1
|
Liu Y, Zhao X, Fan Y, Huo P, Huang S, Wang H, Lu Z, Luo Z, Zhang Y. Transcriptome analysis of Beauveria bassiana interaction with Nicotiana benthamiana reveals signatures of N. Benthamiana growth promotion and enhanced defense responses. J Invertebr Pathol 2025; 211:108334. [PMID: 40204265 DOI: 10.1016/j.jip.2025.108334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/30/2025] [Accepted: 04/06/2025] [Indexed: 04/11/2025]
Abstract
Many entomopathogenic fungi form intimate (epi- and endo-phytic) associations with that plant that can stimulate plant growth and /or improve resistance to pathogens and insect pests. However, little is known concerning global gene networks that mediate such responses. Nicotiana benthamiana seedlings were artificially colonized by the entomogenous fungus, Beauveria bassiana, and the root tissues were examined via comparative transcriptome analyses performed versus fungal cells grown in vitro on dried root biomass. Plant hormone pathways, and genes involved in photosynthesis, immune defense response, and nutrient metabolism were triggered in roots after fungal colonization. Fungal differentially expressed genes during plant colonization included plant cell wall-degrading enzymes, and those involved in lipid metabolism, detoxification, and fungal cell wall remodeling, the latter suggesting reduction in the exposure of pathogen related molecular patterns to avoid perception by the plant immune system. Fungal metabolic genes involved in amino acid, nitrogen, sulfur and carbohydrate assimilation were activated, nutrient exchange with the plant host. Exchange was confirmed by detection of sulfur in the seedling that was increased by the fungal colonization. A set of fungal secondary metabolism-associated genes were also upregulated during the plant interaction, which might contribute to plant resistance against pathogens or/and insect pest. In addition, B. bassiana expressed a suite of effector/elicitor genes consistent with triggering plant growth and/or immune defense response pathways. These results revealed global gene networks active in both the plants and the fungus as a consequence of their symbiotic interaction, and provides insights into the molecular determinants and physiological responses affected.
Collapse
Affiliation(s)
- Yunxia Liu
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Plant Protection, Southwest University, Chongqing 400715, China; Key Laboratory of Entomology and Pest Control Engineering, Southwest University, Chongqing 400715, China
| | - Xin Zhao
- School of Basic Medicine Science, Chongqing University of Chinese Medicine, Chongqing 402760, China
| | - Yongxiong Fan
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Plant Protection, Southwest University, Chongqing 400715, China; Key Laboratory of Entomology and Pest Control Engineering, Southwest University, Chongqing 400715, China
| | - Pengxia Huo
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Plant Protection, Southwest University, Chongqing 400715, China; Key Laboratory of Entomology and Pest Control Engineering, Southwest University, Chongqing 400715, China
| | - Shuaishuai Huang
- School of Ecology and Environment, Tibet University, Tibet 850000, China
| | - Huifang Wang
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Plant Protection, Southwest University, Chongqing 400715, China; Key Laboratory of Entomology and Pest Control Engineering, Southwest University, Chongqing 400715, China
| | - Zhuoyue Lu
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Plant Protection, Southwest University, Chongqing 400715, China; Key Laboratory of Entomology and Pest Control Engineering, Southwest University, Chongqing 400715, China
| | - Zhibing Luo
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Plant Protection, Southwest University, Chongqing 400715, China; Key Laboratory of Entomology and Pest Control Engineering, Southwest University, Chongqing 400715, China
| | - Yongjun Zhang
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Plant Protection, Southwest University, Chongqing 400715, China; Key Laboratory of Entomology and Pest Control Engineering, Southwest University, Chongqing 400715, China.
| |
Collapse
|
2
|
Salvati A, Diomaiuti A, Locci F, Gravino M, Gramegna G, Ilyas M, Benedetti M, Costantini S, De Caroli M, Castel B, Jones JDG, Cervone F, Pontiggia D, De Lorenzo G. Berberine bridge enzyme-like oxidases orchestrate homeostasis and signaling of oligogalacturonides in defense and upon mechanical damage. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 122:e70150. [PMID: 40220003 PMCID: PMC11992967 DOI: 10.1111/tpj.70150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 03/11/2025] [Accepted: 03/28/2025] [Indexed: 04/14/2025]
Abstract
Plant immunity is triggered by endogenous elicitors known as damage-associated molecular patterns (DAMPs). Oligogalacturonides (OGs) are DAMPs released from the cell wall (CW) demethylated homogalacturonan during microbial colonization, mechanical or pest-provoked mechanical damage, and physiological CW remodeling. Berberine bridge enzyme-like (BBE-l) proteins named OG oxidases (OGOXs) oxidize and inactivate OGs to avoid deleterious growth-affecting hyper-immunity and possible cell death. Using OGOX1 over-expressing lines and ogox1/2 double mutants, we show that these enzymes determine the levels of active OGs vs. inactive oxidized products (ox-OGs). The ogox1/2-deficient plants have elevated levels of OGs, while plants overexpressing OGOX1 accumulate ox-OGs. The balance between OGs and ox-OGs affects disease resistance against Pseudomonas syringae pv. tomato, Pectobacterium carotovorum, and Botrytis cinerea depending on the microbial capacity to respond to OGs and metabolize ox-OGs. Gene expression upon plant infiltration with OGs reveals that OGOXs orchestrate OG signaling in defense as well as upon mechanical damage, pointing to these enzymes as apoplastic players in immunity and tissue repair.
Collapse
Affiliation(s)
- Ascenzo Salvati
- Department of Biology and Biotechnologies'Charles Darwin' Sapienza University of RomeRome00185Italy
| | - Alessandra Diomaiuti
- Department of Biology and Biotechnologies'Charles Darwin' Sapienza University of RomeRome00185Italy
| | - Federica Locci
- Department of Biology and Biotechnologies'Charles Darwin' Sapienza University of RomeRome00185Italy
- Present address:
Department of Plant–Microbe InteractionsMax‐Planck Institute for Plant Breeding ResearchCarl‐von‐Linné‐Weg 10Cologne50829Germany
| | - Matteo Gravino
- Department of Biology and Biotechnologies'Charles Darwin' Sapienza University of RomeRome00185Italy
- Present address:
Department of Crop GeneticsJohn Innes CentreNorwich Research ParkNorwichNR4 7UHUK
| | - Giovanna Gramegna
- Department of Biology and Biotechnologies'Charles Darwin' Sapienza University of RomeRome00185Italy
- Present address:
Department of Environmental biologySapienza University of RomeRome00185Italy
| | - Muhammad Ilyas
- Department of Biology and Biotechnologies'Charles Darwin' Sapienza University of RomeRome00185Italy
| | - Manuel Benedetti
- Department of Biology and Biotechnologies'Charles Darwin' Sapienza University of RomeRome00185Italy
- Present address:
Department of Life, Health and Environmental SciencesUniversity of L'AquilaL'Aquila67100Italy
| | - Sara Costantini
- Department of Biology and Biotechnologies'Charles Darwin' Sapienza University of RomeRome00185Italy
- Present address:
Institute of Nanotechnology, National Research Council (CNR‐NANOTEC)Campus EcotekneLecce73100Italy
| | - Monica De Caroli
- Department of Biological and Environmental Sciences and TechnologiesUniversity of SalentoCampus EcotekneLecce73100Italy
- NBFC National Biodiversity Future CenterPalermo90133Italy
| | - Baptiste Castel
- The Sainsbury LaboratoryUniversity of East Anglia, Norwich Research ParkColney LaneNorwichNR4 7UHUK
- Present address:
Laboratoire de Recherche en Sciences Vegetales (LRSV)Université de Toulouse, CNRS, UPS24 chemin de Borde Rouge, Auzeville, BP42617Castanet Tolosan31326France
| | - Jonathan D. G. Jones
- The Sainsbury LaboratoryUniversity of East Anglia, Norwich Research ParkColney LaneNorwichNR4 7UHUK
| | - Felice Cervone
- Department of Biology and Biotechnologies'Charles Darwin' Sapienza University of RomeRome00185Italy
| | - Daniela Pontiggia
- Department of Biology and Biotechnologies'Charles Darwin' Sapienza University of RomeRome00185Italy
- Research Center for Applied Sciences for the Protection of the Environment and Cultural HeritageSapienza University of RomeRomeItaly
| | - Giulia De Lorenzo
- Department of Biology and Biotechnologies'Charles Darwin' Sapienza University of RomeRome00185Italy
- Research Center for Applied Sciences for the Protection of the Environment and Cultural HeritageSapienza University of RomeRomeItaly
| |
Collapse
|
3
|
Lin B, Huang S, Li Z, Huang Q, Song H, Fang T, Liao J, Gheysen G, Zhuo K. Mitochondrial Protein MjEF-Tu is Secreted into Host Plants by Nematodes Eliciting Immune Signaling and Resistance. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2412968. [PMID: 39888272 PMCID: PMC11923865 DOI: 10.1002/advs.202412968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/29/2024] [Indexed: 02/01/2025]
Abstract
Little is known about plant-parasitic animal-derived pathogen-associated molecular pattern (PAMP)/ pattern-recognition receptor (PRR) pairs. Additionally, mitochondrial proteins have not previously been reported to be secreted into hosts by pathogens. Here, it is found that the Meloidogyne javanica elongation factor thermo unstable (EF-Tu) (MjEF-Tu) located in the nematode mitochondria is up-regulated and secreted into the host plant during nematode parasitism. MjEF-Tu interacts with the PRR Arabidopsis thaliana EF-Tu receptor (AtEFR), triggering the plant hallmark defence responses mediated by AtEFR. An 18-aa sequence (Nelf18) in the N terminus of the nematode EF-Tu contributes to the immunogenic activity. M. javanica water extract and mitochondrial extract also induce plant immunity sensed by AtEFR, owing to the presence of MjEF-Tu. In addition, Nelf18 enhances plant resistance to nematode, virus, and bacterial infections depending on AtEFR. These findings first demonstrate that mitochondrial proteins from pathogens can be secreted into hosts and function as a cross-kingdom signal and identified the first plant-parasitic animal-derived proteinaceous PAMP/PRR pair, providing novel insights into host-pathogen interactions.
Collapse
Affiliation(s)
- Borong Lin
- College of Plant ProtectionSouth China Agricultural UniversityGuangzhou510642China
- Guangdong Province Key Laboratory of Microbial Signals and Disease ControlSouth China Agricultural UniversityGuangzhou510642China
| | - Shaozhen Huang
- College of Plant ProtectionSouth China Agricultural UniversityGuangzhou510642China
| | - Zhiwen Li
- College of Plant ProtectionSouth China Agricultural UniversityGuangzhou510642China
| | - Qiuling Huang
- College of Plant ProtectionSouth China Agricultural UniversityGuangzhou510642China
| | - Handa Song
- College of Plant ProtectionSouth China Agricultural UniversityGuangzhou510642China
| | - Tianyi Fang
- College of Plant ProtectionSouth China Agricultural UniversityGuangzhou510642China
| | - Jinling Liao
- College of Plant ProtectionSouth China Agricultural UniversityGuangzhou510642China
| | | | - Kan Zhuo
- College of Plant ProtectionSouth China Agricultural UniversityGuangzhou510642China
- Guangdong Province Key Laboratory of Microbial Signals and Disease ControlSouth China Agricultural UniversityGuangzhou510642China
| |
Collapse
|
4
|
Sunil S, Beeh S, Stöbbe E, Fischer K, Wilhelm F, Meral A, Paris C, Teasdale L, Jiang Z, Zhang L, Urban M, Aguilar Parras E, Nürnberger T, Weigel D, Lozano-Duran R, El Kasmi F. Activation of an atypical plant NLR with an N-terminal deletion initiates cell death at the vacuole. EMBO Rep 2024; 25:4358-4386. [PMID: 39242777 PMCID: PMC11467418 DOI: 10.1038/s44319-024-00240-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 07/26/2024] [Accepted: 08/12/2024] [Indexed: 09/09/2024] Open
Abstract
Plants evolve nucleotide-binding leucine-rich repeat receptors (NLRs) to induce immunity. Activated coiled-coil (CC) domain containing NLRs (CNLs) oligomerize and form apparent cation channels promoting calcium influx and cell death, with the alpha-1 helix of the individual CC domains penetrating the plasma membranes. Some CNLs are characterized by putative N-myristoylation and S-acylation sites in their CC domain, potentially mediating permanent membrane association. Whether activated Potentially Membrane Localized NLRs (PMLs) mediate cell death and calcium influx in a similar way is unknown. We uncovered the cell-death function at the vacuole of an atypical but conserved Arabidopsis PML, PML5, which has a significant deletion in its CCG10/GA domain. Active PML5 oligomers localize in Golgi membranes and the tonoplast, alter vacuolar morphology, and induce cell death, with the short N-terminus being sufficient. Mutant analysis supports a potential role of PMLs in plant immunity. PML5-like deletions are found in several Brassicales paralogs, pointing to the evolutionary importance of this innovation. PML5, with its minimal CC domain, represents the first identified CNL utilizing vacuolar-stored calcium for cell death induction.
Collapse
Affiliation(s)
- Sruthi Sunil
- Centre for Plant Molecular Biology, University of Tübingen, 72076, Tübingen, Germany
| | - Simon Beeh
- Centre for Plant Molecular Biology, University of Tübingen, 72076, Tübingen, Germany
| | - Eva Stöbbe
- Centre for Plant Molecular Biology, University of Tübingen, 72076, Tübingen, Germany
| | - Kathrin Fischer
- Centre for Plant Molecular Biology, University of Tübingen, 72076, Tübingen, Germany
| | - Franziska Wilhelm
- Centre for Plant Molecular Biology, University of Tübingen, 72076, Tübingen, Germany
| | - Aron Meral
- Centre for Plant Molecular Biology, University of Tübingen, 72076, Tübingen, Germany
| | - Celia Paris
- Centre for Plant Molecular Biology, University of Tübingen, 72076, Tübingen, Germany
| | - Luisa Teasdale
- Max Planck Institute for Biology Tübingen, 72076, Tübingen, Germany
| | - Zhihao Jiang
- Centre for Plant Molecular Biology, University of Tübingen, 72076, Tübingen, Germany
| | - Lisha Zhang
- Centre for Plant Molecular Biology, University of Tübingen, 72076, Tübingen, Germany
| | - Moritz Urban
- Centre for Plant Molecular Biology, University of Tübingen, 72076, Tübingen, Germany
| | - Emmanuel Aguilar Parras
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- Instituto de Hortofruticultura Subtropical y Mediterránea 'La Mayora', Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Depto. Biología Celular, Genética y Fisiología, 29010, Málaga, Spain
| | - Thorsten Nürnberger
- Centre for Plant Molecular Biology, University of Tübingen, 72076, Tübingen, Germany
| | - Detlef Weigel
- Max Planck Institute for Biology Tübingen, 72076, Tübingen, Germany
- Institute for Bioinformatics and Medical Informatics, University of Tübingen, 72076, Tübingen, Germany
| | - Rosa Lozano-Duran
- Centre for Plant Molecular Biology, University of Tübingen, 72076, Tübingen, Germany
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Farid El Kasmi
- Centre for Plant Molecular Biology, University of Tübingen, 72076, Tübingen, Germany.
| |
Collapse
|
5
|
Xiang J, Wei L, Zheng T, Wu J, Cheng J. ADP-ribosylation factor 1 (ARF1) protein interacts with elicitor PvNLP7 from Plasmopara viticola to mediate PvNLP7-triggered immunity. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 347:112194. [PMID: 39009307 DOI: 10.1016/j.plantsci.2024.112194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/06/2024] [Accepted: 07/10/2024] [Indexed: 07/17/2024]
Abstract
Revealing the effector-host molecular interactions is crucial for understanding the host immunity against Plasmopara viticola and devising innovative disease management strategies. As a pathogenic oomycete causing grapevine downy mildew, Plasmopara viticola employs various effectors to manipulate the defense systems of host plants. One of these P. viticola derived effectors is necrosis- and ethylene-inducing peptide 1 (Nep1) -like protein (PvNLP7), which has been known to elicit cell death and immune responses in plants. However, the underlying molecular mechanisms remain obscure, prompting the focus of this study. Through yeast two-hybrid screening, we have identified the Vitis rotundifolia ADP-ribosylation factor (VrARF1) as a host interactor of PvNLP7. This interaction is corroborated through bimolecular fluorescence complementation (BiFC) and co-immunoprecipitation (Co-IP) assays. Heterologous expression of VrARF1 in Nicotiana benthamiana verifies its accumulation in both the cytoplasm and nucleus, and induction of cell death. Moreover, the VrARF1 gene is strongly induced during early P. viticola infection and upon PvNLP7 transient expression. Overexpression of the VrARF1 gene in grapevine and N. benthamiana enhances resistance to P. viticola and Phytophthora capsici, respectively, via induction of defense related genes PR1 and PR2. Conversely, virus-induced gene silencing (VIGS) of NbARF1 in N. benthamiana, homologous to VrARF1, markedly attenuates PvNLP7-triggered cell death and reduces the expression of four PTI marker genes (PTI5, Acre31, WRKY7 and Cyp71D20) and two defense related genes (PR1 and PR2), rendering plants transiently transformed with PvNLP7 more susceptible to oomycete P. capsici. These findings highlight the role of ARF1 in mediating PvNLP7-induced immunity and indicate its potential as a target for engineering disease-resistant transgenic plants against oomycete pathogens.
