1
|
Gangwar A, Saini S, Sharma R. Galectins as Drivers of Host-Pathogen Dynamics in Mycobacterium tuberculosis Infection. ACS Infect Dis 2025. [PMID: 40340374 DOI: 10.1021/acsinfecdis.4c01056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2025]
Abstract
Galectins form a protein family with a conserved carbohydrate-binding domain that specifically interacts with β-galactoside-containing glycoconjugates, which are found abundantly on mammalian cell surfaces. These proteins play crucial roles in various physiological and pathological processes including immune responses, cell adhesion, inflammation, and apoptosis. During tuberculosis infection, galectins exert diverse impacts on pathogenesis. The interaction between host and pathogen during TB involves intricate mechanisms influencing disease outcomes, where the pathogen exploits host glycosylation patterns to evade immune detection, underscoring the significant role of galectins in regulating these crucial host-pathogen interactions. Galectins facilitate pathogen recognition, enhance the phagocytosis of mycobacteria, support the formation of granuloma, and carefully balance the protective immunity against potential tissue damage. Additionally, galectins have an impact on the cytokine milieu by regulating the levels of pro-inflammatory cytokines and chemokines, essential for orchestrating granuloma formation and maintaining tuberculosis-associated homeostasis. This review delves into the intricate connection between galectins and tuberculosis; uncovering essential molecular mechanisms that deepen our understanding of how these proteins contribute to combating this pervasive infectious disease. Here we discuss the multifaceted roles that galectins play to uniquely and critically influence the core dynamics of host-pathogen interactions in tuberculosis.
Collapse
Affiliation(s)
- Anjali Gangwar
- Infectious Diseases Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sapna Saini
- Infectious Diseases Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Rashmi Sharma
- Infectious Diseases Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
2
|
Konjengbam BD, Meitei HN, Pandey A, Haobam R. Goals and strategies in vaccine development against tuberculosis. Mol Immunol 2025; 183:56-71. [PMID: 40327952 DOI: 10.1016/j.molimm.2025.04.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 04/16/2025] [Accepted: 04/27/2025] [Indexed: 05/08/2025]
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), continues to be a major health problem globally. The emergence of multi-drug-resistant TB and extensively drug-resistant TB has become a severe threat to TB control programs. Currently, the Bacille Calmette-Guerin (BCG) vaccine protects a child from disease dissemination efficiently, but its efficiency wanes in adults. Despite all the limitations of BCG and accelerated TB vaccine research, BCG remains the only approved vaccine available for TB. Anti-TB drug treatment has been successful in combating the disease, but it has various side effects and requires an extended drug treatment period. So, vaccination is the finest outlook that can surpass the above-mentioned limitations. Several vaccine candidates are in the pipeline, and the hope for a potential candidate to either boost the BCG vaccine or replace BCG is underway. This review discusses different approaches to TB vaccine development. It summarizes all the challenges and limitations in vaccine development, and its preclinical and clinical trials. Additionally, DNA vaccines and their vaccination techniques are also discussed. Furthermore, the immunoinformatics approach and nanomaterial-based vaccine delivery with practical and productive endpoints are also discussed. Lastly, the potential prospects are also suggested for further studies, which would help bring positive outcomes.
Collapse
Affiliation(s)
| | | | - Anupama Pandey
- Department of Biotechnology, Manipur University, Canchipur, Imphal, Manipur 795003, India
| | - Reena Haobam
- Department of Biotechnology, Manipur University, Canchipur, Imphal, Manipur 795003, India.
