1
|
Deng Y, Navarro-Forero S, Yang Z. Temporal expression classes and functions of vaccinia virus and mpox (monkeypox) virus genes. mBio 2025; 16:e0380924. [PMID: 40111027 PMCID: PMC11980589 DOI: 10.1128/mbio.03809-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025] Open
Abstract
Poxviruses comprise pathogens that are highly pathogenic to humans and animals, causing diseases such as smallpox and mpox (formerly monkeypox). The family also contains members developed as vaccine vectors and oncolytic agents to fight other diseases. Vaccinia virus is the prototype poxvirus and the vaccine used to eradicate smallpox. Poxvirus genes follow a cascade temporal expression pattern, categorized into early, intermediate, and late stages using distinct transcription factors. This review comprehensively summarized the temporal expression classification of over 200 vaccinia virus genes. The relationships between expression classes and functions, as well as different branches of immune responses, were discussed. Based on the vaccinia virus orthologs, we classified the temporal expression classes of all the mpox virus genes, including a few that were not previously annotated with orthologs in vaccinia viruses. Additionally, we reviewed the functions of all vaccinia virus genes based on the up-to-date published papers. This review provides a readily usable resource for researchers working on poxvirus biology, medical countermeasures, and poxvirus utility development.
Collapse
Affiliation(s)
- Yining Deng
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Santiago Navarro-Forero
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Zhilong Yang
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
2
|
Li M, Xiong J, Zhou H, Liu J, Wang C, Jia M, Wang Y, Zhang N, Chen Y, Zhong T, Zhang Z, Li R, Zhang Y, Guo Y, Peng Q, Kong L. Transcriptomic and Proteomic Analysis of Monkeypox Virus A5L-Expressing HEK293T Cells. Int J Mol Sci 2025; 26:398. [PMID: 39796253 PMCID: PMC11720441 DOI: 10.3390/ijms26010398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/25/2024] [Accepted: 01/03/2025] [Indexed: 01/13/2025] Open
Abstract
Monkeypox (MPOX) is a zoonotic viral disease caused by the Monkeypox virus (MPXV), which has become the most significant public health threat within the Orthopoxvirus genus since the eradication of the Variola virus (VARV). Despite the extensive attention MPXV has garnered, little is known about its clinical manifestations in humans. In this study, a high-throughput RNA sequencing (RNA-seq) and liquid chromatography-tandem mass spectrometry (LC-MS/MS) approach was employed to investigate the transcriptional and metabolic responses of HEK293T cells to the MPXV A5L protein. RNA-seq analysis identified a total of 1473 differentially expressed genes (DEGs), comprising 911 upregulated and 562 downregulated genes. Additionally, LC-MS/MS analysis revealed 185 cellular proteins with significantly altered abundance ratios that interact with the A5L protein. Here, we perform Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of the transcriptome and proteome signatures of MPXV A5L-expressing HEK293T cells to gain insights into the virus proteins-host interplay. Transcriptomic analysis revealed that transfection of the MPXV A5L protein modulated genes primarily associated with the cell cycle, ribosome, and DNA replication. Proteomic analysis indicated that this protein predominantly interacted with host ribosomal proteins and cytoskeletal proteins. The combination of transcriptomic and proteomic analysis offers new perspectives for understanding the interaction between pathogens and hosts. Our research emphasizes the significant role of MPXV A5L in facilitating viral internalization and assembly, as well as its impact on the host's translation system.
Collapse
Affiliation(s)
- Mingzhi Li
- Institute of Pathogenic Microorganism, Jiangxi Agricultural University, Nanchang 330000, China
- Nanchang City Key Laboratory of Animal Virus and Genetic Engineering, Nanchang 330000, China
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang 330000, China
| | - Jiaqi Xiong
- Institute of Pathogenic Microorganism, Jiangxi Agricultural University, Nanchang 330000, China
- Nanchang City Key Laboratory of Animal Virus and Genetic Engineering, Nanchang 330000, China
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang 330000, China
| | - Hao Zhou
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang 330000, China
| | - Jing Liu
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang 330000, China
| | - Chenyi Wang
- Institute of Pathogenic Microorganism, Jiangxi Agricultural University, Nanchang 330000, China
- Nanchang City Key Laboratory of Animal Virus and Genetic Engineering, Nanchang 330000, China
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang 330000, China
| | - Mengle Jia
- Institute of Pathogenic Microorganism, Jiangxi Agricultural University, Nanchang 330000, China
- Nanchang City Key Laboratory of Animal Virus and Genetic Engineering, Nanchang 330000, China
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang 330000, China
| | - Yihao Wang
- Institute of Pathogenic Microorganism, Jiangxi Agricultural University, Nanchang 330000, China
- Nanchang City Key Laboratory of Animal Virus and Genetic Engineering, Nanchang 330000, China
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang 330000, China
| | - Nannan Zhang
- Institute of Pathogenic Microorganism, Jiangxi Agricultural University, Nanchang 330000, China
- Nanchang City Key Laboratory of Animal Virus and Genetic Engineering, Nanchang 330000, China
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang 330000, China
| | - Yanying Chen
- Institute of Pathogenic Microorganism, Jiangxi Agricultural University, Nanchang 330000, China
- Nanchang City Key Laboratory of Animal Virus and Genetic Engineering, Nanchang 330000, China
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang 330000, China
| | - Tao Zhong
- Institute of Pathogenic Microorganism, Jiangxi Agricultural University, Nanchang 330000, China
- Nanchang City Key Laboratory of Animal Virus and Genetic Engineering, Nanchang 330000, China
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang 330000, China
| | - Zhicheng Zhang
- Institute of Pathogenic Microorganism, Jiangxi Agricultural University, Nanchang 330000, China
- Nanchang City Key Laboratory of Animal Virus and Genetic Engineering, Nanchang 330000, China
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang 330000, China
| | - Ruiying Li
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang 330000, China
| | - Yuxin Zhang
- Institute of Pathogenic Microorganism, Jiangxi Agricultural University, Nanchang 330000, China
- Nanchang City Key Laboratory of Animal Virus and Genetic Engineering, Nanchang 330000, China
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang 330000, China
| | - Yunli Guo
- Institute of Pathogenic Microorganism, Jiangxi Agricultural University, Nanchang 330000, China
- Nanchang City Key Laboratory of Animal Virus and Genetic Engineering, Nanchang 330000, China
| | - Qi Peng
- Institute of Pathogenic Microorganism, Jiangxi Agricultural University, Nanchang 330000, China
- Nanchang City Key Laboratory of Animal Virus and Genetic Engineering, Nanchang 330000, China
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang 330000, China
| | - Lingbao Kong
- Institute of Pathogenic Microorganism, Jiangxi Agricultural University, Nanchang 330000, China
- Nanchang City Key Laboratory of Animal Virus and Genetic Engineering, Nanchang 330000, China
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang 330000, China
| |
Collapse
|
3
|
Shchelkunov SN, Yakubitskiy SN, Titova KA, Pyankov SA, Shulgina IS, Starostina EV, Borgoyakova MB, Kisakov DN, Karpenko LI, Shchelkunova GA, Sergeev AA. An Attenuated and Highly Immunogenic Variant of the Vaccinia Virus. Acta Naturae 2024; 16:82-89. [PMID: 39188266 PMCID: PMC11345087 DOI: 10.32607/actanaturae.27384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 04/05/2024] [Indexed: 08/28/2024] Open
Abstract
The vaccinia virus (VACV) has been used for prophylactic immunization against smallpox for many decades. However, the VACV-based vaccine had been highly reactogenic. Therefore, after the eradication of smallpox, the World Health Organization in 1980 recommended that vaccination against this infection be discontinued. As a result, there has been a rise in the occurrence of orthopoxvirus infections in humans in recent years, with the most severe being the 2022 monkeypox epidemic that reached all continents. Thus, it is crucial to address the pressing matter of developing safe and highly immunogenic vaccines for new generations to combat orthopoxvirus infections. In a previous study, we created a LAD strain by modifying the LIVP (L) VACV strain, which is used as a first-generation smallpox vaccine in Russia. This modification involved introducing mutations in the A34R gene to enhance extracellular virion production and deleting the A35R gene to counteract the antibody response to the viral infection. In this study, a strain LADA was created with an additional deletion in the DNA of the LAD strain ati gene. This ati gene directs the production of a major non-virion immunogen. The findings indicate that the LADA VACV variant exhibits lower levels of reactogenicity in BALB/c mice during intranasal infection, as compared to the original L strain. Following intradermal immunization with a 105 PFU dose, both the LAD and LADA strains were found to induce a significantly enhanced cellular immune response in mice when compared to the L strain. At the same time, the highest level of virus-specific IFN-γ producing cells for the LAD variant was detected on the 7th day post-immunization (dpi), whereas for LADA, it was observed on 14 dpi. The LAD and LADA strains induced significantly elevated levels of VACV-specific IgG compared to the original L strain, particularly between 28 and 56 dpi. The vaccinated mice were intranasally infected with the cowpox virus at a dose of 460 LD50 to assess the protective immunity at 62 dpi. The LADA virus conferred complete protection to mice, with the LAD strain providing 70% protection and the parent strain L offering protection to only 60% of the animals.