Collapse
Affiliation(s)
- Jiang Xiang
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Lingzhu Wei
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Ting Zheng
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jiang Wu
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jianhui Cheng
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| |
Collapse
|
6
|
He Z, Peng S, Yin Q, Huang Y, Deng T, Luo Y, He N. Ss4368: Pathogen-Associated Molecular Pattern for Inducing Plant Cell Death and Resistance to Phytophthora capsici. Int J Mol Sci 2024; 25:8674. [PMID: 39201361 PMCID: PMC11354642 DOI: 10.3390/ijms25168674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 09/02/2024] Open
Abstract
Plant recognition of pathogen-associated molecular patterns (PAMPs) is pivotal in triggering immune responses, highlighting their potential as inducers of plant immunity. However, the number of PAMPs identified and applied in such contexts remains limited. In this study, we characterize a novel PAMP, designated Ss4368, which is derived from Scleromitrula shiraiana. Ss4368 is specifically distributed among a few fungal genera, including Botrytis, Monilinia, and Botryotinia. The transient expression of Ss4368 elicits cell death in a range of plant species. The signaling peptides, three conserved motifs, and cysteine residues (C46, C88, C112, C130, and C148) within Ss4368 are crucial for inducing robust cell death. Additionally, these signaling peptides are essential for the protein's localization to the apoplast. The cell death induced by Ss4368 and its homologous protein, Bc4368, is independent of the SUPPRESSOR OF BIR1-1 (SOBIR1), BRI1-ASSOCIATED KINASE-1 (BAK1), and salicylic acid (SA) pathways. Furthermore, the immune responses triggered by Ss4368 and Bc4368 significantly enhance the resistance of Nicotiana benthamiana to Phytophthora capsici. Therefore, we propose that Ss4368, as a novel PAMP, holds the potential for developing strategies to enhance plant resistance against P. capsici.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ningjia He
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China; (Z.H.); (S.P.); (Q.Y.); (Y.H.); (T.D.); (Y.L.)
| |
Collapse
|
7
|
Yu X, Niu H, Liu C, Wang H, Yin W, Xia X. PTI-ETI synergistic signal mechanisms in plant immunity. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:2113-2128. [PMID: 38470397 PMCID: PMC11258992 DOI: 10.1111/pbi.14332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 02/16/2024] [Accepted: 02/28/2024] [Indexed: 03/13/2024]
Abstract
Plants face a relentless onslaught from a diverse array of pathogens in their natural environment, to which they have evolved a myriad of strategies that unfold across various temporal scales. Cell surface pattern recognition receptors (PRRs) detect conserved elicitors from pathogens or endogenous molecules released during pathogen invasion, initiating the first line of defence in plants, known as pattern-triggered immunity (PTI), which imparts a baseline level of disease resistance. Inside host cells, pathogen effectors are sensed by the nucleotide-binding/leucine-rich repeat (NLR) receptors, which then activate the second line of defence: effector-triggered immunity (ETI), offering a more potent and enduring defence mechanism. Moreover, PTI and ETI collaborate synergistically to bolster disease resistance and collectively trigger a cascade of downstream defence responses. This article provides a comprehensive review of plant defence responses, offering an overview of the stepwise activation of plant immunity and the interactions between PTI-ETI synergistic signal transduction.
Collapse
Affiliation(s)
- Xiao‐Qian Yu
- State Key Laboratory of Tree Genetics and BreedingCollege of Biological Sciences and Technology, College of Biological Sciences and Technology, Beijing Forestry UniversityBeijingChina
| | - Hao‐Qiang Niu
- State Key Laboratory of Tree Genetics and BreedingCollege of Biological Sciences and Technology, College of Biological Sciences and Technology, Beijing Forestry UniversityBeijingChina
| | - Chao Liu
- State Key Laboratory of Tree Genetics and BreedingCollege of Biological Sciences and Technology, College of Biological Sciences and Technology, Beijing Forestry UniversityBeijingChina
| | - Hou‐Ling Wang
- State Key Laboratory of Tree Genetics and BreedingCollege of Biological Sciences and Technology, College of Biological Sciences and Technology, Beijing Forestry UniversityBeijingChina
| | - Weilun Yin
- State Key Laboratory of Tree Genetics and BreedingCollege of Biological Sciences and Technology, College of Biological Sciences and Technology, Beijing Forestry UniversityBeijingChina
| | - Xinli Xia
- State Key Laboratory of Tree Genetics and BreedingCollege of Biological Sciences and Technology, College of Biological Sciences and Technology, Beijing Forestry UniversityBeijingChina
| |
Collapse
|
8
|
Stevens DM, Moreno-Pérez A, Weisberg AJ, Ramsing C, Fliegmann J, Zhang N, Madrigal M, Martin G, Steinbrenner A, Felix G, Coaker G. Natural variation of immune epitopes reveals intrabacterial antagonism. Proc Natl Acad Sci U S A 2024; 121:e2319499121. [PMID: 38814867 PMCID: PMC11161748 DOI: 10.1073/pnas.2319499121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 05/01/2024] [Indexed: 06/01/2024] Open
Abstract
Plants and animals detect biomolecules termed microbe-associated molecular patterns (MAMPs) and induce immunity. Agricultural production is severely impacted by pathogens which can be controlled by transferring immune receptors. However, most studies use a single MAMP epitope and the impact of diverse multicopy MAMPs on immune induction is unknown. Here, we characterized the epitope landscape from five proteinaceous MAMPs across 4,228 plant-associated bacterial genomes. Despite the diversity sampled, natural variation was constrained and experimentally testable. Immune perception in both Arabidopsis and tomato depended on both epitope sequence and copy number variation. For example, Elongation Factor Tu is predominantly single copy, and 92% of its epitopes are immunogenic. Conversely, 99.9% of bacterial genomes contain multiple cold shock proteins, and 46% carry a nonimmunogenic form. We uncovered a mechanism for immune evasion, intrabacterial antagonism, where a nonimmunogenic cold shock protein blocks perception of immunogenic forms encoded in the same genome. These data will lay the foundation for immune receptor deployment and engineering based on natural variation.
Collapse
Affiliation(s)
- Danielle M. Stevens
- Integrative Genetics and Genomics Graduate Group, University of California, Davis, CA95616
- Department of Plant Pathology, University of California, Davis, CA95616
| | - Alba Moreno-Pérez
- Department of Plant Pathology, University of California, Davis, CA95616
| | - Alexandra J. Weisberg
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR97331
| | - Charis Ramsing
- Department of Plant Pathology, University of California, Davis, CA95616
| | - Judith Fliegmann
- Center for Plant Molecular Biology, University of Tübingen, Tübingen72074, Germany
| | - Ning Zhang
- Boyce Thompson Institute for Plant Research, Ithaca, NY14853
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY14853
| | - Melanie Madrigal
- Department of Plant Pathology, University of California, Davis, CA95616
| | - Gregory Martin
- Boyce Thompson Institute for Plant Research, Ithaca, NY14853
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY14853
| | | | - Georg Felix
- Center for Plant Molecular Biology, University of Tübingen, Tübingen72074, Germany
| | - Gitta Coaker
- Department of Plant Pathology, University of California, Davis, CA95616
| |
Collapse
|
9
|
Cui J, Sa E, Wei J, Fang Y, Zheng G, Wang Y, Wang X, Gong Y, Wu Z, Yao P, Liu Z. The Truncated Peptide AtPEP1 (9-23) Has the Same Function as AtPEP1 (1-23) in Inhibiting Primary Root Growth and Triggering of ROS Burst. Antioxidants (Basel) 2024; 13:549. [PMID: 38790654 PMCID: PMC11117541 DOI: 10.3390/antiox13050549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/22/2024] [Accepted: 04/25/2024] [Indexed: 05/26/2024] Open
Abstract
Currently, the widely used active form of plant elicitor peptide 1 (PEP1) from Arabidopsis thaliana is composed of 23 amino acids, hereafter AtPEP1(1-23), serving as an immune elicitor. The relatively less conserved N-terminal region in AtPEP family indicates that the amino acids in this region may be unrelated to the function and activity of AtPEP peptides. Consequently, we conducted an investigation to determine the necessity of the nonconserved amino acids in AtPEP1(1-23) peptide for its functional properties. By assessing the primary root growth and the burst of reactive oxygen species (ROS), we discovered that the first eight N-terminal amino acids of AtPEP1(1-23) are not crucial for its functionality, whereas the conserved C-terminal aspartic acid plays a significant role in its functionality. In this study, we identified a truncated peptide, AtPEP1(9-23), which exhibits comparable activity to AtPEP1(1-23) in inhibiting primary root growth and inducing ROS burst. Additionally, the truncated peptide AtPEP1(13-23) shows similar ability to induce ROS burst as AtPEP1(1-23), but its inhibitory effect on primary roots is significantly reduced. These findings are significant as they provide a novel approach to explore and understand the functionality of the AtPEP1(1-23) peptide. Moreover, exogenous application of AtPEP1(13-23) may enhance plant resistance to pathogens without affecting their growth and development. Therefore, AtPEP1(13-23) holds promise for development as a potentially applicable biopesticides.
Collapse
Affiliation(s)
- Junmei Cui
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (J.C.); (E.S.); (J.W.); (Y.F.); (G.Z.); (Y.W.); (X.W.); (Y.G.); (Z.W.); (P.Y.)
| | - Ermei Sa
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (J.C.); (E.S.); (J.W.); (Y.F.); (G.Z.); (Y.W.); (X.W.); (Y.G.); (Z.W.); (P.Y.)
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Jiaping Wei
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (J.C.); (E.S.); (J.W.); (Y.F.); (G.Z.); (Y.W.); (X.W.); (Y.G.); (Z.W.); (P.Y.)
| | - Yan Fang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (J.C.); (E.S.); (J.W.); (Y.F.); (G.Z.); (Y.W.); (X.W.); (Y.G.); (Z.W.); (P.Y.)
| | - Guoqiang Zheng
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (J.C.); (E.S.); (J.W.); (Y.F.); (G.Z.); (Y.W.); (X.W.); (Y.G.); (Z.W.); (P.Y.)
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Ying Wang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (J.C.); (E.S.); (J.W.); (Y.F.); (G.Z.); (Y.W.); (X.W.); (Y.G.); (Z.W.); (P.Y.)
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Xiaoxia Wang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (J.C.); (E.S.); (J.W.); (Y.F.); (G.Z.); (Y.W.); (X.W.); (Y.G.); (Z.W.); (P.Y.)
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Yongjie Gong
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (J.C.); (E.S.); (J.W.); (Y.F.); (G.Z.); (Y.W.); (X.W.); (Y.G.); (Z.W.); (P.Y.)
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Zefeng Wu
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (J.C.); (E.S.); (J.W.); (Y.F.); (G.Z.); (Y.W.); (X.W.); (Y.G.); (Z.W.); (P.Y.)
| | - Panfeng Yao
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (J.C.); (E.S.); (J.W.); (Y.F.); (G.Z.); (Y.W.); (X.W.); (Y.G.); (Z.W.); (P.Y.)
| | - Zigang Liu
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (J.C.); (E.S.); (J.W.); (Y.F.); (G.Z.); (Y.W.); (X.W.); (Y.G.); (Z.W.); (P.Y.)
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
10
|
Chen C, van der Hoorn RAL, Buscaill P. Releasing hidden MAMPs from precursor proteins in plants. TRENDS IN PLANT SCIENCE 2024; 29:428-436. [PMID: 37945394 DOI: 10.1016/j.tplants.2023.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/16/2023] [Accepted: 09/21/2023] [Indexed: 11/12/2023]
Abstract
The recognition of pathogens by plants at the cell surface is crucial for activating plant immunity. Plants employ pattern recognition receptors (PRRs) to detect microbe-associated molecular patterns (MAMPs). However, our knowledge of the release of peptide MAMPs from their precursor proteins is very limited. Here, we explore seven protein precursors of well-known MAMP peptides and discuss the likelihood of processing being required for their recognition based on structural models and public knowledge. This analysis indicates the existence of multiple extracellular events that are likely pivotal for pathogen perception but remain to be uncovered.
Collapse
Affiliation(s)
- Changlong Chen
- Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China; The Plant Chemetics Laboratory, Department of Biology, University of Oxford, Oxford, UK
| | | | - Pierre Buscaill
- The Plant Chemetics Laboratory, Department of Biology, University of Oxford, Oxford, UK
| |
Collapse
|
11
|
Stevens DM, Moreno-Pérez A, Weisberg AJ, Ramsing C, Fliegmann J, Zhang N, Madrigal M, Martin G, Steinbrenner A, Felix G, Coaker G. Natural variation of immune epitopes reveals intrabacterial antagonism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.21.558511. [PMID: 37790530 PMCID: PMC10543004 DOI: 10.1101/2023.09.21.558511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Plants and animals detect biomolecules termed Microbe-Associated Molecular Patterns (MAMPs) and induce immunity. Agricultural production is severely impacted by pathogens which can be controlled by transferring immune receptors. However, most studies use a single MAMP epitope and the impact of diverse multi-copy MAMPs on immune induction is unknown. Here we characterized the epitope landscape from five proteinaceous MAMPs across 4,228 plant-associated bacterial genomes. Despite the diversity sampled, natural variation was constrained and experimentally testable. Immune perception in both Arabidopsis and tomato depended on both epitope sequence and copy number variation. For example, Elongation Factor Tu is predominantly single copy and 92% of its epitopes are immunogenic. Conversely, 99.9% of bacterial genomes contain multiple Cold Shock Proteins and 46% carry a non-immunogenic form. We uncovered a new mechanism for immune evasion, intrabacterial antagonism, where a non-immunogenic Cold Shock Protein blocks perception of immunogenic forms encoded in the same genome. These data will lay the foundation for immune receptor deployment and engineering based on natural variation.
