1
|
Rhine K, Li R, Kopalle HM, Rothamel K, Ge X, Epstein E, Mizrahi O, Madrigal AA, Her HL, Gomberg TA, Hermann A, Schwartz JL, Daniels AJ, Manor U, Ravits J, Signer RAJ, Bennett EJ, Yeo GW. Neuronal aging causes mislocalization of splicing proteins and unchecked cellular stress. Nat Neurosci 2025; 28:1174-1184. [PMID: 40456907 DOI: 10.1038/s41593-025-01952-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 03/14/2025] [Indexed: 06/11/2025]
Abstract
Aging is one of the most prominent risk factors for neurodegeneration, yet the molecular mechanisms underlying the deterioration of old neurons are mostly unknown. To efficiently study neurodegeneration in the context of aging, we transdifferentiated primary human fibroblasts from aged healthy donors directly into neurons, which retained their aging hallmarks, and we verified key findings in aged human and mouse brain tissue. Here we show that aged neurons are broadly depleted of RNA-binding proteins, especially spliceosome components. Intriguingly, splicing proteins-like the dementia- and ALS-associated protein TDP-43-mislocalize to the cytoplasm in aged neurons, which leads to widespread alternative splicing. Cytoplasmic spliceosome components are typically recruited to stress granules, but aged neurons suffer from chronic cellular stress that prevents this sequestration. We link chronic stress to the malfunctioning ubiquitylation machinery, poor HSP90α chaperone activity and the failure to respond to new stress events. Together, our data demonstrate that aging-linked deterioration of RNA biology is a key driver of poor resiliency in aged neurons.
Collapse
Affiliation(s)
- Kevin Rhine
- Department of Cellular & Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Sanford Stem Cell Institute Innovation Center and Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
- Waitt Advanced Biophotonics Center, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Rachel Li
- Department of Cellular & Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Sanford Stem Cell Institute Innovation Center and Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
- Biomedical Sciences Graduate Program, University of California San Diego, La Jolla, CA, USA
| | - Hema M Kopalle
- Department of Cellular & Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Sanford Stem Cell Institute Innovation Center and Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
- Biological Sciences Graduate Program, University of California San Diego, La Jolla, CA, USA
| | - Katherine Rothamel
- Department of Cellular & Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Sanford Stem Cell Institute Innovation Center and Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
- Center for RNA Technologies & Therapeutics, University of California San Diego, La Jolla, CA, USA
| | - Xuezhen Ge
- Department of Cell & Developmental Biology, University of California San Diego, La Jolla, CA, USA
| | - Elle Epstein
- Department of Cellular & Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Sanford Stem Cell Institute Innovation Center and Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Orel Mizrahi
- Department of Cellular & Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Sanford Stem Cell Institute Innovation Center and Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Assael A Madrigal
- Department of Cellular & Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Sanford Stem Cell Institute Innovation Center and Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Hsuan-Lin Her
- Department of Cellular & Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Sanford Stem Cell Institute Innovation Center and Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
- Bioinformatics & Systems Biology Graduate Program, University of California San Diego, La Jolla, CA, USA
| | - Trent A Gomberg
- Department of Cellular & Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Sanford Stem Cell Institute Innovation Center and Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
- Biomedical Sciences Graduate Program, University of California San Diego, La Jolla, CA, USA
| | - Anita Hermann
- Department of Neurosciences, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Joshua L Schwartz
- Department of Cellular & Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Sanford Stem Cell Institute Innovation Center and Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Amanda J Daniels
- Sanford Stem Cell Institute Innovation Center and Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Cell & Developmental Biology, University of California San Diego, La Jolla, CA, USA
- Division of Regenerative Medicine, Department of Medicine, Sanford Stem Cell Institute, Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Uri Manor
- Waitt Advanced Biophotonics Center, Salk Institute for Biological Studies, La Jolla, CA, USA
- Department of Cell & Developmental Biology, University of California San Diego, La Jolla, CA, USA
| | - John Ravits
- Department of Neurosciences, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Robert A J Signer
- Sanford Stem Cell Institute Innovation Center and Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, CA, USA
- Division of Regenerative Medicine, Department of Medicine, Sanford Stem Cell Institute, Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Eric J Bennett
- Department of Cell & Developmental Biology, University of California San Diego, La Jolla, CA, USA
| | - Gene W Yeo
- Department of Cellular & Molecular Medicine, University of California San Diego, La Jolla, CA, USA.
- Sanford Stem Cell Institute Innovation Center and Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, CA, USA.
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA.
- Biomedical Sciences Graduate Program, University of California San Diego, La Jolla, CA, USA.
- Biological Sciences Graduate Program, University of California San Diego, La Jolla, CA, USA.
- Center for RNA Technologies & Therapeutics, University of California San Diego, La Jolla, CA, USA.
- Bioinformatics & Systems Biology Graduate Program, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
2
|
Lučin P, Mahmutefendić Lučin H. The Cell Biologist Potential of Cytomegalovirus to Solve Biogenesis and Maintenance of the Membrane Recycling System. Biomedicines 2025; 13:326. [PMID: 40002739 PMCID: PMC11853475 DOI: 10.3390/biomedicines13020326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 12/27/2024] [Accepted: 01/16/2025] [Indexed: 02/27/2025] Open
Abstract
Cytomegalovirus (CMV) is an important pathogen that extensively remodels the nucleus and cytosol of an infected cell to establish a productive infection [...].
Collapse
Affiliation(s)
- Pero Lučin
- Department of Physiology, Immunology and Pathophysiology, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia;
- Department of Nursing, University Center Varaždin, University North, Jurja Križanića 31b, 42000 Varaždin, Croatia
| | - Hana Mahmutefendić Lučin
- Department of Physiology, Immunology and Pathophysiology, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia;
- Department of Nursing, University Center Varaždin, University North, Jurja Križanića 31b, 42000 Varaždin, Croatia
| |
Collapse
|
3
|
Kim HY, Mizrahi O, Lee W, Rosenthal SB, Han C, Yee BA, Blue SM, Diaz J, Jonnalagadda J, Hokutan K, Jang H, Ma CT, Bobkov A, Sergienko E, Jackson MR, Stefanovic B, Kisseleva T, Yeo GW, Brenner DA. LARP6 regulates the mRNA translation of fibrogenic genes in liver fibrosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.16.633226. [PMID: 39868246 PMCID: PMC11761402 DOI: 10.1101/2025.01.16.633226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Metabolic syndrome and excessive alcohol consumption result in liver injury and fibrosis, which is characterized by increased collagen production by activated Hepatic Stellate Cells (HSCs). LARP6, an RNA-binding protein, was shown to facilitate collagen production. However, LARP6 expression and functionality as a regulator of fibrosis development in a disease relevant model remains elusive. By using snRNA-sequencing, we show that LARP6 is upregulated mainly in HSCs of liver fibrosis patients. Moreover, LARP6 knockdown in human HSCs suppresses fibrogenic gene expression. By integrating eCLIP analysis and ribosome profiling in HSCs, we show that LARP6 interacts with mature mRNAs comprising over 300 genes, including RNA structural elements within COL1A1 , COL1A2 , and COL3A1 to regulate mRNA expression and translation. Furthermore, LARP6 knockdown in HSC attenuates fibrosis development in human liver spheroids. Altogether, our results suggest that targeting LARP6 in human HSCs may provide new strategies for anti-fibrotic therapy. Highlights LARP6 is upregulated in liver fibrosis, mainly in HSCs.LARP6 knockdown in human HSCs reduces liver fibrosis development.Of the hundreds of gene targets, LARP6 interacts most with collagen mRNAs.LARP6 regulates mRNA translation via interaction with 5'UTRs.
Collapse
|
4
|
Johnson KE, Hernandez-Alvarado N, Blackstad M, Heisel T, Allert M, Fields DA, Isganaitis E, Jacobs KM, Knights D, Lock EF, Rudolph MC, Gale CA, Schleiss MR, Albert FW, Demerath EW, Blekhman R. Human cytomegalovirus in breast milk is associated with milk composition and the infant gut microbiome and growth. Nat Commun 2024; 15:6216. [PMID: 39043677 PMCID: PMC11266569 DOI: 10.1038/s41467-024-50282-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 07/03/2024] [Indexed: 07/25/2024] Open
Abstract
Human cytomegalovirus (CMV) is a highly prevalent herpesvirus that is often transmitted to the neonate via breast milk. Postnatal CMV transmission can have negative health consequences for preterm and immunocompromised infants, but any effects on healthy term infants are thought to be benign. Furthermore, the impact of CMV on the composition of the hundreds of bioactive factors in human milk has not been tested. Here, we utilize a cohort of exclusively breastfeeding full-term mother-infant pairs to test for differences in the milk transcriptome and metabolome associated with CMV, and the impact of CMV in breast milk on the infant gut microbiome and infant growth. We find upregulation of the indoleamine 2,3-dioxygenase (IDO) tryptophan-to-kynurenine metabolic pathway in CMV+ milk samples, and that CMV+ milk is associated with decreased Bifidobacterium in the infant gut. Our data indicate two opposing CMV-associated effects on infant growth; with kynurenine positively correlated, and CMV viral load negatively correlated, with infant weight-for-length at 1 month of age. These results suggest CMV transmission, CMV-related changes in milk composition, or both may be modulators of full-term infant development.
Collapse
Affiliation(s)
- Kelsey E Johnson
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN, USA.
| | | | - Mark Blackstad
- Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Timothy Heisel
- Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Mattea Allert
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN, USA
| | - David A Fields
- Department of Pediatrics, Section of Diabetes and Endocrinology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | | | - Katherine M Jacobs
- Department of Obstetrics, Gynecology and Women's Health, Division of Maternal-Fetal Medicine, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Dan Knights
- BioTechnology Institute, College of Biological Sciences, University of Minnesota, Minneapolis, MN, USA
- Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Eric F Lock
- Division of Biostatistics and Health Data Science, University of Minnesota School of Public Health, Minneapolis, MN, USA
| | - Michael C Rudolph
- Harold Hamm Diabetes Center, Department of Biochemistry and Physiology, Oklahoma University Health Sciences Center, Oklahoma City, OK, USA
| | - Cheryl A Gale
- Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Mark R Schleiss
- Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Frank W Albert
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN, USA
| | - Ellen W Demerath
- Division of Epidemiology and Community Health, University of Minnesota School of Public Health, Minneapolis, MN, USA
| | - Ran Blekhman
- Section of Genetic Medicine, Division of Biological Sciences, University of Chicago, Chicago, IL, USA
| |
Collapse
|
5
|
Finkel Y, Nachshon A, Aharon E, Arazi T, Simonovsky E, Dobešová M, Saud Z, Gluck A, Fisher T, Stanton RJ, Schwartz M, Stern-Ginossar N. A virally encoded high-resolution screen of cytomegalovirus dependencies. Nature 2024; 630:712-719. [PMID: 38839957 DOI: 10.1038/s41586-024-07503-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 05/01/2024] [Indexed: 06/07/2024]
Abstract
Genetic screens have transformed our ability to interrogate cellular factor requirements for viral infections1,2, but most current approaches are limited in their sensitivity, biased towards early stages of infection and provide only simplistic phenotypic information that is often based on survival of infected cells2-4. Here, by engineering human cytomegalovirus to express single guide RNA libraries directly from the viral genome, we developed virus-encoded CRISPR-based direct readout screening (VECOS), a sensitive, versatile, viral-centric approach that enables profiling of different stages of viral infection in a pooled format. Using this approach, we identified hundreds of host dependency and restriction factors and quantified their direct effects on viral genome replication, viral particle secretion and infectiousness of secreted particles, providing a multi-dimensional perspective on virus-host interactions. These high-resolution measurements reveal that perturbations altering late stages in the life cycle of human cytomegalovirus (HCMV) mostly regulate viral particle quality rather than quantity, establishing correct virion assembly as a critical stage that is heavily reliant on virus-host interactions. Overall, VECOS facilitates systematic high-resolution dissection of the role of human proteins during the infection cycle, providing a roadmap for in-depth study of host-herpesvirus interactions.
Collapse
Affiliation(s)
- Yaara Finkel
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Aharon Nachshon
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Einav Aharon
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Tamar Arazi
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Elena Simonovsky
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Martina Dobešová
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Zack Saud
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - Avi Gluck
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Tal Fisher
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Richard J Stanton
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - Michal Schwartz
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel.
| | - Noam Stern-Ginossar
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
6
|
Jiang H, Nair V, Sun Y, Ding C. The diverse roles of peroxisomes in the interplay between viruses and mammalian cells. Antiviral Res 2024; 221:105780. [PMID: 38092324 DOI: 10.1016/j.antiviral.2023.105780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 12/26/2023]
Abstract
Peroxisomes are ubiquitous organelles found in eukaryotic cells that play a critical role in the oxidative metabolism of lipids and detoxification of reactive oxygen species (ROS). Recently, the role of peroxisomes in viral infections has been extensively studied. Although several studies have reported that peroxisomes exert antiviral activity, evidence indicates that viruses have also evolved diverse strategies to evade peroxisomal antiviral signals. In this review, we summarize the multiple roles of peroxisomes in the interplay between viruses and mammalian cells. Focus is given on the peroxisomal regulation of innate immune response, lipid metabolism, ROS production, and viral regulation of peroxisomal biosynthesis and degradation. Understanding the interactions between peroxisomes and viruses provides novel insights for the development of new antiviral strategies.
Collapse
Affiliation(s)
- Hui Jiang
- Department of Avian Infectious Diseases, Shanghai Veterinary Research Institute. Chinese Academy of Agricultural Science, Shanghai, China
| | - Venugopal Nair
- Avian Oncogenic Viruses Group, UK-China Centre of Excellence in Avian Disease Research, The Pirbright Institute, Pirbright, Guildford, Surrey, United Kingdom
| | - Yingjie Sun
- Department of Avian Infectious Diseases, Shanghai Veterinary Research Institute. Chinese Academy of Agricultural Science, Shanghai, China.
| | - Chan Ding
- Department of Avian Infectious Diseases, Shanghai Veterinary Research Institute. Chinese Academy of Agricultural Science, Shanghai, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, 225009, Jiangsu Province, China.
| |
Collapse
|
7
|
Burgess HM, Grande R, Riccio S, Dinesh I, Winkler GS, Depledge DP, Mohr I. CCR4-NOT differentially controls host versus virus poly(a)-tail length and regulates HCMV infection. EMBO Rep 2023; 24:e56327. [PMID: 37846490 PMCID: PMC10702830 DOI: 10.15252/embr.202256327] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 09/25/2023] [Accepted: 09/28/2023] [Indexed: 10/18/2023] Open
Abstract
Unlike most RNA and DNA viruses that broadly stimulate mRNA decay and interfere with host gene expression, human cytomegalovirus (HCMV) extensively remodels the host translatome without producing an mRNA decay enzyme. By performing a targeted loss-of-function screen in primary human fibroblasts, we here identify the host CCR4-NOT deadenylase complex members CNOT1 and CNOT3 as unexpected pro-viral host factors that selectively regulate HCMV reproduction. We find that the scaffold subunit CNOT1 is specifically required for late viral gene expression and genome-wide host responses in CCR4-NOT-disrupted cells. By profiling poly(A)-tail lengths of individual HCMV and host mRNAs using nanopore direct RNA sequencing, we reveal poly(A)-tails of viral messages to be markedly longer than those of cellular mRNAs and significantly less sensitive to CCR4-NOT disruption. Our data establish that mRNA deadenylation by host CCR4-NOT is critical for productive HCMV replication and define a new mechanism whereby herpesvirus infection subverts cellular mRNA metabolism to remodel the gene expression landscape of the infected cell. Moreover, we expose an unanticipated host factor with potential to become a therapeutic anti-HCMV target.
