major competitors cannot develop resistance. In contrast to most currently available antibiotics, many bacteriocins have only narrow activity ranges and could be attractive agents for precision therapy and prevention of infections. A common scientific strategy involving multiple disciplines is needed to uncover the immense potential of microbiome-shaping bacteriocins.
Collapse
Affiliation(s)
- Simon Heilbronner
- Interfaculty Institute of Microbiology and Infection Medicine, Department of Infection Biology, University of Tübingen, Tübingen, Germany. .,Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, University of Tübingen, Tübingen, Germany.
| | - Bernhard Krismer
- Interfaculty Institute of Microbiology and Infection Medicine, Department of Infection Biology, University of Tübingen, Tübingen, Germany.,Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, University of Tübingen, Tübingen, Germany
| | - Heike Brötz-Oesterhelt
- Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, University of Tübingen, Tübingen, Germany.,Interfaculty Institute of Microbiology and Infection Medicine, Department of Microbial Bioactive Compounds, University of Tübingen, Tübingen, Germany
| | - Andreas Peschel
- Interfaculty Institute of Microbiology and Infection Medicine, Department of Infection Biology, University of Tübingen, Tübingen, Germany. .,Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
26
|
Carpena N, Richards K, Bello Gonzalez TDJ, Bravo-Blas A, Housden NG, Gerasimidis K, Milling SWF, Douce G, Malik DJ, Walker D. Targeted Delivery of Narrow-Spectrum Protein Antibiotics to the Lower Gastrointestinal Tract in a Murine Model of Escherichia coli Colonization. Front Microbiol 2021; 12:670535. [PMID: 34721311 PMCID: PMC8551963 DOI: 10.3389/fmicb.2021.670535] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 09/21/2021] [Indexed: 12/26/2022] Open
Abstract
Bacteriocins are narrow-spectrum protein antibiotics that could potentially be used to engineer the human gut microbiota. However, technologies for targeted delivery of proteins to the lower gastrointestinal (GI) tract in preclinical animal models are currently lacking. In this work, we have developed methods for the microencapsulation of Escherichia coli targeting bacteriocins, colicin E9 and Ia, in a pH responsive formulation to allow their targeted delivery and controlled release in an in vivo murine model of E. coli colonization. Membrane emulsification was used to produce a water-in-oil emulsion with the water-soluble polymer subsequently cross-linked to produce hydrogel microcapsules. The microcapsule fabrication process allowed control of the size of the drug delivery system and a near 100% yield of the encapsulated therapeutic cargo. pH-triggered release of the encapsulated colicins was achieved using a widely available pH-responsive anionic copolymer in combination with alginate biopolymers. In vivo experiments using a murine E. coli intestinal colonization model demonstrated that oral delivery of the encapsulated colicins resulted in a significant decrease in intestinal colonization and reduction in E. coli shedding in the feces of the animals. Employing controlled release drug delivery systems such as that described here is essential to enable delivery of new protein therapeutics or other biological interventions for testing within small animal models of infection. Such approaches may have considerable value for the future development of strategies to engineer the human gut microbiota, which is central to health and disease.
Collapse
Affiliation(s)
- Nuria Carpena
- College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Kerry Richards
- Chemical Engineering Department, Loughborough University, Loughborough, United Kingdom
| | | | - Alberto Bravo-Blas
- College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | | | - Konstantinos Gerasimidis
- College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Simon W. F. Milling
- College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Gillian Douce
- College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Danish J. Malik
- Chemical Engineering Department, Loughborough University, Loughborough, United Kingdom
| | - Daniel Walker
- College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
27
|
Sibinelli-Sousa S, de Araújo-Silva AL, Hespanhol JT, Bayer-Santos E. Revisiting the steps of Salmonella gut infection with a focus on antagonistic interbacterial interactions. FEBS J 2021; 289:4192-4211. [PMID: 34546626 DOI: 10.1111/febs.16211] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/12/2021] [Accepted: 09/20/2021] [Indexed: 12/20/2022]
Abstract
A commensal microbial community is established in the mammalian gut during its development, and these organisms protect the host against pathogenic invaders. The hallmark of noninvasive Salmonella gut infection is the induction of inflammation via effector proteins secreted by the type III secretion system, which modulate host responses to create a new niche in which the pathogen can overcome the colonization resistance imposed by the microbiota. Several studies have shown that endogenous microbes are important to control Salmonella infection by competing for resources. However, there is limited information about antimicrobial mechanisms used by commensals and pathogens during these in vivo disputes for niche control. This review aims to revisit the steps that Salmonella needs to overcome during gut colonization-before and after the induction of inflammation-to achieve an effective infection. We focus on a series of reported and hypothetical antagonistic interbacterial interactions in which both contact-independent and contact-dependent mechanisms might define the outcome of the infection.
Collapse
Affiliation(s)
| | | | - Julia Takuno Hespanhol
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, Brazil
| | - Ethel Bayer-Santos
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, Brazil
| |
Collapse
|
28
|
Peterson SB, Bertolli SK, Mougous JD. The Central Role of Interbacterial Antagonism in Bacterial Life. Curr Biol 2021; 30:R1203-R1214. [PMID: 33022265 DOI: 10.1016/j.cub.2020.06.103] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The study of bacteria interacting with their environment has historically centered on strategies for obtaining nutrients and resisting abiotic stresses. We argue this focus has deemphasized a third facet of bacterial life that is equally central to their existence: namely, the threat to survival posed by antagonizing bacteria. The diversity and ubiquity of interbacterial antagonism pathways is becoming increasingly apparent, and the insidious manner by which interbacterial toxins disarm their targets emphasizes the highly evolved nature of these processes. Studies examining the role of antagonism in natural communities reveal it can serve many functions, from facilitating colonization of naïve habitats to maintaining bacterial community stability. The pervasiveness of antagonistic pathways is necessarily matched by an equally extensive array of defense strategies. These overlap with well characterized, central stress response pathways, highlighting the contribution of bacterial interactions to shaping cell physiology. In this review, we build the case for the ubiquity and importance of interbacterial antagonism.