Collapse
Affiliation(s)
- Danielle M. Stevens
- Integrative Genetics and Genomics Graduate Group, University of California, Davis, Davis CA 95616, USA
- Department of Plant Pathology, University of California, Davis, Davis CA 95616, USA
| | - Alba Moreno-Pérez
- Department of Plant Pathology, University of California, Davis, Davis CA 95616, USA
| | - Alexandra J. Weisberg
- Department of Botany and Plant Pathology, Oregon State University, Corvallis OR, USA
| | - Charis Ramsing
- Department of Plant Pathology, University of California, Davis, Davis CA 95616, USA
| | - Judith Fliegmann
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, 72074 Tübingen, Germany
| | - Ning Zhang
- Boyce Thompson Institute for Plant Research, Ithaca NY, USA
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca NY, USA
| | - Melanie Madrigal
- Department of Plant Pathology, University of California, Davis, Davis CA 95616, USA
| | - Gregory Martin
- Boyce Thompson Institute for Plant Research, Ithaca NY, USA
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca NY, USA
| | - Adam Steinbrenner
- University of Washington, Department of Biology, Box 351800, Seattle, WA, 98195, USA
| | - Georg Felix
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, 72074 Tübingen, Germany
| | - Gitta Coaker
- Department of Plant Pathology, University of California, Davis, Davis CA 95616, USA
| |
Collapse
|
12
|
Wu D, Tian H, Xu F, Yang J, Feng W, Bell S, Gozdzik J, Gao F, Jetter R, Zhang Y. The prodomain of Arabidopsis metacaspase 2 positively regulates immune signaling mediated by pattern-recognition receptors. THE NEW PHYTOLOGIST 2024; 241:430-443. [PMID: 37920109 DOI: 10.1111/nph.19365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 09/29/2023] [Indexed: 11/04/2023]
Abstract
Metacaspases (MCs) are structural homologs of mammalian caspases found in plants, fungi, and protozoa. Type-I MCs carry an N-terminal prodomain, the function of which is unclear. Through genetic analysis of Arabidopsis mc2-1, a T-DNA insertion mutant of MC2, we demonstrated that the prodomain of metacaspase 2 (MC2) promotes immune signaling mediated by pattern-recognition receptors (PRRs). In mc2-1, immune responses are constitutively activated. The receptor-like kinases (RLKs) BAK1/BKK1 and SOBIR1 are required for the autoimmune phenotype of mc2-1, suggesting that immune signaling mediated by the receptor-like protein (RLP)-type PRRs is activated in mc2-1. A suppressor screen identified multiple mutations in the first exon of MC2, which suppress the autoimmunity in mc2-1. Further analysis revealed that the T-DNA insertion at the end of exon 1 of MC2 causes elevated expression of the MC2 prodomain, and overexpression of the MC2 prodomain in wild-type (WT) plants results in the activation of immune responses. The MC2 prodomain interacts with BIR1, which inhibits RLP-mediated immune signaling by interacting with BAK1, suggesting that the MC2 prodomain promotes plant defense responses by interfering with the function of BIR1. Our study uncovers an unexpected function of the prodomain of a MC in plant immunity.
Collapse
Affiliation(s)
- Di Wu
- Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Hainan Tian
- Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Fan Xu
- Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Jianfei Yang
- Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Wenqi Feng
- Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Sydney Bell
- Department of Chemistry, University of British Columbia, Vancouver, BC, V6T 1Z1, Canada
| | - Jedrzej Gozdzik
- Department of Chemistry, University of British Columbia, Vancouver, BC, V6T 1Z1, Canada
| | - Fang Gao
- Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Reinhard Jetter
- Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Department of Chemistry, University of British Columbia, Vancouver, BC, V6T 1Z1, Canada
| | - Yuelin Zhang
- Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- College of Life Sciences, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
13
|
Ökmen B, Katzy P, Huang L, Wemhöner R, Doehlemann G. A conserved extracellular Ribo1 with broad-spectrum cytotoxic activity enables smut fungi to compete with host-associated bacteria. THE NEW PHYTOLOGIST 2023; 240:1976-1989. [PMID: 37680042 DOI: 10.1111/nph.19244] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 08/14/2023] [Indexed: 09/09/2023]
Abstract
Ribotoxins are secreted ribonucleases that specifically target and cleave the universally conserved sarcin-ricin loop sequence of rRNA, which leads to inhibition of protein biosynthesis and subsequently to cell death. We have identified and characterized a secreted Ribo1 protein of plant pathogenic smut fungi. Heterologous expression in different model systems showed that smut Ribo1 has cytotoxic activity against bacteria, yeast, host and nonhost plants. Recombinant expression of Ribo1 in Nicotiana benthamiana induced plant cell death; however, an active site mutant induced cell death only when expressed as a secreted protein. In the maize smut Ustilago maydis, transcription of Ribo1 is specifically induced in early infection stages. While a knockout mutant revealed that Ribo1 is dispensable for U. maydis virulence, the overexpression of Ribo1 in planta had a strong dominant negative effect on virulence and induced host defense responses including cell death. Our findings suggest a function of Ribo1 during the epiphytic development rather than for invasive colonization of the host. Accordingly, in the presence of the biocontrol bacteria Pantoea sp., which were isolated from maize leaves, the ribo1 knockout mutant was significantly impaired in virulence. Together, we conclude that Ribo1 enables smut fungi to compete with host-associated bacteria during epiphytic development.
Collapse
Affiliation(s)
- Bilal Ökmen
- Institute for Plant Sciences and Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Center for Molecular Biosciences, 50674, Cologne, Germany
- Department of Microbial Interactions, IMIT/ZMBP, University of Tübingen, 72076, Tübingen, Germany
| | - Philipp Katzy
- Institute for Plant Sciences and Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Center for Molecular Biosciences, 50674, Cologne, Germany
| | - Luyao Huang
- Institute for Plant Sciences and Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Center for Molecular Biosciences, 50674, Cologne, Germany
| | - Raphael Wemhöner
- Institute for Plant Sciences and Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Center for Molecular Biosciences, 50674, Cologne, Germany
| | - Gunther Doehlemann
- Institute for Plant Sciences and Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Center for Molecular Biosciences, 50674, Cologne, Germany
| |
Collapse
|
14
|
Lee HK, Santiago J. Structural insights of cell wall integrity signaling during development and immunity. CURRENT OPINION IN PLANT BIOLOGY 2023; 76:102455. [PMID: 37739866 DOI: 10.1016/j.pbi.2023.102455] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 08/12/2023] [Accepted: 08/25/2023] [Indexed: 09/24/2023]
Abstract
A communication system between plant cells and their surrounding cell wall is required to coordinate development, immunity, and the integration of environmental cues. This communication network is facilitated by a large pool of membrane- and cell-wall-anchored proteins that can potentially interact with the matrix or its fragments, promoting cell wall patterning or eliciting cellular responses that may lead to changes in the architecture and chemistry of the wall. A mechanistic understanding of how these receptors and cell wall proteins recognize and interact with cell wall epitopes would be key to a better understanding of all plant processes that require cell wall remodeling such as expansion, morphogenesis, and defense responses. This review focuses on the latest developments in structurally and biochemically characterized receptors and protein complexes implicated in reading and regulating cell wall integrity and immunity.
Collapse
Affiliation(s)
- Hyun Kyung Lee
- The Plant Signaling Mechanisms Laboratory, Department of Plant Molecular Biology, University of Lausanne, 1015 Lausanne, Switzerland
| | - Julia Santiago
- The Plant Signaling Mechanisms Laboratory, Department of Plant Molecular Biology, University of Lausanne, 1015 Lausanne, Switzerland.
| |
Collapse
|
15
|
Negi NP, Prakash G, Narwal P, Panwar R, Kumar D, Chaudhry B, Rustagi A. The calcium connection: exploring the intricacies of calcium signaling in plant-microbe interactions. FRONTIERS IN PLANT SCIENCE 2023; 14:1248648. [PMID: 37849843 PMCID: PMC10578444 DOI: 10.3389/fpls.2023.1248648] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 08/24/2023] [Indexed: 10/19/2023]
Abstract
The process of plant immune response is orchestrated by intracellular signaling molecules. Since plants are devoid of a humoral system, they develop extensive mechanism of pathogen recognition, signal perception, and intricate cell signaling for their protection from biotic and abiotic stresses. The pathogenic attack induces calcium ion accumulation in the plant cells, resulting in calcium signatures that regulate the synthesis of proteins of defense system. These calcium signatures induct different calcium dependent proteins such as calmodulins (CaMs), calcineurin B-like proteins (CBLs), calcium-dependent protein kinases (CDPKs) and other signaling molecules to orchestrate the complex defense signaling. Using advanced biotechnological tools, the role of Ca2+ signaling during plant-microbe interactions and the role of CaM/CMLs and CDPKs in plant defense mechanism has been revealed to some extent. The Emerging perspectives on calcium signaling in plant-microbe interactions suggest that this complex interplay could be harnessed to improve plant resistance against pathogenic microbes. We present here an overview of current understanding in calcium signatures during plant-microbe interaction so as to imbibe a future direction of research.
Collapse
Affiliation(s)
- Neelam Prabha Negi
- University Institute of Biotechnology, Chandigarh University, Mohali, India
| | - Geeta Prakash
- Department of Botany, Gargi College, New Delhi, India
| | - Parul Narwal
- University Institute of Biotechnology, Chandigarh University, Mohali, India
| | - Ruby Panwar
- Department of Botany, Gargi College, New Delhi, India
| | - Deepak Kumar
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | | | | |
Collapse
|
16
|
Jiang H, Xia Y, Zhang S, Zhang Z, Feng H, Zhang Q, Chen X, Xiao J, Yang S, Zeng M, Chen Z, Ouyang H, He X, Sun G, Wu J, Dong S, Ye W, Ma Z, Wang Y, Wang Y. The CAP superfamily protein PsCAP1 secreted by Phytophthora triggers immune responses in Nicotiana benthamiana through a leucine-rich repeat receptor-like protein. THE NEW PHYTOLOGIST 2023; 240:784-801. [PMID: 37615219 DOI: 10.1111/nph.19194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 07/05/2023] [Indexed: 08/25/2023]
Abstract
The role of cysteine-rich secretory proteins, antigen 5, and pathogenesis-related 1 (CAP) superfamily proteins in the innate immune responses of mammals is well characterized. However, the biological function of CAP superfamily proteins in plant-microbe interactions is poorly understood. We used proteomics and transcriptome analyses to dissect the apoplastic effectors secreted by the oomycete Phytophthora sojae during early infection of soybean leaves. By transiently expressing these effectors in Nicotiana benthamiana, we identified PsCAP1, a novel type of secreted CAP protein that triggers immune responses in multiple solanaceous plants including N. benthamiana. This secreted CAP protein is conserved among oomycetes, and multiple PsCAP1 homologs can be recognized by N. benthamiana. PsCAP1-triggered immune responses depend on the N-terminal immunogenic fragment (aa 27-151). Pretreatment of N. benthamiana with PsCAP1 or the immunogenic fragment increases plant resistance against Phytophthora. The recognition of PsCAP1 and different homologs requires the leucine-rich repeat receptor-like protein RCAP1, which associates with two central receptor-like kinases BRI1-associated receptor kinase 1 (BAK1) and suppressor of BIR1-1 (SOBIR1) in planta. These findings suggest that the CAP-type apoplastic effectors act as an important player in plant-microbe interactions that can be perceived by plant membrane-localized receptor to activate plant resistance.
Collapse
Affiliation(s)
- Haibin Jiang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, 210095, Nanjing, China
| | - Yeqiang Xia
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, 210095, Nanjing, China
| | - Sicong Zhang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, 210095, Nanjing, China
| | - Zhichao Zhang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, 210095, Nanjing, China
| | - Hui Feng
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, 210095, Nanjing, China
| | - Qi Zhang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, 210095, Nanjing, China
| | - Xi Chen
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, 210095, Nanjing, China
| | - Junhua Xiao
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, 210095, Nanjing, China
| | - Sen Yang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, 210095, Nanjing, China
| | - Mengzhu Zeng
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, 210095, Nanjing, China
| | - Zhaodan Chen
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, 210095, Nanjing, China
| | - Haibing Ouyang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, 210095, Nanjing, China
| | - Xinyi He
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, 210095, Nanjing, China
| | - Guangzheng Sun
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, 210095, Nanjing, China
| | - Jinbin Wu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, 210095, Nanjing, China
| | - Suomeng Dong
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, 210095, Nanjing, China
| | - Wenwu Ye
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, 210095, Nanjing, China
| | - Zhenchuan Ma
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, 210095, Nanjing, China
| | - Yan Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, 210095, Nanjing, China
| | - Yuanchao Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, 210095, Nanjing, China
| |
Collapse
|
17
|
Zhu J, Qiao Q, Sun Y, Xu Y, Shu H, Zhang Z, Liu F, Wang H, Ye W, Dong S, Wang Y, Ma Z, Wang Y. Divergent sequences of tetraspanins enable plants to specifically recognize microbe-derived extracellular vesicles. Nat Commun 2023; 14:4877. [PMID: 37573360 PMCID: PMC10423219 DOI: 10.1038/s41467-023-40623-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 08/03/2023] [Indexed: 08/14/2023] Open
Abstract
Extracellular vesicles (EVs) are important for cell-to-cell communication in animals. EVs also play important roles in plant-microbe interactions, but the underlying mechanisms remain elusive. Here, proteomic analyses of EVs from the soybean (Glycine max) root rot pathogen Phytophthora sojae identify the tetraspanin family proteins PsTET1 and PsTET3, which are recognized by Nicotiana benthamiana to trigger plant immune responses. Both proteins are required for the full virulence of P. sojae. The large extracellular loop (EC2) of PsTET3 is the key region recognized by N. benthamiana and soybean cells in a plant receptor-like kinase NbSERK3a/b dependent manner. TET proteins from oomycete and fungal plant pathogens are recognized by N. benthamiana thus inducing immune responses, whereas plant-derived TET proteins are not due to the sequence divergence of sixteen amino acids at the C-terminal of EC2. This feature allows plants to distinguish self and non-self EVs to trigger active defense responses against pathogenic eukaryotes.
Collapse
Affiliation(s)
- Jinyi Zhu
- Department of Plant Pathology, Nanjing Agricultural University, 210095, Nanjing, China
| | - Qian Qiao
- Department of Plant Pathology, Nanjing Agricultural University, 210095, Nanjing, China
| | - Yujing Sun
- Department of Plant Pathology, Nanjing Agricultural University, 210095, Nanjing, China
| | - Yuanpeng Xu
- Department of Plant Pathology, Nanjing Agricultural University, 210095, Nanjing, China
| | - Haidong Shu
- Department of Plant Pathology, Nanjing Agricultural University, 210095, Nanjing, China
| | - Zhichao Zhang
- Department of Plant Pathology, Nanjing Agricultural University, 210095, Nanjing, China
| | - Fan Liu
- Department of Plant Pathology, Nanjing Agricultural University, 210095, Nanjing, China
| | - Haonan Wang
- Department of Plant Pathology, Nanjing Agricultural University, 210095, Nanjing, China
| | - Wenwu Ye
- Department of Plant Pathology, Nanjing Agricultural University, 210095, Nanjing, China
- The Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), 210095, Nanjing, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, 210095, Nanjing, China
| | - Suomeng Dong
- Department of Plant Pathology, Nanjing Agricultural University, 210095, Nanjing, China
- The Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), 210095, Nanjing, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, 210095, Nanjing, China
| | - Yan Wang
- Department of Plant Pathology, Nanjing Agricultural University, 210095, Nanjing, China
- The Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), 210095, Nanjing, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, 210095, Nanjing, China
| | - Zhenchuan Ma
- Department of Plant Pathology, Nanjing Agricultural University, 210095, Nanjing, China
- The Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), 210095, Nanjing, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, 210095, Nanjing, China
| | - Yuanchao Wang
- Department of Plant Pathology, Nanjing Agricultural University, 210095, Nanjing, China.
- The Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), 210095, Nanjing, China.
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, 210095, Nanjing, China.
| |
Collapse
|
18
|
Yang Y, Steidele CE, Rössner C, Löffelhardt B, Kolb D, Leisen T, Zhang W, Ludwig C, Felix G, Seidl MF, Becker A, Nürnberger T, Hahn M, Gust B, Gross H, Hückelhoven R, Gust AA. Convergent evolution of plant pattern recognition receptors sensing cysteine-rich patterns from three microbial kingdoms. Nat Commun 2023; 14:3621. [PMID: 37336953 DOI: 10.1038/s41467-023-39208-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 06/03/2023] [Indexed: 06/21/2023] Open
Abstract
The Arabidopsis thaliana Receptor-Like Protein RLP30 contributes to immunity against the fungal pathogen Sclerotinia sclerotiorum. Here we identify the RLP30-ligand as a small cysteine-rich protein (SCP) that occurs in many fungi and oomycetes and is also recognized by the Nicotiana benthamiana RLP RE02. However, RLP30 and RE02 share little sequence similarity and respond to different parts of the native/folded protein. Moreover, some Brassicaceae other than Arabidopsis also respond to a linear SCP peptide instead of the folded protein, suggesting that SCP is an eminent immune target that led to the convergent evolution of distinct immune receptors in plants. Surprisingly, RLP30 shows a second ligand specificity for a SCP-nonhomologous protein secreted by bacterial Pseudomonads. RLP30 expression in N. tabacum results in quantitatively lower susceptibility to bacterial, fungal and oomycete pathogens, thus demonstrating that detection of immunogenic patterns by Arabidopsis RLP30 is involved in defense against pathogens from three microbial kingdoms.
