1
|
Wang X, Zhou Q, Zhang X, Hu H, Liu B, Wang Y. Oncolytic viruses: a promising therapy for malignant pleural effusion and solid tumors. Front Immunol 2025; 16:1570698. [PMID: 40352942 PMCID: PMC12061930 DOI: 10.3389/fimmu.2025.1570698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Accepted: 03/31/2025] [Indexed: 05/14/2025] Open
Abstract
Oncolytic viruses (OVs) are natural or recombinant viruses that can directly lyse tumor cells without damaging normal cells. They enhance anti-tumor immunity by releasing antigens and activating inflammatory responses within the tumor microenvironment (TME). This offers a new therapeutic approach for MPE and solid tumors. This review discusses the progress of OVs administered via intrapleural and intratumoral routes, emphasizing their potential in MPE treatment and the challenges posed by the complex intrapleural environment, which affects the direct interaction between OVs, tumor cells, and immune cells. This review also discusses the regulatory barriers, safety concerns and accessibility of oncolytic virus therapy.
Collapse
Affiliation(s)
- Xinya Wang
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), School of Life and Health Sciences, Hubei University of Technology, Wuhan, China
| | - Qin Zhou
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), School of Life and Health Sciences, Hubei University of Technology, Wuhan, China
| | - Xuyan Zhang
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), School of Life and Health Sciences, Hubei University of Technology, Wuhan, China
| | - Han Hu
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), School of Life and Health Sciences, Hubei University of Technology, Wuhan, China
| | - Binlei Liu
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), School of Life and Health Sciences, Hubei University of Technology, Wuhan, China
- Wuhan Binhui Biopharmaceutical Co., Ltd., Wuhan, China
| | - Yang Wang
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), School of Life and Health Sciences, Hubei University of Technology, Wuhan, China
| |
Collapse
|
2
|
Wallace R, Bliss CM, Parker AL. The Immune System-A Double-Edged Sword for Adenovirus-Based Therapies. Viruses 2024; 16:973. [PMID: 38932265 PMCID: PMC11209478 DOI: 10.3390/v16060973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 06/12/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Pathogenic adenovirus (Ad) infections are widespread but typically mild and transient, except in the immunocompromised. As vectors for gene therapy, vaccine, and oncology applications, Ad-based platforms offer advantages, including ease of genetic manipulation, scale of production, and well-established safety profiles, making them attractive tools for therapeutic development. However, the immune system often poses a significant challenge that must be overcome for adenovirus-based therapies to be truly efficacious. Both pre-existing anti-Ad immunity in the population as well as the rapid development of an immune response against engineered adenoviral vectors can have detrimental effects on the downstream impact of an adenovirus-based therapeutic. This review focuses on the different challenges posed, including pre-existing natural immunity and anti-vector immunity induced by a therapeutic, in the context of innate and adaptive immune responses. We summarise different approaches developed with the aim of tackling these problems, as well as their outcomes and potential future applications.
Collapse
Affiliation(s)
- Rebecca Wallace
- Division of Cancer and Genetics, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK; (R.W.); (C.M.B.)
| | - Carly M. Bliss
- Division of Cancer and Genetics, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK; (R.W.); (C.M.B.)
- Systems Immunity University Research Institute, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| | - Alan L. Parker
- Division of Cancer and Genetics, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK; (R.W.); (C.M.B.)
- Systems Immunity University Research Institute, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| |
Collapse
|
3
|
C3aR in astrocytes mediates post-thoracotomy pain by inducing A1 astrocytes in male rats. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166672. [PMID: 36871753 DOI: 10.1016/j.bbadis.2023.166672] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 02/21/2023] [Accepted: 02/21/2023] [Indexed: 03/07/2023]
Abstract
BACKGROUND Astrocyte activation, which is polarized into classical neurotoxic A1, neuroprotective A2, A-pan, etc., is thought to be involved in the transition from acute to chronic post-thoracotomy pain. The C3aR receptor associated with astrocyte-neuron and -microglia interactions is necessary for A1 astrocytes polarization. This study aimed to determine whether C3aR in astrocytes mediates post-thoracotomy pain by inducing A1 expression in a rat thoracotomy pain model. METHODS A rat thoracotomy pain model was employed. The mechanical withdraw threshold was measured to evaluate pain behavior. Lipopolysaccharide (LPS) was injected intraperitoneally to induce A1. Intrathecal injection of AAV2/9-rC3ar1 shRNA-GFAP was used to knock down in vivo C3aR expression in astrocytes. The expression of associated phenotypic markers before and after intervention was assessed by RT-PCR, western blot, co-immunofluorescence, and single-cell RNA sequencing. RESULTS C3aR downregulation was found to inhibit LPS-induced A1 astrocytes activation, decrease the expression of C3aR, C3, and GFAP, which were activated from acute to chronic pain, and alleviate the mechanical withdrawal threshold and chronic pain incidence. In addition, more A2 astrocytes were activated in the model group that did not develop chronic pain. C3aR downregulation increased the number of A2 astrocytes upon LPS exposure. Knockdown of C3aR also decreased the activation of M1 microglia induced by LPS or thoracotomy. CONCLUSIONS Our study confirmed that C3aR-induced A1 polarization contributes to chronic post-thoracotomy pain. Inhibition of A1 activation via C3aR downregulation increases anti-inflammatory A2 and decreases pro-inflammatory M1 activation, which may also be involved in the mechanism of chronic post-thoracotomy pain.
Collapse
|
4
|
Gibson BG, Cox TE, Marchbank KJ. Contribution of animal models to the mechanistic understanding of Alternative Pathway and Amplification Loop (AP/AL)-driven Complement-mediated Diseases. Immunol Rev 2023; 313:194-216. [PMID: 36203396 PMCID: PMC10092198 DOI: 10.1111/imr.13141] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
This review aimed to capture the key findings that animal models have provided around the role of the alternative pathway and amplification loop (AP/AL) in disease. Animal models, particularly mouse models, have been incredibly useful to define the role of complement and the alternative pathway in health and disease; for instance, the use of cobra venom factor and depletion of C3 provided the initial insight that complement was essential to generate an appropriate adaptive immune response. The development of knockout mice have further underlined the importance of the AP/AL in disease, with the FH knockout mouse paving the way for the first anti-complement drugs. The impact from the development of FB, properdin, and C3 knockout mice closely follows this in terms of mechanistic understanding in disease. Indeed, our current understanding that complement plays a role in most conditions at one level or another is rooted in many of these in vivo studies. That C3, in particular, has roles beyond the obvious in innate and adaptive immunity, normal physiology, and cellular functions, with or without other recognized AP components, we would argue, only extends the reach of this arm of the complement system. Humanized mouse models also continue to play their part. Here, we argue that the animal models developed over the last few decades have truly helped define the role of the AP/AL in disease.
Collapse
Affiliation(s)
- Beth G. Gibson
- Complement Therapeutics Research Group and Newcastle University Translational and Clinical Research InstituteFaculty of Medical ScienceNewcastle‐upon‐TyneUK
- National Renal Complement Therapeutics CentreaHUS ServiceNewcastle upon TyneUK
| | - Thomas E. Cox
- Complement Therapeutics Research Group and Newcastle University Translational and Clinical Research InstituteFaculty of Medical ScienceNewcastle‐upon‐TyneUK
- National Renal Complement Therapeutics CentreaHUS ServiceNewcastle upon TyneUK
| | - Kevin J. Marchbank
- Complement Therapeutics Research Group and Newcastle University Translational and Clinical Research InstituteFaculty of Medical ScienceNewcastle‐upon‐TyneUK
- National Renal Complement Therapeutics CentreaHUS ServiceNewcastle upon TyneUK
| |
Collapse
|
5
|
Naumenko VA, Vishnevskiy DA, Stepanenko AA, Sosnovtseva AO, Chernysheva AA, Abakumova TO, Valikhov MP, Lipatova AV, Abakumov MA, Chekhonin VP. In Vivo Tracking for Oncolytic Adenovirus Interactions with Liver Cells. Biomedicines 2022; 10:biomedicines10071697. [PMID: 35885002 PMCID: PMC9313019 DOI: 10.3390/biomedicines10071697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/01/2022] [Accepted: 07/10/2022] [Indexed: 11/28/2022] Open
Abstract
Hepatotoxicity remains an as yet unsolved problem for adenovirus (Ad) cancer therapy. The toxic effects originate both from rapid Kupffer cell (KCs) death (early phase) and hepatocyte transduction (late phase). Several host factors and capsid components are known to contribute to hepatotoxicity, however, the complex interplay between Ad and liver cells is not fully understood. Here, by using intravital microscopy, we aimed to follow the infection and immune response in mouse liver from the first minutes up to 72 h post intravenous injection of three Ads carrying delta-24 modification (Ad5-RGD, Ad5/3, and Ad5/35). At 15–30 min following the infusion of Ad5-RGD and Ad5/3 (but not Ad5/35), the virus-bound macrophages demonstrated signs of zeiosis: the formation of long-extended protrusions and dynamic membrane blebbing with the virus release into the blood in the membrane-associated vesicles. Although real-time imaging revealed interactions between the neutrophils and virus-bound KCs within minutes after treatment, and long-term contacts of CD8+ T cells with transduced hepatocytes at 24–72 h, depletion of neutrophils and CD8+ T cells affected neither rate nor dynamics of liver infection. Ad5-RGD failed to complete replicative cycle in hepatocytes, and transduced cells remained impermeable for propidium iodide, with a small fraction undergoing spontaneous apoptosis. In Ad5-RGD-immune mice, the virus neither killed KCs nor transduced hepatocytes, while in the setting of hepatic regeneration, Ad5-RGD enhanced liver transduction. The clinical and biochemical signs of hepatotoxicity correlated well with KC death, but not hepatocyte transduction. Real-time in vivo tracking for dynamic interactions between virus and host cells provides a better understanding of mechanisms underlying Ad-related hepatotoxicity.
