1
|
EFSA Panel on Biological Hazards (BIOHAZ), Allende A, Alvarez‐Ordóñez A, Bortolaia V, Bover‐Cid S, De Cesare A, Dohmen W, Guillier L, Herman LM, Jacxsens L, Mughini‐Gras L, Nauta M, Ottoson J, Peixe L, Perez‐Rodriguez F, Skandamis P, Suffredini E, Andreoletti O, Béringue V, Griffin J, Simmons M, Kryemadhi K, Lanfranchi B, Ortiz‐Pelaez A, Nonno R. Effect of incineration, co-incineration and combustion on TSE hazards in category 1 animal by-products. EFSA J 2025; 23:e9435. [PMID: 40438196 PMCID: PMC12117338 DOI: 10.2903/j.efsa.2025.9435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2025] Open
Abstract
The European Commission requested EFSA to assess the effect of incineration, co-incineration and combustion of Category 1 animal by-products (ABP) on the BSE/TSE hazards in ash resulting from these treatments. The presence of residual TSE hazards is assessed by detection of prion infectivity or seeding activity. TSE agents or prions are challenging to inactivate completely using heat-based methods. Different TSE strains exhibit varying degrees of thermoresistance. Based on available studies at temperatures 120-134°C, the C-BSE strain is more thermoresistant than other evaluated strains. The vast majority of Category 1 ABP is rendered into 'meat and bone meal' prior to incineration/co-incineration/combustion. Scenarios involving co-incineration for cement production do not need to be considered because all ash is incorporated into the cement. It is not possible to generalise the time/temperature combinations to which Category 1 ABP are subjected across all processes. Due to the challenges in precisely measuring the temperature and residence time in industrial systems, and the wide range of system designs and operating conditions, it can only be assumed that Category 1 ABP are exposed to at least the legal requirements as determined by the conditions of the gas produced or injected into the process: 850°C for 2 s or 1100°C for 0.2 s. The limited sensitivity of the method used in a study involving C-BSE at 1000°C for 20 min prevented a conclusive exclusion of residual C-BSE prions.. Therefore, it is not possible to exclude - with high certainty (> 99%) - the presence of residual BSE/TSE hazards in ash produced from the incineration, co-incineration or combustion of Category 1 ABP. It is recommended to generate data on the actual reduction of infectivity in 'meat and bone meal' spiked with thermoresistant TSE field strains after treatment with the time/temperature combinations required by the legislation or specific industry processes.
Collapse
|
2
|
Salamat MKF, Hunter N, Houston EF. No evidence of subclinical infection in sheep surviving oral challenge with prions. J Gen Virol 2025; 106:002087. [PMID: 40116281 PMCID: PMC11928478 DOI: 10.1099/jgv.0.002087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 02/28/2025] [Indexed: 03/23/2025] Open
Abstract
Variant Creutzfeldt-Jakob disease (vCJD) is a fatal zoonotic disease caused by the ingestion of bovine spongiform encephalopathy (BSE)-infected meat products. Although the number of vCJD cases due to dietary exposure has significantly declined, the true burden of subclinical infections remains uncertain. Several large-scale surveys using appendix tissue samples have indicated the presence of abnormal prion protein (PrPSc; Sc for scrapie) in lymphoid tissue of a small proportion of the UK population. These may represent silent carriers of infection, with the potential to contribute to transmission, persistence and re-emergence of vCJD. Previously, we showed that subclinical infection is a frequent outcome of low-dose prion exposure by blood transfusion in sheep. To determine whether subclinical infection was also found following low-dose exposure by another clinically relevant route for humans, we screened archived tissues from sheep orally challenged with a range of doses of BSE, which did not show clinical or pathological signs of disease after several years of follow-up post-infection. Using a highly sensitive protein misfolding cyclic amplification assay, we were unable to detect PrPSc in the lymph node/tonsil of 15 sheep, or in a wider range of lymphoid tissues and brain (medulla oblongata) from a subset of 5 sheep. Our findings suggest that the route of infection/exposure may significantly influence the probability of establishing subclinical infection, with the oral route apparently much less efficient than intravenous infection by blood transfusion in sheep.
Collapse
Affiliation(s)
- M. Khalid F. Salamat
- Royal (Dick) School of Veterinary Studies, The Roslin Institute, The University of Edinburgh, Edinburgh, Midlothian, UK
| | - Nora Hunter
- Royal (Dick) School of Veterinary Studies, The Roslin Institute, The University of Edinburgh, Edinburgh, Midlothian, UK
| | - E. Fiona Houston
- Royal (Dick) School of Veterinary Studies, The Roslin Institute, The University of Edinburgh, Edinburgh, Midlothian, UK
| |
Collapse
|
3
|
Thomas CM, Salamat MKF, Almela F, Cooper JK, Ladhani K, Arnold ME, Bougard D, Andréoletti O, Houston EF. Longitudinal detection of prion infection in preclinical sheep blood samples compared using 3 assays. Blood 2024; 144:1962-1973. [PMID: 39172756 DOI: 10.1182/blood.2024024649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/15/2024] [Accepted: 07/31/2024] [Indexed: 08/24/2024] Open
Abstract
ABSTRACT Variant Creutzfeldt-Jakob disease (vCJD) is a devastating disease caused by transmission of bovine spongiform encephalopathy to humans. Although vCJD cases are now rare, evidence from appendix surveys suggests that a small proportion of the United Kingdom population may be infected without showing signs of disease. These "silent" carriers could present a risk of iatrogenic vCJD transmission through medical procedures or blood/organ donation, and currently there are no validated tests to identify infected asymptomatic individuals using easily accessible samples. To address this issue, we evaluated the performance of 3 blood-based assays in a blinded study, using longitudinal sample series from a well-established large animal model of vCJD. The assays rely on amplification of misfolded prion protein (PrPSc; a marker of prion infection) and include real-time quaking-induced conversion (RT-QuIC), and 2 versions of protein misfolding cyclic amplification (PMCA). Although diagnostic sensitivity was higher for both PMCA assays (100%) than RT-QuIC (61%), all 3 assays detected prion infection in blood samples collected 26 months before the onset of clinical signs and gave no false-positive results. Parallel estimation of blood prion infectivity titers in a sensitive transgenic mouse line showed positive correlation of infectivity with PrPSc detection by the assays, suggesting that they are suitable for detection of asymptomatic vCJD infection in the human population. This study represents, to our knowledge, the largest comparison to date of preclinical prion detection in blood samples from a relevant animal model. The outcomes will guide efforts to improve early detection of prion disease and reduce infection risks in humans.
Collapse
Affiliation(s)
- Charlotte M Thomas
- The Roslin Institute, The Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Edinburgh, United Kingdom
| | - M Khalid F Salamat
- The Roslin Institute, The Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Edinburgh, United Kingdom
| | | | - Jillian K Cooper
- Medicines and Healthcare Products Regulatory Agency, South Mimms, United Kingdom
| | - Kaetan Ladhani
- Medicines and Healthcare Products Regulatory Agency, South Mimms, United Kingdom
| | - Mark E Arnold
- Animal and Plant Health Agency, New Haw, United Kingdom
| | | | - Olivier Andréoletti
- Unité Mixte de Recherche INRAe/ENVT 1225 Interactions Hôtes Agents Pathogènes, École Nationale Vétérinaire de Toulouse, Toulouse, France
| | - E Fiona Houston
- The Roslin Institute, The Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
4
|
Gregori L. A diagnostic blood test for prion diseases. Blood 2024; 144:1853-1854. [PMID: 39480412 DOI: 10.1182/blood.2024026431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024] Open
|
5
|
Peden AH, Libori A, Ritchie DL, Yull H, Smith C, Kanguru L, Molesworth A, Knight R, Barria MA. Enhanced Creutzfeldt-Jakob disease surveillance in the older population: Assessment of a protocol for screening brain tissue donations for prion disease. Brain Pathol 2024; 34:e13214. [PMID: 37771100 PMCID: PMC10901620 DOI: 10.1111/bpa.13214] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 09/18/2023] [Indexed: 09/30/2023] Open
Abstract
Human prion diseases, including Creutzfeldt-Jakob disease (CJD), occur in sporadic, genetic, and acquired forms. Variant Creutzfeldt-Jakob disease (vCJD) first reported in 1996 in the United Kingdom (UK), resulted from contamination of food with bovine spongiform encephalopathy. There is a concern that UK national surveillance mechanisms might miss some CJD cases (including vCJD), particularly in the older population where other neurodegenerative disorders are more prevalent. We developed a highly sensitive protocol for analysing autopsy brain tissue for the misfolded prion protein (PrPSc ) associated with prion disease, which could be used to screen for prion disease in the elderly. Brain tissue samples from 331 donors to the Edinburgh Brain and Tissue Bank (EBTB), from 2005 to 2022, were analysed, using immunohistochemical analysis on fixed tissue, and five biochemical tests on frozen specimens from six brain regions, based on different principles for detecting PrPSc . An algorithm was established for classifying the biochemical results. To test the effectiveness of the protocol, several neuropathologically confirmed prion disease controls, including vCJD, were included and blinded in the study cohort. On unblinding, all the positive control cases had been correctly identified. No other cases tested positive; our analysis uncovered no overlooked prion disease cases. Our algorithm for classifying cases was effective for handling anomalous biochemical results. An overall analysis suggested that a reduced biochemical protocol employing only three of the five tests on only two brain tissue regions gave sufficient sensitivity and specificity. We conclude that this protocol may be useful as a UK-wide screening programme for human prion disease in selected brains from autopsies in the elderly. Further improvements to the protocol were suggested by enhancements of the in vitro conversion assays made during the course of this study.
Collapse
Affiliation(s)
- Alexander H. Peden
- National CJD Research & Surveillance Unit (NCJDRSU), Centre for Clinical Brain SciencesThe University of EdinburghEdinburghUnited Kingdom
| | - Adriana Libori
- National CJD Research & Surveillance Unit (NCJDRSU), Centre for Clinical Brain SciencesThe University of EdinburghEdinburghUnited Kingdom
| | - Diane L. Ritchie
- National CJD Research & Surveillance Unit (NCJDRSU), Centre for Clinical Brain SciencesThe University of EdinburghEdinburghUnited Kingdom
| | - Helen Yull
- National CJD Research & Surveillance Unit (NCJDRSU), Centre for Clinical Brain SciencesThe University of EdinburghEdinburghUnited Kingdom
| | - Colin Smith
- National CJD Research & Surveillance Unit (NCJDRSU), Centre for Clinical Brain SciencesThe University of EdinburghEdinburghUnited Kingdom
- Edinburgh Brain Bank (EBB), Centre for Clinical Brain SciencesUniversity of EdinburghEdinburghUnited Kingdom
| | - Lovney Kanguru
- National CJD Research & Surveillance Unit (NCJDRSU), Centre for Clinical Brain SciencesThe University of EdinburghEdinburghUnited Kingdom
| | - Anna Molesworth
- National CJD Research & Surveillance Unit (NCJDRSU), Centre for Clinical Brain SciencesThe University of EdinburghEdinburghUnited Kingdom
| | - Richard Knight
- National CJD Research & Surveillance Unit (NCJDRSU), Centre for Clinical Brain SciencesThe University of EdinburghEdinburghUnited Kingdom
| | - Marcelo A. Barria
- National CJD Research & Surveillance Unit (NCJDRSU), Centre for Clinical Brain SciencesThe University of EdinburghEdinburghUnited Kingdom
| |
Collapse
|
6
|
Zerr I, Ladogana A, Mead S, Hermann P, Forloni G, Appleby BS. Creutzfeldt-Jakob disease and other prion diseases. Nat Rev Dis Primers 2024; 10:14. [PMID: 38424082 DOI: 10.1038/s41572-024-00497-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/22/2024] [Indexed: 03/02/2024]
Abstract
Prion diseases share common clinical and pathological characteristics such as spongiform neuronal degeneration and deposition of an abnormal form of a host-derived protein, termed prion protein. The characteristic features of prion diseases are long incubation times, short clinical courses, extreme resistance of the transmissible agent to degradation and lack of nucleic acid involvement. Sporadic and genetic forms of prion diseases occur worldwide, of which genetic forms are associated with mutations in PRNP. Human to human transmission of these diseases has occurred due to iatrogenic exposure, and zoonotic forms of prion diseases are linked to bovine disease. Significant progress has been made in the diagnosis of these disorders. Clinical tools for diagnosis comprise brain imaging and cerebrospinal fluid tests. Aggregation assays for detection of the abnormally folded prion protein have a clear potential to diagnose the disease in peripherally accessible biofluids. After decades of therapeutic nihilism, new treatment strategies and clinical trials are on the horizon. Although prion diseases are relatively rare disorders, understanding their pathogenesis and mechanisms of prion protein misfolding has significantly enhanced the field in research of neurodegenerative diseases.