Collapse
Affiliation(s)
- S Brook Peterson
- Department of Microbiology, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Savannah K Bertolli
- Department of Microbiology, University of Washington School of Medicine, Seattle, WA 98195, USA; Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| | - Joseph D Mougous
- Department of Microbiology, University of Washington School of Medicine, Seattle, WA 98195, USA; Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA; Department of Biochemistry, University of Washington School of Medicine, Seattle, WA 98195, USA.
| |
Collapse
|
29
|
Kern L, Abdeen SK, Kolodziejczyk AA, Elinav E. Commensal inter-bacterial interactions shaping the microbiota. Curr Opin Microbiol 2021; 63:158-171. [PMID: 34365152 DOI: 10.1016/j.mib.2021.07.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 12/14/2022]
Abstract
The gut microbiota, a complex ecosystem of microorganisms of different kingdoms, impacts host physiology and disease. Within this ecosystem, inter-bacterial interactions and their impacts on microbiota community structure and the eukaryotic host remain insufficiently explored. Microbiota-related inter-bacterial interactions range from symbiotic interactions, involving exchange of nutrients, enzymes, and genetic material; competition for nutrients and space, mediated by biophysical alterations and secretion of toxins and anti-microbials; to predation of overpopulating bacteria. Collectively, these understudied interactions hold important clues as to forces shaping microbiota diversity, niche formation, and responses to signals perceived from the host, incoming pathogens and the environment. In this review, we highlight the roles and mechanisms of selected inter-bacterial interactions in the microbiota, and their potential impacts on the host and pathogenic infection. We discuss challenges in mechanistically decoding these complex interactions, and prospects of harnessing them as future targets for rational microbiota modification in a variety of diseases.
Collapse
Affiliation(s)
- Lara Kern
- Immunology Department, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Suhaib K Abdeen
- Immunology Department, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | | | - Eran Elinav
- Immunology Department, Weizmann Institute of Science, Rehovot, 7610001, Israel; Cancer-Microbiota Division Deutsches Krebsforschungszentrum (DKFZ), Neuenheimer Feld 280, 69120 Heidelberg, Germany.
| |
Collapse
|
30
|
Abstract
A putative type II toxin-antitoxin (TA) module almost exclusively associated with conjugative IncC plasmids is homologous to the higBA family of TA systems found in chromosomes and plasmids of several species of bacteria. Despite the clinical significance and strong association with high-profile antimicrobial resistance (AMR) genes, the TA system of IncC plasmids remains largely uncharacterized. In this study, we present evidence that IncC plasmids encode a bona fide HigB-like toxin that strongly inhibits bacterial growth and results in cell elongation in Escherichia coli. IncC HigB toxin acts as a ribosome-dependent endoribonuclease that significantly reduces the transcript abundance of a subset of adenine-rich mRNA transcripts. A glycine residue at amino acid position 64 is highly conserved in HigB toxins from different bacterial species, and its replacement with valine (G64V) abolishes the toxicity and the mRNA cleavage activity of the IncC HigB toxin. The IncC plasmid higBA TA system functions as an effective addiction module that maintains plasmid stability in an antibiotic-free environment. This higBA addiction module is the only TA system that we identified in the IncC backbone and appears essential for the stable maintenance of IncC plasmids. We also observed that exposure to subinhibitory concentrations of ciprofloxacin, a DNA-damaging fluoroquinolone antibiotic, results in elevated higBA expression, which raises interesting questions about its regulatory mechanisms. A better understanding of this higBA-type TA module potentially allows for its subversion as part of an AMR eradication strategy. IMPORTANCE Toxin-antitoxin (TA) systems play vital roles in maintaining plasmids in bacteria. Plasmids with incompatibility group C are large plasmids that disseminate via conjugation and carry high-profile antibiotic resistance genes. We present experimental evidence that IncC plasmids carry a TA system that functions as an effective addiction module and maintains plasmid stability in an antibiotic-free environment. The toxin of IncC plasmids acts as an endoribonuclease that targets a subset of mRNA transcripts. Overexpressing the IncC toxin gene strongly inhibits bacterial growth and results in cell elongation in Escherichia coli hosts. We also identify a conserved amino acid residue in the toxin protein that is essential for its toxicity and show that the expression of this TA system is activated by a DNA-damaging antibiotic, ciprofloxacin. This mobile TA system may contribute to managing bacterial stress associated with DNA-damaging antibiotics.
Collapse
|
31
|
Foley SL, Kaldhone PR, Ricke SC, Han J. Incompatibility Group I1 (IncI1) Plasmids: Their Genetics, Biology, and Public Health Relevance. Microbiol Mol Biol Rev 2021; 85:e00031-20. [PMID: 33910982 PMCID: PMC8139525 DOI: 10.1128/mmbr.00031-20] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Bacterial plasmids are extrachromosomal genetic elements that often carry antimicrobial resistance (AMR) genes and genes encoding increased virulence and can be transmissible among bacteria by conjugation. One key group of plasmids is the incompatibility group I1 (IncI1) plasmids, which have been isolated from multiple Enterobacteriaceae of food animal origin and clinically ill human patients. The IncI group of plasmids were initially characterized due to their sensitivity to the filamentous bacteriophage If1. Two prototypical IncI1 plasmids, R64 and pColIb-P9, have been extensively studied, and the plasmids consist of unique regions associated with plasmid replication, plasmid stability/maintenance, transfer machinery apparatus, single-stranded DNA transfer, and antimicrobial resistance. IncI1 plasmids are somewhat unique in that they encode two types of sex pili, a thick, rigid pilus necessary for mating and a thin, flexible pilus that helps stabilize bacteria for plasmid transfer in liquid environments. A key public health concern with IncI1 plasmids is their ability to carry antimicrobial resistance genes, including those associated with critically important antimicrobials used to treat severe cases of enteric infections, including the third-generation cephalosporins. Because of the potential importance of these plasmids, this review focuses on the distribution of the plasmids, their phenotypic characteristics associated with antimicrobial resistance and virulence, and their replication, maintenance, and transfer.
