1
|
Yu Y, Iatsenko I. Drosophila symbionts in infection: when a friend becomes an enemy. Infect Immun 2025; 93:e0051124. [PMID: 40172541 PMCID: PMC12070757 DOI: 10.1128/iai.00511-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2025] Open
Abstract
The insect microbiome is comprised of extracellular microbial communities that colonize the host surfaces and endosymbionts that reside inside host cells and tissues. Both of these communities participate in essential aspects of host biology, including the immune response and interactions with pathogens. In recent years, our knowledge about the role of the insect microbiome in infection has increased tremendously. While many studies have highlighted the microbiome's protective effect against various natural enemies of insects, unexpected discoveries have shown that some members of the microbiota can facilitate pathogenic infections. Here, we summarize studies in the fruit fly, Drosophila melanogaster, that have substantially progressed our understanding of host-pathogen-microbiome interactions during infection. We summarize studies on the protective mechanisms of Drosophila gut microbiota, highlight examples of microbiome exploitation by pathogens, and detail the mechanisms of endosymbiont-mediated host protection. In addition, we delve into a previously neglected topic in Drosophila microbiome research-the crosstalk between endosymbionts and gut microbiota. Finally, we address how endosymbionts and gut microbiota remain resilient to host immune responses and stably colonize the host during infection. By examining how the microbiome is influenced by and reciprocally affects infection outcomes, this review provides timely and cohesive coverage of the roles of Drosophila endosymbionts and gut microbiota during infections.
Collapse
Affiliation(s)
- Yi Yu
- Research Group Genetics of Host-Microbe Interactions, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Igor Iatsenko
- Research Group Genetics of Host-Microbe Interactions, Max Planck Institute for Infection Biology, Berlin, Germany
| |
Collapse
|
2
|
Njogu AK, Logozzo F, Conner WR, Shropshire JD. Counting rare Wolbachia endosymbionts using digital droplet PCR. Microbiol Spectr 2025:e0326624. [PMID: 40237471 DOI: 10.1128/spectrum.03266-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Accepted: 03/13/2025] [Indexed: 04/18/2025] Open
Abstract
Wolbachia is the most widespread animal-associated intracellular microbe, living within the cells of over half of insect species. Since they can suppress pathogen replication and spread rapidly through insect populations, Wolbachia is at the vanguard of public health initiatives to control mosquito-borne diseases. Wolbachia's abilities to block pathogens and spread quickly are closely linked to their abundance in host tissues. The most common method for counting Wolbachia is quantitative polymerase chain reaction (qPCR), yet qPCR can be insufficient to count rare Wolbachia, necessitating tissue pooling and consequently compromising individual-level resolution of Wolbachia dynamics. Digital droplet PCR (ddPCR) offers superior sensitivity, enabling the detection of rare targets and eliminating the need for sample pooling. Here, we report three ddPCR assays to measure total Wolbachia abundance, Wolbachia abundance adjusted for DNA extraction efficiency, and Wolbachia density relative to host genome copies. Using Drosophila melanogaster with wMel Wolbachia as a model, we show these ddPCR assays can reliably detect as few as 7 to 12 Wolbachia gene copies in a 20 µL reaction. The designed oligos are homologous to sequences from at least 106 Wolbachia strains across supergroup A and 53 host species from the Drosophila, Scaptomyza, and Zaprionus genera, suggesting broad utility. These highly sensitive ddPCR assays are expected to significantly advance Wolbachia-host interactions research by enabling the collection of molecular data from individual insect tissues. Their ability to detect rare Wolbachia will be especially valuable in applied and natural field settings where pooling samples could obscure important variation.IMPORTANCEWolbachia bacteria live inside the cells of many animals, especially insects. In many insect species, almost every individual carries Wolbachia. How common Wolbachia becomes within a population often depends on how much of it is present in the insect's body. Therefore, accurately measuring Wolbachia levels is crucial for understanding how these bacteria interact with their hosts and spread. However, traditional molecular assays can lack the sensitivity needed for accurate, individual-level quantification of rare Wolbachia. Here, we present three highly sensitive digital droplet PCR assays for Wolbachia detection, offering superior sensitivity compared to existing methods. These assays will be useful for studies that measure Wolbachia abundance and related phenotypes in individual insects, providing enhanced resolution and improving efforts to characterize the mechanisms that govern phenotypic variation.
Collapse
Affiliation(s)
- Alphaxand K Njogu
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania, USA
| | - Francesca Logozzo
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania, USA
| | - William R Conner
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
| | - J Dylan Shropshire
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania, USA
| |
Collapse
|
3
|
Pimentel AC, Cesar CS, Martins AHB, Martins M, Cogni R. Wolbachia Offers Protection Against Two Common Natural Viruses of Drosophila. MICROBIAL ECOLOGY 2025; 88:24. [PMID: 40202691 PMCID: PMC11982076 DOI: 10.1007/s00248-025-02518-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 03/24/2025] [Indexed: 04/10/2025]
Abstract
Wolbachia pipientis is a maternally transmitted endosymbiont infecting more than half of terrestrial arthropod species. Wolbachia can express parasitic phenotypes such as manipulation of host reproduction and mutualist phenotypes such as protection against RNA virus infections. Because Wolbachia can invade populations by reproductive manipulation and block virus infection, it is used to modify natural insect populations. However, the ecological importance of virus protection is not yet clear, especially due to scarce information on Wolbachia protection against viruses that are common in nature. We used systemic infection to investigate whether Wolbachia protects its host by suppressing the titer of DMELDAV and DMelNora virus, two viruses that commonly infect Drosophila melanogaster flies in natural populations. Antiviral protection was tested in three systems to assess the impact of Wolbachia strains across species: (1) a panel of Wolbachia strains transfected into Drosophila simulans, (2) two Wolbachia strains introgressed into the natural host D. melanogaster, and (3) two native Wolbachia strains in their natural hosts Drosophila baimaii and Drosophila tropicalis. We showed that certain Wolbachia strains provide protection against DMelNora virus and DMELDAV, and this protection is correlated with Wolbachia density, which is consistent with what has been observed in protection against other RNA viruses. Additionally, we found that Wolbachia does not protect its original host, D. melanogaster, from DMELDAV infection. While native Wolbachia can reduce DMELDAV titers in D. baimaii, this effect was not detected in D. tropicalis. Although the Wolbachia protection-induced phenotype seems to depend on the virus, the specific Wolbachia strain, and the host species, our findings suggest that antiviral protection may be one of the mutualistic effects that helps explain why Wolbachia is so widespread in arthropod populations.
Collapse
Affiliation(s)
- André C Pimentel
- Department of Ecology, University of São Paulo, São Paulo, Brazil
| | - Cássia S Cesar
- Department of Ecology, University of São Paulo, São Paulo, Brazil
| | | | - Marcos Martins
- Department of Ecology, University of São Paulo, São Paulo, Brazil
| | - Rodrigo Cogni
- Department of Ecology, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
4
|
Leitner M, Murigneux V, Etebari K, Asgari S. Wolbachia elevates host methyltransferase expression and alters the m 6A methylation landscape in Aedes aegypti mosquito cells. BMC Microbiol 2025; 25:164. [PMID: 40128692 PMCID: PMC11934717 DOI: 10.1186/s12866-025-03898-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 03/17/2025] [Indexed: 03/26/2025] Open
Abstract
Wolbachia pipientis is an intracellular endosymbiotic bacterium that blocks the replication of several arboviruses in transinfected Aedes aegypti mosquitoes, yet its antiviral mechanism remains unknown. For the first time, we employed Nanopore direct RNA sequencing technology to investigate the impact of wAlbB strain of Wolbachia on the host's N6-methyladenosine (m6A) machinery and post-transcriptional modification landscape. Our study revealed that Wolbachia infection elevates the expression of genes involved in the mosquito's m6A methyltransferase complex. However, knocking down these m6A-related genes did not affect Wolbachia density. Nanopore sequencing identified 1,392 differentially modified m6A DRACH motifs on mosquito transcripts, with 776 showing increased and 616 showing decreased m6A levels due to Wolbachia. These m6A sites were predominantly enriched in coding sequences and 3'-untranslated regions. Gene Ontology analysis revealed that genes with reduced m6A levels were over-represented in functional GO terms associated with purine nucleotide binding functions critical in the post-transcriptional modification process of m6A. Differential gene expression analysis of the Nanopore data uncovered that a total of 643 protein-coding genes were significantly differentially expressed, 427 were downregulated, and 216 were upregulated. Several classical and non-classical immune-related genes were amongst the downregulated DEGs. Notably, it revealed a critical host factor, transmembrane protein 41B (TMEM41B), which is required for flavivirus infection, was upregulated and methylated in the presence of Wolbachia. Indeed, there is a strong correlation between gene expression being upregulated in genes with both increased and decreased levels of m6A modification, respectively. Our findings underscore Wolbachia's ability to modulate many intracellular aspects of its mosquito host by influencing post-transcriptional m6A modifications and gene expression, and it unveils a potential link behind its antiviral properties.
Collapse
Affiliation(s)
- Michael Leitner
- School of the Environment, The University of Queensland, Brisbane, Australia
| | - Valentine Murigneux
- QCIF Facility for Advanced Bioinformatics, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Kayvan Etebari
- School of Agriculture and Food Sustainability, The University of Queensland, Brisbane, Australia
| | - Sassan Asgari
- School of the Environment, The University of Queensland, Brisbane, Australia.
| |
Collapse
|
5
|
Asselin A, Johnson K. The infectivity of virus particles from Wolbachia-infected Drosophila. BMC Microbiol 2025; 25:25. [PMID: 39819374 PMCID: PMC11737224 DOI: 10.1186/s12866-024-03722-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 12/20/2024] [Indexed: 01/19/2025] Open
Abstract
Viruses transmitted by arthropods pose a huge risk to human health. Wolbachia is an endosymbiotic bacterium that infects various arthropods and can block the viral replication cycle of several medically important viruses. As such, it has been successfully implemented in vector control strategies against mosquito-borne diseases, including Dengue virus. Whilst the mechanisms behind Wolbachia-mediated viral blocking are not fully characterised, it was recently shown that viruses grown in the presence of Wolbachia in some Dipteran cell cultures are less infectious than those grown in the absence of Wolbachia. Here, we investigate the breadth of this mechanism by determining if Wolbachia reduces infectivity in a different system at a different scale. To do this, we looked at Wolbachia's impact on insect viruses from two diverse virus families within the whole organism Drosophila melanogaster. Drosophila C virus (DCV; Family Dicistroviridae) and Flock House virus (FHV; Famliy Nodaviridae) were grown in adult D. melanogaster flies with and without Wolbachia strain wMelPop. Measures of the physical characteristics, infectivity, pathogenicity, and replicative properties of progeny virus particles did not identify any impact of Wolbachia on either DCV or FHV. Therefore, there was no evidence that changes in infectivity contribute to Wolbachia-mediated viral blocking in this system. Overall, this is consistent with growing evidence that the mechanisms behind Wolbachia viral blocking are dependent on the unique tripartite interactions occurring between the host, the Wolbachia strain, and the infecting virus.
Collapse
Affiliation(s)
- Angelique Asselin
- School of the Environment, The University of Queensland, Brisbane, QLD, Australia
| | - Karyn Johnson
- School of the Environment, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
6
|
da Moura AJF, Tomaz F, Melo T, Seixas G, Sousa CA, Pinto J. Vector competence of Culex quinquefasciatus from Santiago Island, Cape Verde, to West Nile Virus: exploring the potential effect of the vector native Wolbachia. Parasit Vectors 2024; 17:536. [PMID: 39716303 DOI: 10.1186/s13071-024-06609-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 11/28/2024] [Indexed: 12/25/2024] Open
Abstract
BACKGROUND Culex quinquefasciatus plays a crucial role as a vector of West Nile virus (WNV). This mosquito species is widely distributed in Cape Verde, being found in all inhabited islands of the archipelago. However, no data are currently available on the susceptibility of the local mosquito population to WNV. This study aimed to assess the vector competence of Cx. quinquefasciatus mosquitoes from Santiago Island, Cape Verde, for WNV and to explore the potential impact of its native Wolbachia on virus transmission. METHODS Wolbachia-infected and uninfected Cx. quinquefasciatus female mosquitoes were exposed to WNV lineage 1 PT6.39 strain using a Hemotek membrane feeding system. Mosquito samples, including the body, legs, wings and saliva, were collected at days 7, 14 and 21 post-infection (dpi) to assess WNV infection through one-step quantitative real-time PCR (RT-qPCR). RESULTS Culex quinquefasciatus from Cape Verde exhibited high susceptibility to the tested strain of WNV. Also, treated females without their native Wolbachia exhibited significantly higher WNV load in their bodies and greater dissemination rate at 7 dpi than their wild-type counterparts carrying Wolbachia. CONCLUSIONS The high susceptibility to WNV of Cx. quinquefasciatus from Cape Verde poses a potential risk for virus transmission in the archipelago. However, Wolbachia infection in this mosquito species seems to confer protection against WNV dissemination in the early stages of viral infection. Additional research is required to uncover the mechanisms driving this protection and its potential impact on WNV transmission.
Collapse
Affiliation(s)
- Aires Januário Fernandes da Moura
- Global Health and Tropical Medicine (GHTM), Associate Laboratory in Translation and Innovation Towards Global Health (LA-REAL), Instituto de Higiene e Medicina Tropical (IHMT), Universidade NOVA de Lisboa (UNL), Rua da Junqueira 100, 1349-008, Lisbon, Portugal.