Collapse
Affiliation(s)
- Yuankun Yang
- Department of Plant Biochemistry, Center of Plant Molecular Biology (ZMBP), Eberhard-Karls-University of Tübingen, Tübingen, Germany.
| | - Christina E Steidele
- Department of Plant Biochemistry, Center of Plant Molecular Biology (ZMBP), Eberhard-Karls-University of Tübingen, Tübingen, Germany
- Chair of Phytopathology, TUM School of Life Sciences, Technische Universität München, Freising-Weihenstephan, Germany
| | - Clemens Rössner
- Institute of Botany, Developmental Biology of Plants, Justus-Liebig-University Gießen, Gießen, Germany
| | - Birgit Löffelhardt
- Department of Plant Biochemistry, Center of Plant Molecular Biology (ZMBP), Eberhard-Karls-University of Tübingen, Tübingen, Germany
| | - Dagmar Kolb
- Department of Plant Biochemistry, Center of Plant Molecular Biology (ZMBP), Eberhard-Karls-University of Tübingen, Tübingen, Germany
| | - Thomas Leisen
- Department of Biology, Phytopathology group, Technical University of Kaiserslautern, Kaiserslautern, Germany
| | - Weiguo Zhang
- Department of Plant Biochemistry, Center of Plant Molecular Biology (ZMBP), Eberhard-Karls-University of Tübingen, Tübingen, Germany
- Faculty of Life Science, Northwest University, Xi'an, China
| | - Christina Ludwig
- Bavarian Center for Biomolecular Mass Spectrometry, TUM School of Life Sciences, Technische Universität München, Freising-Weihenstephan, Germany
| | - Georg Felix
- Department of Plant Biochemistry, Center of Plant Molecular Biology (ZMBP), Eberhard-Karls-University of Tübingen, Tübingen, Germany
| | - Michael F Seidl
- Theoretical Biology & Bioinformatics, Department of Biology, Utrecht University, Utrecht, The Netherlands
- Laboratory of Phytopathology, Wageningen University & Research, Wageningen, The Netherlands
| | - Annette Becker
- Institute of Botany, Developmental Biology of Plants, Justus-Liebig-University Gießen, Gießen, Germany
| | - Thorsten Nürnberger
- Department of Plant Biochemistry, Center of Plant Molecular Biology (ZMBP), Eberhard-Karls-University of Tübingen, Tübingen, Germany
| | - Matthias Hahn
- Department of Biology, Phytopathology group, Technical University of Kaiserslautern, Kaiserslautern, Germany
| | - Bertolt Gust
- Department of Pharmaceutical Biology, Pharmaceutical Institute, Eberhard-Karls-University of Tübingen, Tübingen, Germany
| | - Harald Gross
- Department of Pharmaceutical Biology, Pharmaceutical Institute, Eberhard-Karls-University of Tübingen, Tübingen, Germany
| | - Ralph Hückelhoven
- Chair of Phytopathology, TUM School of Life Sciences, Technische Universität München, Freising-Weihenstephan, Germany
| | - Andrea A Gust
- Department of Plant Biochemistry, Center of Plant Molecular Biology (ZMBP), Eberhard-Karls-University of Tübingen, Tübingen, Germany.
| |
Collapse
|
19
|
Huang Y, Cui J, Li M, Yang R, Hu Y, Yu X, Chen Y, Wu Q, Yao H, Yu G, Guo J, Zhang H, Wu S, Cai Y. Conservation and divergence of flg22, pep1 and nlp20 in activation of immune response and inhibition of root development. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 331:111686. [PMID: 36963637 DOI: 10.1016/j.plantsci.2023.111686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/11/2023] [Accepted: 03/19/2023] [Indexed: 06/18/2023]
Abstract
Many pattern-recognition receptors (PRRs) and their corresponding ligands have been identified. However, it is largely unknown how similar and different these ligands are in inducing plant innate immunity and affecting plant development. In this study, we examined three well characterized ligands in Arabidopsis thaliana, namely flagellin 22 (flg22), plant elicitor peptide 1 (pep1) and a conserved 20-amino-acid fragment found in most necrosis and ethylene-inducing peptide 1-like proteins (nlp20). Our quantitative analyses detected the differences in amplitude in the early immune responses of these ligands, with nlp20-induced responses typically being slower than those mediated by flg22 and pep1. RNA sequencing showed the shared differentially expressed genes (DEGs) was mostly enriched in defense response, whereas nlp20-regulated genes represent only a fraction of those genes differentially regulated by flg22 and pep1. The three elicitors all inhibited primary root growth, especially pep1, which inhibited both auxin transport and signaling pathway. In addition, pep1 significantly inhibited the cell division and genes involved in cell cycle. Compared with flg22 and nlp20, pep1 induced much stronger expression of its receptor in roots, suggesting a potential positive feedback regulation in the activation of immune response. Despite PRRs and their co-receptor BAK1 were necessary for both PAMP induced immune response and root growth inhibition, bik1 mutant only showed impaired defense response but relatively normal root growth inhibition, suggesting BIK1 acts differently in these two biological processes.
Collapse
Affiliation(s)
- Yan Huang
- College of Life Sciences, Sichuan Agricultural University, Ya'an, Sichuan, PR China
| | - Junmei Cui
- College of Life Sciences, Sichuan Agricultural University, Ya'an, Sichuan, PR China
| | - Meng Li
- College of Horticulture, FAFU-UCR Joint Center and Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Rongqian Yang
- College of Life Sciences, Sichuan Agricultural University, Ya'an, Sichuan, PR China
| | - Yang Hu
- College of Life Sciences, Sichuan Agricultural University, Ya'an, Sichuan, PR China
| | - Xiaosong Yu
- College of Life Sciences, Sichuan Agricultural University, Ya'an, Sichuan, PR China
| | - Ying Chen
- College of Life Sciences, Sichuan Agricultural University, Ya'an, Sichuan, PR China
| | - Qiqi Wu
- Lusyno Biotech Ltd., Chengdu, Sichuan, PR China
| | - Huipeng Yao
- College of Life Sciences, Sichuan Agricultural University, Ya'an, Sichuan, PR China
| | - Guozhi Yu
- College of Life Sciences, Sichuan Agricultural University, Ya'an, Sichuan, PR China
| | - Jinya Guo
- College of Life Sciences, Sichuan Agricultural University, Ya'an, Sichuan, PR China
| | - Huaiyu Zhang
- College of Life Sciences, Sichuan Agricultural University, Ya'an, Sichuan, PR China
| | - Shuang Wu
- College of Horticulture, FAFU-UCR Joint Center and Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China.
| | - Yi Cai
- College of Life Sciences, Sichuan Agricultural University, Ya'an, Sichuan, PR China.
| |
Collapse
|
20
|
Wang J, Liu S, Ren P, Jia F, Kang F, Wang R, Xue R, Yan X, Huang L. A novel protein elicitor (PeSy1) from Saccharothrix yanglingensis induces plant resistance and interacts with a receptor-like cytoplasmic kinase in Nicotiana benthamiana. MOLECULAR PLANT PATHOLOGY 2023; 24:436-451. [PMID: 36872468 PMCID: PMC10098051 DOI: 10.1111/mpp.13312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 12/28/2022] [Accepted: 01/30/2023] [Indexed: 05/03/2023]
Abstract
Previously, we reported a rare actinomycete Saccharothrix yanglingensis Hhs.015 with strong biocontrol ability, which can colonize plant tissues and induce resistance, but the key elicitor and immune mechanisms were unclear. In this study, a novel protein elicitor screened from the genome of Hhs.015, PeSy1 (protein elicitor of S. yanglingensis 1), could induce a strong hypersensitive response (HR) and resistance in plants. The PeSy1 gene encodes an 11 kDa protein with 109 amino acids that is conserved in Saccharothrix species. PeSy1-His recombinant protein induced early defence events such as a cellular reactive oxygen species burst, callose deposition, and the activation of defence hormone signalling pathways, which enhanced Nicotiana benthamiana resistance to Sclerotinia sclerotiorum and Phytophthora capsici, and Solanum lycopersicum resistance to Pseudomonas syringae pv. tomato DC3000. Through pull-down and mass spectrometry, candidate proteins that interacted with PeSy1 were obtained from N. benthamiana. We confirmed the interaction between receptor-like cytoplasmic kinase RSy1 (Response to PeSy1) and PeSy1 using co-immunoprecipitation, bimolecular fluorescence complementation, and microscale thermophoresis. PeSy1 treatment promoted up-regulation of marker genes in pattern-triggered immunity. The cell death it elicited was dependent on the co-receptors NbBAK1 and NbSOBIR1, suggesting that PeSy1 acts as a microbe-associated molecular pattern from Hhs.015. Additionally, RSy1 positively regulated PeSy1-induced plants resistant to S. sclerotiorum. In conclusion, our results demonstrated a novel receptor-like cytoplasmic kinase in the plant perception of microbe-associated molecular patterns, and the potential of PeSy1 in induced resistance provided a new strategy for biological control of actinomycetes in agricultural diseases.
Collapse
Affiliation(s)
- Jianxun Wang
- College of Life ScienceNorthwest A&F UniversityYanglingChina
- State Key Laboratory of Crop Stress Biology for Arid AreasNorthwest A&F UniversityYanglingChina
| | - Shang Liu
- College of Life ScienceNorthwest A&F UniversityYanglingChina
- State Key Laboratory of Crop Stress Biology for Arid AreasNorthwest A&F UniversityYanglingChina
| | - Peng Ren
- College of Life ScienceNorthwest A&F UniversityYanglingChina
- State Key Laboratory of Crop Stress Biology for Arid AreasNorthwest A&F UniversityYanglingChina
| | - Fengguo Jia
- College of Life ScienceNorthwest A&F UniversityYanglingChina
- State Key Laboratory of Crop Stress Biology for Arid AreasNorthwest A&F UniversityYanglingChina
| | - Feng Kang
- College of Life ScienceNorthwest A&F UniversityYanglingChina
- State Key Laboratory of Crop Stress Biology for Arid AreasNorthwest A&F UniversityYanglingChina
| | - Ruolin Wang
- College of Life ScienceNorthwest A&F UniversityYanglingChina
- State Key Laboratory of Crop Stress Biology for Arid AreasNorthwest A&F UniversityYanglingChina
| | - Renzheng Xue
- College of Life ScienceNorthwest A&F UniversityYanglingChina
- State Key Laboratory of Crop Stress Biology for Arid AreasNorthwest A&F UniversityYanglingChina
| | - Xia Yan
- College of Life ScienceNorthwest A&F UniversityYanglingChina
- State Key Laboratory of Crop Stress Biology for Arid AreasNorthwest A&F UniversityYanglingChina
| | - Lili Huang
- State Key Laboratory of Crop Stress Biology for Arid AreasNorthwest A&F UniversityYanglingChina
- College of Plant ProtectionNorthwest A&F UniversityYanglingChina
| |
Collapse
|
21
|
Wang N, Yin Z, Wu Y, Yang J, Zhao Y, Daly P, Pei Y, Zhou D, Dou D, Wei L. A Pythium myriotylum Small Cysteine-Rich Protein Triggers Immune Responses in Diverse Plant Hosts. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2023; 36:283-293. [PMID: 37022145 DOI: 10.1094/mpmi-09-22-0187-r] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The oomycete Pythium myriotylum is a necrotrophic pathogen that infects many crop species worldwide, including ginger, soybean, tomato, and tobacco. Here, we identified a P. myriotylum small cysteine-rich protein, PmSCR1, that induces cell death in Nicotiana benthamiana by screening small, secreted proteins that were induced during infection of ginger and did not have a predicted function at the time of selection. Orthologs of PmSCR1 were found in other Pythium species, but these did not have cell death-inducing activity in N. benthamiana. PmSCR1 encodes a protein containing an auxiliary activity 17 family domain and triggers multiple immune responses in host plants. The elicitor function of PmSCR1 appears to be independent of enzymatic activity, because the heat inactivation of PmSCR1 protein did not affect PmSCR1-induced cell death or other defense responses. The elicitor function of PmSCR1 was also independent of BAK1 and SOBIR1. Furthermore, a small region of the protein, PmSCR186-211, is sufficient for inducing cell death. A pretreatment using the full-length PmSCR1 protein promoted the resistance of soybean and N. benthamiana to Phytophthora sojae and Phytophthora capsici infection, respectively. These results reveal that PmSCR1 is a novel elicitor from P. myriotylum, which exhibits plant immunity-inducing activity in multiple host plants. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Nan Wang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Zhiyuan Yin
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Yingke Wu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Jishuo Yang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, China
| | - Yaning Zhao
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Paul Daly
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Yong Pei
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Dongmei Zhou
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Daolong Dou
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Lihui Wei
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| |
Collapse
|
22
|
Zhou X, Wen K, Huang SX, Lu Y, Liu Y, Jin JH, Kale SD, Chen XR. Time-Course Transcriptome Profiling Reveals Differential Resistance Responses of Tomato to a Phytotoxic Effector of the Pathogenic Oomycete Phytophthora cactorum. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12040883. [PMID: 36840230 PMCID: PMC9964705 DOI: 10.3390/plants12040883] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/13/2023] [Accepted: 02/13/2023] [Indexed: 05/22/2023]
Abstract
Blight caused by Phytophthora pathogens has a devastating impact on crop production. Phytophthora species secrete an array of effectors, such as Phytophthora cactorum-Fragaria (PcF)/small cysteine-rich (SCR) phytotoxic proteins, to facilitate their infections. Understanding host responses to such proteins is essential to developing next-generation crop resistance. Our previous work identified a small, 8.1 kDa protein, SCR96, as an important virulence factor in Phytophthora cactorum. Host responses to SCR96 remain obscure. Here, we analyzed the effect of SCR96 on the resistance of tomato treated with this recombinant protein purified from yeast cells. A temporal transcriptome analysis of tomato leaves infiltrated with 500 nM SCR96 for 0, 3, 6, and 12 h was performed using RNA-Seq. In total, 36,779 genes, including 2704 novel ones, were detected, of which 32,640 (88.7%) were annotated. As a whole, 5929 non-redundant genes were found to be significantly co-upregulated in SCR96-treated leaves (3, 6, 12 h) compared to the control (0 h). The combination of annotation, enrichment, and clustering analyses showed significant changes in expression beginning at 3 h after treatment in genes associated with defense and metabolism pathways, as well as temporal transcriptional accumulation patterns. Noticeably, the expression levels of resistance-related genes encoding receptor-like kinases/proteins, resistance proteins, mitogen-activated protein kinases (MAPKs), transcription factors, pathogenesis-related proteins, and transport proteins were significantly affected by SCR96. Quantitative reverse transcription PCR (qRT-PCR) validated the transcript changes in the 12 selected genes. Our analysis provides novel information that can help delineate the molecular mechanism and components of plant responses to effectors, which will be useful for the development of resistant crops.