Collapse
Affiliation(s)
- Inga Zerr
- National Reference Center for CJD Surveillance, Department of Neurology, University Medical Center, Georg August University, Göttingen, Germany.
| | - Anna Ladogana
- Department of Neuroscience, Istituto Superiore di Sanità, Rome, Italy
| | - Simon Mead
- MRC Prion Unit at UCL, Institute of Prion Diseases, London, UK
| | - Peter Hermann
- National Reference Center for CJD Surveillance, Department of Neurology, University Medical Center, Georg August University, Göttingen, Germany
| | - Gianluigi Forloni
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Brian S Appleby
- Departments of Neurology, Psychiatry and Pathology, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
7
|
Pritzkow S, Ramirez F, Lyon A, Schulz PE, Appleby B, Moda F, Ramirez S, Notari S, Gambetti P, Soto C. Detection of prions in the urine of patients affected by sporadic Creutzfeldt-Jakob disease. Ann Clin Transl Neurol 2023; 10:2316-2323. [PMID: 37814583 PMCID: PMC10723238 DOI: 10.1002/acn3.51919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 09/25/2023] [Indexed: 10/11/2023] Open
Abstract
OBJECTIVE Currently, it is unknown whether infectious prions are present in peripheral tissues and biological fluids of patients affected by sporadic Creutzfeldt-Jakob disease (sCJD), the most common prion disorder in humans. This represents a potential risk for inter-individual prion infection. The main goal of this study was to evaluate the presence of prions in urine of patients suffering from the major subtypes of sCJD. METHODS Urine samples from sCJD patients spanning the six major subtypes were tested. As controls, we used urine samples from people affected by other neurological or neurodegenerative diseases as well as healthy controls. These samples were analyzed blinded. The presence of prions was detected by a modified version of the PMCA technology, specifically optimized for high sensitive detection of sCJD prions. RESULTS The PMCA assay was first optimized to detect low quantities of prions in diluted brain homogenates from patients affected by all subtypes of sCJD spiked into healthy urine. Twenty-nine of the 81 patients affected by sCJD analyzed in this study were positive by PMCA testing, whereas none of the 160 controls showed any signal. These results indicate a 36% sensitivity and 100% specificity. The subtypes with the highest positivity rate were VV1 and VV2, which combined account for about 15-20% of all sCJD cases, and no detection was observed in MV1 and MM2. INTERPRETATION Our findings indicate that potentially infectious prions are secreted in urine of some sCJD patients, suggesting a possible risk for inter-individual transmission. Prion detection in urine might be used as a noninvasive preliminary screening test to detect sCJD.
Collapse
Affiliation(s)
- Sandra Pritzkow
- Department of Neurology, Mitchell Center for Alzheimer's Disease and Related Brain DisordersUniversity of Texas McGovern Medical School at HoustonHoustonTexasUSA
| | - Frank Ramirez
- Department of Neurology, Mitchell Center for Alzheimer's Disease and Related Brain DisordersUniversity of Texas McGovern Medical School at HoustonHoustonTexasUSA
| | - Adam Lyon
- Department of Neurology, Mitchell Center for Alzheimer's Disease and Related Brain DisordersUniversity of Texas McGovern Medical School at HoustonHoustonTexasUSA
| | - Paul E. Schulz
- Department of Neurology, Mitchell Center for Alzheimer's Disease and Related Brain DisordersUniversity of Texas McGovern Medical School at HoustonHoustonTexasUSA
| | - Brian Appleby
- Department of PathologyCase Western Reserve UniversityClevelandOhioUSA
| | - Fabio Moda
- Division of Neurology 5 – NeuropathologyFondazione IRCCS Istituto Neurologico Carlo BestaMilanItaly
| | - Santiago Ramirez
- Department of Neurology, Mitchell Center for Alzheimer's Disease and Related Brain DisordersUniversity of Texas McGovern Medical School at HoustonHoustonTexasUSA
| | - Silvio Notari
- Department of PathologyCase Western Reserve UniversityClevelandOhioUSA
| | | | - Claudio Soto
- Department of Neurology, Mitchell Center for Alzheimer's Disease and Related Brain DisordersUniversity of Texas McGovern Medical School at HoustonHoustonTexasUSA
| |
Collapse
|
8
|
Thomas CM, Salamat MKF, de Wolf C, McCutcheon S, Blanco ARA, Manson JC, Hunter N, Houston EF. Development of a sensitive real-time quaking-induced conversion (RT-QuIC) assay for application in prion-infected blood. PLoS One 2023; 18:e0293845. [PMID: 37917783 PMCID: PMC10621866 DOI: 10.1371/journal.pone.0293845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 10/18/2023] [Indexed: 11/04/2023] Open
Abstract
Efforts to prevent human-to-human transmission of variant Creutzfeldt-Jakob disease (vCJD) by contaminated blood would be aided by the development of a sensitive diagnostic test that could be routinely used to screen blood donations. As blood samples from vCJD patients are extremely rare, here we describe the optimisation of real-time quaking-induced conversion (RT-QuIC) for detection of PrPSc (misfolded prion protein, a marker of prion infection) in blood samples from an established large animal model of vCJD, sheep experimentally infected with bovine spongiform encephalopathy (BSE). Comparative endpoint titration experiments with RT-QuIC, miniaturized bead protein misfolding cyclic amplification (mb-PMCA) and intracerebral inoculation of a transgenic mouse line expressing sheep PrP (tgOvARQ), demonstrated highly sensitive detection of PrPSc by RT-QuIC in a reference sheep brain homogenate. Upon addition of a capture step with iron oxide beads, the RT-QuIC assay was able to detect PrPSc in whole blood samples from BSE-infected sheep up to two years before disease onset. Both RT-QuIC and mb-PMCA also demonstrated sensitive detection of PrPSc in a reference vCJD-infected human brain homogenate, suggesting that either assay may be suitable for application to human blood samples. Our results support the further development and evaluation of RT-QuIC as a diagnostic or screening test for vCJD.
Collapse
Affiliation(s)
- Charlotte M. Thomas
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian, United Kingdom
| | - M. Khalid F. Salamat
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian, United Kingdom
| | - Christopher de Wolf
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian, United Kingdom
| | - Sandra McCutcheon
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian, United Kingdom
| | - A. Richard Alejo Blanco
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian, United Kingdom
| | - Jean C. Manson
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian, United Kingdom
| | - Nora Hunter
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian, United Kingdom
| | - E. Fiona Houston
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian, United Kingdom
| |
Collapse
|
9
|
Yakovleva O, Pilant T, Asher DM, Gregori L. Kinetics of Abnormal Prion Protein in Blood of Transgenic Mice Experimentally Infected by Multiple Routes with the Agent of Variant Creutzfeldt-Jakob Disease. Viruses 2023; 15:1466. [PMID: 37515154 PMCID: PMC10384726 DOI: 10.3390/v15071466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/21/2023] [Accepted: 06/23/2023] [Indexed: 07/30/2023] Open
Abstract
Transmissible spongiform encephalopathies (TSEs) or prion diseases are characterized by the accumulation in affected tissues of the abnormal prion protein PrPTSE. We previously demonstrated PrPTSE in the blood of macaques experimentally infected with variant Creutzfeldt-Jakob disease (vCJD), a human TSE, months to years prior to clinical onset. That work supported the prospect of using PrPTSE as a blood biomarker to detect vCJD and possibly other human TSEs before the onset of overt illness. However, our results also raised questions about the origin of PrPTSE detected in blood early after inoculation and the effects of dose and route on the timing of the appearance of PrPTSE. To investigate these questions, we inoculated vCJD-susceptible transgenic mice and non-infectable prion protein-knockout mice under inoculation conditions resembling those used in macaques, with additional controls. We assayed PrPTSE in mouse blood using the protein misfolding cyclic amplification (PMCA) method. PrPTSE from the inoculum cleared from the blood of all mice before 2 months post-inoculation (mpi). Mouse PrPTSE generated de novo appeared in blood after 2 mpi. These results were consistent regardless of dose or inoculation route. We also demonstrated that a commercial ELISA-like PrPTSE test detected and quantified PMCA products and provided a useful alternative to Western blots.
Collapse
Affiliation(s)
- Oksana Yakovleva
- U.S. Food and Drug Administration, Center for Biologics Evaluation and Research, Silver Spring, MD 20993, USA
| | - Teresa Pilant
- U.S. Food and Drug Administration, Center for Biologics Evaluation and Research, Silver Spring, MD 20993, USA
| | - David M Asher
- U.S. Food and Drug Administration, Center for Biologics Evaluation and Research, Silver Spring, MD 20993, USA
| | - Luisa Gregori
- U.S. Food and Drug Administration, Center for Biologics Evaluation and Research, Silver Spring, MD 20993, USA
| |
Collapse
|
10
|
Inzalaco HN, Bravo-Risi F, Morales R, Walsh DP, Storm DJ, Pedersen JA, Turner WC, Lichtenberg SS. Ticks harbor and excrete chronic wasting disease prions. Sci Rep 2023; 13:7838. [PMID: 37188858 DOI: 10.1038/s41598-023-34308-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 04/27/2023] [Indexed: 05/17/2023] Open
Abstract
Chronic wasting disease (CWD) is a fatal neurodegenerative disease caused by infectious prions (PrPCWD) affecting cervids. Circulating PrPCWD in blood may pose a risk for indirect transmission by way of hematophagous ectoparasites acting as mechanical vectors. Cervids can carry high tick infestations and exhibit allogrooming, a common tick defense strategy between conspecifics. Ingestion of ticks during allogrooming may expose naïve animals to CWD, if ticks harbor PrPCWD. This study investigates whether ticks can harbor transmission-relevant quantities of PrPCWD by combining experimental tick feeding trials and evaluation of ticks from free-ranging white-tailed deer (Odocoileus virginianus). Using the real-time quaking-induced conversion (RT-QuIC) assay, we show that black-legged ticks (Ixodes scapularis) fed PrPCWD-spiked blood using artificial membranes ingest and excrete PrPCWD. Combining results of RT-QuIC and protein misfolding cyclic amplification, we detected seeding activity from 6 of 15 (40%) pooled tick samples collected from wild CWD-infected white-tailed deer. Seeding activities in ticks were analogous to 10-1000 ng of CWD-positive retropharyngeal lymph node collected from deer upon which they were feeding. Estimates revealed a median infectious dose range of 0.3-42.4 per tick, suggesting that ticks can take up transmission-relevant amounts of PrPCWD and may pose a CWD risk to cervids.
Collapse
Affiliation(s)
- H N Inzalaco
- Wisconsin Cooperative Wildlife Research Unit, Department of Forest and Wildlife Ecology, University of Wisconsin, Madison, Madison, WI, 53706, USA.
| | - F Bravo-Risi
- Department of Neurology, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Centro Integrativo de Biologia y Quimica Aplicada (CIBQA), Universidad Bernardo O'Higgins, Santiago, Chile
| | - R Morales
- Department of Neurology, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Centro Integrativo de Biologia y Quimica Aplicada (CIBQA), Universidad Bernardo O'Higgins, Santiago, Chile
| | - D P Walsh
- U.S. Geological Survey, Montana Cooperative Wildlife Research Unit, University of Montana, Missoula, MT, USA
| | - D J Storm
- Wisconsin Department of Natural Resources, Eau Claire, WI, USA
| | - J A Pedersen
- Environmental Health and Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - W C Turner
- Wisconsin Cooperative Wildlife Research Unit, Department of Forest and Wildlife Ecology, U.S. Geological Survey, University of Wisconsin - Madison, Madison, WI, 53706, USA
| | - S S Lichtenberg
- Department of Soil Science, University of Wisconsin, Madison, Madison, WI, USA
| |
Collapse
|
11
|
Wang F, Pritzkow S, Soto C. PMCA for ultrasensitive detection of prions and to study disease biology. Cell Tissue Res 2023; 392:307-321. [PMID: 36567368 PMCID: PMC9790818 DOI: 10.1007/s00441-022-03727-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 12/08/2022] [Indexed: 12/27/2022]
Abstract
The emergence of a novel class of infectious agent composed exclusively of a misfolded protein (termed prions) has been a challenge in modern biomedicine. Despite similarities on the behavior of prions with respect to conventional pathogens, the many uncertainties regarding the biology and virulence of prions make them a worrisome paradigm. Since prions do not contain nucleic acids and rely on a very different way of replication and spreading, it was necessary to invent a novel technology to study them. In this article, we provide an overview of such a technology, termed protein misfolding cyclic amplification (PMCA), and summarize its many applications to detect prions and understand prion biology.
Collapse
Affiliation(s)
- Fei Wang
- Mitchell Center for Alzheimer's Disease and Related Brain Disorders, Department of Neurology, University of Texas McGovern Medical School, Houston, TX, 77030, USA
| | - Sandra Pritzkow
- Mitchell Center for Alzheimer's Disease and Related Brain Disorders, Department of Neurology, University of Texas McGovern Medical School, Houston, TX, 77030, USA
| | - Claudio Soto
- Mitchell Center for Alzheimer's Disease and Related Brain Disorders, Department of Neurology, University of Texas McGovern Medical School, Houston, TX, 77030, USA.
| |
Collapse
|
12
|
Yakovleva O, Bett C, Pilant T, Asher DM, Gregori L. Abnormal prion protein, infectivity and neurofilament light-chain in blood of macaques with experimental variant Creutzfeldt-Jakob disease. J Gen Virol 2022; 103. [PMID: 35816369 PMCID: PMC10027005 DOI: 10.1099/jgv.0.001764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Transmissible spongiform encephalopathies (TSEs) are fatal neurodegenerative infections. Variant Creutzfeldt-Jakob disease (vCJD) and sporadic CJD (sCJD) are human TSEs that, in rare cases, have been transmitted by human-derived therapeutic products. There is a need for a blood test to detect infected donors, identify infected individuals in families with TSEs and monitor progression of disease in patients, especially during clinical trials. We prepared panels of blood from cynomolgus and rhesus macaques experimentally infected with vCJD, as a surrogate for human blood, to support assay development. We detected abnormal prion protein (PrPTSE) in those blood samples using the protein misfolding cyclic amplification (PMCA) assay. PrPTSE first appeared in the blood of pre-symptomatic cynomolgus macaques as early as 2 months post-inoculation (mpi). In contrast, PMCA detected PrPTSE much later in the blood of two pre-symptomatic rhesus macaques, starting at 19 and 20 mpi, and in one rhesus macaque only when symptomatic, at 38 mpi. Once blood of either species of macaque became PMCA-positive, PrPTSE persisted through terminal illness at relatively constant concentrations. Infectivity in buffy coat samples from terminally ill cynomolgus macaques as well as a sample collected 9 months before clinical onset of disease in one of the macaques was assayed in vCJD-susceptible transgenic mice. The infectivity titres varied from 2.7 to 4.3 infectious doses ml-1. We also screened macaque blood using a four-member panel of biomarkers for neurodegenerative diseases to identify potential non-PrPTSE pre-symptomatic diagnostic markers. Neurofilament light-chain protein (NfL) increased in blood before the onset of clinical vCJD. Cumulatively, these data confirmed that, while PrPTSE is the first marker to appear in blood of vCJD-infected cynomolgus and rhesus macaques, NfL might offer a useful, though less specific, marker for forthcoming neurodegeneration. These studies support the use of macaque blood panels to investigate PrPTSE and other biomarkers to predict onset of CJD in humans.
