1
|
Gupta A, Bohara VS, Siddegowda YB, Chaudhary N, Kumar S. Alpha-synuclein and RNA viruses: Exploring the neuronal nexus. Virology 2024; 597:110141. [PMID: 38917691 DOI: 10.1016/j.virol.2024.110141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 06/12/2024] [Indexed: 06/27/2024]
Abstract
Alpha-synuclein (α-syn), known for its pivotal role in Parkinson's disease, has recently emerged as a significant player in neurotropic RNA virus infections. Upregulation of α-syn in various viral infections has been found to impact neuroprotective functions by regulating neurotransmitter synthesis, vesicle trafficking, and synaptic vesicle recycling. This review focuses on the multifaceted role of α-syn in controlling viral replication by modulating chemoattractant properties towards microglial cells, virus-induced ER stress signaling, anti-oxidative proteins expression. Furthermore, the text underlines the α-syn-mediated regulation of interferon-stimulated genes. The review may help suggest potential therapeutic avenues for mitigating the impact of RNA viruses on the central nervous system by exploiting α-syn neuroprotective biology.
Collapse
Affiliation(s)
- Anjali Gupta
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Vijay Singh Bohara
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | | | - Nitin Chaudhary
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Sachin Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| |
Collapse
|
2
|
Bellini N, Ye C, Ajibola O, Murooka TT, Lodge R, Cohen ÉA. Downregulation of miRNA-26a by HIV-1 Enhances CD59 Expression and Packaging, Impacting Virus Susceptibility to Antibody-Dependent Complement-Mediated Lysis. Viruses 2024; 16:1076. [PMID: 39066239 PMCID: PMC11281366 DOI: 10.3390/v16071076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/29/2024] [Accepted: 06/29/2024] [Indexed: 07/28/2024] Open
Abstract
MicroRNAs (miRNAs) play important roles in the control of HIV-1 infection. Here, we performed RNA-seq profiling of miRNAs and mRNAs expressed in CD4+ T lymphocytes upon HIV-1 infection. Our results reveal significant alterations in miRNA and mRNA expression profiles in infected relative to uninfected cells. One of the miRNAs markedly downregulated in infected cells is miRNA-26a. Among the putative targets of miRNA-26a are CD59 receptor transcripts, which are significantly upregulated in infected CD4+ T cells. The addition of miRNA-26a mimics to CD4+ T cells reduces CD59 at both the mRNA and surface protein levels, validating CD59 as a miRNA-26a target. Consistent with the reported inhibitory role of CD59 in complement-mediated lysis (CML), knocking out CD59 in CD4+ T cells renders both HIV-1-infected cells and progeny virions more prone to antibody-dependent CML (ADCML). The addition of miRNA-26a mimics to infected cells leads to enhanced sensitivity of progeny virions to ADCML, a condition linked to a reduction in CD59 packaging into released virions. Lastly, HIV-1-mediated downregulation of miRNA-26a expression is shown to be dependent on integrated HIV-1 expression but does not involve viral accessory proteins. Overall, these results highlight a novel mechanism by which HIV-1 limits ADCML by upregulating CD59 expression via miRNA-26a downmodulation.
Collapse
Affiliation(s)
- Nicolas Bellini
- Laboratory of Human Retrovirology, Institut de Recherches Cliniques de Montréal, Montreal, QC H2W 1R7, Canada; (N.B.); (C.Y.); (R.L.)
- Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Chengyu Ye
- Laboratory of Human Retrovirology, Institut de Recherches Cliniques de Montréal, Montreal, QC H2W 1R7, Canada; (N.B.); (C.Y.); (R.L.)
| | - Oluwaseun Ajibola
- Department of Immunology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0T5, Canada; (O.A.); (T.T.M.)
| | - Thomas T. Murooka
- Department of Immunology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0T5, Canada; (O.A.); (T.T.M.)
| | - Robert Lodge
- Laboratory of Human Retrovirology, Institut de Recherches Cliniques de Montréal, Montreal, QC H2W 1R7, Canada; (N.B.); (C.Y.); (R.L.)
| | - Éric A. Cohen
- Laboratory of Human Retrovirology, Institut de Recherches Cliniques de Montréal, Montreal, QC H2W 1R7, Canada; (N.B.); (C.Y.); (R.L.)
- Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université de Montréal, Montreal, QC H3C 3J7, Canada
| |
Collapse
|
3
|
Wang Y, Wakelam MJO, Bankaitis VA, McDermott MI. The wide world of non-mammalian phospholipase D enzymes. Adv Biol Regul 2024; 91:101000. [PMID: 38081756 DOI: 10.1016/j.jbior.2023.101000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 11/15/2023] [Indexed: 02/25/2024]
Abstract
Phospholipase D (PLD) hydrolyses phosphatidylcholine (PtdCho) to produce free choline and the critically important lipid signaling molecule phosphatidic acid (PtdOH). Since the initial discovery of PLD activities in plants and bacteria, PLDs have been identified in a diverse range of organisms spanning the taxa. While widespread interest in these proteins grew following the discovery of mammalian isoforms, research into the PLDs of non-mammalian organisms has revealed a fascinating array of functions ranging from roles in microbial pathogenesis, to the stress responses of plants and the developmental patterning of flies. Furthermore, studies in non-mammalian model systems have aided our understanding of the entire PLD superfamily, with translational relevance to human biology and health. Increasingly, the promise for utilization of non-mammalian PLDs in biotechnology is also being recognized, with widespread potential applications ranging from roles in lipid synthesis, to their exploitation for agricultural and pharmaceutical applications.
Collapse
Affiliation(s)
- Y Wang
- Department of Cell Biology & Genetics, Texas A&M Health Science Center, College Station, TX, 77843, USA; Department of Microbiology, University of Washington, Seattle, WA98109, USA
| | - M J O Wakelam
- Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT, United Kingdom
| | - V A Bankaitis
- Department of Cell Biology & Genetics, Texas A&M Health Science Center, College Station, TX, 77843, USA; Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX, 77843, USA; Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - M I McDermott
- Department of Cell Biology & Genetics, Texas A&M Health Science Center, College Station, TX, 77843, USA.
| |
Collapse
|
4
|
Park SH, Kang JH, Bae YS. The role and regulation of phospholipase D in metabolic disorders. Adv Biol Regul 2024; 91:100988. [PMID: 37845091 DOI: 10.1016/j.jbior.2023.100988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 09/25/2023] [Indexed: 10/18/2023]
Abstract
Phospholipase D (PLD) is an enzyme that catalyzes the hydrolysis of phosphatidylcholine into phosphatidic acid and free choline. In mammals, PLD exists in two well-characterized isoforms, PLD1 and PLD2, and it plays pivotal roles as signaling mediators in various cellular functions, such as cell survival, differentiation, and migration. These isoforms are predominantly expressed in diverse cell types, including many immune cells, such as monocytes and macrophages, as well as non-immune cells, such as epithelial and endothelial cells. Several previous studies have revealed that the stimulation of these cells leads to an increase in PLD expression and its enzymatic products, potentially influencing the pathological responses in a wide spectrum of diseases. Metabolic diseases, exemplified by conditions, such as diabetes, obesity, hypertension, and atherosclerosis, pose significant global health challenges. Abnormal activation or dysfunction of PLD emerges as a potential contributing factor to the pathogenesis and progression of these metabolic disorders. Therefore, it is crucial to thoroughly investigate and understand the intricate relationship between PLD and metabolic diseases. In this review, we provide an in-depth overview of the functional roles and molecular mechanisms of PLD involved in metabolic diseases. By delving into the intricate interplay between PLD and metabolic disorders, this review aims to offer insights into the potential therapeutic interventions.