Collapse
Affiliation(s)
- Hannah M Burgess
- Department of Microbial SciencesUniversity of SurreyGuildfordUK
- Department of Microbiology, School of MedicineNew York UniversityNew YorkNYUSA
| | - Rebecca Grande
- Department of Microbiology, School of MedicineNew York UniversityNew YorkNYUSA
| | - Sofia Riccio
- Department of Microbial SciencesUniversity of SurreyGuildfordUK
| | - Ikshitaa Dinesh
- Department of Microbial SciencesUniversity of SurreyGuildfordUK
| | | | - Daniel P Depledge
- Department of Microbiology, School of MedicineNew York UniversityNew YorkNYUSA
- Institute of VirologyHannover Medical SchoolHannoverGermany
- German Center for Infection Research (DZIF), partner site Hannover‐BraunschweigHannoverGermany
| | - Ian Mohr
- Department of Microbiology, School of MedicineNew York UniversityNew YorkNYUSA
- Laura and Isaac Perlmutter Cancer Institute, School of MedicineNew York UniversityNew YorkNYUSA
| |
Collapse
|
8
|
Domma AJ, Henderson LA, Goodrum FD, Moorman NJ, Kamil JP. Human cytomegalovirus attenuates AKT activity by destabilizing insulin receptor substrate proteins. J Virol 2023; 97:e0056323. [PMID: 37754763 PMCID: PMC10617551 DOI: 10.1128/jvi.00563-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 08/09/2023] [Indexed: 09/28/2023] Open
Abstract
IMPORTANCE Human cytomegalovirus (HCMV) requires inactivation of AKT to efficiently replicate, yet how AKT is shut off during HCMV infection has remained unclear. We show that UL38, an HCMV protein that activates mTORC1, is necessary and sufficient to destabilize insulin receptor substrate 1 (IRS1), a model insulin receptor substrate (IRS) protein. Degradation of IRS proteins in settings of excessive mTORC1 activity is an important mechanism for insulin resistance. When IRS proteins are destabilized, PI3K cannot be recruited to growth factor receptor complexes, and hence, AKT membrane recruitment, a rate limiting step in its activation, fails to occur. Despite its penchant for remodeling host cell signaling pathways, our results reveal that HCMV relies upon a cell-intrinsic negative regulatory feedback loop to inactivate AKT. Given that pharmacological inhibition of PI3K/AKT potently induces HCMV reactivation from latency, our findings also imply that the expression of UL38 activity must be tightly regulated within latently infected cells to avoid spontaneous reactivation.
Collapse
Affiliation(s)
- Anthony J. Domma
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center Shreveport, Shreveport, Louisiana, USA
| | - Lauren A. Henderson
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center Shreveport, Shreveport, Louisiana, USA
| | - Felicia D. Goodrum
- Department of Immunobiology, University of Arizona, Tucson, Arizona, USA
- Bio5 Institute, University of Arizona, Tucson, Arizona, USA
| | - Nathaniel J. Moorman
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Jeremy P. Kamil
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center Shreveport, Shreveport, Louisiana, USA
| |
Collapse
|
9
|
Harms FL, Dingemans AJM, Hempel M, Pfundt R, Bierhals T, Casar C, Müller C, Niermeijer JMF, Fischer J, Jahn A, Hübner C, Majore S, Agolini E, Novelli A, van der Smagt J, Ernst R, van Binsbergen E, Mancini GMS, van Slegtenhorst M, Barakat TS, Wakeling EL, Kamath A, Downie L, Pais L, White SM, de Vries BBA, Kutsche K. De novo PHF5A variants are associated with craniofacial abnormalities, developmental delay, and hypospadias. Genet Med 2023; 25:100927. [PMID: 37422718 DOI: 10.1016/j.gim.2023.100927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 06/30/2023] [Accepted: 07/02/2023] [Indexed: 07/10/2023] Open
Abstract
PURPOSE The SF3B splicing complex is composed of SF3B1-6 and PHF5A. We report a developmental disorder caused by de novo variants in PHF5A. METHODS Clinical, genomic, and functional studies using subject-derived fibroblasts and a heterologous cellular system were performed. RESULTS We studied 9 subjects with congenital malformations, including preauricular tags and hypospadias, growth abnormalities, and developmental delay who had de novo heterozygous PHF5A variants, including 4 loss-of-function (LOF), 3 missense, 1 splice, and 1 start-loss variant. In subject-derived fibroblasts with PHF5A LOF variants, wild-type and variant PHF5A mRNAs had a 1:1 ratio, and PHF5A mRNA levels were normal. Transcriptome sequencing revealed alternative promoter use and downregulated genes involved in cell-cycle regulation. Subject and control fibroblasts had similar amounts of PHF5A with the predicted wild-type molecular weight and of SF3B1-3 and SF3B6. SF3B complex formation was unaffected in 2 subject cell lines. CONCLUSION Our data suggest the existence of feedback mechanisms in fibroblasts with PHF5A LOF variants to maintain normal levels of SF3B components. These compensatory mechanisms in subject fibroblasts with PHF5A or SF3B4 LOF variants suggest disturbed autoregulation of mutated splicing factor genes in specific cell types, that is, neural crest cells, during embryonic development rather than haploinsufficiency as pathomechanism.
Collapse
Affiliation(s)
- Frederike L Harms
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Alexander J M Dingemans
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Maja Hempel
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Institute of Human Genetics, University Hospital Heidelberg, Heidelberg, Germany
| | - Rolph Pfundt
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Tatjana Bierhals
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Casar
- Bioinformatics Core, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Müller
- Bioinformatics Core, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Jan Fischer
- Institute for Clinical Genetics, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
| | - Arne Jahn
- Institute for Clinical Genetics, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
| | - Christoph Hübner
- Department of Neuropaediatrics, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Silvia Majore
- Division of Medical Genetics, Department of Experimental Medicine, San Camillo-Forlanini Hospital, Sapienza University, Rome, Italy
| | - Emanuele Agolini
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children Hospital, IRCCS, Rome, Italy
| | - Antonio Novelli
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children Hospital, IRCCS, Rome, Italy
| | - Jasper van der Smagt
- Department of Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Robert Ernst
- Department of Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Ellen van Binsbergen
- Department of Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Grazia M S Mancini
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Marjon van Slegtenhorst
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Tahsin Stefan Barakat
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands; Discovery Unit, Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Emma L Wakeling
- North East Thames Regional Genetic Service, Great Ormond Street Hospital for Children, NHS Foundation Trust, London, United Kingdom
| | - Arveen Kamath
- All Wales Medical Genomics Service/ Pennaeth Labordy Genomeg Cymru Gyfan, University Hospital of Wales, Heath Park, Cardiff, United Kingdom
| | - Lilian Downie
- Victorian Clinical Genetics Service, Murdoch Children's Research Institute, VIC; Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Lynn Pais
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA
| | - Susan M White
- Victorian Clinical Genetics Service, Murdoch Children's Research Institute, VIC; Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Bert B A de Vries
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands.
| | - Kerstin Kutsche
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
10
|
Le-Trilling VTK, Maaßen F, Katschinski B, Hengel H, Trilling M. Deletion of the non-adjacent genes UL148 and UL148D impairs human cytomegalovirus-mediated TNF receptor 2 surface upregulation. Front Immunol 2023; 14:1170300. [PMID: 37600801 PMCID: PMC10437809 DOI: 10.3389/fimmu.2023.1170300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 07/11/2023] [Indexed: 08/22/2023] Open
Abstract
Human cytomegalovirus (HCMV) is a prototypical β-herpesvirus which frequently causes morbidity and mortality in individuals with immature, suppressed, or senescent immunity. HCMV is sensed by various pattern recognition receptors, leading to the secretion of pro-inflammatory cytokines including tumor necrosis factor alpha (TNFα). TNFα binds to two distinct trimeric receptors: TNF receptor (TNFR) 1 and TNFR2, which differ in regard to their expression profiles, affinities for soluble and membrane-bound TNFα, and down-stream signaling pathways. While both TNF receptors engage NFκB signaling, only the nearly ubiquitously expressed TNFR1 exhibits a death domain that mediates TRADD/FADD-dependent caspase activation. Under steady-state conditions, TNFR2 expression is mainly restricted to immune cells where it predominantly submits pro-survival, proliferation-stimulating, and immune-regulatory signals. Based on the observation that HCMV-infected cells show enhanced binding of TNFα, we explored the interplay between HCMV and TNFR2. As expected, uninfected fibroblasts did not show detectable levels of TNFR2 on the surface. Intriguingly, however, HCMV infection increased TNFR2 surface levels of fibroblasts. Using HCMV variants and BACmid-derived clones either harboring or lacking the ULb' region, an association between TNFR2 upregulation and the presence of the ULb' genome region became evident. Applying a comprehensive set of ULb' gene block and single gene deletion mutants, we observed that HCMV mutants in which the non-adjacent genes UL148 or UL148D had been deleted show an impaired ability to upregulate TNFR2, coinciding with an inverse regulation of TACE/ADAM17.
Collapse
Affiliation(s)
| | - Fabienne Maaßen
- Institute for Virology, University Hospital Essen, University of Duisburg−Essen, Essen, Germany
| | - Benjamin Katschinski
- Institute for Virology, University Hospital Essen, University of Duisburg−Essen, Essen, Germany
| | - Hartmut Hengel
- Institute of Virology, Medical Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Mirko Trilling
- Institute for Virology, University Hospital Essen, University of Duisburg−Essen, Essen, Germany
| |
Collapse
|
11
|
Johnson KE, Heisel T, Fields DA, Isganaitis E, Jacobs KM, Knights D, Lock EF, Rudolph MC, Gale CA, Schleiss MR, Albert FW, Demerath EW, Blekhman R. Human Cytomegalovirus in breast milk is associated with milk composition, the infant gut microbiome, and infant growth. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.19.549370. [PMID: 37503212 PMCID: PMC10370112 DOI: 10.1101/2023.07.19.549370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Human cytomegalovirus (CMV) is a highly prevalent herpesvirus that is often transmitted to the neonate via breast milk. Postnatal CMV transmission can have negative health consequences for preterm and immunocompromised infants, but any effects on healthy term infants are thought to be benign. Furthermore, the impact of CMV on the composition of the hundreds of bioactive factors in human milk has not been tested. Here, we utilize a cohort of exclusively breastfeeding full term mother-infant pairs to test for differences in the milk transcriptome and metabolome associated with CMV, and the impact of CMV in breast milk on the infant gut microbiome and infant growth. We find upregulation of the indoleamine 2,3- dioxygenase (IDO) tryptophan-to-kynurenine metabolic pathway in CMV+ milk samples, and that CMV+ milk is associated with decreased Bifidobacterium in the infant gut. Our data indicate a complex relationship between milk CMV, milk kynurenine, and infant growth; with kynurenine positively correlated, and CMV viral load negatively correlated, with infant weight-for-length at 1 month of age. These results suggest CMV transmission, CMV-related changes in milk composition, or both may be modulators of full term infant development.
Collapse
Affiliation(s)
- Kelsey E Johnson
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, USA
| | - Timothy Heisel
- Division of Neonatology, Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN, USA
| | - David A Fields
- Department of Pediatrics, Diabetes-Endocrinology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Elvira Isganaitis
- Pediatric, Adolescent and Young Adult Unit, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Katherine M Jacobs
- Department of Obstetrics, Gynecology and Women's Health, Division of Maternal-Fetal Medicine, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Dan Knights
- BioTechnology Institute, College of Biological Sciences, University of Minnesota, Minneapolis, MN, USA
- Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Eric F Lock
- Division of Biostatistics, University of Minnesota School of Public Health, Minneapolis, MN, USA
| | - Michael C Rudolph
- Harold Hamm Diabetes Center, Department of Physiology, Oklahoma University Health Sciences Center, Oklahoma City, OK, USA
| | - Cheryl A Gale
- Division of Neonatology, Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Mark R Schleiss
- Division of Pediatric Infectious Diseases and Immunology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Frank W Albert
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, USA
| | - Ellen W Demerath
- Division of Epidemiology and Community Health, University of Minnesota School of Public Health, Minneapolis, MN, USA
| | - Ran Blekhman
- Section of Genetic Medicine, Division of Biological Sciences, University of Chicago, Chicago, IL, USA
| |
Collapse
|
12
|
Ijezie EC, O'Dowd JM, Kuan MI, Faeth AR, Fortunato EA. HCMV Infection Reduces Nidogen-1 Expression, Contributing to Impaired Neural Rosette Development in Brain Organoids. J Virol 2023; 97:e0171822. [PMID: 37125912 PMCID: PMC10231252 DOI: 10.1128/jvi.01718-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 04/05/2023] [Indexed: 05/02/2023] Open
Abstract
Human cytomegalovirus (HCMV) is a leading cause of birth defects in humans. These birth defects include microcephaly, sensorineural hearing loss, vision loss, and cognitive impairment. The process by which the developing fetus incurs these neurological defects is poorly understood. To elucidate some of these mechanisms, we have utilized HCMV-infected induced pluripotent stem cells (iPSCs) to generate in vitro brain organoids, modeling the first trimester of fetal brain development. Early during culturing, brain organoids generate neural rosettes. These structures are believed to model neural tube formation. Rosette formation was analyzed in HCMV-infected and mock-infected brain organoids at 17, 24, and 31 days postinfection. Histological analysis revealed fewer neural rosettes in HCMV-infected compared to mock-infected organoids. HCMV-infected organoid rosettes incurred multiple structural deficits, including increased lumen area, decreased ventricular zone depth, and decreased cell count. Immunofluorescent (IF) analysis found that nidogen-1 (NID1) protein expression in the basement membrane surrounding neural rosettes was greatly reduced by virus infection. IF analysis also identified a similar downregulation of laminin in basement membranes of HCMV-infected organoid rosettes. Knockdown of NID1 alone in brain organoids impaired their development, leading to the production of rosettes with increased lumen area, decreased structural integrity, and reduced laminin localization in the basement membrane, paralleling observations in HCMV-infected organoids. Our data strongly suggest that HCMV-induced downregulation of NID1 impairs neural rosette formation and integrity, likely contributing to many of HCMV's most severe birth defects. IMPORTANCE HCMV infection in pregnant women continues to be the leading cause of virus-induced neurologic birth defects. The mechanism through which congenital HCMV (cCMV) infection induces pathological changes to the developing fetal central nervous system (CNS) remains unclear. Our lab previously reproduced identified clinical defects in HCMV-infected infants using a three dimensional (3D) brain organoid model. In this new study, we have striven to discover very early HCMV-induced changes in developing brain organoids. We investigated the development of neural tube-like structures, neural rosettes. HCMV-infected rosettes displayed multiple structural abnormalities and cell loss. HCMV-infected rosettes displayed reduced expression of the key basement membrane protein, NID1. We previously found NID1 to be specifically targeted in HCMV-infected fibroblasts and endothelial cells. Brain organoids generated from NID1 knockdown iPSCs recapitulated the structural defects observed in HCMV-infected rosettes. Findings in this study revealed HCMV infection induced early and dramatic structural changes in 3D brain organoids. We believe our results suggest a major role for infection-induced NID1 downregulation in HCMV-induced CNS birth defects.