- Unidade de Ciências da Natureza da Vida e do Ambiente, Universidade Jean Piaget de Cabo Verde, Praia, Cape Verde.
| | - Filipe Tomaz
- Global Health and Tropical Medicine (GHTM), Associate Laboratory in Translation and Innovation Towards Global Health (LA-REAL), Instituto de Higiene e Medicina Tropical (IHMT), Universidade NOVA de Lisboa (UNL), Rua da Junqueira 100, 1349-008, Lisbon, Portugal
| | - Tiago Melo
- Global Health and Tropical Medicine (GHTM), Associate Laboratory in Translation and Innovation Towards Global Health (LA-REAL), Instituto de Higiene e Medicina Tropical (IHMT), Universidade NOVA de Lisboa (UNL), Rua da Junqueira 100, 1349-008, Lisbon, Portugal
| | - Gonçalo Seixas
- Global Health and Tropical Medicine (GHTM), Associate Laboratory in Translation and Innovation Towards Global Health (LA-REAL), Instituto de Higiene e Medicina Tropical (IHMT), Universidade NOVA de Lisboa (UNL), Rua da Junqueira 100, 1349-008, Lisbon, Portugal
| | - Carla A Sousa
- Global Health and Tropical Medicine (GHTM), Associate Laboratory in Translation and Innovation Towards Global Health (LA-REAL), Instituto de Higiene e Medicina Tropical (IHMT), Universidade NOVA de Lisboa (UNL), Rua da Junqueira 100, 1349-008, Lisbon, Portugal
| | - João Pinto
- Global Health and Tropical Medicine (GHTM), Associate Laboratory in Translation and Innovation Towards Global Health (LA-REAL), Instituto de Higiene e Medicina Tropical (IHMT), Universidade NOVA de Lisboa (UNL), Rua da Junqueira 100, 1349-008, Lisbon, Portugal
| |
Collapse
|
7
|
Njogu AK, Logozzo F, Conner WR, Shropshire JD. Counting rare Wolbachia endosymbionts using digital droplet PCR. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.10.627731. [PMID: 39713442 PMCID: PMC11661144 DOI: 10.1101/2024.12.10.627731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Wolbachia is the most widespread animal-associated intracellular microbe, living within the cells of over half of insect species. Since they can suppress pathogen replication and spread rapidly through insect populations, Wolbachia is at the vanguard of public health initiatives to control mosquito-borne diseases. Wolbachia's abilities to block pathogens and spread quickly are closely linked to their abundance in host tissues. The most common method for counting Wolbachia is quantitative polymerase chain reaction (qPCR), yet qPCR can be insufficient to count rare Wolbachia, necessitating tissue pooling and consequently compromising individual-level resolution of Wolbachia dynamics. Digital droplet PCR (ddPCR) offers superior sensitivity, enabling the detection of rare targets and eliminating the need for sample pooling. Here, we report three ddPCR assays to measure total Wolbachia abundance, Wolbachia abundance adjusted for DNA extraction efficiency, and Wolbachia density relative to host genome copies. Using Drosophila melanogaster with wMel Wolbachia as a model, we show these ddPCR assays can reliably detect as few as 7 to 12 Wolbachia gene copies in a 20 μL reaction. The designed oligos are homologous to sequences from at least 106 Wolbachia strains across Supergroup A and 53 host species from the Drosophila, Scaptomyza, and Zaprionus genera, suggesting broad utility. These highly sensitive ddPCR assays are expected to significantly advance Wolbachia-host interactions research by enabling the collection of molecular data from individual insect tissues. Their ability to detect rare Wolbachia will be especially valuable in applied and natural field settings where pooling samples could obscure important variation.
Collapse
Affiliation(s)
- Alphaxand K. Njogu
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania, USA
| | - Francesca Logozzo
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania, USA
| | - William R. Conner
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
| | - J. Dylan Shropshire
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania, USA
| |
Collapse
|
8
|
Ang'ang'o LM, Herren JK, Tastan Bishop Ö. Bioinformatics analysis of the Microsporidia sp. MB genome: a malaria transmission-blocking symbiont of the Anopheles arabiensis mosquito. BMC Genomics 2024; 25:1132. [PMID: 39578727 PMCID: PMC11585130 DOI: 10.1186/s12864-024-11046-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 11/13/2024] [Indexed: 11/24/2024] Open
Abstract
BACKGROUND The use of microsporidia as a disease-transmission-blocking tool has garnered significant attention. Microsporidia sp. MB, known for its ability to block malaria development in mosquitoes, is an optimal candidate for supplementing malaria vector control methods. This symbiont, found in Anopheles mosquitoes, can be transmitted both vertically and horizontally with minimal effects on its mosquito host. Its genome, recently sequenced from An. arabiensis, comprises a compact 5.9 Mbp. RESULTS Here, we analyze the Microsporidia sp. MB genome, highlighting its major genomic features, gene content, and protein function. The genome contains 2247 genes, predominantly encoding enzymes. Unlike other members of the Enterocytozoonida group, Microsporidia sp. MB has retained most of the genes in the glycolytic pathway. Genes involved in RNA interference (RNAi) were also identified, suggesting a mechanism for host immune suppression. Importantly, meiosis-related genes (MRG) were detected, indicating potential for sexual reproduction in this organism. Comparative analyses revealed similarities with its closest relative, Vittaforma corneae, despite key differences in host interactions. CONCLUSION This study provides an in-depth analysis of the newly sequenced Microsporidia sp. MB genome, uncovering its unique adaptations for intracellular parasitism, including retention of essential metabolic pathways and RNAi machinery. The identification of MRGs suggests the possibility of sexual reproduction, offering insights into the symbiont's evolutionary strategies. Establishing a reference genome for Microsporidia sp. MB sets the foundation for future studies on its role in malaria transmission dynamics and host-parasite interactions.
Collapse
Affiliation(s)
- Lilian Mbaisi Ang'ang'o
- Department of Biochemistry, Microbiology, and Bioinformatics, Research Unit in Bioinformatics (RUBi), Rhodes University, Makhanda, 6140, South Africa
- International Centre of Insect Physiology and Ecology (icipe), P.O. Box 30772-00100, Nairobi, Kenya
| | - Jeremy Keith Herren
- International Centre of Insect Physiology and Ecology (icipe), P.O. Box 30772-00100, Nairobi, Kenya.
| | - Özlem Tastan Bishop
- Department of Biochemistry, Microbiology, and Bioinformatics, Research Unit in Bioinformatics (RUBi), Rhodes University, Makhanda, 6140, South Africa.
| |
Collapse
|
9
|
Higashi CHV, Patel V, Kamalaker B, Inaganti R, Bressan A, Russell JA, Oliver KM. Another tool in the toolbox: Aphid-specific Wolbachia protect against fungal pathogens. Environ Microbiol 2024; 26:e70005. [PMID: 39562330 DOI: 10.1111/1462-2920.70005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 10/28/2024] [Indexed: 11/21/2024]
Abstract
Aphids harbor nine common facultative symbionts, most mediating one or more ecological interactions. Wolbachia pipientis, well-studied in other arthropods, remains poorly characterized in aphids. In Pentalonia nigronervosa and P. caladii, global pests of banana, Wolbachia was initially hypothesized to function as a co-obligate nutritional symbiont alongside the traditional obligate Buchnera. However, genomic analyses failed to support this role. Our sampling across numerous populations revealed that more than 80% of Pentalonia aphids carried an M-supergroup strain of Wolbachia (wPni). The lack of fixation further supports a facultative status for Wolbachia, while high infection frequencies in these entirely asexual aphids strongly suggest Wolbachia confers net fitness benefits. Finding no correlation between Wolbachia presence and food plant use, we challenged Wolbachia-infected aphids with common natural enemies. Bioassays revealed that Wolbachia conferred significant protection against a specialized fungal pathogen (Pandora neoaphidis) but not against generalist pathogens or parasitoids. Wolbachia also improved aphid fitness in the absence of enemy challenge. Thus, we identified the first clear benefits for aphid-associated Wolbachia and M-supergroup strains specifically. Aphid-Wolbachia systems provide unique opportunities to merge key models of symbiosis to better understand infection dynamics and mechanisms underpinning symbiont-mediated phenotypes.
Collapse
Affiliation(s)
- Clesson H V Higashi
- Department of Entomology, University of Georgia, Athens, GA, USA
- Department of Biology, Drexel University, Philadelphia, PA, USA
| | - Vilas Patel
- Department of Entomology, University of Georgia, Athens, GA, USA
| | - Bryan Kamalaker
- Department of Entomology, University of Georgia, Athens, GA, USA
| | - Rahul Inaganti
- Department of Biology, Drexel University, Philadelphia, PA, USA
| | - Alberto Bressan
- Department of Plant and Environmental Protection Sciences, University of Hawaii, Honolulu, HI, USA
| | - Jacob A Russell
- Department of Biology, Drexel University, Philadelphia, PA, USA
| | - Kerry M Oliver
- Department of Entomology, University of Georgia, Athens, GA, USA
| |
Collapse
|
10
|
Dodson BL, Pujhari S, Brustolin M, Metz HC, Rasgon JL. Variable effects of transient Wolbachia infections on alphaviruses in Aedes aegypti. PLoS Negl Trop Dis 2024; 18:e0012633. [PMID: 39495807 PMCID: PMC11575829 DOI: 10.1371/journal.pntd.0012633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 11/19/2024] [Accepted: 10/15/2024] [Indexed: 11/06/2024] Open
Abstract
Wolbachia pipientis (= Wolbachia) has promise as a tool to suppress virus transmission by Aedes aegypti mosquitoes. However, Wolbachia can have variable effects on mosquito-borne viruses. This variation remains poorly characterized, yet the multimodal effects of Wolbachia on diverse pathogens could have important implications for public health. Here, we examine the effects of transient somatic infection with two strains of Wolbachia (wAlbB and wMel) on the alphaviruses Sindbis virus (SINV), O'nyong-nyong virus (ONNV), and Mayaro virus (MAYV) in Ae. aegypti. We found variable effects of Wolbachia including enhancement and suppression of viral infections, with some effects depending on Wolbachia strain. Both wAlbB- and wMel-infected mosquitoes showed enhancement of SINV infection rates one week post-infection, with wAlbB-infected mosquitoes also having higher viral titers than controls. Infection rates with ONNV were low across all treatments and no significant effects of Wolbachia were observed. The effects of Wolbachia on MAYV infections were strikingly strain-specific; wMel strongly blocked MAYV infections and suppressed viral titers, while wAlbB had more modest effects. The variable effects of Wolbachia on vector competence underscore the importance of further research into how this bacterium impacts the virome of wild mosquitoes including the emergent human pathogens they transmit.
Collapse
Affiliation(s)
- Brittany L Dodson
- Department of Entomology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Sujit Pujhari
- Department of Pharmacology Physiology and Neuroscience, School of Medicine, University of South Carolina, South Carolina, United States of America
| | - Marco Brustolin
- Unit of Entomology, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Hillery C Metz
- Department of Entomology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Jason L Rasgon
- Department of Entomology, Pennsylvania State University, University Park, Pennsylvania, United States of America
- Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, Pennsylvania, United States of America
- The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, United States of America
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| |
Collapse
|
11
|
Madhav M, Blasdell KR, Trewin B, Paradkar PN, López-Denman AJ. Culex-Transmitted Diseases: Mechanisms, Impact, and Future Control Strategies using Wolbachia. Viruses 2024; 16:1134. [PMID: 39066296 PMCID: PMC11281716 DOI: 10.3390/v16071134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/08/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Mosquitoes of the Culex genus are responsible for a large burden of zoonotic virus transmission globally. Collectively, they play a significant role in the transmission of medically significant diseases such as Japanese encephalitis virus and West Nile virus. Climate change, global trade, habitat transformation and increased urbanisation are leading to the establishment of Culex mosquitoes in new geographical regions. These novel mosquito incursions are intensifying concerns about the emergence of Culex-transmitted diseases and outbreaks in previously unaffected areas. New mosquito control methods are currently being developed and deployed globally. Understanding the complex interaction between pathogens and mosquitoes is essential for developing new control strategies for Culex species mosquitoes. This article reviews the role of Culex mosquitos as vectors of zoonotic disease, discussing the transmission of viruses across different species, and the potential use of Wolbachia technologies to control disease spread. By leveraging the insights gained from recent successful field trials of Wolbachia against Aedes-borne diseases, we comprehensively discuss the feasibility of using this technique to control Culex mosquitoes and the potential for the development of next generational Wolbachia-based control methods.
Collapse
Affiliation(s)
- Mukund Madhav
- Australian Centre for Disease Preparedness, CSIRO Health and Biosecurity, Geelong, VIC 3220, Australia
| | - Kim R Blasdell
- Australian Centre for Disease Preparedness, CSIRO Health and Biosecurity, Geelong, VIC 3220, Australia
| | - Brendan Trewin
- CSIRO Health and Biosecurity, Dutton Park, Brisbane, QLD 4102, Australia
| | - Prasad N Paradkar
- Australian Centre for Disease Preparedness, CSIRO Health and Biosecurity, Geelong, VIC 3220, Australia
| | - Adam J López-Denman
- Australian Centre for Disease Preparedness, CSIRO Health and Biosecurity, Geelong, VIC 3220, Australia
| |
Collapse
|
12
|
Holt JR, Cavichiolli de Oliveira N, Medina RF, Malacrinò A, Lindsey ARI. Insect-microbe interactions and their influence on organisms and ecosystems. Ecol Evol 2024; 14:e11699. [PMID: 39041011 PMCID: PMC11260886 DOI: 10.1002/ece3.11699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/14/2024] [Accepted: 06/21/2024] [Indexed: 07/24/2024] Open
Abstract
Microorganisms are important associates of insect and arthropod species. Insect-associated microbes, including bacteria, fungi, and viruses, can drastically impact host physiology, ecology, and fitness, while many microbes still have no known role. Over the past decade, we have increased our knowledge of the taxonomic composition and functional roles of insect-associated microbiomes and viromes. There has been a more recent shift toward examining the complexity of microbial communities, including how they vary in response to different factors (e.g., host genome, microbial strain, environment, and time), and the consequences of this variation for the host and the wider ecological community. We provide an overview of insect-microbe interactions, the variety of associated microbial functions, and the evolutionary ecology of these relationships. We explore the influence of the environment and the interactive effects of insects and their microbiomes across trophic levels. Additionally, we discuss the potential for subsequent synergistic and reciprocal impacts on the associated microbiomes, ecological interactions, and communities. Lastly, we discuss some potential avenues for the future of insect-microbe interactions that include the modification of existing microbial symbionts as well as the construction of synthetic microbial communities.