Collapse
Affiliation(s)
- Victor A. Naumenko
- V. Serbsky National Medical Research Center for Psychiatry and Narcology, 119034 Moscow, Russia; (D.A.V.); (A.A.S.); (A.O.S.); (A.A.C.); (M.P.V.); (V.P.C.)
- Correspondence:
| | - Daniil A. Vishnevskiy
- V. Serbsky National Medical Research Center for Psychiatry and Narcology, 119034 Moscow, Russia; (D.A.V.); (A.A.S.); (A.O.S.); (A.A.C.); (M.P.V.); (V.P.C.)
| | - Aleksei A. Stepanenko
- V. Serbsky National Medical Research Center for Psychiatry and Narcology, 119034 Moscow, Russia; (D.A.V.); (A.A.S.); (A.O.S.); (A.A.C.); (M.P.V.); (V.P.C.)
- Department of Medical Nanobiotechnology, N.I Pirogov Russian National Research Medical University, 117997 Moscow, Russia;
| | - Anastasiia O. Sosnovtseva
- V. Serbsky National Medical Research Center for Psychiatry and Narcology, 119034 Moscow, Russia; (D.A.V.); (A.A.S.); (A.O.S.); (A.A.C.); (M.P.V.); (V.P.C.)
| | - Anastasiia A. Chernysheva
- V. Serbsky National Medical Research Center for Psychiatry and Narcology, 119034 Moscow, Russia; (D.A.V.); (A.A.S.); (A.O.S.); (A.A.C.); (M.P.V.); (V.P.C.)
| | - Tatiana O. Abakumova
- Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, 121205 Moscow, Russia;
| | - Marat P. Valikhov
- V. Serbsky National Medical Research Center for Psychiatry and Narcology, 119034 Moscow, Russia; (D.A.V.); (A.A.S.); (A.O.S.); (A.A.C.); (M.P.V.); (V.P.C.)
| | - Anastasiia V. Lipatova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia;
| | - Maxim A. Abakumov
- Department of Medical Nanobiotechnology, N.I Pirogov Russian National Research Medical University, 117997 Moscow, Russia;
- Laboratory of Biomedical Nanomaterials, National University of Science and Technology (MISIS), 119049 Moscow, Russia
| | - Vladimir P. Chekhonin
- V. Serbsky National Medical Research Center for Psychiatry and Narcology, 119034 Moscow, Russia; (D.A.V.); (A.A.S.); (A.O.S.); (A.A.C.); (M.P.V.); (V.P.C.)
- Department of Medical Nanobiotechnology, N.I Pirogov Russian National Research Medical University, 117997 Moscow, Russia;
| |
Collapse
|
6
|
Ander SE, Li FS, Carpentier KS, Morrison TE. Innate immune surveillance of the circulation: A review on the removal of circulating virions from the bloodstream. PLoS Pathog 2022; 18:e1010474. [PMID: 35511797 PMCID: PMC9070959 DOI: 10.1371/journal.ppat.1010474] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Many viruses utilize the lymphohematogenous route for dissemination; however, they may not freely use this highway unchecked. The reticuloendothelial system (RES) is an innate defense system that surveys circulating blood, recognizing and capturing viral particles. Examination of the literature shows that the bulk of viral clearance is mediated by the liver; however, the precise mechanism(s) mediating viral vascular clearance vary between viruses and, in many cases, remains poorly defined. Herein, we summarize what is known regarding the recognition and capture of virions from the circulation prior to the generation of a specific antibody response. We also discuss the consequences of viral capture on viral pathogenesis and the fate of the captor cell. Finally, this understudied topic has implications beyond viral pathogenesis, including effects on arbovirus ecology and the application of virus-vectored gene therapies.
Collapse
Affiliation(s)
- Stephanie E. Ander
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Frances S. Li
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Kathryn S. Carpentier
- Department of Natural Sciences, Greensboro College, Greensboro, North Carolina, United States of America
| | - Thomas E. Morrison
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, United States of America
- * E-mail:
| |
Collapse
|
7
|
Cytokine Responses to Adenovirus and Adenovirus Vectors. Viruses 2022; 14:v14050888. [PMID: 35632630 PMCID: PMC9145601 DOI: 10.3390/v14050888] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/18/2022] [Accepted: 04/20/2022] [Indexed: 12/15/2022] Open
Abstract
The expression of cytokines and chemokines in response to adenovirus infection is tightly regulated by the innate immune system. Cytokine-mediated toxicity and cytokine storm are known clinical phenomena observed following naturally disseminated adenovirus infection in immunocompromised hosts as well as when extremely high doses of adenovirus vectors are injected intravenously. This dose-dependent, cytokine-mediated toxicity compromises the safety of adenovirus-based vectors and represents a critical problem, limiting their utility for gene therapy applications and the therapy of disseminated cancer, where intravenous injection of adenovirus vectors may provide therapeutic benefits. The mechanisms triggering severe cytokine response are not sufficiently understood, prompting efforts to further investigate this phenomenon, especially in clinically relevant settings. In this review, we summarize the current knowledge on cytokine and chemokine activation in response to adenovirus- and adenovirus-based vectors and discuss the underlying mechanisms that may trigger acute cytokine storm syndrome. First, we review profiles of cytokines and chemokines that are activated in response to adenovirus infection initiated via different routes. Second, we discuss the molecular mechanisms that lead to cytokine and chemokine transcriptional activation. We further highlight how immune cell types in different organs contribute to synthesis and systemic release of cytokines and chemokines in response to adenovirus sensing. Finally, we review host factors that can limit cytokine and chemokine expression and discuss currently available and potential future interventional approaches that allow for the mitigation of the severity of the cytokine storm syndrome. Effective cytokine-targeted interventional approaches may improve the safety of systemic adenovirus delivery and thus broaden the potential clinical utility of adenovirus-based therapeutic vectors.
Collapse
|
8
|
Naumenko VA, Stepanenko AA, Lipatova AV, Vishnevskiy DA, Chekhonin VP. Infection of non-cancer cells: A barrier or support for oncolytic virotherapy? MOLECULAR THERAPY - ONCOLYTICS 2022; 24:663-682. [PMID: 35284629 PMCID: PMC8898763 DOI: 10.1016/j.omto.2022.02.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Oncolytic viruses are designed to specifically target cancer cells, sparing normal cells. Although numerous studies demonstrate the ability of oncolytic viruses to infect a wide range of non-tumor cells, the significance of this phenomenon for cancer virotherapy is poorly understood. To fill the gap, we summarize the data on infection of non-cancer targets by oncolytic viruses with a special focus on tumor microenvironment and secondary lymphoid tissues. The review aims to address two major questions: how do attenuated viruses manage to infect normal cells, and whether it is of importance for oncolytic virotherapy.
Collapse
Affiliation(s)
- Victor A. Naumenko
- V. Serbsky National Medical Research Center for Psychiatry and Narcology, Moscow 119034, Russia
- Corresponding author Victor A. Naumenko, PhD, V. Serbsky National Medical Research Center for Psychiatry and Narcology, Moscow 119034, Russia.
| | - Aleksei A. Stepanenko
- V. Serbsky National Medical Research Center for Psychiatry and Narcology, Moscow 119034, Russia
- Department of Medical Nanobiotechnology, N.I Pirogov Russian National Research Medical University, Moscow 117997, Russia
| | - Anastasiia V. Lipatova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - Daniil A. Vishnevskiy
- V. Serbsky National Medical Research Center for Psychiatry and Narcology, Moscow 119034, Russia
| | - Vladimir P. Chekhonin
- V. Serbsky National Medical Research Center for Psychiatry and Narcology, Moscow 119034, Russia
- Department of Medical Nanobiotechnology, N.I Pirogov Russian National Research Medical University, Moscow 117997, Russia
| |
Collapse
|
9
|
Biserni GB, Scarpini S, Dondi A, Biagi C, Pierantoni L, Masetti R, Sureshkumar S, Rocca A, Lanari M. Potential Diagnostic and Prognostic Biomarkers for Adenovirus Respiratory Infection in Children and Young Adults. Viruses 2021; 13:1885. [PMID: 34578465 PMCID: PMC8472906 DOI: 10.3390/v13091885] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/05/2021] [Accepted: 09/14/2021] [Indexed: 01/03/2023] Open
Abstract
Human Adenoviruses (HAdV) are known to be potentially associated with strong inflammatory responses and morbidity in pediatric patients. Although most of the primary infections are self-limiting, the severity of clinical presentation, the elevation of the white blood cell count and inflammatory markers often mimic a bacterial infection and lead to an inappropriate use of antibiotics. In infections caused by HAdV, rapid antigen detection kits are advisable but not employed routinely; costs and feasibility of rapid syndromic molecular diagnosis may limit its use in the in-hospital setting; lymphocyte cultures and two-sampled serology are time consuming and impractical when considering the use of antibiotics. In this review, we aim to describe the principal diagnostic tools and the immune response in HAdV infections and evaluate whether markers based on the response of the host may help early recognition of HAdV and avoid inappropriate antimicrobial prescriptions in acute airway infections.