Collapse
Affiliation(s)
- Oksana Yakovleva
- US Food and Drug Administration, Center for Biologics Evaluation and Research, Office of Blood Research and Review, Division of Emerging and Transfusion-Transmitted Diseases, Silver Spring, MD 20993, USA
| | - Cyrus Bett
- US Food and Drug Administration, Center for Biologics Evaluation and Research, Office of Blood Research and Review, Division of Emerging and Transfusion-Transmitted Diseases, Silver Spring, MD 20993, USA
| | - Teresa Pilant
- US Food and Drug Administration, Center for Biologics Evaluation and Research, Office of Blood Research and Review, Division of Emerging and Transfusion-Transmitted Diseases, Silver Spring, MD 20993, USA
| | - David M Asher
- US Food and Drug Administration, Center for Biologics Evaluation and Research, Office of Blood Research and Review, Division of Emerging and Transfusion-Transmitted Diseases, Silver Spring, MD 20993, USA
| | - Luisa Gregori
- US Food and Drug Administration, Center for Biologics Evaluation and Research, Office of Blood Research and Review, Division of Emerging and Transfusion-Transmitted Diseases, Silver Spring, MD 20993, USA
| |
Collapse
|
13
|
Salamat MKF, Stewart P, Brown H, Tan KBC, Smith A, de Wolf C, Alejo Blanco AR, Turner M, Manson JC, McCutcheon S, Houston EF. Subclinical infection occurs frequently following low dose exposure to prions by blood transfusion. Sci Rep 2022; 12:10923. [PMID: 35764688 PMCID: PMC9240018 DOI: 10.1038/s41598-022-15105-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/17/2022] [Indexed: 11/09/2022] Open
Abstract
Infectious prion diseases have very long incubation periods, and the role that subclinical infections play in transmission, persistence and re-emergence of these diseases is unclear. In this study, we used a well-established model of vCJD (sheep experimentally infected with bovine spongiform encephalopathy, BSE) to determine the prevalence of subclinical infection following exposure by blood transfusion from infected donors. Many recipient sheep survived for years post-transfusion with no clinical signs and no disease-associated PrP (PrPSc) found in post mortem tissue samples by conventional tests. Using a sensitive protein misfolding cyclic amplification assay (PMCA), we found that the majority of these sheep had detectable PrPSc in lymph node samples, at levels approximately 105-106 times lower than in equivalent samples from clinically positive sheep. Further testing revealed the presence of PrPSc in other tissues, including brain, but not in blood samples. The results demonstrate that subclinical infection is a frequent outcome of low dose prion infection by a clinically relevant route for humans (blood transfusion). The long term persistence of low levels of infection has important implications for prion disease control and the risks of re-emergent infections in both humans and animals.
Collapse
Affiliation(s)
- M Khalid F Salamat
- Royal (Dick) School of Veterinary Studies, The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, Edinburgh, UK
| | - Paula Stewart
- Royal (Dick) School of Veterinary Studies, The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, Edinburgh, UK
| | - Helen Brown
- Royal (Dick) School of Veterinary Studies, The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, Edinburgh, UK
| | - Kyle B C Tan
- Royal (Dick) School of Veterinary Studies, The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, Edinburgh, UK
| | - Allister Smith
- Royal (Dick) School of Veterinary Studies, The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, Edinburgh, UK
| | - Christopher de Wolf
- Royal (Dick) School of Veterinary Studies, The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, Edinburgh, UK
| | - A Richard Alejo Blanco
- Royal (Dick) School of Veterinary Studies, The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, Edinburgh, UK
| | - Marc Turner
- Scottish National Blood Transfusion Service (SNBTS), The Jack Copland Centre, Edinburgh, UK
| | - Jean C Manson
- Royal (Dick) School of Veterinary Studies, The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, Edinburgh, UK
| | - Sandra McCutcheon
- Royal (Dick) School of Veterinary Studies, The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, Edinburgh, UK
| | - E Fiona Houston
- Royal (Dick) School of Veterinary Studies, The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, Edinburgh, UK.
| |
Collapse
|
14
|
Non-human primates in prion diseases. Cell Tissue Res 2022; 392:7-20. [PMID: 35661921 DOI: 10.1007/s00441-022-03644-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 05/21/2022] [Indexed: 11/02/2022]
Abstract
The fascinating history of prion diseases is intimately linked to the use of nonhuman primates as experimental models, which brought so fundamental and founding information about transmissibility, pathogenesis, and resistance of prions. These models are still of crucial need for risk assessment of human health and may contribute to pave a new way towards the moving field of prion-like entities which now includes the main human neurodegenerative diseases (especially Alzheimer's and Parkinson's diseases).
Collapse
|
15
|
Variant CJD: Reflections a Quarter of a Century on. Pathogens 2021; 10:pathogens10111413. [PMID: 34832569 PMCID: PMC8619291 DOI: 10.3390/pathogens10111413] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 01/18/2023] Open
Abstract
Twenty-five years has now passed since variant Creutzfeldt-Jakob disease (vCJD) was first described in the United Kingdom (UK). Early epidemiological, neuropathological and biochemical investigations suggested that vCJD represented a new zoonotic form of human prion disease resulting from dietary exposure to the bovine spongiform encephalopathy (BSE) agent. This hypothesis has since been confirmed though a large body of experimental evidence, predominantly using animal models of the disease. Today, the clinical, pathological and biochemical phenotype of vCJD is well characterized and demonstrates a unique and remarkably consistent pattern between individual cases when compared to other human prion diseases. While the numbers of vCJD cases remain reassuringly low, with 178 primary vCJD cases reported in the UK and a further 54 reported worldwide, concerns remain over the possible appearance of new vCJD cases in other genetic cohorts and the numbers of asymptomatic individuals in the population harboring vCJD infectivity. This review will provide a historical perspective on vCJD, examining the origins of this acquired prion disease and its association with BSE. We will investigate the epidemiology of the disease along with the unique clinicopathological and biochemical phenotype associated with vCJD cases. Additionally, this review will examine the impact vCJD has had on public health in the UK and the ongoing concerns raised by this rare group of disorders.
Collapse
|
16
|
Douet JY, Huor A, Cassard H, Lugan S, Aron N, Mesic C, Vilette D, Barrio T, Streichenberger N, Perret-Liaudet A, Delisle MB, Péran P, Deslys JP, Comoy E, Vilotte JL, Goudarzi K, Béringue V, Barria MA, Ritchie DL, Ironside JW, Andréoletti O. Prion strains associated with iatrogenic CJD in French and UK human growth hormone recipients. Acta Neuropathol Commun 2021; 9:145. [PMID: 34454616 PMCID: PMC8403347 DOI: 10.1186/s40478-021-01247-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 08/18/2021] [Indexed: 12/25/2022] Open
Abstract
Treatment with human pituitary-derived growth hormone (hGH) was responsible for a significant proportion of iatrogenic Creutzfeldt–Jakob disease (iCJD) cases. France and the UK experienced the largest case numbers of hGH-iCJD, with 122 and 81 cases respectively. Differences in the frequency of the three PRNP codon 129 polymorphisms (MM, MV and VV) and the estimated incubation periods associated with each of these genotypes in the French and the UK hGH-iCJD cohorts led to the suggestion that the prion strains responsible for these two hGH-iCJD cohorts were different. In this study, we characterized the prion strains responsible for hGH-iCJD cases originating from UK (n = 11) and France (n = 11) using human PrP expressing mouse models. The cases included PRNP MM, MV and VV genotypes from both countries. UK and French sporadic CJD (sCJD) cases were included as controls. The prion strains identified following inoculation with hGH-iCJD homogenates corresponded to the two most frequently observed sCJD prion strains (M1CJD and V2CJD). However, in clear contradiction to the initial hypothesis, the prion strains that were identified in the UK and the French hGH-iCJD cases were not radically different. In the vast majority of the cases originating from both countries, the V2CJD strain or a mixture of M1CJD + V2CJD strains were identified. These data strongly support the contention that the differences in the epidemiological and genetic profiles observed in the UK and France hGH-iCJD cohorts cannot be attributed only to the transmission of different prion strains.
Collapse
|
17
|
Peden AH, Suleiman S, Barria MA. Understanding Intra-Species and Inter-Species Prion Conversion and Zoonotic Potential Using Protein Misfolding Cyclic Amplification. Front Aging Neurosci 2021; 13:716452. [PMID: 34413769 PMCID: PMC8368127 DOI: 10.3389/fnagi.2021.716452] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 07/07/2021] [Indexed: 11/17/2022] Open
Abstract
Prion diseases are fatal neurodegenerative disorders that affect humans and animals, and can also be transmitted from animals to humans. A fundamental event in prion disease pathogenesis is the conversion of normal host prion protein (PrPC) to a disease-associated misfolded form (PrPSc). Whether or not an animal prion disease can infect humans cannot be determined a priori. There is a consensus that classical bovine spongiform encephalopathy (C-type BSE) in cattle transmits to humans, and that classical sheep scrapie is of little or no risk to human health. However, the zoonotic potential of more recently identified animal prion diseases, such as atypical scrapie, H-type and L-type BSE and chronic wasting disease (CWD) in cervids, remains an open question. Important components of the zoonotic barrier are (i) physiological differences between humans and the animal in question, (ii) amino acid sequence differences of the animal and human PrPC, and (iii) the animal prion strain, enciphered in the conformation of PrPSc. Historically, the direct inoculation of experimental animals has provided essential information on the transmissibility and compatibility of prion strains. More recently, cell-free molecular conversion assays have been used to examine the molecular compatibility on prion replication and zoonotic potential. One such assay is Protein Misfolding Cyclic Amplification (PMCA), in which a small amount of infected tissue homogenate, containing PrPSc, is added as a seed to an excess of normal tissue homogenate containing PrPC, and prion conversion is accelerated by cycles of incubation and ultrasonication. PMCA has been used to measure the molecular feasibility of prion transmission in a range of scenarios using genotypically homologous and heterologous combinations of PrPSc seed and PrPC substrate. Furthermore, this method can be used to speculate on the molecular profile of PrPSc that might arise from a zoonotic transmission. We discuss the experimental approaches that have been used to model both the intra- and inter-species molecular compatibility of prions, and the factors affecting PrPc to PrPSc conversion and zoonotic potential. We conclude that cell-free prion protein conversion assays, especially PMCA, are useful, rapid and low-cost approaches for elucidating the mechanisms of prion propagation and assessing the risk of animal prions to humans.
Collapse
Affiliation(s)
- Alexander H Peden
- National CJD Research & Surveillance Unit, Centre for Clinical Brain Sciences, Deanery of Clinical Medicine, The University of Edinburgh, Edinburgh, United Kingdom
| | - Suzanne Suleiman
- National CJD Research & Surveillance Unit, Centre for Clinical Brain Sciences, Deanery of Clinical Medicine, The University of Edinburgh, Edinburgh, United Kingdom
| | - Marcelo A Barria
- National CJD Research & Surveillance Unit, Centre for Clinical Brain Sciences, Deanery of Clinical Medicine, The University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
18
|
Cerebrospinal Fluid and Plasma Small Extracellular Vesicles and miRNAs as Biomarkers for Prion Diseases. Int J Mol Sci 2021; 22:ijms22136822. [PMID: 34201940 PMCID: PMC8268953 DOI: 10.3390/ijms22136822] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/04/2021] [Accepted: 06/21/2021] [Indexed: 11/27/2022] Open
Abstract
Diagnosis of transmissible spongiform encephalopathies (TSEs), or prion diseases, is based on the detection of proteinase K (PK)-resistant PrPSc in post-mortem tissues as indication of infection and disease. Since PrPSc detection is not considered a reliable method for in vivo diagnosis in most TSEs, it is of crucial importance to identify an alternative source of biomarkers to provide useful alternatives for current diagnostic methodology. Ovine scrapie is the prototype of TSEs and has been known for a long time. Using this natural model of TSE, we investigated the presence of PrPSc in exosomes derived from plasma and cerebrospinal fluid (CSF) by protein misfolding cyclic amplification (PMCA) and the levels of candidate microRNAs (miRNAs) by quantitative PCR (qPCR). Significant scrapie-associated increase was found for miR-21-5p in plasma-derived but not in CSF-derived exosomes. However, miR-342-3p, miR-146a-5p, miR-128-3p and miR-21-5p displayed higher levels in total CSF from scrapie-infected sheep. The analysis of overexpressed miRNAs in this biofluid, together with plasma exosomal miR-21-5p, could help in scrapie diagnosis once the presence of the disease is suspected. In addition, we found the presence of PrPSc in most CSF-derived exosomes from clinically affected sheep, which may facilitate in vivo diagnosis of prion diseases, at least during the clinical stage.
Collapse
|
19
|
Concha-Marambio L, Chacon MA, Soto C. Preclinical Detection of Prions in Blood of Nonhuman Primates Infected with Variant Creutzfeldt-Jakob Disease. Emerg Infect Dis 2021; 26:34-43. [PMID: 31855141 PMCID: PMC6924915 DOI: 10.3201/eid2601.181423] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Variant Creutzfeldt-Jakob disease (vCJD) is caused by prion infection with bovine spongiform encephalopathy and can be transmitted by blood transfusion. Protein misfolding cyclic amplification (PMCA) can detect prions in blood from vCJD patients with 100% sensitivity and specificity. To determine whether PMCA enables prion detection in blood during the preclinical stage of infection, we performed a blind study using blood samples longitudinally collected from 28 control macaques and 3 macaques peripherally infected with vCJD. Our results demonstrate that PMCA consistently detected prions in blood during the entire preclinical stage in all infected macaques, without false positives from noninfected animals, when using the optimized conditions for amplification of macaque prions. Strikingly, prions were detected as early as 2 months postinoculation (>750 days before disease onset). These findings suggest that PMCA has the potential to detect vCJD prions in blood from asymptomatic carriers during the preclinical phase of the disease.