Collapse
Affiliation(s)
| | | | - Raul F. Medina
- Department of EntomologyTexas A&M University, Minnie Bell Heep CenterCollege StationTexasUSA
| | - Antonino Malacrinò
- Department of AgricultureUniversità Degli Studi Mediterranea di Reggio CalabriaReggio CalabriaItaly
| | | |
Collapse
|
13
|
Hague MTJ, Wheeler TB, Cooper BS. Comparative analysis of Wolbachia maternal transmission and localization in host ovaries. Commun Biol 2024; 7:727. [PMID: 38877196 PMCID: PMC11178894 DOI: 10.1038/s42003-024-06431-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 06/07/2024] [Indexed: 06/16/2024] Open
Abstract
Many insects and other animals carry microbial endosymbionts that influence their reproduction and fitness. These relationships only persist if endosymbionts are reliably transmitted from one host generation to the next. Wolbachia are maternally transmitted endosymbionts found in most insect species, but transmission rates can vary across environments. Maternal transmission of wMel Wolbachia depends on temperature in natural Drosophila melanogaster hosts and in transinfected Aedes aegypti, where wMel is used to block pathogens that cause human disease. In D. melanogaster, wMel transmission declines in the cold as Wolbachia become less abundant in host ovaries and at the posterior pole plasm (the site of germline formation) in mature oocytes. Here, we assess how temperature affects maternal transmission and underlying patterns of Wolbachia localization across 10 Wolbachia strains diverged up to 50 million years-including strains closely related to wMel-and their natural Drosophila hosts. Many Wolbachia maintain high transmission rates across temperatures, despite highly variable (and sometimes low) levels of Wolbachia in the ovaries and at the developing germline in late-stage oocytes. Identifying strains like closely related wMel-like Wolbachia with stable transmission across variable environmental conditions may improve the efficacy of Wolbachia-based biocontrol efforts as they expand into globally diverse environments.
Collapse
Affiliation(s)
| | - Timothy B Wheeler
- Division of Biological Sciences, University of Montana, Missoula, MT, USA
| | - Brandon S Cooper
- Division of Biological Sciences, University of Montana, Missoula, MT, USA
| |
Collapse
|
14
|
Tafesh-Edwards G, Kyza Karavioti M, Markollari K, Bunnell D, Chtarbanova S, Eleftherianos I. Wolbachia endosymbionts in Drosophila regulate the resistance to Zika virus infection in a sex dependent manner. Front Microbiol 2024; 15:1380647. [PMID: 38903791 PMCID: PMC11188429 DOI: 10.3389/fmicb.2024.1380647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 05/22/2024] [Indexed: 06/22/2024] Open
Abstract
Drosophila melanogaster has been used extensively for dissecting the genetic and functional bases of host innate antiviral immunity and virus-induced pathology. Previous studies have shown that the presence of Wolbachia endosymbionts in D. melanogaster confers resistance to infection by certain viral pathogens. Zika virus is an important vector-borne pathogen that has recently expanded its range due to the wide geographical distribution of the mosquito vector. Here, we describe the effect of Wolbachia on the immune response of D. melanogaster adult flies following Zika virus infection. First, we show that the presence of Wolbachia endosymbionts promotes the longevity of uninfected D. melanogaster wild type adults and increases the survival response of flies following Zika virus injection. We find that the latter effect is more pronounced in females rather than in males. Then, we show that the presence of Wolbachia regulates Zika virus replication during Zika virus infection of female flies. In addition, we demonstrate that the antimicrobial peptide-encoding gene Drosocin and the sole Jun N-terminal kinase-specific MAPK phosphatase Puckered are upregulated in female adult flies, whereas the immune and stress response gene TotM is upregulated in male individuals. Finally, we find that the activity of RNA interference and Toll signaling remain unaffected in Zika virus-infected female and male adults containing Wolbachia compared to flies lacking the endosymbionts. Our results reveal that Wolbachia endosymbionts in D. melanogaster affect innate immune signaling activity in a sex-specific manner, which in turn influences host resistance to Zika virus infection. This information contributes to a better understanding of the complex interrelationship between insects, their endosymbiotic bacteria, and viral infection. Interpreting these processes will help us design more effective approaches for controlling insect vectors of infectious disease.
Collapse
Affiliation(s)
- Ghada Tafesh-Edwards
- Infection and Innate Immunity Laboratory, Department of Biological Sciences, The George Washington University, Washington, DC, United States
| | - Margarita Kyza Karavioti
- Infection and Innate Immunity Laboratory, Department of Biological Sciences, The George Washington University, Washington, DC, United States
| | - Klea Markollari
- Infection and Innate Immunity Laboratory, Department of Biological Sciences, The George Washington University, Washington, DC, United States
| | - Dean Bunnell
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL, United States
| | - Stanislava Chtarbanova
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL, United States
| | - Ioannis Eleftherianos
- Infection and Innate Immunity Laboratory, Department of Biological Sciences, The George Washington University, Washington, DC, United States
| |
Collapse
|
15
|
Prakash A, Fenner F, Shit B, Salminen TS, Monteith KM, Khan I, Vale PF. IMD-mediated innate immune priming increases Drosophila survival and reduces pathogen transmission. PLoS Pathog 2024; 20:e1012308. [PMID: 38857285 PMCID: PMC11192365 DOI: 10.1371/journal.ppat.1012308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/21/2024] [Accepted: 05/31/2024] [Indexed: 06/12/2024] Open
Abstract
Invertebrates lack the immune machinery underlying vertebrate-like acquired immunity. However, in many insects past infection by the same pathogen can 'prime' the immune response, resulting in improved survival upon reinfection. Here, we investigated the mechanistic basis and epidemiological consequences of innate immune priming in the fruit fly Drosophila melanogaster when infected with the gram-negative bacterial pathogen Providencia rettgeri. We find that priming in response to P. rettgeri infection is a long-lasting and sexually dimorphic response. We further explore the epidemiological consequences of immune priming and find it has the potential to curtail pathogen transmission by reducing pathogen shedding and spread. The enhanced survival of individuals previously exposed to a non-lethal bacterial inoculum coincided with a transient decrease in bacterial loads, and we provide strong evidence that the effect of priming requires the IMD-responsive antimicrobial-peptide Diptericin-B in the fat body. Further, we show that while Diptericin B is the main effector of bacterial clearance, it is not sufficient for immune priming, which requires regulation of IMD by peptidoglycan recognition proteins. This work underscores the plasticity and complexity of invertebrate responses to infection, providing novel experimental evidence for the effects of innate immune priming on population-level epidemiological outcomes.
Collapse
Affiliation(s)
- Arun Prakash
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Florence Fenner
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | | | - Tiina S. Salminen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Katy M. Monteith
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | | | - Pedro F. Vale
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
16
|
Hague MT, Wheeler TB, Cooper BS. Comparative analysis of Wolbachia maternal transmission and localization in host ovaries. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.03.583170. [PMID: 38496649 PMCID: PMC10942406 DOI: 10.1101/2024.03.03.583170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Many insects and other animals carry microbial endosymbionts that influence their reproduction and fitness. These relationships only persist if endosymbionts are reliably transmitted from one host generation to the next. Wolbachia are maternally transmitted endosymbionts found in most insect species, but transmission rates can vary across environments. Maternal transmission of wMel Wolbachia depends on temperature in natural Drosophila melanogaster hosts and in transinfected Aedes aegypti, where wMel is used to block pathogens that cause human disease. In D. melanogaster, wMel transmission declines in the cold as Wolbachia become less abundant in host ovaries and at the posterior pole plasm (the site of germline formation) in mature oocytes. Here, we assess how temperature affects maternal transmission and underlying patterns of Wolbachia localization across 10 Wolbachia strains diverged up to 50 million years-including strains closely related to wMel-and their natural Drosophila hosts. Many Wolbachia maintain high transmission rates across temperatures, despite highly variable (and sometimes low) levels of Wolbachia in the ovaries and at the developing germline in late-stage oocytes. Identifying strains like closely related wMel-like Wolbachia with stable transmission across variable environmental conditions may improve the efficacy of Wolbachia-based biocontrol efforts as they expand into globally diverse environments.
Collapse
Affiliation(s)
| | - Timothy B. Wheeler
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
| | - Brandon S. Cooper
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
| |
Collapse
|
17
|
Maciel-de-Freitas R, Sauer FG, Kliemke K, Garcia GA, Pavan MG, David MR, Schmidt-Chanasit J, Hoffmann A, Lühken R. Wolbachia strains wMel and wAlbB differentially affect Aedes aegypti traits related to fecundity. Microbiol Spectr 2024; 12:e0012824. [PMID: 38483475 PMCID: PMC10986601 DOI: 10.1128/spectrum.00128-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 03/01/2024] [Indexed: 04/06/2024] Open
Abstract
Two Wolbachia strains, wMel and wAlbB, have been transinfected into Aedes aegypti mosquitoes for population replacement with the aim of reducing dengue transmission. Epidemiological data from various endemic sites suggest a pronounced decrease in dengue transmission after implementing this strategy. In this study, we investigated the impact of the Wolbachia strains wMel and wAlbB on Ae. aegypti fitness in a common genetic background. We found that Ae. aegypti females infected with the wMel strain exhibited several significant differences compared with those infected with the wAlbB strain. Specifically, wMel-infected females laid significantly fewer eggs, ingested a lower amount of blood, had a reduced egg production rate, and exhibited a decreased Wolbachia density at a later age compared with mosquitoes infected with the wAlbB strain. Conversely, the wAlbB strain showed only mild negative effects when compared with Wolbachia-uninfected specimens. These differential effects on Ae. aegypti fitness following infection with either wMel or wAlbB may have important implications for the success of population replacement strategies in invading native Ae. aegypti populations in endemic settings. Further research is needed to better understand the underlying mechanisms responsible for these differences in fitness effects and their potential impact on the long-term efficacy of Wolbachia-based dengue control programs.IMPORTANCEThe transmission of arboviruses such as dengue, Zika, and chikungunya is on the rise globally. Among the most promising strategies to reduce arbovirus burden is the release of one out of two strains of Wolbachia-infected Aedes aegypti: wMel and wAlbB. One critical aspect of whether this approach will succeed involves the fitness cost of either Wolbachia strains on mosquito life history traits. For instance, we found that wMel-infected Ae. aegypti females laid significantly fewer eggs, ingested a lower amount of blood, had a reduced egg production rate, and exhibited a decreased Wolbachia density at a later age compared with mosquitoes infected with the wAlbB strain. Conversely, the wAlbB strain showed only mild negative effects when compared with Wolbachia-uninfected specimens. These differential effects on mosquito fitness following infection with either wMel or wAlbB may have important implications for the success of population replacement strategies in invading native Ae. aegypti populations.
Collapse
Affiliation(s)
- Rafael Maciel-de-Freitas
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Laboratório de Mosquitos Transmissores de Hematozoários, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Felix G. Sauer
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | | | - Gabriela A. Garcia
- Laboratório de Mosquitos Transmissores de Hematozoários, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Márcio G. Pavan
- Laboratório de Mosquitos Transmissores de Hematozoários, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Mariana R. David
- Laboratório de Mosquitos Transmissores de Hematozoários, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Jonas Schmidt-Chanasit
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Faculty of Mathematics, Informatics and Natural Sciences, University of Hamburg, Hamburg, Germany
| | - Ary Hoffmann
- Pest and Environmental Adaptation Research Group, School of BioSciences, Bio21 Institute, The University of Melbourne, Melbourne, Australia
| | - Renke Lühken
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| |
Collapse
|
18
|
Ferguson LF, Ross PA, van Heerwaarden B. Wolbachia infection negatively impacts Drosophila simulans heat tolerance in a strain- and trait-specific manner. Environ Microbiol 2024; 26:e16609. [PMID: 38558489 DOI: 10.1111/1462-2920.16609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/01/2024] [Indexed: 04/04/2024]
Abstract
The susceptibility of insects to rising temperatures has largely been measured by their ability to survive thermal extremes. However, the capacity for maternally inherited endosymbionts to influence insect heat tolerance has been overlooked. Further, while some studies have addressed the impact of heat on traits like fertility, which can decline at temperatures below lethal thermal limits, none have considered the impact of endosymbionts. Here, we assess the impact of three Wolbachia strains (wRi, wAu and wNo) on the survival and fertility of Drosophila simulans exposed to heat stress during development or as adults. The effect of Wolbachia infection on heat tolerance was generally small and trait/strain specific. Only the wNo infection significantly reduced the survival of adult males after a heat shock. When exposed to fluctuating heat stress during development, the wRi and wAu strains reduced egg-to-adult survival but only the wNo infection reduced male fertility. Wolbachia densities of all three strains decreased under developmental heat stress, but reductions occurred at temperatures above those that reduced host fertility. These findings emphasize the necessity to account for endosymbionts and their effect on both survival and fertility when investigating insect responses to heat stress.