Collapse
Affiliation(s)
- Giovanni Battista Biserni
- Specialty School of Pediatrics, Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy; (G.B.B.); (S.S.)
| | - Sara Scarpini
- Specialty School of Pediatrics, Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy; (G.B.B.); (S.S.)
| | - Arianna Dondi
- Pediatric Emergency Unit, Scientific Institute for Research and Healthcare (IRCCS), Azienda Ospedaliero—Universitaria di Bologna, 40138 Bologna, Italy; (C.B.); (L.P.); (A.R.); (M.L.)
| | - Carlotta Biagi
- Pediatric Emergency Unit, Scientific Institute for Research and Healthcare (IRCCS), Azienda Ospedaliero—Universitaria di Bologna, 40138 Bologna, Italy; (C.B.); (L.P.); (A.R.); (M.L.)
| | - Luca Pierantoni
- Pediatric Emergency Unit, Scientific Institute for Research and Healthcare (IRCCS), Azienda Ospedaliero—Universitaria di Bologna, 40138 Bologna, Italy; (C.B.); (L.P.); (A.R.); (M.L.)
| | - Riccardo Masetti
- Pediatric Unit, Scientific Institute for Research and Healthcare (IRCCS), Sant Orsola Hospital, 40138 Bologna, Italy;
| | | | - Alessandro Rocca
- Pediatric Emergency Unit, Scientific Institute for Research and Healthcare (IRCCS), Azienda Ospedaliero—Universitaria di Bologna, 40138 Bologna, Italy; (C.B.); (L.P.); (A.R.); (M.L.)
| | - Marcello Lanari
- Pediatric Emergency Unit, Scientific Institute for Research and Healthcare (IRCCS), Azienda Ospedaliero—Universitaria di Bologna, 40138 Bologna, Italy; (C.B.); (L.P.); (A.R.); (M.L.)
| |
Collapse
|
10
|
Alhashimi M, Elkashif A, Sayedahmed EE, Mittal SK. Nonhuman Adenoviral Vector-Based Platforms and Their Utility in Designing Next Generation of Vaccines for Infectious Diseases. Viruses 2021; 13:1493. [PMID: 34452358 PMCID: PMC8402644 DOI: 10.3390/v13081493] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/25/2021] [Accepted: 07/26/2021] [Indexed: 01/01/2023] Open
Abstract
Several human adenoviral (Ad) vectors have been developed for vaccine delivery owing to their numerous advantages, including the feasibility of different vector designs, the robustness of elicited immune responses, safety, and scalability. To expand the repertoire of Ad vectors for receptor usage and circumvention of Ad vector immunity, the use of less prevalent human Ad types or nonhuman Ads were explored for vector design. Notably, many nonhuman Ad vectors have shown great promise in preclinical and clinical studies as vectors for vaccine delivery. This review describes the key features of several nonhuman Ad vector platforms and their implications in developing effective vaccines against infectious diseases.
Collapse
Affiliation(s)
| | | | | | - Suresh K. Mittal
- Immunology and Infectious Disease, and Purdue University Center for Cancer Research, Department of Comparative Pathobiology, Purdue Institute for Inflammation, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907-2027, USA; (M.A.); (A.E.); (E.E.S.)
| |
Collapse
|
11
|
The revisited role of interleukin-1 alpha and beta in autoimmune and inflammatory disorders and in comorbidities. Autoimmun Rev 2021; 20:102785. [PMID: 33621698 DOI: 10.1016/j.autrev.2021.102785] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 01/04/2021] [Indexed: 02/06/2023]
Abstract
The interleukin (IL) 1 family of cytokines is noteworthy to have pleiotropic functions in inflammation and acquired immunity. Over the last decades, several progresses have been made in understanding the function and regulation of the prototypical inflammatory cytokine (IL-1) in human diseases. IL-1α and IL-1β deregulated signaling causes devastating diseases manifested by severe acute or chronic inflammation. In this review, we examine and compare the key aspects of IL-1α and IL-1β biology and regulation and discuss their importance in the initiation and maintenance of inflammation that underlie the pathology of many human diseases. We also report the current and ongoing inhibitors of IL-1 signaling, targeting IL-1α, IL-1β, their receptor or other molecular compounds as effective strategies to prevent or treat the onset and progression of various inflammatory disorders.
Collapse
|
12
|
The Relevance of IL-1-Signaling in the Protection against Gram-Positive Bacteria. Pathogens 2021; 10:pathogens10020132. [PMID: 33525468 PMCID: PMC7911888 DOI: 10.3390/pathogens10020132] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 01/18/2021] [Accepted: 01/25/2021] [Indexed: 12/14/2022] Open
Abstract
Previous studies performed using a model of group B streptococcus (GBS)-induced peritoneal inflammation indicate that the interleukin-1 receptor (IL-1R) family plays an important role in the innate host defense against this encapsulated Gram-positive bacteria. Since the role of IL-1-dependent signaling in peritoneal infections induced by other Gram-positive bacteria is unknown, in the present study we sought to investigate the contribution of IL-1R signaling in host defenses against Streptococcus pyogenes (group A streptococcus or GAS) or Staphylococcus aureus, two frequent and global human Gram-positive extracellular pathogens. We analyzed here the outcome of GAS or S. aureus infection in IL-1R-deficient mice. After inoculated intraperitoneal (i.p.) inoculation with group A Streptococcus or S. aureus, all the wild-type (WT) control mice survived the challenge, while, respectively, 63% or 50% of IL-1-defective mice died. Lethality was due to the ability of both bacterial species to replicate and disseminate to the target organs of IL-1R-deficient mice. Moreover, the experimental results indicate that IL-1 signaling promotes the production of leukocyte attractant chemokines CXCL-1 and CXCL-2 and recruitment of neutrophils to bacterial infection sites. Accordingly, the reduced neutrophil recruitment in IL-1R-deficient mice was linked with decreased production of neutrophil chemokines. Collectively, our findings indicate that IL-1 signaling, as previously showed in host defense against GBS, plays a fundamental role also in controlling the progression and outcome of GAS or S. aureus disease.
Collapse
|
13
|
Biserni GB, Dondi A, Masetti R, Bandini J, Dormi A, Conti F, Pession A, Lanari M. Immune Response against Adenovirus in Acute Upper Respiratory Tract Infections in Immunocompetent Children. Vaccines (Basel) 2020; 8:E602. [PMID: 33066100 PMCID: PMC7711544 DOI: 10.3390/vaccines8040602] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 10/04/2020] [Accepted: 10/08/2020] [Indexed: 01/01/2023] Open
Abstract
During acute upper respiratory tract infections (AURTIs) caused by Adenoviruses, the mix of severe clinical presentation, together with elevation of white blood cells (WBCs) and C-reactive protein (CRP), often mimicking bacterial infection, leads to an inappropriate use of antibiotics. We studied 23 immunocompetent children admitted to our Pediatric Emergency Unit with signs of acute Adenoviral AURTIs, aiming at better clarifying the biological background sustaining this clinical presentation. Infection etiology was tested with nasopharyngeal swabs, serology, and DNA-PCR. During fever peaks and subsequent recovery, we assessed WBC count with differential, CRP, procalcitonin, serum concentration of six inflammatory cytokines, and lymphocyte subset populations. Results: IL-6 and IL-8 were found elevated in the acute phase, whereas a significant decrease during recovery was found for IL-6 and IL-10. We highlighted an increase of B lymphocytes in the acute phase; conversely, during recovery, an increase in T regulatory cells was noted. Monocytes and leukocytes were found markedly elevated during fever peaks compared to convalescence. All patients recovered uneventfully. The composition of lymphocyte population subsets and serum alterations are the main drivers of an overprescribed antibiotic. Examination of hospital admissions and performance is needed in further investigations to rule out bacterial infections or inflammatory syndromes.
Collapse
Affiliation(s)
- Giovanni Battista Biserni
- Pediatric Emergency Unit, Scientific Institute for Research and Healthcare (IRCCS), Sant’Orsola Hospital, 40138 Bologna, Italy; (G.B.B.); (M.L.)
| | - Arianna Dondi
- Pediatric Emergency Unit, Scientific Institute for Research and Healthcare (IRCCS), Sant’Orsola Hospital, 40138 Bologna, Italy; (G.B.B.); (M.L.)
| | - Riccardo Masetti
- Pediatric Unit, Scientific Institute for Research and Healthcare (IRCCS), Sant’Orsola Hospital, 40138 Bologna, Italy; (R.M.); (J.B.); (F.C.); (A.P.)
| | - Jessica Bandini
- Pediatric Unit, Scientific Institute for Research and Healthcare (IRCCS), Sant’Orsola Hospital, 40138 Bologna, Italy; (R.M.); (J.B.); (F.C.); (A.P.)
| | - Ada Dormi
- Department of Medical and Surgical Sciences, DIMEC, University of Bologna, 40138 Bologna, Italy;
| | - Francesca Conti
- Pediatric Unit, Scientific Institute for Research and Healthcare (IRCCS), Sant’Orsola Hospital, 40138 Bologna, Italy; (R.M.); (J.B.); (F.C.); (A.P.)
| | - Andrea Pession
- Pediatric Unit, Scientific Institute for Research and Healthcare (IRCCS), Sant’Orsola Hospital, 40138 Bologna, Italy; (R.M.); (J.B.); (F.C.); (A.P.)
| | - Marcello Lanari
- Pediatric Emergency Unit, Scientific Institute for Research and Healthcare (IRCCS), Sant’Orsola Hospital, 40138 Bologna, Italy; (G.B.B.); (M.L.)
| |
Collapse
|
14
|
Momota M, Lelliott P, Kubo A, Kusakabe T, Kobiyama K, Kuroda E, Imai Y, Akira S, Coban C, Ishii KJ. ZBP1 governs the inflammasome-independent IL-1α and neutrophil inflammation that play a dual role in anti-influenza virus immunity. Int Immunol 2020; 32:203-212. [PMID: 31630209 PMCID: PMC10689344 DOI: 10.1093/intimm/dxz070] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 10/17/2019] [Indexed: 11/14/2022] Open
Abstract
Influenza A virus (IAV) triggers the infected lung to produce IL-1 and recruit neutrophils. Unlike IL-1β, however, little is known about IL-1α in terms of its mechanism of induction, action and physiological relevance to the host immunity against IAV infection. In particular, whether Z-DNA-binding protein 1 (ZBP1), a key molecule for IAV-induced cell death, is involved in the IL-1α induction, neutrophil infiltration and the physiological outcome has not been elucidated. Here, we show in a murine model that the IAV-induced IL-1α is mediated solely by ZBP1, in an NLRP3-inflammasome-independent manner, and is required for the optimal IL-1β production followed by the formation of neutrophil extracellular traps (NETs). During IAV infection, ZBP1 displays a dual role in anti-IAV immune responses mediated by neutrophils, resulting in either protective or pathological outcomes in vivo. Thus, ZBP1-mediated IL-1α production is the key initial step of IAV-infected NETs, regulating the duality of the consequent lung inflammation.