Collapse
|
20
|
Douet JY, Huor A, Cassard H, Lugan S, Aron N, Arnold M, Vilette D, Torres JM, Ironside JW, Andreoletti O. Wide distribution of prion infectivity in the peripheral tissues of vCJD and sCJD patients. Acta Neuropathol 2021; 141:383-397. [PMID: 33532912 PMCID: PMC7882550 DOI: 10.1007/s00401-021-02270-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 11/25/2022]
Abstract
Sporadic Creutzfeldt-Jakob disease (sCJD) is the commonest human prion disease, occurring most likely as the consequence of spontaneous formation of abnormal prion protein in the central nervous system (CNS). Variant Creutzfeldt–Jakob disease (vCJD) is an acquired prion disease that was first identified in 1996. In marked contrast to vCJD, previous investigations in sCJD revealed either inconsistent levels or an absence of PrPSc in peripheral tissues. These findings contributed to the consensus that risks of transmitting sCJD as a consequence of non-CNS invasive clinical procedures were low. In this study, we systematically measured prion infectivity levels in CNS and peripheral tissues collected from vCJD and sCJD patients. Unexpectedly, prion infectivity was detected in a wide variety of peripheral tissues in sCJD cases. Although the sCJD infectivity levels varied unpredictably in the tissues sampled and between patients, these findings could impact on our perception of the possible transmission risks associated with sCJD.
Collapse
Affiliation(s)
- Jean-Yves Douet
- UMR INRA ENVT 1225, Interactions Hôtes Agents Pathogènes, Ecole Nationale Vétérinaire de Toulouse, 23 Chemin des Capelles, 31076, Toulouse, France
| | - Alvina Huor
- UMR INRA ENVT 1225, Interactions Hôtes Agents Pathogènes, Ecole Nationale Vétérinaire de Toulouse, 23 Chemin des Capelles, 31076, Toulouse, France
| | - Hervé Cassard
- UMR INRA ENVT 1225, Interactions Hôtes Agents Pathogènes, Ecole Nationale Vétérinaire de Toulouse, 23 Chemin des Capelles, 31076, Toulouse, France
| | - Séverine Lugan
- UMR INRA ENVT 1225, Interactions Hôtes Agents Pathogènes, Ecole Nationale Vétérinaire de Toulouse, 23 Chemin des Capelles, 31076, Toulouse, France
| | - Naima Aron
- UMR INRA ENVT 1225, Interactions Hôtes Agents Pathogènes, Ecole Nationale Vétérinaire de Toulouse, 23 Chemin des Capelles, 31076, Toulouse, France
| | - Mark Arnold
- APHA Sutton Bonington, Loughborough, LE12 5NB, Leicestershire, UK
| | - Didier Vilette
- UMR INRA ENVT 1225, Interactions Hôtes Agents Pathogènes, Ecole Nationale Vétérinaire de Toulouse, 23 Chemin des Capelles, 31076, Toulouse, France
| | - Juan-Maria Torres
- Centro de Investigación en Sanidad Animal, CISA-INIA, Valdeolmos, Spain
| | - James W Ironside
- Centre for Clinical Brain Sciences, University of Edinburgh, Western General Hospital, Edinburgh, EH4 2XU, UK
| | - Olivier Andreoletti
- UMR INRA ENVT 1225, Interactions Hôtes Agents Pathogènes, Ecole Nationale Vétérinaire de Toulouse, 23 Chemin des Capelles, 31076, Toulouse, France.
| |
Collapse
|
21
|
Bélondrade M, Nicot S, Mayran C, Bruyere-Ostells L, Almela F, Di Bari MA, Levavasseur E, Watts JC, Fournier-Wirth C, Lehmann S, Haïk S, Nonno R, Bougard D. Sensitive protein misfolding cyclic amplification of sporadic Creutzfeldt-Jakob disease prions is strongly seed and substrate dependent. Sci Rep 2021; 11:4058. [PMID: 33603091 PMCID: PMC7893054 DOI: 10.1038/s41598-021-83630-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 02/05/2021] [Indexed: 12/11/2022] Open
Abstract
Unlike variant Creutzfeldt-Jakob disease prions, sporadic Creutzfeldt-Jakob disease prions have been shown to be difficult to amplify in vitro by protein misfolding cyclic amplification (PMCA). We assessed PMCA of pathological prion protein (PrPTSE) from 14 human sCJD brain samples in 3 substrates: 2 from transgenic mice expressing human prion protein (PrP) with either methionine (M) or valine (V) at position 129, and 1 from bank voles. Brain extracts representing the 5 major clinicopathological sCJD subtypes (MM1/MV1, MM2, MV2, VV1, and VV2) all triggered seeded PrPTSE amplification during serial PMCA with strong seed- and substrate-dependence. Remarkably, bank vole PrP substrate allowed the propagation of all sCJD subtypes with preservation of the initial molecular PrPTSE type. In contrast, PMCA in human PrP substrates was accompanied by a PrPTSE molecular shift during heterologous (M/V129) PMCA reactions, with increased permissiveness of V129 PrP substrate to in vitro sCJD prion amplification compared to M129 PrP substrate. Combining PMCA amplification sensitivities with PrPTSE electrophoretic profiles obtained in the different substrates confirmed the classification of 4 distinct major sCJD prion strains (M1, M2, V1, and V2). Finally, the level of sensitivity required to detect VV2 sCJD prions in cerebrospinal fluid was achieved.
Collapse
Affiliation(s)
- Maxime Bélondrade
- Pathogenesis and Control of Chronic Infections, Etablissement Français du Sang, Inserm, Université de Montpellier, Montpellier, France
| | - Simon Nicot
- Pathogenesis and Control of Chronic Infections, Etablissement Français du Sang, Inserm, Université de Montpellier, Montpellier, France
| | - Charly Mayran
- Pathogenesis and Control of Chronic Infections, Etablissement Français du Sang, Inserm, Université de Montpellier, Montpellier, France
| | - Lilian Bruyere-Ostells
- Pathogenesis and Control of Chronic Infections, Etablissement Français du Sang, Inserm, Université de Montpellier, Montpellier, France
| | - Florian Almela
- Pathogenesis and Control of Chronic Infections, Etablissement Français du Sang, Inserm, Université de Montpellier, Montpellier, France
| | - Michele A Di Bari
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanita, Rome, Italy
| | - Etienne Levavasseur
- Inserm U 1127, CNRS UMR 7225, UPMC Université Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, Sorbonne Universités, Paris, France
| | - Joel C Watts
- Tanz Centre for Research in Neurodegenerative Diseases and Department of Biochemistry, University of Toronto, Toronto, Canada
| | - Chantal Fournier-Wirth
- Pathogenesis and Control of Chronic Infections, Etablissement Français du Sang, Inserm, Université de Montpellier, Montpellier, France
| | - Sylvain Lehmann
- IRMB, INM, INSERM, CHU Montpellier, (LBPC-PPC), Univ Montpellier, Montpellier, France
| | - Stéphane Haïk
- Inserm U 1127, CNRS UMR 7225, UPMC Université Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, Sorbonne Universités, Paris, France
| | - Romolo Nonno
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanita, Rome, Italy
| | - Daisy Bougard
- Pathogenesis and Control of Chronic Infections, Etablissement Français du Sang, Inserm, Université de Montpellier, Montpellier, France.
| |
Collapse
|
22
|
Salamat MKF, Blanco ARA, McCutcheon S, Tan KBC, Stewart P, Brown H, Smith A, de Wolf C, Groschup MH, Becher D, Andréoletti O, Turner M, Manson JC, Houston EF. Preclinical transmission of prions by blood transfusion is influenced by donor genotype and route of infection. PLoS Pathog 2021; 17:e1009276. [PMID: 33600501 PMCID: PMC7891701 DOI: 10.1371/journal.ppat.1009276] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 01/04/2021] [Indexed: 11/23/2022] Open
Abstract
Variant Creutzfeldt-Jakob disease (vCJD) is a human prion disease resulting from zoonotic transmission of bovine spongiform encephalopathy (BSE). Documented cases of vCJD transmission by blood transfusion necessitate on-going risk reduction measures to protect blood supplies, such as leucodepletion (removal of white blood cells, WBCs). This study set out to determine the risks of prion transmission by transfusion of labile blood components (red blood cells, platelets, plasma) commonly used in human medicine, and the effectiveness of leucodepletion in preventing infection, using BSE-infected sheep as a model. All components were capable of transmitting prion disease when donors were in the preclinical phase of infection, with the highest rates of infection in recipients of whole blood and buffy coat, and the lowest in recipients of plasma. Leucodepletion of components (<106 WBCs/unit) resulted in significantly lower transmission rates, but did not completely prevent transmission by any component. Donor PRNP genotype at codon 141, which is associated with variation in incubation period, also had a significant effect on transfusion transmission rates. A sensitive protein misfolding cyclic amplification (PMCA) assay, applied to longitudinal series of blood samples, identified infected sheep from 4 months post infection. However, in donor sheep (orally infected), the onset of detection of PrPSc in blood was much more variable, and generally later, compared to recipients (intravenous infection). This shows that the route and method of infection may profoundly affect the period during which an individual is infectious, and the test sensitivity required for reliable preclinical diagnosis, both of which have important implications for disease control. Our results emphasize that blood transfusion can be a highly efficient route of transmission for prion diseases. Given current uncertainties over the prevalence of asymptomatic vCJD carriers, this argues for the maintenance and improvement of current measures to reduce the risk of transmission by blood products. Variant Creutzfeldt-Jakob disease (vCJD) resulted from zoonotic transmission of bovine spongiform encephalopathy (BSE), and has also been transmitted by blood transfusion. One of the most important risk reduction measures introduced by human transfusion services to safeguard the blood supply is leucodepletion (removal of white blood cells) of blood components. This study represents the largest experimental analysis to date of the risks of prion infection associated with transfusion of labile blood components, and the effectiveness of leucodepletion in preventing transmission. Using a BSE-infected sheep model, we found that red blood cells, platelets and plasma from preclinical donors were all infectious, even after leucodepletion, although leucodepletion significantly reduced transmission rates. In addition, the time course of detection of prions in blood varied significantly depending on the route and method of infection. This has important implications for the risk of onward transmission, and suggests that further improvements in sensitivity of diagnostic tests will be required for reliable preclinical diagnosis of vCJD and other prion diseases. The results of this study support the continuation of current measures to reduce the risk of vCJD transmission by blood products, and suggest areas for further improvement.
Collapse
Affiliation(s)
- M. Khalid F. Salamat
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, Edinburgh, United Kingdom
| | - A. Richard Alejo Blanco
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, Edinburgh, United Kingdom
| | - Sandra McCutcheon
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, Edinburgh, United Kingdom
| | - Kyle B. C. Tan
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, Edinburgh, United Kingdom
| | - Paula Stewart
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, Edinburgh, United Kingdom
| | - Helen Brown
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, Edinburgh, United Kingdom
| | - Allister Smith
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, Edinburgh, United Kingdom
| | - Christopher de Wolf
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, Edinburgh, United Kingdom
| | - Martin H. Groschup
- Friedrich-Loeffler-Institut, Institute of Novel and Emerging Infectious Diseases, Greifswald, Germany
| | | | - Olivier Andréoletti
- UMR INRA ENVT 1225, Interactions Hôtes Agents Pathogènes, Ecole Nationale Vétérinaire de Toulouse, Toulouse, France
| | - Marc Turner
- Scottish National Blood Transfusion Service (SNBTS), The Jack Copland Centre, Edinburgh, United Kingdom
| | - Jean C. Manson
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, Edinburgh, United Kingdom
| | - E. Fiona Houston
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, Edinburgh, United Kingdom
- * E-mail:
| |
Collapse
|
23
|
Ritchie DL, Barria MA. Prion Diseases: A Unique Transmissible Agent or a Model for Neurodegenerative Diseases? Biomolecules 2021; 11:biom11020207. [PMID: 33540845 PMCID: PMC7912988 DOI: 10.3390/biom11020207] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/21/2021] [Accepted: 01/29/2021] [Indexed: 02/07/2023] Open
Abstract
The accumulation and propagation in the brain of misfolded proteins is a pathological hallmark shared by many neurodegenerative diseases such as Alzheimer's disease (Aβ and tau), Parkinson's disease (α-synuclein), and prion disease (prion protein). Currently, there is no epidemiological evidence to suggest that neurodegenerative disorders are infectious, apart from prion diseases. However, there is an increasing body of evidence from experimental models to suggest that other pathogenic proteins such as Aβ and tau can propagate in vivo and in vitro in a prion-like mechanism, inducing the formation of misfolded protein aggregates such as amyloid plaques and neurofibrillary tangles. Such similarities have raised concerns that misfolded proteins, other than the prion protein, could potentially transmit from person-to-person as rare events after lengthy incubation periods. Such concerns have been heightened following a number of recent reports of the possible inadvertent transmission of Aβ pathology via medical and surgical procedures. This review will provide a historical perspective on the unique transmissible nature of prion diseases, examining their impact on public health and the ongoing concerns raised by this rare group of disorders. Additionally, this review will provide an insight into current evidence supporting the potential transmissibility of other pathogenic proteins associated with more common neurodegenerative disorders and the potential implications for public health.