Collapse
Affiliation(s)
- Liam F Ferguson
- School of BioSciences, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria, Australia
| | - Perran A Ross
- School of BioSciences, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria, Australia
- Section for Bioscience and Engineering, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Belinda van Heerwaarden
- School of BioSciences, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
19
|
Corrêa-Antônio J, David MR, Couto-Lima D, Garcia GA, Keirsebelik MSG, Maciel-de-Freitas R, Pavan MG. DENV-1 Titer Impacts Viral Blocking in wMel Aedes aegypti with Brazilian Genetic Background. Viruses 2024; 16:214. [PMID: 38399990 PMCID: PMC10891765 DOI: 10.3390/v16020214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/23/2024] [Accepted: 01/28/2024] [Indexed: 02/25/2024] Open
Abstract
Several countries have been using Wolbachia deployments to replace highly competent native Aedes aegypti populations with Wolbachia-carrying mosquitoes with lower susceptibility to arboviruses such as dengue, Zika, and chikungunya. In Rio de Janeiro, Wolbachia deployments started in 2015 and still present a moderate introgression with a modest reduction in dengue cases in humans (38%). Here, we evaluated the vector competence of wild-type and wMel-infected Ae. aegypti with a Brazilian genetic background to investigate whether virus leakage could contribute to the observed outcomes in Brazil. We collected the specimens in three areas of Rio de Janeiro with distinct frequencies of mosquitoes with wMel strain and two areas with wild Ae. aegypti. The mosquitoes were orally exposed to two titers of DENV-1 and the saliva of DENV-1-infected Ae. aegypti was microinjected into wMel-free mosquitoes to check their infectivity. When infected with the high DENV-1 titer, the presence of wMel did not avoid viral infection in mosquitoes' bodies and saliva but DENV-1-infected wMel mosquitoes produced lower viral loads than wMel-free mosquitoes. On the other hand, wMel mosquitoes infected with the low DENV-1 titer were less susceptible to virus infection than wMel-free mosquitoes, although once infected, wMel and wMel-free mosquitoes exhibited similar viral loads in the body and the saliva. Our results showed viral leakage in 60% of the saliva of wMel mosquitoes with Brazilian background; thus, sustained surveillance is imperative to monitor the presence of other circulating DENV-1 strains capable of overcoming the Wolbachia blocking phenotype, enabling timely implementation of action plans.
Collapse
Affiliation(s)
- Jessica Corrêa-Antônio
- Laboratório de Mosquitos Transmissores de Hematozoários, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro 21040-900, Brazil; (J.C.-A.); (M.R.D.); (D.C.-L.); (G.A.G.); (M.S.G.K.); (R.M.-d.-F.)
| | - Mariana R. David
- Laboratório de Mosquitos Transmissores de Hematozoários, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro 21040-900, Brazil; (J.C.-A.); (M.R.D.); (D.C.-L.); (G.A.G.); (M.S.G.K.); (R.M.-d.-F.)
| | - Dinair Couto-Lima
- Laboratório de Mosquitos Transmissores de Hematozoários, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro 21040-900, Brazil; (J.C.-A.); (M.R.D.); (D.C.-L.); (G.A.G.); (M.S.G.K.); (R.M.-d.-F.)
| | - Gabriela Azambuja Garcia
- Laboratório de Mosquitos Transmissores de Hematozoários, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro 21040-900, Brazil; (J.C.-A.); (M.R.D.); (D.C.-L.); (G.A.G.); (M.S.G.K.); (R.M.-d.-F.)
| | - Milan S. G. Keirsebelik
- Laboratório de Mosquitos Transmissores de Hematozoários, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro 21040-900, Brazil; (J.C.-A.); (M.R.D.); (D.C.-L.); (G.A.G.); (M.S.G.K.); (R.M.-d.-F.)
| | - Rafael Maciel-de-Freitas
- Laboratório de Mosquitos Transmissores de Hematozoários, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro 21040-900, Brazil; (J.C.-A.); (M.R.D.); (D.C.-L.); (G.A.G.); (M.S.G.K.); (R.M.-d.-F.)
- Department of Arbovirology, Bernhard Nocht Institute of Tropical Medicine, 20359 Hamburg, Germany
| | - Márcio Galvão Pavan
- Laboratório de Mosquitos Transmissores de Hematozoários, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro 21040-900, Brazil; (J.C.-A.); (M.R.D.); (D.C.-L.); (G.A.G.); (M.S.G.K.); (R.M.-d.-F.)
| |
Collapse
|
20
|
Martins M, César CS, Cogni R. The effects of temperature on prevalence of facultative insect heritable symbionts across spatial and seasonal scales. Front Microbiol 2023; 14:1321341. [PMID: 38143870 PMCID: PMC10741647 DOI: 10.3389/fmicb.2023.1321341] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 11/23/2023] [Indexed: 12/26/2023] Open
Abstract
Facultative inheritable endosymbionts are common and diverse in insects and are often found at intermediate frequencies in insect host populations. The literature assessing the relationship between environment and facultative endosymbiont frequency in natural host populations points to temperature as a major component shaping the interaction. However, a synthesis describing its patterns and mechanistic basis is lacking. This mini-review aims to bridge this gap by, following an evolutionary model, hypothesizing that temperature increases endosymbiont frequencies by modulating key phenotypes mediating the interaction. Field studies mainly present positive correlations between temperature and endosymbiont frequency at spatial and seasonal scales; and unexpectedly, temperature is predominantly negatively correlated with the key phenotypes. Higher temperatures generally reduce the efficiency of maternal transmission, reproductive parasitism, endosymbiont influence on host fitness and the ability to protect against natural enemies. From the endosymbiont perspective alone, higher temperatures reduce titer and both high and low temperatures modulate their ability to promote host physiological acclimation and behavior. It is necessary to promote research programs that integrate field and laboratory approaches to pinpoint which processes are responsible for the temperature correlated patterns of endosymbiont prevalence in natural populations.
Collapse
Affiliation(s)
| | | | - Rodrigo Cogni
- Department of Ecology, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
21
|
Mouillaud T, Berger A, Buysse M, Rahola N, Daron J, Agbor J, Sango SN, Neafsey DE, Duron O, Ayala D. Limited association between Wolbachia and Plasmodium falciparum infections in natural populations of the major malaria mosquito Anopheles moucheti. Evol Appl 2023; 16:1999-2006. [PMID: 38143905 PMCID: PMC10739076 DOI: 10.1111/eva.13619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 12/26/2023] Open
Abstract
Since the discovery of natural malaria vector populations infected by the endosymbiont bacterium Wolbachia, a renewed interest has arisen for using this bacterium as an alternative for malaria control. Among naturally infected mosquitoes, Anopheles moucheti, a major malaria mosquito in Central Africa, exhibits one of the highest prevalences of Wolbachia infection. To better understand whether this maternally inherited bacterium could be used for malaria control, we investigated Wolbachia influence in An. moucheti populations naturally infected by the malaria parasite Plasmodium falciparum. To this end, we collected mosquitoes in a village from Cameroon, Central Africa, where this mosquito is the main malaria vector. We found that the prevalence of Wolbachia bacterium was almost fixed in the studied mosquito population, and was higher than previously recorded. We also quantified Wolbachia in whole mosquitoes and dissected abdomens, confirming that the bacterium is also elsewhere than in the abdomen, but at lower density. Finally, we analyzed the association of Wolbachia presence and density on P. falciparum infection. Wolbachia density was slightly higher in mosquitoes infected with the malaria parasite than in uninfected mosquitoes. However, we observed no correlation between the P. falciparum and Wolbachia densities. In conclusion, our study indicates that naturally occurring Wolbachia infection is not associated to P. falciparum development within An. moucheti mosquitoes.
Collapse
Affiliation(s)
| | - Audric Berger
- MIVEGEC, Univ. Montpellier, CNRS, IRDMontpellierFrance
| | - Marie Buysse
- MIVEGEC, Univ. Montpellier, CNRS, IRDMontpellierFrance
- Montpellier Ecology and Evolution of Disease Network (MEEDiN)MontpellierFrance
| | - Nil Rahola
- MIVEGEC, Univ. Montpellier, CNRS, IRDMontpellierFrance
| | - Josquin Daron
- MIVEGEC, Univ. Montpellier, CNRS, IRDMontpellierFrance
| | - Jean‐Pierre Agbor
- Faculté de Médecine et des Sciences Pharmaceutiques, Université de DoualaDoualaCameroon
| | - Sandrine N. Sango
- Faculté de Médecine et des Sciences Pharmaceutiques, Université de DoualaDoualaCameroon
| | - Daniel E. Neafsey
- Department of Immunology and Infectious DiseasesHarvard T.H. Chan School of Public HealthBostonMassachusettsUSA
- Infectious Disease and Microbiome ProgramBroad Institute of MIT and HarvardCambridgeMassachusettsUSA
| | - Olivier Duron
- MIVEGEC, Univ. Montpellier, CNRS, IRDMontpellierFrance
- Montpellier Ecology and Evolution of Disease Network (MEEDiN)MontpellierFrance
| | - Diego Ayala
- MIVEGEC, Univ. Montpellier, CNRS, IRDMontpellierFrance
- Medical Entomology UnitInstitut Pasteur de MadagascarAntananarivoMadagascar
| |
Collapse
|
22
|
Haghshenas-Gorgabi N, Poorjavd N, Khajehali J, Wybouw N. Cardinium symbionts are pervasive in Iranian populations of the spider mite Panonychus ulmi despite inducing an infection cost and no demonstrable reproductive phenotypes when Wolbachia is a symbiotic partner. EXPERIMENTAL & APPLIED ACAROLOGY 2023; 91:369-380. [PMID: 37819592 DOI: 10.1007/s10493-023-00840-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/15/2023] [Indexed: 10/13/2023]
Abstract
Maternally transmitted symbionts such as Cardinium and Wolbachia are widespread in arthropods. Both Cardinium and Wolbachia can cause cytoplasmic incompatibility, a reproductive phenotype that interferes with the development of uninfected eggs that are fertilized by infected sperm. In haplodiploid hosts, these symbionts can also distort sex allocation to facilitate their spread through host populations. Without other fitness effects, symbionts that induce strong reproductive phenotypes tend to spread to high and stable infection frequencies, whereas variants that induce weak reproductive phenotypes are typically associated with intermediate and variable frequencies. To study the spread of Cardinium in a haplodiploid host, we sampled Iranian populations of the economically important spider mite Panonychus ulmi in apple orchards. Within several field populations, we also studied the Wolbachia infection frequencies. All P. ulmi field populations carried a Cardinium infection and exhibited high infection frequencies. In contrast, Wolbachia frequency ranged between ca. 10% and ca. 70% and was only found in co-infected mites. To test whether Cardinium induce reproductive phenotypes in P. ulmi, a Cardinium-cured derived line was generated by antibiotic treatment from a co-infected field population. Genetic crosses indicated that Cardinium do not induce demonstrable levels of cytoplasmic incompatibility and sex allocation distortion in co-infected P. ulmi. However, Cardinium infection was associated with a longer developmental time and reduced total fecundity for co-infected females. We hypothesize that Cardinium spread through P. ulmi populations via uncharacterized fitness effects and that co-infection with Wolbachia might impact these drive mechanisms.
Collapse
Affiliation(s)
- Nastaran Haghshenas-Gorgabi
- Department of Plant Protection, College of Agriculture, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - Nafiseh Poorjavd
- Department of Plant Protection, College of Agriculture, Isfahan University of Technology, Isfahan, 84156-83111, Iran.
| | - Jahangir Khajehali
- Department of Plant Protection, College of Agriculture, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - Nicky Wybouw
- Terrestrial Ecology Unit, Department of Biology, Faculty of Sciences, Ghent University, Ghent, Belgium.
| |
Collapse
|
23
|
Garrigós M, Garrido M, Panisse G, Veiga J, Martínez-de la Puente J. Interactions between West Nile Virus and the Microbiota of Culex pipiens Vectors: A Literature Review. Pathogens 2023; 12:1287. [PMID: 38003752 PMCID: PMC10675824 DOI: 10.3390/pathogens12111287] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/21/2023] [Accepted: 10/25/2023] [Indexed: 11/26/2023] Open
Abstract
The flavivirus West Nile virus (WNV) naturally circulates between mosquitoes and birds, potentially affecting humans and horses. Different species of mosquitoes play a role as vectors of WNV, with those of the Culex pipiens complex being particularly crucial for its circulation. Different biotic and abiotic factors determine the capacity of mosquitoes for pathogen transmission, with the mosquito gut microbiota being recognized as an important one. Here, we review the published studies on the interactions between the microbiota of the Culex pipiens complex and WNV infections in mosquitoes. Most articles published so far studied the interactions between bacteria of the genus Wolbachia and WNV infections, obtaining variable results regarding the directionality of this relationship. In contrast, only a few studies investigate the role of the whole microbiome or other bacterial taxa in WNV infections. These studies suggest that bacteria of the genera Serratia and Enterobacter may enhance WNV development. Thus, due to the relevance of WNV in human and animal health and the important role of mosquitoes of the Cx. pipiens complex in its transmission, more research is needed to unravel the role of mosquito microbiota and those factors affecting this microbiota on pathogen epidemiology. In this respect, we finally propose future lines of research lines on this topic.
Collapse
Affiliation(s)
- Marta Garrigós
- Department of Parasitology, University of Granada, 18071 Granada, Spain; (M.G.); (J.V.); (J.M.-d.l.P.)
| | - Mario Garrido
- Department of Parasitology, University of Granada, 18071 Granada, Spain; (M.G.); (J.V.); (J.M.-d.l.P.)
| | - Guillermo Panisse
- CEPAVE—Centro de Estudios Parasitológicos y de Vectores CONICET-UNLP, La Plata 1900, Argentina;
| | - Jesús Veiga
- Department of Parasitology, University of Granada, 18071 Granada, Spain; (M.G.); (J.V.); (J.M.-d.l.P.)
| | - Josué Martínez-de la Puente
- Department of Parasitology, University of Granada, 18071 Granada, Spain; (M.G.); (J.V.); (J.M.-d.l.P.)