Collapse
Affiliation(s)
- Masatoshi Momota
- Laboratory of Adjuvant Innovation, Center for Vaccine and Adjuvant Research Center (CVAR), National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan
- Laboratory of Mockup Vaccine, Center for Vaccine and Adjuvant Research Center (CVAR), National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan
- Laboratory of Vaccine Science, World Premier International Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Patrick Lelliott
- Malaria Immunology, World Premier International Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Atsuko Kubo
- Laboratory of Adjuvant Innovation, Center for Vaccine and Adjuvant Research Center (CVAR), National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan
| | - Takato Kusakabe
- Laboratory of Adjuvant Innovation, Center for Vaccine and Adjuvant Research Center (CVAR), National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan
- Laboratory of Mockup Vaccine, Center for Vaccine and Adjuvant Research Center (CVAR), National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan
- Laboratory of Vaccine Science, World Premier International Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Kouji Kobiyama
- Laboratory of Adjuvant Innovation, Center for Vaccine and Adjuvant Research Center (CVAR), National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan
- Division of Vaccine Science, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Etsushi Kuroda
- Laboratory of Adjuvant Innovation, Center for Vaccine and Adjuvant Research Center (CVAR), National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan
- Laboratory of Vaccine Science, World Premier International Immunology Frontier Research Center, Osaka University, Osaka, Japan
- Department of Immunology, Hyogo College of Medicine, Hyogo, Japan
| | - Yumiko Imai
- Laboratory of Regulation of Intractable Infectious Diseases, Center for Vaccine and Adjuvant Research Center (CVAR), National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan
| | - Shizuo Akira
- Host Defense, World Premier International Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Cevayir Coban
- Malaria Immunology, World Premier International Immunology Frontier Research Center, Osaka University, Osaka, Japan
- International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Division of Malaria Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Ken J Ishii
- Laboratory of Adjuvant Innovation, Center for Vaccine and Adjuvant Research Center (CVAR), National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan
- Laboratory of Mockup Vaccine, Center for Vaccine and Adjuvant Research Center (CVAR), National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan
- Laboratory of Vaccine Science, World Premier International Immunology Frontier Research Center, Osaka University, Osaka, Japan
- Division of Vaccine Science, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
15
|
Abstract
Several viral vector-based gene therapy drugs have now received marketing approval. A much larger number of additional viral vectors are in various stages of clinical trials for the treatment of genetic and acquired diseases, with many more in pre-clinical testing. Efficiency of gene transfer and ability to provide long-term therapy make these vector systems very attractive. In fact, viral vector gene therapy has been able to treat or even cure diseases for which there had been no or only suboptimal treatments. However, innate and adaptive immune responses to these vectors and their transgene products constitute substantial hurdles to clinical development and wider use in patients. This review provides an overview of the type of immune responses that have been documented in animal models and in humans who received gene transfer with one of three widely tested vector systems, namely adenoviral, lentiviral, or adeno-associated viral vectors. Particular emphasis is given to mechanisms leading to immune responses, efforts to reduce vector immunogenicity, and potential solutions to the problems. At the same time, we point out gaps in our knowledge that should to be filled and problems that need to be addressed going forward.
Collapse
Affiliation(s)
- Jamie L Shirley
- Gene Therapy Center, University of Massachusetts, Worchester, MA, USA
| | - Ype P de Jong
- Division of Gastroenterology and Hepatology, Weill Cornell Medicine, New York, NY, USA
| | - Cox Terhorst
- Division of Immunology, Beth Israel Deaconess Medical Center (BIDMC), Harvard Medical School, Boston, MA, USA
| | - Roland W Herzog
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
16
|
Atasheva S, Yao J, Shayakhmetov DM. Innate immunity to adenovirus: lessons from mice. FEBS Lett 2019; 593:3461-3483. [PMID: 31769012 PMCID: PMC6928416 DOI: 10.1002/1873-3468.13696] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/07/2019] [Accepted: 11/21/2019] [Indexed: 01/01/2023]
Abstract
Adenovirus is a highly evolutionary successful pathogen, as it is widely prevalent across the animal kingdom, infecting hosts ranging from lizards and frogs to dolphins, birds, and humans. Although natural adenovirus infections in humans rarely cause severe pathology, intravenous injection of high doses of adenovirus-based vectors triggers rapid activation of the innate immune system, leading to cytokine storm syndrome, disseminated intravascular coagulation, thrombocytopenia, and hepatotoxicity, which individually or in combination may cause morbidity and mortality. Much of the information on exactly how adenovirus activates the innate immune system has been gathered from mouse experimental systems. Intravenous administration of adenovirus to mice revealed mechanistic insights into cellular and molecular components of the innate immunity that detect adenovirus particles, activate pro-inflammatory signaling pathways and cytokine production, sequester adenovirus particles from the bloodstream, and eliminate adenovirus-infected cells. Collectively, this information greatly improved our understanding of mechanisms of activation of innate immunity to adenovirus and may pave the way for designing safer adenovirus-based vectors for therapy of genetic and acquired human diseases.
Collapse
Affiliation(s)
- Svetlana Atasheva
- Lowance Center for Human Immunology, Departments of Pediatrics and Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jia Yao
- Lowance Center for Human Immunology, Departments of Pediatrics and Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Dmitry M. Shayakhmetov
- Lowance Center for Human Immunology, Departments of Pediatrics and Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
- Emory Children’s Center for Transplantation and Immuno-mediated Disorders, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
17
|
Ketelut-Carneiro N, Souza COS, Benevides L, Gardinassi LG, Silva MC, Tavares LA, Zamboni DS, Silva JS. Caspase-11-dependent IL-1α release boosts Th17 immunity against Paracoccidioides brasiliensis. PLoS Pathog 2019; 15:e1007990. [PMID: 31425553 PMCID: PMC6715237 DOI: 10.1371/journal.ppat.1007990] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 08/29/2019] [Accepted: 07/18/2019] [Indexed: 12/22/2022] Open
Abstract
The granulomatous lesion resulting from infection with the fungus Paracoccidioides brasiliensis is characterized by a compact aggregate of mature cells, surrounded by a fibroblast- and collagen-rich content. Granuloma formation requires signaling elicited by inflammatory molecules such as members of the interleukin-1 family. Two members of this family have been thoroughly studied, namely IL-1α and IL-1β. In this study, we addressed the mechanisms underlying IL-1α secretion and its functional role on the host resistance to fungal infection. We found that, the expression of caspase-11 triggered by P. brasiliensis infection of macrophages depends on IFN-β production, because its inhibition reduced procaspase-11 levels. Curiously, caspase-11 deficiency did not impair IL-1β production, however caspase-11 was required for a rapid pore-mediated cell lysis. The plasma membrane rupture facilitated the release of IL-1α, which was necessary to induce NO production and restrict fungal replication. Furthermore, P. brasiliensis-infected macrophages required IL-1α to produce optimal levels of IL-6, a major component of Th17 lymphocyte differentiation. Indeed, IL-1α deficiency accounted for a significant reduction of Th17 lymphocytes in lungs of infected mice, correlating with diminished neutrophil infiltration in the lungs. Strikingly, we identified that IL-1α directly reprograms the transcriptional profile of Th17-committed lymphocytes, increasing cellular proliferation, as for boosting IL-17 production by these cells. Beyond neutrophil chemotaxis in vivo, IL-17 also amplified IL-1α production by infected macrophages in vitro, endorsing a critical amplification loop of the inflammatory response. Therefore, our data suggest that the IFN-β/caspase-11/IL-1α pathway shapes a protective antifungal Th17 immunity, revealing a molecular mechanism underlying the cross-talk between innate and adaptive immunity.
Collapse
Affiliation(s)
- Natália Ketelut-Carneiro
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Camila Oliveira Silva Souza
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Luciana Benevides
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Luiz Gustavo Gardinassi
- Department of Clinical Analyses, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Maria Cláudia Silva
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Lucas Alves Tavares
- Department of Cell Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Dario Simões Zamboni
- Department of Cell Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - João Santana Silva
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
- Fiocruz-Bi-Institutional Translational Medicine Project, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
- * E-mail:
| |
Collapse
|
18
|
Zhang H, Xiong F, Qian K, Liu Y, Liang B, Xiong B, Yang F, Zheng C. Transcatheter arterial embolization combined with hypoxia-replicative oncolytic adenovirus perfusion enhances the therapeutic effect of hepatic carcinoma. Cancer Manag Res 2019; 11:981-996. [PMID: 30774426 PMCID: PMC6350642 DOI: 10.2147/cmar.s189208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Purpose Transcatheter arterial embolization or transcatheter arterial chemoembolization has become a critical therapy for unresectable hepatocarcinoma. Although hypoxia caused by embolization can induce apoptosis and necrosis of the majority of tumor cells, a small proportion of cells can survive with hypoxia and chemotherapy resistance. HIF-1α induced by hypoxia is the key factor rendering surviving tumor cells invasive and metastatic properties. Thus, we generated a synthetic hypoxia-replicative oncolytic adenovirus (HYAD) expecting to further eliminate the surviving tumor cells, which expressed HIF-1α. Materials and methods In our study, we detected protein expression, proliferation, apoptosis, and necrosis of hepatic tumor cell line when infected with HYAD under hypoxia and normoxia. And we constructed VX2 hepatic cancer rabbit models to explore the therapeutic effect of transcatheter arterial embolization combined with HYAD perfusion under digital subtraction angiography. Inhibition of tumor growth and invasion was detected by histopathological examination and contrast-enhanced CT scan. Results Experiments in vitro verified that HYAD expressed and replicated along with HIF-1α expression or hypoxia. Compared with wild adenovirus type 5 (WT), HYAD expressed much more under hypoxia, which was the main principle of HYAD killing surviving tumor cells posttransarterial embolization. In vivo experiment of VX2 models, HYAD perfusion combined with polyvinyl alcohol (PVA) embolization achieved the highest expression quantity and the longest expression duration compared with simple HYAD perfusion, WT perfusion combined with PVA embolization, and simple WT perfusion. Because adenovirus expression protein E1A had the properties of promoting apoptosis, inhibiting invasion, and inhibiting metastasis, HYAD perfusion combined with PVA embolization group efficiently repressed tumor growth and intrahepatic metastases compared to other processing groups. Conclusion HYAD can overcome the hypoxic tumor microenvironment postembolization and target the surviving tumor cells with specificity. In turn, HYAD perfusion combined with PVA embolization can bring out the best effect in each other.