Collapse
Affiliation(s)
- S. N. Shchelkunov
- State Research Center of Virology and Biotechnology “Vector”, Rospotrebnadzor, Koltsovo, Novosibirsk region, 630559 Russian Federation
| | - S. N. Yakubitskiy
- State Research Center of Virology and Biotechnology “Vector”, Rospotrebnadzor, Koltsovo, Novosibirsk region, 630559 Russian Federation
| | - K. A. Titova
- State Research Center of Virology and Biotechnology “Vector”, Rospotrebnadzor, Koltsovo, Novosibirsk region, 630559 Russian Federation
| | - S. A. Pyankov
- State Research Center of Virology and Biotechnology “Vector”, Rospotrebnadzor, Koltsovo, Novosibirsk region, 630559 Russian Federation
| | - I. S. Shulgina
- State Research Center of Virology and Biotechnology “Vector”, Rospotrebnadzor, Koltsovo, Novosibirsk region, 630559 Russian Federation
| | - E. V. Starostina
- State Research Center of Virology and Biotechnology “Vector”, Rospotrebnadzor, Koltsovo, Novosibirsk region, 630559 Russian Federation
| | - M. B. Borgoyakova
- State Research Center of Virology and Biotechnology “Vector”, Rospotrebnadzor, Koltsovo, Novosibirsk region, 630559 Russian Federation
| | - D. N. Kisakov
- State Research Center of Virology and Biotechnology “Vector”, Rospotrebnadzor, Koltsovo, Novosibirsk region, 630559 Russian Federation
| | - L. I. Karpenko
- State Research Center of Virology and Biotechnology “Vector”, Rospotrebnadzor, Koltsovo, Novosibirsk region, 630559 Russian Federation
| | - G. A. Shchelkunova
- State Research Center of Virology and Biotechnology “Vector”, Rospotrebnadzor, Koltsovo, Novosibirsk region, 630559 Russian Federation
| | - A. A. Sergeev
- State Research Center of Virology and Biotechnology “Vector”, Rospotrebnadzor, Koltsovo, Novosibirsk region, 630559 Russian Federation
| |
Collapse
|
4
|
Mohanty P, Panda P, Acharya RK, Pande B, Bhaskar LVKS, Verma HK. Emerging perspectives on RNA virus-mediated infections: from pathogenesis to therapeutic interventions. World J Virol 2023; 12:242-255. [PMID: 38187500 PMCID: PMC10768389 DOI: 10.5501/wjv.v12.i5.242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/07/2023] [Accepted: 11/29/2023] [Indexed: 12/25/2023] Open
Abstract
RNA viruses continue to pose significant threats to global public health, necessitating a profound understanding of their pathogenic mechanisms and the development of effective therapeutic interventions. This manuscript provides a comprehensive overview of emerging perspectives on RNA virus-mediated infections, spanning from the intricate intricacies of viral pathogenesis to the forefront of innovative therapeutic strategies. A critical exploration of antiviral drugs sets the stage, highlighting the diverse classes of compounds that target various stages of the viral life cycle, underscoring the ongoing efforts to combat viral infections. Central to this discussion is the exploration of RNA-based therapeutics, with a spotlight on messenger RNA (mRNA)-based approaches that have revolutionized the landscape of antiviral interventions. Furthermore, the manuscript delves into the intricate world of delivery systems, exploring inno-vative technologies designed to enhance the efficiency and safety of mRNA vaccines. By analyzing the challenges and advancements in delivery mechanisms, this review offers a roadmap for future research and development in this critical area. Beyond conventional infectious diseases, the document explores the expanding applications of mRNA vaccines, including their promising roles in cancer immunotherapy and personalized medicine approaches. This manuscript serves as a valuable resource for researchers, clinicians, and policymakers alike, offering a nuanced perspective on RNA virus pathogenesis and the cutting-edge therapeutic interventions. By synthesizing the latest advancements and challenges, this review contributes significantly to the ongoing discourse in the field, driving the development of novel strategies to combat RNA virus-mediated infections effectively.
Collapse
Affiliation(s)
- Pratik Mohanty
- Department of Bioscience and Bioengineering, Indian Institute of Technology, Guwahati 781039, Assam, India
| | - Poojarani Panda
- Life Science, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Rakesh Kumar Acharya
- Department of Zoology, Guru Ghasidas Vishwavidyalaya, Bilaspur, Bilaspur 495009, Chhattisgarh, India
| | - Babita Pande
- Department of Physiology, All India Institute of Medical Science, Raipur 492001, chhattisgarh, India
| | - LVKS Bhaskar
- Department of Zoology, Guru Ghasidas Vishwavidyalaya, Bilaspur, Bilaspur 495009, Chhattisgarh, India
| | - Henu Kumar Verma
- Lung Health and Immunity, Helmholtz Zentrum Munich, Munich 85764, Bayren, Germany
| |
Collapse
|
5
|
Zafirov D, Giovinazzo N, Lecampion C, Field B, Ducassou JN, Couté Y, Browning KS, Robaglia C, Gallois JL. Arabidopsis eIF4E1 protects the translational machinery during TuMV infection and restricts virus accumulation. PLoS Pathog 2023; 19:e1011417. [PMID: 37983287 PMCID: PMC10721207 DOI: 10.1371/journal.ppat.1011417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 12/14/2023] [Accepted: 10/23/2023] [Indexed: 11/22/2023] Open
Abstract
Successful subversion of translation initiation factors eIF4E determines the infection success of potyviruses, the largest group of viruses affecting plants. In the natural variability of many plant species, resistance to potyvirus infection is provided by polymorphisms at eIF4E that renders them inadequate for virus hijacking but still functional in translation initiation. In crops where such natural resistance alleles are limited, the genetic inactivation of eIF4E has been proposed for the engineering of potyvirus resistance. However, recent findings indicate that knockout eIF4E alleles may be deleterious for plant health and could jeopardize resistance efficiency in comparison to functional resistance proteins. Here, we explored the cause of these adverse effects by studying the role of the Arabidopsis eIF4E1, whose inactivation was previously reported as conferring resistance to the potyvirus clover yellow vein virus (ClYVV) while also promoting susceptibility to another potyvirus turnip mosaic virus (TuMV). We report that eIF4E1 is required to maintain global plant translation and to restrict TuMV accumulation during infection, and its absence is associated with a favoured virus multiplication over host translation. Furthermore, our findings show that, in the absence of eIF4E1, infection with TuMV results in the production of a truncated eIFiso4G1 protein. Finally, we demonstrate a role for eIFiso4G1 in TuMV accumulation and in supporting plant fitness during infection. These findings suggest that eIF4E1 counteracts the hijacking of the plant translational apparatus during TuMV infection and underscore the importance of preserving the functionality of translation initiation factors eIF4E when implementing potyvirus resistance strategies.