Collapse
Affiliation(s)
- Steven L Foley
- Division of Microbiology, U.S. Food and Drug Administration, National Center for Toxicological Research, Jefferson, Arkansas, USA
| | - Pravin R Kaldhone
- Division of Microbiology, U.S. Food and Drug Administration, National Center for Toxicological Research, Jefferson, Arkansas, USA
- Center for Food Safety and Food Science Department, University of Arkansas, Fayetteville, Arkansas, USA
| | - Steven C Ricke
- Meat Science & Animal Biologics Discovery Program, Department of Animal and Dairy Sciences, University of Wisconsin, Madison, Wisconsin, USA
| | - Jing Han
- Division of Microbiology, U.S. Food and Drug Administration, National Center for Toxicological Research, Jefferson, Arkansas, USA
| |
Collapse
|
32
|
Miryala S, Nair VG, Chandramohan S, Srinandan CS. Matrix inhibition by Salmonella excludes uropathogenic E. coli from biofilm. FEMS Microbiol Ecol 2021; 97:5924450. [PMID: 33059364 DOI: 10.1093/femsec/fiaa214] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 10/13/2020] [Indexed: 11/15/2022] Open
Abstract
Biofilm is a predominant lifestyle of bacteria that comprises of cells as collectives enmeshed in a polymeric matrix. Biofilm formation is vital for bacterial species as it provides access to nutrients and protects the cells from environmental stresses. Here we show that interference in biofilm matrix production is a strategy by the competing bacterial species to reduce the ability of the other species to colonize a surface. Escherichia coli colonies that differ in matrix production display different morphologies on Congo red agar media, which we exploited for screening bacterial isolates capable of inhibiting the matrix. The cell-free supernatants from growth culture of the screened isolates impaired uropathogenic E. coli (UPEC) UTI89 strain's biofilm. A physicochemical analysis suggested that the compound could be a glycopeptide or a polysaccharide. Isolates that inhibited matrix production belonged to species of the family Enterobacteriaceae such as Shigella, Escherichia, Enterobacter and Salmonella. Competition experiments between the isolates and the UPEC strain resulted in mutual inhibition, particularly during biofilm formation causing significant reduction in productivity and fitness. Furthermore, we show that Salmonella strains competitively excluded the UPEC strain in the biofilm by inhibiting its matrix production, highlighting the role of interference competition.
Collapse
Affiliation(s)
- Sandeep Miryala
- Biofilm Biology Lab, Centre for Research in Infectious Diseases, School of Chemical and Biotechnology,Thanjavur, Tamil Nadu, India
| | - Veena G Nair
- Biofilm Biology Lab, Centre for Research in Infectious Diseases, School of Chemical and Biotechnology,Thanjavur, Tamil Nadu, India
| | - S Chandramohan
- Biofilm Biology Lab, Centre for Research in Infectious Diseases, School of Chemical and Biotechnology,Thanjavur, Tamil Nadu, India
| | - C S Srinandan
- Biofilm Biology Lab, Centre for Research in Infectious Diseases, School of Chemical and Biotechnology,Thanjavur, Tamil Nadu, India
| |
Collapse
|
33
|
Establishing causality in Salmonella-microbiota-host interaction: The use of gnotobiotic mouse models and synthetic microbial communities. Int J Med Microbiol 2021; 311:151484. [PMID: 33756190 DOI: 10.1016/j.ijmm.2021.151484] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 01/07/2021] [Accepted: 02/23/2021] [Indexed: 02/07/2023] Open
Abstract
Colonization resistance (CR), the ability to block infections by potentially harmful microbes, is a fundamental function of host-associated microbial communities and highly conserved between animals and humans. Environmental factors such as antibiotics and diet can disturb microbial community composition and thereby predispose to opportunistic infections. The most prominent is Clostridioides difficile, the causative agent of diarrhea and pseudomembranous colitis. In addition, the risk to succumb to infections with genuine human enteric pathogens like nontyphoidal Salmonella (NTS) is also increased by a low-diverse, diet or antibiotic-disrupted microbiota. Despite extensive microbial community profiling efforts, only a limited set of microorganisms have been causally linked with protection against enteric pathogens. Furthermore, it remains a challenge to predict colonization resistance from complex microbiome signatures due to context-dependent action of microorganisms. In the past decade, the study of NTS infection has led to the description of several fundamental principles of microbiota-host-pathogen interaction. In this review, I will give an overview on the current state of knowledge in this field and outline experimental approaches to gain functional insight to the role of specific microbes, functions and metabolites in Salmonella-microbiota-host interaction. In particular, I will highlight the value of mouse infection models, which, in combination with culture collections, synthetic communities and gnotobiotic models have become essential tools to screen for protective members of the microbiota and establishing causal relationship and mechanisms in infection research.
Collapse
|
34
|
Sibinelli-Sousa S, Hespanhol JT, Bayer-Santos E. Targeting the Achilles' Heel of Bacteria: Different Mechanisms To Break Down the Peptidoglycan Cell Wall during Bacterial Warfare. J Bacteriol 2021; 203:e00478-20. [PMID: 33139480 PMCID: PMC8088523 DOI: 10.1128/jb.00478-20] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Bacteria commonly live in dense polymicrobial communities and compete for scarce resources. Consequently, they employ a diverse array of mechanisms to harm, inhibit, and kill their competitors. The cell wall is essential for bacterial survival by providing mechanical strength to resist osmotic stress. Because peptidoglycan is the major component of the cell wall and its synthesis is a complex multistep pathway that requires the coordinate action of several enzymes, it provides a target for rival bacteria, which have developed a large arsenal of antibacterial molecules to attack the peptidoglycan of competitors. These molecules include antibiotics, bacteriocins, and contact-dependent effectors that are either secreted into the medium or directly translocated into a target cell. In this minireview, we summarize the diversity of these molecules and highlight distinct mechanisms to disrupt the peptidoglycan, giving special attention to molecules that are known or have the potential to be used during interbacterial competitions.