Collapse
Affiliation(s)
- Hongsen Zhang
- Department of Radiology, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China, ;
| | - Fu Xiong
- Department of Radiology, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China, ;
| | - Kun Qian
- Department of Radiology, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China, ;
| | - Yiming Liu
- Department of Radiology, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China, ;
| | - Bin Liang
- Department of Radiology, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China, ;
| | - Bin Xiong
- Department of Radiology, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China, ;
| | - Fan Yang
- Department of Radiology, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China, ;
| | - Chuansheng Zheng
- Department of Radiology, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China, ;
| |
Collapse
|
19
|
Xu W, Xu Z, Huang L, Qin EQ, Zhang JL, Zhao P, Tu B, Shi L, Li WG, Chen WW. Transcriptome Sequencing Identifies Novel Immune Response Genes Highly Related to the Severity of Human Adenovirus Type 55 Infection. Front Microbiol 2019; 10:130. [PMID: 30787914 PMCID: PMC6372566 DOI: 10.3389/fmicb.2019.00130] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 01/21/2019] [Indexed: 01/01/2023] Open
Abstract
Human adenovirus type 55 (HAdV-55) is considered a highly virulent pathogen causing severe and even deadly pneumonia in immunocompetent people. The mechanisms of HAdV-55-induced initiation and progression of severe pneumonia remain ambiguous. In the current study, we endeavored to identify novel immune response genes which are substantially involved in the pathogenesis of severe inflammation in HAdV-55-infected patients. HAdV-55-infected patients with upper respiratory tract symptoms (minor patients) and pneumonia (severe patients) were enrolled. Through transcriptome sequencing and quantitative real-time PCR, the peripheral blood mononuclear cells of the patients were analyzed. We found that the expression of eight genes, including Il18, Il36b, Il17rc, Tnfsf10, Tnfsf11, Tnfsf14, Tnfsf15, and Il1a, were closely correlated with the severity of HAdV-55 infection. Most of these genes belong to interleukin-1 family or tumor necrosis factor (TNF) superfamily, respectively. The changes in gene expression were confirmed by Western blot assay. Our data will be crucial for deepening the understanding of the pathogenic mechanisms of severe pneumonia in HAdV-55 infection.
Collapse
Affiliation(s)
- Wen Xu
- Treatment and Research Center for Infectious Diseases, 302 Military Hospital of China, Beijing, China
| | - Zhe Xu
- Treatment and Research Center for Infectious Diseases, 302 Military Hospital of China, Beijing, China
| | - Lei Huang
- Treatment and Research Center for Infectious Diseases, 302 Military Hospital of China, Beijing, China
| | - En-Qiang Qin
- Treatment and Research Center for Infectious Diseases, 302 Military Hospital of China, Beijing, China
| | - Jie-Li Zhang
- Treatment and Research Center for Infectious Diseases, 302 Military Hospital of China, Beijing, China
| | - Peng Zhao
- Treatment and Research Center for Infectious Diseases, 302 Military Hospital of China, Beijing, China
| | - Bo Tu
- Treatment and Research Center for Infectious Diseases, 302 Military Hospital of China, Beijing, China
| | - Lei Shi
- Treatment and Research Center for Infectious Diseases, 302 Military Hospital of China, Beijing, China
| | - Wen-Gang Li
- Radiation Oncology Center, 302 Military Hospital of China, Beijing, China
| | - Wei-Wei Chen
- Treatment and Research Center for Infectious Diseases, 302 Military Hospital of China, Beijing, China
| |
Collapse
|
20
|
Mooney JP, Galloway LJ, Riley EM. Malaria, anemia, and invasive bacterial disease: A neutrophil problem? J Leukoc Biol 2018; 105:645-655. [PMID: 30570786 PMCID: PMC6487965 DOI: 10.1002/jlb.3ri1018-400r] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 11/29/2018] [Accepted: 12/01/2018] [Indexed: 12/16/2022] Open
Abstract
Invasive bacterial disease is well described in immunocompromised hosts, including those with malaria infection. One bacterial infection frequently observed in children with Plasmodium falciparum infection is nontyphoidal salmonella (NTS) infection, in which a typically intestinal infection becomes systemic with serious, often fatal, consequences. In this review, we consider the role of malaria‐induced immunoregulatory responses in tipping the balance from tissue homeostasis during malaria infection to risk of invasive NTS. Also, neutrophils are crucial in the clearance of NTS but their ability to mount an oxidative burst and kill intracellular Salmonella is severely compromised during, and for some time after, an acute malaria infection. Here, we summarize the evidence linking malaria and invasive NTS infections; describe the role of neutrophils in clearing NTS infections; review evidence for neutrophil dysfunction in malaria infections; and explore roles of heme oxygenase‐1, IL‐10, and complement in mediating this dysfunction. Finally, given the epidemiological evidence that low density, subclinical malaria infections pose a risk for invasive NTS infections, we consider whether the high prevalence of such infections might underlie the very high incidence of invasive bacterial disease across much of sub‐Saharan Africa.
Collapse
Affiliation(s)
- Jason P Mooney
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, United Kingdom
| | - Lauren J Galloway
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, United Kingdom
| | - Eleanor M Riley
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, United Kingdom
| |
Collapse
|
21
|
Tissue-targeted complement therapeutics. Mol Immunol 2018; 102:120-128. [PMID: 30220307 DOI: 10.1016/j.molimm.2018.06.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 06/04/2018] [Accepted: 06/05/2018] [Indexed: 02/07/2023]
Abstract
Complement activation contributes to the pathogenesis of numerous inflammatory and autoimmune diseases. Therapeutic complement inhibitors have proven effective in several of these diseases and have now entered clinical use. Complement activation has multiple different biologic effects, however, and the currently available drugs can have undesirable side-effects, such as an increased risk of infection. Several different complement inhibitors have been developed that bind to target molecules, thereby concentrating the drug at a specific anatomic site. This approach appears to be both more effective than untargeted drugs and to have fewer side effects. In this article we review different targeting strategies that have been developed and the evidence supporting the use and benefits of targeted drugs.
Collapse
|
22
|
Baker AT, Aguirre-Hernández C, Halldén G, Parker AL. Designer Oncolytic Adenovirus: Coming of Age. Cancers (Basel) 2018; 10:E201. [PMID: 29904022 PMCID: PMC6025169 DOI: 10.3390/cancers10060201] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 06/06/2018] [Accepted: 06/11/2018] [Indexed: 12/26/2022] Open
Abstract
The licensing of talimogene laherparepvec (T-Vec) represented a landmark moment for oncolytic virotherapy, since it provided unequivocal evidence for the long-touted potential of genetically modified replicating viruses as anti-cancer agents. Whilst T-Vec is promising as a locally delivered virotherapy, especially in combination with immune-checkpoint inhibitors, the quest continues for a virus capable of specific tumour cell killing via systemic administration. One candidate is oncolytic adenovirus (Ad); it’s double stranded DNA genome is easily manipulated and a wide range of strategies and technologies have been employed to empower the vector with improved pharmacokinetics and tumour targeting ability. As well characterised clinical and experimental agents, we have detailed knowledge of adenoviruses’ mechanisms of pathogenicity, supported by detailed virological studies and in vivo interactions. In this review we highlight the strides made in the engineering of bespoke adenoviral vectors to specifically infect, replicate within, and destroy tumour cells. We discuss how mutations in genes regulating adenoviral replication after cell entry can be used to restrict replication to the tumour, and summarise how detailed knowledge of viral capsid interactions enable rational modification to eliminate native tropisms, and simultaneously promote active uptake by cancerous tissues. We argue that these designer-viruses, exploiting the viruses natural mechanisms and regulated at every level of replication, represent the ideal platforms for local overexpression of therapeutic transgenes such as immunomodulatory agents. Where T-Vec has paved the way, Ad-based vectors now follow. The era of designer oncolytic virotherapies looks decidedly as though it will soon become a reality.
Collapse
Affiliation(s)
- Alexander T Baker
- Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff CF14 4XN, UK.
| | - Carmen Aguirre-Hernández
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK.
| | - Gunnel Halldén
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK.
| | - Alan L Parker
- Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff CF14 4XN, UK.
| |
Collapse
|
23
|
Stichling N, Suomalainen M, Flatt JW, Schmid M, Pacesa M, Hemmi S, Jungraithmayr W, Maler MD, Freudenberg MA, Plückthun A, May T, Köster M, Fejer G, Greber UF. Lung macrophage scavenger receptor SR-A6 (MARCO) is an adenovirus type-specific virus entry receptor. PLoS Pathog 2018. [PMID: 29522575 PMCID: PMC5862501 DOI: 10.1371/journal.ppat.1006914] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Macrophages are a diverse group of phagocytic cells acting in host protection against stress, injury, and pathogens. Here, we show that the scavenger receptor SR-A6 is an entry receptor for human adenoviruses in murine alveolar macrophage-like MPI cells, and important for production of type I interferon. Scavenger receptors contribute to the clearance of endogenous proteins, lipoproteins and pathogens. Knockout of SR-A6 in MPI cells, anti-SR-A6 antibody or the soluble extracellular SR-A6 domain reduced adenovirus type-C5 (HAdV-C5) binding and transduction. Expression of murine SR-A6, and to a lower extent human SR-A6 boosted virion binding to human cells and transduction. Virion clustering by soluble SR-A6 and proximity localization with SR-A6 on MPI cells suggested direct adenovirus interaction with SR-A6. Deletion of the negatively charged hypervariable region 1 (HVR1) of hexon reduced HAdV-C5 binding and transduction, implying that the viral ligand for SR-A6 is hexon. SR-A6 facilitated macrophage entry of HAdV-B35 and HAdV-D26, two important vectors for transduction of hematopoietic cells and human vaccination. The study highlights the importance of scavenger receptors in innate immunity against human viruses. Macrophages are a diverse group of phagocytic cells acting in host protection against stress, injury, and pathogens. They phenotypically and functionally adapt to their local environment, for example, peritoneal macrophages are distinct from brain-resident microglia, from liver-resident Kupffer cells or lung macrophages in the lung. Airway macrophages are among the first cells to encounter human respiratory viruses, such as adenoviruses. They release pro-inflammatory cytokines, kill pathogens, present antigens, and restore tissues. Yet, interactions of viruses with lung macrophages are poorly understood, and it is unclear, how they lead to infection or virus clearance. Here we identified the murine scavenger receptor SR-A6 as a receptor for a subset of human adenoviruses on alveolar macrophage-like cells, so-called MPI cells. Scavenger receptors comprise a large family of trans-membrane proteins, and contribute to the clearance of endogenous proteins, lipoproteins and pathogens. In a series of robust experimentation, we show that adenoviruses use SR-A6 as an entry receptor for infection of MPI cells, and production of type I interferon. MPI cells are non-transformed, self-renewing macrophages derived from fetal murine liver, and closely resemble adult alveolar macrophages. The results demonstrate that SR-A6 binds virions on the surface of alveolar macrophage-like cells, and leads to infection.