Collapse
Affiliation(s)
- Delyan Zafirov
- GAFL, INRAE, Montfavet, France
- Aix-Marseille Univ, CEA, CNRS, BIAM, LGBP Team, Marseille, France
| | | | - Cécile Lecampion
- Aix-Marseille Univ, CEA, CNRS, BIAM, LGBP Team, Marseille, France
| | - Ben Field
- Aix-Marseille Univ, CEA, CNRS, BIAM, LGBP Team, Marseille, France
| | | | - Yohann Couté
- Univ. Grenoble Alpes, INSERM, CEA, UA13 BGE, CNRS, CEA, Grenoble, France
| | - Karen S. Browning
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, United States of America
| | | | | |
Collapse
|
6
|
Albert M, Vázquez J, Falcón-Pérez JM, Balboa MA, Liesa M, Balsinde J, Guerra S. ISG15 Is a Novel Regulator of Lipid Metabolism during Vaccinia Virus Infection. Microbiol Spectr 2022; 10:e0389322. [PMID: 36453897 PMCID: PMC9769738 DOI: 10.1128/spectrum.03893-22] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 11/10/2022] [Indexed: 12/03/2022] Open
Abstract
Interferon-stimulated gene 15 (ISG15) is a 15-kDa ubiquitin-like modifier that binds to target proteins in a process termed ISGylation. ISG15, first described as an antiviral molecule against many viruses, participates in numerous cellular processes, from immune modulation to the regulation of genome stability. Interestingly, the role of ISG15 as a regulator of cell metabolism has recently gained strength. We previously described ISG15 as a regulator of mitochondrial functions in bone marrow-derived macrophages (BMDMs) in the context of Vaccinia virus (VACV) infection. Here, we demonstrate that ISG15 regulates lipid metabolism in BMDMs and that ISG15 is necessary to modulate the impact of VACV infection on lipid metabolism. We show that Isg15-/- BMDMs demonstrate alterations in the levels of several key proteins of lipid metabolism that result in differences in the lipid profile compared with Isg15+/+ (wild-type [WT]) BMDMs. Specifically, Isg15-/- BMDMs present reduced levels of neutral lipids, reflected by decreased lipid droplet number. These alterations are linked to increased levels of lipases and are independent of enhanced fatty acid oxidation (FAO). Moreover, we demonstrate that VACV causes a dysregulation in the proteomes of BMDMs and alterations in the lipid content of these cells, which appear exacerbated in Isg15-/- BMDMs. Such metabolic changes are likely caused by increased expression of the metabolic regulators peroxisome proliferator-activated receptor-γ (PPARγ) and PPARγ coactivator-1α (PGC-1α). In summary, our results highlight that ISG15 controls BMDM lipid metabolism during viral infections, suggesting that ISG15 is an important host factor to restrain VACV impact on cell metabolism. IMPORTANCE The functions of ISG15 are continuously expanding, and growing evidence supports its role as a relevant modulator of cell metabolism. In this work, we highlight how the absence of ISG15 impacts macrophage lipid metabolism in the context of viral infections and how poxviruses modulate metabolism to ensure successful replication. Our results open the door to new advances in the comprehension of macrophage immunometabolism and the interaction between VACV and the host.
Collapse
Affiliation(s)
- Manuel Albert
- Department of Preventive Medicine, Public Health and Microbiology, Universidad Autónoma de Madrid, Madrid, Spain
| | - Jesús Vázquez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC-ISCIII), Madrid, Spain
| | | | - María A. Balboa
- Consejo Superior de Investigaciones Científicas (CSIC), Instituto de Biología y Genética Molecular, Valladolid, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Marc Liesa
- Department of Medicine, Endocrinology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
- Institut de Biologia Molecular de Barcelona, IBMB, CSIC, Barcelona, Spain
| | - Jesús Balsinde
- Consejo Superior de Investigaciones Científicas (CSIC), Instituto de Biología y Genética Molecular, Valladolid, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Susana Guerra
- Department of Preventive Medicine, Public Health and Microbiology, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
7
|
Park C, Walsh D. Ribosomes in poxvirus infection. Curr Opin Virol 2022; 56:101256. [PMID: 36270183 PMCID: PMC10106528 DOI: 10.1016/j.coviro.2022.101256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 07/11/2022] [Accepted: 07/13/2022] [Indexed: 11/19/2022]
Abstract
Poxviruses are large double-stranded DNA viruses that encode their own DNA replication, transcription, and mRNA biogenesis machinery, which underlies their ability to replicate entirely in the cytoplasm. However, like all other viruses, poxviruses remain dependent on host ribosomes to translate their mRNAs into the viral proteins needed to complete their replication cycle. While earlier studies established a fundamental understanding of how poxviruses wrestle with their hosts for control of translation initiation and elongation factors that guide ribosome recruitment and mRNA decoding, recent work has begun to reveal the extent to which poxviruses directly target the ribosome itself. This review summarizes our current understanding of the regulation of ribosomes and translation in poxvirus infection.
Collapse
Affiliation(s)
- Chorong Park
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Derek Walsh
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
8
|
Depierreux DM, Altenburg AF, Soday L, Fletcher-Etherington A, Antrobus R, Ferguson BJ, Weekes MP, Smith GL. Selective modulation of cell surface proteins during vaccinia infection: A resource for identifying viral immune evasion strategies. PLoS Pathog 2022; 18:e1010612. [PMID: 35727847 PMCID: PMC9307158 DOI: 10.1371/journal.ppat.1010612] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 07/22/2022] [Accepted: 05/23/2022] [Indexed: 11/24/2022] Open
Abstract
The interaction between immune cells and virus-infected targets involves multiple plasma membrane (PM) proteins. A systematic study of PM protein modulation by vaccinia virus (VACV), the paradigm of host regulation, has the potential to reveal not only novel viral immune evasion mechanisms, but also novel factors critical in host immunity. Here, >1000 PM proteins were quantified throughout VACV infection, revealing selective downregulation of known T and NK cell ligands including HLA-C, downregulation of cytokine receptors including IFNAR2, IL-6ST and IL-10RB, and rapid inhibition of expression of certain protocadherins and ephrins, candidate activating immune ligands. Downregulation of most PM proteins occurred via a proteasome-independent mechanism. Upregulated proteins included a decoy receptor for TRAIL. Twenty VACV-encoded PM proteins were identified, of which five were not recognised previously as such. Collectively, this dataset constitutes a valuable resource for future studies on antiviral immunity, host-pathogen interaction, poxvirus biology, vector-based vaccine design and oncolytic therapy. Vaccinia virus (VACV) is the vaccine used to eradicate smallpox and an excellent model for studying host-pathogen interactions. Many VACV-mediated immune evasion strategies are known, however how immune cells recognise VACV-infected cells is incompletely understood because of the complexity of surface proteins regulating such interactions. Here, a systematic study of proteins on the cell surface at different times during infection with VACV is presented. This shows not only the precise nature and kinetics of appearance of VACV proteins, but also the selective alteration of cellular surface proteins. The latter thereby identified potential novel immune evasion strategies and host proteins regulating immune activation. Comprehensive comparisons with published datasets provided further insight into mechanisms used to regulate surface protein expression. Such comparisons also identified proteins that are targeted by both VACV and human cytomegalovirus (HCMV), and which are therefore likely to represent host proteins regulating immune recognition and activation. Collectively, this work provides a valuable resource for studying viral immune evasion mechanisms and novel host proteins critical in host immunity.