Collapse
Affiliation(s)
- Seon Hyang Park
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Ji Hyeon Kang
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Yoe-Sik Bae
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
5
|
Park JS, Yang S, Song D, Kim SM, Choi J, Kang HY, Jeong HY, Han G, Min DS, Cho ML, Park SH. A newly developed PLD1 inhibitor ameliorates rheumatoid arthritis by regulating pathogenic T and B cells and inhibiting osteoclast differentiation. Immunol Lett 2023; 263:87-96. [PMID: 37722567 DOI: 10.1016/j.imlet.2023.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 09/13/2023] [Accepted: 09/15/2023] [Indexed: 09/20/2023]
Abstract
Phospholipase D1 (PLD1), which catalyzes the hydrolysis of phosphatidylcholine to phosphatidic acid and choline, plays multiple roles in inflammation. We investigated the therapeutic effects of the newly developed PLD1 inhibitors A2998, A3000, and A3773 in vitro and in vivo rheumatoid arthritis (RA) model. A3373 reduced the levels of LPS-induced TNF-α, IL-6, and IgG in murine splenocytes in vitro. A3373 also decreased the levels of IFN-γ and IL-17 and the frequencies of Th1, Th17 cells and germinal-center B cells, in splenocytes in vitro. A3373 ameliorated the severity of collagen-induced arthritis (CIA) and suppressed infiltration of inflammatory cells into the joint tissues of mice with CIA compared with vehicle-treated mice. Moreover, A3373 prevented systemic bone demineralization in mice with CIA and suppressed osteoclast differentiation and the mRNA levels of osteoclastogenesis markers in vitro. These results suggest that A3373 has therapeutic potential for RA.
Collapse
Affiliation(s)
- Jin-Sil Park
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul 06591, Republic of Korea; Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - SeungCheon Yang
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul 06591, Republic of Korea; Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Doona Song
- Graduate Program of Industrial Pharmaceutical Science, Yonsei University, Incheon 21983, Republic of Korea; Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Sung-Min Kim
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul 06591, Republic of Korea; Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - JeongWon Choi
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul 06591, Republic of Korea; Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Hye Yeon Kang
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul 06591, Republic of Korea; Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Ha Yeon Jeong
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul 06591, Republic of Korea; Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Gyoonhee Han
- Graduate Program of Industrial Pharmaceutical Science, Yonsei University, Incheon 21983, Republic of Korea; Department of Pharmacy, Yonsei University, Incheon 21983, Republic of Korea
| | - Do Sik Min
- Graduate Program of Industrial Pharmaceutical Science, Yonsei University, Incheon 21983, Republic of Korea; Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon 21983, Republic of Korea.
| | - Mi-La Cho
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul 06591, Republic of Korea; Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea Seoul 06591, Republic of Korea.
| | - Sung-Hwan Park
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul 06591, Republic of Korea; Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea.
| |
Collapse
|
6
|
Crater JM, Nixon DF, Furler O’Brien RL. HIV-1 replication and latency are balanced by mTOR-driven cell metabolism. Front Cell Infect Microbiol 2022; 12:1068436. [PMID: 36467738 PMCID: PMC9712982 DOI: 10.3389/fcimb.2022.1068436] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 11/02/2022] [Indexed: 11/19/2022] Open
Abstract
Human Immunodeficiency virus type 1 (HIV-1) relies on host cell metabolism for all aspects of viral replication. Efficient HIV-1 entry, reverse transcription, and integration occurs in activated T cells because HIV-1 proteins co-opt host metabolic pathways to fuel the anabolic requirements of virion production. The HIV-1 viral life cycle is especially dependent on mTOR, which drives signaling and metabolic pathways required for viral entry, replication, and latency. As a central regulator of host cell metabolism, mTOR and its downstream effectors help to regulate the expression of enzymes within the glycolytic and pentose phosphate pathways along with other metabolic pathways regulating amino acid uptake, lipid metabolism, and autophagy. In HIV-1 pathogenesis, mTOR, in addition to HIF-1α and Myc signaling pathways, alter host cell metabolism to create an optimal environment for viral replication. Increased glycolysis and pentose phosphate pathway activity are required in the early stages of the viral life cycle, such as providing sufficient dNTPs for reverse transcription. In later stages, fatty acid synthesis is required for creating cholesterol and membrane lipids required for viral budding. Epigenetics of the provirus fueled by metabolism and mTOR signaling likewise controls active and latent infection. Acetyl-CoA and methyl group abundance, supplied by the TCA cycle and amino acid uptake respectively, may regulate latent infection and reactivation. Thus, understanding and exploring new connections between cellular metabolism and HIV-1 pathogenesis may yield new insights into the latent viral reservoirs and fuel novel treatments and cure strategies.
Collapse
Affiliation(s)
| | | | - Robert L. Furler O’Brien
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY, United States
| |
Collapse
|
7
|
Abstract
Metabolic adaptation to viral infections critically determines the course and manifestations of disease. At the systemic level, a significant feature of viral infection and inflammation that ensues is the metabolic shift from anabolic towards catabolic metabolism. Systemic metabolic sequelae such as insulin resistance and dyslipidaemia represent long-term health consequences of many infections such as human immunodeficiency virus, hepatitis C virus and severe acute respiratory syndrome coronavirus 2. The long-held presumption that peripheral and tissue-specific 'immune responses' are the chief line of defence and thus regulate viral control is incomplete. This Review focuses on the emerging paradigm shift proposing that metabolic engagements and metabolic reconfiguration of immune and non-immune cells following virus recognition modulate the natural course of viral infections. Early metabolic footprints are likely to influence longer-term disease manifestations of infection. A greater appreciation and understanding of how local biochemical adjustments in the periphery and tissues influence immunity will ultimately lead to interventions that curtail disease progression and identify new and improved prognostic biomarkers.
Collapse
Affiliation(s)
- Clovis S Palmer
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA, USA.
| |
Collapse
|
8
|
Lund NC, Kayode Y, McReynolds MR, Clemmer DC, Hudson H, Clerc I, Hong HK, Brenchley JM, Bass J, D'Aquila RT, Taylor HE. mTOR regulation of metabolism limits LPS-induced monocyte inflammatory and procoagulant responses. Commun Biol 2022; 5:878. [PMID: 36028574 PMCID: PMC9412771 DOI: 10.1038/s42003-022-03804-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 08/05/2022] [Indexed: 11/30/2022] Open
Abstract
Translocated lipopolysaccharide (LPS) activates monocytes via TLR4 and is hypothesized to increase cardiovascular disease risk in persons living with HIV. We tested whether mTOR activity supports LPS-stimulated monocyte production of pro-inflammatory cytokines and tissue factor (TF), as it propels the inflammatory response in several immune cell types besides monocytes. However, multi-omics analyses here demonstrate that mTOR activates a metabolic pathway that limits abundance of these gene products in monocytes. Treatment of primary human monocytes with catalytic mTOR inhibitors (mTORi) increased LPS-induced polyfunctional responses, including production of IL-1β, IL-6, and the pro-coagulant, TF. NF-κB-driven transcriptional activity is enhanced with LPS stimulation after mTORi treatment to increase expression of F3 (TF). Moreover, intracellular NAD+ availability is restricted due to decreased salvage pathway synthesis. These results document mTOR-mediated restraint of the LPS-induced transcriptional response in monocytes and a metabolic mechanism informing strategies to reverse enhanced risk of coagulopathy in pro-inflammatory states.