Collapse
|
24
|
Dudas S, Anderson R, Staskevicus A, Mitchell G, Cross JC, Czub S. Exploration of genetic factors resulting in abnormal disease in cattle experimentally challenged with bovine spongiform encephalopathy. Prion 2021; 15:1-11. [PMID: 33397192 PMCID: PMC7801127 DOI: 10.1080/19336896.2020.1869495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Since the discovery of bovine spongiform encephalopathy (BSE), researchers have orally challenged cattle with infected brain material to study various aspects of disease pathogenesis. Unlike most other pathogens, oral BSE challenge does not always result in the expected clinical presentation and pathology. In a recent study, steers were challenged orally with BSE and all developed clinical signs and were sacrificed and tested. However, despite a similar incubation and clinical presentation, one of the steers did not have detectable PrPSc in its brain. Samples from this animal were analysed for genetic differences as well as for the presence of in vitro PrPSc seeding activity or infectivity to determine the BSE status of this animal and the potential reasons that it was different. Seeding activity was detected in the brainstem of the abnormal steer but it was approximately one million times less than that found in the normal BSE positive steers. Intra-cranial challenge of bovinized transgenic mice resulted in no transmission of disease. The abnormal steer had different genetic sequences in non-coding regions of the PRNP gene but detection of similar genotypes in Canadian BSE field cases, that showed the expected brain pathology, suggested these differences may not be the primary cause of the abnormal result. Breed composition analysis showed a higher Hereford content in the abnormal steer as well as in two Canadian atypical BSE field cases and several additional abnormal experimental animals. This study could point towards a possible impact of breed composition on BSE pathogenesis.
Collapse
Affiliation(s)
- Sandor Dudas
- National and OIE Reference Laboratory for BSE, National Centre for Animal Diseases, Canadian Food Inspection Agency , Lethbridge, Canada.,Department of Veterinary Medicine, University of Calgary , Calgary, Canada
| | - Renee Anderson
- National and OIE Reference Laboratory for BSE, National Centre for Animal Diseases, Canadian Food Inspection Agency , Lethbridge, Canada
| | - Antanas Staskevicus
- National and OIE Reference Laboratory for Scrapie and CWD, Canadian Food Inspection Agency, Ottawa Laboratory Fallowfield , Ottawa, Canada
| | - Gordon Mitchell
- National and OIE Reference Laboratory for Scrapie and CWD, Canadian Food Inspection Agency, Ottawa Laboratory Fallowfield , Ottawa, Canada
| | - James C Cross
- Department of Veterinary Medicine, University of Calgary , Calgary, Canada
| | - Stefanie Czub
- National and OIE Reference Laboratory for BSE, National Centre for Animal Diseases, Canadian Food Inspection Agency , Lethbridge, Canada.,Department of Veterinary Medicine, University of Calgary , Calgary, Canada
| |
Collapse
|
25
|
Moudjou M, Castille J, Passet B, Herzog L, Reine F, Vilotte JL, Rezaei H, Béringue V, Igel-Egalon A. Improving the Predictive Value of Prion Inactivation Validation Methods to Minimize the Risks of Iatrogenic Transmission With Medical Instruments. Front Bioeng Biotechnol 2020; 8:591024. [PMID: 33335894 PMCID: PMC7736614 DOI: 10.3389/fbioe.2020.591024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 11/05/2020] [Indexed: 12/13/2022] Open
Abstract
Prions are pathogenic infectious agents responsible for fatal, incurable neurodegenerative diseases in animals and humans. Prions are composed exclusively of an aggregated and misfolded form (PrPSc) of the cellular prion protein (PrPC). During the propagation of the disease, PrPSc recruits and misfolds PrPC into further PrPSc. In human, iatrogenic prion transmission has occurred with incompletely sterilized medical material because of the unusual resistance of prions to inactivation. Most commercial prion disinfectants validated against the historical, well-characterized laboratory strain of 263K hamster prions were recently shown to be ineffective against variant Creutzfeldt-Jakob disease human prions. These observations and previous reports support the view that any inactivation method must be validated against the prions for which they are intended to be used. Strain-specific variations in PrPSc physico-chemical properties and conformation are likely to explain the strain-specific efficacy of inactivation methods. Animal bioassays have long been used as gold standards to validate prion inactivation methods, by measuring reduction of prion infectivity. Cell-free assays such as the real-time quaking-induced conversion (RT-QuIC) assay and the protein misfolding cyclic amplification (PMCA) assay have emerged as attractive alternatives. They exploit the seeding capacities of PrPSc to exponentially amplify minute amounts of prions in biospecimens. European and certain national medicine agencies recently implemented their guidelines for prion inactivation of non-disposable medical material; they encourage or request the use of human prions and cell-free assays to improve the predictive value of the validation methods. In this review, we discuss the methodological and technical issues regarding the choice of (i) the cell-free assay, (ii) the human prion strain type, (iii) the prion-containing biological material. We also introduce a new optimized substrate for high-throughput PMCA amplification of human prions bound on steel wires, as translational model for prion-contaminated instruments.
Collapse
Affiliation(s)
- Mohammed Moudjou
- Université Paris Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, France
| | - Johan Castille
- Université Paris Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, France
| | - Bruno Passet
- Université Paris Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, France
| | - Laetitia Herzog
- Université Paris Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, France
| | - Fabienne Reine
- Université Paris Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, France
| | - Jean-Luc Vilotte
- Université Paris Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, France
| | - Human Rezaei
- Université Paris Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, France
| | - Vincent Béringue
- Université Paris Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, France
| | - Angélique Igel-Egalon
- Université Paris Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, France.,FB.INT'L, Montigny-le-Bretonneux, France
| |
Collapse
|
26
|
Ascari LM, Rocha SC, Gonçalves PB, Vieira TCRG, Cordeiro Y. Challenges and Advances in Antemortem Diagnosis of Human Transmissible Spongiform Encephalopathies. Front Bioeng Biotechnol 2020; 8:585896. [PMID: 33195151 PMCID: PMC7606880 DOI: 10.3389/fbioe.2020.585896] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 09/28/2020] [Indexed: 12/18/2022] Open
Abstract
Transmissible spongiform encephalopathies (TSEs), also known as prion diseases, arise from the structural conversion of the monomeric, cellular prion protein (PrPC) into its multimeric scrapie form (PrPSc). These pathologies comprise a group of intractable, rapidly evolving neurodegenerative diseases. Currently, a definitive diagnosis of TSE relies on the detection of PrPSc and/or the identification of pathognomonic histological features in brain tissue samples, which are usually obtained postmortem or, in rare cases, by brain biopsy (antemortem). Over the past two decades, several paraclinical tests for antemortem diagnosis have been developed to preclude the need for brain samples. Some of these alternative methods have been validated and can provide a probable diagnosis when combined with clinical evaluation. Paraclinical tests include in vitro cell-free conversion techniques, such as the real-time quaking-induced conversion (RT-QuIC), as well as immunoassays, electroencephalography (EEG), and brain bioimaging methods, such as magnetic resonance imaging (MRI), whose importance has increased over the years. PrPSc is the main biomarker in TSEs, and the RT-QuIC assay stands out for its ability to detect PrPSc in cerebrospinal fluid (CSF), olfactory mucosa, and dermatome skin samples with high sensitivity and specificity. Other biochemical biomarkers are the proteins 14-3-3, tau, neuron-specific enolase (NSE), astroglial protein S100B, α-synuclein, and neurofilament light chain protein (NFL), but they are not specific for TSEs. This paper reviews the techniques employed for definite diagnosis, as well as the clinical and paraclinical methods for possible and probable diagnosis, both those in use currently and those no longer employed. We also discuss current criteria, challenges, and perspectives for TSE diagnosis. An early and accurate diagnosis may allow earlier implementation of strategies to delay or stop disease progression.
Collapse
Affiliation(s)
- Lucas M. Ascari
- Faculty of Pharmacy, Pharmaceutical Biotechnology Department, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Stephanie C. Rocha
- Faculty of Pharmacy, Pharmaceutical Biotechnology Department, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Priscila B. Gonçalves
- Faculty of Pharmacy, Pharmaceutical Biotechnology Department, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Tuane C. R. G. Vieira
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Yraima Cordeiro
- Faculty of Pharmacy, Pharmaceutical Biotechnology Department, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
27
|
Abstract
Chronic wasting disease (CWD) is an emerging and fatal contagious prion disease that affects cervids, including mule deer, white-tailed deer, black-tailed deer, red deer reindeer, elk, and moose. CWD prions are widely distributed throughout the bodies of CWD-infected animals and are found in the nervous system, lymphoid tissues, muscle, blood, urine, feces, and antler velvet. The mechanism of CWD transmission in natural settings is unknown. Potential mechanisms of transmission include horizontal, maternal, or environmental routes. Due to the presence of prions in the blood of CWD-infected animals, the potential exists for invertebrates that feed on mammalian blood to contribute to the transmission of CWD. The geographic range of the Rocky Mountain Wood tick, Dermancentor andersoni, overlaps with CWD throughout the northwest United States and southwest Canada, raising the possibility that D. andersoni parasitization of cervids may be involved in CWD transmission. We investigated this possibility by examining the blood meal of D. andersoni that fed upon prion-infected hamsters for the presence of prion infectivity by animal bioassay. None of the hamsters inoculated with a D. andersoni blood meal that had been ingested from prion-infected hamsters developed clinical signs of prion disease or had evidence for a subclinical prion infection. Overall, the data do not demonstrate a role for D. andersoni in the transmission of prion disease.IMPORTANCE Chronic wasting disease (CWD) is an emerging prion disease that affects cervids, including mule deer, white-tailed deer, black-tailed deer, red deer reindeer, elk, and moose. The mechanism of CWD transmission in unknown. Due to the presence of prions in the blood of CWD-infected animals, it is possible for invertebrates that feed on cervid blood to contribute to the transmission of CWD. We examined the blood meal of D. andersoni, a tick with a similar geographic range as cervids, that fed upon prion-infected hamsters for the presence of prion infectivity by animal bioassay. None of the D. andersoni blood meals that had been ingested from prion-infected hamsters yielded evidence of prion infection. Overall, the data do not support a role of D. andersoni in the transmission of prion disease.
Collapse
|
28
|
Guijarro IM, Garcés M, Marín B, Otero A, Barrio T, Badiola JJ, Monzón M. Neuroimmune Response in Natural Preclinical Scrapie after Dexamethasone Treatment. Int J Mol Sci 2020; 21:ijms21165779. [PMID: 32806582 PMCID: PMC7460817 DOI: 10.3390/ijms21165779] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/04/2020] [Accepted: 08/10/2020] [Indexed: 12/18/2022] Open
Abstract
A recently published report on chronic dexamethasone treatment for natural scrapie supported the hypothesis of the potential failure of astroglia in the advanced stage of disease. Herein, we aimed to extend the aforementioned study on the effect of this anti-inflammatory therapy to the initial phase of scrapie, with the aim of elucidating the natural neuroinflammatory process occurring in this neurodegenerative disorder. The administration of this glucocorticoid resulted in an outstanding reduction in vacuolation and aberrant protein deposition (nearly null), and an increase in glial activation. Furthermore, evident suppression of IL-1R and IL-6 and the exacerbation of IL-1α, IL-2R, IL-10R and IFNγR were also demonstrated. Consequently, the early stage of the disease is characterized by an intact neuroglial response similar to that of healthy individuals attempting to re-establish homeostasis. A complex network of neuroinflammatory markers is involved from the very early stages of this prion disease, which probably becomes impaired in the more advanced stages. The in vivo animal model used herein provides essential observations on the pathogenesis of natural scrapie, as well as the possibility of establishing neuroglia as potential target cells for anti-inflammatory therapy.
Collapse
|
29
|
Lecrenier MC, Veys P, Fumière O, Berben G, Saegerman C, Baeten V. Official Feed Control Linked to the Detection of Animal Byproducts: Past, Present, and Future. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:8093-8103. [PMID: 32614586 DOI: 10.1021/acs.jafc.0c02718] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In the context of the expansion of the human population, availability of food, and in extension of animal feed, is a big issue. Favoring a circular economy by the valorization of byproducts is a sustainable way to be more efficient. Animal byproducts are an interesting source of feed materials due to their richness in proteins of high nutritional value. Prevention and control efforts have allowed a gradual lifting of the feed ban regarding the use of animal byproducts. Nevertheless, the challenge remains the development of analytical methods enabling a distinction between authorized and unauthorized feed materials. This Review focuses on the historical and epidemiological context of the official control, the evaluation of current and foreseen legislation, and the available methods of analysis for the detection of constituents of animal origin in feedingstuffs. It also underlines the analytical limitations of the approach and discusses some prospects of novel methods to ensure food and feed safety.
Collapse
Affiliation(s)
- Marie-Caroline Lecrenier
- Knowledge and Valorization of Agricultural Products Department, Walloon Agricultural Research Centre (CRA-W), Chaussée de Namur 24, 5030 Gembloux, Belgium
- Faculty of Veterinary Medicine, Fundamental and Applied Research for Animal and Health (FARAH) Center, Research Unit of Epidemiology and Risk Analysis Applied to Veterinary Sciences (UREAR-ULg), University of Liège (ULiège), Boulevard de Colonster 20 B42, 4000 Liège, Belgium
| | - Pascal Veys
- Knowledge and Valorization of Agricultural Products Department, Walloon Agricultural Research Centre (CRA-W), Chaussée de Namur 24, 5030 Gembloux, Belgium
| | - Olivier Fumière
- Knowledge and Valorization of Agricultural Products Department, Walloon Agricultural Research Centre (CRA-W), Chaussée de Namur 24, 5030 Gembloux, Belgium
| | - Gilbert Berben
- Knowledge and Valorization of Agricultural Products Department, Walloon Agricultural Research Centre (CRA-W), Chaussée de Namur 24, 5030 Gembloux, Belgium
| | - Claude Saegerman
- Faculty of Veterinary Medicine, Fundamental and Applied Research for Animal and Health (FARAH) Center, Research Unit of Epidemiology and Risk Analysis Applied to Veterinary Sciences (UREAR-ULg), University of Liège (ULiège), Boulevard de Colonster 20 B42, 4000 Liège, Belgium
| | - Vincent Baeten
- Knowledge and Valorization of Agricultural Products Department, Walloon Agricultural Research Centre (CRA-W), Chaussée de Namur 24, 5030 Gembloux, Belgium
| |
Collapse
|
30
|
Avar M, Heinzer D, Steinke N, Doğançay B, Moos R, Lugan S, Cosenza C, Hornemann S, Andréoletti O, Aguzzi A. Prion infection, transmission, and cytopathology modeled in a low-biohazard human cell line. Life Sci Alliance 2020; 3:3/8/e202000814. [PMID: 32606072 PMCID: PMC7335386 DOI: 10.26508/lsa.202000814] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 06/19/2020] [Accepted: 06/19/2020] [Indexed: 12/19/2022] Open
Abstract
Expanding the toolbox of prion research to a low-biohazard, scalable human cell model. Transmission of prion infectivity to susceptible murine cell lines has simplified prion titration assays and has greatly reduced the need for animal experimentation. However, murine cell models suffer from technical and biological constraints. Human cell lines might be more useful, but they are much more biohazardous and are often poorly infectible. Here, we describe the human clonal cell line hovS, which lacks the human PRNP gene and expresses instead the ovine PRNP VRQ allele. HovS cells were highly susceptible to the PG127 strain of sheep-derived murine prions, reaching up to 90% infected cells in any given culture and were maintained in a continuous infected state for at least 14 passages. Infected hovS cells produced proteinase K–resistant prion protein (PrPSc), pelletable PrP aggregates, and bona fide infectious prions capable of infecting further generations of naïve hovS cells and mice expressing the VRQ allelic variant of ovine PrPC. Infection in hovS led to prominent cytopathic vacuolation akin to the spongiform changes observed in individuals suffering from prion diseases. In addition to expanding the toolbox for prion research to human experimental genetics, the hovS cell line provides a human-derived system that does not require human prions. Hence, the manipulation of scrapie-infected hovS cells may present fewer biosafety hazards than that of genuine human prions.