Collapse
Affiliation(s)
| | | | - Lior Soday
- Cambridge Institute for Medical Research, University of Cambridge, United Kingdom
| | | | - Robin Antrobus
- Cambridge Institute for Medical Research, University of Cambridge, United Kingdom
| | | | - Michael P. Weekes
- Cambridge Institute for Medical Research, University of Cambridge, United Kingdom
- * E-mail: (MPW); (GLS)
| | - Geoffrey L. Smith
- Department of Pathology, University of Cambridge, United Kingdom
- * E-mail: (MPW); (GLS)
| |
Collapse
|
9
|
Molina JA, Yang Z. Rapid and quantitative evaluation of VACV-induced host shutoff using newly generated cell lines stably expressing secreted Gaussia luciferase. J Med Virol 2022; 94:3811-3819. [PMID: 35415899 PMCID: PMC9197853 DOI: 10.1002/jmv.27773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/08/2022] [Accepted: 04/09/2022] [Indexed: 11/06/2022]
Abstract
Host shutoff, characterized by a global decline of cellular protein synthesis, is commonly observed in many viral infections, including vaccinia virus. Classic methods measuring host shutoff include the use of radioactive or non-radioactive probes to label newly synthesized proteins followed by radioautography or sodium dodecyl-sulfate polyacrylamide gel electrophoresis (SDS-PAGE) to resolve the proteins for follow-up detection. While these are highly reliable methods, they are time- and labor-consuming. Here we generated two cell lines stably expressing secreted Gaussia luciferase. These reporter cells allow rapid, quantitative, and consecutive monitoring of host shutoff from a single infection sample. We evaluated host shutoff induced by wild-type and various mutant vaccinia viruses using the reporter cell lines. The results validated the utilities of the reporter cells and quantitatively characterized vaccinia virus-induced host shutoff at different stages of replication. Notably, the results also indicated additional major unidentified VACV shutoff factors. Our study provides new tool to study host shutoff. The reporter cells are also suitable for high throughput settings and rapid testing of clinically isolated viruses. In combination with classical methods, this tool will greatly facilitate understanding of virus-induced host shutoff, and protein synthesis shutoff caused by other physiologically relevant stresses. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Joshua A Molina
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, USA.,Division of Biology, Kansas State University, Manhattan, KS, USA
| | - Zhilong Yang
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, USA.,Division of Biology, Kansas State University, Manhattan, KS, USA
| |
Collapse
|
10
|
Richard Jr. HB, Minder S, Sidhu A, Juba AN, Jancovich JK, Jacobs BL, Wellensiek BP. Optimization of translation enhancing element use to increase protein expression in a vaccinia virus system. J Gen Virol 2021; 102:001624. [PMID: 34382930 PMCID: PMC8513643 DOI: 10.1099/jgv.0.001624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 06/07/2021] [Indexed: 11/18/2022] Open
Abstract
Since the successful use of vaccinia virus (VACV) in the immunization strategies to eliminate smallpox, research has been focused on the development of recombinant VACV strains expressing proteins from various pathogens. Attempts at decreasing the side effects associated with exposure to recombinant, wild-type viral strains have led to the development of attenuated viruses. Yet while these attenuated VACV's have improved safety profiles compared to unmodified strains, their clinical use has been hindered due to efficacy issues in stimulating a host immune response. This deficiency has largely been attributed to decreased production of the target protein for immunization. Efforts to increase protein production from attenuated VACV strains has largely centered around modulation of viral factors, while manipulation of the translation of viral mRNAs has been largely unexplored. In this study we evaluate the use of translation enhancing element hTEE-658 to increase recombinant protein production in an attenuated VACV system. Optimization of the use of this motif is also attempted by combining it with strategies that have demonstrated effectiveness in previous research. We show that extension of the 5' leader sequence containing hTEE-658 does not improve motif function, nor does the combination with other known translation enhancing elements. However, the sole use of hTEE-658 in an attenuated VACV system is shown to increase protein expression levels beyond those of a standard viral promoter when used with a wild-type virus. Taken together these results highlight the potential for hTEE-658 to improve the effectiveness of attenuated VACV vaccine candidates and give insights into the optimal sequence context for its use in vaccine design.
Collapse
Affiliation(s)
- Harold B. Richard Jr.
- Biomedical Sciences Program, College of Graduate Studies, Midwestern University, Glendale, AZ 85308, USA
| | - Stephanie Minder
- Biomedical Sciences Program, College of Graduate Studies, Midwestern University, Glendale, AZ 85308, USA
| | - Amandeep Sidhu
- Arizona College of Osteopathic Medicine, Midwestern University, Glendale, AZ 85308, USA
| | - Amber N. Juba
- Biomedical Sciences Program, College of Graduate Studies, Midwestern University, Glendale, AZ 85308, USA
| | - James K. Jancovich
- Department of Biological Sciences, California State University-San Marcos, San Marcos, CA 92078, USA
| | - Bertram L. Jacobs
- Biodesign Center for Immunotherapy, Vaccines and Virotherapy, Arizona State University, Tempe, AZ 85287, USA
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Brian P. Wellensiek
- Biomedical Sciences Program, College of Graduate Studies, Midwestern University, Glendale, AZ 85308, USA
| |
Collapse
|
11
|
Enhancing the Protective Immune Response to Administration of a LIVP-GFP Live Attenuated Vaccinia Virus to Mice. Pathogens 2021; 10:pathogens10030377. [PMID: 33801026 PMCID: PMC8004012 DOI: 10.3390/pathogens10030377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/14/2021] [Accepted: 03/19/2021] [Indexed: 11/17/2022] Open
Abstract
Following the WHO announcement of smallpox eradication, discontinuation of smallpox vaccination with vaccinia virus (VACV) was recommended. However, interest in VACV was soon renewed due to the opportunity of genetic engineering of the viral genome by directed insertion of foreign genes or introduction of mutations or deletions into selected viral genes. This genomic technology enabled production of stable attenuated VACV strains producing antigens of various infectious agents. Due to an increasing threat of human orthopoxvirus re-emergence, the development of safe highly immunogenic live orthopoxvirus vaccines using genetic engineering methods has been the challenge in recent years. In this study, we investigated an attenuated VACV LIVP-GFP (TK-) strain having an insertion of the green fluorescent protein gene into the viral thymidine kinase gene, which was generated on the basis of the LIVP (Lister-Institute for Viral Preparations) strain used in Russia as the first generation smallpox vaccine. We studied the effect of A34R gene modification and A35R gene deletion on the immunogenic and protective properties of the LIVP-GFP strain. The obtained data demonstrate that intradermal inoculation of the studied viruses induces higher production of VACV-specific antibodies compared to their levels after intranasal administration. Introduction of two point mutations into the A34R gene, which increase the yield of extracellular enveloped virions, and deletion of the A35R gene, the protein product of which inhibits presentation of antigens by MHC II, enhances protective potency of the created LIVP-TK--A34R*-dA35R virus against secondary lethal orthopoxvirus infection of BALB/c mice even at an intradermal dose as low as 103 plaque forming units (PFU)/mouse. This virus may be considered not only as a candidate attenuated live vaccine against smallpox and other human orthopoxvirus infections but also as a vector platform for development of safe multivalent live vaccines against other infectious diseases using genetic engineering methods.
Collapse
|
12
|
Soday L, Lu Y, Albarnaz JD, Davies CTR, Antrobus R, Smith GL, Weekes MP. Quantitative Temporal Proteomic Analysis of Vaccinia Virus Infection Reveals Regulation of Histone Deacetylases by an Interferon Antagonist. Cell Rep 2020; 27:1920-1933.e7. [PMID: 31067474 PMCID: PMC6518873 DOI: 10.1016/j.celrep.2019.04.042] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 02/21/2019] [Accepted: 04/08/2019] [Indexed: 01/07/2023] Open
Abstract
Vaccinia virus (VACV) has numerous immune evasion strategies, including multiple mechanisms of inhibition of interferon regulatory factor 3 (IRF-3), nuclear factor κB (NF-κB), and type I interferon (IFN) signaling. Here, we use highly multiplexed proteomics to quantify ∼9,000 cellular proteins and ∼80% of viral proteins at seven time points throughout VACV infection. A total of 265 cellular proteins are downregulated >2-fold by VACV, including putative natural killer cell ligands and IFN-stimulated genes. Two-thirds of these viral targets, including class II histone deacetylase 5 (HDAC5), are degraded proteolytically during infection. In follow-up analysis, we demonstrate that HDAC5 restricts replication of both VACV and herpes simplex virus type 1. By generating a protein-based temporal classification of VACV gene expression, we identify protein C6, a multifunctional IFN antagonist, as being necessary and sufficient for proteasomal degradation of HDAC5. Our approach thus identifies both a host antiviral factor and a viral mechanism of innate immune evasion. Temporal proteomic analysis quantifies host and viral dynamics during vaccinia infection Host protein families are proteasomally degraded over the course of vaccinia infection Vaccinia protein C6 targets HDAC5 for proteasomal degradation HDAC5 is a host antiviral factor that restricts different families of DNA viruses
Collapse
Affiliation(s)
- Lior Soday
- Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK
| | - Yongxu Lu
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| | - Jonas D Albarnaz
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| | - Colin T R Davies
- Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK
| | - Robin Antrobus
- Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK
| | - Geoffrey L Smith
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK.