Collapse
MESH Headings
- Adenoviridae Infections/immunology
- Adenoviridae Infections/metabolism
- Adenoviridae Infections/virology
- Adenoviruses, Human/immunology
- Animals
- Humans
- Immunity, Innate
- Lung/immunology
- Lung/metabolism
- Lung/virology
- Macrophages/immunology
- Macrophages/metabolism
- Macrophages/virology
- Macrophages, Alveolar/immunology
- Macrophages, Alveolar/metabolism
- Macrophages, Alveolar/virology
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Knockout
- Protein Binding
- Receptors, Immunologic/genetics
- Receptors, Immunologic/metabolism
- Receptors, Immunologic/physiology
- Virus Internalization
Collapse
Affiliation(s)
- Nicole Stichling
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
- Molecular Life Sciences Graduate School, ETH and University of Zurich, Switzerland
| | - Maarit Suomalainen
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Justin W. Flatt
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Markus Schmid
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Martin Pacesa
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Silvio Hemmi
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Wolfgang Jungraithmayr
- University Hospital Zurich, Institute of Thorax Surgery, Zurich, Switzerland
- present address: Department of Thoracic Surgery, Medical University Brandenburg, Neuruppin, Germany
| | - Mareike D. Maler
- Max-Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- Allergy Research Group, Department of Dermatology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Marina A. Freudenberg
- Max-Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- BIOSS Centre for Biological Signalling Studies, Albert-Ludwigs-Universität, Freiburg, Germany
- Department of Pneumology, Medical Center–University of Freiburg and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Andreas Plückthun
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Tobias May
- Inscreenex GmbH, Inhoffenstr. Brunswick, Germany
| | - Mario Köster
- Helmholtz-Zentrum für Infektionsforschung GmbH, Braunschweig, Germany
| | - György Fejer
- School of Biomedical and Healthcare Sciences, Peninsula Schools of Medicine and Dentistry, University of Plymouth, Plymouth, United Kingdom
| | - Urs F. Greber
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
- * E-mail:
| |
Collapse
|
24
|
Abstract
The interleukin (IL)-1 family of cytokines is currently comprised of 11 members that have pleiotropic functions in inflammation and cancer. IL-1α and IL-1β were the first members of the IL-1 family to be described, and both signal via the same receptor, IL-1R. Over the last decade, much progress has been made in our understanding of biogenesis of IL-1β and its functions in human diseases. Studies from our laboratory and others have highlighted the critical role of nod-like receptors (NLRs) and multi-protein complexes known as inflammasomes in the regulation of IL-1β maturation. Recent studies have increased our appreciation of the role played by IL-1α in inflammatory diseases and cancer. However, the mechanisms that regulate the production of IL-1α and its bioavailability are relatively understudied. In this review, we summarize the distinctive roles played by IL-1α in inflammatory diseases and cancer. We also discuss our current knowledge about the mechanisms that control IL-1α biogenesis and activity, and the major unanswered questions in its biology.
Collapse
Affiliation(s)
- Ankit Malik
- Department of Immunology St. Jude Children’s Research Hospital, Memphis, TN 38105
| | | |
Collapse
|
25
|
Caffrey-Carr AK, Kowalski CH, Beattie SR, Blaseg NA, Upshaw CR, Thammahong A, Lust HE, Tang YW, Hohl TM, Cramer RA, Obar JJ. Interleukin 1α Is Critical for Resistance against Highly Virulent Aspergillus fumigatus Isolates. Infect Immun 2017; 85:e00661-17. [PMID: 28947643 PMCID: PMC5695118 DOI: 10.1128/iai.00661-17] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 09/15/2017] [Indexed: 02/08/2023] Open
Abstract
Heterogeneity among Aspergillus fumigatus isolates results in unique virulence potential and inflammatory responses. How these isolates drive specific immune responses and how this affects fungally induced lung damage and disease outcome are unresolved. We demonstrate that the highly virulent CEA10 strain is able to rapidly germinate within the immunocompetent lung environment, inducing greater lung damage, vascular leakage, and interleukin 1α (IL-1α) release than the low-virulence Af293 strain, which germinates with a lower frequency in this environment. Importantly, the clearance of CEA10 was consequently dependent on IL-1α, in contrast to Af293. The release of IL-1α occurred by a caspase 1/11- and P2XR7-independent mechanism but was dependent on calpain activity. Our finding that early fungal conidium germination drives greater lung damage and IL-1α-dependent inflammation is supported by three independent experimental lines. First, pregermination of Af293 prior to in vivo challenge drives greater lung damage and an IL-1α-dependent neutrophil response. Second, the more virulent EVOL20 strain, derived from Af293, is able to germinate in the airways, leading to enhanced lung damage and IL-1α-dependent inflammation and fungal clearance. Third, primary environmental A. fumigatus isolates that rapidly germinate under airway conditions follow the same trend toward IL-1α dependency. Our data support the hypothesis that A. fumigatus phenotypic variation significantly contributes to disease outcomes.
Collapse
Affiliation(s)
- Alayna K Caffrey-Carr
- Montana State University, Department of Microbiology and Immunology, Bozeman, Montana, USA
- Geisel School of Medicine at Dartmouth, Department of Microbiology and Immunology, Lebanon, New Hampshire, USA
| | - Caitlin H Kowalski
- Geisel School of Medicine at Dartmouth, Department of Microbiology and Immunology, Lebanon, New Hampshire, USA
| | - Sarah R Beattie
- Geisel School of Medicine at Dartmouth, Department of Microbiology and Immunology, Lebanon, New Hampshire, USA
| | - Nathan A Blaseg
- Montana State University, Department of Microbiology and Immunology, Bozeman, Montana, USA
| | | | - Arsa Thammahong
- Geisel School of Medicine at Dartmouth, Department of Microbiology and Immunology, Lebanon, New Hampshire, USA
| | - Hannah E Lust
- Geisel School of Medicine at Dartmouth, Department of Microbiology and Immunology, Lebanon, New Hampshire, USA
| | - Yi-Wei Tang
- Department of Laboratory Medicine, Clinical Microbiology Service, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Department of Medicine, Infectious Disease Service, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Tobias M Hohl
- Department of Medicine, Infectious Disease Service, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Robert A Cramer
- Geisel School of Medicine at Dartmouth, Department of Microbiology and Immunology, Lebanon, New Hampshire, USA
| | - Joshua J Obar
- Geisel School of Medicine at Dartmouth, Department of Microbiology and Immunology, Lebanon, New Hampshire, USA
| |
Collapse
|
26
|
Caspase-11 deficiency impairs neutrophil recruitment and bacterial clearance in the early stage of pulmonary Klebsiella pneumoniae infection. Int J Med Microbiol 2017; 307:490-496. [DOI: 10.1016/j.ijmm.2017.09.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 09/04/2017] [Accepted: 09/11/2017] [Indexed: 01/03/2023] Open
|
27
|
Key Role of the Scavenger Receptor MARCO in Mediating Adenovirus Infection and Subsequent Innate Responses of Macrophages. mBio 2017; 8:mBio.00670-17. [PMID: 28765216 PMCID: PMC5539421 DOI: 10.1128/mbio.00670-17] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The scavenger receptor MARCO is expressed in several subsets of naive tissue-resident macrophages and has been shown to participate in the recognition of various bacterial pathogens. However, the role of MARCO in antiviral defense is largely unexplored. Here, we investigated whether MARCO might be involved in the innate sensing of infection with adenovirus and recombinant adenoviral vectors by macrophages, which elicit vigorous immune responses in vivo. Using cells derived from mice, we show that adenovirus infection is significantly more efficient in MARCO-positive alveolar macrophages (AMs) and in AM-like primary macrophage lines (Max Planck Institute cells) than in MARCO-negative bone marrow-derived macrophages. Using antibodies blocking ligand binding to MARCO, as well as gene-deficient and MARCO-transfected cells, we show that MARCO mediates the rapid adenovirus transduction of macrophages. By enhancing adenovirus infection, MARCO contributes to efficient innate virus recognition through the cytoplasmic DNA sensor cGAS. This leads to strong proinflammatory responses, including the production of interleukin-6 (IL-6), alpha/beta interferon, and mature IL-1α. These findings contribute to the understanding of viral pathogenesis in macrophages and may open new possibilities for the development of tools to influence the outcome of infection with adenovirus or adenovirus vectors. Macrophages play crucial roles in inflammation and defense against infection. Several macrophage subtypes have been identified with differing abilities to respond to infection with both natural adenoviruses and recombinant adenoviral vectors. Adenoviruses are important respiratory pathogens that elicit vigorous innate responses in vitro and in vivo. The cell surface receptors mediating macrophage type-specific adenovirus sensing are largely unknown. The scavenger receptor MARCO is expressed on some subsets of naive tissue-resident macrophages, including lung alveolar macrophages. Its role in antiviral macrophage responses is largely unexplored. Here, we studied whether the differential expression of MARCO might contribute to the various susceptibilities of macrophage subtypes to adenovirus. We demonstrate that MARCO significantly enhances adenovirus infection and innate responses in macrophages. These results help to understand adenoviral pathogenesis and may open new possibilities to influence the outcome of infection with adenoviruses or adenovirus vectors.