Collapse
Affiliation(s)
- Merve Avar
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Daniel Heinzer
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Nicolas Steinke
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Berre Doğançay
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Rita Moos
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Severine Lugan
- UMR INRA/ENVT 1225 IHAP, École Nationale Vétérinaire de Toulouse (ENVT), Toulouse, France
| | - Claudia Cosenza
- UMR INRA/ENVT 1225 IHAP, École Nationale Vétérinaire de Toulouse (ENVT), Toulouse, France
| | - Simone Hornemann
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Olivier Andréoletti
- UMR INRA/ENVT 1225 IHAP, École Nationale Vétérinaire de Toulouse (ENVT), Toulouse, France
| | - Adriano Aguzzi
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
31
|
Abstract
Sporadic Creutzfeldt-Jakob disease (sCJD) cases are currently classified according to the methionine/valine polymorphism at codon 129 of the PRNP gene and the proteinase K-digested abnormal prion protein (PrPres) isoform identified by Western blotting (type 1 or type 2). Converging evidence led to the view that MM/MV1, VV/MV2, and VV1 and MM2 sCJD cases are caused by distinct prion strains. However, in a significant proportion of sCJD patients, both type 1 and type 2 PrPres were reported to accumulate in the brain, which raised questions about the diversity of sCJD prion strains and the coexistence of two prion strains in the same patient. In this study, a panel of sCJD brain isolates (n = 29) that displayed either a single or mixed type 1/type 2 PrPres were transmitted into human-PrP-expressing mice (tgHu). These bioassays demonstrated that two distinct prion strains (M1CJD and V2CJD) were associated with the development of sCJD in MM1/MV1 and VV2/MV2 patients. However, in about 35% of the investigated VV and MV cases, transmission results were consistent with the presence of both M1CJD and V2CJD strains, including in patients who displayed a "pure" type 1 or type 2 PrPres The use of a highly sensitive prion in vitro amplification technique that specifically probes the V2CJD strain revealed the presence of the V2CJD prion in more than 80% of the investigated isolates, including isolates that propagated as a pure M1CJD strain in tgHu. These results demonstrate that at least two sCJD prion strains can be present in a single patient.IMPORTANCE sCJD occurrence is currently assumed to result from spontaneous and stochastic formation of a misfolded PrP nucleus in the brains of affected patients. This original nucleus then recruits and converts nascent PrPC into PrPSc, leading to the propagation of prions in the patient's brain. Our study demonstrates the coexistence of two prion strains in the brains of a majority of the 23 sCJD patients investigated. The relative proportion of these sCJD strains varied both between patients and between brain areas in a single patient. These findings strongly support the view that the replication of an sCJD prion strain in the brain of a patient can result in the propagation of different prion strain subpopulations. Beyond its conceptual importance for our understanding of prion strain properties and evolution, the sCJD strain mixture phenomenon and its frequency among patients have important implications for the development of therapeutic strategies for prion diseases.
Collapse
|
32
|
Koutsoumanis K, Allende A, Bolton D, Bover-Cid S, Chemaly M, Davies R, De Cesare A, Herman L, Hilbert F, Lindqvist R, Nauta M, Peixe L, Ru G, Simmons M, Skandamis P, Suffredini E, Andréoletti O, Escámez PF, Griffin J, Spiropoulos J, Ashe S, Ortiz-Peláez A, Alvarez-Ordóñez A. Evaluation of an alternative method for production of biodiesel from processed fats derived from Category 1, 2 and 3 animal by-products (submitted by College Proteins). EFSA J 2020; 18:e06089. [PMID: 32874297 PMCID: PMC7448056 DOI: 10.2903/j.efsa.2020.6089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
An alternative method for the production of biodiesel from processed fats derived from Category 1, 2 and 3 animal by-products was assessed. The method is based on a pre-cleaning process, acidic esterification/transesterification of tallow using 1.5% methanesulfonic acid w/w; 140°C; 5.5 bar absolute pressure (bara); 4 h, followed by fractional distillation. The application focuses on the capacity of the alternative method to inactivate prions. Given the limitations that biodiesel presents for direct measurement of prion infectivity, the BIOHAZ Panel considered, based on the outcome of previous EFSA Opinions and current expert evaluation, that a reduction of 6 log10 in detectable PrPS c signal would be necessary to consider the process at least equivalent to previously approved methods for Category 1 animal by-products. This is in addition to the inactivation achieved by the pressure sterilisation method applied before the application of any biodiesel production method. Experimental data were provided via ad hoc studies commissioned to quantify the reduction in detectable PrPS c in material spiked with scrapie hamster strain 263K, as measured by western blot, for the first two steps, with distillation assumed to provide at least an additional 3 log10 reduction, based on published data. Despite the intrinsic methodological caveats of the detection of PrPS c in laboratory studies, the BIOHAZ Panel considers that the alternative method, including the final fractional distillation, is capable of achieving the required 6 log10 reduction of the strain 263K PrPS c signal. Therefore, the method under assessment can be considered at least equivalent to the processing methods previously approved for the production of biodiesel from all categories of animal by-product raw materials. It is recommended to check the feasibility of the proposed HACCP plan by recording the main processing parameters for a certain time period under real industrial conditions.
Collapse
|
33
|
Detection of Pathognomonic Biomarker PrP Sc and the Contribution of Cell Free-Amplification Techniques to the Diagnosis of Prion Diseases. Biomolecules 2020; 10:biom10030469. [PMID: 32204429 PMCID: PMC7175149 DOI: 10.3390/biom10030469] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/16/2020] [Accepted: 03/17/2020] [Indexed: 02/07/2023] Open
Abstract
Transmissible spongiform encephalopathies or prion diseases are rapidly progressive neurodegenerative diseases, the clinical manifestation of which can resemble other promptly evolving neurological maladies. Therefore, the unequivocal ante-mortem diagnosis is highly challenging and was only possible by histopathological and immunohistochemical analysis of the brain at necropsy. Although surrogate biomarkers of neurological damage have become invaluable to complement clinical data and provide more accurate diagnostics at early stages, other neurodegenerative diseases show similar alterations hindering the differential diagnosis. To solve that, the detection of the pathognomonic biomarker of disease, PrPSc, the aberrantly folded isoform of the prion protein, could be used. However, the amounts in easily accessible tissues or body fluids at pre-clinical or early clinical stages are extremely low for the standard detection methods. The solution comes from the recent development of in vitro prion propagation techniques, such as Protein Misfolding Cyclic Amplification (PMCA) and Real Time-Quaking Induced Conversion (RT-QuIC), which have been already applied to detect minute amounts of PrPSc in different matrixes and make early diagnosis of prion diseases feasible in a near future. Herein, the most relevant tissues and body fluids in which PrPSc has been detected in animals and humans are being reviewed, especially those in which cell-free prion propagation systems have been used with diagnostic purposes.
Collapse
|
34
|
Giaccone G, Moda F. PMCA Applications for Prion Detection in Peripheral Tissues of Patients with Variant Creutzfeldt-Jakob Disease. Biomolecules 2020; 10:biom10030405. [PMID: 32151109 PMCID: PMC7175161 DOI: 10.3390/biom10030405] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/02/2020] [Accepted: 03/05/2020] [Indexed: 12/19/2022] Open
Abstract
Prion diseases are neurodegenerative and invariably fatal conditions that affect humans and animals. In particular, Creutzfeldt-Jakob disease (CJD) and bovine spongiform encephalopathy (BSE) are paradigmatic forms of human and animal prion diseases, respectively. Human exposure to BSE through contaminated food caused the appearance of the new variant form of CJD (vCJD). These diseases are caused by an abnormal prion protein named PrPSc (or prion), which accumulates in the brain and leads to the onset of the disease. Their definite diagnosis can be formulated only at post-mortem after biochemical and neuropathological identification of PrPSc. Thanks to the advent of an innovative technique named protein misfolding cyclic amplification (PMCA), traces of PrPSc, undetectable with the standard diagnostic techniques, were found in peripheral tissues of patients with vCJD, even at preclinical stages. The technology is currently being used in specialized laboratories and can be exploited for helping physicians in formulating an early and definite diagnosis of vCJD using peripheral tissues. However, this assay is currently unable to detect prions associated with the sporadic CJD (sCJD) forms, which are more frequent than vCJD. This review will focus on the most recent advances and applications of PMCA in the field of vCJD and other human prion disease diagnosis.
Collapse
|
35
|
McNulty EE, Nalls AV, Xun R, Denkers ND, Hoover EA, Mathiason CK. In vitro detection of haematogenous prions in white-tailed deer orally dosed with low concentrations of chronic wasting disease. J Gen Virol 2020; 101:347-361. [PMID: 31846418 PMCID: PMC7416609 DOI: 10.1099/jgv.0.001367] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 11/19/2019] [Indexed: 11/18/2022] Open
Abstract
Infectivity associated with prion disease has been demonstrated in blood throughout the course of disease, yet the ability to detect blood-borne prions by in vitro methods remains challenging. We capitalized on longitudinal pathogenesis studies of chronic wasting disease (CWD) conducted in the native host to examine haematogenous prion load by real-time quaking-induced conversion (RT-QuIC) and protein misfolding cyclic amplification. Our study demonstrated in vitro detection of amyloid seeding activity (prions) in buffy-coat cells harvested from deer orally dosed with low concentrations of CWD positive (+) brain (1 gr and 300 ng) or saliva (300 ng RT-QuIC equivalent). These findings make possible the longitudinal assessment of prion disease and deeper investigation of the role haematogenous prions play in prion pathogenesis.
Collapse
Affiliation(s)
- Erin E. McNulty
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Amy V. Nalls
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Randy Xun
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Nathaniel D. Denkers
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Edward A. Hoover
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Candace K. Mathiason
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
36
|
Holec SA, Block AJ, Bartz JC. The role of prion strain diversity in the development of successful therapeutic treatments. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 175:77-119. [PMID: 32958242 PMCID: PMC8939712 DOI: 10.1016/bs.pmbts.2020.07.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Prions are a self-propagating misfolded conformation of a cellular protein. Prions are found in several eukaryotic organisms with mammalian prion diseases encompassing a wide range of disorders. The first recognized prion disease, the transmissible spongiform encephalopathies (TSEs), affect several species including humans. Alzheimer's disease, synucleinopathies, and tauopathies share a similar mechanism of self-propagation of the prion form of the disease-specific protein reminiscent of the infection process of TSEs. Strain diversity in prion disease is characterized by differences in the phenotype of disease that is hypothesized to be encoded by strain-specific conformations of the prion form of the disease-specific protein. Prion therapeutics that target the prion form of the disease-specific protein can lead to the emergence of drug-resistant strains of prions, consistent with the hypothesis that prion strains exist as a dynamic mixture of a dominant strain in combination with minor substrains. To overcome this obstacle, therapies that reduce or eliminate the template of conversion are efficacious, may reverse neuropathology, and do not result in the emergence of drug resistance. Recent advancements in preclinical diagnosis of prion infection may allow for a combinational approach that treats the prion form and the precursor protein to effectively treat prion diseases.
Collapse
Affiliation(s)
- Sara A.M. Holec
- Institute for Applied Life Sciences and Department of Biology, University of Massachusetts Amherst, Amherst, MA, United States,Department of Medical Microbiology and Immunology, School of Medicine, Creighton University, Omaha, NE, United States
| | - Alyssa J. Block
- Department of Medical Microbiology and Immunology, School of Medicine, Creighton University, Omaha, NE, United States
| | - Jason C. Bartz
- Department of Medical Microbiology and Immunology, School of Medicine, Creighton University, Omaha, NE, United States,Corresponding author:
| |
Collapse
|
37
|
Abstract
Atypical/Nor98 scrapie (AS) is a prion disease of small ruminants. Currently there are no efficient measures to control this form of prion disease, and, importantly, the zoonotic potential and the risk that AS might represent for other farmed animal species remains largely unknown. In this study, we investigated the capacity of AS to propagate in bovine PrP transgenic mice. Unexpectedly, the transmission of AS isolates originating from 5 different European countries to bovine PrP mice resulted in the propagation of the classical BSE (c-BSE) agent. Detection of prion seeding activity in vitro by protein misfolding cyclic amplification (PMCA) demonstrated that low levels of the c-BSE agent were present in the original AS isolates. C-BSE prion seeding activity was also detected in brain tissue of ovine PrP mice inoculated with limiting dilutions (endpoint titration) of ovine AS isolates. These results are consistent with the emergence and replication of c-BSE prions during the in vivo propagation of AS isolates in the natural host. These data also indicate that c-BSE prions, a known zonotic agent in humans, can emerge as a dominant prion strain during passage of AS between different species. These findings provide an unprecedented insight into the evolution of mammalian prion strain properties triggered by intra- and interspecies passage. From a public health perspective, the presence of c-BSE in AS isolates suggest that cattle exposure to small ruminant tissues and products could lead to new occurrences of c-BSE.