| | - Michael P Weekes
- Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK.
| |
Collapse
|
13
|
Vaccinia Virus as a Master of Host Shutoff Induction: Targeting Processes of the Central Dogma and Beyond. Pathogens 2020; 9:pathogens9050400. [PMID: 32455727 PMCID: PMC7281567 DOI: 10.3390/pathogens9050400] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/18/2020] [Accepted: 05/19/2020] [Indexed: 12/23/2022] Open
Abstract
The synthesis of host cell proteins is adversely inhibited in many virus infections, whereas viral proteins are efficiently synthesized. This phenomenon leads to the accumulation of viral proteins concurrently with a profound decline in global host protein synthesis, a phenomenon often termed “host shutoff”. To induce host shutoff, a virus may target various steps of gene expression, as well as pre- and post-gene expression processes. During infection, vaccinia virus (VACV), the prototype poxvirus, targets all major processes of the central dogma of genetics, as well as pre-transcription and post-translation steps to hinder host cell protein production. In this article, we review the strategies used by VACV to induce host shutoff in the context of strategies employed by other viruses. We elaborate on how VACV induces host shutoff by targeting host cell DNA synthesis, RNA production and processing, mRNA translation, and protein degradation. We emphasize the topics on VACV’s approaches toward modulating mRNA processing, stability, and translation during infection. Finally, we propose avenues for future investigations, which will facilitate our understanding of poxvirus biology, as well as fundamental cellular gene expression and regulation mechanisms.
Collapse
|
14
|
Gowripalan A, Abbott CR, McKenzie C, Chan WS, Karupiah G, Levy L, Newsome TP. Cell-to-cell spread of vaccinia virus is promoted by TGF-β-independent Smad4 signalling. Cell Microbiol 2020; 22:e13206. [PMID: 32237038 DOI: 10.1111/cmi.13206] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 02/02/2020] [Accepted: 02/19/2020] [Indexed: 12/19/2022]
Abstract
The induction of Smad signalling by the extracellular ligand TGF-β promotes tissue plasticity and cell migration in developmental and pathological contexts. Here, we show that vaccinia virus (VACV) stimulates the activity of Smad transcription factors and expression of TGF-β/Smad-responsive genes at the transcript and protein levels. Accordingly, infected cells share characteristics to those undergoing TGF-β/Smad-mediated epithelial-to-mesenchymal transition (EMT). Depletion of the Smad4 protein, a common mediator of TGF-β signalling, results in an attenuation of viral cell-to-cell spread and reduced motility of infected cells. VACV induction of TGF-β/Smad-responsive gene expression does not require the TGF-β ligand or type I and type II TGF-β receptors, suggesting a novel, non-canonical Smad signalling pathway. Additionally, the spread of ectromelia virus, a related orthopoxvirus that does not activate a TGF-β/Smad response, is enhanced by the addition of exogenous TGF-β. Together, our results indicate that VACV orchestrates a TGF-β-like response via a unique activation mechanism to enhance cell migration and promote virus spread.
Collapse
Affiliation(s)
- Anjali Gowripalan
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Caitlin R Abbott
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Christopher McKenzie
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Weng S Chan
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Gunasegaran Karupiah
- Tasmanian School of Medicine, The University of Tasmania, Hobart, Tasmania, Australia
| | - Laurence Levy
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, CRSA, Paris, France
| | - Timothy P Newsome
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
15
|
Shchelkunov SN, Shchelkunova GA. Genes that Control Vaccinia Virus Immunogenicity. Acta Naturae 2020; 12:33-41. [PMID: 32477596 PMCID: PMC7245956 DOI: 10.32607/actanaturae.10935] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 01/13/2020] [Indexed: 12/23/2022] Open
Abstract
The live smallpox vaccine was a historical first and highly effective vaccine. However, along with high immunogenicity, the vaccinia virus (VACV) caused serious side effects in vaccinees, sometimes with lethal outcomes. Therefore, after global eradication of smallpox, VACV vaccination was stopped. For this reason, most of the human population worldwide lacks specific immunity against not only smallpox, but also other zoonotic orthopoxviruses. Outbreaks of diseases caused by these viruses have increasingly occurred in humans on different continents. However, use of the classical live VACV vaccine for prevention against these diseases is unacceptable because of potential serious side effects, especially in individuals with suppressed immunity or immunodeficiency (e.g., HIV-infected patients). Therefore, highly attenuated VACV variants that preserve their immunogenicity are needed. This review discusses current ideas about the development of a humoral and cellular immune response to orthopoxvirus infection/vaccination and describes genetic engineering approaches that could be utilized to generate safe and highly immunogenic live VACV vaccines.
Collapse
Affiliation(s)
- S. N. Shchelkunov
- State Research Center of Virology and Biotechnology “Vector”, Rospotrebnadzor, Novosibirsk region, Koltsovo, 630559 Russia
- The Federal Research Center Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, 630090 Russia
- Novosibirsk State University, Novosibirsk, 630090 Russia
| | - G. A. Shchelkunova
- State Research Center of Virology and Biotechnology “Vector”, Rospotrebnadzor, Novosibirsk region, Koltsovo, 630559 Russia
| |
Collapse
|
16
|
Differential Response Following Infection of Mouse CNS with Virulent and Attenuated Vaccinia Virus Strains. Vaccines (Basel) 2019; 7:vaccines7010019. [PMID: 30759813 PMCID: PMC6466266 DOI: 10.3390/vaccines7010019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 02/04/2019] [Accepted: 02/07/2019] [Indexed: 12/18/2022] Open
Abstract
Viral infections of the central nervous system (CNS) lead to a broad range of pathologies. CNS infections with Orthopox viruses have been mainly documented as an adverse reaction to smallpox vaccination with vaccinia virus. To date, there is insufficient data regarding the mechanisms underlying pathological viral replication or viral clearance. Therefore, informed risk assessment of vaccine adverse reactions or outcome prediction is limited. This work applied a model of viral infection of the CNS, comparing neurovirulent with attenuated strains. We followed various parameters along the disease and correlated viral load, morbidity, and mortality with tissue integrity, innate and adaptive immune response and functionality of the blood–brain barrier. Combining these data with whole brain RNA-seq analysis performed at different time points indicated that neurovirulence is associated with host immune silencing followed by induction of tissue damage-specific pathways. In contrast, brain infection with attenuated strains resulted in rapid and robust induction of innate and adaptive protective immunity, followed by viral clearance and recovery. This study significantly improves our understanding of the mechanisms and processes determining the consequence of viral CNS infection and highlights potential biomarkers associated with such outcomes.
Collapse
|
17
|
Bastidas-Legarda LY, Khakoo SI. Conserved and variable natural killer cell receptors: diverse approaches to viral infections. Immunology 2019; 156:319-328. [PMID: 30570753 DOI: 10.1111/imm.13039] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 12/12/2018] [Indexed: 02/07/2023] Open
Abstract
Natural killer (NK) cells are lymphocytes of the innate immune system with essential roles during viral infections. NK cell functions are mediated through a repertoire of non-rearranging inhibitory and activating receptors that interact with major histocompatibility complex (MHC)-peptide complexes on the surface of infected cells. Recent work studying the conserved CD94-NKG2A and variable killer cell immunoglobulin-like receptor-MHC systems suggest that these two receptor families may have subtly different properties in terms of interactions with MHC class I bound peptides, and in recognition of down-regulation of MHC class I. In this review, we discuss how these properties generate diversity in the NK cell response to viruses.