Collapse
Affiliation(s)
- Nina C Lund
- Division of Infectious Diseases, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Yetunde Kayode
- Department of Microbiology & Immunology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Melanie R McReynolds
- Department of Biochemistry and Molecular Biology, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, 16802, USA
| | - Deanna C Clemmer
- Department of Microbiology & Immunology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Hannah Hudson
- Division of Infectious Diseases, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Isabelle Clerc
- Division of Infectious Diseases, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Hee-Kyung Hong
- Division of Endocrinology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Jason M Brenchley
- Barrier Immunity Section, Laboratory of Viral Disease, National Institute of Allergy and Infectious Diseases, Bethesda, MD, 20892, USA
| | - Joseph Bass
- Division of Endocrinology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Richard T D'Aquila
- Division of Infectious Diseases, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
| | - Harry E Taylor
- Department of Microbiology & Immunology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA.
| |
Collapse
|
9
|
Bermúdez V, Tenconi PE, Giusto NM, Mateos MV. Canonical phospholipase D isoforms in visual function and ocular response to stress. Exp Eye Res 2022; 217:108976. [DOI: 10.1016/j.exer.2022.108976] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 01/09/2022] [Accepted: 02/01/2022] [Indexed: 01/10/2023]
|
10
|
Rausch JW, Le Grice SFJ. Characterizing the Latent HIV-1 Reservoir in Patients with Viremia Suppressed on cART: Progress, Challenges, and Opportunities. Curr HIV Res 2021; 18:99-113. [PMID: 31889490 PMCID: PMC7475929 DOI: 10.2174/1570162x18666191231105438] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 12/05/2019] [Accepted: 12/09/2019] [Indexed: 02/07/2023]
Abstract
Modern combination antiretroviral therapy (cART) can bring HIV-1 in blood plasma to level undetectable by standard tests, prevent the onset of acquired immune deficiency syndrome (AIDS), and allow a near-normal life expectancy for HIV-infected individuals. Unfortunately, cART is not curative, as within a few weeks of treatment cessation, HIV viremia in most patients rebounds to pre-cART levels. The primary source of this rebound, and the principal barrier to a cure, is the highly stable reservoir of latent yet replication-competent HIV-1 proviruses integrated into the genomic DNA of resting memory CD4+ T cells. In this review, prevailing models for how the latent reservoir is established and maintained, residual viremia and viremic rebound upon withdrawal of cART, and the types and characteristics of cells harboring latent HIV-1 will be discussed. Selected technologies currently being used to advance our understanding of HIV latency will also be presented, as will a perspective on which areas of advancement are most essential for producing the next generation of HIV-1 therapeutics.
Collapse
Affiliation(s)
- Jason W Rausch
- Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, National Institute of Health, Frederick, MD 21702, United States
| | - Stuart F J Le Grice
- Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, National Institute of Health, Frederick, MD 21702, United States
| |
Collapse
|
11
|
Bahadoran A, Bezavada L, Smallwood HS. Fueling influenza and the immune response: Implications for metabolic reprogramming during influenza infection and immunometabolism. Immunol Rev 2021; 295:140-166. [PMID: 32320072 DOI: 10.1111/imr.12851] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/19/2020] [Accepted: 02/24/2020] [Indexed: 12/11/2022]
Abstract
Recent studies support the notion that glycolysis and oxidative phosphorylation are rheostats in immune cells whose bioenergetics have functional outputs in terms of their biology. Specific intrinsic and extrinsic molecular factors function as molecular potentiometers to adjust and control glycolytic to respiratory power output. In many cases, these potentiometers are used by influenza viruses and immune cells to support pathogenesis and the host immune response, respectively. Influenza virus infects the respiratory tract, providing a specific environmental niche, while immune cells encounter variable nutrient concentrations as they migrate in response to infection. Immune cell subsets have distinct metabolic programs that adjust to meet energetic and biosynthetic requirements to support effector functions, differentiation, and longevity in their ever-changing microenvironments. This review details how influenza coopts the host cell for metabolic reprogramming and describes the overlap of these regulatory controls in immune cells whose function and fate are dictated by metabolism. These details are contextualized with emerging evidence of the consequences of influenza-induced changes in metabolic homeostasis on disease progression.
Collapse
Affiliation(s)
- Azadeh Bahadoran
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Lavanya Bezavada
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Heather S Smallwood
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
12
|
Taylor HE, Calantone N, Lichon D, Hudson H, Clerc I, Campbell EM, D'Aquila RT. mTOR Overcomes Multiple Metabolic Restrictions to Enable HIV-1 Reverse Transcription and Intracellular Transport. Cell Rep 2021; 31:107810. [PMID: 32579936 DOI: 10.1016/j.celrep.2020.107810] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 02/28/2020] [Accepted: 06/03/2020] [Indexed: 12/12/2022] Open
Abstract
Cellular metabolism governs the susceptibility of CD4 T cells to HIV-1 infection. Multiple early post-fusion steps of HIV-1 replication are restricted in resting peripheral blood CD4 T cells; however, molecular mechanisms that underlie metabolic control of these steps remain undefined. Here, we show that mTOR activity following T cell stimulatory signals overcomes metabolic restrictions in these cells by enabling the expansion of dNTPs to fuel HIV-1 reverse transcription (RT), as well as increasing acetyl-CoA to stabilize microtubules that transport RT products. We find that catalytic mTOR inhibition diminishes the expansion of pools of both of these metabolites by limiting glucose and glutamine utilization in several pathways, thereby suppressing HIV-1 infection. We demonstrate how mTOR-coordinated biosyntheses enable the early steps of HIV-1 replication, add metabolic mechanisms by which mTOR inhibitors block HIV-1, and identify some metabolic modules downstream of mTOR as druggable targets for HIV-1 inhibition.
Collapse
Affiliation(s)
- Harry E Taylor
- Department of Microbiology and Immunology, State University of New York (SUNY) Upstate Medical University, Syracuse, NY 13210, USA.
| | - Nina Calantone
- Division of Infectious Diseases and HIV Translational Research Center, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Drew Lichon
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA
| | - Hannah Hudson
- Division of Infectious Diseases and HIV Translational Research Center, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Isabelle Clerc
- Division of Infectious Diseases and HIV Translational Research Center, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Edward M Campbell
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA
| | - Richard T D'Aquila
- Division of Infectious Diseases and HIV Translational Research Center, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
13
|
Host cell glutamine metabolism as a potential antiviral target. Clin Sci (Lond) 2021; 135:305-325. [PMID: 33480424 DOI: 10.1042/cs20201042] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 12/08/2020] [Accepted: 01/04/2021] [Indexed: 12/20/2022]
Abstract
A virus minimally contains a nucleic acid genome packaged by a protein coat. The genome and capsid together are known as the nucleocapsid, which has an envelope containing a lipid bilayer (mainly phospholipids) originating from host cell membranes. The viral envelope has transmembrane proteins that are usually glycoproteins. The proteins in the envelope bind to host cell receptors, promoting membrane fusion and viral entry into the cell. Virus-infected host cells exhibit marked increases in glutamine utilization and metabolism. Glutamine metabolism generates ATP and precursors for the synthesis of macromolecules to assemble progeny viruses. Some compounds derived from glutamine are used in the synthesis of purines and pyrimidines. These latter compounds are precursors for the synthesis of nucleotides. Inhibitors of glutamine transport and metabolism are potential candidate antiviral drugs. Glutamine is also an essential nutrient for the functions of leukocytes (lymphocyte, macrophage, and neutrophil), including those in virus-infected patients. The increased glutamine requirement for immune cell functions occurs concomitantly with the high glutamine utilization by host cells in virus-infected patients. The development of antiviral drugs that target glutamine metabolism must then be specifically directed at virus-infected host cells to avoid negative effects on immune functions. Therefore, the aim of this review was to describe the landscape of cellular glutamine metabolism to search for potential candidates to inhibit glutamine transport or glutamine metabolism.