Collapse
Affiliation(s)
- Xue Zhou
- College of Plant Protection, Yangzhou University, 48 Eastern Wenhui Road, Yangzhou 225009, China
| | - Ke Wen
- College of Plant Protection, Yangzhou University, 48 Eastern Wenhui Road, Yangzhou 225009, China
| | - Shen-Xin Huang
- College of Plant Protection, Yangzhou University, 48 Eastern Wenhui Road, Yangzhou 225009, China
| | - Yi Lu
- College of Plant Protection, Yangzhou University, 48 Eastern Wenhui Road, Yangzhou 225009, China
| | - Yang Liu
- College of Plant Protection, Yangzhou University, 48 Eastern Wenhui Road, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, 48 Eastern Wenhui Road, Yangzhou 225009, China
| | - Jing-Hao Jin
- College of Plant Protection, Yangzhou University, 48 Eastern Wenhui Road, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, 48 Eastern Wenhui Road, Yangzhou 225009, China
| | - Shiv D. Kale
- Fralin Life Science Institute, Virginia Tech, Blacksburg, VA 24060, USA
| | - Xiao-Ren Chen
- College of Plant Protection, Yangzhou University, 48 Eastern Wenhui Road, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, 48 Eastern Wenhui Road, Yangzhou 225009, China
- Correspondence:
| |
Collapse
|
23
|
Zhao L, Cheng Q. Heterologous expression of Arabidopsis pattern recognition receptor RLP23 increases broad-spectrum resistance in poplar to fungal pathogens. MOLECULAR PLANT PATHOLOGY 2023; 24:80-86. [PMID: 36253956 PMCID: PMC9742489 DOI: 10.1111/mpp.13275] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/15/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
The pattern recognition receptor AtRLP23 from Arabidopsis thaliana recognizes the epitopes (nlp24s) of necrosis and ethylene-inducing peptide 1-like proteins (NLPs) and triggers pattern-triggered immunity (PTI). Here, we established methods for studying the early events of PTI in the hybrid poplar cultivar Shanxin (Populus davidiana × Populus bolleana) in response to the flagellin epitope. We confirmed that wild-type Shanxin cannot generate PTI responses on nlp24 treatment. Four NLP homologues were characterized from two common fungal pathogens of Shanxin, namely Marssonina brunnea f. sp. monogermtubi (MbMo) and Elsinoë australis (Ea), which cause black leaf spot and anthracnose disease, respectively, and the nlp24s of three of them could be responded to by Nicotiana benthamiana leaves expressing AtRLP23. We then created AtRLP23 transgenic Shanxin lines and confirmed that the heterologous expression of AtRLP23 conferred on transgenic Shanxin the ability to respond to one nlp24 of each fungal pathogen. Consistently, infection assays with MbMo or Ea showed obviously lower levels of disease symptoms and significantly inhibited the growth of fungi on the transgenic poplar compared with that in wild-type poplar. Overall, our results indicated that the heterologous expression of AtRLP23 allowed transgenic Shanxin to generate a PTI response to nlp24s, resulting in increased broad-spectrum fungal disease resistance.
Collapse
Affiliation(s)
- Lijuan Zhao
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Co‐Innovation Center for Sustainable Forestry in Southern ChinaNanjing Forestry UniversityNanjingChina
| | - Qiang Cheng
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Co‐Innovation Center for Sustainable Forestry in Southern ChinaNanjing Forestry UniversityNanjingChina
| |
Collapse
|
24
|
Dal’Sasso TCS, Rody HVS, Oliveira LO. Genome-Wide Analysis and Evolutionary History of the Necrosis- and Ethylene-Inducing Peptide 1-Like Protein (NLP) Superfamily Across the Dothideomycetes Class of Fungi. Curr Microbiol 2023; 80:44. [DOI: 10.1007/s00284-022-03125-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 11/15/2022] [Indexed: 12/24/2022]
|
25
|
Xiang J, Cheng J, Wei L, Li M, Wu J. Functional analysis of the Nep1-like proteins from Plasmopara viticola. PLANT SIGNALING & BEHAVIOR 2022; 17:2000791. [PMID: 35152834 PMCID: PMC9176246 DOI: 10.1080/15592324.2021.2000791] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 06/14/2023]
Abstract
Necrosis and ethylene-inducing peptide 1 (Nep1) -like proteins (NLP) are secreted by multiple taxonomically unrelated plant pathogens (bacteria, fungi, and oomycete) and are best known for inducing cell death and immune responses in dicotyledonous plants. A group of putative NLP genes from obligate biotrophic oomycete Plasmopara viticola were predicted by RNA-Seq in our previous study, but their activity has not been established. Therefore, we analyzed the P. viticola NLP (PvNLP) family and identified seven PvNLP genes. They all belong to type 1 NLP genes and form a P. viticola-specific cluster when compared with other pathogen NLP genes. The expression of PvNLPs was induced during early infection process and the expression patterns could be categorized into two groups. Agrobacterium tumefaciens-mediated transient expression assays revealed that only PvNLP7 was cytotoxic and could induce Phytophthora capsici resistance in Nicotiana benthamiana. Functional analysis showed that PvNLP4, PvNLP5, PvNLP7, and PvNLP10 significantly improved disease resistance of Arabidopsis thaliana to Hyaloperonospora arabidopsidis. Moreover, the four genes caused an inhibition of plant growth which is typically associated with enhanced immunity when over-expressed in Arabidopsis. Further research found that PvNLP7 could activate the expression of defense-related genes and its conserved NPP1 domain was critical for cell death- and immunity-inducing activity. This record of NLP genes from P. viticola showed a functional diversification, laying a foundation for further study on pathogenic mechanism of the devastating pathogen.
Collapse
Affiliation(s)
- Jiang Xiang
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Jianhui Cheng
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Lingzhu Wei
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Mingshan Li
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Jiang Wu
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
26
|
Üstüner S, Schäfer P, Eichmann R. Development specifies, diversifies and empowers root immunity. EMBO Rep 2022; 23:e55631. [PMID: 36330761 PMCID: PMC9724680 DOI: 10.15252/embr.202255631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 10/10/2022] [Accepted: 10/13/2022] [Indexed: 08/04/2023] Open
Abstract
Roots are a highly organised plant tissue consisting of different cell types with distinct developmental functions defined by cell identity networks. Roots are the target of some of the most devastating diseases and possess a highly effective immune system. The recognition of microbe- or plant-derived molecules released in response to microbial attack is highly important in the activation of complex immunity gene networks. Development and immunity are intertwined, and immunity activation can result in growth inhibition. In turn, by connecting immunity and cell identity regulators, cell types are able to launch a cell type-specific immunity based on the developmental function of each cell type. By this strategy, fundamental developmental processes of each cell type contribute their most basic functions to drive cost-effective but highly diverse and, thus, efficient immune responses. This review highlights the interdependence of root development and immunity and how the developmental age of root cells contributes to positive and negative outcomes of development-immunity cross-talk.
Collapse
Affiliation(s)
- Sim Üstüner
- Institute of Phytopathology, Research Centre for BioSystems, Land Use and NutritionJustus Liebig UniversityGiessenGermany
| | - Patrick Schäfer
- Institute of Phytopathology, Research Centre for BioSystems, Land Use and NutritionJustus Liebig UniversityGiessenGermany
| | - Ruth Eichmann
- Institute of Phytopathology, Research Centre for BioSystems, Land Use and NutritionJustus Liebig UniversityGiessenGermany
| |
Collapse
|
27
|
Schoonbeek H, Yalcin HA, Burns R, Taylor RE, Casey A, Holt S, Van den Ackerveken G, Wells R, Ridout CJ. Necrosis and ethylene-inducing-like peptide patterns from crop pathogens induce differential responses within seven brassicaceous species. PLANT PATHOLOGY 2022; 71:2004-2016. [PMID: 36605780 PMCID: PMC9804309 DOI: 10.1111/ppa.13615] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 07/12/2022] [Indexed: 06/17/2023]
Abstract
Translational research is required to advance fundamental knowledge on plant immunity towards application in crop improvement. Recognition of microbe/pathogen-associated molecular patterns (MAMPs/PAMPs) triggers a first layer of immunity in plants. The broadly occurring family of necrosis- and ethylene-inducing peptide 1 (NEP1)-like proteins (NLPs) contains immunogenic peptide patterns that are recognized by a number of plant species. Arabidopsis can recognize NLPs by the pattern recognition receptor AtRLP23 and its co-receptors SOBIR1, BAK1, and BKK1, leading to induction of defence responses including the production of reactive oxygen species (ROS) and elevation of intracellular [Ca2+]. However, little is known about NLP perception in Brassica crop species. Within 12 diverse accessions for each of six Brassica crop species, we demonstrate variation in response to Botrytis cinerea NLP BcNEP2, with Brassica oleracea (CC genome) being nonresponsive and only two Brassica napus cultivars responding to BcNEP2. Peptides derived from four fungal pathogens of these crop species elicited responses similar to BcNEP2 in B. napus and Arabidopsis. Induction of ROS by NLP peptides was strongly reduced in Atrlp23, Atsobir1 and Atbak1-5 Atbkk1-1 mutants, confirming that recognition of Brassica pathogen NLPs occurs in a similar manner to that of HaNLP3 from Hyaloperonospora arabidopsidis in Arabidopsis. In silico analysis of the genomes of two B. napus accessions showed similar presence of homologues for AtBAK1, AtBKK1 and AtSOBIR1 but variation in the organization of AtRLP23 homologues. We could not detect a strong correlation between the ability to respond to NLP peptides and resistance to B. cinerea.
Collapse
Affiliation(s)
- Henk‐jan Schoonbeek
- Department of Crop GeneticsJohn Innes CentreNorwichUK
- Present address:
Department of Metabolic BiologyJohn Innes CentreNR4 7UHNorwichUK
| | - Hicret Asli Yalcin
- Department of Crop GeneticsJohn Innes CentreNorwichUK
- Present address:
The Scientific and Technical Research Council of Turkey (TÜBITAK), Marmara Research CentreGenetic Engineering and Biotechnology InstituteKocaeliTurkey
| | - Rachel Burns
- Department of Crop GeneticsJohn Innes CentreNorwichUK
| | - Rachel Emma Taylor
- Department of Crop GeneticsJohn Innes CentreNorwichUK
- Present address:
Centre of Plant Sciences, Faculty of Biological SciencesUniversity of LeedsLS2 9JTLeedsUK
| | - Adam Casey
- Department of Crop GeneticsJohn Innes CentreNorwichUK
| | - Sam Holt
- Department of Crop GeneticsJohn Innes CentreNorwichUK
- Pacific Biosciences Ltd. Rolling Stock Yard188 York WayLondonN7 9ASUK
| | | | - Rachel Wells
- Department of Crop GeneticsJohn Innes CentreNorwichUK
| | | |
Collapse
|
28
|
Ramírez-Zavaleta CY, García-Barrera LJ, Rodríguez-Verástegui LL, Arrieta-Flores D, Gregorio-Jorge J. An Overview of PRR- and NLR-Mediated Immunities: Conserved Signaling Components across the Plant Kingdom That Communicate Both Pathways. Int J Mol Sci 2022; 23:12974. [PMID: 36361764 PMCID: PMC9654257 DOI: 10.3390/ijms232112974] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 09/10/2023] Open
Abstract
Cell-surface-localized pattern recognition receptors (PRRs) and intracellular nucleotide-binding domain and leucine-rich repeat receptors (NLRs) are plant immune proteins that trigger an orchestrated downstream signaling in response to molecules of microbial origin or host plant origin. Historically, PRRs have been associated with pattern-triggered immunity (PTI), whereas NLRs have been involved with effector-triggered immunity (ETI). However, recent studies reveal that such binary distinction is far from being applicable to the real world. Although the perception of plant pathogens and the final mounting response are achieved by different means, central hubs involved in signaling are shared between PTI and ETI, blurring the zig-zag model of plant immunity. In this review, we not only summarize our current understanding of PRR- and NLR-mediated immunities in plants, but also highlight those signaling components that are evolutionarily conserved across the plant kingdom. Altogether, we attempt to offer an overview of how plants mediate and integrate the induction of the defense responses that comprise PTI and ETI, emphasizing the need for more evolutionary molecular plant-microbe interactions (EvoMPMI) studies that will pave the way to a better understanding of the emergence of the core molecular machinery involved in the so-called evolutionary arms race between plants and microbes.
Collapse
Affiliation(s)
- Candy Yuriria Ramírez-Zavaleta
- Programa Académico de Ingeniería en Biotecnología—Cuerpo Académico Procesos Biotecnológicos, Universidad Politécnica de Tlaxcala, Av. Universidad Politécnica 1, Tepeyanco 90180, Mexico
| | - Laura Jeannette García-Barrera
- Instituto de Biotecnología y Ecología Aplicada (INBIOTECA), Universidad Veracruzana, Av. de las Culturas, Veracruzanas No. 101, Xalapa 91090, Mexico
- Centro de Investigación en Biotecnología Aplicada, Instituto Politécnico Nacional, Carretera Estatal Santa Inés Tecuexcomac-Tepetitla Km.1.5, Santa Inés-Tecuexcomac-Tepetitla 90700, Mexico
| | | | - Daniela Arrieta-Flores
- Programa Académico de Ingeniería en Biotecnología—Cuerpo Académico Procesos Biotecnológicos, Universidad Politécnica de Tlaxcala, Av. Universidad Politécnica 1, Tepeyanco 90180, Mexico
- Departamento de Biotecnología, Universidad Autónoma Metropolitana, Iztapalapa, Ciudad de México 09310, Mexico
| | - Josefat Gregorio-Jorge
- Consejo Nacional de Ciencia y Tecnología—Comisión Nacional del Agua, Av. Insurgentes Sur 1582, Col. Crédito Constructor, Del. Benito Juárez, Ciudad de México 03940, Mexico
| |
Collapse
|
29
|
Guo J, Cheng Y. Advances in Fungal Elicitor-Triggered Plant Immunity. Int J Mol Sci 2022; 23:12003. [PMID: 36233304 PMCID: PMC9569958 DOI: 10.3390/ijms231912003] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/06/2022] [Accepted: 10/08/2022] [Indexed: 11/17/2022] Open
Abstract
There is an array of pathogenic fungi in the natural environment of plants, which produce some molecules including pathogen-associated molecular patterns (PAMPs) and effectors during infection. These molecules, which can be recognized by plant specific receptors to activate plant immunity, including PTI (PAMP-triggered immunity) and ETI (effector-triggered immunity), are called elicitors. Undoubtedly, identification of novel fungal elicitors and their plant receptors and comprehensive understanding about fungal elicitor-triggered plant immunity will be of great significance to effectively control plant diseases. Great progress has occurred in fungal elicitor-triggered plant immunity, especially in the signaling pathways of PTI and ETI, in recent years. Here, recent advances in fungal elicitor-triggered plant immunity are summarized and their important contribution to the enlightenment of plant disease control is also discussed.
Collapse
Affiliation(s)
| | - Yulin Cheng
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 401331, China
| |
Collapse
|
30
|
McCombe CL, Greenwood JR, Solomon PS, Williams SJ. Molecular plant immunity against biotrophic, hemibiotrophic, and necrotrophic fungi. Essays Biochem 2022; 66:581-593. [PMID: 35587147 PMCID: PMC9528087 DOI: 10.1042/ebc20210073] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/04/2022] [Accepted: 05/03/2022] [Indexed: 11/17/2022]
Abstract
Pathogenic fungi use diverse infection strategies to obtain nutrients from plants. Biotrophic fungi feed only on living plant tissue, whereas necrotrophic fungi kill host cells to extract nutrients. To prevent disease, plants need to distinguish between pathogens with different life cycles, as a successful defense against a biotroph, which often involves programmed cell-death around the site of infection, is not an appropriate response to some necrotrophs. Plants utilize a vast collection of extracellular and intracellular receptors to detect the signatures of pathogen attack. In turn, pathogens are under strong selection to mask or avoid certain receptor responses while enhancing or manipulating other receptor responses to promote virulence. In this review, we focus on the plant receptors involved in resistance responses to fungal pathogens and highlight, with examples, how the infection strategy of fungal pathogens can determine if recognition responses are effective at preventing disease.
Collapse
Affiliation(s)
- Carl L McCombe
- Plant Sciences Division, Research School of Biology, The Australian National University, Canberra, ACT, Australia
| | - Julian R Greenwood
- Plant Sciences Division, Research School of Biology, The Australian National University, Canberra, ACT, Australia
| | - Peter S Solomon
- Plant Sciences Division, Research School of Biology, The Australian National University, Canberra, ACT, Australia
| | - Simon J Williams
- Plant Sciences Division, Research School of Biology, The Australian National University, Canberra, ACT, Australia
| |
Collapse
|
31
|
Lü P, Liu Y, Yu X, Shi CL, Liu X. The right microbe-associated molecular patterns for effective recognition by plants. Front Microbiol 2022; 13:1019069. [PMID: 36225366 PMCID: PMC9549324 DOI: 10.3389/fmicb.2022.1019069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 09/08/2022] [Indexed: 11/13/2022] Open
Abstract
Plants are constantly exposed to diverse microbes and thus develop a sophisticated perceive system to distinguish non-self from self and identify non-self as friends or foes. Plants can detect microbes in apoplast via recognition of microbe-associated molecular patterns (MAMPs) by pattern recognition receptors (PRRs) on the cell surface to activate appropriate signaling in response to microbes. MAMPs are highly conserved but essential molecules of microbes and often buried in microbes’ complex structure. Mature MAMPs are released from microbes by invasion-induced hydrolytic enzymes in apoplast and accumulate in proximity of plasma membrane-localized PRRs to be perceived as ligands to activate downstream signaling. In response, microbes developed strategies to counteract these processing. Here, we review how the form, the concentration, and the size of mature MAMPs affect the PRR-mediated immune signaling. In particular, we describe some potential applications and explore potential open questions in the fields.