Collapse
|
38
|
Moda F, Bolognesi ML, Legname G. Novel screening approaches for human prion diseases drug discovery. Expert Opin Drug Discov 2019; 14:983-993. [PMID: 31271065 DOI: 10.1080/17460441.2019.1637851] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Introduction: Human prion diseases are rare fatal neurodegenerative diseases caused by the misfolding and aggregation of the prion protein in the form of infectious prions. So far, these diseases are incurable. One of the major difficulties in identifying suitable drugs is the availability of robust preclinical screening methods. All molecules identified have been screened using cell-based assays and in vivo murine models. The existence of a continuum of prion strains has hampered the identification of efficacious molecules modulating the progression of different forms of the disease. Areas covered: The advent of new in vitro screening methodologies is allowing for novel strategies to develop new compounds that could interfere with a broad range of diseases. In particular, two innovative techniques named Real Time Quaking Induced Conversion (RT-QuIC) and Protein Misfolding Cyclic Amplification (PMCA) have opened new venues for testing compounds in a rapid a reproducible way. These are discussed within. Expert opinion: For human prion diseases, one major hurdle has been a well-defined screening methodology. In other animal species, cell-based assays have been employed that could replicate animal prions indefinitely. Such a tool for human prion diseases is still missing. Therefore, the advent of RT-QuIC and PMCA has proven instrumental to overcome this limitation.
Collapse
Affiliation(s)
- Fabio Moda
- Division of Neurology 5 - Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta , Milano , Italy
| | - Maria Laura Bolognesi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna , Bologna , Italy
| | - Giuseppe Legname
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA) , Trieste , Italy
| |
Collapse
|
39
|
Di Fede G, Giaccone G, Salmona M, Tagliavini F. Translational Research in Alzheimer's and Prion Diseases. J Alzheimers Dis 2019; 62:1247-1259. [PMID: 29172000 PMCID: PMC5869996 DOI: 10.3233/jad-170770] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Translational neuroscience integrates the knowledge derived by basic neuroscience with the development of new diagnostic and therapeutic tools that may be applied to clinical practice in neurological diseases. This information can be used to improve clinical trial designs and outcomes that will accelerate drug development, and to discover novel biomarkers which can be efficiently employed to early recognize neurological disorders and provide information regarding the effects of drugs on the underlying disease biology. Alzheimer’s disease (AD) and prion disease are two classes of neurodegenerative disorders characterized by incomplete knowledge of the molecular mechanisms underlying their occurrence and the lack of valid biomarkers and effective treatments. For these reasons, the design of therapies that prevent or delay the onset, slow the progression, or improve the symptoms associated to these disorders is urgently needed. During the last few decades, translational research provided a framework for advancing development of new diagnostic devices and promising disease-modifying therapies for patients with prion encephalopathies and AD. In this review, we provide present evidence of how supportive can be the translational approach to the study of dementias and show some results of our preclinical studies which have been translated to the clinical application following the ‘bed-to-bench-and-back’ research model.
Collapse
Affiliation(s)
- Giuseppe Di Fede
- IRCCS Foundation "Carlo Besta" Neurological Institute, Milan, Italy
| | - Giorgio Giaccone
- IRCCS Foundation "Carlo Besta" Neurological Institute, Milan, Italy
| | - Mario Salmona
- IRCCS Istituto di Ricerche Farmacologiche "Mario Negri", Milan, Italy
| | | |
Collapse
|
40
|
Lyon A, Mays CE, Borriello F, Telling GC, Soto C, Pritzkow S. Application of PMCA to screen for prion infection in a human cell line used to produce biological therapeutics. Sci Rep 2019; 9:4847. [PMID: 30890734 PMCID: PMC6424962 DOI: 10.1038/s41598-019-41055-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 02/01/2019] [Indexed: 12/11/2022] Open
Abstract
Advances in biotechnology have led to the development of a number of biological therapies for the treatment of diverse human diseases. Since these products may contain or are made using human or animal (e.g. cattle) derived materials, it is crucial to test their safety by ensuring the absence of infectious agents; specifically prions, which are highly resilient to elimination and produce fatal diseases in humans. Many cases of iatrogenic Creutzfeldt-Jakob disease have been caused by the use of biological materials (e.g. human growth hormone) contaminated with prions. For this reason, it is important to screen cells and biological materials for the presence of prions. Here we show the utility of the Protein Misfolding Cyclic Amplification (PMCA) technology as a screening tool for the presence of human (vCJD) and bovine (BSE) prions in a human cell therapy product candidate. First, we demonstrated the sensitivity of PMCA to detect a single cell infected with prions. For these experiments, we used RKM7 cells chronically infected with murine RML prions. Serial dilutions of an infected cell culture showed that PMCA enabled prion amplification from a sample comprised of only one cell. Next, we determined that PMCA performance was robust and uncompromised by the spiking of large quantities of uninfected cells into the reaction. Finally, to demonstrate the practical application of this technology, we analyzed a human cell line being developed for therapeutic use and found it to be PMCA-negative for vCJD and BSE prions. Our findings demonstrate that the PMCA technology has unparalleled sensitivity and specificity for the detection of prions, making it an ideal quality control procedure in the production of biological therapeutics.
Collapse
Affiliation(s)
- Adam Lyon
- Mitchell Center for Alzheimer's Disease and Related Brain Disorders, University of Texas McGovern Medical School, Houston, TX, 77030, USA
| | - Charles E Mays
- Mitchell Center for Alzheimer's Disease and Related Brain Disorders, University of Texas McGovern Medical School, Houston, TX, 77030, USA
| | - Frank Borriello
- Alloplex Biotherapeutics, Inc., 21 Erie Street, Cambridge, MA, 02139, USA
| | - Glenn C Telling
- Prion Research Center, Colorado State University, Colorado, USA
| | - Claudio Soto
- Mitchell Center for Alzheimer's Disease and Related Brain Disorders, University of Texas McGovern Medical School, Houston, TX, 77030, USA
| | - Sandra Pritzkow
- Mitchell Center for Alzheimer's Disease and Related Brain Disorders, University of Texas McGovern Medical School, Houston, TX, 77030, USA.
| |
Collapse
|
41
|
De Sousa PA, Ritchie D, Green A, Chandran S, Knight R, Head MW. Renewed assessment of the risk of emergent advanced cell therapies to transmit neuroproteinopathies. Acta Neuropathol 2019; 137:363-377. [PMID: 30483944 PMCID: PMC6514076 DOI: 10.1007/s00401-018-1941-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 11/13/2018] [Accepted: 11/18/2018] [Indexed: 12/18/2022]
Abstract
The inadvertent transmission of long incubating, untreatable and fatal neurodegenerative prionopathies, notably iatrogenic Creutzfeldt–Jakob disease, following transplantation of cadaver-derived corneas, pituitary growth, hormones and dura mater, constitutes a historical precedent which has underpinned the application of precautionary principles to modern day advanced cell therapies. To date these have been reflected by geographic or medical history risk-based deferral of tissue donors. Emergent understanding of other prion-like proteinopathies, their potential independence from prions as a transmissible agent and the variable capability of scalably manufacturable stem cells and derivatives to take up and clear or to propagate prions, substantiate further commitment to qualifying neurodegenerative proteinopathy transmission risks. This is especially so for those involving direct or facilitated access to a recipient’s brain or connected visual or nervous system such as for the treatment of stroke, retinal and adult onset neurodegenerative diseases, treatments for which have already commenced. In this review, we assess the prospective global dissemination of advanced cell therapies founded on transplantation or exposure to allogeneic human cells, recap lessons learned from the historical precedents of CJD transmission and review recent advances and current limits in understanding of prion and other neurodegenerative disease prion-like susceptibility and transmission. From these we propose grounds for a reassessment of the risks of emergent advanced cell therapies to transmit neuroproteinopathies and suggestions to ACT developers and regulators for risk mitigation and extension of criteria for deferrals.
Collapse
|
42
|
Tang YW, Stratton CW. Molecular Techniques for Blood and Blood Product Screening. ADVANCED TECHNIQUES IN DIAGNOSTIC MICROBIOLOGY 2018. [PMCID: PMC7120069 DOI: 10.1007/978-3-319-95111-9_2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Blood product safety is a high priority for manufacturing industries, hospitals, and regulatory agencies. An important step in ensuring safety is the screening of donated blood for infectious diseases. Molecular technologies for screening infectious diseases have improved remarkably over the years. Molecular biological assay significantly reduced the risk of transfusion-transmitted infections. Unlike previous methods, molecular technologies for screening infectious diseases are specific, efficient, easy to use, and economical. A new era in molecular biology is coming to the field of blood safety.
Collapse
Affiliation(s)
- Yi-Wei Tang
- Departments of Laboratory Medicine and Internal Medicine, Memorial Sloan Kettering Cancer Center, New York, NY USA
| | - Charles W. Stratton
- Department of Pathology, Microbiology and Immunology and Medicine, Vanderbilt University Medical Center, Nashville, TN USA
| |
Collapse
|
43
|
Hedman C, Otero A, Douet JY, Lacroux C, Lugan S, Filali H, Corbière F, Aron N, Badiola JJ, Andréoletti O, Bolea R. Detection of PrPres in peripheral tissue in pigs with clinical disease induced by intracerebral challenge with sheep-passaged bovine spongiform encephalopathy agent. PLoS One 2018; 13:e0199914. [PMID: 29975760 PMCID: PMC6033439 DOI: 10.1371/journal.pone.0199914] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 06/16/2018] [Indexed: 11/21/2022] Open
Abstract
Bovine spongiform encephalopathy (BSE) can be efficiently transmitted to pigs via intracerebral inoculation. A clear link has been established between the consumption of products of bovine origin contaminated with the BSE agent and the development of variant Creutzfeldt-Jakob disease in humans. Small ruminants can also naturally develop BSE, and sheep-adapted BSE (Sh-BSE) propagates more efficiently than cattle BSE in pigs and in mouse models expressing porcine prion protein. In addition, Sh-BSE shows greater efficiency of transmission to human models than original cow BSE. While infectivity and/or abnormal PrP accumulation have been reported in the central nervous system in BSE-infected pigs, the ability of the agent to replicate in peripheral tissues has not been fully investigated. We previously characterized the presence of prions in a panel of tissues collected at the clinical stage of disease from pigs experimentally infected with Sh-BSE. Western blot revealed low levels of PrPres accumulation in lymphoid tissues, nerves, and skeletal muscles from 4 of the 5 animals analysed. Using protein misfolding cyclic amplification (PMCA), which we found to be 6 log fold more sensitive than direct WB for the detection of pig BSE, we confirmed the presence of the Sh-BSE agent in lymphoid organs, nerves, ileum, and striated muscles from all 5 inoculated pigs. Surprisingly, PrPres positivity was also detected in white blood cells from one pig using this method. The presence of infectivity in lymphoid tissues, striated muscles, and peripheral nerves was confirmed by bioassay in bovine PrP transgenic mice. These results demonstrate the ability of BSE-derived agents to replicate efficiently in various peripheral tissues in pigs. Although no prion transmission has been reported in pigs following oral BSE challenge, our data support the continuation of the Feed Ban measure implemented to prevent entry of the BSE agent into the feed chain.
Collapse
Affiliation(s)
- Carlos Hedman
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes (CEETE), Veterinary Faculty, Universidad de Zaragoza, Zaragoza, Spain
| | - Alicia Otero
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes (CEETE), Veterinary Faculty, Universidad de Zaragoza, Zaragoza, Spain
| | - Jean-Yves Douet
- UMR INRA ENVT 1225, Interactions Hôtes Agents Pathogènes, Ecole Nationale Vétérinaire de Toulouse, Toulouse, France
| | - Caroline Lacroux
- UMR INRA ENVT 1225, Interactions Hôtes Agents Pathogènes, Ecole Nationale Vétérinaire de Toulouse, Toulouse, France
| | - Séverine Lugan
- UMR INRA ENVT 1225, Interactions Hôtes Agents Pathogènes, Ecole Nationale Vétérinaire de Toulouse, Toulouse, France
| | - Hicham Filali
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes (CEETE), Veterinary Faculty, Universidad de Zaragoza, Zaragoza, Spain
| | - Fabien Corbière
- UMR INRA ENVT 1225, Interactions Hôtes Agents Pathogènes, Ecole Nationale Vétérinaire de Toulouse, Toulouse, France
| | - Naima Aron
- UMR INRA ENVT 1225, Interactions Hôtes Agents Pathogènes, Ecole Nationale Vétérinaire de Toulouse, Toulouse, France
| | - Juan José Badiola
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes (CEETE), Veterinary Faculty, Universidad de Zaragoza, Zaragoza, Spain
| | - Olivier Andréoletti
- UMR INRA ENVT 1225, Interactions Hôtes Agents Pathogènes, Ecole Nationale Vétérinaire de Toulouse, Toulouse, France
| | - Rosa Bolea
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes (CEETE), Veterinary Faculty, Universidad de Zaragoza, Zaragoza, Spain
- * E-mail:
| |
Collapse
|
44
|
Thackray AM, Andréoletti O, Bujdoso R. The use of PrP transgenic Drosophila to replace and reduce vertebrate hosts in the bioassay of mammalian prion infectivity. F1000Res 2018; 7:595. [PMID: 29946445 PMCID: PMC5998032 DOI: 10.12688/f1000research.14753.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/27/2018] [Indexed: 11/24/2022] Open
Abstract
Prion diseases are fatal neurodegenerative conditions of humans and vertebrate species. The transmissible prion agent is a novel infectious particle composed principally of PrP Sc, an abnormal isomer of the normal host protein PrP C. The only reliable method to detect mammalian prion infectivity is by bioassay, invariably in a vertebrate host. The current prion bioassays typically involve intracerebral or peripheral inoculation of test material into the experimental host and subsequent euthanasia when clinical signs of terminal prion disease become evident. It may be months or years before the onset of clinical disease becomes evident and a pre-determined clinical end-point is reached. Consequently, bioassay of prion infectivity in vertebrate species is cumbersome, time consuming, expensive, and increasingly open to ethical debate because these animals are subjected to terminal neurodegenerative disease. Prions are a significant risk to public health through the potential for zoonotic transmission of animal prion diseases. Attention has focussed on the measurement of prion infectivity in different tissues and blood from prion-infected individuals in order to determine the distribution of infectious prions in diseased hosts. New animal models are required in order to replace or reduce, where possible, the dependency on the use of vertebrate species, including the 'gold standard' mouse prion bioassay, to assess prion infectivity levels. Here we highlight the development of a Drosophila-based prion bioassay, a highly sensitive and rapid invertebrate animal system that can efficiently detect mammalian prions. This novel invertebrate model system will be of considerable interest to biologists who perform prion bioassays as it will promote reduction and replacement in the number of sentient animals currently used for this purpose. This article is a composite of previous methods that provides an overview of the methodology of the model and discusses the experimental data to promote its viability for use instead of more sentient hosts.