Collapse
|
14
|
Auclair N, Sané AT, Delvin E, Spahis S, Levy E. Phospholipase D as a Potential Modulator of Metabolic Syndrome: Impact of Functional Foods. Antioxid Redox Signal 2021; 34:252-278. [PMID: 32586106 DOI: 10.1089/ars.2020.8081] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Significance: Cardiometabolic disorders (CMD) are composed of a plethora of metabolic dysfunctions such as dyslipidemia, nonalcoholic fatty liver disease, insulin resistance, and hypertension. The development of these disorders is highly linked to inflammation and oxidative stress (OxS), two metabolic states closely related to physiological and pathological conditions. Given the drastically rising CMD prevalence, the discovery of new therapeutic targets/novel nutritional approaches is of utmost importance. Recent Advances: The tremendous progress in methods/technologies and animal modeling has allowed the clarification of phospholipase D (PLD) critical roles in multiple cellular processes, whether directly or indirectly via phosphatidic acid, the lipid product mediating signaling functions. In view of its multiple features and implications in various diseases, PLD has emerged as a drug target. Critical Issues: Although insulin stimulates PLD activity and, in turn, PLD regulates insulin signaling, the impact of the two important PLD isoforms on the metabolic syndrome components remains vague. Therefore, after outlining PLD1/PLD2 characteristics and functions, their role in inflammation, OxS, and CMD has been analyzed and critically reported in the present exhaustive review. The influence of functional foods and nutrients in the regulation of PLD has also been examined. Future Directions: Available evidence supports the implication of PLD in CMD, but only few studies emphasize its mechanisms of action and specific regulation by nutraceutical compounds. Therefore, additional investigations are first needed to clarify the functional role of nutraceutics and, second, to elucidate whether targeting PLDs with food compounds represents an appropriate therapeutic strategy to treat CMD. Antioxid. Redox Signal. 34, 252-278.
Collapse
Affiliation(s)
- Nickolas Auclair
- Research Center, CHU Sainte-Justine, Université de Montréal, Montreal, Quebec, Canada.,Department of Pharmacology & Physiology and Université de Montréal, Montreal, Quebec, Canada
| | - Alain T Sané
- Research Center, CHU Sainte-Justine, Université de Montréal, Montreal, Quebec, Canada
| | - Edgard Delvin
- Research Center, CHU Sainte-Justine, Université de Montréal, Montreal, Quebec, Canada
| | - Schohraya Spahis
- Research Center, CHU Sainte-Justine, Université de Montréal, Montreal, Quebec, Canada.,Department of Nutrition, Université de Montréal, Montreal, Quebec, Canada
| | - Emile Levy
- Research Center, CHU Sainte-Justine, Université de Montréal, Montreal, Quebec, Canada.,Department of Pharmacology & Physiology and Université de Montréal, Montreal, Quebec, Canada.,Department of Nutrition, Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
15
|
CD4 + T Cell-Mimicking Nanoparticles Broadly Neutralize HIV-1 and Suppress Viral Replication through Autophagy. mBio 2020; 11:mBio.00903-20. [PMID: 32934078 PMCID: PMC7492730 DOI: 10.1128/mbio.00903-20] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
HIV-1 is a major global health challenge. The development of an effective vaccine and/or a therapeutic cure is a top priority. The creation of vaccines that focus an antibody response toward a particular epitope of a protein has shown promise, but the genetic diversity of HIV-1 hinders this progress. Here we developed an approach using nanoengineered CD4+ T cell membrane-coated nanoparticles (TNP). Not only do TNP effectively neutralize all strains of HIV-1, but they also selectively bind to infected cells and decrease the release of HIV-1 particles through an autophagy-dependent mechanism with no drug-induced off-target or cytotoxic effects on bystander cells. Therapeutic strategies that provide effective and broad‐spectrum neutralization against HIV-1 infection are highly desirable. Here, we investigate the potential of nanoengineered CD4+ T cell membrane-coated nanoparticles (TNP) to neutralize a broad range of HIV-1 strains. TNP displayed outstanding neutralizing breadth and potency; they neutralized all 125 HIV-1-pseudotyped viruses tested, including global subtypes/recombinant forms, and transmitted/founder viruses, with a geometric mean 80% inhibitory concentration (IC80) of 819 μg ml−1 (range, 72 to 8,570 μg ml−1). TNP also selectively bound to and induced autophagy in HIV-1-infected CD4+ T cells and macrophages, while having no effect on uninfected cells. This TNP-mediated autophagy inhibited viral release and reduced cell-associated HIV-1 in a dose- and phospholipase D1-dependent manner. Genetic or pharmacological inhibition of autophagy ablated this effect. Thus, we can use TNP as therapeutic agents to neutralize cell-free HIV-1 and to target HIV-1 gp120-expressing cells to decrease the HIV-1 reservoir.
Collapse
|
16
|
Pyfrom SC, Quinn CC, Dorando HK, Luo H, Payton JE. BCALM (AC099524.1) Is a Human B Lymphocyte-Specific Long Noncoding RNA That Modulates B Cell Receptor-Mediated Calcium Signaling. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2020; 205:595-607. [PMID: 32571842 PMCID: PMC7372127 DOI: 10.4049/jimmunol.2000088] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 05/27/2020] [Indexed: 12/12/2022]
Abstract
Of the thousands of long noncoding RNAs (lncRNA) identified in lymphocytes, very few have defined functions. In this study, we report the discovery and functional elucidation of a human B cell-specific lncRNA with high levels of expression in three types of B cell cancer and normal B cells. The AC099524.1 gene is upstream of the gene encoding the B cell-specific phospholipase C γ 2 (PLCG2), a B cell-specific enzyme that stimulates intracellular Ca2+ signaling in response to BCR activation. AC099524.1 (B cell-associated lncRNA modulator of BCR-mediated Ca+ signaling [BCALM]) transcripts are localized in the cytoplasm and, as expected, CRISPR/Cas9 knockout of AC099524.1 did not affect PLCG2 mRNA or protein expression. lncRNA interactome, RNA immunoprecipitation, and coimmunoprecipitation studies identified BCALM-interacting proteins in B cells, including phospholipase D 1 (PLD1), and kinase adaptor proteins AKAP9 (AKAP450) and AKAP13 (AKAP-Lbc). These two AKAP proteins form signaling complexes containing protein kinases A and C, which phosphorylate and activate PLD1 to produce phosphatidic acid (PA). BCR stimulation of BCALM-deficient B cells resulted in decreased PLD1 phosphorylation and increased intracellular Ca+ flux relative to wild-type cells. These results suggest that BCALM promotes negative feedback that downmodulates BCR-mediated Ca+ signaling by promoting phosphorylation of PLD1 by AKAP-associated kinases, enhancing production of PA. PA activates SHP-1, which negatively regulates BCR signaling. We propose the name BCALM for B-Cell Associated LncRNA Modulator of BCR-mediated Ca+ signaling. Our findings suggest a new, to our knowledge, paradigm for lncRNA-mediated modulation of lymphocyte activation and signaling, with implications for B cell immune response and BCR-dependent cancers.
Collapse
Affiliation(s)
- Sarah C Pyfrom
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Chaz C Quinn
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Hannah K Dorando
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Hong Luo
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Jacqueline E Payton
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| |
Collapse
|
17
|
Yoo HJ, Hwang WC, Min DS. Targeting of Phospholipase D1 Ameliorates Collagen-Induced Arthritis via Modulation of Treg and Th17 Cell Imbalance and Suppression of Osteoclastogenesis. Int J Mol Sci 2020; 21:ijms21093230. [PMID: 32370217 PMCID: PMC7247592 DOI: 10.3390/ijms21093230] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/27/2020] [Accepted: 04/30/2020] [Indexed: 12/20/2022] Open
Abstract
Phospholipase D1 (PLD1) plays a crucial role in various inflammatory and autoimmune diseases. Rheumatoid arthritis (RA) is a chronic and systemic autoimmune disease. However, the role of PLD1 in the pathogenesis of RA remains unknown. Here, we first investigated the role and effects of PLD1 in collagen-induced arthritis (CIA) and found that genetic and pharmacological inhibition of PLD1 in DBA1/J mice with CIA reduced the incidence of CIA, decreased the clinical score, and abrogated disease symptoms including infiltration of leukocytes, synovial inflammation, bone erosion, and cartilage destruction. Moreover, ablation and inhibition of PLD1 suppressed the production of type II collagen-specific IgG2a autoantibody and proinflammatory cytokines, accompanied by an increase in the regulatory T (Treg) cell population and a decrease in the Th17 cell population in CIA mice. The PLD1 inhibitor also promoted differentiation of Treg cells and suppressed differentiation of Th17 cells in vitro. Furthermore, the PLD1 inhibitor attenuated pathologic bone destruction in CIA mice by suppressing osteoclastogenesis and bone resorption. Thus, our findings indicate that the targeting of PLD1 can ameliorate CIA by modulating the imbalance of Treg and Th17 cells and suppressing osteoclastogenesis, which might be a novel strategy to treat autoimmune diseases, such as RA.