Collapse
Affiliation(s)
- Stephanie Sibinelli-Sousa
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Julia Takuno Hespanhol
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Ethel Bayer-Santos
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
35
|
Shushan A, Kosloff M. Structural design principles for specific ultra-high affinity interactions between colicins/pyocins and immunity proteins. Sci Rep 2021; 11:3789. [PMID: 33589691 PMCID: PMC7884437 DOI: 10.1038/s41598-021-83265-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 01/28/2021] [Indexed: 12/13/2022] Open
Abstract
The interactions of the antibiotic proteins colicins/pyocins with immunity proteins is a seminal model system for studying protein–protein interactions and specificity. Yet, a precise and quantitative determination of which structural elements and residues determine their binding affinity and specificity is still lacking. Here, we used comparative structure-based energy calculations to map residues that substantially contribute to interactions across native and engineered complexes of colicins/pyocins and immunity proteins. We show that the immunity protein α1–α2 motif is a unique structurally-dissimilar element that restricts interaction specificity towards all colicins/pyocins, in both engineered and native complexes. This motif combines with a diverse and extensive array of electrostatic/polar interactions that enable the exquisite specificity that characterizes these interactions while achieving ultra-high affinity. Surprisingly, the divergence of these contributing colicin residues is reciprocal to residue conservation in immunity proteins. The structurally-dissimilar immunity protein α1–α2 motif is recognized by divergent colicins similarly, while the conserved immunity protein α3 helix interacts with diverse colicin residues. Electrostatics thus plays a key role in setting interaction specificity across all colicins and immunity proteins. Our analysis and resulting residue-level maps illuminate the molecular basis for these protein–protein interactions, with implications for drug development and rational engineering of these interfaces.
Collapse
Affiliation(s)
- Avital Shushan
- The Department of Human Biology, Faculty of Natural Sciences, University of Haifa, 199 Aba Khoushy Ave., Mt. Carmel, 3498838, Haifa, Israel
| | - Mickey Kosloff
- The Department of Human Biology, Faculty of Natural Sciences, University of Haifa, 199 Aba Khoushy Ave., Mt. Carmel, 3498838, Haifa, Israel.
| |
Collapse
|
36
|
Abstract
A balanced gut microbiota contributes to health, but the mechanisms maintaining homeostasis remain elusive. Microbiota assembly during infancy is governed by competition between species and by environmental factors, termed habitat filters, that determine the range of successful traits within the microbial community. These habitat filters include the diet, host-derived resources, and microbiota-derived metabolites, such as short-chain fatty acids. Once the microbiota has matured, competition and habitat filtering prevent engraftment of new microbes, thereby providing protection against opportunistic infections. Competition with endogenous Enterobacterales, habitat filtering by short-chain fatty acids, and a host-derived habitat filter, epithelial hypoxia, also contribute to colonization resistance against Salmonella serovars. However, at a high challenge dose, these frank pathogens can overcome colonization resistance by using their virulence factors to trigger intestinal inflammation. In turn, inflammation increases the luminal availability of host-derived resources, such as oxygen, nitrate, tetrathionate, and lactate, thereby creating a state of abnormal habitat filtering that enables the pathogen to overcome growth inhibition by short-chain fatty acids. Thus, studying the process of ecosystem invasion by Salmonella serovars clarifies that colonization resistance can become weakened by disrupting host-mediated habitat filtering. This insight is relevant for understanding how inflammation triggers dysbiosis linked to noncommunicable diseases, conditions in which endogenous Enterobacterales expand in the fecal microbiota using some of the same growth-limiting resources required by Salmonella serovars for ecosystem invasion. In essence, ecosystem invasion by Salmonella serovars suggests that homeostasis and dysbiosis simply represent states where competition and habitat filtering are normal or abnormal, respectively.
Collapse
|
37
|
Abstract
There are 100 trillion diverse bacterial residents in the mammalian gut. Commensal bacterial species/strains cooperate and compete with each other to establish a well-balanced community, crucial for the maintenance of host health. Pathogenic bacteria hijack cooperative mechanisms or use strategies to evade competitive mechanisms to establish infection. Moreover, pathogenic bacteria cause marked environmental changes in the gut, such as the induction of inflammation, which fosters the selective growth of pathogens. In this review, we summarize the latest findings concerning the mechanisms by which commensal bacterial species/strains colonize the gut through cooperative or competitive behaviors. We also review the mechanisms by which pathogenic bacteria adapt to the inflamed gut and thrive at the expense of commensal bacteria. The understanding of bacterial adaptation to the healthy and the inflamed gut may provide new bacteria-targeted therapeutic approaches that selectively promote the expansion of beneficial commensal bacteria or limit the growth of pathogenic bacteria.
Collapse
Affiliation(s)
- Yijie Guo
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA,Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Sho Kitamoto
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Nobuhiko Kamada
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA,CONTACT Nobuhiko Kamada Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
38
|
Genotypic and Phenotypic Characterization of Incompatibility Group FIB Positive Salmonella enterica Serovar Typhimurium Isolates from Food Animal Sources. Genes (Basel) 2020; 11:genes11111307. [PMID: 33158112 PMCID: PMC7716204 DOI: 10.3390/genes11111307] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/23/2020] [Accepted: 10/30/2020] [Indexed: 01/27/2023] Open
Abstract
Salmonella enterica is one of the most common bacterial foodborne pathogens in the United States, causing illnesses that range from self-limiting gastroenteritis to more severe, life threatening invasive disease. Many Salmonella strains contain plasmids that carry virulence, antimicrobial resistance, and/or transfer genes which allow them to adapt to diverse environments, and these can include incompatibility group (Inc) FIB plasmids. This study was undertaken to evaluate the genomic and phenotypic characteristics of IncFIB-positive Salmonella enterica serovar Typhimurium isolates from food animal sources, to identify their plasmid content, assess antimicrobial resistance and virulence properties, and compare their genotypic isolates with more recently isolated S. Typhimurium isolates from food animal sources. Methods: We identified 71 S. Typhimurium isolates that carried IncFIB plasmids. These isolates were subjected to whole genome sequencing and evaluated for bacteriocin production, antimicrobial susceptibility, the ability to transfer resistance plasmids, and a subset was evaluated for their ability to invade and persist in intestinal human epithelial cells. Results: Approximately 30% of isolates (n = 21) displayed bacteriocin inhibition of Escherichia coli strain J53. Bioinformatic analyses using PlasmidFinder software confirmed that all isolates contained IncFIB plasmids along with multiple other plasmid replicon types. Comparative analyses showed that all strains carried multiple antimicrobial resistance genes and virulence factors including iron acquisition genes, such as iucABCD (75%), iutA (94%), sitABCD (76%) and sitAB (100%). In 17 cases (71%), IncFIB plasmids, along with other plasmid replicon types, were able to conjugally transfer antimicrobial resistance and virulence genes to the susceptible recipient strain. For ten strains, persistence cell counts (27%) were noted to be significantly higher than invasion bacterial cell counts. When the genome sequences of the study isolates collected from 1998–2003 were compared to those published from subsequent years (2005–2018), overlapping genotypes were found, indicating the perseverance of IncFIB positive strains in food animal populations. This study confirms that IncFIB plasmids can play a potential role in disseminating antimicrobial resistance and virulence genes amongst bacteria from several food animal species.