Collapse
Affiliation(s)
- Emmanuel C. Ijezie
- Department of Biological Sciences and Center for Reproductive Biology, University of Idaho, Moscow, Idaho, USA
| | - John M. O'Dowd
- Department of Biological Sciences and Center for Reproductive Biology, University of Idaho, Moscow, Idaho, USA
| | - Man I Kuan
- Department of Biological Sciences and Center for Reproductive Biology, University of Idaho, Moscow, Idaho, USA
| | - Alexandra R. Faeth
- Department of Biological Sciences and Center for Reproductive Biology, University of Idaho, Moscow, Idaho, USA
| | - Elizabeth A. Fortunato
- Department of Biological Sciences and Center for Reproductive Biology, University of Idaho, Moscow, Idaho, USA
| |
Collapse
|
13
|
Sigdel TK, Boada P, Kerwin M, Rashmi P, Gjertson D, Rossetti M, Sur S, Munar D, Cimino J, Ahn R, Pickering H, Sen S, Parmar R, Fatou B, Steen H, Schaenman J, Bunnapradist S, Reed EF, Sarwal MM, CMV Systems Immunobiology Group. Plasma proteome perturbation for CMV DNAemia in kidney transplantation. PLoS One 2023; 18:e0285870. [PMID: 37205661 PMCID: PMC10198483 DOI: 10.1371/journal.pone.0285870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 05/03/2023] [Indexed: 05/21/2023] Open
Abstract
BACKGROUND Cytomegalovirus (CMV) infection, either de novo or as reactivation after allotransplantation and chronic immunosuppression, is recognized to cause detrimental alloimmune effects, inclusive of higher susceptibility to graft rejection and substantive impact on chronic graft injury and reduced transplant survival. To obtain further insights into the evolution and pathogenesis of CMV infection in an immunocompromised host we evaluated changes in the circulating host proteome serially, before and after transplantation, and during and after CMV DNA replication (DNAemia), as measured by quantitative polymerase chain reaction (QPCR). METHODS LC-MS-based proteomics was conducted on 168 serially banked plasma samples, from 62 propensity score-matched kidney transplant recipients. Patients were stratified by CMV replication status into 31 with CMV DNAemia and 31 without CMV DNAemia. Patients had blood samples drawn at protocol times of 3- and 12-months post-transplant. Additionally, blood samples were also drawn before and 1 week and 1 month after detection of CMV DNAemia. Plasma proteins were analyzed using an LCMS 8060 triple quadrupole mass spectrometer. Further, public transcriptomic data on time matched PBMCs samples from the same patients was utilized to evaluate integrative pathways. Data analysis was conducted using R and Limma. RESULTS Samples were segregated based on their proteomic profiles with respect to their CMV Dnaemia status. A subset of 17 plasma proteins was observed to predict the onset of CMV at 3 months post-transplant enriching platelet degranulation (FDR, 4.83E-06), acute inflammatory response (FDR, 0.0018), blood coagulation (FDR, 0.0018) pathways. An increase in many immune complex proteins were observed at CMV infection. Prior to DNAemia the plasma proteome showed changes in the anti-inflammatory adipokine vaspin (SERPINA12), copper binding protein ceruloplasmin (CP), complement activation (FDR = 0.03), and proteins enriched in the humoral (FDR = 0.01) and innate immune responses (FDR = 0.01). CONCLUSION Plasma proteomic and transcriptional perturbations impacting humoral and innate immune pathways are observed during CMV infection and provide biomarkers for CMV disease prediction and resolution. Further studies to understand the clinical impact of these pathways can help in the formulation of different types and duration of anti-viral therapies for the management of CMV infection in the immunocompromised host.
Collapse
Affiliation(s)
- Tara K. Sigdel
- Department of Surgery, University of California San Francisco, San Francisco, CA, United States of America
| | - Patrick Boada
- Department of Surgery, University of California San Francisco, San Francisco, CA, United States of America
| | - Maggie Kerwin
- Department of Surgery, University of California San Francisco, San Francisco, CA, United States of America
| | - Priyanka Rashmi
- Department of Surgery, University of California San Francisco, San Francisco, CA, United States of America
| | - David Gjertson
- Department of Pathology and Laboratory Medicine, University of California Los Angeles, Los Angeles, CA, United States of America
| | - Maura Rossetti
- Department of Pathology and Laboratory Medicine, University of California Los Angeles, Los Angeles, CA, United States of America
| | - Swastika Sur
- Department of Surgery, University of California San Francisco, San Francisco, CA, United States of America
| | - Dane Munar
- Department of Surgery, University of California San Francisco, San Francisco, CA, United States of America
| | - James Cimino
- Department of Surgery, University of California San Francisco, San Francisco, CA, United States of America
| | - Richard Ahn
- Department of Microbiology and Immunology, University of California Los Angeles, Los Angeles, CA, United States of America
| | - Harry Pickering
- Department of Pathology and Laboratory Medicine, University of California Los Angeles, Los Angeles, CA, United States of America
| | - Subha Sen
- Department of Pathology and Laboratory Medicine, University of California Los Angeles, Los Angeles, CA, United States of America
| | - Rajesh Parmar
- Department of Pathology and Laboratory Medicine, University of California Los Angeles, Los Angeles, CA, United States of America
| | - Benoit Fatou
- Department of Pathology, Harvard Medical School, Boston, MA, United States of America
| | - Hanno Steen
- Department of Pathology, Harvard Medical School, Boston, MA, United States of America
| | - Joanna Schaenman
- Department of Medicine, University of California Los Angeles, Los Angeles, CA, United States of America
| | - Suphamai Bunnapradist
- Department of Medicine, University of California Los Angeles, Los Angeles, CA, United States of America
| | - Elaine F. Reed
- Department of Pathology and Laboratory Medicine, University of California Los Angeles, Los Angeles, CA, United States of America
| | - Minnie M. Sarwal
- Department of Surgery, University of California San Francisco, San Francisco, CA, United States of America
| | | |
Collapse
|
14
|
Lin CW, Ellegood J, Tamada K, Miura I, Konda M, Takeshita K, Atarashi K, Lerch JP, Wakana S, McHugh TJ, Takumi T. An old model with new insights: endogenous retroviruses drive the evolvement toward ASD susceptibility and hijack transcription machinery during development. Mol Psychiatry 2023; 28:1932-1945. [PMID: 36882500 PMCID: PMC10575786 DOI: 10.1038/s41380-023-01999-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 03/09/2023]
Abstract
The BTBR T+Itpr3tf/J (BTBR/J) strain is one of the most valid models of idiopathic autism, serving as a potent forward genetics tool to dissect the complexity of autism. We found that a sister strain with an intact corpus callosum, BTBR TF/ArtRbrc (BTBR/R), showed more prominent autism core symptoms but moderate ultrasonic communication/normal hippocampus-dependent memory, which may mimic autism in the high functioning spectrum. Intriguingly, disturbed epigenetic silencing mechanism leads to hyperactive endogenous retrovirus (ERV), a mobile genetic element of ancient retroviral infection, which increases de novo copy number variation (CNV) formation in the two BTBR strains. This feature makes the BTBR strain a still evolving multiple-loci model toward higher ASD susceptibility. Furthermore, active ERV, analogous to virus infection, evades the integrated stress response (ISR) of host defense and hijacks the transcriptional machinery during embryonic development in the BTBR strains. These results suggest dual roles of ERV in the pathogenesis of ASD, driving host genome evolution at a long-term scale and managing cellular pathways in response to viral infection, which has immediate effects on embryonic development. The wild-type Draxin expression in BTBR/R also makes this substrain a more precise model to investigate the core etiology of autism without the interference of impaired forebrain bundles as in BTBR/J.
Collapse
Affiliation(s)
- Chia-Wen Lin
- Laboratory for Mental Biology, RIKEN Brain Science Institute, Wako, 351-0198, Saitama, Japan
- Laboratory for Circuit and Behavioral Physiology, RIKEN Center for Brain Science, Wako, 351-0198, Saitama, Japan
- Department of Physiology and Cell Biology, Kobe University School of Medicine, Chuo, 650-0017, Kobe, Japan
| | - Jacob Ellegood
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, Ontario, M5T 3H7, Canada
| | - Kota Tamada
- Laboratory for Mental Biology, RIKEN Brain Science Institute, Wako, 351-0198, Saitama, Japan
- Department of Physiology and Cell Biology, Kobe University School of Medicine, Chuo, 650-0017, Kobe, Japan
| | - Ikuo Miura
- Technology and Development Team for Mouse Phenotype Analysis, Japan Mouse Clinic, RIKEN BioResource Research Center, Tsukuba, Ibaraki, 305-0074, Japan
| | - Mikiko Konda
- Department of Microbiology and Immunology, Keio University School of Medicine, Shinjuku, 160-8582, Tokyo, Japan
| | - Kozue Takeshita
- Department of Microbiology and Immunology, Keio University School of Medicine, Shinjuku, 160-8582, Tokyo, Japan
| | - Koji Atarashi
- Department of Microbiology and Immunology, Keio University School of Medicine, Shinjuku, 160-8582, Tokyo, Japan
- RIKEN Center for Integrative Medical Sciences, Tsurumi, 230-0045, Yokohama, Japan
| | - Jason P Lerch
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, Ontario, M5T 3H7, Canada
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, Oxfordshire, OX39DU, UK
| | - Shigeharu Wakana
- Technology and Development Team for Mouse Phenotype Analysis, Japan Mouse Clinic, RIKEN BioResource Research Center, Tsukuba, Ibaraki, 305-0074, Japan
| | - Thomas J McHugh
- Laboratory for Circuit and Behavioral Physiology, RIKEN Center for Brain Science, Wako, 351-0198, Saitama, Japan
| | - Toru Takumi
- Laboratory for Mental Biology, RIKEN Brain Science Institute, Wako, 351-0198, Saitama, Japan.
- Department of Physiology and Cell Biology, Kobe University School of Medicine, Chuo, 650-0017, Kobe, Japan.
- RIKEN Center for Biosystems Dynamics Research, Chuo, 650-0047, Kobe, Japan.
| |
Collapse
|
15
|
Domma AJ, Goodrum FD, Moorman NJ, Kamil JP. Human cytomegalovirus attenuates AKT activity by destabilizing insulin receptor substrate proteins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.17.537203. [PMID: 37131605 PMCID: PMC10153195 DOI: 10.1101/2023.04.17.537203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The phosphoinositide 3-kinase (PI3K)/AKT pathway plays crucial roles in cell viability and protein synthesis and is frequently co-opted by viruses to support their replication. Although many viruses maintain high levels of AKT activity during infection, other viruses, such as vesicular stomatitis virus and human cytomegalovirus (HCMV), cause AKT to accumulate in an inactive state. To efficiently replicate, HCMV requires FoxO transcription factors to localize to the infected cell nucleus (Zhang et. al. mBio 2022), a process directly antagonized by AKT. Therefore, we sought to investigate how HCMV inactivates AKT to achieve this. Subcellular fractionation and live cell imaging studies indicated that AKT failed to recruit to membranes upon serum-stimulation of infected cells. However, UV-inactivated virions were unable to render AKT non-responsive to serum, indicating a requirement for de novo viral gene expression. Interestingly, we were able to identify that UL38 (pUL38), a viral activator of mTORC1, is required to diminish AKT responsiveness to serum. mTORC1 contributes to insulin resistance by causing proteasomal degradation of insulin receptor substrate (IRS) proteins, such as IRS1, which are necessary for the recruitment of PI3K to growth factor receptors. In cells infected with a recombinant HCMV disrupted for UL38 , AKT responsiveness to serum is retained and IRS1 is not degraded. Furthermore, ectopic expression of UL38 in uninfected cells induces IRS1 degradation, inactivating AKT. These effects of UL38 were reversed by the mTORC1 inhibitor, rapamycin. Collectively, our results demonstrate that HCMV relies upon a cell-intrinsic negative feedback loop to render AKT inactive during productive infection.
Collapse
Affiliation(s)
- Anthony J. Domma
- Department of Microbiology and Immunology, LSU Health Sciences Center Shreveport, Shreveport Louisiana, USA
| | - Felicia D. Goodrum
- Department of Immunobiology, University of Arizona, Tucson, AZ, USA
- Bio5 Institute, University of Arizona, Tucson, AZ, USA
| | - Nathaniel J. Moorman
- Department of Microbiology and Immunology, UNC Chapel Hill, Chapel Hill, NC, USA
| | - Jeremy P. Kamil
- Department of Microbiology and Immunology, LSU Health Sciences Center Shreveport, Shreveport Louisiana, USA
| |
Collapse
|
16
|
Molecular characterization of human cytomegalovirus infection with single-cell transcriptomics. Nat Microbiol 2023; 8:455-468. [PMID: 36732471 DOI: 10.1038/s41564-023-01325-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 01/09/2023] [Indexed: 02/04/2023]
Abstract
Human cytomegalovirus (HCMV) can result in either productive or non-productive infection, with the latter potentially leading to viral latency. The molecular factors dictating these outcomes are poorly understood. Here we used single-cell transcriptomics to analyse HCMV infection progression in monocytes, which are latently infected, and macrophages, considered to be permissive for productive infection. We show that early viral gene expression levels, specifically of those encoding immediate early proteins IE1 and IE2, are a major factor dictating productive infection. We also revealed that intrinsic, not induced, host cell interferon-stimulated gene expression level is a main determinant of infection outcome. Intrinsic interferon-stimulated gene expression is downregulated with monocyte to macrophage differentiation, partially explaining increased macrophage susceptibility to productive HCMV infection. Furthermore, non-productive macrophages could reactivate, making them potential latent virus reservoirs. Overall, we decipher molecular features underlying HCMV infection outcomes and propose macrophages as a potential HCMV reservoir.
Collapse
|
17
|
Ferreira V, Ferreira AR, Ribeiro D. Peroxisomes and Viruses: Overview on Current Knowledge and Experimental Approaches. Methods Mol Biol 2023; 2643:271-294. [PMID: 36952192 DOI: 10.1007/978-1-0716-3048-8_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
The general interest in the study of the interplay between peroxisomes and viruses has increased in recent years, with different reports demonstrating that distinct viruses modulate peroxisome-related mechanisms to either counteract the cellular antiviral response or support viral propagation. Nevertheless, mechanistical details are still scarce, and information is often incomplete. In this chapter, we present an overview of the current knowledge concerning the interplay between peroxisomes and different viruses. We furthermore present, compare, and discuss the most relevant experimental approaches and tools used in the different studies. Finally, we stress the importance of further, more detailed, and spatial-temporal analyses that encompass all the different phases of the viruses' infection cycles. These studies may lead to the discovery of novel peroxisome-related cellular mechanisms that can further be explored as targets for the development of novel antiviral therapies.