Collapse
MESH Headings
- Animals
- Arthritis, Experimental/immunology
- Arthritis, Experimental/metabolism
- Arthritis, Experimental/prevention & control
- Arthritis, Rheumatoid/immunology
- Arthritis, Rheumatoid/metabolism
- Arthritis, Rheumatoid/prevention & control
- Benzimidazoles/pharmacology
- Cell Differentiation/drug effects
- Cell Differentiation/immunology
- Cytokines/blood
- Disease Models, Animal
- Knee Joint/drug effects
- Knee Joint/metabolism
- Knee Joint/pathology
- Male
- Mice, Inbred C57BL
- Mice, Inbred DBA
- Mice, Knockout
- Osteogenesis/drug effects
- Osteogenesis/genetics
- Phospholipase D/antagonists & inhibitors
- Phospholipase D/genetics
- Phospholipase D/metabolism
- Piperidines/pharmacology
- T-Lymphocytes, Regulatory/drug effects
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- Th17 Cells/drug effects
- Th17 Cells/immunology
- Th17 Cells/metabolism
- X-Ray Microtomography
Collapse
Affiliation(s)
- Hyun Jung Yoo
- Department of Molecular Biology, College of Natural Science, Pusan National University, Busan 46241, Korea; (H.J.Y.); (W.C.H.)
| | - Won Chan Hwang
- Department of Molecular Biology, College of Natural Science, Pusan National University, Busan 46241, Korea; (H.J.Y.); (W.C.H.)
- College of Pharmacy, Yonsei University, Incheon 21983, Korea
| | - Do Sik Min
- College of Pharmacy, Yonsei University, Incheon 21983, Korea
- Correspondence: ; Tel.: +82-32-749-4522
| |
Collapse
|
18
|
Abstract
HIV infection is characterized by elevated glycolytic metabolism in CD4 T cells. In their recent study, Valle-Casuso et al. demonstrated that both increased glucose utilization and glutamine metabolism are essential for HIV infectivity and replication in CD4 T cells. Here, we discuss the broader implications of immunometabolism in studies of HIV persistence and their potential to inform new treatment and curative strategies.
Collapse
|
19
|
McDermott MI, Wang Y, Wakelam MJO, Bankaitis VA. Mammalian phospholipase D: Function, and therapeutics. Prog Lipid Res 2019; 78:101018. [PMID: 31830503 DOI: 10.1016/j.plipres.2019.101018] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 10/08/2019] [Accepted: 10/14/2019] [Indexed: 01/23/2023]
Abstract
Despite being discovered over 60 years ago, the precise role of phospholipase D (PLD) is still being elucidated. PLD enzymes catalyze the hydrolysis of the phosphodiester bond of glycerophospholipids producing phosphatidic acid and the free headgroup. PLD family members are found in organisms ranging from viruses, and bacteria to plants, and mammals. They display a range of substrate specificities, are regulated by a diverse range of molecules, and have been implicated in a broad range of cellular processes including receptor signaling, cytoskeletal regulation and membrane trafficking. Recent technological advances including: the development of PLD knockout mice, isoform-specific antibodies, and specific inhibitors are finally permitting a thorough analysis of the in vivo role of mammalian PLDs. These studies are facilitating increased recognition of PLD's role in disease states including cancers and Alzheimer's disease, offering potential as a target for therapeutic intervention.
Collapse
Affiliation(s)
- M I McDermott
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, TX 77843-1114, United States of America.
| | - Y Wang
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, TX 77843-1114, United States of America; Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843-2128, United States of America
| | - M J O Wakelam
- Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, United Kingdom
| | - V A Bankaitis
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, TX 77843-1114, United States of America; Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843-2128, United States of America; Department of Chemistry, Texas A&M University, College Station, Texas 77840, United States of America
| |
Collapse
|
20
|
Crystal structure of plant PLDα1 reveals catalytic and regulatory mechanisms of eukaryotic phospholipase D. Cell Res 2019; 30:61-69. [PMID: 31619765 DOI: 10.1038/s41422-019-0244-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 09/24/2019] [Indexed: 12/13/2022] Open
Abstract
Phospholipase D (PLD) hydrolyzes the phosphodiester bond of glycerophospholipids and produces phosphatidic acid (PA), which acts as a second messenger in many living organisms. A large number of PLDs have been identified in eukaryotes, and are viewed as promising targets for drug design because these enzymes are known to be tightly regulated and to function in the pathophysiology of many human diseases. However, the underlying molecular mechanisms of catalysis and regulation of eukaryotic PLD remain elusive. Here, we determined the crystal structure of full-length plant PLDα1 in the apo state and in complex with PA. The structure shows that the N-terminal C2 domain hydrophobically interacts with the C-terminal catalytic domain that features two HKD motifs. Our analysis reveals the catalytic site, substrate-binding mechanism, and a new Ca2+-binding site that is required for the activation of PLD. In addition, we tested several efficient small-molecule inhibitors against PLDα1, and suggested a possible competitive inhibition mechanism according to structure-based docking analysis. This study explains many long-standing questions about PLDs and provides structural insights into PLD-targeted inhibitor/drug design.
Collapse
|
21
|
Shim JK, Caron MA, Weatherly LM, Gerchman LB, Sangroula S, Hattab S, Baez AY, Briana TJ, Gosse JA. Antimicrobial agent triclosan suppresses mast cell signaling via phospholipase D inhibition. J Appl Toxicol 2019; 39:1672-1690. [PMID: 31429102 DOI: 10.1002/jat.3884] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 07/02/2019] [Accepted: 07/03/2019] [Indexed: 12/27/2022]
Abstract
Humans are exposed to the antimicrobial agent triclosan (TCS) through use of TCS-containing products. Exposed tissues contain mast cells, which are involved in numerous biological functions and diseases by secreting various chemical mediators through a process termed degranulation. We previously demonstrated that TCS inhibits both Ca2+ influx into antigen-stimulated mast cells and subsequent degranulation. To determine the mechanism linking the TCS cytosolic Ca2+ depression to inhibited degranulation, we investigated the effects of TCS on crucial signaling enzymes activated downstream of the Ca2+ rise: protein kinase C (PKC; activated by Ca2+ and reactive oxygen species [ROS]) and phospholipase D (PLD). We found that TCS strongly inhibits PLD activity within 15 minutes post-antigen, a key mechanism of TCS mast cell inhibition. In addition, experiments using fluorescent constructs and confocal microscopy indicate that TCS delays antigen-induced translocations of PKCβII, PKCδ and PKC substrate myristoylated alanine-rich C-kinase. Surprisingly, TCS does not inhibit PKC activity or overall ability to translocate, and TCS actually increases PKC activity by 45 minutes post-antigen; these results are explained by the timing of both TCS inhibition of cytosolic Ca2+ (~15+ minutes post-antigen) and TCS stimulation of ROS (~45 minutes post-antigen). These findings demonstrate that it is incorrect to assume that all Ca2+ -dependent processes will be synchronously inhibited when cytosolic Ca2+ is inhibited by a toxicant or drug. The results offer molecular predictions of the effects of TCS on other mammalian cell types, which share these crucial signal transduction elements and provide biochemical information that may underlie recent epidemiological findings implicating TCS in human health problems.