Collapse
|
39
|
Ohno M, Hasegawa M, Hayashi A, Caballero-Flores G, Alteri CJ, Lawley TD, Kamada N, Núñez G, Inohara N. Lipopolysaccharide O structure of adherent and invasive Escherichia coli regulates intestinal inflammation via complement C3. PLoS Pathog 2020; 16:e1008928. [PMID: 33027280 PMCID: PMC7571687 DOI: 10.1371/journal.ppat.1008928] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 10/19/2020] [Accepted: 08/25/2020] [Indexed: 12/28/2022] Open
Abstract
Gut dysbiosis associated with intestinal inflammation is characterized by the blooming of particular bacteria such as adherent-invasive E. coli (AIEC). However, the precise mechanisms by which AIEC impact on colitis remain largely unknown. Here we show that antibiotic-induced dysbiosis worsened chemically-induced colitis in IL-22-deficient mice, but not in wild-type mice. The increase in intestinal inflammation was associated with the expansion of E. coli strains with genetic and functional features of AIEC. These E. coli isolates exhibited high ability to out compete related bacteria via colicins and resistance to the host complement system in vitro. Mutation of wzy, the lipopolysaccharide O polymerase gene, rendered AIEC more sensitive to the complement system and more susceptible to engulfment and killing by phagocytes while retaining its ability to outcompete related bacteria in vitro. The wzy AIEC mutant showed impaired fitness to colonize the intestine under colitic conditions, but protected mice from chemically-induced colitis. Importantly, the ability of the wzy mutant to protect from colitis was blocked by depletion of complement C3 which was associated with impaired intestinal eradication of AIEC in colitic mice. These studies link surface lipopolysaccharide O-antigen structure to the regulation of colitic activity in commensal AIEC via interactions with the complement system.
Collapse
Affiliation(s)
- Masashi Ohno
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- Department of Medicine, Shiga University of Medical Science, Otsu, Japan
| | - Mizuho Hasegawa
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Atsushi Hayashi
- Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- Miyarisan Pharmaceutical Co., Ltd., Central Research Institute, Saitama, Japan
| | - Gustavo Caballero-Flores
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Christopher J. Alteri
- Department of Natural Sciences, University of Michigan-Dearborn, Dearborn, Michigan, United States of America
| | - Trevor D. Lawley
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Nobuhiko Kamada
- Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Gabriel Núñez
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Naohiro Inohara
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| |
Collapse
|
40
|
Bosák J, Hrala M, Micenková L, Šmajs D. Non-antibiotic antibacterial peptides and proteins of Escherichia coli: efficacy and potency of bacteriocins. Expert Rev Anti Infect Ther 2020; 19:309-322. [PMID: 32856960 DOI: 10.1080/14787210.2020.1816824] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION The emergence and spread of antibiotic resistance among pathogenic bacteria drives the search for alternative antimicrobial therapies. Bacteriocins represent a potential alternative to antibiotic treatment. In contrast to antibiotics, bacteriocins are peptides or proteins that have relatively narrow spectra of antibacterial activities and are produced by a wide range of bacterial species. Bacteriocins of Escherichia coli are historically classified as microcins and colicins, and, until now, more than 30 different bacteriocin types have been identified and characterized. AREAS COVERED We performed bibliographical searches of online databases to review the literature regarding bacteriocins produced by E. coli with respect to their occurrence, bacteriocin role in bacterial colonization and pathogenicity, and application of their antimicrobial effect. EXPERT OPINION The potential use of bacteriocins for applications in human and animal medicine and the food industry includes (i) the use of bacteriocin-producing probiotic strains, (ii) recombinant production in plants and application in food, and (iii) application of purified bacteriocins.
Collapse
Affiliation(s)
- Juraj Bosák
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Matěj Hrala
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Lenka Micenková
- Research Centre for Toxic Compounds in the Environment, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - David Šmajs
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| |
Collapse
|
41
|
Nada R, Ebihara S, Yen H, Tobe T. Enterohaemorrhagic Escherichia coli activates nitrate respiration to benefit from the inflammatory response for initiation of microcolony-formation. BMC Microbiol 2020; 20:261. [PMID: 32819301 PMCID: PMC7441704 DOI: 10.1186/s12866-020-01946-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 08/12/2020] [Indexed: 02/08/2023] Open
Abstract
Background For successful colonization, enterohaemorrhagic Escherichia coli (EHEC) injects virulence factors, called effectors, into target cells through the type three secretion system (T3SS), which is composed of a needle and basal body. Under anaerobic conditions, the T3SS machinery remains immature and does not have a needle structure. However, activation of nitrate respiration enhances the completion of the T3SS machinery. Because nitric oxide released by the host inflammatory response increases nitrate concentration, we sought to determine the effect of the inflammatory response on initiation of EHEC microcolony-formation. Results The colony-forming capacity was increased in accordance with the increase of nitrate in the medium. The addition of the nitric oxide-producing agent NOR-4 also enhanced the adherence capacity, which was dependent on nitrate reductase encoded by the narGHJI genes. Culture supernatant of epithelial cells, which was stimulated by a cytokine mixture, enhanced the colony-forming capacity of wild-type EHEC but not of the narGHJI mutant. Finally, colony formation by wild-type EHEC on epithelial cells, which were preincubated with heat-killed bacteria, was higher than the narGHJI mutant, and this effect was abolished by aminoguanidine hydrochloride, which is an iNOS (inducible nitric oxide synthase) inhibitor. Conclusions These results indicate that the inflammatory response enhances EHEC adherence by increasing nitrate concentration.