Collapse
Affiliation(s)
- Pengpeng Lü
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang, Jiangxi, China
| | - Yi Liu
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang, Jiangxi, China
| | - Xixi Yu
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang, Jiangxi, China
- School of Life Sciences, Nanchang University, Nanchang, Jiangxi, China
| | | | - Xiaokun Liu
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang, Jiangxi, China
- *Correspondence: Xiaokun Liu,
| |
Collapse
|
32
|
Dal'Sasso TCDS, Rocha VDD, Rody HVS, Costa MDBL, Oliveira LOD. The necrosis- and ethylene-inducing peptide 1-like protein (NLP) gene family of the plant pathogen Corynespora cassiicola. Curr Genet 2022; 68:645-659. [PMID: 36098767 DOI: 10.1007/s00294-022-01252-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/10/2022] [Accepted: 08/12/2022] [Indexed: 11/25/2022]
Abstract
Effectors are secreted by plant-associated microorganisms to modify the host cell physiology. As effectors, the Necrosis- and Ethylene-inducing peptide 1-like proteins (NLPs) are involded in the early phases of plant infection and may trigger host immune responses. Corynespora cassiicola is a polyphagous plant pathogen that causes target spot on many agriculturally important crops. Using genome assembly, gene prediction, and proteome annotation tools, we retrieved 135 NLP-encoding genes from proteomes of 44 isolates. We explored the evolutionary history of NLPs using Bayesian phylogeny, gene genealogies, and selection analyses. We accessed the expression profiles of the NLP genes during the early phase of C. cassiicola-soybean interaction. Three NLP putative-effector genes (Cc_NLP1.1, Cc_NLP1.2A, and Cc_NLP1.2B) were maintained in the genomes of all isolates tested. An NLP putative-non-effector gene (Cc_NLP1.3) was found in three isolates that had been originally obtained from soybean. Putative-effector NLPs were under different selective constraints: Cc_NLP1.1 was under stronger selective pressure, while Cc_NLP1.2A was under a more relaxed constraint. Meanwhile, Cc_NLP1.2B likely evolved under either positive or balancing selection. Despite highly divergent, the putative-effector NLPs maintain conserved the residues necessary to trigger plant immune responses, suggesting they are potentially functional. Only the Cc_NLP1.1 putative-effector gene was significantly expressed at the early hours of soybean colonization, while Cc_NLP1.2A and Cc_NLP1.2B showed much lower levels of gene expression.
Collapse
Affiliation(s)
| | | | - Hugo Vianna Silva Rody
- Departamento de Genética, Universidade de São Paulo/Escola Superior de Agricultura "Luiz de Queiroz", Piracicaba, Brazil
| | | | - Luiz Orlando de Oliveira
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Viçosa, Brazil.
| |
Collapse
|
33
|
Steentjes MBF, Herrera Valderrama AL, Fouillen L, Bahammou D, Leisen T, Albert I, Nürnberger T, Hahn M, Mongrand S, Scholten OE, van Kan JAL. Cytotoxic activity of Nep1-like proteins on monocots. THE NEW PHYTOLOGIST 2022; 235:690-700. [PMID: 35383933 PMCID: PMC9320973 DOI: 10.1111/nph.18146] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 03/30/2022] [Indexed: 06/14/2023]
Abstract
Necrosis- and ethylene-inducing peptide 1 (Nep1)-like proteins (NLPs) are found throughout several plant-associated microbial taxa and are typically considered to possess cytolytic activity exclusively on dicot plant species. However, cytolytic NLPs are also produced by pathogens of monocot plants such as the onion (Allium cepa) pathogen Botrytis squamosa. We determined the cytotoxic activity of B. squamosa BsNep1, as well as other previously characterized NLPs, on various monocot plant species and assessed the plant plasma membrane components required for NLP sensitivity. Leaf infiltration of NLPs showed that onion cultivars are differentially sensitive to NLPs, and analysis of their sphingolipid content revealed that the GIPC series A : series B ratio did not correlate to NLP sensitivity. A tri-hybrid population derived from a cross between onion and two wild relatives showed variation in NLP sensitivity within the population. We identified a quantitative trait locus (QTL) for NLP insensitivity that colocalized with a previously identified QTL for B. squamosa resistance and the segregating trait of NLP insensitivity correlated with the sphingolipid content. Our results demonstrate the cytotoxic activity of NLPs on several monocot plant species and legitimize their presence in monocot-specific plant pathogens.
Collapse
Affiliation(s)
| | | | - Laetitia Fouillen
- Laboratoire de Biogènese MembranaireUMR 5200CNRSUniversity of BordeauxF‐33140Villenave d’OrnonFrance
| | - Delphine Bahammou
- Laboratoire de Biogènese MembranaireUMR 5200CNRSUniversity of BordeauxF‐33140Villenave d’OrnonFrance
| | - Thomas Leisen
- Department of Biology, Plant PathologyUniversity of KaiserslauternKaiserslautern67663Germany
| | - Isabell Albert
- Molecular Plant PhysiologyFAU Erlangen‐NürnbergErlangen91058Germany
| | | | - Matthias Hahn
- Department of Biology, Plant PathologyUniversity of KaiserslauternKaiserslautern67663Germany
| | - Sébastien Mongrand
- Laboratoire de Biogènese MembranaireUMR 5200CNRSUniversity of BordeauxF‐33140Villenave d’OrnonFrance
| | - Olga E. Scholten
- Plant BreedingWageningen University & ResearchWageningen6708 PBthe Netherlands
| | - Jan A. L. van Kan
- Laboratory of PhytopathologyWageningen UniversityWageningen6708 PBthe Netherlands
| |
Collapse
|
34
|
Yang G, Yang J, Zhang Q, Wang W, Feng L, Zhao L, An B, Wang Q, He C, Luo H. The Effector Protein CgNLP1 of Colletotrichum gloeosporioides Affects Invasion and Disrupts Nuclear Localization of Necrosis-Induced Transcription Factor HbMYB8-Like to Suppress Plant Defense Signaling. Front Microbiol 2022; 13:911479. [PMID: 35770165 PMCID: PMC9234567 DOI: 10.3389/fmicb.2022.911479] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 05/13/2022] [Indexed: 11/13/2022] Open
Abstract
Fungi secrete numerous effectors to modulate host defense systems. Understanding the molecular mechanisms by which fungal effectors regulate plant defense is of great importance for the development of novel strategies for disease control. In this study, we identified necrosis- and ethylene-inducing protein 1 (Nep1)-like protein (NLP) effector gene, CgNLP1, which contributed to conidial germination, appressorium formation, invasive growth, and virulence of Colletotrichum gloeosporioides to the rubber tree. Transient expression of CgNLP1 in the leaves of Nicotiana benthamiana induced ethylene production in plants. Ectopic expression of CgNLP1 in Arabidopsis significantly enhanced the resistance to Botrytis cinerea and Alternaria brassicicola. An R2R3 type transcription factor HbMYB8-like of rubber tree was identified as the target of CgNLP1.HbMYB8-like, localized on the nucleus, and induced cell death in N. benthamiana. CgNLP1 disrupted nuclear accumulation of HbMYB8-like and suppressed HbMYB8-like induced cell death, which is mediated by the salicylic acid (SA) signal pathway. This study suggested a new strategy whereby C. gloeosporioides exploited the CgNLP1 effector to affect invasion and suppress a host defense regulator HbMYB8-like to facilitate infection.
Collapse
Affiliation(s)
- Guangyong Yang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Corps, Hainan University, Haikou, China
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya, China
| | - Jie Yang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Corps, Hainan University, Haikou, China
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya, China
| | - Qiwei Zhang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Corps, Hainan University, Haikou, China
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya, China
| | - Wenfeng Wang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Corps, Hainan University, Haikou, China
| | - Liping Feng
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Corps, Hainan University, Haikou, China
| | - Li Zhao
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Corps, Hainan University, Haikou, China
| | - Bang An
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Corps, Hainan University, Haikou, China
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya, China
| | - Qiannan Wang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Corps, Hainan University, Haikou, China
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya, China
| | - Chaozu He
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Corps, Hainan University, Haikou, China
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya, China
| | - Hongli Luo
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Corps, Hainan University, Haikou, China
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya, China
- *Correspondence: Hongli Luo
| |
Collapse
|
35
|
Midgley KA, van den Berg N, Swart V. Unraveling Plant Cell Death during Phytophthora Infection. Microorganisms 2022; 10:microorganisms10061139. [PMID: 35744657 PMCID: PMC9229607 DOI: 10.3390/microorganisms10061139] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/25/2022] [Accepted: 05/30/2022] [Indexed: 01/02/2023] Open
Abstract
Oomycetes form a distinct phylogenetic lineage of fungus-like eukaryotic microorganisms, of which several hundred organisms are considered among the most devastating plant pathogens—especially members of the genus Phytophthora. Phytophthora spp. have a large repertoire of effectors that aid in eliciting a susceptible response in host plants. What is of increasing interest is the involvement of Phytophthora effectors in regulating programed cell death (PCD)—in particular, the hypersensitive response. There have been numerous functional characterization studies, which demonstrate Phytophthora effectors either inducing or suppressing host cell death, which may play a crucial role in Phytophthora’s ability to regulate their hemi-biotrophic lifestyle. Despite several advances in techniques used to identify and characterize Phytophthora effectors, knowledge is still lacking for some important species, including Phytophthora cinnamomi. This review discusses what the term PCD means and the gap in knowledge between pathogenic and developmental forms of PCD in plants. We also discuss the role cell death plays in the virulence of Phytophthora spp. and the effectors that have so far been identified as playing a role in cell death manipulation. Finally, we touch on the different techniques available to study effector functions, such as cell death induction/suppression.
Collapse
|
36
|
Lian J, Han H, Chen X, Chen Q, Zhao J, Li C. Stemphylium lycopersici Nep1-like Protein (NLP) Is a Key Virulence Factor in Tomato Gray Leaf Spot Disease. J Fungi (Basel) 2022; 8:jof8050518. [PMID: 35628773 PMCID: PMC9144795 DOI: 10.3390/jof8050518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/14/2022] [Accepted: 05/15/2022] [Indexed: 02/01/2023] Open
Abstract
The fungus Stemphylium lycopersici (S. lycopersici) is an economically important plant pathogen that causes grey leaf spot disease in tomato. However, functional genomic studies in S. lycopersici are lacking, and the factors influencing its pathogenicity remain largely unknown. Here, we present the first example of genetic transformation and targeted gene replacement in S. lycopersici. We functionally analyzed the NLP gene, which encodes a necrosis- and ethylene-inducing peptide 1 (Nep1)-like protein (NLP). We found that targeted disruption of the NLP gene in S. lycopersici significantly compromised its virulence on tomato. Moreover, our data suggest that NLP affects S. lycopersici conidiospore production and weakly affects its adaptation to osmotic and oxidative stress. Interestingly, we found that NLP suppressed the production of reactive oxygen species (ROS) in tomato leaves during S. lycopersici infection. Further, expressing the fungal NLP in tomato resulted in constitutive transcription of immune-responsive genes and inhibited plant growth. Through gene manipulation, we demonstrated the function of NLP in S. lycopersici virulence and development. Our work provides a paradigm for functional genomics studies in a non-model fungal pathogen system.
Collapse
Affiliation(s)
- Jiajie Lian
- State Key Laboratory of Crop Biology, College of Agriculture, Shandong Agricultural University, Tai’an 271018, China; (J.L.); (H.H.); (X.C.); (Q.C.)
| | - Hongyu Han
- State Key Laboratory of Crop Biology, College of Agriculture, Shandong Agricultural University, Tai’an 271018, China; (J.L.); (H.H.); (X.C.); (Q.C.)
| | - Xizhan Chen
- State Key Laboratory of Crop Biology, College of Agriculture, Shandong Agricultural University, Tai’an 271018, China; (J.L.); (H.H.); (X.C.); (Q.C.)
| | - Qian Chen
- State Key Laboratory of Crop Biology, College of Agriculture, Shandong Agricultural University, Tai’an 271018, China; (J.L.); (H.H.); (X.C.); (Q.C.)
| | - Jiuhai Zhao
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
- University of Chinese Academy of Sciences, Beijing 100864, China
- Correspondence: (J.Z.); (C.L.)
| | - Chuanyou Li
- University of Chinese Academy of Sciences, Beijing 100864, China
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- Correspondence: (J.Z.); (C.L.)
| |
Collapse
|
37
|
Cordelier S, Crouzet J, Gilliard G, Dorey S, Deleu M, Dhondt-Cordelier S. Deciphering the role of plant plasma membrane lipids in response to invasion patterns: how could biology and biophysics help? JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:2765-2784. [PMID: 35560208 DOI: 10.1093/jxb/erab517] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 11/25/2021] [Indexed: 06/15/2023]
Abstract
Plants have to constantly face pathogen attacks. To cope with diseases, they have to detect the invading pathogen as early as possible via the sensing of conserved motifs called invasion patterns. The first step of perception occurs at the plasma membrane. While many invasion patterns are perceived by specific proteinaceous immune receptors, several studies have highlighted the influence of the lipid composition and dynamics of the plasma membrane in the sensing of invasion patterns. In this review, we summarize current knowledge on how some microbial invasion patterns could interact with the lipids of the plasma membrane, leading to a plant immune response. Depending on the invasion pattern, different mechanisms are involved. This review outlines the potential of combining biological with biophysical approaches to decipher how plasma membrane lipids are involved in the perception of microbial invasion patterns.
Collapse
Affiliation(s)
- Sylvain Cordelier
- Université de Reims Champagne Ardenne, RIBP EA 4707, USC INRAE 1488, SFR Condorcet FR CNRS 3417, 51100 Reims, France
| | - Jérôme Crouzet
- Université de Reims Champagne Ardenne, RIBP EA 4707, USC INRAE 1488, SFR Condorcet FR CNRS 3417, 51100 Reims, France
| | - Guillaume Gilliard
- Laboratoire de Biophysique Moléculaire aux Interfaces, SFR Condorcet FR CNRS 3417, TERRA Research Center, Gembloux Agro-Bio Tech, Université de Liège, 2 Passage des Déportés, B-5030 Gembloux, Belgium
| | - Stéphan Dorey
- Université de Reims Champagne Ardenne, RIBP EA 4707, USC INRAE 1488, SFR Condorcet FR CNRS 3417, 51100 Reims, France
| | - Magali Deleu
- Laboratoire de Biophysique Moléculaire aux Interfaces, SFR Condorcet FR CNRS 3417, TERRA Research Center, Gembloux Agro-Bio Tech, Université de Liège, 2 Passage des Déportés, B-5030 Gembloux, Belgium
| | - Sandrine Dhondt-Cordelier
- Université de Reims Champagne Ardenne, RIBP EA 4707, USC INRAE 1488, SFR Condorcet FR CNRS 3417, 51100 Reims, France
| |
Collapse
|
38
|
Wen TY, Wu XQ, Ye JR, Qiu YJ, Rui L, Zhang Y. A Bursaphelenchus xylophilus pathogenic protein Bx-FAR-1, as potential control target, mediates the jasmonic acid pathway in pines. PEST MANAGEMENT SCIENCE 2022; 78:1870-1880. [PMID: 35060311 DOI: 10.1002/ps.6805] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 01/17/2022] [Accepted: 01/20/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND The pine wilt disease (PWD) caused by Bursaphelenchus xylophilus is a devastating forest disease and its pathogenesis remains unclear. Secreted enzymes and proteins are important pathogenicity determinants and Bx-FAR-1 is an important pathogenic protein involved in the interaction between pine and B. xylophilus. However, the function of the Bx-FAR-1 protein in monitoring and prevention PWD remains unknown. RESULTS We found a small peptide of B. xylophilus effector Bx-FAR-1 is sufficient for immunosuppression function in Nicotiana benthamiana. Transient expression of Bx-FAR-1 in N. benthamiana revealed that nuclear localization is required for its function. The results of the ligand binding test showed that Bx-FAR-1 protein had the ability to bind fatty acid and retinol. We demonstrated that Bx-FAR-1 targeted to the nuclei of Pinus thunbergii using the polyclonal antibody by immunologic approach. The content of jasmonic acid (JA) was significantly increased in P. thunbergii infected with B. xylophilus when Bx-FAR-1 was silenced. We identified an F-box protein as the host target of Bx-FAR-1 by yeast two-hybrid and co-immunoprecipitation. Moreover, we found that Pt-F-box-1 was up-regulated during B. xylophilus infection and the expression of Pt-F-box-1 was increased in Bx-FAR-1 double-stranded RNA (dsRNA)-treated host pines. CONCLUSION This study illustrated that Bx-FAR-1 might mediate the JA pathway to destroy the immune system of P. thunbergii, indicating that PWN likely secretes effectors to facilitate parasitism and promote infection, which could better reveal the pathogenesis mechanisms of B. xylophilus and would be beneficial for developing disease control strategies.