Collapse
Affiliation(s)
- Juyoung K Shim
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, Maine
| | - Molly A Caron
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, Maine
| | - Lisa M Weatherly
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, Maine.,Graduate School of Biomedical Science and Engineering, University of Maine, Orono, Maine
| | - Logan B Gerchman
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, Maine
| | - Suraj Sangroula
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, Maine
| | - Siham Hattab
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, Maine
| | - Alan Y Baez
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, Maine
| | - Talya J Briana
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, Maine
| | - Julie A Gosse
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, Maine.,Graduate School of Biomedical Science and Engineering, University of Maine, Orono, Maine
| |
Collapse
|
22
|
Mayer KA, Stöckl J, Zlabinger GJ, Gualdoni GA. Hijacking the Supplies: Metabolism as a Novel Facet of Virus-Host Interaction. Front Immunol 2019; 10:1533. [PMID: 31333664 PMCID: PMC6617997 DOI: 10.3389/fimmu.2019.01533] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 06/19/2019] [Indexed: 12/22/2022] Open
Abstract
Viral replication is a process that involves an extremely high turnover of cellular molecules. Since viruses depend on the host cell to obtain the macromolecules needed for their proper replication, they have evolved numerous strategies to shape cellular metabolism and the biosynthesis machinery of the host according to their specific needs. Technologies for the rigorous analysis of metabolic alterations in cells have recently become widely available and have greatly expanded our knowledge of these crucial host–pathogen interactions. We have learned that most viruses enhance specific anabolic pathways and are highly dependent on these alterations. Since uninfected cells are far more plastic in their metabolism, targeting of the virus-induced metabolic alterations is a promising strategy for specific antiviral therapy and has gained great interest recently. In this review, we summarize the current advances in our understanding of metabolic adaptations during viral infections, with a particular focus on the utilization of this information for therapeutic application.
Collapse
Affiliation(s)
- Katharina A Mayer
- Institute of Immunology, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Johannes Stöckl
- Institute of Immunology, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Gerhard J Zlabinger
- Institute of Immunology, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Guido A Gualdoni
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
23
|
Ramenskaia GV, Melnik EV, Petukhov AE. [Phospholipase D: its role in metabolism processes and disease development]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2019; 64:84-93. [PMID: 29460838 DOI: 10.18097/pbmc20186401084] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Phospholipase D (PLD) is one of the key enzymes that catalyzes the hydrolysis of cell membrane phospholipids. In this review current knowledge about six human PLD isoforms, their structure and role in physiological and pathological processes is summarized. Comparative analysis of PLD isoforms structure is presented. The mechanism of the hydrolysis and transphosphatidylation performed by PLD is described. The PLD1 and PLD2 role in the pathogenesis of some cancer, infectious, thrombotic and neurodegenerative diseases is analyzed. The prospects of PLD isoform-selective inhibitors development are shown in the context of the clinical usage and the already-existing inhibitors are characterized. Moreover, the formation of phosphatidylethanol (PEth), the alcohol abuse biomarker, as the result of PLD-catalyzed phospholipid transphosphatidylation is considered.
Collapse
Affiliation(s)
- G V Ramenskaia
- Sechenov First Moscow State Medical University (Sechenovskiy University), Moscow, Russia
| | - E V Melnik
- Sechenov First Moscow State Medical University (Sechenovskiy University), Moscow, Russia
| | - A E Petukhov
- Sechenov First Moscow State Medical University (Sechenovskiy University), Moscow, Russia; Moscow Research and Practical Centre for Narcology, Moscow, Russia
| |
Collapse
|
24
|
Camacho L, Silva CS, Hanig JP, Schleimer RP, George NI, Bowyer JF. Identification of whole blood mRNA and microRNA biomarkers of tissue damage and immune function resulting from amphetamine exposure or heat stroke in adult male rats. PLoS One 2019; 14:e0210273. [PMID: 30779732 PMCID: PMC6380594 DOI: 10.1371/journal.pone.0210273] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 12/18/2018] [Indexed: 12/14/2022] Open
Abstract
This work extends the understanding of how toxic exposures to amphetamine (AMPH) adversely affect the immune system and lead to tissue damage. Importantly, it determines which effects of AMPH are and are not due to pronounced hyperthermia. Whole blood messenger RNA (mRNA) and whole blood and serum microRNA (miRNA) transcripts were identified in adult male Sprague-Dawley rats after exposure to toxic AMPH under normothermic conditions, AMPH when it produces pronounced hyperthermia, or environmentally-induced hyperthermia (EIH). mRNA transcripts with large increases in fold-change in treated relative to control rats and very low expression in the control group were a rich source of organ-specific transcripts in blood. When severe hyperthermia was produced by either EIH or AMPH, significant increases in circulating organ-specific transcripts for liver (Alb, Fbg, F2), pancreas (Spink1), bronchi/lungs (F3, Cyp4b1), bone marrow (Np4, RatNP-3b), and kidney (Cesl1, Slc22a8) were observed. Liver damage was suggested also by increased miR-122 levels in the serum. Increases in muscle/heart-enriched transcripts were produced by AMPH even in the absence of hyperthermia. Expression increases in immune-related transcripts, particularly Cd14 and Vcan, indicate that AMPH can activate the innate immune system in the absence of hyperthermia. Most transcripts specific for T-cells decreased 50–70% after AMPH exposure or EIH, with the noted exception of Ccr5 and Chst12. This is probably due to T-cells leaving the circulation and down-regulation of these genes. Transcript changes specific for B-cells or B-lymphoblasts in the AMPH and EIH groups ranged widely from decreasing ≈ 40% (Cd19, Cd180) to increasing 30 to 100% (Tk1, Ahsa1) to increasing ≥500% (Stip1, Ackr3). The marked increases in Ccr2, Ccr5, Pld1, and Ackr3 produced by either AMPH or EIH observed in vivo provide further insight into the initial immune system alterations that result from methamphetamine and AMPH abuse and could modify risk for HIV and other viral infections.
Collapse
Affiliation(s)
- Luísa Camacho
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, United States of America
| | - Camila S. Silva
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, United States of America
| | - Joseph P. Hanig
- Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Robert P. Schleimer
- Division of Allergy and Immunology, Northwestern Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Nysia I. George
- Division of Bioinformatics and Biostatistics, NCTR/U.S. Food and Drug Administration, Jefferson, Arkansas, United States of America
| | - John F. Bowyer
- Division of Neurotoxicology, NCTR/U.S. Food and Drug Administration, Jefferson, Arkansas, United States of America
- * E-mail:
| |
Collapse
|
25
|
Phospholipase D and the Mitogen Phosphatidic Acid in Human Disease: Inhibitors of PLD at the Crossroads of Phospholipid Biology and Cancer. Handb Exp Pharmacol 2019; 259:89-113. [PMID: 31541319 DOI: 10.1007/164_2019_216] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Lipids are key building blocks of biological membranes and are involved in complex signaling processes such as metabolism, proliferation, migration, and apoptosis. Extracellular signaling by growth factors, stress, and nutrients is transmitted through receptors that activate lipid-modifying enzymes such as the phospholipases, sphingosine kinase, or phosphoinositide 3-kinase, which then modify phospholipids, sphingolipids, and phosphoinositides. One such important enzyme is phospholipase D (PLD), which cleaves phosphatidylcholine to yield phosphatidic acid and choline. PLD isoforms have dual role in cells. The first involves maintaining cell membrane integrity and cell signaling, including cell proliferation, migration, cytoskeletal alterations, and invasion through the PLD product PA, and the second involves protein-protein interactions with a variety of binding partners. Increased evidence of elevated PLD expression and activity linked to many pathological conditions, including cancer, neurological and inflammatory diseases, and infection, has motivated the development of dual- and isoform-specific PLD inhibitors. Many of these inhibitors are reported to be efficacious and safe in cells and mouse disease models, suggesting the potential for PLD inhibitors as therapeutics for cancer and other diseases. Current knowledge and ongoing research of PLD signaling networks will help to evolve inhibitors with increased efficacy and safety for clinical studies.