Collapse
Affiliation(s)
- Risa Nada
- Department of Clinical Laboratory and Biomedical Sciences, Osaka University Graduate School of Medicine, 1-7 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Shinya Ebihara
- Department of Clinical Laboratory and Biomedical Sciences, Osaka University Graduate School of Medicine, 1-7 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Hilo Yen
- Department of Clinical Laboratory and Biomedical Sciences, Osaka University Graduate School of Medicine, 1-7 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Toru Tobe
- Department of Clinical Laboratory and Biomedical Sciences, Osaka University Graduate School of Medicine, 1-7 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
42
|
Honeycutt JD, Wenner N, Li Y, Brewer SM, Massis LM, Brubaker SW, Chairatana P, Owen SV, Canals R, Hinton JCD, Monack DM. Genetic variation in the MacAB-TolC efflux pump influences pathogenesis of invasive Salmonella isolates from Africa. PLoS Pathog 2020; 16:e1008763. [PMID: 32834002 PMCID: PMC7446830 DOI: 10.1371/journal.ppat.1008763] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 06/30/2020] [Indexed: 01/23/2023] Open
Abstract
The various sub-species of Salmonella enterica cause a range of disease in human hosts. The human-adapted Salmonella enterica serovar Typhi enters the gastrointestinal tract and invades systemic sites to cause enteric (typhoid) fever. In contrast, most non-typhoidal serovars of Salmonella are primarily restricted to gut tissues. Across Africa, invasive non-typhoidal Salmonella (iNTS) have emerged with an ability to spread beyond the gastrointestinal tract and cause systemic bloodstream infections with increased morbidity and mortality. To investigate this evolution in pathogenesis, we compared the genomes of African iNTS isolates with other Salmonella enterica serovar Typhimurium and identified several macA and macB gene variants unique to African iNTS. MacAB forms a tripartite efflux pump with TolC and is implicated in Salmonella pathogenesis. We show that macAB transcription is upregulated during macrophage infection and after antimicrobial peptide exposure, with macAB transcription being supported by the PhoP/Q two-component system. Constitutive expression of macAB improves survival of Salmonella in the presence of the antimicrobial peptide C18G. Furthermore, these macAB variants affect replication in macrophages and influence fitness during colonization of the murine gastrointestinal tract. Importantly, the infection outcome resulting from these macAB variants depends upon both the Salmonella Typhimurium genetic background and the host gene Nramp1, an important determinant of innate resistance to intracellular bacterial infection. The variations we have identified in the MacAB-TolC efflux pump in African iNTS may reflect evolution within human host populations that are compromised in their ability to clear intracellular Salmonella infections.
Collapse
Affiliation(s)
- Jared D. Honeycutt
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Nicolas Wenner
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Yan Li
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Susan M. Brewer
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Liliana M. Massis
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Sky W. Brubaker
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Phoom Chairatana
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Siân V. Owen
- Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Rocío Canals
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Jay C. D. Hinton
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Denise M. Monack
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
| |
Collapse
|
43
|
Evolutionary Stabilization of Cooperative Toxin Production through a Bacterium-Plasmid-Phage Interplay. mBio 2020; 11:mBio.00912-20. [PMID: 32694140 PMCID: PMC7374059 DOI: 10.1128/mbio.00912-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Colicins are toxins produced and released by Enterobacteriaceae to kill competitors in the gut. While group A colicins employ a division of labor strategy to liberate the toxin into the environment via colicin-specific lysis, group B colicin systems lack cognate lysis genes. In Salmonella enterica serovar Typhimurium (S. Tm), the group B colicin Ib (ColIb) is released by temperate phage-mediated bacteriolysis. Phage-mediated ColIb release promotes S. Tm fitness against competing Escherichia coli It remained unclear how prophage-mediated lysis is realized in a clonal population of ColIb producers and if prophages contribute to evolutionary stability of toxin release in S. Tm. Here, we show that prophage-mediated lysis occurs in an S. Tm subpopulation only, thereby introducing phenotypic heterogeneity to the system. We established a mathematical model to study the dynamic interplay of S. Tm, ColIb, and a temperate phage in the presence of a competing species. Using this model, we studied long-term evolution of phage lysis rates in a fluctuating infection scenario. This revealed that phage lysis evolves as bet-hedging strategy that maximizes phage spread, regardless of whether colicin is present or not. We conclude that the ColIb system, lacking its own lysis gene, is making use of the evolutionary stable phage strategy to be released. Prophage lysis genes are highly prevalent in nontyphoidal Salmonella genomes. This suggests that the release of ColIb by temperate phages is widespread. In conclusion, our findings shed new light on the evolution and ecology of group B colicin systems.IMPORTANCE Bacteria are excellent model organisms to study mechanisms of social evolution. The production of public goods, e.g., toxin release by cell lysis in clonal bacterial populations, is a frequently studied example of cooperative behavior. Here, we analyze evolutionary stabilization of toxin release by the enteric pathogen Salmonella The release of colicin Ib (ColIb), which is used by Salmonella to gain an edge against competing microbiota following infection, is coupled to bacterial lysis mediated by temperate phages. Here, we show that phage-dependent lysis and subsequent release of colicin and phage particles occurs only in part of the ColIb-expressing Salmonella population. This phenotypic heterogeneity in lysis, which represents an essential step in the temperate phage life cycle, has evolved as a bet-hedging strategy under fluctuating environments such as the gastrointestinal tract. Our findings suggest that prophages can thereby evolutionarily stabilize costly toxin release in bacterial populations.
Collapse
|
44
|
Joerger RD. Salmonella enterica's "Choice": Itaconic Acid Degradation or Bacteriocin Immunity Genes. Genes (Basel) 2020; 11:genes11070797. [PMID: 32679707 PMCID: PMC7397319 DOI: 10.3390/genes11070797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/08/2020] [Accepted: 07/13/2020] [Indexed: 11/30/2022] Open
Abstract
Itaconic acid is an immunoregulatory metabolite produced by macrophages in response to pathogen invasion. It also exhibits antibacterial activity because it is an uncompetitive inhibitor of isocitrate lyase, whose activity is required for the glyoxylate shunt to be operational. Some bacteria, such as Yersinia pestis, encode enzymes that can degrade itaconic acid and therefore eliminate this metabolic inhibitor. Studies, primarily with Salmonella enterica subspecies enterica serovar Typhimurium, have demonstrated the presence of similar genes in this pathogen and the importance of these genes for the persistence of the pathogen in murine hosts. This minireview demonstrates that, based on Blast searches of 1063 complete Salmonella genome sequences, not all Salmonella serovars possess these genes. It is also shown that the growth of Salmonella isolates that do not possess these genes is sensitive to the acid under glucose-limiting conditions. Interestingly, most of the serovars without the three genes, including serovar Typhi, harbor DNA at the corresponding genomic location that encodes two open reading frames that are similar to bacteriocin immunity genes. It is hypothesized that these genes could be important for Salmonella that finds itself in strong competition with other Enterobacteriacea in the intestinal tract—for example, during inflammation.