Collapse
Affiliation(s)
- Tong-Yue Wen
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing, China
| | - Xiao-Qin Wu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing, China
| | - Jian-Ren Ye
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing, China
| | - Yi-Jun Qiu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing, China
| | - Lin Rui
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing, China
| | - Yan Zhang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
39
|
Ngou BPM, Ding P, Jones JDG. Thirty years of resistance: Zig-zag through the plant immune system. THE PLANT CELL 2022; 34:1447-1478. [PMID: 35167697 PMCID: PMC9048904 DOI: 10.1093/plcell/koac041] [Citation(s) in RCA: 411] [Impact Index Per Article: 137.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 02/02/2022] [Indexed: 05/05/2023]
Abstract
Understanding the plant immune system is crucial for using genetics to protect crops from diseases. Plants resist pathogens via a two-tiered innate immune detection-and-response system. The first plant Resistance (R) gene was cloned in 1992 . Since then, many cell-surface pattern recognition receptors (PRRs) have been identified, and R genes that encode intracellular nucleotide-binding leucine-rich repeat receptors (NLRs) have been cloned. Here, we provide a list of characterized PRRs and NLRs. In addition to immune receptors, many components of immune signaling networks were discovered over the last 30 years. We review the signaling pathways, physiological responses, and molecular regulation of both PRR- and NLR-mediated immunity. Recent studies have reinforced the importance of interactions between the two immune systems. We provide an overview of interactions between PRR- and NLR-mediated immunity, highlighting challenges and perspectives for future research.
Collapse
Affiliation(s)
- Bruno Pok Man Ngou
- The Sainsbury Laboratory, University of East Anglia, Norwich NR4 7UH, UK
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Pingtao Ding
- The Sainsbury Laboratory, University of East Anglia, Norwich NR4 7UH, UK
- Institute of Biology Leiden, Leiden University, Leiden 2333 BE, The Netherlands
| | - Jonathan D G Jones
- The Sainsbury Laboratory, University of East Anglia, Norwich NR4 7UH, UK
| |
Collapse
|
40
|
SsNEP2 Contributes to the Virulence of Sclerotinia sclerotiorum. Pathogens 2022; 11:pathogens11040446. [PMID: 35456121 PMCID: PMC9026538 DOI: 10.3390/pathogens11040446] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 04/01/2022] [Accepted: 04/05/2022] [Indexed: 01/06/2023] Open
Abstract
Sclerotinia sclerotiorum is a notorious soilborne fungal pathogen that causes serious economic losses globally. The necrosis and ethylene-inducible peptide 1 (NEP1)-like proteins (NLPs) were previously shown to play an important role in pathogenicity in fungal and oomycete pathogens. Here, we generated S. sclerotiorum necrosis and ethylene-inducible peptide 2 (SsNEP2) deletion mutant through homologous recombination and found that SsNEP2 contributes to the virulence of S. sclerotiorum without affecting the development of mycelia, the formation of appressoria, or the secretion of oxalic acid. Although knocking out SsNEP2 did not affect fungal sensitivity to oxidative stress, it did lead to decreased accumulation of reactive oxygen species (ROS) in S. sclerotiorum. Furthermore, Ssnlp24SsNEP2 peptide derived from SsNEP2 triggered host mitogen-activated protein kinase (MAPK) activation, increased defense marker gene expression, and enhanced resistance to Hyaloperonospora arabidopsidis Noco2. Taken together, our data suggest that SsNEP2 is involved in fungal virulence by affecting ROS levels in S. sclerotiorum. It can serve as a pathogen-associated molecular pattern (PAMP) and trigger host pattern triggered immunity to promote the necrotrophic lifestyle of S. sclerotiorum.
Collapse
|
41
|
Fan L, Fröhlich K, Melzer E, Pruitt RN, Albert I, Zhang L, Joe A, Hua C, Song Y, Albert M, Kim ST, Weigel D, Zipfel C, Chae E, Gust AA, Nürnberger T. Genotyping-by-sequencing-based identification of Arabidopsis pattern recognition receptor RLP32 recognizing proteobacterial translation initiation factor IF1. Nat Commun 2022; 13:1294. [PMID: 35277499 PMCID: PMC8917236 DOI: 10.1038/s41467-022-28887-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 02/12/2022] [Indexed: 12/12/2022] Open
Abstract
Activation of plant pattern-triggered immunity (PTI) relies on the recognition of microbe-derived structures, termed patterns, through plant-encoded surface-resident pattern recognition receptors (PRRs). We show that proteobacterial translation initiation factor 1 (IF1) triggers PTI in Arabidopsis thaliana and related Brassicaceae species. Unlike for most other immunogenic patterns, IF1 elicitor activity cannot be assigned to a small peptide epitope, suggesting that tertiary fold features are required for IF1 receptor activation. We have deployed natural variation in IF1 sensitivity to identify Arabidopsis leucine-rich repeat (LRR) receptor-like protein 32 (RLP32) as IF1 receptor using a restriction site-associated DNA sequencing approach. RLP32 confers IF1 sensitivity to rlp32 mutants, IF1-insensitive Arabidopsis accessions and IF1-insensitive Nicotiana benthamiana, binds IF1 specifically and forms complexes with LRR receptor kinases SOBIR1 and BAK1 to mediate signaling. Similar to other PRRs, RLP32 confers resistance to Pseudomonas syringae, highlighting an unexpectedly complex array of bacterial pattern sensors within a single plant species. Pattern-triggered immunity is activated by recognition of microbe-derived structures by host pattern recognition receptors. Here the authors use a genotype-by sequencing approach to show that bacterial translation initiation factor 1 triggers PTI in Arabidopsis thaliana after recognition by the RLP32 receptor.
Collapse
Affiliation(s)
- Li Fan
- Center of Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen, Germany
| | - Katja Fröhlich
- Center of Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen, Germany
| | - Eric Melzer
- Center of Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen, Germany.,BioChem agrar, Labor für biologische und chemische Analytik GmbH, Machern, Germany
| | - Rory N Pruitt
- Center of Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen, Germany
| | - Isabell Albert
- Center of Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen, Germany.,Department of Biology, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Lisha Zhang
- Center of Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen, Germany
| | - Anna Joe
- Center of Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen, Germany
| | - Chenlei Hua
- Center of Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen, Germany
| | - Yanyue Song
- Center of Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen, Germany
| | - Markus Albert
- Center of Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen, Germany.,Department of Biology, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Sang-Tae Kim
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany.,Department of Medical & Biological Sciences, The Catholic University of Korea, Bucheon-si, South Korea
| | - Detlef Weigel
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Cyril Zipfel
- Institute of Plant and Microbial Biology, Zürich-Basel Plant Science Center, University of Zürich, Zürich, Switzerland
| | - Eunyoung Chae
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany. .,Department of Biological Sciences, National University of Singapore, Singapore, Singapore.
| | - Andrea A Gust
- Center of Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen, Germany.
| | - Thorsten Nürnberger
- Center of Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen, Germany. .,Department of Biochemistry, University of Johannesburg, Johannesburg, South Africa.
| |
Collapse
|
42
|
Yang K, Chen C, Wang Y, Li J, Dong X, Cheng Y, Zhang H, Zhai Y, Ai G, Song Q, Wang B, Liu W, Yin Z, Peng H, Shen D, Fang S, Dou D, Jing M. Nep1-Like Proteins From the Biocontrol Agent Pythium oligandrum Enhance Plant Disease Resistance Independent of Cell Death and Reactive Oxygen Species. FRONTIERS IN PLANT SCIENCE 2022; 13:830636. [PMID: 35310640 PMCID: PMC8931738 DOI: 10.3389/fpls.2022.830636] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/12/2022] [Indexed: 05/30/2023]
Abstract
Microbial necrosis and ethylene-inducing peptide 1 (Nep1)-like proteins (NLPs) act as cytolytic toxins and immunogenic patterns in plants. Our previous work shows that cytolytic NLPs (i.e., PyolNLP5 and PyolNLP7) from the biocontrol agent Pythium oligandrum enhance plant resistance against Phytophthora pathogens by inducing the expression of plant defensins. However, the relevance between PyolNLP-induced necrosis and plant resistance activation is still unclear. Here, we find that the necrosis-inducing activity of PyolNLP5 requires amino acid residues D127 and E129 within the conserved "GHRHDLE" motif. However, PyolNLP5-mediated plant disease resistance is irrelevant to its necrosis-inducing activity and the accumulation of reactive oxygen species (ROS). Furthermore, we reveal the positive role of non-cytotoxic PyolNLPs in enhancing plant resistance against Phytophthora pathogens and the fugal pathogen Sclerotinia sclerotiorum. Similarly, non-cytotoxic PyolNLPs also activate plant defense in a cell death-independent manner and induce defensin expression. The functions of non-cytotoxic PyolNLP13/14 rely on their conserved nlp24-like peptide pattern. Synthetic Pyolnlp24s derived from both cytotoxic and non-cytotoxic PyolNLPs can induce plant defensin expression. Unlike classic nlp24, Pyolnlp24s lack the ability of inducing ROS burst in plants with the presence of Arabidopsis nlp24 receptor RLP23. Taken together, our work demonstrates that PyolNLPs enhance plant resistance in an RLP23-independent manner, which requires the conserved nlp24-like peptide pattern but is uncoupled with ROS burst and cell death.
Collapse
Affiliation(s)
- Kun Yang
- Department of Plant Pathology, Nanjing Agricultural University, Key Laboratory of Biological Interaction and Crop Health, Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing, China
| | - Chao Chen
- College of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Yi Wang
- Department of Plant Pathology, Nanjing Agricultural University, Key Laboratory of Biological Interaction and Crop Health, Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing, China
| | - Jialu Li
- Department of Plant Pathology, Nanjing Agricultural University, Key Laboratory of Biological Interaction and Crop Health, Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing, China
| | - Xiaohua Dong
- Department of Plant Pathology, Nanjing Agricultural University, Key Laboratory of Biological Interaction and Crop Health, Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing, China
| | - Yang Cheng
- Department of Plant Pathology, Nanjing Agricultural University, Key Laboratory of Biological Interaction and Crop Health, Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing, China
| | - Huanxin Zhang
- Department of Plant Pathology, Nanjing Agricultural University, Key Laboratory of Biological Interaction and Crop Health, Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing, China
| | - Ying Zhai
- Department of Plant Pathology, Washington State University, Pullman, WA, United States
| | - Gan Ai
- Department of Plant Pathology, Nanjing Agricultural University, Key Laboratory of Biological Interaction and Crop Health, Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing, China
| | | | | | - Wentao Liu
- Shandong Linyi Tobacco Co., Ltd., Linyi, China
| | - Zhiyuan Yin
- Department of Plant Pathology, Nanjing Agricultural University, Key Laboratory of Biological Interaction and Crop Health, Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing, China
| | - Hao Peng
- Department of Plant Pathology, Washington State University, Pullman, WA, United States
| | - Danyu Shen
- Department of Plant Pathology, Nanjing Agricultural University, Key Laboratory of Biological Interaction and Crop Health, Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing, China
| | - Song Fang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Daolong Dou
- Department of Plant Pathology, Nanjing Agricultural University, Key Laboratory of Biological Interaction and Crop Health, Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing, China
| | - Maofeng Jing
- Department of Plant Pathology, Nanjing Agricultural University, Key Laboratory of Biological Interaction and Crop Health, Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing, China
| |
Collapse
|
43
|
Yang B, Yang S, Zheng W, Wang Y. Plant immunity inducers: from discovery to agricultural application. STRESS BIOLOGY 2022; 2:5. [PMID: 37676359 PMCID: PMC10442025 DOI: 10.1007/s44154-021-00028-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 12/13/2021] [Indexed: 09/08/2023]
Abstract
While conventional chemical fungicides directly eliminate pathogens, plant immunity inducers activate or prime plant immunity. In recent years, considerable progress has been made in understanding the mechanisms of immune regulation in plants. The development and application of plant immunity inducers based on the principles of plant immunity represent a new field in plant protection research. In this review, we describe the mechanisms of plant immunity inducers in terms of plant immune system activation, summarize the various classes of reported plant immunity inducers (proteins, oligosaccharides, chemicals, and lipids), and review methods for the identification or synthesis of plant immunity inducers. The current situation, new strategies, and future prospects in the development and application of plant immunity inducers are also discussed.
Collapse
Affiliation(s)
- Bo Yang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, China
| | - Sen Yang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wenyue Zheng
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yuanchao Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China.
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
44
|
Zhang X, Wang D, Chen J, Wu D, Feng X, Yu F. Nematode RALF-Like 1 Targets Soybean Malectin-Like Receptor Kinase to Facilitate Parasitism. FRONTIERS IN PLANT SCIENCE 2021; 12:775508. [PMID: 34975958 PMCID: PMC8719587 DOI: 10.3389/fpls.2021.775508] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/22/2021] [Indexed: 05/27/2023]
Abstract
Soybean [Glycine max (L.) Merr. ] is one of the most strategical oilseed crops that provides sustainable source of protein and oil worldwide. Cultivation of soybean is severely affected by root-knot nematode (RKN). However, the mechanism of RKN parasitism to soybeans is largely unknown. In this study, we identify GmLMM1, which encodes a homolog of FERONIA-like receptor kinase in soybean, as a susceptible gene toward nematode. Mutations of GmLMM1 exhibit enhanced resistance against the RKN Meloidogyne incognita. RNA-sequencing (RNA-seq) analysis reveals a similar differential expression pattern for genes regulated by GmLMM1 (Gmlmm1 vs. wild-type) and M. incognita (M. incognita vs. mock), supporting the role of GmLMM1 in M. incognita infection. Unlike FERONIA in Arabidopsis, GmLMM1 specifically binds to MiRALF1 and AtRALF23 that suppress plant immunity, but not MiRALF3 and AtRALF1. Moreover, we found that the single-nucleotide polymorphism (SNP) in GmLMM1 leads to the natural resistance against RKNs in soybeans. Collectively, these findings uncover GmLMM1 as a susceptible target of nematode RALF-like 1 and provide new genetic resource for nematode resistant breeding.
Collapse
Affiliation(s)
- Xin Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, China
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Dongmei Wang
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Changchun, China
| | - Jia Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, China
| | - Dousheng Wu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, China
| | - Xianzhong Feng
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Changchun, China
| | - Feng Yu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, China
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, China
| |
Collapse
|
45
|
Chen JB, Bao SW, Fang YL, Wei LY, Zhu WS, Peng YL, Fan J. An LRR-only protein promotes NLP-triggered cell death and disease susceptibility by facilitating oligomerization of NLP in Arabidopsis. THE NEW PHYTOLOGIST 2021; 232:1808-1822. [PMID: 34403491 DOI: 10.1111/nph.17680] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 08/09/2021] [Indexed: 06/13/2023]
Abstract
Necrosis- and ethylene-inducing peptide 1 (Nep1)-like proteins (NLPs) constitute a superfamily of proteins toxic to dicot plants, but the molecular basis of this toxicity remains obscure. Using quantitative trait locus (QTL) analysis we investigated the genetic variation underlying ion leakage in Arabidopsis plants elicited with MoNLP1 derived from Magnaporthe oryzae. The QTL conditioning MoNLP1 toxicity was positionally cloned and further characterized to elucidate its mode of action. MoNLP1-triggered cell death varied significantly across > 250 Arabidopsis accessions and three QTLs were identified conferring the observed variation. The QTL on chromosome 4 was uncovered to encode a leucine-rich repeat (LRR)-only protein designated as NTCD4, which shares high sequence identity with a set of nucleotide-binding LRR proteins. NTCD4 was secreted into the apoplast and physically interacted with multiple NLPs. Apoplastic NTCD4 facilitated the oligomerization of NLP, which was closely associated with toxicity in planta. The natural genetic variation causing D3N change in NTCD4 reduced the secretion efficiency of NTCD4 and the infection of Botrytis cinerea on Arabidopsis plants. These observations demonstrate that the plant-derived NTCD4 is recruited by NLPs to promote toxicity via facilitating their oligomerization, which extends our understanding of a key step in the toxic mode of action of NLPs.