Collapse
Affiliation(s)
- Leidy Y Bastidas-Legarda
- Faculty of Medicine, Clinical and Experimental Sciences, Southampton General Hospital, University of Southampton, Southampton, UK
| | - Salim I Khakoo
- Faculty of Medicine, Clinical and Experimental Sciences, Southampton General Hospital, University of Southampton, Southampton, UK
| |
Collapse
|
18
|
Meade N, DiGiuseppe S, Walsh D. Translational control during poxvirus infection. WILEY INTERDISCIPLINARY REVIEWS-RNA 2018; 10:e1515. [PMID: 30381906 DOI: 10.1002/wrna.1515] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 08/31/2018] [Accepted: 10/01/2018] [Indexed: 02/06/2023]
Abstract
Poxviruses are an unusual family of large double-stranded (ds) DNA viruses that exhibit an incredible degree of self-sufficiency and complexity in their replication and immune evasion strategies. Indeed, amongst their approximately 200 open reading frames (ORFs), poxviruses encode approximately 100 immunomodulatory proteins to counter host responses along with complete DNA synthesis, transcription, mRNA processing and cytoplasmic redox systems that enable them to replicate exclusively in the cytoplasm of infected cells. However, like all other viruses poxviruses do not encode ribosomes and therefore remain completely dependent on gaining access to the host translational machinery in order to synthesize viral proteins. Early studies of these intriguing viruses helped discover the mRNA cap and polyadenylated (polyA) tail that we now know to be present on most eukaryotic messages and which play fundamental roles in mRNA translation, while more recent studies have begun to reveal the remarkable lengths poxviruses go to in order to control both host and viral protein synthesis. Here, we discuss some of the central strategies used by poxviruses and the broader battle that ensues with the host cell to control the translation system, the outcome of which ultimately dictates the fate of infection. This article is categorized under: Translation > Translation Regulation.
Collapse
Affiliation(s)
- Nathan Meade
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Stephen DiGiuseppe
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Derek Walsh
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| |
Collapse
|
19
|
Yoshikawa H, Larance M, Harney DJ, Sundaramoorthy R, Ly T, Owen-Hughes T, Lamond AI. Efficient analysis of mammalian polysomes in cells and tissues using Ribo Mega-SEC. eLife 2018; 7:36530. [PMID: 30095066 PMCID: PMC6086667 DOI: 10.7554/elife.36530] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 07/28/2018] [Indexed: 12/14/2022] Open
Abstract
We describe Ribo Mega-SEC, a powerful approach for the separation and biochemical analysis of mammalian polysomes and ribosomal subunits using Size Exclusion Chromatography and uHPLC. Using extracts from either cells, or tissues, polysomes can be separated within 15 min from sample injection to fraction collection. Ribo Mega-SEC shows translating ribosomes exist predominantly in polysome complexes in human cell lines and mouse liver tissue. Changes in polysomes are easily quantified between treatments, such as the cellular response to amino acid starvation. Ribo Mega-SEC is shown to provide an efficient, convenient and highly reproducible method for studying functional translation complexes. We show that Ribo Mega-SEC is readily combined with high-throughput MS-based proteomics to characterize proteins associated with polysomes and ribosomal subunits. It also facilitates isolation of complexes for electron microscopy and structural studies.
Collapse
Affiliation(s)
- Harunori Yoshikawa
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Mark Larance
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, United Kingdom.,Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Sydney, Australia
| | - Dylan J Harney
- Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Sydney, Australia
| | | | - Tony Ly
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, United Kingdom.,Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Tom Owen-Hughes
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Angus I Lamond
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| |
Collapse
|
20
|
Carrara G, Parsons M, Saraiva N, Smith GL. Golgi anti-apoptotic protein: a tale of camels, calcium, channels and cancer. Open Biol 2018; 7:rsob.170045. [PMID: 28469007 PMCID: PMC5451544 DOI: 10.1098/rsob.170045] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 04/10/2017] [Indexed: 12/11/2022] Open
Abstract
Golgi anti-apoptotic protein (GAAP), also known as transmembrane Bax inhibitor-1 motif-containing 4 (TMBIM4) or Lifeguard 4 (Lfg4), shares remarkable amino acid conservation with orthologues throughout eukaryotes, prokaryotes and some orthopoxviruses, suggesting a highly conserved function. GAAPs regulate Ca2+ levels and fluxes from the Golgi and endoplasmic reticulum, confer resistance to a broad range of apoptotic stimuli, promote cell adhesion and migration via the activation of store-operated Ca2+ entry, are essential for the viability of human cells, and affect orthopoxvirus virulence. GAAPs are oligomeric, multi-transmembrane proteins that are resident in Golgi membranes and form cation-selective ion channels that may explain the multiple functions of these proteins. Residues contributing to the ion-conducting pore have been defined and provide the first clues about the mechanistic link between these very different functions of GAAP. Although GAAPs are naturally oligomeric, they can also function as monomers, a feature that distinguishes them from other virus-encoded ion channels that must oligomerize for function. This review summarizes the known functions of GAAPs and discusses their potential importance in disease.
Collapse
Affiliation(s)
- Guia Carrara
- Department of Pathology, University of Cambridge, Cambridge, CB2 1QP, UK
| | - Maddy Parsons
- Randall Division of Cell and Molecular Biophysics, King's College London, London SE1 1UL, UK
| | - Nuno Saraiva
- Department of Pathology, University of Cambridge, Cambridge, CB2 1QP, UK .,CBIOS, Universidade Lusófona Research Centre for Biosciences and Health Technologies, Campo Grande 376, Lisbon 1749-024, Portugal
| | - Geoffrey L Smith
- Department of Pathology, University of Cambridge, Cambridge, CB2 1QP, UK
| |
Collapse
|
21
|
Albarnaz JD, Torres AA, Smith GL. Modulating Vaccinia Virus Immunomodulators to Improve Immunological Memory. Viruses 2018; 10:E101. [PMID: 29495547 PMCID: PMC5869494 DOI: 10.3390/v10030101] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 02/21/2018] [Accepted: 02/22/2018] [Indexed: 12/14/2022] Open
Abstract
The increasing frequency of monkeypox virus infections, new outbreaks of other zoonotic orthopoxviruses and concern about the re-emergence of smallpox have prompted research into developing antiviral drugs and better vaccines against these viruses. This article considers the genetic engineering of vaccinia virus (VACV) to enhance vaccine immunogenicity and safety. The virulence, immunogenicity and protective efficacy of VACV strains engineered to lack specific immunomodulatory or host range proteins are described. The ultimate goal is to develop safer and more immunogenic VACV vaccines that induce long-lasting immunological memory.
Collapse
Affiliation(s)
- Jonas D Albarnaz
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK.
| | - Alice A Torres
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK.
| | - Geoffrey L Smith
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK.
| |
Collapse
|
22
|
Fanunza E, Frau A, Sgarbanti M, Orsatti R, Corona A, Tramontano E. Development and Validation of a Novel Dual Luciferase Reporter Gene Assay to Quantify Ebola Virus VP24 Inhibition of IFN Signaling. Viruses 2018; 10:v10020098. [PMID: 29495311 PMCID: PMC5850405 DOI: 10.3390/v10020098] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 02/16/2018] [Accepted: 02/22/2018] [Indexed: 12/28/2022] Open
Abstract
The interferon (IFN) system is the first line of defense against viral infections. Evasion of IFN signaling by Ebola viral protein 24 (VP24) is a critical event in the pathogenesis of the infection and, hence, VP24 is a potential target for drug development. Since no drugs target VP24, the identification of molecules able to inhibit VP24, restoring and possibly enhancing the IFN response, is a goal of concern. Accordingly, we developed a dual signal firefly and Renilla luciferase cell-based drug screening assay able to quantify IFN-mediated induction of Interferon Stimulated Genes (ISGs) and its inhibition by VP24. Human Embryonic Kidney 293T (HEK293T) cells were transiently transfected with a luciferase reporter gene construct driven by the promoter of ISGs, Interferon-Stimulated Response Element (ISRE). Stimulation of cells with IFN-α activated the IFN cascade leading to the expression of ISRE. Cotransfection of cells with a plasmid expressing VP24 cloned from a virus isolated during the last 2014 outbreak led to the inhibition of ISRE transcription, quantified by a luminescent signal. To adapt this system to test a large number of compounds, we performed it in 96-well plates; optimized the assay analyzing different parameters; and validated the system by calculating the Z'- and Z-factor, which showed values of 0.62 and 0.53 for IFN-α stimulation assay and VP24 inhibition assay, respectively, indicative of robust assay performance.