Collapse
Affiliation(s)
- Vanessa Ferreira
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal
| | - Ana Rita Ferreira
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal
| | - Daniela Ribeiro
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal.
| |
Collapse
|
18
|
Wanders RJA, Baes M, Ribeiro D, Ferdinandusse S, Waterham HR. The physiological functions of human peroxisomes. Physiol Rev 2023; 103:957-1024. [PMID: 35951481 DOI: 10.1152/physrev.00051.2021] [Citation(s) in RCA: 89] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Peroxisomes are subcellular organelles that play a central role in human physiology by catalyzing a range of unique metabolic functions. The importance of peroxisomes for human health is exemplified by the existence of a group of usually severe diseases caused by an impairment in one or more peroxisomal functions. Among others these include the Zellweger spectrum disorders, X-linked adrenoleukodystrophy, and Refsum disease. To fulfill their role in metabolism, peroxisomes require continued interaction with other subcellular organelles including lipid droplets, lysosomes, the endoplasmic reticulum, and mitochondria. In recent years it has become clear that the metabolic alliance between peroxisomes and other organelles requires the active participation of tethering proteins to bring the organelles physically closer together, thereby achieving efficient transfer of metabolites. This review intends to describe the current state of knowledge about the metabolic role of peroxisomes in humans, with particular emphasis on the metabolic partnership between peroxisomes and other organelles and the consequences of genetic defects in these processes. We also describe the biogenesis of peroxisomes and the consequences of the multiple genetic defects therein. In addition, we discuss the functional role of peroxisomes in different organs and tissues and include relevant information derived from model systems, notably peroxisomal mouse models. Finally, we pay particular attention to a hitherto underrated role of peroxisomes in viral infections.
Collapse
Affiliation(s)
- Ronald J A Wanders
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,Department of Pediatrics, Emma Children's Hospital, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,United for Metabolic Diseases, Amsterdam, The Netherlands
| | - Myriam Baes
- Laboratory of Cell Metabolism, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Daniela Ribeiro
- Institute of Biomedicine (iBiMED) and Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - Sacha Ferdinandusse
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,United for Metabolic Diseases, Amsterdam, The Netherlands
| | - Hans R Waterham
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,Department of Pediatrics, Emma Children's Hospital, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,United for Metabolic Diseases, Amsterdam, The Netherlands
| |
Collapse
|
19
|
Chen H, Chew G, Devapragash N, Loh JZ, Huang KY, Guo J, Liu S, Tan ELS, Chen S, Tee NGZ, Mia MM, Singh MK, Zhang A, Behmoaras J, Petretto E. The E3 ubiquitin ligase WWP2 regulates pro-fibrogenic monocyte infiltration and activity in heart fibrosis. Nat Commun 2022; 13:7375. [PMID: 36450710 PMCID: PMC9712659 DOI: 10.1038/s41467-022-34971-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 11/11/2022] [Indexed: 12/03/2022] Open
Abstract
Non-ischemic cardiomyopathy (NICM) can cause left ventricular dysfunction through interstitial fibrosis, which corresponds to the failure of cardiac tissue remodeling. Recent evidence implicates monocytes/macrophages in the etiopathology of cardiac fibrosis, but giving their heterogeneity and the antagonizing roles of macrophage subtypes in fibrosis, targeting these cells has been challenging. Here we focus on WWP2, an E3 ubiquitin ligase that acts as a positive genetic regulator of human and murine cardiac fibrosis, and show that myeloid specific deletion of WWP2 reduces cardiac fibrosis in hypertension-induced NICM. By using single cell RNA sequencing analysis of immune cells in the same model, we establish the functional heterogeneity of macrophages and define an early pro-fibrogenic phase of NICM that is driven by Ccl5-expressing Ly6chigh monocytes. Among cardiac macrophage subtypes, WWP2 dysfunction primarily affects Ly6chigh monocytes via modulating Ccl5, and consequentially macrophage infiltration and activation, which contributes to reduced myofibroblast trans-differentiation. WWP2 interacts with transcription factor IRF7, promoting its non-degradative mono-ubiquitination, nuclear translocation and transcriptional activity, leading to upregulation of Ccl5 at transcriptional level. We identify a pro-fibrogenic macrophage subtype in non-ischemic cardiomyopathy, and demonstrate that WWP2 is a key regulator of IRF7-mediated Ccl5/Ly6chigh monocyte axis in heart fibrosis.
Collapse
Affiliation(s)
- Huimei Chen
- grid.428397.30000 0004 0385 0924Programme in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, 8 College Road, 169857 Singapore, Singapore ,grid.254147.10000 0000 9776 7793Institute for Big Data and Artificial Intelligence in Medicine, School of Science, China Pharmaceutical University, Nanjing, 210009 China
| | - Gabriel Chew
- grid.428397.30000 0004 0385 0924Programme in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, 8 College Road, 169857 Singapore, Singapore
| | - Nithya Devapragash
- grid.428397.30000 0004 0385 0924Programme in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, 8 College Road, 169857 Singapore, Singapore
| | - Jui Zhi Loh
- grid.428397.30000 0004 0385 0924Programme in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, 8 College Road, 169857 Singapore, Singapore
| | - Kevin Y. Huang
- grid.428397.30000 0004 0385 0924Programme in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, 8 College Road, 169857 Singapore, Singapore
| | - Jing Guo
- grid.428397.30000 0004 0385 0924Programme in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, 8 College Road, 169857 Singapore, Singapore
| | - Shiyang Liu
- grid.428397.30000 0004 0385 0924Programme in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, 8 College Road, 169857 Singapore, Singapore
| | - Elisabeth Li Sa Tan
- grid.428397.30000 0004 0385 0924Programme in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, 8 College Road, 169857 Singapore, Singapore
| | - Shuang Chen
- grid.254147.10000 0000 9776 7793Institute for Big Data and Artificial Intelligence in Medicine, School of Science, China Pharmaceutical University, Nanjing, 210009 China ,grid.452511.6Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, 210008 China
| | - Nicole Gui Zhen Tee
- grid.419385.20000 0004 0620 9905National Heart Centre Singapore, Singapore, 169609 Singapore
| | - Masum M. Mia
- grid.428397.30000 0004 0385 0924Programme in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, 8 College Road, 169857 Singapore, Singapore
| | - Manvendra K. Singh
- grid.428397.30000 0004 0385 0924Programme in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, 8 College Road, 169857 Singapore, Singapore
| | - Aihua Zhang
- grid.452511.6Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, 210008 China
| | - Jacques Behmoaras
- grid.428397.30000 0004 0385 0924Programme in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, 8 College Road, 169857 Singapore, Singapore ,grid.413629.b0000 0001 0705 4923Centre for Inflammatory Disease, Imperial College London, Hammersmith Hospital, London, W12 0NN UK
| | - Enrico Petretto
- grid.428397.30000 0004 0385 0924Programme in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, 8 College Road, 169857 Singapore, Singapore ,grid.254147.10000 0000 9776 7793Institute for Big Data and Artificial Intelligence in Medicine, School of Science, China Pharmaceutical University, Nanjing, 210009 China
| |
Collapse
|
20
|
Kuan MI, Caruso LB, Zavala AG, Rana PSJB, O'Dowd JM, Tempera I, Fortunato EA. Human Cytomegalovirus Utilizes Multiple Viral Proteins to Regulate the Basement Membrane Protein Nidogen 1. J Virol 2022; 96:e0133622. [PMID: 36218358 PMCID: PMC9599421 DOI: 10.1128/jvi.01336-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 09/06/2022] [Indexed: 11/20/2022] Open
Abstract
Nidogen 1 (NID1) is an important basement membrane protein secreted by many cell types. We previously found that human cytomegalovirus (HCMV) infection rapidly induced chromosome 1 breaks and that the basement membrane protein NID1, encoded near the 1q42 break site, was downregulated. We have now determined that the specific breaks in and of themselves did not regulate NID1, rather interactions between several viral proteins and the cellular machinery and DNA regulated NID1. We screened a battery of viral proteins present by 24 hours postinfection (hpi) when regulation was induced, including components of the incoming virion and immediate early (IE) proteins. Adenovirus (Ad) delivery of the tegument proteins pp71 and UL35 and the IE protein IE1 influenced steady-state (ss) NID1 levels. IE1's mechanism of regulation was unclear, while UL35 influenced proteasomal regulation of ss NID1. Real-time quantitative PCR (RT-qPCR) experiments determined that pp71 downregulated NID1 transcription. Surprisingly, WF28-71, a fibroblast clone that expresses minute quantities of pp71, suppressed NID1 transcription as efficiently as HCMV infection, resulting in the near absence of ss NID1. Sequence analysis of the region surrounding the 1q42 break sites and NID1 promoter revealed CCCTC-binding factor (CTCF) binding sites. Chromatin immunoprecipitation experiments determined that pp71 and CTCF were both bound at these two sites during HCMV infection. Expression of pp71 alone replicated this binding. Binding was observed as early as 1 hpi, and colocalization of pp71 and CTCF occurred as quickly as 15 min postinfection (pi) in infected cell nuclei. In fibroblasts where CTCF was knocked down, Adpp71 infection did not decrease NID1 transcription nor ss NID1 protein levels. Our results emphasize another aspect of pp71 activity during infection and identify this viral protein as a key contributor to HCMV's efforts to eliminate NID1. Further, we show, for the first time, direct interaction between pp71 and the cellular genome. IMPORTANCE We have found that human cytomegalovirus (HCMV) utilizes multiple viral proteins in multiple pathways to regulate a ubiquitous cellular basement membrane protein, nidogen-1 (NID1). The extent of the resources and the redundant methods that the virus has evolved to affect this control strongly suggest that its removal provides a life cycle advantage to HCMV. Our discoveries that one of the proteins that HCMV uses to control NID1, pp71, binds directly to the cellular DNA and can exert control when present in vanishingly small quantities may have broad implications in a wide range of infection scenarios. Dysregulation of NID1 in an immunocompetent host is not known to manifest complications during infection; however, in the naive immune system of a developing fetus, disruption of this developmentally critical protein could initiate catastrophic HCMV-induced birth defects.
Collapse
Affiliation(s)
- Man I Kuan
- Department of Biological Sciences and Center for Reproductive Biology, University of Idaho, Moscow, Idaho, USA
| | | | - Anamaria G. Zavala
- Department of Biological Sciences and Center for Reproductive Biology, University of Idaho, Moscow, Idaho, USA
| | - Pranav S. J. B. Rana
- Department of Biological Sciences and Center for Reproductive Biology, University of Idaho, Moscow, Idaho, USA
| | - John M. O'Dowd
- Department of Biological Sciences and Center for Reproductive Biology, University of Idaho, Moscow, Idaho, USA
| | - Italo Tempera
- The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Elizabeth A. Fortunato
- Department of Biological Sciences and Center for Reproductive Biology, University of Idaho, Moscow, Idaho, USA
| |
Collapse
|
21
|
Soto I, Couvillion M, Hansen KG, McShane E, Moran JC, Barrientos A, Churchman LS. Balanced mitochondrial and cytosolic translatomes underlie the biogenesis of human respiratory complexes. Genome Biol 2022; 23:170. [PMID: 35945592 PMCID: PMC9361522 DOI: 10.1186/s13059-022-02732-9] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 07/18/2022] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Oxidative phosphorylation (OXPHOS) complexes consist of nuclear and mitochondrial DNA-encoded subunits. Their biogenesis requires cross-compartment gene regulation to mitigate the accumulation of disproportionate subunits. To determine how human cells coordinate mitochondrial and nuclear gene expression processes, we tailored ribosome profiling for the unique features of the human mitoribosome. RESULTS We resolve features of mitochondrial translation initiation and identify a small ORF in the 3' UTR of MT-ND5. Analysis of ribosome footprints in five cell types reveals that average mitochondrial synthesis levels correspond precisely to cytosolic levels across OXPHOS complexes, and these average rates reflect the relative abundances of the complexes. Balanced mitochondrial and cytosolic synthesis does not rely on rapid feedback between the two translation systems, and imbalance caused by mitochondrial translation deficiency is associated with the induction of proteotoxicity pathways. CONCLUSIONS Based on our findings, we propose that human OXPHOS complexes are synthesized proportionally to each other, with mitonuclear balance relying on the regulation of OXPHOS subunit translation across cellular compartments, which may represent a proteostasis vulnerability.
Collapse
Affiliation(s)
- Iliana Soto
- Blavatnik Institute, Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
| | - Mary Couvillion
- Blavatnik Institute, Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
| | - Katja G Hansen
- Blavatnik Institute, Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
| | - Erik McShane
- Blavatnik Institute, Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
| | - J Conor Moran
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Antoni Barrientos
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - L Stirling Churchman
- Blavatnik Institute, Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
22
|
Abstract
Over a century of research has focused on improving our understanding of congenital cytomegalovirus (cCMV), yet it remains the most common congenital infection in the United States, affecting 3 to 6 per 1000 live born infants each year. Pregnancies affected by cCMV are at a heightened risk of spontaneous abortion and intrauterine fetal demise. Neonates born with cCMV are also at substantial risk for long-term neurodevelopmental sequelae and disability, including sensorineural hearing loss, even those born without clinically apparent disease. Considerable progress has been made in recent years in study of the epidemiology and transmission of cCMV, developing better diagnostic strategies, implementing newborn screening programs, improving therapeutics, and launching vaccine trials. In this article, we review recent developments in the understanding of the virology and immunobiology of cytomegalovirus. We further discuss how this knowledge informs our understanding of the pathophysiology of cCMV and directs strategies aimed at improving outcomes and quality of life for congenitally infected children. We also provide an update on the epidemiology of cCMV in the United States, evolving scientific understanding of maternal-fetal transmission, enhanced screening approaches, and recognition of neonatal and long-term sequelae. Finally, we review the current landscape of pediatric cCMV research and provide recommendations for novel and high-priority areas for future investigation.
Collapse
Affiliation(s)
- Megan H. Pesch
- University of Michigan and CS Mott Children’s Hospital, Division of Developmental and Behavioral Pediatrics, Department of Pediatrics, Ann Arbor, Michigan
| | - Mark R. Schleiss
- Department of Pediatrics, University of Minnesota Medical School, Division of Pediatric Infectious Diseases
| |
Collapse
|
23
|
An eIF3d-dependent switch regulates HCMV replication by remodeling the infected cell translation landscape to mimic chronic ER stress. Cell Rep 2022; 39:110767. [PMID: 35508137 PMCID: PMC9127984 DOI: 10.1016/j.celrep.2022.110767] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 02/07/2022] [Accepted: 04/11/2022] [Indexed: 11/20/2022] Open
Abstract
Regulated loading of eIF3-bound 40S ribosomes on capped mRNA is generally dependent upon the translation initiation factor eIF4E; however, mRNA translation often proceeds during physiological stress, such as virus infection, when eIF4E availability and activity are limiting. It remains poorly understood how translation of virus and host mRNAs are regulated during infection stress. While initially sensitive to mTOR inhibition, which limits eIF4E-dependent translation, we show that protein synthesis in human cytomegalovirus (HCMV)-infected cells unexpectedly becomes progressively reliant upon eIF3d. Targeting eIF3d selectively inhibits HCMV replication, reduces polyribosome abundance, and interferes with expression of essential virus genes and a host gene expression signature indicative of chronic ER stress that fosters HCMV reproduction. This reveals a strategy whereby cellular eIF3d-dependent protein production is hijacked to exploit virus-induced ER stress. Moreover, it establishes how switching between eIF4E and eIF3d-responsive cap-dependent translation can differentially tune virus and host gene expression in infected cells. Instead of eIF4E-regulated ribosome loading, Thompson et al. show capped mRNA translation in HCMV-infected cells becomes reliant upon eIF3d. Depleting eIF3d inhibits HCMV replication, reduces polyribosomes, and restricts virus late gene and host chronic ER stress-induced gene expression. Thus, switching to eIF3d-responsive translation tunes gene expression to support virus replication.