Collapse
|
26
|
mTOR signaling mediates effects of common gamma-chain cytokines on T cell proliferation and exhaustion: implications for HIV-1 persistence and cure research. AIDS 2018; 32:2847-2851. [PMID: 30234610 DOI: 10.1097/qad.0000000000001997] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
: Chronic elevation of plasma cytokines is a key feature of HIV infection. The physiological consequences of this response to infection and its role in HIV persistence are not fully understood. Here, we show that common gamma chain (γc)-cytokines induce both proliferation and expression of T cell exhaustion markers in a mammalian target of rapamycin (mTOR)-dependent fashion, suggesting a possible therapeutic target that, if inhibited, could diminish HIV reservoir expansion, persistence, and resistance to immune surveillance.
Collapse
|
27
|
Zhu M, Foreman DP, O'Brien SA, Jin Y, Zhang W. Phospholipase D in TCR-Mediated Signaling and T Cell Activation. THE JOURNAL OF IMMUNOLOGY 2018; 200:2165-2173. [PMID: 29386256 DOI: 10.4049/jimmunol.1701291] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 01/03/2018] [Indexed: 01/11/2023]
Abstract
Phospholipase D (PLD) is an enzyme that catalyzes the hydrolysis of phosphatidylcholine, the major phospholipid in the plasma membrane, to generate an important signaling lipid, phosphatidic acid. Phosphatidic acid is a second messenger that regulates vesicular trafficking, cytoskeletal reorganization, and cell signaling in immune cells and other cell types. Published studies, using pharmacological inhibitors or protein overexpression, indicate that PLD plays a positive role in TCR-mediated signaling and cell activation. In this study, we used mice deficient in PLD1, PLD2, or both to assess the function of these enzymes in T cells. Our data showed that PLD1 deficiency impaired TCR-mediated signaling, T cell expansion, and effector function during immune responses against Listeria monocytogenes; however, PLD2 deficiency had a minimal impact on T cells. Biochemical analysis indicated that PLD1 deficiency affected Akt and PKCθ activation. In addition, it impaired TCR downregulation and the secondary T cell response. Together, our results suggested that PLD1 plays an important role in T cell activation.
Collapse
Affiliation(s)
- Minghua Zhu
- Department of Immunology, Duke University Medical Center, Durham, NC 27710
| | - Daniel P Foreman
- Department of Immunology, Duke University Medical Center, Durham, NC 27710
| | - Sarah A O'Brien
- Department of Immunology, Duke University Medical Center, Durham, NC 27710
| | - Yuefei Jin
- Department of Immunology, Duke University Medical Center, Durham, NC 27710
| | - Weiguo Zhang
- Department of Immunology, Duke University Medical Center, Durham, NC 27710
| |
Collapse
|
28
|
Hegedus A, Kavanagh Williamson M, Khan MB, Dias Zeidler J, Da Poian AT, El-Bacha T, Struys EA, Huthoff H. Evidence for Altered Glutamine Metabolism in Human Immunodeficiency Virus Type 1 Infected Primary Human CD4 + T Cells. AIDS Res Hum Retroviruses 2017; 33:1236-1247. [PMID: 28844150 PMCID: PMC5709700 DOI: 10.1089/aid.2017.0165] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Glutamine is a conditionally essential amino acid that is an important metabolic resource for proliferating tissues by acting as a proteinogenic amino acid, a nitrogen donor for biosynthetic reactions and as a substrate for the citric acid or tricarboxylic acid cycle. The human immunodeficiency virus type 1 (HIV-1) productively infects activated CD4+ T cells that are known to require glutamine for proliferation and for carrying out effector functions. As a virus, HIV-1 is furthermore entirely dependent on host metabolism to support its replication. In this study, we compared HIV-1 infected with uninfected activated primary human CD4+ T cells with regard to glutamine metabolism. We report that glutamine concentrations are elevated in HIV-1-infected cells and that glutamine is important to support HIV-1 replication, although the latter is closely linked to the glutamine dependency of cell survival. Metabolic tracer experiments showed that entry of glutamine-derived carbon into the citric acid cycle is unaffected by HIV-1 infection, but that there is an increase in the secretion of glutamine-derived glutamic acid from HIV-1-infected cells. Western blotting of key enzymes that metabolize glutamine revealed marked differences in the expression of glutaminase isoforms, KGA and CAG, as well as the PPAT enzyme that targets glutamine-derived nitrogen toward nucleotide synthesis. Altogether, this demonstrates that infection of CD4+ T cells with HIV-1 leads to considerable changes in the cellular glutamine metabolism.
Collapse
Affiliation(s)
- Andrea Hegedus
- Department of Infectious Diseases, King's College London, London, United Kingdom
| | | | - Mariam B. Khan
- Department of Infectious Diseases, King's College London, London, United Kingdom
| | - Julianna Dias Zeidler
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Andrea T. Da Poian
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Tatiana El-Bacha
- Instituto de Nutrição Josué de Castro, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Eduard A. Struys
- Metabolic Unit, Department of Clinical Chemistry, VU Medical Center, Amsterdam, the Netherlands
| | - Hendrik Huthoff
- Department of Infectious Diseases, King's College London, London, United Kingdom
| |
Collapse
|
29
|
Murray AJ, Kwon KJ, Farber DL, Siliciano RF. The Latent Reservoir for HIV-1: How Immunologic Memory and Clonal Expansion Contribute to HIV-1 Persistence. THE JOURNAL OF IMMUNOLOGY 2017; 197:407-17. [PMID: 27382129 DOI: 10.4049/jimmunol.1600343] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 04/12/2016] [Indexed: 12/15/2022]
Abstract
Combination antiretroviral therapy (ART) for HIV-1 infection reduces plasma virus levels to below the limit of detection of clinical assays. However, even with prolonged suppression of viral replication with ART, viremia rebounds rapidly after treatment interruption. Thus, ART is not curative. The principal barrier to cure is a remarkably stable reservoir of latent HIV-1 in resting memory CD4(+) T cells. In this review, we consider explanations for the remarkable stability of the latent reservoir. Stability does not appear to reflect replenishment from new infection events but rather normal physiologic processes that provide for immunologic memory. Of particular importance are proliferative processes that drive clonal expansion of infected cells. Recent evidence suggests that in some infected cells, proliferation is a consequence of proviral integration into host genes associated with cell growth. Efforts to cure HIV-1 infection by targeting the latent reservoir may need to consider the potential of latently infected cells to proliferate.
Collapse
Affiliation(s)
- Alexandra J Murray
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Kyungyoon J Kwon
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Donna L Farber
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY 10032; Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY 10032; Department of Surgery, Columbia University Medical Center, New York, NY 10032; and
| | - Robert F Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205; Howard Hughes Medical Institute, Baltimore MD 21250
| |
Collapse
|
30
|
Abstract
Phospholipase D (PLD) enzymes are one source of receptor-generated phosphatidic acid (PtdOH),which may subsequently be metabolized to diacylglycerol (DAG) and lysophosphatidic acid. There are other pathways that lead to PtdOH generation, but differences in pathways and in the acyl composition of the products seem to provide some specificity. Both direct and indirect inhibitors of PLD activity have been identified despite a long-held suspicion that this pathway was undruggable. The identification of raloxifene and halopemide as direct inhibitors was followed by the systematic development of isoenzyme-preferring compounds that have been used to further differentiate the functions of PLD1 and PLD2. PLD2 in host cells has been associated with viral entry processes and innate immune response pathways such that inhibition blocks efficient infection. This PLD2 pathway has been linked to autophagy via AKT kinases. As a potential target in antiretroviral therapy, PLD1 works through the CAD enzyme (which contains carbamoyl aspartate synthase, aspartate transcarbamylase and dihydro-orotase domains) to modulate pyrimidine biosynthesis. PLD activity and expression have been shown to be upregulated in several types of human cancers, in which PLD enzymes function downstream of a variety of known oncogenes. Inhibition of PtdOH production has a marked effect on tumorigenesis and malignant invasion. PLD1, PLD2 and PLD3 have each been suggested to have a role in Alzheimer disease and other neurodegenerative conditions, but a mechanism has not yet emerged to explain the roles of these proteins in central nervous system pathophysiology.