Collapse
Affiliation(s)
- Elisa Fanunza
- Department of Life and Environmental Sciences, University of Cagliari, 09124 Cagliari, Italy.
| | - Aldo Frau
- Department of Life and Environmental Sciences, University of Cagliari, 09124 Cagliari, Italy.
| | - Marco Sgarbanti
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy.
| | - Roberto Orsatti
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy.
| | - Angela Corona
- Department of Life and Environmental Sciences, University of Cagliari, 09124 Cagliari, Italy.
| | - Enzo Tramontano
- Department of Life and Environmental Sciences, University of Cagliari, 09124 Cagliari, Italy.
- Genetics and Biomedical Research Institute, National Research Council, 09042 Monserrato, Italy.
| |
Collapse
|
23
|
Abstract
Interferons (IFNs) are secreted glycoproteins that are produced by cells in response to virus infection and other stimuli and induce an antiviral state in cells bearing IFN receptors. In this way, IFNs restrict virus replication and spread before an adaptive immune response is developed. Viruses are very sensitive to the effects of IFNs and consequently have evolved many strategies to interfere with interferon. This is particularly well illustrated by poxviruses, which have large dsDNA genomes and encode hundreds of proteins. Vaccinia virus is the prototypic poxvirus and expresses many proteins that interfere with IFN and are considered in this review. These proteins act either inside or outside the cell and within the cytoplasm or nucleus. They function by restricting the production of IFN by blocking the signaling pathways leading to transcription of IFN genes, stopping IFNs binding to their receptors, blocking IFN-induced signal transduction leading to expression of interferon-stimulated genes (ISGs), or inhibiting the antiviral activity of ISG products.
Collapse
Affiliation(s)
| | | | - Yongxu Lu
- University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
24
|
Selective recruitment of nucleoporins on vaccinia virus factories and the role of Nup358 in viral infection. Virology 2017; 512:151-160. [DOI: 10.1016/j.virol.2017.09.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Revised: 09/13/2017] [Accepted: 09/14/2017] [Indexed: 12/14/2022]
|
25
|
Koval O, Kochneva G, Tkachenko A, Troitskaya O, Sivolobova G, Grazhdantseva A, Nushtaeva A, Kuligina E, Richter V. Recombinant Vaccinia Viruses Coding Transgenes of Apoptosis-Inducing Proteins Enhance Apoptosis But Not Immunogenicity of Infected Tumor Cells. BIOMED RESEARCH INTERNATIONAL 2017; 2017:3620510. [PMID: 28951871 PMCID: PMC5603130 DOI: 10.1155/2017/3620510] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 07/17/2017] [Accepted: 07/26/2017] [Indexed: 12/16/2022]
Abstract
Genetic modifications of the oncolytic vaccinia virus (VV) improve selective tumor cell infection and death, as well as activation of antitumor immunity. We have engineered a double recombinant VV, coding human GM-CSF, and apoptosis-inducing protein apoptin (VV-GMCSF-Apo) for comparing with the earlier constructed double recombinant VV-GMCSF-Lact, coding another apoptosis-inducing protein, lactaptin, which activated different cell death pathways than apoptin. We showed that both these recombinant VVs more considerably activated a set of critical apoptosis markers in infected cells than the recombinant VV coding GM-CSF alone (VV-GMCSF-dGF): these were phosphatidylserine externalization, caspase-3 and caspase-7 activation, DNA fragmentation, and upregulation of proapoptotic protein BAX. However, only VV-GMCSF-Lact efficiently decreased the mitochondrial membrane potential of infected cancer cells. Investigating immunogenic cell death markers in cancer cells infected with recombinant VVs, we demonstrated that all tested recombinant VVs were efficient in calreticulin and HSP70 externalization, decrease of cellular HMGB1, and ATP secretion. The comparison of antitumor activity against advanced MDA-MB-231 tumor revealed that both recombinants VV-GMCSF-Lact and VV-GMCSF-Apo efficiently delay tumor growth. Our results demonstrate that the composition of GM-CSF and apoptosis-inducing proteins in the VV genome is very efficient tool for specific killing of cancer cells and for activation of antitumor immunity.
Collapse
Affiliation(s)
- Olga Koval
- Department of Biotechnology, Institute of Chemical Biology and Fundamental Medicine, SB RAS, Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
| | - Galina Kochneva
- Department of Viral Hepatitis, State Research Center of Virology and Biotechnology “Vector”, Rospotrebnadzor, Koltsovo, Russia
| | - Anastasiya Tkachenko
- Department of Biotechnology, Institute of Chemical Biology and Fundamental Medicine, SB RAS, Novosibirsk, Russia
| | - Olga Troitskaya
- Department of Biotechnology, Institute of Chemical Biology and Fundamental Medicine, SB RAS, Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
| | - Galina Sivolobova
- Department of Viral Hepatitis, State Research Center of Virology and Biotechnology “Vector”, Rospotrebnadzor, Koltsovo, Russia
| | - Antonina Grazhdantseva
- Department of Viral Hepatitis, State Research Center of Virology and Biotechnology “Vector”, Rospotrebnadzor, Koltsovo, Russia
| | - Anna Nushtaeva
- Department of Biotechnology, Institute of Chemical Biology and Fundamental Medicine, SB RAS, Novosibirsk, Russia
| | - Elena Kuligina
- Department of Biotechnology, Institute of Chemical Biology and Fundamental Medicine, SB RAS, Novosibirsk, Russia
| | - Vladimir Richter
- Department of Biotechnology, Institute of Chemical Biology and Fundamental Medicine, SB RAS, Novosibirsk, Russia
| |
Collapse
|
26
|
Abstract
Many viral infections cause host shutoff, a state in which host protein synthesis is globally inhibited. Emerging evidence from vaccinia and influenza A virus infections indicates that subsets of cellular proteins are resistant to host shutoff and continue to be synthesized. Remarkably, the proteins of oxidative phosphorylation, the cellular-energy-generating machinery, are selectively synthesized in both cases. Identifying mechanisms that drive selective protein synthesis should facilitate understanding both viral replication and fundamental cell biology.
Collapse
|
27
|
Deletion of the K1L Gene Results in a Vaccinia Virus That Is Less Pathogenic Due to Muted Innate Immune Responses, yet Still Elicits Protective Immunity. J Virol 2017; 91:JVI.00542-17. [PMID: 28490586 DOI: 10.1128/jvi.00542-17] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 05/03/2017] [Indexed: 12/14/2022] Open
Abstract
All viruses strategically alter the antiviral immune response to their benefit. The vaccinia virus (VACV) K1 protein has multiple immunomodulatory effects in tissue culture models of infection, including NF-κB antagonism. However, the effect of K1 during animal infection is poorly understood. We determined that a K1L-less vaccinia virus (vΔK1L) was less pathogenic than wild-type VACV in intranasal and intradermal models of infection. Decreased pathogenicity was correlated with diminished virus replication in intranasally infected mice. However, in intradermally inoculated ears, vΔK1L replicated to levels nearly identical to those of VACV, implying that the decreased immune response to vΔK1L infection, not virus replication, dictated lesion size. Several lines of evidence support this theory. First, vΔK1L induced slightly less edema than vK1L, as revealed by histopathology and noninvasive quantitative ultrasound technology (QUS). Second, infiltrating immune cell populations were decreased in vΔK1L-infected ears. Third, cytokine and chemokine gene expression was decreased in vΔK1L-infected ears. While these results identified the biological basis for smaller lesions, they remained puzzling; because K1 antagonizes NF-κB in vitro, antiviral gene expression was expected to be higher during vΔK1L infection. Despite these diminished innate immune responses, vΔK1L vaccination induced a protective VACV-specific CD8+ T cell response and protected against a lethal VACV challenge. Thus, vΔK1L is the first vaccinia virus construct reported that caused a muted innate immune gene expression profile and decreased immune cell infiltration in an intradermal model of infection yet still elicited protective immunity.IMPORTANCE The vaccinia virus (VACV) K1 protein inhibits NF-κB activation among its other antagonistic functions. A virus lacking K1 (vΔK1L) was predicted to be less pathogenic because it would trigger a more robust antiviral immune response than VACV. Indeed, vΔK1L was less pathogenic in intradermally infected mouse ear pinnae. However, vΔK1L infection unexpectedly elicited dramatically reduced infiltration of innate immune cells into ears. This was likely due to decreased expression of cytokine and chemokine genes in vΔK1L-infected ears. As such, our finding contradicted observations from cell culture systems. Interestingly, vΔK1L conferred protective immunity against lethal VACV challenge. This suggests that the muted immune response triggered during vΔK1L infection remained sufficient to mount an effective protective response. Our results highlight the complexity and unpredictable nature of virus-host interactions, a relationship that must be understood to better comprehend virus pathogenesis or to manipulate viruses for use as vaccines.