Collapse
|
24
|
O’Brien BS, Mokry RL, Schumacher ML, Pulakanti K, Rao S, Terhune SS, Ebert AD. Downregulation of neurodevelopmental gene expression in iPSC-derived cerebral organoids upon infection by human cytomegalovirus. iScience 2022; 25:104098. [PMID: 35391828 PMCID: PMC8980761 DOI: 10.1016/j.isci.2022.104098] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 01/18/2022] [Accepted: 03/15/2022] [Indexed: 11/25/2022] Open
Abstract
Human cytomegalovirus (HCMV) is a betaherpesvirus that can cause severe birth defects including vision and hearing loss, microcephaly, and seizures. Currently, no approved treatment options exist for in utero infections. Here, we aimed to determine the impact of HCMV infection on the transcriptome of developing neurons in an organoid model system. Cell populations isolated from organoids based on a marker for infection and transcriptomes were defined. We uncovered downregulation in key cortical, neurodevelopmental, and functional gene pathways which occurred regardless of the degree of infection. To test the contributions of specific HCMV immediate early proteins known to disrupt neural differentiation, we infected NPCs using a recombinant virus harboring a destabilization domain. Despite suppressing their expression, HCMV-mediated transcriptional downregulation still occurred. Together, our studies have revealed that HCMV infection causes a profound downregulation of neurodevelopmental genes and suggest a role for other viral factors in this process.
Collapse
Affiliation(s)
- Benjamin S. O’Brien
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Rebekah L. Mokry
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Megan L. Schumacher
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | | | - Sridhar Rao
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Blood Research Institute, Versiti, Milwaukee, WI 53226, USA
| | - Scott S. Terhune
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Allison D. Ebert
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
25
|
Control of animal virus replication by RNA adenosine methylation. Adv Virus Res 2022; 112:87-114. [PMID: 35840182 DOI: 10.1016/bs.aivir.2022.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Methylation at the N6-position of either adenosine (m6A) or 2'-O-methyladenosine (m6Am) represents two of the most abundant internal modifications of coding and non-coding RNAs, influencing their maturation, stability and function. Additionally, although less abundant and less well-studied, monomethylation at the N1-position (m1A) can have profound effects on RNA folding. It has been known for several decades that RNAs produced by both DNA and RNA viruses can be m6A/m6Am modified and the list continues to broaden through advances in detection technologies and identification of the relevant methyltransferases. Recent studies have uncovered varied mechanisms used by viruses to manipulate the m6A pathway in particular, either to enhance virus replication or to antagonize host antiviral defenses. As such, RNA modifications represent an important frontier of exploration in the broader realm of virus-host interactions, and this new knowledge already suggests exciting opportunities for therapeutic intervention. In this review we summarize the principal mechanisms by which m6A/m6Am can promote or hinder viral replication, describe how the pathway is actively manipulated by biomedically important viruses, and highlight some remaining gaps in understanding how adenosine methylation of RNA controls viral replication and pathogenesis.
Collapse
|
26
|
Functional single-cell genomics of human cytomegalovirus infection. Nat Biotechnol 2022; 40:391-401. [PMID: 34697476 DOI: 10.1038/s41587-021-01059-3] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 08/17/2021] [Indexed: 12/26/2022]
Abstract
Understanding how viral and host factors interact and how perturbations impact infection is the basis for designing antiviral interventions. Here we define the functional contribution of each viral and host factor involved in human cytomegalovirus infection in primary human fibroblasts through pooled CRISPR interference and nuclease screening. To determine how genetic perturbation of critical host and viral factors alters the timing, course and progression of infection, we applied Perturb-seq to record the transcriptomes of tens of thousands of CRISPR-modified single cells and found that, normally, most cells follow a stereotypical transcriptional trajectory. Perturbing critical host factors does not change the stereotypical transcriptional trajectory per se but can stall, delay or accelerate progression along the trajectory, allowing one to pinpoint the stage of infection at which host factors act. Conversely, perturbation of viral factors can create distinct, abortive trajectories. Our results reveal the roles of host and viral factors and provide a roadmap for the dissection of host-pathogen interactions.
Collapse
|
27
|
Burgess HM, Vink EI, Mohr I. Minding the message: tactics controlling RNA decay, modification, and translation in virus-infected cells. Genes Dev 2022; 36:108-132. [PMID: 35193946 PMCID: PMC8887129 DOI: 10.1101/gad.349276.121] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
With their categorical requirement for host ribosomes to translate mRNA, viruses provide a wealth of genetically tractable models to investigate how gene expression is remodeled post-transcriptionally by infection-triggered biological stress. By co-opting and subverting cellular pathways that control mRNA decay, modification, and translation, the global landscape of post-transcriptional processes is swiftly reshaped by virus-encoded factors. Concurrent host cell-intrinsic countermeasures likewise conscript post-transcriptional strategies to mobilize critical innate immune defenses. Here we review strategies and mechanisms that control mRNA decay, modification, and translation in animal virus-infected cells. Besides settling infection outcomes, post-transcriptional gene regulation in virus-infected cells epitomizes fundamental physiological stress responses in health and disease.
Collapse
Affiliation(s)
- Hannah M Burgess
- Department of Microbial Sciences, School of Biosciences and Medicine, University of Surrey, Guildford GU2 7XH, United Kingdom
| | - Elizabeth I Vink
- Department of Microbiology, New York University School of Medicine, New York, New York 10016, USA
| | - Ian Mohr
- Department of Microbiology, New York University School of Medicine, New York, New York 10016, USA
- Laura and Isaac Perlmutter Cancer Institute, New York University School of Medicine, New York, New York 10016, USA
| |
Collapse
|
28
|
Tyl MD, Betsinger CN, Cristea IM. Virus-host protein interactions as footprints of human cytomegalovirus replication. Curr Opin Virol 2022; 52:135-147. [PMID: 34923282 PMCID: PMC8844139 DOI: 10.1016/j.coviro.2021.11.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 11/24/2021] [Indexed: 02/03/2023]
Abstract
Human cytomegalovirus (HCMV) is a pervasive β-herpesvirus that causes lifelong infection. The lytic replication cycle of HCMV is characterized by global organelle remodeling and dynamic virus-host interactions, both of which are necessary for productive HCMV replication. With the advent of new technologies for investigating protein-protein and protein-nucleic acid interactions, numerous critical interfaces between HCMV and host cells have been identified. Here, we review temporal and spatial virus-host interactions that support different stages of the HCMV replication cycle. Understanding how HCMV interacts with host cells during entry, replication, and assembly, as well as how it interfaces with host cell metabolism and immune responses promises to illuminate processes that underlie the biology of infection and the resulting pathologies.
Collapse
Affiliation(s)
- Matthew D. Tyl
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544, USA
| | - Cora N. Betsinger
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544, USA
| | - Ileana M. Cristea
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544, USA,Corresponding author and lead contact: Ileana M. Cristea, 210 Lewis Thomas Laboratory, Department of Molecular Biology, Princeton University, Princeton, NJ 08544, Tel: 6092589417, Fax: 6092584575,
| |
Collapse
|
29
|
Manska S, Rossetto CC. Identification of cellular proteins associated with human cytomegalovirus (HCMV) DNA replication suggests novel cellular and viral interactions. Virology 2022; 566:26-41. [PMID: 34861458 PMCID: PMC8720285 DOI: 10.1016/j.virol.2021.11.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 11/07/2021] [Accepted: 11/16/2021] [Indexed: 01/03/2023]
Abstract
Upon entry of Human cytomegalovirus (HCMV) into the host cell, the viral genome is transported to the nucleus where it serves as a template for transcription and genome replication. Production of new viral genomes is a coordinated effort between viral and cellular proteins. While the core replication proteins are encoded by the virus, additional cellular proteins support the process of genome synthesis. We used accelerated native isolation of proteins on nascent DNA (aniPOND) to study protein dynamics on nascent viral DNA during HCMV infection. Using this method, we identified specific viral and cellular proteins that are associated with nascent viral DNA. These included transcription factors, transcriptional regulators, DNA damage and repair factors, and chromatin remodeling complexes. The association of these identified proteins with viral DNA was confirmed by immunofluorescent imaging, chromatin-immunoprecipitation analyses, and shRNA knockdown experiments. These data provide evidence for the requirement of cellular factors involved in HCMV replication.
Collapse
Affiliation(s)
- Salomé Manska
- University of Nevada, Reno School of Medicine, Department of Microbiology and Immunology, 1664 North Virginia Street/MS320, Reno, NV 89557 USA
| | - Cyprian C. Rossetto
- University of Nevada, Reno School of Medicine, Department of Microbiology and Immunology, 1664 North Virginia Street/MS320, Reno, NV 89557 USA,Correspondence to: Cyprian C. Rossetto, Ph.D.
| |
Collapse
|
30
|
Phan QV, Bogdanow B, Wyler E, Landthaler M, Liu F, Hagemeier C, Wiebusch L. Engineering, decoding and systems-level characterization of chimpanzee cytomegalovirus. PLoS Pathog 2022; 18:e1010193. [PMID: 34982803 PMCID: PMC8759705 DOI: 10.1371/journal.ppat.1010193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 01/14/2022] [Accepted: 12/09/2021] [Indexed: 11/19/2022] Open
Abstract
The chimpanzee cytomegalovirus (CCMV) is the closest relative of human CMV (HCMV). Because of the high conservation between these two species and the ability of human cells to fully support CCMV replication, CCMV holds great potential as a model system for HCMV. To make the CCMV genome available for precise and rapid gene manipulation techniques, we captured the genomic DNA of CCMV strain Heberling as a bacterial artificial chromosome (BAC). Selected BAC clones were reconstituted to infectious viruses, growing to similar high titers as parental CCMV. DNA sequencing confirmed the integrity of our clones and led to the identification of two polymorphic loci and a deletion-prone region within the CCMV genome. To re-evaluate the CCMV coding potential, we analyzed the viral transcriptome and proteome and identified several novel ORFs, splice variants, and regulatory RNAs. We further characterized the dynamics of CCMV gene expression and found that viral proteins cluster into five distinct temporal classes. In addition, our datasets revealed that the host response to CCMV infection and the de-regulation of cellular pathways are in line with known hallmarks of HCMV infection. In a first functional experiment, we investigated a proposed frameshift mutation in UL128 that was suspected to restrict CCMV's cell tropism. In fact, repair of this frameshift re-established productive CCMV infection in endothelial and epithelial cells, expanding the options of CCMV as an infection model. Thus, BAC-cloned CCMV can serve as a powerful tool for systematic approaches in comparative functional genomics, exploiting the close phylogenetic relationship between CCMV and HCMV.
Collapse
Affiliation(s)
- Quang Vinh Phan
- Department of Pediatric Oncology/Hematology, Charité—Universitätsmedizin Berlin, Berlin, Germany
| | - Boris Bogdanow
- Department of Structural Biology, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| | - Emanuel Wyler
- Berlin Institute for Medical Systems Biology, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Markus Landthaler
- Berlin Institute for Medical Systems Biology, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Fan Liu
- Department of Structural Biology, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| | - Christian Hagemeier
- Department of Pediatric Oncology/Hematology, Charité—Universitätsmedizin Berlin, Berlin, Germany
| | - Lüder Wiebusch
- Department of Pediatric Oncology/Hematology, Charité—Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
31
|
Broennimann K, Ricardo-Lax I, Adler J, Michailidis E, de Jong YP, Reuven N, Shaul Y. RNR-R2 Upregulation by a Short Non-Coding Viral Transcript. Biomolecules 2021; 11:biom11121822. [PMID: 34944466 PMCID: PMC8698843 DOI: 10.3390/biom11121822] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 11/29/2021] [Accepted: 12/01/2021] [Indexed: 01/12/2023] Open
Abstract
DNA viruses require dNTPs for replication and have developed different strategies to increase intracellular dNTP pools. Hepatitis B virus (HBV) infects non-dividing cells in which dNTPs are scarce and the question is how viral replication takes place. Previously we reported that the virus induces the DNA damage response (DDR) pathway culminating in RNR-R2 expression and the generation of an active RNR holoenzyme, the key regulator of dNTP levels, leading to an increase in dNTPs. How the virus induces DDR and RNR-R2 upregulation is not completely known. The viral HBx open reading frame (ORF) was believed to trigger this pathway. Unexpectedly, however, we report here that the production of HBx protein is dispensable. We found that a small conserved region of 125 bases within the HBx ORF is sufficient to upregulate RNR-R2 expression in growth-arrested HepG2 cells and primary human hepatocytes. The observed HBV mRNA embedded regulatory element is named ERE. ERE in isolation is sufficient to activate the ATR-Chk1-E2F1-RNR-R2 DDR pathway. These findings demonstrate a non-coding function of HBV transcripts to support its propagation in non-cycling cells.
Collapse
Affiliation(s)
- Karin Broennimann
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel; (K.B.); (I.R.-L.); (J.A.); (N.R.)
| | - Inna Ricardo-Lax
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel; (K.B.); (I.R.-L.); (J.A.); (N.R.)
- Laboratory of Virology and Infectious Disease, Rockefeller University, New York, NY 10065, USA; (E.M.); (Y.P.d.J.)
| | - Julia Adler
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel; (K.B.); (I.R.-L.); (J.A.); (N.R.)
| | - Eleftherios Michailidis
- Laboratory of Virology and Infectious Disease, Rockefeller University, New York, NY 10065, USA; (E.M.); (Y.P.d.J.)
| | - Ype P. de Jong
- Laboratory of Virology and Infectious Disease, Rockefeller University, New York, NY 10065, USA; (E.M.); (Y.P.d.J.)
- Division of Gastroenterology and Hepatology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Nina Reuven
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel; (K.B.); (I.R.-L.); (J.A.); (N.R.)
| | - Yosef Shaul
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel; (K.B.); (I.R.-L.); (J.A.); (N.R.)