Collapse
|
28
|
|
29
|
Alam R, Good J, Rollins D, Verma M, Chu H, Pham TH, Martin RJ. Airway and serum biochemical correlates of refractory neutrophilic asthma. J Allergy Clin Immunol 2017; 140:1004-1014.e13. [PMID: 28163052 PMCID: PMC5540819 DOI: 10.1016/j.jaci.2016.12.963] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 11/03/2016] [Accepted: 12/12/2016] [Indexed: 01/22/2023]
Abstract
Background Despite progress in the diagnosis and management of asthma, many patients have poorly controlled or refractory asthma (RA). The mechanism of this RA is not well understood. Objective We sought to explore the relationship between neutrophils and other biomarkers of RA. Method Sixty patients with RA, 30 patients with nonrefractory asthma (NRA), and 20 healthy subjects were enrolled. We performed a comprehensive characterization of these study subjects, which included laboratory and pulmonary function studies, chest computed tomography, and bronchoscopy with bronchoalveolar lavage (BAL). We analyzed BAL fluid and serum for a total of 244 biomolecules using a multiplex assay and correlated them with clinical and other laboratory parameters. Results RA was significantly different from NRA with regard to pulmonary function indices, bronchial basement membrane thickness, and BAL fluid neutrophil and lymphocyte counts but not eosinophil counts. BAL fluid neutrophil counts negatively and positively correlated with forced vital capacity and age, respectively. Of the 244 biomolecules studied, 52 and 14 biomolecules from BAL fluid and serum, respectively, were significantly different among the study groups. Thirteen of these 52 molecules correlated with BAL fluid neutrophil counts. BAL fluid from 40% of patients with RA was positive for a pathogenic microbe. Infection-negative neutrophilic RA was associated with an increase in levels of select biomarkers of inflammation in the serum, suggesting the presence of systemic inflammation. Conclusions RA was associated with increased numbers of neutrophils and proneutrophilic biomolecules in the airways. Subclinical infection was present in 40% of patients with RA, which likely contributed to neutrophilic inflammation. A subgroup of patients with noninfected neutrophilic RA was associated with systemic inflammation.
Collapse
Affiliation(s)
- Rafeul Alam
- Department of Medicine, National Jewish Health, Denver, Colo.
| | - James Good
- Department of Medicine, National Jewish Health, Denver, Colo
| | - Donald Rollins
- Department of Medicine, National Jewish Health, Denver, Colo
| | - Mukesh Verma
- Department of Medicine, National Jewish Health, Denver, Colo
| | - HongWei Chu
- Department of Medicine, National Jewish Health, Denver, Colo
| | | | | |
Collapse
|
30
|
Liu W, Liu S, Verma M, Zafar I, Good JT, Rollins D, Groshong S, Gorska MM, Martin RJ, Alam R. Mechanism of T H2/T H17-predominant and neutrophilic T H2/T H17-low subtypes of asthma. J Allergy Clin Immunol 2016; 139:1548-1558.e4. [PMID: 27702673 DOI: 10.1016/j.jaci.2016.08.032] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 07/25/2016] [Accepted: 08/16/2016] [Indexed: 12/20/2022]
Abstract
BACKGROUND The mechanism of TH2/TH17-predominant and TH2/TH17-low asthma is unknown. OBJECTIVE We sought to study the immune mechanism of TH2/TH17-predominant and TH2/TH17-low asthma. METHODS In a previously reported cohort of 60 asthmatic patients, 16 patients were immunophenotyped with TH2/TH17-predominant asthma and 22 patients with TH2/TH17-low asthma. We examined bronchoalveolar lavage (BAL) fluid leukocytes, cytokines, mediators, and epithelial cell function for these asthma subgroups. RESULTS Patients with TH2/TH17-predominant asthma had increased IL-1β, IL-6, IL-23, C3a, and serum amyloid A levels in BAL fluid, and these correlated with IL-1β and C3a levels. TH2/TH17 cells expressed higher levels of the IL-1 receptor and phospho-p38 mitogen-activated protein kinase. Anakinra, an IL-1 receptor antagonist protein, inhibited BAL TH2/TH17 cell counts. TH2/TH17-low asthma had 2 distinct subgroups: neutrophilic asthma (45%) and pauci-inflammatory asthma (55%). This contrasted with patients with TH2/TH17-predominant and TH2-predominant asthma, which included neutrophilic asthma in 6% and 0% of patients, respectively. BAL fluid neutrophils strongly correlated with BAL fluid myeloperoxidase, IL-8, IL-1α, IL-6, granulocyte colony-stimulating factor, and GM-CSF levels. Sixty percent of the patients with neutrophilic asthma had a pathogenic microorganism in BAL culture, which suggested a subclinical infection. CONCLUSION We uncovered a critical role for the IL-1β pathway in patients with TH2/TH17-predminant asthma. A subgroup of patients with TH2/TH17-low asthma had neutrophilic asthma and increased BAL fluid IL-1α, IL-6, IL-8, granulocyte colony-stimulating factor, and GM-CSF levels. IL-1α was directly involved in IL-8 production and likely contributed to neutrophilic asthma. Sixty percent of neutrophilic patients had a subclinical infection.
Collapse
Affiliation(s)
- Weimin Liu
- Department of Medicine, Division of Allergy & Immunology, and Division of Pulmonary and Critical Care Medicine, National Jewish Health, Denver, Colo
| | - Sucai Liu
- Department of Medicine, Division of Allergy & Immunology, and Division of Pulmonary and Critical Care Medicine, National Jewish Health, Denver, Colo
| | - Mukesh Verma
- Department of Medicine, Division of Allergy & Immunology, and Division of Pulmonary and Critical Care Medicine, National Jewish Health, Denver, Colo
| | - Iram Zafar
- Department of Medicine, Division of Allergy & Immunology, and Division of Pulmonary and Critical Care Medicine, National Jewish Health, Denver, Colo
| | - James T Good
- Department of Medicine, Division of Allergy & Immunology, and Division of Pulmonary and Critical Care Medicine, National Jewish Health, Denver, Colo; School of Medicine, University of Colorado Denver, Denver, Colo
| | - Donald Rollins
- Department of Medicine, Division of Allergy & Immunology, and Division of Pulmonary and Critical Care Medicine, National Jewish Health, Denver, Colo; School of Medicine, University of Colorado Denver, Denver, Colo
| | - Stephen Groshong
- Department of Medicine, Division of Allergy & Immunology, and Division of Pulmonary and Critical Care Medicine, National Jewish Health, Denver, Colo; School of Medicine, University of Colorado Denver, Denver, Colo
| | - Magdalena M Gorska
- Department of Medicine, Division of Allergy & Immunology, and Division of Pulmonary and Critical Care Medicine, National Jewish Health, Denver, Colo; School of Medicine, University of Colorado Denver, Denver, Colo
| | - Richard J Martin
- Department of Medicine, Division of Allergy & Immunology, and Division of Pulmonary and Critical Care Medicine, National Jewish Health, Denver, Colo; School of Medicine, University of Colorado Denver, Denver, Colo
| | - Rafeul Alam
- Department of Medicine, Division of Allergy & Immunology, and Division of Pulmonary and Critical Care Medicine, National Jewish Health, Denver, Colo; School of Medicine, University of Colorado Denver, Denver, Colo.
| |
Collapse
|
31
|
Atasheva S, Shayakhmetov DM. Adenovirus sensing by the immune system. Curr Opin Virol 2016; 21:109-113. [PMID: 27639089 DOI: 10.1016/j.coviro.2016.08.017] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 08/30/2016] [Accepted: 08/31/2016] [Indexed: 02/06/2023]
Abstract
The host immune system developed multiple ways for recognition of viral pathogens. Upon disseminated adenovirus infection, the immune system senses adenovirus invasion from the moment it enters the bloodstream. The soluble blood factors, FX, antibodies, and complement, can bind and activate plethora of host-protective immune responses. Adenovirus binding to the cellular β3 integrin and endosomal membrane rupture trigger activation of IL-1α/IL-1R1 proinflammatory cascade leading to attraction of cytotoxic immune cells to the site of infection. Upon cell entry, adenovirus exposes its DNA genome in the cytoplasm and triggers DNA sensors signaling. Even when inside the nucleus, the specialized cellular machinery that recognizes the double-strand DNA breaks become activated and triggers viral DNA replication arrest. Thus, the host employs very diverse mechanisms to prevent viral dissemination.