Collapse
|
28
|
Emmott E, Sorgeloos F, Caddy SL, Vashist S, Sosnovtsev S, Lloyd R, Heesom K, Locker N, Goodfellow I. Norovirus-Mediated Modification of the Translational Landscape via Virus and Host-Induced Cleavage of Translation Initiation Factors. Mol Cell Proteomics 2017; 16:S215-S229. [PMID: 28087593 PMCID: PMC5393397 DOI: 10.1074/mcp.m116.062448] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 01/12/2017] [Indexed: 11/25/2022] Open
Abstract
Noroviruses produce viral RNAs lacking a 5' cap structure and instead use a virus-encoded viral protein genome-linked (VPg) protein covalently linked to viral RNA to interact with translation initiation factors and drive viral protein synthesis. Norovirus infection results in the induction of the innate response leading to interferon stimulated gene (ISG) transcription. However, the translation of the induced ISG mRNAs is suppressed. A SILAC-based mass spectrometry approach was employed to analyze changes to protein abundance in both whole cell and m7GTP-enriched samples to demonstrate that diminished host mRNA translation correlates with changes to the composition of the eukaryotic initiation factor complex. The suppression of host ISG translation correlates with the activity of the viral protease (NS6) and the activation of cellular caspases leading to the establishment of an apoptotic environment. These results indicate that noroviruses exploit the differences between viral VPg-dependent and cellular cap-dependent translation in order to diminish the host response to infection.
Collapse
Affiliation(s)
- Edward Emmott
- From the ‡Division of Virology, Department of Pathology, University of Cambridge, Addenbrookes Hospital, Hills Road, Cambridge, UK;
| | - Frederic Sorgeloos
- From the ‡Division of Virology, Department of Pathology, University of Cambridge, Addenbrookes Hospital, Hills Road, Cambridge, UK
| | - Sarah L Caddy
- From the ‡Division of Virology, Department of Pathology, University of Cambridge, Addenbrookes Hospital, Hills Road, Cambridge, UK
| | - Surender Vashist
- From the ‡Division of Virology, Department of Pathology, University of Cambridge, Addenbrookes Hospital, Hills Road, Cambridge, UK
| | - Stanislav Sosnovtsev
- §Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Richard Lloyd
- ¶Department of Molecular Virology and Microbiology, Baylor College of Medicine, One Baylor Plaza, Houston, TX
| | - Kate Heesom
- ‖Proteomics facility, School of Biochemistry, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, UK
| | - Nicolas Locker
- **Faculty of Health and Medical Sciences, School of Biosciences and Medicine, University of Surrey, Guildford, UK
| | - Ian Goodfellow
- From the ‡Division of Virology, Department of Pathology, University of Cambridge, Addenbrookes Hospital, Hills Road, Cambridge, UK;
| |
Collapse
|
29
|
Ribosome Profiling Reveals Translational Upregulation of Cellular Oxidative Phosphorylation mRNAs during Vaccinia Virus-Induced Host Shutoff. J Virol 2017; 91:JVI.01858-16. [PMID: 28003488 DOI: 10.1128/jvi.01858-16] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 12/12/2016] [Indexed: 11/20/2022] Open
Abstract
Vaccinia virus infection causes a host shutoff that is marked by global inhibition of host protein synthesis. Though the host shutoff may facilitate reallocation of cellular resources for viral replication and evasion of host antiviral immune responses, it poses a challenge for continuous synthesis of cellular proteins that are important for viral replication. It is, however, unclear whether and how certain cellular proteins may be selectively synthesized during the vaccinia virus-induced host shutoff. Using simultaneous RNA sequencing and ribosome profiling, two techniques quantifying genome-wide levels of mRNA and active protein translation, respectively, we analyzed the responses of host cells to vaccinia virus infection at both the transcriptional and translational levels. The analyses showed that cellular mRNA depletion played a dominant role in the shutoff of host protein synthesis. Though the cellular mRNAs were significantly reduced, the relative translation efficiency of a subset of cellular mRNAs increased, particularly those involved in oxidative phosphorylation that are responsible for cellular energy production. Further experiments demonstrated that the protein levels and activities of oxidative phosphorylation increased during vaccinia virus infection, while inhibition of the cellular oxidative phosphorylation function significantly suppressed vaccinia virus replication. Moreover, the short 5' untranslated region of the oxidative phosphorylation mRNAs contributed to the translational upregulation. These results provide evidence of a mechanism that couples translational control and energy metabolism, two processes that all viruses depend on host cells to provide, to support vaccinia virus replication during a host shutoff.IMPORTANCE Many viral infections cause global host protein synthesis shutoff. While host protein synthesis shutoff benefits the virus by relocating cellular resources to viral replication, it also poses a challenge to the maintenance of cellular functions necessary for viral replication if continuous protein synthesis is required. Here we measured the host mRNA translation rate during a vaccinia virus-induced host shutoff by analyzing total and actively translating mRNAs in a genome-wide manner. This study revealed that oxidative phosphorylation mRNAs were translationally upregulated during vaccinia virus-induced host protein synthesis shutoff. Oxidative phosphorylation is the major cellular energy-producing pathway, and we further showed that maintenance of its function is important for vaccinia virus replication. This study highlights the fact that vaccinia virus infection can enhance cellular energy production through translational upregulation in the context of an overall host protein synthesis shutoff to meet energy expenditure.
Collapse
|
30
|
Liem J, Liu J. Stress Beyond Translation: Poxviruses and More. Viruses 2016; 8:v8060169. [PMID: 27314378 PMCID: PMC4926189 DOI: 10.3390/v8060169] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 05/24/2016] [Accepted: 06/08/2016] [Indexed: 02/06/2023] Open
Abstract
Poxviruses are large double-stranded DNA viruses that form viral factories in the cytoplasm of host cells. These viruses encode their own transcription machinery, but rely on host translation for protein synthesis. Thus, poxviruses have to cope with and, in most cases, reprogram host translation regulation. Granule structures, called antiviral granules (AVGs), have been observed surrounding poxvirus viral factories. AVG formation is associated with abortive poxvirus infection, and AVGs contain proteins that are typically found in stress granules (SGs). With certain mutant poxviruses lack of immunoregulatory factor(s), we can specifically examine the mechanisms that drive the formation of these structures. In fact, cytoplasmic macromolecular complexes form during many viral infections and contain sensing molecules that can help reprogram transcription. More importantly, the similarity between AVGs and cytoplasmic structures formed during RNA and DNA sensing events prompts us to reconsider the cause and consequence of these AVGs. In this review, we first summarize recent findings regarding how poxvirus manipulates host translation. Next, we compare and contrast SGs and AVGs. Finally, we review recent findings regarding RNA- and especially DNA-sensing bodies observed during viral infection.
Collapse
Affiliation(s)
- Jason Liem
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas.
| | - Jia Liu
- Department of Microbiology and Immunology, Center for Microbial Pathogenesis and Host Inflammatory Responses, University of Arkansas for Medical Sciences, Little Rock, Arkansas.
| |
Collapse
|