- Correspondence: ; Tel.: +972-8-934-2320
| |
Collapse
|
32
|
Chaouat AE, Seliger B, Mandelboim O, Schmiedel D. The HHV-6A Proteins U20 and U21 Target NKG2D Ligands to Escape Immune Recognition. Front Immunol 2021; 12:714799. [PMID: 34721381 PMCID: PMC8554080 DOI: 10.3389/fimmu.2021.714799] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 09/16/2021] [Indexed: 11/13/2022] Open
Abstract
The coevolution of the human immune system and herpesviruses led to the emergence and diversification of both cellular danger molecules recognized by immune cells on the one hand and viral countermeasures that prevent the expression of these proteins on infected cells on the other. There are eight ligands for the activating receptor NKG2D in humans - MICA, MICB, ULBP1-6. Several of them are induced and surface-expressed on herpesvirus-infected cells to serve as danger signals to activate the immune system. Therefore, these ligands are frequently targeted for suppression by viral immune evasion mechanisms. Mechanisms to downregulate NKG2D ligands and thereby escape immune recognition have been identified in all other human herpesviruses (HHV), except for HHV-6A. In this study, we identify two HHV-6A encoded immunoevasins, U20 and U21, which suppress the expression of the NKG2D ligands ULBP1 and ULBP3, respectively, during infection. Additionally, MICB is targeted by a so far unexplored viral protein. Due to the diminished NKG2D ligand surface expression on infected cells, recognition of HHV-6A infected cells by innate immune cells is impaired. Importantly, our study indicates that immune escape mechanisms between the related herpesviruses HHV-6A and HHV-6B are evolutionary conserved as the same NKG2D ligands are targeted. Our data contribute an additional piece of evidence for the importance of the NKG2D receptor - NKG2D ligand axis during human herpesvirus infections and sheds light on immune evasion mechanisms of HHV-6A.
Collapse
Affiliation(s)
- Abigael Eva Chaouat
- The Lautenberg Center for General and Tumor Immunology, The BioMedical Research Institute Israel Canada of the Faculty of Medicine, The Hebrew University Hadassah Medical School, Jerusalem, Israel
| | - Barbara Seliger
- Martin Luther University, Institute of Medical Immunology, Halle-Wittenberg, Germany.,Department of GMP Development and ATMP Design, Fraunhofer Institute for Cell Therapy and Immunology (IZI), Leipzig, Germany
| | - Ofer Mandelboim
- The Lautenberg Center for General and Tumor Immunology, The BioMedical Research Institute Israel Canada of the Faculty of Medicine, The Hebrew University Hadassah Medical School, Jerusalem, Israel
| | - Dominik Schmiedel
- The Lautenberg Center for General and Tumor Immunology, The BioMedical Research Institute Israel Canada of the Faculty of Medicine, The Hebrew University Hadassah Medical School, Jerusalem, Israel.,Department of GMP Development and ATMP Design, Fraunhofer Institute for Cell Therapy and Immunology (IZI), Leipzig, Germany
| |
Collapse
|
33
|
Ferreira AR, Marques M, Ramos B, Kagan JC, Ribeiro D. Emerging roles of peroxisomes in viral infections. Trends Cell Biol 2021; 32:124-139. [PMID: 34696946 DOI: 10.1016/j.tcb.2021.09.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/23/2021] [Accepted: 09/27/2021] [Indexed: 01/01/2023]
Abstract
Peroxisomes, essential subcellular organelles that fulfill important functions in lipid and reactive oxygen species metabolism, have recently emerged as key players during viral infections. Their importance for the establishment of the cellular antiviral response has been highlighted by numerous reports of specific evasion of peroxisome-dependent signaling by different viruses. Recent data demonstrate that peroxisomes also assume important proviral functions. Here, we review and discuss the recent advances in the study of the diverse roles of peroxisomes during viral infections, from animal to plant viruses, and from basic to translational perspectives. We further discuss the future development of this emerging area and propose that peroxisome-related mechanisms represent a promising target for the development of novel antiviral strategies.
Collapse
Affiliation(s)
- Ana Rita Ferreira
- Institute of Biomedicine (iBiMED) and Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - Mariana Marques
- Institute of Biomedicine (iBiMED) and Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - Bruno Ramos
- Institute of Biomedicine (iBiMED) and Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - Jonathan C Kagan
- Division of Gastroenterology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Daniela Ribeiro
- Institute of Biomedicine (iBiMED) and Department of Medical Sciences, University of Aveiro, Aveiro, Portugal.
| |
Collapse
|
34
|
Flores-Martínez YA, Le-Trilling VTK, Trilling M. Nedd8-Activating Enzyme Is a Druggable Host Dependency Factor of Human and Mouse Cytomegalovirus. Viruses 2021; 13:v13081610. [PMID: 34452475 PMCID: PMC8402636 DOI: 10.3390/v13081610] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 12/24/2022] Open
Abstract
Human cytomegalovirus causes diseases in individuals with insufficient immunity. Cytomegaloviruses exploit the ubiquitin proteasome pathway to manipulate the proteome of infected cells. The proteasome degrades ubiquitinated proteins. The family of cullin RING ubiquitin ligases (CRL) regulates the stability of numerous important proteins. If the cullin within the CRL is modified with Nedd8 ("neddylated"), the CRL is enzymatically active, while CRLs lacking Nedd8 modifications are inactive. The Nedd8-activating enzyme (NAE) is indispensable for neddylation. By binding to NAE and inhibiting neddylation, the drug MLN4924 (pevonedistat) causes CRL inactivation and stabilization of CRL target proteins. We showed that MLN4924 elicits potent antiviral activity against cytomegaloviruses, suggesting that NAE might be a druggable host dependency factor (HDF). However, MLN4924 is a nucleoside analog related to AMP, and the antiviral activity of MLN4924 may have been influenced by off-target effects in addition to NAE inhibition. To test if NAE is indeed an HDF, we assessed the novel NAE inhibitor TAS4464 and observed potent antiviral activity against mouse and human cytomegalovirus. Additionally, we raised an MLN4924-resistant cell clone and showed that MLN4924 as well as TAS4464 lose their antiviral activity in these cells. Our results indicate that NAE, the neddylation process, and CRLs are druggable HDFs of cytomegaloviruses.
Collapse
|
35
|
Epigenetic reprogramming of host and viral genes by Human Cytomegalovirus infection in Kasumi-3 myeloid progenitor cells at early times post-infection. J Virol 2021; 95:JVI.00183-21. [PMID: 33731453 PMCID: PMC10021080 DOI: 10.1128/jvi.00183-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
HCMV establishes latency in myeloid cells. Using the Kasumi-3 latency model, we previously showed that lytic gene expression is activated prior to establishment of latency in these cells. The early events in infection may have a critical role in shaping establishment of latency. Here, we have used an integrative multi-omics approach to investigate dynamic changes in host and HCMV gene expression and epigenomes at early times post infection. Our results show dynamic changes in viral gene expression and viral chromatin. Analyses of Pol II, H3K27Ac and H3K27me3 occupancy of the viral genome showed that 1) Pol II occupancy was highest at the MIEP at 4 hours post infection. However, it was observed throughout the genome; 2) At 24 hours, H3K27Ac was localized to the major immediate early promoter/enhancer and to a possible second enhancer in the origin of replication OriLyt; 3) viral chromatin was broadly accessible at 24 hpi. In addition, although HCMV infection activated expression of some host genes, we observed an overall loss of de novo transcription. This was associated with loss of promoter-proximal Pol II and H3K27Ac, but not with changes in chromatin accessibility or a switch in modification of H3K27.Importance.HCMV is an important human pathogen in immunocompromised hosts and developing fetuses. Current anti-viral therapies are limited by toxicity and emergence of resistant strains. Our studies highlight emerging concepts that challenge current paradigms of regulation of HCMV gene expression in myeloid cells. In addition, our studies show that HCMV has a profound effect on de novo transcription and the cellular epigenome. These results may have implications for mechanisms of viral pathogenesis.
Collapse
|
36
|
Haidar Ahmad S, Al Moussawi F, El Baba R, Nehme Z, Pasquereau S, Kumar A, Molimard C, Monnien F, Algros MP, Karaky R, Stamminger T, Diab Assaf M, Herbein G. Identification of UL69 Gene and Protein in Cytomegalovirus-Transformed Human Mammary Epithelial Cells. Front Oncol 2021; 11:627866. [PMID: 33937031 PMCID: PMC8085531 DOI: 10.3389/fonc.2021.627866] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 03/26/2021] [Indexed: 12/15/2022] Open
Abstract
A growing body of evidence addressing the involvement of human cytomegalovirus (HCMV) in malignancies had directed attention to the oncomodulation paradigm. HCMV-DB infected human mammary epithelial cells (HMECs) in culture showed the emergence of clusters of rapidly proliferating, spheroid-shaped transformed cells named CTH (CMV-Transformed HMECs) cells. CTH cells assessment suggests a direct contribution of HCMV to oncogenesis, from key latent and lytic genes activating oncogenic pathways to fueling tumor evolution. We hypothesized that the presence of HCMV genome in CTH cells is of pivotal importance for determining its oncogenic potential. We previously reported the detection of a long non-coding (lnc) RNA4.9 gene in CTH cells. Therefore, we assessed here the presence of UL69 gene, located nearby and downstream of the lncRNA4.9 gene, in CTH cells. The HCMV UL69 gene in CTH cells was detected using polymerase chain reaction (PCR) and sequencing of UL69 gene was performed using Sanger method. The corresponding amino acid sequence was then blasted against the UL69 sequence derived from HCMV-DB genome using NCBI Protein BLAST tool. A 99% identity was present between the nucleotide sequence present in CTH cells and HCMV-DB genome. UL69 transcript was detected in RNA extracts of CTH cells, using a reverse transcription polymerase chain reaction (RT-PCR) assay, and pUL69 protein was identified in CTH lysates using western blotting. Ganciclovir-treated CTH cells showed a decrease in UL69 gene detection and cellular proliferation. In CTH cells, the knockdown of UL69 with siRNA was assessed by RT-qPCR and western blot to reveal the impact of pUL69 on HCMV replication and CTH cell proliferation. Finally, UL69 gene was detected in breast cancer biopsies. Our results indicate a close link between the UL69 gene detected in the HCMV-DB isolate used to infect HMECs, and the UL69 gene present in transformed CTH cells and tumor biopsies, further highlighting a direct role for HCMV in breast tumor development.
Collapse
Affiliation(s)
- Sandy Haidar Ahmad
- Department Pathogens & Inflammation-EPILAB EA4266, University of Bourgogne France-Comté, Besançon, France.,Molecular Cancer and Pharmaceutical Biology Laboratory, Lebanese University, Beyrouth, Lebanon
| | - Fatima Al Moussawi
- Department Pathogens & Inflammation-EPILAB EA4266, University of Bourgogne France-Comté, Besançon, France.,Molecular Cancer and Pharmaceutical Biology Laboratory, Lebanese University, Beyrouth, Lebanon
| | - Ranim El Baba
- Department Pathogens & Inflammation-EPILAB EA4266, University of Bourgogne France-Comté, Besançon, France.,Molecular Cancer and Pharmaceutical Biology Laboratory, Lebanese University, Beyrouth, Lebanon
| | - Zeina Nehme
- Department Pathogens & Inflammation-EPILAB EA4266, University of Bourgogne France-Comté, Besançon, France.,Molecular Cancer and Pharmaceutical Biology Laboratory, Lebanese University, Beyrouth, Lebanon
| | - Sébastien Pasquereau
- Department Pathogens & Inflammation-EPILAB EA4266, University of Bourgogne France-Comté, Besançon, France
| | - Amit Kumar
- Department Pathogens & Inflammation-EPILAB EA4266, University of Bourgogne France-Comté, Besançon, France
| | - Chloé Molimard
- Department of Pathology, CHRU Besançon, Besançon, France
| | - Franck Monnien
- Department of Pathology, CHRU Besançon, Besançon, France
| | | | - Racha Karaky
- Molecular Cancer and Pharmaceutical Biology Laboratory, Lebanese University, Beyrouth, Lebanon
| | | | - Mona Diab Assaf
- Molecular Cancer and Pharmaceutical Biology Laboratory, Lebanese University, Beyrouth, Lebanon
| | - Georges Herbein
- Department Pathogens & Inflammation-EPILAB EA4266, University of Bourgogne France-Comté, Besançon, France.,Department of Virology, CHRU Besancon, Besancon, France
| |
Collapse
|
37
|
The aryl hydrocarbon receptor facilitates the human cytomegalovirus-mediated G1/S block to cell cycle progression. Proc Natl Acad Sci U S A 2021; 118:2026336118. [PMID: 33723080 DOI: 10.1073/pnas.2026336118] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The tryptophan metabolite, kynurenine, is known to be produced at elevated levels within human cytomegalovirus (HCMV)-infected fibroblasts. Kynurenine is an endogenous aryl hydrocarbon receptor (AhR) ligand. Here we show that the AhR is activated following HCMV infection, and pharmacological inhibition of AhR or knockdown of AhR RNA reduced the accumulation of viral RNAs and infectious progeny. RNA-seq analysis of infected cells following AhR knockdown showed that the receptor alters the levels of numerous RNAs, including RNAs related to cell cycle progression. AhR knockdown alleviated the G1/S cell cycle block that is normally instituted in HCMV-infected fibroblasts, consistent with its known ability to regulate cell cycle progression and cell proliferation. In sum, AhR is activated by kynurenine and perhaps other ligands produced during HCMV infection, it profoundly alters the infected-cell transcriptome, and one outcome of its activity is a block to cell cycle progression, providing mechanistic insight to a long-known element of the virus-host cell interaction.
Collapse
|
38
|
Lin KM, Nightingale K, Soday L, Antrobus R, Weekes MP. Rapid Degradation Pathways of Host Proteins During HCMV Infection Revealed by Quantitative Proteomics. Front Cell Infect Microbiol 2021; 10:578259. [PMID: 33585265 PMCID: PMC7873559 DOI: 10.3389/fcimb.2020.578259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 12/08/2020] [Indexed: 12/30/2022] Open
Abstract
Human cytomegalovirus (HCMV) is an important pathogen in immunocompromised individuals and neonates, and a paradigm for viral immune evasion. We previously developed a quantitative proteomic approach that identified 133 proteins degraded during the early phase of HCMV infection, including known and novel antiviral factors. The majority were rescued from degradation by MG132, which is known to inhibit lysosomal cathepsins in addition to the proteasome. Global definition of the precise mechanisms of host protein degradation is important both to improve our understanding of viral biology, and to inform novel antiviral therapeutic strategies. We therefore developed and optimized a multiplexed comparative proteomic analysis using the selective proteasome inhibitor bortezomib in addition to MG132, to provide a global mechanistic view of protein degradation. Of proteins rescued from degradation by MG132, 34-47 proteins were also rescued by bortezomib, suggesting both that the predominant mechanism of protein degradation employed by HCMV is via the proteasome, and that alternative pathways for degradation are nevertheless important. Our approach and data will enable improved mechanistic understanding of HCMV and other viruses, and provide a shortlist of candidate restriction factors for further analysis.