- CIBER de Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain
| |
Collapse
|
24
|
Guo Y, Shao J, Wu Y, Li Y. Using Wolbachia to control rice planthopper populations: progress and challenges. Front Microbiol 2023; 14:1244239. [PMID: 37779725 PMCID: PMC10537216 DOI: 10.3389/fmicb.2023.1244239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 08/24/2023] [Indexed: 10/03/2023] Open
Abstract
Wolbachia have been developed as a tool for protecting humans from mosquito populations and mosquito-borne diseases. The success of using Wolbachia relies on the facts that Wolbachia are maternally transmitted and that Wolbachia-induced cytoplasmic incompatibility provides a selective advantage to infected over uninfected females, ensuring that Wolbachia rapidly spread through the target pest population. Most transinfected Wolbachia exhibit a strong antiviral response in novel hosts, thus making it an extremely efficient technique. Although Wolbachia has only been used to control mosquitoes so far, great progress has been made in developing Wolbachia-based approaches to protect plants from rice pests and their associated diseases. Here, we synthesize the current knowledge about the important phenotypic effects of Wolbachia used to control mosquito populations and the literature on the interactions between Wolbachia and rice pest planthoppers. Our aim is to link findings from Wolbachia-mediated mosquito control programs to possible applications in planthoppers.
Collapse
Affiliation(s)
| | | | | | - Yifeng Li
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangzhou, China
| |
Collapse
|
25
|
Santos J, Matos M, Flatt T, Chelo IM. Microbes are potential key players in the evolution of life histories and aging in Caenorhabditis elegans. Ecol Evol 2023; 13:e10537. [PMID: 37753311 PMCID: PMC10518755 DOI: 10.1002/ece3.10537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/07/2023] [Accepted: 09/01/2023] [Indexed: 09/28/2023] Open
Abstract
Microbes can have profound effects on host fitness and health and the appearance of late-onset diseases. Host-microbe interactions thus represent a major environmental context for healthy aging of the host and might also mediate trade-offs between life-history traits in the evolution of host senescence. Here, we have used the nematode Caenorhabditis elegans to study how host-microbe interactions may modulate the evolution of life histories and aging. We first characterized the effects of two non-pathogenic and one pathogenic Escherichia coli strains, together with the pathogenic Serratia marcescens DB11 strain, on population growth rates and survival of C. elegans from five different genetic backgrounds. We then focused on an outbred C. elegans population, to understand if microbe-specific effects on the reproductive schedule and in traits such as developmental rate and survival were also expressed in the presence of males and standing genetic variation, which could be relevant for the evolution of C. elegans and other nematode species in nature. Our results show that host-microbe interactions have a substantial host-genotype-dependent impact on the reproductive aging and survival of the nematode host. Although both pathogenic bacteria reduced host survival in comparison with benign strains, they differed in how they affected other host traits. Host fertility and population growth rate were affected by S. marcescens DB11 only during early adulthood, whereas this occurred at later ages with the pathogenic E. coli IAI1. In both cases, these effects were largely dependent on the host genotypes. Given such microbe-specific genotypic differences in host life history, we predict that the evolution of reproductive schedules and senescence might be critically contingent on host-microbe interactions in nature.
Collapse
Affiliation(s)
- Josiane Santos
- cE3c – Centre for Ecology, Evolution and Environmental Changes & CHANGE – Global Change and Sustainability InstituteLisboaPortugal
- Departamento de Biologia Animal, Faculdade de CiênciasUniversidade de LisboaLisboaPortugal
| | - Margarida Matos
- cE3c – Centre for Ecology, Evolution and Environmental Changes & CHANGE – Global Change and Sustainability InstituteLisboaPortugal
- Departamento de Biologia Animal, Faculdade de CiênciasUniversidade de LisboaLisboaPortugal
| | - Thomas Flatt
- Department of BiologyUniversity of FribourgFribourgSwitzerland
| | - Ivo M. Chelo
- cE3c – Centre for Ecology, Evolution and Environmental Changes & CHANGE – Global Change and Sustainability InstituteLisboaPortugal
- Departamento de Biologia Animal, Faculdade de CiênciasUniversidade de LisboaLisboaPortugal
| |
Collapse
|
26
|
Rainey SM, Geoghegan V, Lefteri DA, Ant TH, Martinez J, McNamara CJ, Kamel W, de Laurent ZR, Castello A, Sinkins SP. Differences in proteome perturbations caused by the Wolbachia strain wAu suggest multiple mechanisms of Wolbachia-mediated antiviral activity. Sci Rep 2023; 13:11737. [PMID: 37474590 PMCID: PMC10359319 DOI: 10.1038/s41598-023-38127-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 07/03/2023] [Indexed: 07/22/2023] Open
Abstract
Some strains of the inherited bacterium Wolbachia have been shown to be effective at reducing the transmission of dengue virus (DENV) and other RNA viruses by Aedes aegypti in both laboratory and field settings and are being deployed for DENV control. The degree of virus inhibition varies between Wolbachia strains. Density and tissue tropism can contribute to these differences but there are also indications that this is not the only factor involved: for example, strains wAu and wAlbA are maintained at similar intracellular densities but only wAu produces strong DENV inhibition. We previously reported perturbations in lipid transport dynamics, including sequestration of cholesterol in lipid droplets, with strains wMel/wMelPop in Ae. aegypti. To further investigate the cellular basis underlying these differences, proteomic analysis of midguts was carried out on Ae. aegypti lines carrying strains wAu and wAlbA: with the hypothesis that differences in perturbations may underline Wolbachia-mediated antiviral activity. Surprisingly, wAu-carrying midguts not only showed distinct proteome perturbations when compared to non-Wolbachia carrying and wAlbA-carrying midguts but also wMel-carrying midguts. There are changes in RNA processing pathways and upregulation of a specific set of RNA-binding proteins in the wAu-carrying line, including genes with known antiviral activity. Lipid transport and metabolism proteome changes also differ between strains, and we show that strain wAu does not produce the same cholesterol sequestration phenotype as wMel. Moreover, in contrast to wMel, wAu antiviral activity was not rescued by cyclodextrin treatment. Together these results suggest that wAu could show unique features in its inhibition of arboviruses compared to previously characterized Wolbachia strains.
Collapse
Affiliation(s)
| | - Vincent Geoghegan
- MRC-University of Glasgow-Centre for Virus Research, Glasgow, UK
- The University of York, York, UK
| | | | - Thomas H Ant
- MRC-University of Glasgow-Centre for Virus Research, Glasgow, UK
| | - Julien Martinez
- MRC-University of Glasgow-Centre for Virus Research, Glasgow, UK
| | | | - Wael Kamel
- MRC-University of Glasgow-Centre for Virus Research, Glasgow, UK
| | | | - Alfredo Castello
- MRC-University of Glasgow-Centre for Virus Research, Glasgow, UK
| | - Steven P Sinkins
- MRC-University of Glasgow-Centre for Virus Research, Glasgow, UK.
| |
Collapse
|
27
|
Bruner-Montero G, Jiggins FM. Wolbachia protects Drosophila melanogaster against two naturally occurring and virulent viral pathogens. Sci Rep 2023; 13:8518. [PMID: 37231093 PMCID: PMC10212958 DOI: 10.1038/s41598-023-35726-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 05/23/2023] [Indexed: 05/27/2023] Open
Abstract
Wolbachia is a common endosymbiont that can protect insects against viral pathogens. However, whether the antiviral effects of Wolbachia have a significant effect on fitness remains unclear. We have investigated the interaction between Drosophila melanogaster, Wolbachia and two viruses that we recently isolated from wild flies, La Jolla virus (LJV; Iflaviridae) and Newfield virus (NFV; Permutotetraviridae). Flies infected with these viruses have increased mortality rates, and NFV partially sterilizes females. These effects on fitness were reduced in Wolbachia-infected flies, and this was associated with reduced viral titres. However, Wolbachia alone also reduces survival, and under our experimental conditions these costs of the symbiont can outweigh the benefits of antiviral protection. In contrast, protection against the sterilizing effect of NFV leads to a net benefit of Wolbachia infection after exposure to the virus. These results support the hypothesis that Wolbachia is an important defense against the natural pathogens of D. melanogaster. Furthermore, by reducing the cost of Wolbachia infection, the antiviral effects of Wolbachia may aid its invasion into populations and help explain why it is so common in nature.
Collapse
Affiliation(s)
- Gaspar Bruner-Montero
- Department of Genetics, University of Cambridge, Cambridge, CB2 3EH, UK.
- Coiba Scientific Station, City of Knowledge, 0843-03081, Clayton, Panama.
| | - Francis M Jiggins
- Department of Genetics, University of Cambridge, Cambridge, CB2 3EH, UK.
| |
Collapse
|
28
|
Ant TH, Mancini MV, McNamara CJ, Rainey SM, Sinkins SP. Wolbachia-Virus interactions and arbovirus control through population replacement in mosquitoes. Pathog Glob Health 2023; 117:245-258. [PMID: 36205550 PMCID: PMC10081064 DOI: 10.1080/20477724.2022.2117939] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2022] Open
Abstract
Following transfer into the primary arbovirus vector Aedes aegypti, several strains of the intracellular bacterium Wolbachia have been shown to inhibit the transmission of dengue, Zika, and chikungunya viruses, important human pathogens that cause significant morbidity and mortality worldwide. In addition to pathogen inhibition, many Wolbachia strains manipulate host reproduction, resulting in an invasive capacity of the bacterium in insect populations. This has led to the deployment of Wolbachia as a dengue control tool, and trials have reported significant reductions in transmission in release areas. Here, we discuss the possible mechanisms of Wolbachia-virus inhibition and the implications for long-term success of dengue control. We also consider the evidence presented in several reports that Wolbachia may cause an enhancement of replication of certain viruses under particular conditions, and conclude that these should not cause any concerns with respect to the application of Wolbachia to arbovirus control.
Collapse
Affiliation(s)
- Thomas H Ant
- Centre for Virus Research, University of Glasgow, Glasgow, UK
| | - Maria Vittoria Mancini
- Centre for Virus Research, University of Glasgow, Glasgow, UK
- Polo d’Innovazione di Genomica, Genetica e Biologia, Terni, Italy
| | | | | | | |
Collapse
|
29
|
Karpova EK, Bobrovskikh MA, Deryuzhenko MA, Shishkina OD, Gruntenko NE. Wolbachia Effect on Drosophila melanogaster Lipid and Carbohydrate Metabolism. INSECTS 2023; 14:357. [PMID: 37103172 PMCID: PMC10143037 DOI: 10.3390/insects14040357] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 03/31/2023] [Indexed: 06/19/2023]
Abstract
The effect of maternally inherited endosymbiotic bacteria Wolbachia on triglyceride and carbohydrate metabolism, starvation resistance and feeding behavior of Drosophila melanogaster females was studied. Eight D. melanogaster lines of the same nuclear background were investigated; one had no infection and served as the control, and seven others were infected with different Wolbachia strains pertaining to wMel and wMelCS groups of genotypes. Most of the infected lines had a higher overall lipid content and triglyceride level than the control line and their expression of the bmm gene regulating triglyceride catabolism was reduced. The glucose content was higher in the infected lines compared to that in the control, while their trehalose levels were similar. It was also found that the Wolbachia infection reduced the level of tps1 gene expression (coding for enzyme for trehalose synthesis from glucose) and had no effect on treh gene expression (coding for trehalose degradation enzyme). The infected lines exhibited lower appetite but higher survival under starvation compared to the control. The data obtained may indicate that Wolbachia foster their hosts' energy exchange through increasing its lipid storage and glucose content to ensure the host's competitive advantage over uninfected individuals. The scheme of carbohydrate and lipid metabolism regulation under Wolbachia's influence was suggested.
Collapse
|
30
|
Cross ST, Brehm AL, Dunham TJ, Rodgers CP, Keene AH, Borlee GI, Stenglein MD. Galbut Virus Infection Minimally Influences Drosophila melanogaster Fitness Traits in a Strain and Sex-Dependent Manner. Viruses 2023; 15:539. [PMID: 36851753 PMCID: PMC9965562 DOI: 10.3390/v15020539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/02/2023] [Accepted: 02/07/2023] [Indexed: 02/17/2023] Open
Abstract
Galbut virus (family Partitiviridae) infects Drosophila melanogaster and can be transmitted vertically from infected mothers or infected fathers with near perfect efficiency. This form of super-Mendelian inheritance should drive infection to 100% prevalence, and indeed, galbut virus is ubiquitous in wild D. melanogaster populations. However, on average, only about 60% of individual flies are infected. One possible explanation for this is that a subset of flies are resistant to infection. Although galbut virus-infected flies appear healthy, infection may be sufficiently costly to drive selection for resistant hosts, thereby decreasing overall prevalence. To test this hypothesis, we quantified a variety of fitness-related traits in galbut virus-infected flies from two lines from the Drosophila Genetic Reference Panel (DGRP). Galbut virus-infected flies had no difference in average lifespan and total offspring production compared to their uninfected counterparts. Galbut virus-infected DGRP-517 flies pupated and eclosed faster than their uninfected counterparts. Some galbut virus-infected flies exhibited altered sensitivity to viral, bacterial, and fungal pathogens. The microbiome composition of flies was not measurably perturbed by galbut virus infection. Differences in phenotype attributable to galbut virus infection varied as a function of fly sex and DGRP strain, and differences attributable to infection status were dwarfed by larger differences attributable to strain and sex. Thus, galbut virus infection does produce measurable phenotypic changes, with changes being minor, offsetting, and possibly net-negative.