Lipid second messengers such as phosphatidic acid (PtdOH) have a role in a wide range of pathological processes, and phospholipase D (PLD) enzymes are one of the major sources of signal-activated PtdOH generation. In this Review, Brown, Thomas and Lindsley discuss the development of PLD inhibitors, with a focus on isoform-specific inhibitors, and their potential applications in the treatment of cancer, neurodegeneration and infection. Lipid second messengers have essential roles in cellular function and contribute to the molecular mechanisms that underlie inflammation, malignant transformation, invasiveness, neurodegenerative disorders, and infectious and other pathophysiological processes. The phospholipase D (PLD) isoenzymes PLD1 and PLD2 are one of the major sources of signal-activated phosphatidic acid (PtdOH) generation downstream of a variety of cell-surface receptors, including G protein-coupled receptors (GPCRs), receptor tyrosine kinases (RTKs) and integrins. Recent advances in the development of isoenzyme-selective PLD inhibitors and in molecular genetics have suggested that PLD isoenzymes in mammalian cells and pathogenic organisms may be valuable targets for the treatment of several human diseases. Isoenzyme-selective inhibitors have revealed complex inter-relationships between PtdOH biosynthetic pathways and the role of PtdOH in pathophysiology. PLD enzymes were once thought to be undruggable owing to the ubiquitous nature of PtdOH in cell signalling and concerns that inhibitors would be too toxic for use in humans. However, recent promising discoveries suggest that small-molecule isoenzyme-selective inhibitors may provide novel compounds for a unique approach to the treatment of cancers, neurodegenerative disorders and other afflictions of the central nervous system, and potentially serve as broad-spectrum antiviral and antimicrobial therapeutics.
Collapse
|
31
|
Greenwood EJD, Matheson NJ, Wals K, van den Boomen DJH, Antrobus R, Williamson JC, Lehner PJ. Temporal proteomic analysis of HIV infection reveals remodelling of the host phosphoproteome by lentiviral Vif variants. eLife 2016; 5:e18296. [PMID: 27690223 PMCID: PMC5085607 DOI: 10.7554/elife.18296] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 09/28/2016] [Indexed: 12/20/2022] Open
Abstract
Viruses manipulate host factors to enhance their replication and evade cellular restriction. We used multiplex tandem mass tag (TMT)-based whole cell proteomics to perform a comprehensive time course analysis of >6500 viral and cellular proteins during HIV infection. To enable specific functional predictions, we categorized cellular proteins regulated by HIV according to their patterns of temporal expression. We focussed on proteins depleted with similar kinetics to APOBEC3C, and found the viral accessory protein Vif to be necessary and sufficient for CUL5-dependent proteasomal degradation of all members of the B56 family of regulatory subunits of the key cellular phosphatase PP2A (PPP2R5A-E). Quantitative phosphoproteomic analysis of HIV-infected cells confirmed Vif-dependent hyperphosphorylation of >200 cellular proteins, particularly substrates of the aurora kinases. The ability of Vif to target PPP2R5 subunits is found in primate and non-primate lentiviral lineages, and remodeling of the cellular phosphoproteome is therefore a second ancient and conserved Vif function.
Collapse
Affiliation(s)
- Edward JD Greenwood
- Cambridge Institute for Medical Research, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Nicholas J Matheson
- Cambridge Institute for Medical Research, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Kim Wals
- Cambridge Institute for Medical Research, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Dick JH van den Boomen
- Cambridge Institute for Medical Research, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Robin Antrobus
- Cambridge Institute for Medical Research, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - James C Williamson
- Cambridge Institute for Medical Research, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Paul J Lehner
- Cambridge Institute for Medical Research, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
32
|
Palmer CS, Anzinger JJ, Butterfield TR, McCune JM, Crowe SM. A Simple Flow Cytometric Method to Measure Glucose Uptake and Glucose Transporter Expression for Monocyte Subpopulations in Whole Blood. J Vis Exp 2016. [PMID: 27584036 DOI: 10.3791/54255] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Monocytes are innate immune cells that can be activated by pathogens and inflammation associated with certain chronic inflammatory diseases. Activation of monocytes induces effector functions and a concomitant shift from oxidative to glycolytic metabolism that is accompanied by increased glucose transporter expression. This increased glycolytic metabolism is also observed for trained immunity of monocytes, a form of innate immunological memory. Although in vitro protocols examining glucose transporter expression and glucose uptake by monocytes have been described, none have been examined by multi-parametric flow cytometry in whole blood. We describe a multi-parametric flow cytometric protocol for the measurement of fluorescent glucose analog 2-NBDG uptake in whole blood by total monocytes and the classical (CD14(++)CD16(-)), intermediate (CD14(++)CD16(+)) and non-classical (CD14(+)CD16(++)) monocyte subpopulations. This method can be used to examine glucose transporter expression and glucose uptake for total monocytes and monocyte subpopulations during homeostasis and inflammatory disease, and can be easily modified to examine glucose uptake for other leukocytes and leukocyte subpopulations within blood.
Collapse
Affiliation(s)
- Clovis S Palmer
- Centre for Biomedical Research, Macfarlane Burnet Institute for Medical Research and Public Health; Department of Infectious Diseases, Monash University; Department of Microbiology and Immunology, University of Melbourne;
| | | | | | - Joseph M McCune
- Division of Experimental Medicine, Department of Medicine, University of California, San Francisco
| | - Suzanne M Crowe
- Centre for Biomedical Research, Macfarlane Burnet Institute for Medical Research and Public Health; Department of Infectious Diseases, Monash University; Department of Medicine, Monash University
| |
Collapse
|
33
|
Dagenais-Lussier X, Mouna A, Routy JP, Tremblay C, Sekaly RP, El-Far M, Grevenynghe JV. Current topics in HIV-1 pathogenesis: The emergence of deregulated immuno-metabolism in HIV-infected subjects. Cytokine Growth Factor Rev 2015; 26:603-13. [PMID: 26409789 DOI: 10.1016/j.cytogfr.2015.09.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 09/04/2015] [Indexed: 01/17/2023]
Abstract
HIV-1 infection results in long-lasting activation of the immune system including elevated production of pro-inflammatory cytokine/chemokines, and bacterial product release from gut into blood and tissue compartments, which are not fully restored by antiretroviral therapies. HIV-1 has also developed numerous strategies via viral regulatory proteins to hijack cell molecular mechanisms to enhance its own replication and dissemination. Here, we reviewed the relationship between viral proteins, immune activation/inflammation, and deregulated metabolism occurring in HIV-1-infected patients that ultimately dampens the protective innate and adaptive arms of immunity. Defining precisely the molecular mechanisms related to deregulated immuno-metabolism during HIV-1 infection could ultimately help in the development of novel clinical approaches to restore proper immune functions in these patients.
Collapse
Affiliation(s)
| | - Aounallah Mouna
- INRS-Institut Armand Frappier, 531 boulevard des Prairies, Laval, Quebec H7V 1B7, Canada
| | - Jean-Pierre Routy
- Division of Hematology and Chronic Viral Illness Service, McGill University Health Centre, Glen site, Montreal, Quebec H4A 3J1, Canada
| | | | | | | | - Julien van Grevenynghe
- INRS-Institut Armand Frappier, 531 boulevard des Prairies, Laval, Quebec H7V 1B7, Canada.
| |
Collapse
|