Collapse
Affiliation(s)
| | | | | | | | - Michael P. Weekes
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
39
|
Human Cytomegalovirus Interactions with the Basement Membrane Protein Nidogen 1. J Virol 2021; 95:JVI.01506-20. [PMID: 33177203 DOI: 10.1128/jvi.01506-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 11/06/2020] [Indexed: 12/27/2022] Open
Abstract
In 2000, we reported that human cytomegalovirus (HCMV) induced specific damage on chromosome 1. The capacity of the virus to induce DNA breaks indicated potent interaction between viral proteins and these loci. We have fine mapped the 1q42 breaksite. Transcriptional analysis of genes encoded in close proximity revealed virus-induced downregulation of a single gene, nidogen 1 (NID1). Beginning between 12 and 24 hours postinfection (hpi) and continuing throughout infection, steady-state (ss) NID1 protein levels were decreased in whole-cell lysates and secreted supernatants of human foreskin fibroblasts. Addition of the proteasomal inhibitor MG132 to culture medium stabilized NID1 in virus-infected cells, implicating infection-activated proteasomal degradation of NID1. Targeting of NID1 via two separate pathways highlighted the virus' emphasis on NID1 elimination. NID1 is an important basement membrane protein secreted by many cell types, including the endothelial cells (ECs) lining the vasculature. We found that ss NID1 was also reduced in infected ECs and hypothesized that virus-induced removal of NID1 might offer HCMV a means of increased distribution throughout the host. Supporting this idea, transmigration assays of THP-1 cells seeded onto NID1-knockout (KO) EC monolayers demonstrated increased transmigration. NID1 is expressed widely in the developing fetal central and peripheral nervous systems (CNS and PNS) and is important for neuronal migration and neural network excitability and plasticity and regulates Schwann cell proliferation, migration, and myelin production. We found that NID1 expression was dramatically decreased in clinical samples of infected temporal bones. While potentially beneficial for virus dissemination, HCMV-induced elimination of NID1 may underlie negative ramifications to the infected fetus.IMPORTANCE We have found that HCMV infection promotes the elimination of the developmentally important basement membrane protein nidogen 1 (NID1) from its host. The virus both decreased transcription and induced degradation of expressed protein. Endothelial cell (EC) secretion of basement membrane proteins is critical for vascular wall integrity, and infection equivalently affected NID1 protein levels in these cells. We found that the absence of NID1 in an EC monolayer allowed increased transmigration of monocytes equivalent to that observed after infection of ECs. The importance of NID1 in development has been well documented. We found that NID1 protein was dramatically reduced in infected inner ear clinical samples. We believe that HCMV's attack on host NID1 favors viral dissemination at the cost of negative developmental ramifications in the infected fetus.
Collapse
|
40
|
Abstract
Alphaherpesviruses, as large double-stranded DNA viruses, were long considered to be genetically stable and to exist in a homogeneous state. Recently, the proliferation of high-throughput sequencing (HTS) and bioinformatics analysis has expanded our understanding of herpesvirus genomes and the variations found therein. Recent data indicate that herpesviruses exist as diverse populations, both in culture and in vivo, in a manner reminiscent of RNA viruses. In this review, we discuss the past, present, and potential future of alphaherpesvirus genomics, including the technical challenges that face the field. We also review how recent data has enabled genome-wide comparisons of sequence diversity, recombination, allele frequency, and selective pressures, including those introduced by cell culture. While we focus on the human alphaherpesviruses, we draw key insights from related veterinary species and from the beta- and gamma-subfamilies of herpesviruses. Promising technologies and potential future directions for herpesvirus genomics are highlighted as well, including the potential to link viral genetic differences to phenotypic and disease outcomes.
Collapse
Affiliation(s)
- Chad V. Kuny
- Departments of Biology, and Biochemistry and Molecular Biology, Center for Infectious Disease Dynamics, and the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| | - Moriah L. Szpara
- Departments of Biology, and Biochemistry and Molecular Biology, Center for Infectious Disease Dynamics, and the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| |
Collapse
|
41
|
Kao ZN, Liu CH, Liu WJ, Kumar R, Leu JH, Wang HC. Shrimp SIRT1 activates of the WSSV IE1 promoter independently of the NF-κB binding site. FISH & SHELLFISH IMMUNOLOGY 2020; 106:910-919. [PMID: 32841684 DOI: 10.1016/j.fsi.2020.08.034] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 08/17/2020] [Accepted: 08/20/2020] [Indexed: 06/11/2023]
Abstract
Since the mechanisms by which cellular factors modulate replication of the shrimp viral pathogen white spot syndrome virus (WSSV) are still largely unknown, here we consider the sirtuins, a family of NAD+-dependent protein deacetylases that are known to function as regulatory factors that activate or suppress viral transcription and replication in mammals. In particular, we focus on SIRT1 by isolating and characterizing LvSIRT1 from white shrimp (Litopenaeus vannamei) and investigating its involvement in WSSV infection. DsRNA-mediated gene silencing led to the expression of WSSV genes and the replication of genomic DNAs being significantly decreased in LvSIRT1-silenced shrimp. The deacetylase activity of LvSIRT1 was significantly induced at the early stage (2 hpi) and the genome replication stage (12 hpi) of WSSV replication, but decreased at the late stage of WSSV replication (24 hpi). Treatment with the SIRT1 activator resveratrol further suggested that LvSIRT1 activation increased the expression of several WSSV genes (IE1, VP28 and ICP11). Lastly, we used transfection and dual luciferase assays in Sf9 insect cells to show that while the overexpression of LvSIRT1 facilitates the promoter activity of WSSV IE1, this enhancement of WSSV IE1 expression is achieved by a transactivation pathway that is NF-κB-independent.
Collapse
Affiliation(s)
- Zi-Ning Kao
- Department of Biotechnology and Bioindustry Sciences, College of Biosciences and Biotechnology, National Cheng Kung University, Tainan, 701, Taiwan
| | - Chun-Hung Liu
- Department of Aquaculture, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Wang-Jing Liu
- Department of Earth and Life Science, University of Taipei, Taipei, Taiwan
| | - Ramya Kumar
- Department of Biotechnology and Bioindustry Sciences, College of Biosciences and Biotechnology, National Cheng Kung University, Tainan, 701, Taiwan; International Center for the Scientific Development of Shrimp Aquaculture, National Cheng Kung University, Tainan, 701, Taiwan
| | - Jiann-Horng Leu
- Institute of Marine Biology, National Taiwan Ocean University, Keelung, Taiwan
| | - Han-Ching Wang
- Department of Biotechnology and Bioindustry Sciences, College of Biosciences and Biotechnology, National Cheng Kung University, Tainan, 701, Taiwan; International Center for the Scientific Development of Shrimp Aquaculture, National Cheng Kung University, Tainan, 701, Taiwan.
| |
Collapse
|
42
|
Taher H, Mahyari E, Kreklywich C, Uebelhoer LS, McArdle MR, Moström MJ, Bhusari A, Nekorchuk M, E X, Whitmer T, Scheef EA, Sprehe LM, Roberts DL, Hughes CM, Jackson KA, Selseth AN, Ventura AB, Cleveland-Rubeor HC, Yue Y, Schmidt KA, Shao J, Edlefsen PT, Smedley J, Kowalik TF, Stanton RJ, Axthelm MK, Estes JD, Hansen SG, Kaur A, Barry PA, Bimber BN, Picker LJ, Streblow DN, Früh K, Malouli D. In vitro and in vivo characterization of a recombinant rhesus cytomegalovirus containing a complete genome. PLoS Pathog 2020; 16:e1008666. [PMID: 33232376 PMCID: PMC7723282 DOI: 10.1371/journal.ppat.1008666] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 12/08/2020] [Accepted: 09/30/2020] [Indexed: 02/07/2023] Open
Abstract
Cytomegaloviruses (CMVs) are highly adapted to their host species resulting in strict species specificity. Hence, in vivo examination of all aspects of CMV biology employs animal models using host-specific CMVs. Infection of rhesus macaques (RM) with rhesus CMV (RhCMV) has been established as a representative model for infection of humans with HCMV due to the close evolutionary relationships of both host and virus. However, the only available RhCMV clone that permits genetic modifications is based on the 68-1 strain which has been passaged in fibroblasts for decades resulting in multiple genomic changes due to tissue culture adaptations. As a result, 68-1 displays reduced viremia in RhCMV-naïve animals and limited shedding compared to non-clonal, low passage isolates. To overcome this limitation, we used sequence information from primary RhCMV isolates to construct a full-length (FL) RhCMV by repairing all mutations affecting open reading frames (ORFs) in the 68-1 bacterial artificial chromosome (BAC). Inoculation of adult, immunocompetent, RhCMV-naïve RM with the reconstituted virus resulted in significant viremia in the blood similar to primary isolates of RhCMV and furthermore led to high viral genome copy numbers in many tissues at day 14 post infection. In contrast, viral dissemination was greatly reduced upon deletion of genes also lacking in 68-1. Transcriptome analysis of infected tissues further revealed that chemokine-like genes deleted in 68-1 are among the most highly expressed viral transcripts both in vitro and in vivo consistent with an important immunomodulatory function of the respective proteins. We conclude that FL-RhCMV displays in vitro and in vivo characteristics of a wildtype virus while being amenable to genetic modifications through BAC recombineering techniques.
Collapse
Affiliation(s)
- Husam Taher
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Eisa Mahyari
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Craig Kreklywich
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Luke S. Uebelhoer
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Matthew R. McArdle
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Matilda J. Moström
- Tulane National Primate Research Center, Tulane University, Covington, Louisiana, United States of America
| | - Amruta Bhusari
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Michael Nekorchuk
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Xiaofei E
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Travis Whitmer
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Elizabeth A. Scheef
- Tulane National Primate Research Center, Tulane University, Covington, Louisiana, United States of America
| | - Lesli M. Sprehe
- Tulane National Primate Research Center, Tulane University, Covington, Louisiana, United States of America
| | - Dawn L. Roberts
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Colette M. Hughes
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Kerianne A. Jackson
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Andrea N. Selseth
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Abigail B. Ventura
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Hillary C. Cleveland-Rubeor
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Yujuan Yue
- Center for Comparative Medicine and Department of Medical Pathology, University of California, Davis, California, United States of America
| | - Kimberli A. Schmidt
- Center for Comparative Medicine and Department of Medical Pathology, University of California, Davis, California, United States of America
| | - Jason Shao
- Statistical Center for HIV/AIDS Research and Prevention, Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Paul T. Edlefsen
- Statistical Center for HIV/AIDS Research and Prevention, Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Jeremy Smedley
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Timothy F. Kowalik
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Richard J. Stanton
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Michael K. Axthelm
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Jacob D. Estes
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Scott G. Hansen
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Amitinder Kaur
- Tulane National Primate Research Center, Tulane University, Covington, Louisiana, United States of America
| | - Peter A. Barry
- Center for Comparative Medicine and Department of Medical Pathology, University of California, Davis, California, United States of America
| | - Benjamin N. Bimber
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Louis J. Picker
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Daniel N. Streblow
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Klaus Früh
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Daniel Malouli
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| |
Collapse
|
43
|
Hoang HD, Graber TE, Jia JJ, Vaidya N, Gilchrist VH, Xiang X, Li W, Cowan KN, Gkogkas CG, Jaramillo M, Jafarnejad SM, Alain T. Induction of an Alternative mRNA 5' Leader Enhances Translation of the Ciliopathy Gene Inpp5e and Resistance to Oncolytic Virus Infection. Cell Rep 2020; 29:4010-4023.e5. [PMID: 31851930 DOI: 10.1016/j.celrep.2019.11.072] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 10/16/2019] [Accepted: 11/15/2019] [Indexed: 01/10/2023] Open
Abstract
Residual cell-intrinsic innate immunity in cancer cells hampers infection with oncolytic viruses. Translational control of mRNA is an important feature of innate immunity, yet the identity of translationally regulated mRNAs functioning in host defense remains ill-defined. We report the translatomes of resistant murine "4T1" breast cancer cells infected with three of the most clinically advanced oncolytic viruses: herpes simplex virus 1, reovirus, and vaccinia virus. Common among all three infections are translationally de-repressed mRNAs, including Inpp5e, encoding an inositol 5-phosphatase that modifies lipid second messenger signaling. We find that viral infection induces the expression of an Inpp5e mRNA variant that lacks repressive upstream open reading frames (uORFs) within its 5' leader and is efficiently translated. Furthermore, we show that INPP5E contributes to antiviral immunity by altering virus attachment. These findings uncover a role for translational control through alternative 5' leader expression and assign an antiviral function to the ciliopathy gene Inpp5e.
Collapse
Affiliation(s)
- Huy-Dung Hoang
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada; Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Tyson E Graber
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada; Department of Biochemistry and Goodman Cancer Center, McGill University, Montreal, QC H3A 1A3, Canada
| | - Jian-Jun Jia
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada
| | - Nasana Vaidya
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada
| | - Victoria H Gilchrist
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada; Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Xiao Xiang
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Wencheng Li
- Department of Biochemistry and Molecular Biology, Rutgers New Jersey Medical School, Newark, NJ 07101, USA
| | - Kyle N Cowan
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; Department of Surgery, Children's Hospital of Eastern Ontario, University of Ottawa, Ottawa, ON K1H 8L1, Canada
| | - Christos G Gkogkas
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Maritza Jaramillo
- INRS Institut Armand-Frappier Research Centre, Laval, QC H7V 1B7, Canada
| | - Seyed Mehdi Jafarnejad
- Centre for Cancer Research and Cell Biology, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast BT9 7AE, UK
| | - Tommy Alain
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada; Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada.
| |
Collapse
|
44
|
Lučin P, Jug Vučko N, Karleuša L, Mahmutefendić Lučin H, Blagojević Zagorac G, Lisnić B, Pavišić V, Marcelić M, Grabušić K, Brizić I, Lukanović Jurić S. Cytomegalovirus Generates Assembly Compartment in the Early Phase of Infection by Perturbation of Host-Cell Factors Recruitment at the Early Endosome/Endosomal Recycling Compartment/Trans-Golgi Interface. Front Cell Dev Biol 2020; 8:563607. [PMID: 33042998 PMCID: PMC7516400 DOI: 10.3389/fcell.2020.563607] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 08/18/2020] [Indexed: 12/02/2022] Open
Abstract
Beta-herpesviruses develop a unique structure within the infected cell known as an assembly compartment (AC). This structure, as large as the nucleus, is composed of host-cell-derived membranous elements. The biogenesis of the AC and its contribution to the final stages of beta-herpesvirus assembly are still unclear. In this study, we performed a spatial and temporal analysis of the AC in cells infected with murine CMV (MCMV), a member of the beta-herpesvirus family, using a panel of markers that characterize membranous organelle system. Out of 64 markers that were analyzed, 52 were cytosolic proteins that are recruited to membranes as components of membrane-shaping regulatory cascades. The analysis demonstrates that MCMV infection extensively reorganizes interface between early endosomes (EE), endosomal recycling compartment (ERC), and the trans-Golgi network (TGN), resulting in expansion of various EE-ERC-TGN intermediates that fill the broad area of the inner AC. These intermediates are displayed as over-recruitment of host-cell factors that control membrane flow at the EE-ERC-TGN interface. Most of the reorganization is accomplished in the early (E) phase of infection, indicating that the AC biogenesis is controlled by MCMV early genes. Although it is known that CMV infection affects the expression of a large number of host-cell factors that control membranous system, analysis of the host-cell transcriptome and protein expression in the E phase of infection demonstrated no sufficiently significant alteration in expression levels of analyzed markers. Thus, our study demonstrates that MCMV-encoded early phase function targets recruitment cascades of host cell-factors that control membranous flow at the EE-ERC-TGN interface in order to initiate the development of the AC.