Collapse
Affiliation(s)
- Shaun T. Cross
- Department of Environmental, Agricultural, and Occupational Health, College of Public Health, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Ali L. Brehm
- Center for Vector-Borne and Infectious Diseases, Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Tillie J. Dunham
- Center for Vector-Borne and Infectious Diseases, Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Case P. Rodgers
- Center for Vector-Borne and Infectious Diseases, Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Alexandra H. Keene
- Center for Vector-Borne and Infectious Diseases, Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Grace I. Borlee
- Center for Vector-Borne and Infectious Diseases, Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Mark D. Stenglein
- Center for Vector-Borne and Infectious Diseases, Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
31
|
Dodson BL, Pujhari S, Brustolin M, Metz HC, Rasgon JL. Variable effects of Wolbachia on alphavirus infection in Aedes aegypti. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.20.524939. [PMID: 36711723 PMCID: PMC9884506 DOI: 10.1101/2023.01.20.524939] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Wolbachia pipientis (=Wolbachia) has promise as a tool to suppress virus transmission by Aedes aegypti mosquitoes. However, Wolbachia can have variable effects on mosquito-borne viruses. This variation remains poorly characterized, yet the multimodal effects of Wolbachia on diverse pathogens could have important implications for public health. Here, we examine the effects of somatic infection with two strains of Wolbachia (wAlbB and wMel) on the alphaviruses Sindbis virus (SINV), O'nyong-nyong virus (ONNV), and Mayaro virus (MAYV) in Ae. aegypti. We found variable effects of Wolbachia including enhancement and suppression of viral infections, with some effects depending on Wolbachia strain. Both wAlbB- and wMel-infected mosquitoes showed enhancement of SINV infection rates one week post-infection, with wAlbB-infected mosquitoes also having higher viral titers than controls. Infection rates with ONNV were low across all treatments and no significant effects of Wolbachia were observed. The effects of Wolbachia on MAYV infections were strikingly strain-specific; wMel strongly blocked MAYV infections and suppressed viral titers, while wAlbB did not influence MAYV infection. The variable effects of Wolbachia on vector competence underscore the importance of further research into how this bacterium impacts the virome of wild mosquitoes including the emergent human pathogens they transmit.
Collapse
Affiliation(s)
- Brittany L Dodson
- Department of Entomology, Pennsylvania State University, University Park, PA, United States
| | - Sujit Pujhari
- Current address: Department of Pharmacology Physiology and Neuroscience, School of Medicine, University of South Carolina, United States
| | - Marco Brustolin
- Current address: Unit of Entomology, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Hillery C Metz
- Department of Entomology, Pennsylvania State University, University Park, PA, United States
| | - Jason L Rasgon
- Department of Entomology, Pennsylvania State University, University Park, PA, United States
- Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, PA, United States
- The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, United States
| |
Collapse
|
32
|
Du L, Xue H, Hu F, Zhu X, Wang L, Zhang K, Li D, Ji J, Niu L, Luo J, Cui J, Gao X. Dynamics of symbiotic bacterial community in whole life stage of Harmonia axyridis (Coleoptera: Coccinellidae). Front Microbiol 2022; 13:1050329. [PMID: 36532478 PMCID: PMC9751998 DOI: 10.3389/fmicb.2022.1050329] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/11/2022] [Indexed: 02/06/2024] Open
Abstract
INTRODUCTION Bacteria play critical roles in the reproduction, metabolism, physiology, and detoxification of their insect hosts. The ladybird beetle (Harmonia axyridis) harbors a myriad of endosymbiotic microbes. However, to date, little is known about how the microbial composition of H. axyridis varies throughout its life cycle. METHODS In this study, 16S rRNA amplicon sequencing and quantitative PCR were employed to investigate the diversity and dynamics of bacterial symbionts across the egg, larval, pupae, and adults stages of H. axyridis. RESULTS Higher bacterial community richness and diversity were observed in eggs, followed by those in adults and pupae. The community richness index differed significantly between second-instar larvae and other developmental stages. Proteobacteria, Firmicutes, and Actinobacteria were the dominant phyla. Staphylococcus, Enterobacter, Glutamicibacter, and Acinetobacter were the dominant bacteria genera; however, their relative abundances fluctuated across host developmental stages. Interestingly, the larval stage harbored high proportions of Firmicutes, whereas the adult microbial community largely consisted of Proteobacteria. DISCUSSION This study is the first to determine the symbiotic bacterial composition across key life stages of H. axyridis. These outcomes can foster the development of environmental risk assessments and novel biological control strategies.
Collapse
Affiliation(s)
- Lingen Du
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Hui Xue
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Fangmei Hu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Xiangzhen Zhu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Li Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Kaixin Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Dongyang Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Jichao Ji
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Lin Niu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Junyu Luo
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Jinjie Cui
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Xueke Gao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
33
|
Farooq T, Lin Q, She X, Chen T, Li Z, Yu L, Lan G, Tang Y, He Z. Cotton leaf curl Multan virus differentially regulates innate antiviral immunity of whitefly ( Bemisia tabaci) vector to promote cryptic species-dependent virus acquisition. FRONTIERS IN PLANT SCIENCE 2022; 13:1040547. [PMID: 36452094 PMCID: PMC9702342 DOI: 10.3389/fpls.2022.1040547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/28/2022] [Indexed: 06/17/2023]
Abstract
Begomoviruses represent the largest group of economically important, highly pathogenic, DNA plant viruses that contribute a substantial amount of global crop disease burden. The exclusive transmission of begomoviruses by whiteflies (Bemisia tabaci) requires them to interact and efficiently manipulate host responses at physiological, biological and molecular scales. However, the molecular mechanisms underlying complex begomovirus-whitefly interactions that consequently substantiate efficient virus transmission largely remain unknown. Previously, we found that whitefly Asia II 7 cryptic species can efficiently transmit cotton leaf curl Multan virus (CLCuMuV) while MEAM1 cryptic species is a poor carrier and incompetent vector of CLCuMuV. To investigate the potential mechanism/s that facilitate the higher acquisition of CLCuMuV by its whitefly vector (Asia II 7) and to identify novel whitefly proteins that putatively interact with CLCuMuV-AV1 (coat protein), we employed yeast two-hybrid system, bioinformatics, bimolecular fluorescence complementation, RNA interference, RT-qPCR and bioassays. We identified a total of 21 Asia II 7 proteins putatively interacting with CLCuMuV-AV1. Further analyses by molecular docking, Y2H and BiFC experiments validated the interaction between a whitefly innate immunity-related protein (BTB/POZ) and viral AV1 (coat protein). Gene transcription analysis showed that the viral infection significantly suppressed the transcription of BTB/POZ and enhanced the accumulation of CLCuMuV in Asia II 7, but not in MEAM1 cryptic species. In contrast to MEAM1, the targeted knock-down of BTB/POZ substantially reduced the ability of Asia II 7 to acquire and accumulate CLCuMuV. Additionally, antiviral immune signaling pathways (Toll, Imd, Jnk and Jak/STAT) were significantly suppressed following viral infection of Asia II 7 whiteflies. Taken together, the begomovirus CLCuMuV potentiates efficient virus accumulation in its vector B. tabaci Asia II 7 by targeting and suppressing the transcription of an innate immunity-related BTB/POZ gene and other antiviral immune responses in a cryptic species-specific manner.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Zifu He
- *Correspondence: Yafei Tang, ; Zifu He,
| |
Collapse
|
34
|
Hargitai D, Kenéz L, Al-Lami M, Szenczi G, Lőrincz P, Juhász G. Autophagy controls Wolbachia infection upon bacterial damage and in aging Drosophila. Front Cell Dev Biol 2022; 10:976882. [PMID: 36299486 PMCID: PMC9589277 DOI: 10.3389/fcell.2022.976882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Autophagy is a conserved catabolic process in eukaryotic cells that degrades intracellular components in lysosomes, often in an organelle-specific selective manner (mitophagy, ERphagy, etc). Cells also use autophagy as a defense mechanism, eliminating intracellular pathogens via selective degradation known as xenophagy. Wolbachia pipientis is a Gram-negative intracellular bacterium, which is one of the most common parasites on Earth affecting approximately half of terrestrial arthropods. Interestingly, infection grants the host resistance against other pathogens and modulates lifespan, so this bacterium resembles an endosymbiont. Here we demonstrate that Drosophila somatic cells normally degrade a subset of these bacterial cells, and autophagy is required for selective elimination of Wolbachia upon antibiotic damage. In line with these, Wolbachia overpopulates in autophagy-compromised animals during aging while its presence fails to affect host lifespan unlike in case of control flies. The autophagic degradation of Wolbachia thus represents a novel antibacterial mechanism that controls the propagation of this unique bacterium, behaving both as parasite and endosymbiont at the same time.
Collapse
Affiliation(s)
- Dávid Hargitai
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest, Hungary
| | - Lili Kenéz
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest, Hungary
| | - Muna Al-Lami
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest, Hungary
| | - Győző Szenczi
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest, Hungary
| | - Péter Lőrincz
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest, Hungary
- *Correspondence: Péter Lőrincz, ; Gábor Juhász,
| | - Gábor Juhász
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest, Hungary
- Institute of Genetics, Biological Research Centre, Szeged, Hungary
- *Correspondence: Péter Lőrincz, ; Gábor Juhász,
| |
Collapse
|
35
|
Abstract
West Nile virus (WNV) is a mosquito-borne flavivirus with a global distribution that is maintained in an enzootic cycle between Culex species mosquitoes and avian hosts. Human infection, which occurs as a result of spillover from this cycle, is generally subclinical or results in a self-limiting febrile illness. Central nervous system infection occurs in a minority of infections and can lead to long-term neurological complications and, rarely, death. WNV is the most prevalent arthropod-borne virus in the United States. Climate change can influence several aspects of WNV transmission including the vector, amplifying host, and virus. Climate change is broadly predicted to increase WNV distribution and risk across the globe, yet there will likely be significant regional variability and limitations to this effect. Increases in temperature can accelerate mosquito and pathogen development, drive increases in vector competence for WNV, and also alter mosquito life history traits including longevity, blood feeding behavior and fecundity. Precipitation, humidity and drought also impact WNV transmissibility. Alteration in avian distribution, diversity and phenology resulting from climate variation add additional complexity to these relationships. Here, we review WNV epidemiology, transmission, disease and genetics in the context of laboratory studies, field investigations, and infectious disease models under climate change. We summarize how mosquito genetics, microbial interactions, host dynamics, viral strain, population size, land use and climate account for distinct relationships that drive WNV activity and discuss how these dynamic and evolving interactions could shape WNV transmission and disease under climate change.
Collapse
Affiliation(s)
- Rachel L Fay
- The Arbovirus Laboratory, Wadsworth Center, New York State Department of Health, Slingerlands, NY, United States; Department of Biomedical Sciences, State University of New York at Albany School of Public Health, Rensselaer, NY, United States
| | - Alexander C Keyel
- The Arbovirus Laboratory, Wadsworth Center, New York State Department of Health, Slingerlands, NY, United States; Department of Atmospheric and Environmental Sciences, State University of New York at Albany, Albany, NY, United States
| | - Alexander T Ciota
- The Arbovirus Laboratory, Wadsworth Center, New York State Department of Health, Slingerlands, NY, United States; Department of Biomedical Sciences, State University of New York at Albany School of Public Health, Rensselaer, NY, United States.
| |
Collapse
|
36
|
Martinez J, Ant TH, Murdochy SM, Tong L, da Silva Filipe A, Sinkins SP. Genome sequencing and comparative analysis of Wolbachia strain wAlbA reveals Wolbachia-associated plasmids are common. PLoS Genet 2022; 18:e1010406. [PMID: 36121852 PMCID: PMC9560607 DOI: 10.1371/journal.pgen.1010406] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 10/13/2022] [Accepted: 09/02/2022] [Indexed: 11/18/2022] Open
Abstract
Wolbachia are widespread maternally-transmitted bacteria of arthropods that often spread by manipulating their host's reproduction through cytoplasmic incompatibility (CI). Their invasive potential is currently being harnessed in field trials aiming to control mosquito-borne diseases. Wolbachia genomes commonly harbour prophage regions encoding the cif genes which confer their ability to induce CI. Recently, a plasmid-like element was discovered in wPip, a Wolbachia strain infecting Culex mosquitoes; however, it is unclear how common such extra-chromosomal elements are in Wolbachia. Here we sequenced the complete genome of wAlbA, a strain of the symbiont found in Aedes albopictus, after eliminating the co-infecting and higher density wAlbB strain that previously made sequencing of wAlbA challenging. We show that wAlbA is associated with two new plasmids and identified additional Wolbachia plasmids and related chromosomal islands in over 20% of publicly available Wolbachia genome datasets. These plasmids encode a variety of accessory genes, including several phage-like DNA packaging genes as well as genes potentially contributing to host-symbiont interactions. In particular, we recovered divergent homologues of the cif genes in both Wolbachia- and Rickettsia-associated plasmids. Our results indicate that plasmids are common in Wolbachia and raise fundamental questions around their role in symbiosis. In addition, our comparative analysis provides useful information for the future development of genetic tools to manipulate and study Wolbachia symbionts.
Collapse
Affiliation(s)
- Julien Martinez
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Thomas H. Ant
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Shivan M. Murdochy
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Lily Tong
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Ana da Silva Filipe
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Steven P. Sinkins
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| |
Collapse
|
37
|
Matthews ML, Covey HO, Drolet BS, Brelsfoard CL. Wolbachia wAlbB inhibits bluetongue and epizootic hemorrhagic fever viruses in Culicoides midge cells. MEDICAL AND VETERINARY ENTOMOLOGY 2022; 36:320-328. [PMID: 35266572 PMCID: PMC9540819 DOI: 10.1111/mve.12569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/01/2022] [Accepted: 02/23/2022] [Indexed: 06/14/2023]
Abstract
Culicoides midges are hematophagous insects that transmit arboviruses of veterinary importance. These viruses include bluetongue virus (BTV) and epizootic hemorrhagic fever virus (EHDV). The endosymbiont Wolbachia pipientis Hertig spreads rapidly through insect host populations and has been demonstrated to inhibit viral pathogen transmission in multiple mosquito vectors. Here, we have demonstrated a replication inhibitory effect on BTV and EHDV in a Wolbachia (wAlbB strain)-infected Culicoides sonorensis Wirth and Jones W8 cell line. Viral replication was significantly reduced by day 5 for BTV and by day 2 for EHDV as detected by real-time polymerase chain reaction (RT-qPCR) of the non-structural NS3 gene of both viruses. Evaluation of innate cellular immune responses as a cause of the inhibitory effect showed responses associated with BTV but not with EHDV infection. Wolbachia density also did not play a role in the observed pathogen inhibitory effects, and an alternative hypothesis is suggested. Applications of Wolbachia-mediated pathogen interference to impact disease transmission by Culicoides midges are discussed.