Collapse
Affiliation(s)
- Alana M. Thackray
- Department of Veterinary Medicine, University of Cambridge, Cambridge, CB3 OES, UK
| | - Olivier Andréoletti
- UMR INRA ENVT 1225 -Hôtes-Agents Pathogènes, Ecole Nationale Vétérinaire de Toulouse, Toulouse, 31076, France
| | - Raymond Bujdoso
- Department of Veterinary Medicine, University of Cambridge, Cambridge, CB3 OES, UK
| |
Collapse
|
45
|
Bellingham SA, Hill AF. Analysis of miRNA Signatures in Neurodegenerative Prion Disease. Methods Mol Biol 2018; 1658:67-80. [PMID: 28861783 DOI: 10.1007/978-1-4939-7244-9_6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Prion diseases or transmissible spongiform encephalopathies are disorders of the central nervous system that affect both humans and animals. The underlying cause of prion diseases is the formation and propagation of the infectious prion protein. Prion diseases are difficult to diagnose and treat due to a prolonged asymptomatic incubation period prior to the onset of clinical symptoms. MicroRNAs (miRNAs) are small noncoding RNA species and have been identified as potential biomarkers that also function to regulate disease-specific pathways and proteins in several neurodegenerative disorders, including prion diseases. Here we describe the quantitative analysis of miRNA isolated from neuronal cells infected with a strain of mouse-adapted human prions. These methods can also be adapted to the discovery of miRNA biomarkers in extracellular vesicles, tissue, and noninvasive biological fluids.
Collapse
Affiliation(s)
- Shayne A Bellingham
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia
| | - Andrew F Hill
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia. .,Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, 3086, Australia.
| |
Collapse
|
46
|
Seed CR, Hewitt PE, Dodd RY, Houston F, Cervenakova L. Creutzfeldt-Jakob disease and blood transfusion safety. Vox Sang 2018; 113:220-231. [PMID: 29359329 DOI: 10.1111/vox.12631] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 11/16/2017] [Accepted: 12/19/2017] [Indexed: 01/09/2023]
Abstract
Transmissible spongiform encephalopathies (TSEs) are untreatable, fatal neurologic diseases affecting mammals. Human disease forms include sporadic, familial and acquired Creutzfeldt-Jakob disease (CJD). While sporadic CJD (sCJD) has been recognized for near on 100 years, variant CJD (vCJD) was first reported in 1996 and is the result of food-borne transmission of the prion of bovine spongiform encephalopathy (BSE, 'mad cow disease'). Currently, 230 vCJD cases have been reported in 12 countries, the majority in the UK (178) and France (27). Animal studies demonstrated highly efficient transmission of natural scrapie and experimental BSE by blood transfusion and fuelled concern that sCJD was potentially transfusion transmissible. No such case has been recorded and case-control evaluations and lookback studies indicate that, if transfusion transmission occurs at all, it is very rare. In contrast, four cases of apparent transfusion transmission of vCJD infectivity have been identified in the UK. Risk minimization strategies in response to the threat of vCJD include leucodepletion, geographically based donor deferrals and deferral of transfusion recipients. A sensitive and specific, high-throughput screening test would provide a potential path to mitigation but despite substantial effort no such test has yet appeared. The initial outbreak of vCJD appears to be over, but concern remains about subsequent waves of disease among those already infected. There is considerable uncertainty about the size of the infected population, and there will be at least a perception of some continuing risk to blood safety. Accordingly, at least some precautionary measures will remain in place and continued surveillance is necessary.
Collapse
Affiliation(s)
- C R Seed
- Australian Red Cross Blood Service, Perth, WA, Australia
| | | | - R Y Dodd
- American Red Cross Scientific Affairs, Gaithersburg, MD, USA
| | - F Houston
- The Roslin Institute, University of Edinburgh, Midlothian, Scotland
| | - L Cervenakova
- The Plasma Protein Therapeutics Association (PPTA), Annapolis, MD, USA
| |
Collapse
|
47
|
Douet JY, Lacroux C, Aron N, Head MW, Lugan S, Tillier C, Huor A, Cassard H, Arnold M, Beringue V, Ironside JW, Andréoletti O. Distribution and Quantitative Estimates of Variant Creutzfeldt-Jakob Disease Prions in Tissues of Clinical and Asymptomatic Patients. Emerg Infect Dis 2018; 23:946-956. [PMID: 28518033 PMCID: PMC5443438 DOI: 10.3201/eid2306.161734] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
In the United-Kingdom, ≈1 of 2,000 persons could be infected with variant Creutzfeldt-Jakob disease (vCJD). Therefore, risk of transmission of vCJD by medical procedures remains a major concern for public health authorities. In this study, we used in vitro amplification of prions by protein misfolding cyclic amplification (PMCA) to estimate distribution and level of the vCJD agent in 21 tissues from 4 patients who died of clinical vCJD and from 1 asymptomatic person with vCJD. PMCA identified major levels of vCJD prions in a range of tissues, including liver, salivary gland, kidney, lung, and bone marrow. Bioassays confirmed that the quantitative estimate of levels of vCJD prion accumulation provided by PMCA are indicative of vCJD infectivity levels in tissues. Findings provide critical data for the design of measures to minimize risk for iatrogenic transmission of vCJD.
Collapse
|
48
|
Screening of intact yeasts and cell extracts to reduce Scrapie prions during biotransformation of food waste. Acta Vet Scand 2018; 60:9. [PMID: 29422098 PMCID: PMC5806280 DOI: 10.1186/s13028-018-0363-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 02/05/2018] [Indexed: 01/01/2023] Open
Abstract
Yeasts can be used to convert organic food wastes to protein-rich animal feed in order to recapture nutrients. However, the reuse of animal-derived waste poses a risk for the transmission of infectious prions that can cause neurodegeneration and fatality in humans and animals. The aim of this study was to investigate the ability of yeasts to reduce prion activity during the biotransformation of waste substrates—thereby becoming a biosafety hurdle in such a circular food system. During pre-screening, 30 yeast isolates were spiked with Classical Scrapie prions and incubated for 72 h in casein substrate, as a waste substitute. Based on reduced Scrapie seeding activity, waste biotransformation and protease activities, intact cells and cell extracts of 10 yeasts were further tested. Prion analysis showed that five yeast species reduced Scrapie seeding activity by approximately 1 log10 or 90%. Cryptococcus laurentii showed the most potential to reduce prion activity since both intact and extracted cells reduced Scrapie by 1 log10 and achieved the highest protease activity. These results show that select forms of yeast can act as a prion hurdle during the biotransformation of waste. However, the limited ability of yeasts to reduce prion activity warrants caution as a sole barrier to transmission as higher log reductions are needed before using waste-cultured yeast in circular food systems.
Collapse
|
49
|
Barria MA, Lee A, Green AJ, Knight R, Head MW. Rapid amplification of prions from variant Creutzfeldt-Jakob disease cerebrospinal fluid. JOURNAL OF PATHOLOGY CLINICAL RESEARCH 2018; 4:86-92. [PMID: 29665324 PMCID: PMC5903693 DOI: 10.1002/cjp2.90] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 12/08/2017] [Accepted: 12/13/2017] [Indexed: 11/27/2022]
Abstract
Human prion diseases constitute a group of infectious and invariably fatal neurodegenerative disorders associated with misfolding of the prion protein. Variant Creutzfeldt–Jakob disease (vCJD) is a zoonotic prion disease linked to oral exposure to the infectious agent that causes bovine spongiform encephalopathy (BSE) in cattle. The most recent case of definite vCJD was heterozygous (MV) at polymorphic codon 129 of the prion protein gene PRNP while all of the previous 177 definite or probable vCJD cases who underwent genetic analysis were methionine homozygous (MM). Retrospective prevalence studies conducted on lympho‐reticular tissue suggest that the number of asymptomatic vCJD carriers in the United Kingdom might be around 1 in 2000 people. In addition, there have been four known cases of the transmission of vCJD infection via blood transfusion. For these reasons, a sensitive, reliable, and fast diagnostic test is currently needed. We describe a rapid and highly sensitive seeding conversion assay that detects disease‐associated prion protein in the brain and cerebrospinal fluid in vCJD after 48–96 h of amplification, with 100% sensitivity and specificity. This method can amplify prions from definite, probable, and possible vCJD cases from patients who are either MM or MV at PRNP‐codon 129.
Collapse
Affiliation(s)
- Marcelo A Barria
- National CJD Research & Surveillance Unit, Centre for Clinical Brain Sciences, Deanery of Clinical Medicine, The University of Edinburgh, Edinburgh, UK
| | - Andrew Lee
- National CJD Research & Surveillance Unit, Centre for Clinical Brain Sciences, Deanery of Clinical Medicine, The University of Edinburgh, Edinburgh, UK
| | - Alison Je Green
- National CJD Research & Surveillance Unit, Centre for Clinical Brain Sciences, Deanery of Clinical Medicine, The University of Edinburgh, Edinburgh, UK
| | - Richard Knight
- National CJD Research & Surveillance Unit, Centre for Clinical Brain Sciences, Deanery of Clinical Medicine, The University of Edinburgh, Edinburgh, UK
| | - Mark W Head
- National CJD Research & Surveillance Unit, Centre for Clinical Brain Sciences, Deanery of Clinical Medicine, The University of Edinburgh, Edinburgh, UK
| |
Collapse
|
50
|
Concha-Marambio L, Pritzkow S, Moda F, Tagliavini F, Ironside JW, Schulz PE, Soto C. Detection of prions in blood from patients with variant Creutzfeldt-Jakob disease. Sci Transl Med 2017; 8:370ra183. [PMID: 28003548 DOI: 10.1126/scitranslmed.aaf6188] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 03/03/2016] [Accepted: 12/02/2016] [Indexed: 12/24/2022]
Abstract
Human prion diseases are infectious and invariably fatal neurodegenerative diseases. They include sporadic Creutzfeldt-Jakob disease (sCJD), the most common form, and variant CJD (vCJD), which is caused by interspecies transmission of prions from cattle infected by bovine spongiform encephalopathy. Development of a biochemical assay for the sensitive, specific, early, and noninvasive detection of prions (PrPSc) in the blood of patients affected by prion disease is a top medical priority to increase the safety of the blood supply. vCJD has already been transmitted from human to human by blood transfusion, and the number of asymptomatic carriers of vCJD in the U.K. alone is estimated to be 1 in 2000 people. We used the protein misfolding cyclic amplification (PMCA) technique to analyze blood samples from 14 cases of vCJD and 153 controls, including patients affected by sCJD and other neurodegenerative or neurological disorders as well as healthy subjects. Our results showed that PrPSc could be detected with 100% sensitivity and specificity in blood samples from vCJD patients. Detection was possible in any of the blood fractions analyzed and could be done with as little as a few microliters of sample volume. The PrPSc concentration in blood was estimated to be ~0.5 pg/ml. Our findings suggest that PMCA may be useful for premortem noninvasive diagnosis of vCJD and to identify prion contamination of the blood supply. Further studies are needed to fully validate the technology.
Collapse
Affiliation(s)
- Luis Concha-Marambio
- Mitchell Center for Alzheimer's Disease and Related Brain Disorders, University of Texas Houston Medical School, Houston, TX 77030, USA.,Universidad de los Andes, Facultad de Medicina, Avenida San Carlos de Apoquindo 2200, Las Condes, Santiago, Chile
| | - Sandra Pritzkow
- Mitchell Center for Alzheimer's Disease and Related Brain Disorders, University of Texas Houston Medical School, Houston, TX 77030, USA
| | - Fabio Moda
- Mitchell Center for Alzheimer's Disease and Related Brain Disorders, University of Texas Houston Medical School, Houston, TX 77030, USA.,IRCCS Foundation Carlo Besta Neurological Institute, Milan, Italy
| | | | - James W Ironside
- National CJD Research and Surveillance Unit, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, U.K
| | - Paul E Schulz
- Mitchell Center for Alzheimer's Disease and Related Brain Disorders, University of Texas Houston Medical School, Houston, TX 77030, USA
| | - Claudio Soto
- Mitchell Center for Alzheimer's Disease and Related Brain Disorders, University of Texas Houston Medical School, Houston, TX 77030, USA. .,Universidad de los Andes, Facultad de Medicina, Avenida San Carlos de Apoquindo 2200, Las Condes, Santiago, Chile
| |
Collapse
|