Collapse
Affiliation(s)
- Pero Lučin
- Department of Physiology and Immunology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia.,University North, University Center Varaždin, Varaždin, Croatia
| | - Natalia Jug Vučko
- Department of Physiology and Immunology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Ljerka Karleuša
- Department of Physiology and Immunology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Hana Mahmutefendić Lučin
- Department of Physiology and Immunology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia.,University North, University Center Varaždin, Varaždin, Croatia
| | - Gordana Blagojević Zagorac
- Department of Physiology and Immunology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia.,University North, University Center Varaždin, Varaždin, Croatia
| | - Berislav Lisnić
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Valentino Pavišić
- Department of Physiology and Immunology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Marina Marcelić
- Department of Physiology and Immunology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Kristina Grabušić
- Department of Physiology and Immunology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Ilija Brizić
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Silvija Lukanović Jurić
- Department of Physiology and Immunology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| |
Collapse
|
45
|
Finkel Y, Mizrahi O, Nachshon A, Weingarten-Gabbay S, Morgenstern D, Yahalom-Ronen Y, Tamir H, Achdout H, Stein D, Israeli O, Beth-Din A, Melamed S, Weiss S, Israely T, Paran N, Schwartz M, Stern-Ginossar N. The coding capacity of SARS-CoV-2. Nature 2020; 589:125-130. [PMID: 32906143 DOI: 10.1038/s41586-020-2739-1] [Citation(s) in RCA: 405] [Impact Index Per Article: 81.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 09/01/2020] [Indexed: 12/18/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause of the ongoing coronavirus disease 2019 (COVID-19) pandemic1. To understand the pathogenicity and antigenic potential of SARS-CoV-2 and to develop therapeutic tools, it is essential to profile the full repertoire of its expressed proteins. The current map of SARS-CoV-2 coding capacity is based on computational predictions and relies on homology with other coronaviruses. As the protein complement varies among coronaviruses, especially in regard to the variety of accessory proteins, it is crucial to characterize the specific range of SARS-CoV-2 proteins in an unbiased and open-ended manner. Here, using a suite of ribosome-profiling techniques2-4, we present a high-resolution map of coding regions in the SARS-CoV-2 genome, which enables us to accurately quantify the expression of canonical viral open reading frames (ORFs) and to identify 23 unannotated viral ORFs. These ORFs include upstream ORFs that are likely to have a regulatory role, several in-frame internal ORFs within existing ORFs, resulting in N-terminally truncated products, as well as internal out-of-frame ORFs, which generate novel polypeptides. We further show that viral mRNAs are not translated more efficiently than host mRNAs; instead, virus translation dominates host translation because of the high levels of viral transcripts. Our work provides a resource that will form the basis of future functional studies.
Collapse
Affiliation(s)
- Yaara Finkel
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Orel Mizrahi
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Aharon Nachshon
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Shira Weingarten-Gabbay
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Department of Organismal and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - David Morgenstern
- de Botton Institute for Protein Profiling, The Nancy and Stephen Grand Israel National Center for Personalised Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Yfat Yahalom-Ronen
- Department of Infectious Diseases, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Hadas Tamir
- Department of Infectious Diseases, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Hagit Achdout
- Department of Infectious Diseases, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Dana Stein
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Ofir Israeli
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Adi Beth-Din
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Sharon Melamed
- Department of Infectious Diseases, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Shay Weiss
- Department of Infectious Diseases, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Tomer Israely
- Department of Infectious Diseases, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Nir Paran
- Department of Infectious Diseases, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Michal Schwartz
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Noam Stern-Ginossar
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
46
|
Wu Q, Wright M, Gogol MM, Bradford WD, Zhang N, Bazzini AA. Translation of small downstream ORFs enhances translation of canonical main open reading frames. EMBO J 2020; 39:e104763. [PMID: 32744758 PMCID: PMC7459409 DOI: 10.15252/embj.2020104763] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 06/23/2020] [Accepted: 06/26/2020] [Indexed: 12/26/2022] Open
Abstract
In addition to canonical open reading frames (ORFs), thousands of translated small ORFs (containing less than 100 codons) have been identified in untranslated mRNA regions (UTRs) across eukaryotes. Small ORFs in 5′ UTRs (upstream (u)ORFs) often repress translation of the canonical ORF within the same mRNA. However, the function of translated small ORFs in the 3′ UTRs (downstream (d)ORFs) is unknown. Contrary to uORFs, we find that translation of dORFs enhances translation of their corresponding canonical ORFs. This translation stimulatory effect of dORFs depends on the number of dORFs, but not the length or peptide they encode. We propose that dORFs represent a new, strong, and universal translation regulatory mechanism in vertebrates.
Collapse
Affiliation(s)
- Qiushuang Wu
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Matthew Wright
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | | | | | - Ning Zhang
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Ariel A Bazzini
- Stowers Institute for Medical Research, Kansas City, MO, USA.,Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
47
|
Wiseman DH, Baker SM, Dongre AV, Gurashi K, Storer JA, Somervaille TC, Batta K. Chronic myelomonocytic leukaemia stem cell transcriptomes anticipate disease morphology and outcome. EBioMedicine 2020; 58:102904. [PMID: 32763828 PMCID: PMC7403890 DOI: 10.1016/j.ebiom.2020.102904] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/30/2020] [Accepted: 07/07/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Chronic myelomonocytic leukaemia (CMML) is a clinically heterogeneous stem cell malignancy with overlapping features of myelodysplasia and myeloproliferation. Over 90% of patients carry mutations in epigenetic and/or splicing genes, typically detectable in the Lin-CD34+CD38- immunophenotypic stem cell compartment in which the leukaemia-initiating cells reside. Transcriptional dysregulation at the stem cell level is likely fundamental to disease onset and progression. METHODS We performed single-cell RNA sequencing on 6826 Lin-CD34+CD38-stem cells from CMML patients and healthy controls using the droplet-based, ultra-high-throughput 10x platform. FINDINGS We found substantial inter- and intra-patient heterogeneity, with CMML stem cells displaying distinctive transcriptional programs. Compared with normal controls, CMML stem cells exhibited transcriptomes characterized by increased expression of myeloid-lineage and cell cycle genes, and lower expression of genes selectively expressed by normal haematopoietic stem cells. Neutrophil-primed progenitor genes and a MYC transcription factor regulome were prominent in stem cells from CMML-1 patients, whereas CMML-2 stem cells exhibited strong expression of interferon-regulatory factor regulomes, including those associated with IRF1, IRF7 and IRF8. CMML-1 and CMML-2 stem cells (stages distinguished by proportion of downstream blasts and promonocytes) differed substantially in both transcriptome and pseudotime, indicating fundamentally different biology underpinning these disease states. Gene expression and pathway analyses highlighted potentially tractable therapeutic vulnerabilities for downstream investigation. Importantly, CMML patients harboured variably-sized subpopulations of transcriptionally normal stem cells, indicating a potential reservoir to restore functional haematopoiesis. INTERPRETATION Our findings provide novel insights into the CMML stem cell compartment, revealing an unexpected degree of heterogeneity and demonstrating that CMML stem cell transcriptomes anticipate disease morphology, and therefore outcome. FUNDING Project funding was supported by Oglesby Charitable Trust, Cancer Research UK, Blood Cancer UK, and UK Medical Research Council.
Collapse
Affiliation(s)
- Daniel H Wiseman
- Epigenetics of Haematopoiesis Laboratory, Division of Cancer Sciences, The University of Manchester, Manchester M20 4GJ, UK.
| | - Syed M Baker
- Division of Informatics, Imaging & Data Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PL, UK
| | - Arundhati V Dongre
- Epigenetics of Haematopoiesis Laboratory, Division of Cancer Sciences, The University of Manchester, Manchester M20 4GJ, UK
| | - Kristian Gurashi
- Epigenetics of Haematopoiesis Laboratory, Division of Cancer Sciences, The University of Manchester, Manchester M20 4GJ, UK
| | - Joanna A Storer
- Epigenetics of Haematopoiesis Laboratory, Division of Cancer Sciences, The University of Manchester, Manchester M20 4GJ, UK
| | - Tim Cp Somervaille
- Leukaemia Biology Laboratory, Cancer Research UK Manchester Institute, The University of Manchester, Manchester M20 4GJ, UK
| | - Kiran Batta
- Epigenetics of Haematopoiesis Laboratory, Division of Cancer Sciences, The University of Manchester, Manchester M20 4GJ, UK.
| |
Collapse
|
48
|
Tai-Schmiedel J, Karniely S, Lau B, Ezra A, Eliyahu E, Nachshon A, Kerr K, Suárez N, Schwartz M, Davison AJ, Stern-Ginossar N. Human cytomegalovirus long noncoding RNA4.9 regulates viral DNA replication. PLoS Pathog 2020; 16:e1008390. [PMID: 32294138 PMCID: PMC7185721 DOI: 10.1371/journal.ppat.1008390] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 04/27/2020] [Accepted: 02/07/2020] [Indexed: 01/25/2023] Open
Abstract
Viruses are known for their extremely compact genomes composed almost entirely of protein-coding genes. Nonetheless, four long noncoding RNAs (lncRNAs) are encoded by human cytomegalovirus (HCMV). Although these RNAs accumulate to high levels during lytic infection, their functions remain largely unknown. Here, we show that HCMV-encoded lncRNA4.9 localizes to the viral nuclear replication compartment, and that its depletion restricts viral DNA replication and viral growth. RNA4.9 is transcribed from the HCMV origin of replication (oriLyt) and forms an RNA-DNA hybrid (R-loop) through its G+C-rich 5' end, which may be important for the initiation of viral DNA replication. Furthermore, targeting the RNA4.9 promoter with CRISPR-Cas9 or genetic relocalization of oriLyt leads to reduced levels of the viral single-stranded DNA-binding protein (ssDBP), suggesting that the levels of ssDBP are coupled to the oriLyt activity. We further identified a similar, oriLyt-embedded, G+C-rich lncRNA in murine cytomegalovirus (MCMV). These results indicate that HCMV RNA4.9 plays an important role in regulating viral DNA replication, that the levels of ssDBP are coupled to the oriLyt activity, and that these regulatory features may be conserved among betaherpesviruses.
Collapse
Affiliation(s)
- Julie Tai-Schmiedel
- Weizmann Institute of Science, Department of Molecular Genetics, Rehovot, Israel
| | | | - Betty Lau
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Adi Ezra
- Weizmann Institute of Science, Department of Molecular Genetics, Rehovot, Israel
| | - Erez Eliyahu
- Weizmann Institute of Science, Department of Molecular Genetics, Rehovot, Israel
| | - Aharon Nachshon
- Weizmann Institute of Science, Department of Molecular Genetics, Rehovot, Israel
| | - Karen Kerr
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Nicolás Suárez
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Michal Schwartz
- Weizmann Institute of Science, Department of Molecular Genetics, Rehovot, Israel
| | - Andrew J Davison
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Noam Stern-Ginossar
- Weizmann Institute of Science, Department of Molecular Genetics, Rehovot, Israel
| |
Collapse
|
49
|
Sadigh Y, Tahiri-Alaoui A, Spatz S, Nair V, Ribeca P. Pervasive Differential Splicing in Marek's Disease Virus can Discriminate CVI-988 Vaccine Strain from RB-1B Very Virulent Strain in Chicken Embryonic Fibroblasts. Viruses 2020; 12:E329. [PMID: 32197378 PMCID: PMC7150913 DOI: 10.3390/v12030329] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/07/2020] [Accepted: 03/10/2020] [Indexed: 12/13/2022] Open
Abstract
Marek's disease is a major scourge challenging poultry health worldwide. It is caused by the highly contagious Marek's disease virus (MDV), an alphaherpesvirus. Here, we showed that, similar to other members of its Herpesviridae family, MDV also presents a complex landscape of splicing events, most of which are uncharacterised and/or not annotated. Quite strikingly, and although the biological relevance of this fact is unknown, we found that a number of viral splicing isoforms are strain-specific, despite the close sequence similarity of the strains considered: very virulent RB-1B and vaccine CVI-988. We validated our findings by devising an assay that discriminated infections caused by the two strains in chicken embryonic fibroblasts on the basis of the presence of some RNA species. To our knowledge, this study is the first to accomplish such a result, emphasizing how relevant a comprehensive picture of the viral transcriptome is to fully understand viral pathogenesis.
Collapse
Affiliation(s)
- Yashar Sadigh
- Avian Viral Oncogenesis, The Pirbright Institute, Ash Road, Woking GU24 0NF, UK;
| | - Abdessamad Tahiri-Alaoui
- Clinical BioManufacturing Facility, The Jenner Institute, University of Oxford, Old Road, Headington, Oxford OX3 7JT, UK;
| | - Stephen Spatz
- US National Poultry Research Center, 934 College Station Road, Athens, GA 30605, USA;
| | - Venugopal Nair
- Avian Viral Oncogenesis, The Pirbright Institute, Ash Road, Woking GU24 0NF, UK;
| | - Paolo Ribeca
- Integrative Biology and Bioinformatics, The Pirbright Institute, Ash Road, Woking GU24 0NF, UK
- Biomathematics and Statistics Scotland (BioSS), James Clerk Maxwell Building, Peter Guthrie Tait Road, The King’s Buildings, Edinburgh EH9 3FD, UK
| |
Collapse
|
50
|
Le-Trilling VTK, Trilling M. Ub to no good: How cytomegaloviruses exploit the ubiquitin proteasome system. Virus Res 2020; 281:197938. [PMID: 32198076 DOI: 10.1016/j.virusres.2020.197938] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 03/13/2020] [Accepted: 03/13/2020] [Indexed: 12/17/2022]
Abstract
Human cytomegalovirus (HCMV) is a ubiquitous member of the Betaherpesvirinae subfamily, causing life-threatening diseases in individuals with impaired, immature, or senescent immunity. Accordingly, HIV-infected AIDS patients, transplant recipients, and congenitally infected neonates frequently suffer from symptomatic episodes of HCMV replication. Like all viruses, HCMV has a split relationship with the host proteome. Efficient virus replication can only be achieved if proteins involved in intrinsic, innate, and adaptive immune responses are sufficiently antagonized. Simultaneously, the abundance and function of proteins involved in the synthesis of chemical building blocks required for virus production, such as nucleotides, amino acids, and fatty acids, must be preserved or even enriched. The ubiquitin (Ub) proteasome system (UPS) constitutes one of the most relevant protein decay systems of eukaryotic cells. In addition to the regulation of the turn-over and abundance of thousands of proteins, the UPS also generates the majority of peptides presented by major histocompatibility complex (MHC) molecules to allow surveillance by T lymphocytes. Cytomegaloviruses exploit the UPS to regulate the abundance of viral proteins and to manipulate the host proteome in favour of viral replication and immune evasion. After summarizing the current knowledge of CMV-mediated misuse of the UPS, we discuss the evolution of viral proteins utilizing the UPS for the degradation of defined target proteins. We propose two alternative routes of adapter protein development and their mechanistic consequences.
Collapse
Affiliation(s)
| | - Mirko Trilling
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.
| |
Collapse
|