Collapse
Affiliation(s)
- Megan L. Matthews
- Department of Biological SciencesTexas Tech UniversityLubbockTexasUSA
| | - Hunter O. Covey
- Department of Biological SciencesTexas Tech UniversityLubbockTexasUSA
| | - Barbara S. Drolet
- Arthropod‐Borne Animal Diseases Research Unit, USDA‐ARSManhattanKansasUSA
| | | |
Collapse
|
38
|
Kyritsis GA, Koskinioti P, Bourtzis K, Papadopoulos NT. Effect of Wolbachia Infection and Adult Food on the Sexual Signaling of Males of the Mediterranean Fruit Fly Ceratitis capitata. INSECTS 2022; 13:737. [PMID: 36005362 PMCID: PMC9409120 DOI: 10.3390/insects13080737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/11/2022] [Accepted: 08/13/2022] [Indexed: 06/15/2023]
Abstract
Sexual signaling is a fundamental component of sexual behavior of Ceratitis capitata that highly determines males' mating success. Nutritional status and age are dominant factors known to affect males' signaling performance and define the female decision to accept a male as a sexual partner. Wolbachia pipientis, a widespread endosymbiotic bacterium of insects and other arthropods, exerts several biological effects on its hosts. However, the effects of Wolbachia infection on the sexual behavior of medfly and the interaction between Wolbachia infection and adult food remain unexplored. This study was conducted to determine the effects of Wolbachia on sexual signaling of protein-fed and protein-deprived males. Our findings demonstrate that: (a) Wolbachia infection reduced male sexual signaling rates in both food regimes; (b) the negative effect of Wolbachia infection was more pronounced on protein-fed than protein-deprived males, and it was higher at younger ages, indicating that the bacterium regulates male sexual maturity; (c) Wolbachia infection alters the daily pattern of sexual signaling; and (d) protein deprivation bears significant descent on sexual signaling frequency of the uninfected males, whereas no difference was observed for the Wolbachia-infected males. The impact of our findings on the implementation of Incompatible Insect Technique (IIT) or the combined SIT/IIT towards controlling insect pests is discussed.
Collapse
Affiliation(s)
- Georgios A. Kyritsis
- Laboratory of Entomology and Agricultural Zoology, Department of Agriculture Crop Production and Rural Environment, University of Thessaly, Phytokou St., 38446 New Ionia, Greece
| | - Panagiota Koskinioti
- Laboratory of Entomology and Agricultural Zoology, Department of Agriculture Crop Production and Rural Environment, University of Thessaly, Phytokou St., 38446 New Ionia, Greece
| | - Kostas Bourtzis
- Insect Pest Control Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, 2444 Seibersdorf, Austria
| | - Nikos T. Papadopoulos
- Laboratory of Entomology and Agricultural Zoology, Department of Agriculture Crop Production and Rural Environment, University of Thessaly, Phytokou St., 38446 New Ionia, Greece
| |
Collapse
|
39
|
Wang J, Gou QY, Luo GY, Hou X, Liang G, Shi M. Total RNA sequencing of Phlebotomus chinensis, a neglected vector in China, simultaneously revealed viral, bacterial, and eukaryotic microbes that are potentially pathogenic to humans. Emerg Microbes Infect 2022; 11:2080-2092. [PMID: 35916448 PMCID: PMC9448391 DOI: 10.1080/22221751.2022.2109516] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Phlebotomus chinensis sandfly is a neglected insect vector in China that is well-known for carrying Leishmania. Recent studies have expanded its pathogen repertoire with two novel arthropod-borne phleboviruses capable of infecting humans and animals. Despite these discoveries, our knowledge of the general pathogen diversity and overall microbiome composition of this vector species is still very limited. Here we carried out a meta-transcriptomics analysis that revealed the actively replicating/transcribing RNA viruses, DNA viruses, bacteria, and eukaryotic microbes, namely, the “total microbiome”, of several sandfly populations in China. Strikingly, “microbiome” made up 1.8% of total non-ribosomal RNA and comprised more than 87 species, among which 70 were novel, including divergent members of the genera Flavivirus and of the family Trypanosomatidae. Importantly, among these microbes we were able to reveal four distinguished types of human and/or mammalian pathogens, including two phleboviruses (hedi and wuxiang viruses), one novel Spotted fever group rickettsia, as well as a member of Leishmania donovani complex, among which hedi virus and Leishmania each had > 50% pool prevalence rate and relatively high abundance levels. Our study also showed the ubiquitous presence of an endosymbiont, namely Wolbachia, although no anti-viral or anti-pathogen effects were detected based on our data. In summary, our results uncovered the much un-explored diversity of microbes harboured by sandflies in China and demonstrated that high pathogen diversity and abundance are currently present in multiple populations, implying disease potential for exposed local human population or domestic animals.
Collapse
Affiliation(s)
- Jing Wang
- The Center for Infection & Immunity Study, School of Medicine, Shenzhen campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Qin-Yu Gou
- The Center for Infection & Immunity Study, School of Medicine, Shenzhen campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Geng-Yan Luo
- The Center for Infection & Immunity Study, School of Medicine, Shenzhen campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Xin Hou
- The Center for Infection & Immunity Study, School of Medicine, Shenzhen campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Guodong Liang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Mang Shi
- The Center for Infection & Immunity Study, School of Medicine, Shenzhen campus of Sun Yat-sen University, Shenzhen 518107, China
| |
Collapse
|
40
|
Strunov A, Lerch S, Blanckenhorn WU, Miller WJ, Kapun M. Complex effects of environment and Wolbachia infections on the life history of Drosophila melanogaster hosts. J Evol Biol 2022; 35:788-802. [PMID: 35532932 PMCID: PMC9321091 DOI: 10.1111/jeb.14016] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 04/01/2022] [Accepted: 04/12/2022] [Indexed: 12/29/2022]
Abstract
Wolbachia bacteria are common endosymbionts of many arthropods found in gonads and various somatic tissues. They manipulate host reproduction to enhance their transmission and confer complex effects on fitness-related traits. Some of these effects can serve to increase the survival and transmission efficiency of Wolbachia in the host population. The Wolbachia-Drosophila melanogaster system represents a powerful model to study the evolutionary dynamics of host-microbe interactions and infections. Over the past decades, there has been a replacement of the ancestral wMelCS Wolbachia variant by the more recent wMel variant in worldwide D. melanogaster populations, but the reasons remain unknown. To investigate how environmental change and genetic variation of the symbiont affect host developmental and adult life-history traits, we compared effects of both Wolbachia variants and uninfected controls in wild-caught D. melanogaster strains at three developmental temperatures. While Wolbachia did not influence any developmental life-history traits, we found that both lifespan and fecundity of host females were increased without apparent fitness trade-offs. Interestingly, wMelCS-infected flies were more fecund than uninfected and wMel-infected flies. By contrast, males infected with wMel died sooner, indicating sex-specific effects of infection that are specific to the Wolbachia variant. Our study uncovered complex temperature-specific effects of Wolbachia infections, which suggests that symbiont-host interactions in nature are strongly dependent on the genotypes of both partners and the thermal environment.
Collapse
Affiliation(s)
- Anton Strunov
- Department of Evolutionary Biology and Environmental StudiesUniversity of ZurichZurichSwitzerland
| | - Sina Lerch
- Department of Cell and Developmental BiologyCenter for Anatomy and Cell BiologyMedical University of ViennaWienAustria
| | - Wolf U. Blanckenhorn
- Department of Evolutionary Biology and Environmental StudiesUniversity of ZurichZurichSwitzerland
| | - Wolfgang J. Miller
- Department of Cell and Developmental BiologyCenter for Anatomy and Cell BiologyMedical University of ViennaWienAustria
| | - Martin Kapun
- Department of Evolutionary Biology and Environmental StudiesUniversity of ZurichZurichSwitzerland
- Department of Cell and Developmental BiologyCenter for Anatomy and Cell BiologyMedical University of ViennaWienAustria
- Natural History Museum of ViennaWienAustria
| |
Collapse
|
41
|
Burdina EV, Gruntenko NE. Physiological Aspects of Wolbachia pipientis–Drosophila melanogaster Relationship. J EVOL BIOCHEM PHYS+ 2022. [DOI: 10.1134/s0022093022020016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
42
|
Strunov A, Schmidt K, Kapun M, Miller WJ. Restriction of Wolbachia Bacteria in Early Embryogenesis of Neotropical Drosophila Species via Endoplasmic Reticulum-Mediated Autophagy. mBio 2022; 13:e0386321. [PMID: 35357208 PMCID: PMC9040723 DOI: 10.1128/mbio.03863-21] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/03/2022] [Indexed: 01/20/2023] Open
Abstract
Wolbachia are maternally transmitted intracellular bacteria that are not only restricted to the reproductive organs but also found in various somatic tissues of their native hosts. The abundance of the endosymbiont in the soma, usually a dead end for vertically transmitted bacteria, causes a multitude of effects on life history traits of their hosts, which are still not well understood. Thus, deciphering the host-symbiont interactions on a cellular level throughout a host's life cycle is of great importance to understand their homeostatic nature, persistence, and spreading success. Using fluorescent and transmission electron microscopy, we conducted a comprehensive analysis of Wolbachia tropism in soma and germ line of six Drosophila species at the intracellular level during host development. Our data uncovered diagnostic patterns of infections to embryonic primordial germ cells and to particular cells of the soma in three different neotropical Drosophila species that have apparently evolved independently. We further found that restricted patterns of Wolbachia tropism are determined in early embryogenesis via selective autophagy, and their spatially restricted infection patterns are preserved in adult flies. We observed tight interactions of Wolbachia with membranes of the endoplasmic reticulum, which might play a scaffolding role for autophagosome formation and subsequent elimination of the endosymbiont. Finally, by analyzing D. simulans lines transinfected with nonnative Wolbachia, we uncovered that the host genetic background regulates tissue tropism of infection. Our data demonstrate a novel and peculiar mechanism to limit and spatially restrict bacterial infection in the soma during a very early stage of host development. IMPORTANCE All organisms are living in close and intimate interactions with microbes that cause conflicts but also cooperation between both unequal genetic partners due to their different innate interests of primarily enhancing their own fitness. However, stable symbioses often result in homeostatic interaction, named mutualism, by balancing costs and benefits, where both partners profit. Mechanisms that have evolved to balance and stably maintain homeostasis in mutualistic relationships are still quite understudied; one strategy is to "domesticate" potentially beneficial symbionts by actively controlling their replication rate below a critical and, hence, costly threshold, and/or to spatially and temporally restrict their localization in the host organism, which, in the latter case, in its most extreme form, is the formation of a specialized housing organ for the microbe (bacteriome). However, questions remain: how do these mutualistic associations become established in their first place, and what are the mechanisms for symbiont control and restriction in their early stages? Here, we have uncovered an unprecedented symbiont control mechanism in neotropical Drosophila species during early embryogenesis. The fruit fly evolved selective autophagy to restrict and control the proliferation of its intracellular endosymbiont Wolbachia in a defined subset of the stem cells as soon as the host's zygotic genome is activated.
Collapse
Affiliation(s)
- Anton Strunov
- Center for Anatomy and Cell Biology, Department of Cell and Developmental Biology, Medical University of Vienna, Vienna, Austria
| | - Katy Schmidt
- Center for Anatomy and Cell Biology, Department of Cell and Developmental Biology, Medical University of Vienna, Vienna, Austria
| | - Martin Kapun
- Center for Anatomy and Cell Biology, Department of Cell and Developmental Biology, Medical University of Vienna, Vienna, Austria
- Central Research Laboratories, Natural History Museum Vienna, Vienna, Austria
| | - Wolfgang J. Miller
- Center for Anatomy and Cell Biology, Department of Cell and Developmental Biology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
43
|
Mejia AJ, Dutra HLC, Jones MJ, Perera R, McGraw EA. Cross-tissue and generation predictability of relative Wolbachia densities in the mosquito Aedes aegypti. Parasit Vectors 2022; 15:128. [PMID: 35413938 PMCID: PMC9004076 DOI: 10.1186/s13071-022-05231-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 03/03/2022] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND The insect endosymbiotic bacterium Wolbachia is being deployed in field populations of the mosquito Aedes aegypti for biological control. This microbe prevents the replication of human disease-causing viruses inside the vector, including dengue, Zika and chikungunya. Relative Wolbachia densities may in part predict the strength of this 'viral blocking' effect. Additionally, Wolbachia densities may affect the strength of the reproductive manipulations it induces, including cytoplasmic incompatibility (CI), maternal inheritance rates or induced fitness effects in the insect host. High rates of CI and maternal inheritance and low rates of fitness effects are also key to the successful spreading of Wolbachia through vector populations and its successful use in biocontrol. The factors that control Wolbachia densities are not completely understood. METHODS We used quantitative PCR-based methods to estimate relative density of the Wolbachia wAlbB strain in both the somatic and reproductive tissues of adult male and female mosquitoes, as well as in eggs. Using correlation analyses, we assessed whether densities in one tissue predict those in others within the same individual, but also across generations. RESULTS We found little relationship among the relative Wolbachia densities of different tissues in the same host. The results also show that there was very little relationship between Wolbachia densities in parents and those in offspring, both in the same and different tissues. The one exception was with ovary-egg relationships, where there was a strong positive association. Relative Wolbachia densities in reproductive tissues were always greater than those in the somatic tissues. Additionally, the densities were consistent in females over their lifetime regardless of tissue, whereas they were generally higher and more variable in males, particularly in the testes. CONCLUSIONS Our results indicate that either stochastic processes or local tissue-based physiologies are more likely factors dictating Wolbachia densities in Ae. aegypti individuals, rather than shared embryonic environments or heritable genetic effects of the mosquito genome. These findings have implications for understanding how relative Wolbachia densities may evolve and/or be maintained over the long term in Ae. aegypti.