Collapse
Affiliation(s)
- Rolf D Joerger
- Department of Animal and Food Sciences, University of Delaware, Newark, DE 19716, USA
| |
Collapse
|
45
|
Mazurek-Popczyk J, Pisarska J, Bok E, Baldy-Chudzik K. Antibacterial Activity of Bacteriocinogenic Commensal Escherichia coli against Zoonotic Strains Resistant and Sensitive to Antibiotics. Antibiotics (Basel) 2020; 9:E411. [PMID: 32679778 PMCID: PMC7400030 DOI: 10.3390/antibiotics9070411] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/05/2020] [Accepted: 07/13/2020] [Indexed: 12/23/2022] Open
Abstract
Antibiotic resistance concerns various areas with high consumption of antibiotics, including husbandry. Resistant strains are transmitted to humans from livestock and agricultural products via the food chain and may pose a health risk. The commensal microbiota protects against the invasion of environmental strains by secretion of bacteriocins, among other mechanisms. The present study aims to characterize the bactericidal potential of bacteriocinogenic Escherichia coli from healthy humans against multidrug-resistant and antibiotic-sensitive strains from pigs and cattle. Bacteriocin production was tested by the double-layer plate method, and bacteriocin genes were identified by the PCR method. At least one bacteriocinogenic E. coli was detected in the fecal samples of 55% of tested individuals, adults and children. Among all isolates (n = 210), 37.1% were bacteriocinogenic and contained genes of colicin (Col) Ib, ColE1, microcin (Mcc) H47, ColIa, ColM, MccV, ColK, ColB, and single ColE2 and ColE7. Twenty-five E. coli carrying various sets of bacteriocin genes were further characterized and tested for their activity against zoonotic strains (n = 60). Strains with ColE7 (88%), ColE1-ColIa-ColK-MccH47 (85%), MccH47-MccV (85%), ColE1-ColIa-ColM (82%), ColE1 (75%), ColM (67%), and ColK (65%) were most active against zoonotic strains. Statistically significant differences in activity toward antibiotic-resistant strains were shown by commensal E. coli carrying MccV, ColK-MccV, and ColIb-ColK. The study demonstrates that bacteriocinogenic commensal E. coli exerts antagonistic activity against zoonotic strains and may constitute a defense line against multidrug-resistant strains.
Collapse
Affiliation(s)
- Justyna Mazurek-Popczyk
- Department of Microbiology and Molecular Biology, Collegium Medicum, University of Zielona Góra, 65-417 Zielona Góra, Poland; (J.P.); (E.B.); (K.B.-C.)
| | | | | | | |
Collapse
|
46
|
Jansen KB, Inns PG, Housden NG, Hopper JTS, Kaminska R, Lee S, Robinson CV, Bayley H, Kleanthous C. Bifurcated binding of the OmpF receptor underpins import of the bacteriocin colicin N into Escherichia coli. J Biol Chem 2020; 295:9147-9156. [PMID: 32398259 PMCID: PMC7335789 DOI: 10.1074/jbc.ra120.013508] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 05/04/2020] [Indexed: 11/14/2022] Open
Abstract
Colicins are Escherichia coli-specific bacteriocins that translocate across the outer bacterial membrane by a poorly understood mechanism. Group A colicins typically parasitize the proton-motive force-linked Tol system in the inner membrane via porins after first binding an outer membrane protein receptor. Recent studies have suggested that the pore-forming group A colicin N (ColN) instead uses lipopolysaccharide as a receptor. Contrary to this prevailing view, using diffusion-precipitation assays, native state MS, isothermal titration calorimetry, single-channel conductance measurements in planar lipid bilayers, and in vivo fluorescence imaging, we demonstrate here that ColN uses OmpF both as its receptor and translocator. This dual function is achieved by ColN having multiple distinct OmpF-binding sites, one located within its central globular domain and another within its disordered N terminus. We observed that the ColN globular domain associates with the extracellular surface of OmpF and that lipopolysaccharide (LPS) enhances this binding. Approximately 90 amino acids of ColN then translocate through the porin, enabling the ColN N terminus to localize within the lumen of an OmpF subunit from the periplasmic side of the membrane, a binding mode reminiscent of that observed for the nuclease colicin E9. We conclude that bifurcated engagement of porins is intrinsic to the import mechanism of group A colicins.
Collapse
Affiliation(s)
| | | | | | | | - Renata Kaminska
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Sejeong Lee
- Chemistry Research laboratory, University of Oxford, Oxford, United Kingdom
| | - Carol V Robinson
- Chemistry Research laboratory, University of Oxford, Oxford, United Kingdom
| | - Hagan Bayley
- Chemistry Research laboratory, University of Oxford, Oxford, United Kingdom
| | - Colin Kleanthous
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
47
|
Evolutionary causes and consequences of bacterial antibiotic persistence. Nat Rev Microbiol 2020; 18:479-490. [PMID: 32461608 DOI: 10.1038/s41579-020-0378-z] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2020] [Indexed: 12/12/2022]
Abstract
Antibiotic treatment failure is of growing concern. Genetically encoded resistance is key in driving this process. However, there is increasing evidence that bacterial antibiotic persistence, a non-genetically encoded and reversible loss of antibiotic susceptibility, contributes to treatment failure and emergence of resistant strains as well. In this Review, we discuss the evolutionary forces that may drive the selection for antibiotic persistence. We review how some aspects of antibiotic persistence have been directly selected for whereas others result from indirect selection in disparate ecological contexts. We then discuss the consequences of antibiotic persistence on pathogen evolution. Persisters can facilitate the evolution of antibiotic resistance and virulence. Finally, we propose practical means to prevent persister formation and how this may help to slow down the evolution of virulence and resistance in pathogens.