Collapse
Affiliation(s)
- Svetlana Atasheva
- Department of Pediatrics, Division of Rheumatology, Emory University, 1760 Haygood Drive, Atlanta, GA 30322, USA.
| | - Dmitry M Shayakhmetov
- Department of Pediatrics, Division of Rheumatology, Emory University, 1760 Haygood Drive, Atlanta, GA 30322, USA; Department of Medicine, Lowance Center for Human Immunology, Emory Children's Center for Transplantation and Immune Mediated Disorders, Emory University, 1760 Haygood Drive, Atlanta, GA 30322, USA.
| |
Collapse
|
32
|
In vivo transduction of primitive mobilized hematopoietic stem cells after intravenous injection of integrating adenovirus vectors. Blood 2016; 128:2206-2217. [PMID: 27554082 DOI: 10.1182/blood-2016-04-711580] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 08/10/2016] [Indexed: 12/31/2022] Open
Abstract
Current protocols for hematopoietic stem/progenitor cell (HSPC) gene therapy, involving the transplantation of ex vivo genetically modified HSPCs are complex and not without risk for the patient. We developed a new approach for in vivo HSPC transduction that does not require myeloablation and transplantation. It involves subcutaneous injections of granulocyte-colony-stimulating factor/AMD3100 to mobilize HSPCs from the bone marrow (BM) into the peripheral blood stream and the IV injection of an integrating, helper-dependent adenovirus (HD-Ad5/35++) vector system. These vectors target CD46, a receptor that is uniformly expressed on HSPCs. We demonstrated in human CD46 transgenic mice and immunodeficient mice with engrafted human CD34+ cells that HSPCs transduced in the periphery home back to the BM where they stably express the transgene. In hCD46 transgenic mice, we showed that our in vivo HSPC transduction approach allows for the stable transduction of primitive HSPCs. Twenty weeks after in vivo transduction, green fluorescent protein (GFP) marking in BM HSPCs (Lin-Sca1+Kit- cells) in most of the mice was in the range of 5% to 10%. The percentage of GFP-expressing primitive HSPCs capable of forming multilineage progenitor colonies (colony-forming units [CFUs]) increased from 4% of all CFUs at week 4 to 16% at week 12, indicating transduction and expansion of long-term surviving HSPCs. Our approach was well tolerated, did not result in significant transduction of nonhematopoietic tissues, and was not associated with genotoxicty. The ability to stably genetically modify HSPCs without the need of myeloablative conditioning is relevant for a broader clinical application of gene therapy.
Collapse
|
33
|
Di Paolo NC, Shayakhmetov DM. Interleukin 1α and the inflammatory process. Nat Immunol 2016; 17:906-13. [PMID: 27434011 PMCID: PMC5152572 DOI: 10.1038/ni.3503] [Citation(s) in RCA: 411] [Impact Index Per Article: 45.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 05/31/2016] [Indexed: 02/08/2023]
Abstract
Inflammation occurs after disruption of tissue homeostasis by cell stress, injury or infection and ultimately involves the recruitment and retention of cells of hematopoietic origin, which arrive at the affected sites to resolve damage and initiate repair. Interleukin 1α (IL-1α) and IL-1β are equally potent inflammatory cytokines that activate the inflammatory process, and their deregulated signaling causes devastating diseases manifested by severe acute or chronic inflammation. Although much attention has been given to understanding the biogenesis of IL-1β, the biogenesis of IL-1α and its distinctive role in the inflammatory process remain poorly defined. In this review we examine key aspects of IL-1α biology and regulation and discuss its emerging importance in the initiation and maintenance of inflammation that underlie the pathology of many human diseases.
Collapse
Affiliation(s)
- Nelson C Di Paolo
- Lowance Center for Human Immunology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Dmitry M Shayakhmetov
- Lowance Center for Human Immunology, Emory University School of Medicine, Atlanta, Georgia, USA
- Center for Transplantation and Immune-mediated Disorders, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
- Emory Vaccine Center, Departments of Pediatrics and Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
34
|
Caffrey AK, Obar JJ. Alarmin(g) the innate immune system to invasive fungal infections. Curr Opin Microbiol 2016; 32:135-143. [PMID: 27351354 DOI: 10.1016/j.mib.2016.06.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 05/04/2016] [Accepted: 06/07/2016] [Indexed: 11/24/2022]
Abstract
Fungi encounter numerous stresses in a mammalian host, including the immune system, which they must adapt to in order to grow and cause disease. The host immune system tunes its response to the threat level posed by the invading pathogen. We discuss recent findings on how interleukin (IL)-1 signaling is central to tuning the immune response to the virulence potential of invasive fungi, as well as other pathogens. Moreover, we discuss fungal factors that may drive tissue invasion and destruction that regulate IL-1 cytokine release. Moving forward understanding the mechanisms of fungal adaption to the host, together with understanding how the host innate immune system recognizes invading fungal pathogens will increase our therapeutic options for treatment of invasive fungal infections.
Collapse
Affiliation(s)
- Alayna K Caffrey
- Montana State University, Department of Microbiology & Immunology, Bozeman, MT 59718, United States; Geisel School of Medicine at Dartmouth, Department of Microbiology & Immunology, Lebanon, NH 03756, United States
| | - Joshua J Obar
- Geisel School of Medicine at Dartmouth, Department of Microbiology & Immunology, Lebanon, NH 03756, United States.
| |
Collapse
|
35
|
NADPH oxidase controls neutrophilic response to sterile inflammation in mice by regulating the IL-1α/G-CSF axis. Blood 2015; 126:2724-33. [PMID: 26443623 DOI: 10.1182/blood-2015-05-644773] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Accepted: 10/02/2015] [Indexed: 02/07/2023] Open
Abstract
The leukocyte nicotinamide adenine dinucleotide phosphate (NADPH) oxidase generates reactive oxygen species essential in microbial killing and regulation of inflammation. Inactivating mutations in this enzyme lead to chronic granulomatous disease (CGD), associated with increased susceptibility to both pyogenic infections and to inflammatory disorders. The role of the NADPH oxidase in regulating inflammation driven by nonmicrobial stimuli is poorly understood. Here, we show that NADPH oxidase deficiency enhances the early local release of interleukin-1α (IL-1α) in response to damaged cells, promoting an excessive granulocyte colony-stimulating factor (G-CSF)-regulated neutrophilic response and prolonged inflammation. In peritoneal inflammation elicited by tissue injury, X-linked Cybb-null (X-CGD) mice exhibited increased release of IL-1α and IL-1 receptor -mediated G-CSF production. In turn, higher levels of systemic G-CSF increased peripheral neutrophilia, which amplified neutrophilic peritoneal inflammation in X-CGD mice. Dampening early neutrophil recruitment by neutralization of IL-1α, G-CSF, or neutrophil depletion itself promoted resolution of otherwise prolonged inflammation in X-CGD. IL-1β played little role. Thus, we identified an excessive IL-1α/G-CSF response as a major driver of enhanced sterile inflammation in CGD in the response to damaged cells. More broadly, these results provide new insights into the regulation of sterile inflammation, and identify the NADPH oxidase in regulating the amplitude of the early neutrophilic response.
Collapse
|
36
|
Schraufstatter IU, Khaldoyanidi SK, DiScipio RG. Complement activation in the context of stem cells and tissue repair. World J Stem Cells 2015; 7:1090-1108. [PMID: 26435769 PMCID: PMC4591784 DOI: 10.4252/wjsc.v7.i8.1090] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 07/27/2015] [Indexed: 02/06/2023] Open
Abstract
The complement pathway is best known for its role in immune surveillance and inflammation. However, its ability of opsonizing and removing not only pathogens, but also necrotic and apoptotic cells, is a phylogenetically ancient means of initiating tissue repair. The means and mechanisms of complement-mediated tissue repair are discussed in this review. There is increasing evidence that complement activation contributes to tissue repair at several levels. These range from the chemo-attraction of stem and progenitor cells to areas of complement activation, to increased survival of various cell types in the presence of split products of complement, and to the production of trophic factors by cells activated by the anaphylatoxins C3a and C5a. This repair aspect of complement biology has not found sufficient appreciation until recently. The following will examine this aspect of complement biology with an emphasis on the anaphylatoxins C3a and C5a.
Collapse
|
37
|
|
38
|
Cai K, Wan Y, Wang Z, Wang Y, Zhao X, Bao X. C5a promotes the proliferation of human nasopharyngeal carcinoma cells through PCAF-mediated STAT3 acetylation. Oncol Rep 2014; 32:2260-6. [PMID: 25174320 DOI: 10.3892/or.2014.3420] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 07/29/2014] [Indexed: 12/16/2022] Open
Abstract
The anaphylatoxin C5a is a chemoattractant that can induce various inflammatory responses in vivo via the C5a receptor (C5aR). There is emerging evidence that C5a is generated in the cancer microenvironment. However, the role of C5a in human nasopharyngeal carcinoma (NPC) remains largely unclear. Thus, the present study aimed to examine the direct influence of C5a stimulation on the proliferation of human NPC cells and to identify the underlying molecular mechanisms. The effects of C5a stimulation on the proliferation of human NPC cells were studied in vitro, and P300/CBP-associated factor (PCAF)‑mediated signal transducer and activator of transcription 3 (STAT3) acetylation and its role in regulating the proliferation of NPC cells was subsequently explored. Our results demonstrated that C5a stimulation increased the proliferation of human NPC cells in vitro. STAT3 acetylation was further found to be enhanced in human NPC cells induced by C5a. Moreover, PCAF induction was required for STAT3 acetylation in human NPC cells by exposure to C5a. Functionally, PCAF-mediated STAT3 acetylation contributed to the proliferation of human NPC cells stimulated by C5a. These results illustrate the novel activity of the C5a-C5aR axis that promotes human NPC cell proliferation through PCAF‑mediated STAT3 acetylation. This may provide a potential strategy for treating human NPC through inhibition of C5a or its receptors.
Collapse
Affiliation(s)
- Kemin Cai
- Department of Otorhinolaryngology Head and Neck Surgery, Taizhou People's Hospital, Taizhou, Jiangsu 225300, P.R. China
| | - Yi Wan
- Department of Neurosurgery, Suzhou Kowloon Hospital Affiliated with Shanghai Jiao Tong University School of Medicine, Suzhou, Jiangsu 215021, P.R. China
| | - Zhimin Wang
- Department of Neurosurgery, Suzhou Kowloon Hospital Affiliated with Shanghai Jiao Tong University School of Medicine, Suzhou, Jiangsu 215021, P.R. China
| | - Yu Wang
- Department of Otorhinolaryngology Head and Neck Surgery, Taizhou People's Hospital, Taizhou, Jiangsu 225300, P.R. China
| | - Xiaojun Zhao
- Department of Otorhinolaryngology Head and Neck Surgery, Taizhou People's Hospital, Taizhou, Jiangsu 225300, P.R. China
| | - Xueli Bao
- Department of Otorhinolaryngology Head and Neck Surgery, Taizhou People's Hospital, Taizhou, Jiangsu 225300, P.R. China
| |
Collapse
|