Collapse
Affiliation(s)
- Austin J. Mejia
- grid.29857.310000 0001 2097 4281Department of Entomology, The Pennsylvania State University, University Park, PA 16802 USA ,grid.29857.310000 0001 2097 4281The Center for Infectious Disease Dynamics, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802 USA
| | - H. L. C. Dutra
- grid.29857.310000 0001 2097 4281The Center for Infectious Disease Dynamics, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802 USA ,grid.29857.310000 0001 2097 4281Department of Biology, The Pennsylvania State University, University Park, PA 16802 USA
| | - M. J. Jones
- grid.29857.310000 0001 2097 4281The Center for Infectious Disease Dynamics, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802 USA ,grid.29857.310000 0001 2097 4281Department of Biology, The Pennsylvania State University, University Park, PA 16802 USA
| | - R. Perera
- grid.47894.360000 0004 1936 8083Center for Vector-Borne Infectious Diseases, Colorado State University, Fort Collins, CO 80523 USA
| | - E. A. McGraw
- grid.29857.310000 0001 2097 4281Department of Entomology, The Pennsylvania State University, University Park, PA 16802 USA ,grid.29857.310000 0001 2097 4281The Center for Infectious Disease Dynamics, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802 USA ,grid.29857.310000 0001 2097 4281Department of Biology, The Pennsylvania State University, University Park, PA 16802 USA
| |
Collapse
|
44
|
Temperature effects on cellular host-microbe interactions explain continent-wide endosymbiont prevalence. Curr Biol 2022; 32:878-888.e8. [PMID: 34919808 PMCID: PMC8891084 DOI: 10.1016/j.cub.2021.11.065] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 11/09/2021] [Accepted: 11/26/2021] [Indexed: 01/03/2023]
Abstract
Endosymbioses influence host physiology, reproduction, and fitness, but these relationships require efficient microbe transmission between host generations to persist. Maternally transmitted Wolbachia are the most common known endosymbionts,1 but their frequencies vary widely within and among host populations for unknown reasons.2,3 Here, we integrate genomic, cellular, and phenotypic analyses with mathematical models to provide an unexpectedly simple explanation for global wMel Wolbachia prevalence in Drosophila melanogaster. Cooling temperatures decrease wMel cellular abundance at a key stage of host oogenesis, producing temperature-dependent variation in maternal transmission that plausibly explains latitudinal clines of wMel frequencies on multiple continents. wMel sampled from a temperate climate targets the germline more efficiently in the cold than a recently differentiated tropical variant (∼2,200 years ago), indicative of rapid wMel adaptation to climate. Genomic analyses identify a very narrow list of wMel alleles-most notably, a derived stop codon in the major Wolbachia surface protein WspB-that underlie thermal sensitivity of cellular Wolbachia abundance and covary with temperature globally. Decoupling temperate wMel and host genomes further reduces transmission in the cold, a pattern that is characteristic of host-microbe co-adaptation to a temperate climate. Complex interactions among Wolbachia, hosts, and the environment (GxGxE) mediate wMel cellular abundance and maternal transmission, implicating temperature as a key determinant of Wolbachia spread and equilibrium frequencies, in conjunction with Wolbachia effects on host fitness and reproduction.4,5 Our results motivate the strategic use of locally selected wMel variants for Wolbachia-based biocontrol efforts, which protect millions of individuals from arboviruses that cause human disease.6.
Collapse
|
45
|
Turelli M, Barton NH. Why did the
Wolbachia
transinfection cross the road? drift, deterministic dynamics, and disease control. Evol Lett 2022; 6:92-105. [DOI: 10.1002/evl3.270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 11/22/2021] [Accepted: 11/27/2021] [Indexed: 11/11/2022] Open
Affiliation(s)
- Michael Turelli
- Department of Evolution and Ecology University of California, Davis Davis California 95616
| | - Nicholas H. Barton
- Institute of Science and Technology Austria Klosterneuburg A‐3400 Austria
| |
Collapse
|
46
|
Lab-scale characterization and semi-field trials of Wolbachia Strain wAlbB in a Taiwan Wolbachia introgressed Ae. aegypti strain. PLoS Negl Trop Dis 2022; 16:e0010084. [PMID: 35015769 PMCID: PMC8752028 DOI: 10.1371/journal.pntd.0010084] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 12/09/2021] [Indexed: 11/19/2022] Open
Abstract
Dengue fever is one of the most severe viral diseases transmitted by Aedes mosquitoes, with traditional approaches of disease control proving insufficient to prevent significant disease burden. Release of Wolbachia-transinfected mosquitoes offers a promising alternative control methodologies; Wolbachia-transinfected female Aedes aegypti demonstrate reduced dengue virus transmission, whilst Wolbachia-transinfected males cause zygotic lethality when crossed with uninfected females, providing a method for suppressing mosquito populations. Although highly promising, the delicate nature of population control strategies and differences between local species populations means that controlled releases of Wolbachia-transinfected mosquitoes cannot be performed without extensive testing on specific local Ae. aegypti populations. In order to investigate the potential for using Wolbachia to suppress local Ae. aegypti populations in Taiwan, we performed lab-based and semi-field fitness trials. We first transinfected the Wolbachia strain wAlbB into a local Ae. aegypti population (wAlbB-Tw) and found no significant changes in lifespan, fecundity and fertility when compared to controls. In the laboratory, we found that as the proportion of released male mosquitoes carrying Wolbachia was increased, population suppression could reach up to 100%. Equivalent experiments in semi-field experiments found suppression rates of up to 70%. The release of different ratios of wAlbB-Tw males in the semi-field system provided an estimate of the optimal size of male releases. Our results indicate that wAlbB-Tw has significant potential for use in vector control strategies aimed at Ae. aegypti population suppression in Taiwan. Open field release trials are now necessary to confirm that wAlbB-Tw mediated suppression is feasible in natural environments.
Collapse
|
47
|
Rashidi M, Lin CY, Britt K, Batuman O, Al Rwahnih M, Achor D, Levy A. Diaphorina citri flavi-like virus localization, transmission, and association with Candidatus Liberibacter asiaticus in its psyllid host. Virology 2021; 567:47-56. [PMID: 34998225 DOI: 10.1016/j.virol.2021.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 12/23/2021] [Accepted: 12/23/2021] [Indexed: 11/30/2022]
Abstract
Huanglongbing is caused by Candidatus Liberibacter asiaticus (CLas) and transmitted by Diaphorina citri. D. citri harbors various insect-specific viruses, including the Diaphorina citri flavi-like virus (DcFLV). The distribution and biological role of DcFLV in its host and the relationship with CLas are unknown. DcFLV was found in various organs of D. citri, including the midgut and salivary glands, where it co-localized with CLas. CLas-infected nymphs had the highest DcFLV titers compared to the infected adults and CLas-free adults and nymphs. DcFLV was vertically transmitted to offspring from female D. citri and was temporarily detected in Citrus macrophylla and grapefruit leaves from greenhouse and field. The incidences of DcFLV and CLas were positively correlated in field-collected D. citri samples, suggesting that DcFLV might be associated with CLas in the vector. These results provide new insights on the interactions between DcFLV, the D. citri, and CLas.
Collapse
Affiliation(s)
- Mahnaz Rashidi
- Department of Plant Pathology, University of Florida, Gainesville, FL, USA; Citrus Research and Education Center, University of Florida, Lake Alfred, FL, USA
| | - Chun-Yi Lin
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL, USA
| | - Kellee Britt
- Department of Plant Pathology, University of Florida, Gainesville, FL, USA; Southwest Florida Research and Education Center, University of Florida, Immokalee, FL, USA
| | - Ozgur Batuman
- Department of Plant Pathology, University of Florida, Gainesville, FL, USA; Southwest Florida Research and Education Center, University of Florida, Immokalee, FL, USA
| | - Maher Al Rwahnih
- Department of Plant Pathology, University of California-Davis, Davis, CA, USA
| | - Diann Achor
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL, USA
| | - Amit Levy
- Department of Plant Pathology, University of Florida, Gainesville, FL, USA; Citrus Research and Education Center, University of Florida, Lake Alfred, FL, USA.
| |
Collapse
|
48
|
Symbiont-Mediated Protection of Acromyrmex Leaf-Cutter Ants from the Entomopathogenic Fungus Metarhizium anisopliae. mBio 2021; 12:e0188521. [PMID: 34933458 PMCID: PMC8689564 DOI: 10.1128/mbio.01885-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Many fungus-growing ants engage in a defensive symbiosis with antibiotic-producing ectosymbiotic bacteria in the genus Pseudonocardia, which help protect the ants' fungal mutualist from a specialized mycoparasite, Escovopsis. Here, using germfree ant rearing and experimental pathogen infection treatments, we evaluate if Acromyrmex ants derive higher immunity to the entomopathogenic fungus Metarhizium anisopliae from their Pseudonocardia symbionts. We further examine the ecological dynamics and defensive capacities of Pseudonocardia against M. anisopliae across seven different Acromyrmex species by controlling Pseudonocardia acquisition using ant-nonnative Pseudonocardia switches, in vitro challenges, and in situ mass spectrometry imaging (MSI). We show that Pseudonocardia protects the ants against M. anisopliae across different Acromyrmex species and appears to afford higher protection than metapleural gland (MG) secretions. Although Acromyrmex echinatior ants with nonnative Pseudonocardia symbionts receive protection from M. anisopliae regardless of the strain acquired compared with Pseudonocardia-free conditions, we find significant variation in the degree of protection conferred by different Pseudonocardia strains. Additionally, when ants were reared in Pseudonocardia-free conditions, some species exhibit more susceptibility to M. anisopliae than others, indicating that some ant species depend more on defensive symbionts than others. In vitro challenge experiments indicate that Pseudonocardia reduces Metarhizium conidiospore germination area. Our chemometric analysis using matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) reveals that Pseudonocardia-carrying ants produce more chemical signals than Pseudonocardia-free treatments, indicating that Pseudonocardia produces bioactive metabolites on the Acromyrmex cuticle. Our results indicate that Pseudonocardia can serve as a dual-purpose defensive symbiont, conferring increased immunity for both the obligate fungal mutualist and the ants themselves. IMPORTANCE In some plants and animals, beneficial microbes mediate host immune response against pathogens, including by serving as defensive symbionts that produce antimicrobial compounds. Defensive symbionts are known in several insects, including some leaf-cutter ants where antifungal-producing Actinobacteria help protect the fungal mutualist of the ants from specialized mycoparasites. In many defensive symbioses, the extent and specificity of defensive benefits received by the host are poorly understood. Here, using "aposymbiotic" rearing, symbiont switching experiments, and imaging mass spectrometry, we explore the ecological and chemical dynamics of the model defensive symbiosis between Acromyrmex ants and their defensive symbiotic bacterium Pseudonocardia. We show that the defensive symbiont not only protects the fungal crop of Acromyrmex but also provides protection from fungal pathogens that infect the ant workers themselves. Furthermore, we reveal that the increased immunity to pathogen infection differs among strains of defensive symbionts and that the degree of reliance on a defensive symbiont for protection varies across congeneric ant species. Taken together, our results suggest that Acromyrmex-associated Pseudonocardia have evolved broad antimicrobial defenses that promote strong immunity to diverse fungal pathogens within the ancient fungus-growing ant-microbe symbiosis.
Collapse
|
49
|
Mancini MV, Ant TH, Herd CS, Martinez J, Murdochy SM, Gingell DD, Mararo E, Johnson PCD, Sinkins SP. High Temperature Cycles Result in Maternal Transmission and Dengue Infection Differences Between Wolbachia Strains in Aedes aegypti. mBio 2021; 12:e0025021. [PMID: 34749528 PMCID: PMC8576525 DOI: 10.1128/mbio.00250-21] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 09/30/2021] [Indexed: 11/28/2022] Open
Abstract
Environmental factors play a crucial role in the population dynamics of arthropod endosymbionts, and therefore in the deployment of Wolbachia symbionts for the control of dengue arboviruses. The potential of Wolbachia to invade, persist, and block virus transmission depends in part on its intracellular density. Several recent studies have highlighted the importance of larval rearing temperature in modulating Wolbachia densities in adults, suggesting that elevated temperatures can severely impact some strains, while having little effect on others. The effect of a replicated tropical heat cycle on Wolbachia density and levels of virus blocking was assessed using Aedes aegypti lines carrying strains wMel and wAlbB, two Wolbachia strains currently used for dengue control. Impacts on intracellular density, maternal transmission fidelity, and dengue inhibition capacity were observed for wMel. In contrast, wAlbB-carrying Ae. aegypti maintained a relatively constant intracellular density at high temperatures and conserved its capacity to inhibit dengue. Following larval heat treatment, wMel showed a degree of density recovery in aging adults, although this was compromised by elevated air temperatures. IMPORTANCE In the past decades, dengue incidence has dramatically increased all over the world. An emerging dengue control strategy utilizes Aedes aegypti mosquitoes artificially transinfected with the bacterial symbiont Wolbachia, with the ultimate aim of replacing wild mosquito populations. However, the rearing temperature of mosquito larvae is known to impact on some Wolbachia strains. In this study, we compared the effects of a temperature cycle mimicking natural breeding sites in tropical climates on two Wolbachia strains, currently used for open field trials. When choosing the Wolbachia strain to be used in a dengue control program it is important to consider the effects of environmental temperatures on invasiveness and virus inhibition. These results underline the significance of understanding the impact of environmental factors on released mosquitoes, in order to ensure the most efficient strategy for dengue control.
Collapse
Affiliation(s)
| | - Thomas H. Ant
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Christie S. Herd
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Julien Martinez
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | | | | | - Enock Mararo
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Paul C. D. Johnson
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | | |
Collapse
|
50
|
Drew GC, King KC. More or Less? The Effect of Symbiont Density in Protective Mutualisms. Am Nat 2021; 199:443-454. [DOI: 10.1086/718593] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|