Collapse
|
48
|
Samuels AN, Roggiani M, Smith KA, Zhu J, Goulian M, Kohli RM. Deciphering the Role of Colicins during Colonization of the Mammalian Gut by Commensal E. coli. Microorganisms 2020; 8:microorganisms8050664. [PMID: 32370119 PMCID: PMC7284606 DOI: 10.3390/microorganisms8050664] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 04/30/2020] [Accepted: 04/30/2020] [Indexed: 12/20/2022] Open
Abstract
Colicins are specific and potent toxins produced by Enterobacteriaceae that result in the rapid elimination of sensitive cells. Colicin production is commonly found throughout microbial populations, suggesting its potential importance for bacterial survival in complex microbial environments. Nonetheless, as colicin biology has been predominately studied using synthetic models, it remains unclear how colicin production contributes to survival and fitness of a colicin-producing commensal strain in a natural environment. To address this gap, we took advantage of MP1, an E. coli strain that harbors a colicinogenic plasmid and is a natural colonizer of the murine gut. Using this model, we validated that MP1 is competent for colicin production and then directly interrogated the importance of colicin production and immunity for MP1 survival in the murine gut. We showed that colicin production is dispensable for sustained colonization in the unperturbed gut. A strain lacking colicin production or immunity shows minimal fitness defects and can resist displacement by colicin producers. This report extends our understanding of the role that colicin production may play for E. coli during gut colonization and suggests that colicin production is not essential for a commensal to persist in its physiologic niche in the absence of exogenous challenges.
Collapse
Affiliation(s)
- Amanda N. Samuels
- Department of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
- Graduate Group on Cell and Molecular Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Manuela Roggiani
- Department of Biology, School of Arts and Science, University of Pennsylvania, Philadelphia, PA 19104, USA; (M.R.); (K.A.S.); (M.G.)
| | - Kathryn A. Smith
- Department of Biology, School of Arts and Science, University of Pennsylvania, Philadelphia, PA 19104, USA; (M.R.); (K.A.S.); (M.G.)
- Department of Biology, Solenis LLC., Wilmington, DE 19803, USA
| | - Jun Zhu
- Graduate Group on Cell and Molecular Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Mark Goulian
- Department of Biology, School of Arts and Science, University of Pennsylvania, Philadelphia, PA 19104, USA; (M.R.); (K.A.S.); (M.G.)
| | - Rahul M. Kohli
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Correspondence: ; Tel.: +1-(215)-573-7523
| |
Collapse
|
49
|
Tsolis RM, Bäumler AJ. Gastrointestinal host-pathogen interaction in the age of microbiome research. Curr Opin Microbiol 2020; 53:78-89. [PMID: 32344325 DOI: 10.1016/j.mib.2020.03.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 03/03/2020] [Accepted: 03/04/2020] [Indexed: 02/06/2023]
Abstract
The microbiota is linked to human health by governing susceptibility to infection. However, the interplay between enteric pathogens, the host, and its microbiota is complex, encompassing host cell manipulation by virulence factors, immune responses, and a diverse gut ecosystem. The host represents a foundation species that uses its immune system as a habitat filter to shape the gut microbiota. In turn, the gut microbiota protects against ecosystem invasion by opportunistic pathogens through priority effects that are based on niche modification or niche preemption. Frank pathogens can overcome these priority effects by using their virulence factors to manipulate host-derived habitat filters, thereby constructing new nutrient-niches in the intestinal lumen that support ecosystem invasion. The emerging picture identifies pathogens as ecosystem engineers and suggests that virulence factors are useful tools for identifying host-derived habitat filters that balance the microbiota.
Collapse
Affiliation(s)
- Renée M Tsolis
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, One Shields Ave, Davis, CA 95616, USA
| | - Andreas J Bäumler
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, One Shields Ave, Davis, CA 95616, USA.
| |
Collapse
|
50
|
Peterson MA, Grice AN, Hare JM. A corepressor participates in LexA-independent regulation of error-prone polymerases in Acinetobacter. MICROBIOLOGY (READING, ENGLAND) 2020; 166:212-226. [PMID: 31687925 PMCID: PMC7273328 DOI: 10.1099/mic.0.000866] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 10/07/2019] [Indexed: 01/03/2023]
Abstract
The DNA damage response of the multidrug-resistant pathogen Acinetobacter baumannii, which induces mutagenic UmuD'2C error-prone polymerases, differs from that of many bacteria. Acinetobacter species lack a LexA repressor, but induce gene transcription after DNA damage. One regulator, UmuDAb, binds to and represses the promoters of the multiple A. baumannii ATCC 17978 umuDC alleles and the divergently transcribed umuDAb and ddrR genes. ddrR is unique to the genus Acinetobacter and of unknown function. 5' RACE (rapid amplification of cDNA ends) PCR mapping of the umuDAb and ddrR transcriptional start sites revealed that their -35 promoter elements overlapped the UmuDAb binding site, suggesting that UmuDAb simultaneously repressed expression of both genes by blocking polymerase access. This coordinated control of ddrR and umuDAb suggested that ddrR might also regulate DNA damage-inducible gene transcription. RNA-sequencing experiments in 17 978 ddrR- cells showed that ddrR regulated approximately 25 % (n=39) of the mitomycin C-induced regulon, with umuDAb coregulating 17 of these ddrR-regulated genes. Eight genes (the umuDC polymerases, umuDAb and ddrR) were de-repressed in the absence of DNA damage, and nine genes were uninduced in the presence of DNA damage, in both ddrR and umuDAb mutant strains. These data suggest ddrR has multiple roles, both as a co-repressor and as a positive regulator of DNA damage-inducible gene transcription. Additionally, 57 genes were induced by mitomycin C in the ddrR mutant but not in wild-type cells. This regulon contained multiple genes for DNA replication, recombination and repair, transcriptional regulators, RND efflux, and transport. This study uncovered another regulator of the atypical DNA damage response of this genus, to help describe how this pathogen acquires drug resistance through its expression of the error-prone polymerases under DdrR and UmuDAb control.
Collapse
Affiliation(s)
- Megan A. Peterson
- Department of Biology and Chemistry, Morehead State University, Morehead, KY 40351, USA
| | - Alison N. Grice
- Department of Biology and Chemistry, Morehead State University, Morehead, KY 40351, USA
- Office of Information Technology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Janelle M. Hare
- Department of Biology and Chemistry, Morehead State University, Morehead, KY 40351, USA
| |
Collapse
|