Collapse
Affiliation(s)
- Jun-Bin Chen
- Department of Plant Pathology, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, 100193, Beijing, China
| | - Shu-Wen Bao
- Department of Plant Pathology, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, 100193, Beijing, China
| | - Ya-Li Fang
- Department of Plant Pathology, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, 100193, Beijing, China
| | - Lu-Yang Wei
- Department of Plant Pathology, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, 100193, Beijing, China
| | - Wang-Sheng Zhu
- Department of Plant Pathology, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, 100193, Beijing, China
| | - You-Liang Peng
- Department of Plant Pathology, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, 100193, Beijing, China
- State Key Laboratory of Agrobiotechnology, China Agricultural University, 100193, Beijing, China
| | - Jun Fan
- Department of Plant Pathology, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, 100193, Beijing, China
- Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, China Agricultural University, 100193, Beijing, China
| |
Collapse
|
46
|
Liu J, Nie J, Chang Y, Huang L. Nep1-like Proteins from Valsa mali Differentially Regulate Pathogen Virulence and Response to Abiotic Stresses. J Fungi (Basel) 2021; 7:830. [PMID: 34682251 PMCID: PMC8539816 DOI: 10.3390/jof7100830] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/27/2021] [Accepted: 10/01/2021] [Indexed: 01/10/2023] Open
Abstract
Necrosis and ethylene-inducing peptide 1(Nep1)-like protein (NLP) is well known for its cytotoxicity and immunogenicity on dicotyledonous, and it has attracted large attention due to its gene expansion and functional diversification in numerous phytopathogens. Here, two NLP family proteins, VmNLP1 and VmNLP2, were identified in the pathogenic fungus Valsa mali. We showed that VmNLP2 but not VmNLP1 induced cell death when transiently expressed in Nicotiana benthamiana. VmNLP2 was also shown to induce cell death in apple leaves via the treatment of the Escherichia coli-produced recombinant protein. VmNLP1 and VmNLP2 transcripts were drastically induced at the early stage of V. mali infection, whereas only VmNLP2 was shown to be essential for pathogen virulence. We also found that VmNLP1 and VmNLP2 are required for maintaining the integrity of cell membranes, and they differentially contribute to V. mali tolerance to salt- and osmo-stresses. Notably, multiple sequence alignment revealed that the second histidine (H) among the conserved heptapeptide (GHRHDWE) of VmNLP2 is mutated to tyrosine (Y). When this tyrosine (Y) was substituted by histidine (H), the variant displayed enhanced cytotoxicity in N. benthamiana, as well as enhanced virulence on apple leaves, suggesting that the virulence role of VmNLP2 probably correlates to its cytotoxicity activity. We further showed that the peptide among VmNLP2, called nlp25 (VmNLP2), triggered strong immune response in Arabidopsis thaliana. This work demonstrates that NLPs from V. mali involve multiple biological roles, and shed new light on how intricately complex the functions of NLP might be.
Collapse
Affiliation(s)
| | | | | | - Lili Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Xianyang 712100, Shaanxi, China; (J.L.); (J.N.); (Y.C.)
| |
Collapse
|
47
|
Tian H, Wu Z, Chen S, Ao K, Huang W, Yaghmaiean H, Sun T, Xu F, Zhang Y, Wang S, Li X, Zhang Y. Activation of TIR signalling boosts pattern-triggered immunity. Nature 2021; 598:500-503. [PMID: 34544113 DOI: 10.1038/s41586-021-03987-1] [Citation(s) in RCA: 189] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 09/01/2021] [Indexed: 02/08/2023]
Abstract
Plant immune responses are mainly activated by two types of receptor. Pattern recognition receptors localized on the plasma membrane perceive extracellular microbial features, and nucleotide-binding leucine-rich repeat receptors (NLRs) recognize intracellular effector proteins from pathogens1. NLRs possessing amino-terminal Toll/interleukin-1 receptor (TIR) domains activate defence responses via the NADase activity of the TIR domain2,3. Here we report that activation of TIR signalling has a key role in pattern-triggered immunity (PTI) mediated by pattern recognition receptors. TIR signalling mutants exhibit attenuated PTI responses and decreased resistance against pathogens. Consistently, PTI is compromised in plants with reduced NLR levels. Treatment with the PTI elicitor flg22 or nlp20 rapidly induces many genes encoding TIR-domain-containing proteins, which is likely to be responsible for activating TIR signalling during PTI. Overall, our study reveals that activation of TIR signalling is an important mechanism for boosting plant defence during PTI.
Collapse
Affiliation(s)
- Hainan Tian
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | - Zhongshou Wu
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Siyu Chen
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
- Key Laboratory of Molecular Epigenetics of MOE & Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
- Laboratory of Plant Molecular Genetics & Crop Gene Editing, School of Life Sciences, Linyi University, Linyi, China
| | - Kevin Ao
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Weijie Huang
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | - Hoda Yaghmaiean
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | - Tongjun Sun
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | - Fang Xu
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Yanjun Zhang
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
- Institute of Plant Genetics and Developmental Biology, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, China
| | - Shucai Wang
- Laboratory of Plant Molecular Genetics & Crop Gene Editing, School of Life Sciences, Linyi University, Linyi, China
| | - Xin Li
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada.
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada.
| | - Yuelin Zhang
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
48
|
Liang X, Bao Y, Zhang M, Du D, Rao S, Li Y, Wang X, Xu G, Zhou Z, Shen D, Chang Q, Duan W, Ai G, Lu J, Zhou JM, Dou D. A Phytophthora capsici RXLR effector targets and inhibits the central immune kinases to suppress plant immunity. THE NEW PHYTOLOGIST 2021; 232:264-278. [PMID: 34157161 DOI: 10.1111/nph.17573] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 06/07/2021] [Indexed: 06/13/2023]
Abstract
Receptor-like cytoplasmic kinase subfamily VII (RLCK-VII) proteins are the central immune kinases in plant pattern-recognition receptor (PRR) complexes, and they orchestrate a complex array of defense responses against bacterial and fungal pathogens. However, the role of RLCK-VII in plant-oomycete pathogen interactions has not been established. Phytophthora capsici is a notorious oomycete pathogen that infects many agriculturally important vegetables. Here, we report the identification of RXLR25, an RXLR effector that is required for the virulence of P. capsici. In planta expression of RXLR25 significantly enhanced plants' susceptibility to Phytophthora pathogens. Microbial pattern-induced immune activation in Arabidopsis was severely impaired by RXLR25. We further showed that RXLR25 interacts with RLCK-VII proteins. Using nine rlck-vii high-order mutants, we observed that RLCK-VII-6 and RLCK-VII-8 members are required for resistance to P. capsici. The RLCK-VII-6 members are specifically required for Phytophthora culture filtrate (CF)-induced immune responses. RXLR25 directly targets RLCK-VII proteins such as BIK1, PBL8, and PBL17 and inhibits pattern-induced phosphorylation of RLCK-VIIs to suppress downstream immune responses. This study identified a key virulence factor for P. capsici, and the results revealed the importance of RLCK-VII proteins in plant-oomycete interactions.
Collapse
Affiliation(s)
- Xiangxiu Liang
- MOA Key Lab of Pest Monitoring and Green Management, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Yazhou Bao
- MOA Key Lab of Pest Monitoring and Green Management, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Meixiang Zhang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Dandan Du
- MOA Key Lab of Pest Monitoring and Green Management, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Shaofei Rao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yixin Li
- MOA Key Lab of Pest Monitoring and Green Management, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Xiaodan Wang
- MOA Key Lab of Pest Monitoring and Green Management, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Guangyuan Xu
- MOA Key Lab of Pest Monitoring and Green Management, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Zhaoyang Zhou
- State Key Laboratories of Agrobiotechnology, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, MOE Joint Laboratory for International Cooperation in Crop Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Danyu Shen
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qin Chang
- MOA Key Lab of Pest Monitoring and Green Management, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Weiwei Duan
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Gan Ai
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jie Lu
- MOA Key Lab of Pest Monitoring and Green Management, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Jian-Min Zhou
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Daolong Dou
- MOA Key Lab of Pest Monitoring and Green Management, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, 100193, China
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
49
|
Pruitt RN, Locci F, Wanke F, Zhang L, Saile SC, Joe A, Karelina D, Hua C, Fröhlich K, Wan WL, Hu M, Rao S, Stolze SC, Harzen A, Gust AA, Harter K, Joosten MHAJ, Thomma BPHJ, Zhou JM, Dangl JL, Weigel D, Nakagami H, Oecking C, Kasmi FE, Parker JE, Nürnberger T. The EDS1-PAD4-ADR1 node mediates Arabidopsis pattern-triggered immunity. Nature 2021; 598:495-499. [PMID: 34497423 DOI: 10.1038/s41586-021-03829-0] [Citation(s) in RCA: 245] [Impact Index Per Article: 61.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 07/16/2021] [Indexed: 02/08/2023]
Abstract
Plants deploy cell-surface and intracellular leucine rich-repeat domain (LRR) immune receptors to detect pathogens1. LRR receptor kinases and LRR receptor proteins at the plasma membrane recognize microorganism-derived molecules to elicit pattern-triggered immunity (PTI), whereas nucleotide-binding LRR proteins detect microbial effectors inside cells to confer effector-triggered immunity (ETI). Although PTI and ETI are initiated in different host cell compartments, they rely on the transcriptional activation of similar sets of genes2, suggesting pathway convergence upstream of nuclear events. Here we report that PTI triggered by the Arabidopsis LRR receptor protein RLP23 requires signalling-competent dimers of the lipase-like proteins EDS1 and PAD4, and of ADR1 family helper nucleotide-binding LRRs, which are all components of ETI. The cell-surface LRR receptor kinase SOBIR1 links RLP23 with EDS1, PAD4 and ADR1 proteins, suggesting the formation of supramolecular complexes containing PTI receptors and transducers at the inner side of the plasma membrane. We detected similar evolutionary patterns in LRR receptor protein and nucleotide-binding LRR genes across Arabidopsis accessions; overall higher levels of variation in LRR receptor proteins than in LRR receptor kinases are consistent with distinct roles of these two receptor families in plant immunity. We propose that the EDS1-PAD4-ADR1 node is a convergence point for defence signalling cascades, activated by both surface-resident and intracellular LRR receptors, in conferring pathogen immunity.
Collapse
Affiliation(s)
- Rory N Pruitt
- Department of Plant Biochemistry, Centre of Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen, Germany
| | - Federica Locci
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Friederike Wanke
- Department of Plant Physiology, Centre of Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen, Germany
| | - Lisha Zhang
- Department of Plant Biochemistry, Centre of Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen, Germany
| | - Svenja C Saile
- Department of Plant Physiology, Centre of Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen, Germany
| | - Anna Joe
- Department of Plant Biochemistry, Centre of Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen, Germany
| | - Darya Karelina
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Chenlei Hua
- Department of Plant Biochemistry, Centre of Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen, Germany
| | - Katja Fröhlich
- Department of Plant Biochemistry, Centre of Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen, Germany
| | - Wei-Lin Wan
- Department of Plant Biochemistry, Centre of Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen, Germany.,Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Meijuan Hu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Shaofei Rao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China.,State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Sara C Stolze
- Proteomics Group, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Anne Harzen
- Proteomics Group, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Andrea A Gust
- Department of Plant Biochemistry, Centre of Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen, Germany
| | - Klaus Harter
- Department of Plant Physiology, Centre of Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen, Germany
| | | | - Bart P H J Thomma
- Laboratory of Phytopathology, Wageningen University, Wageningen, Netherlands.,Cluster of Excellence on Plant Sciences (CEPLAS), Cologne University, Cologne, Germany
| | - Jian-Min Zhou
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Jeffery L Dangl
- Department of Biology, Howard Hughes Medical Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Detlef Weigel
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Hirofumi Nakagami
- Proteomics Group, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Claudia Oecking
- Department of Plant Physiology, Centre of Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen, Germany
| | - Farid El Kasmi
- Department of Plant Physiology, Centre of Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen, Germany
| | - Jane E Parker
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, Germany. .,Cluster of Excellence on Plant Sciences (CEPLAS), Cologne University, Cologne, Germany.
| | - Thorsten Nürnberger
- Department of Plant Biochemistry, Centre of Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen, Germany. .,Department of Biochemistry, University of Johannesburg, Johannesburg, South Africa.
| |
Collapse
|
50
|
Zhang L, Hua C, Pruitt RN, Qin S, Wang L, Albert I, Albert M, van Kan JAL, Nürnberger T. Distinct immune sensor systems for fungal endopolygalacturonases in closely related Brassicaceae. NATURE PLANTS 2021; 7:1254-1263. [PMID: 34326531 DOI: 10.1038/s41477-021-00982-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 07/07/2021] [Indexed: 05/23/2023]
Abstract
Plant pattern recognition receptors (PRRs) facilitate recognition of microbial patterns and mediate activation of plant immunity. Arabidopsis thaliana RLP42 senses fungal endopolygalacturonases (PGs) and triggers plant defence through complex formation with SOBIR1 and SERK co-receptors. Here, we show that a conserved 9-amino-acid fragment pg9(At) within PGs is sufficient to activate RLP42-dependent plant immunity. Structure-function analysis reveals essential roles of amino acid residues within the RLP42 leucine-rich repeat and island domains for ligand binding and PRR complex assembly. Sensitivity to pg9(At), which is restricted to A. thaliana and exhibits scattered accession specificity, is unusual for known PRRs. Arabidopsis arenosa and Brassica rapa, two Brassicaceae species closely related to A. thaliana, respectively perceive immunogenic PG fragments pg20(Aa) and pg36(Bra), which are structurally distinct from pg9(At). Our study provides evidence for rapid evolution of polymorphic PG sensors with distinct pattern specificities within a single plant family.
Collapse
Affiliation(s)
- Lisha Zhang
- Department of Plant Biochemistry, Centre of Plant Molecular Biology (ZMBP), Eberhard-Karls-University of Tübingen, Tübingen, Germany.
| | - Chenlei Hua
- Department of Plant Biochemistry, Centre of Plant Molecular Biology (ZMBP), Eberhard-Karls-University of Tübingen, Tübingen, Germany
| | - Rory N Pruitt
- Department of Plant Biochemistry, Centre of Plant Molecular Biology (ZMBP), Eberhard-Karls-University of Tübingen, Tübingen, Germany
| | - Si Qin
- Department of Plant Biochemistry, Centre of Plant Molecular Biology (ZMBP), Eberhard-Karls-University of Tübingen, Tübingen, Germany
- Laboratory of Phytopathology, Wageningen University, Wageningen, The Netherlands
| | - Lei Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Isabell Albert
- Department of Plant Biochemistry, Centre of Plant Molecular Biology (ZMBP), Eberhard-Karls-University of Tübingen, Tübingen, Germany
- Institute of Molecular Plant Physiology, Department of Biology, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Markus Albert
- Institute of Molecular Plant Physiology, Department of Biology, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Jan A L van Kan
- Laboratory of Phytopathology, Wageningen University, Wageningen, The Netherlands
| | - Thorsten Nürnberger
- Department of Plant Biochemistry, Centre of Plant Molecular Biology (ZMBP), Eberhard-Karls-University of Tübingen, Tübingen, Germany.
- Department of Biochemistry, University of Johannesburg, Johannesburg, South Africa.
| |
Collapse
|