| |
Collapse
|
3
|
Zhou W, Lu H, Lin J, Zhu J, Liang J, Xie Y, Hu J, Su N. Coexisting Lung Cancer and Pulmonary Tuberculosis: A Comprehensive Review From Incidence to Management. Cancer Rep (Hoboken) 2025; 8:e70213. [PMID: 40347011 PMCID: PMC12065023 DOI: 10.1002/cnr2.70213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 01/30/2025] [Accepted: 04/11/2025] [Indexed: 05/12/2025] Open
Abstract
BACKGROUND Globally, infections account for 10% of new cancer cases, and cancer can compromise the immune system, increasing the risk of infections. With advances in cancer treatment, widespread use of immunotherapy, and prolonged survival of cancer patients, the coexistence of tuberculosis (TB) and cancer is becoming increasingly common in clinical settings. AIM This review aims to explore the interaction between tuberculosis (TB) and tumors, particularly lung cancer (LC), and to identify appropriate clinical management approaches. RESULTS LC patients with a history of TB have higher adjusted risk ratios for both all-cause and cancer-specific 3-year mortality compared to those without a history of TB. TB may elevate the risk of developing tumors through mechanisms such as chronic inflammation, altered immune responses, and DNA damage. Conversely, cancer patients, whether due to the disease itself or immune dysfunction caused by anti-tumor treatments, may be more susceptible to TB. The coexistence of TB and tumors presents significant challenges in clinical management, making the development of treatment strategies and quality-of-life improvements crucial. CONCLUSION There is a close relationship between TB and cancer, with TB potentially serving as a risk factor for cancer, and cancer influencing susceptibility to TB. Effective clinical management is essential to enhance treatment strategies and improve the quality of life for patients with both TB and cancer.
Collapse
Affiliation(s)
- Wendi Zhou
- State Key Laboratory of Respiratory Disease, Guangzhou Key Laboratory of Tuberculosis Research, Guangzhou Chest Hospital, Institute of TuberculosisGuangzhou Medical UniversityGuangzhouP. R. China
- Department of Children's Psychological and Rehabilitation, Shen Zhen Maternity and Child Health HospitalSouthern Medical UniversityShenzhenP. R. China
| | - Hongxu Lu
- State Key Laboratory of Respiratory Disease, Guangzhou Key Laboratory of Tuberculosis Research, Guangzhou Chest Hospital, Institute of TuberculosisGuangzhou Medical UniversityGuangzhouP. R. China
| | - Jiamin Lin
- State Key Laboratory of Respiratory Disease, Guangzhou Key Laboratory of Tuberculosis Research, Guangzhou Chest Hospital, Institute of TuberculosisGuangzhou Medical UniversityGuangzhouP. R. China
| | - Jialou Zhu
- State Key Laboratory of Respiratory Disease, Guangzhou Key Laboratory of Tuberculosis Research, Guangzhou Chest Hospital, Institute of TuberculosisGuangzhou Medical UniversityGuangzhouP. R. China
| | - Jizhen Liang
- Department of OncologyGuangzhou Red Cross HospitalGuangzhouP. R. China
| | - Yalin Xie
- State Key Laboratory of Respiratory Disease, Guangzhou Key Laboratory of Tuberculosis Research, Guangzhou Chest Hospital, Institute of TuberculosisGuangzhou Medical UniversityGuangzhouP. R. China
| | - Jinxing Hu
- State Key Laboratory of Respiratory Disease, Guangzhou Key Laboratory of Tuberculosis Research, Guangzhou Chest Hospital, Institute of TuberculosisGuangzhou Medical UniversityGuangzhouP. R. China
| | - Ning Su
- State Key Laboratory of Respiratory Disease, Guangzhou Key Laboratory of Tuberculosis Research, Guangzhou Chest Hospital, Institute of TuberculosisGuangzhou Medical UniversityGuangzhouP. R. China
| |
Collapse
|
4
|
Fang C, He X, Tang F, Wang Z, Pan C, Zhang Q, Wu J, Wang Q, Liu D, Zhang Y. Where lung cancer and tuberculosis intersect: recent advances. Front Immunol 2025; 16:1561719. [PMID: 40242762 PMCID: PMC11999974 DOI: 10.3389/fimmu.2025.1561719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 03/12/2025] [Indexed: 04/18/2025] Open
Abstract
Lung cancer (LC) and tuberculosis (TB) represent two major global public health issues. Prior evidence has suggested a link between TB infection and an increased risk of LC. As advancements in LC treatment have led to extended survival rates for LC patients, the co-occurrence of TB and LC has grown more prevalent and poses novel clinical challenges. The intricate molecular mechanisms connecting TB and LC are closely intertwined and many issues remain to be addressed. This review focuses on resemblance between the immunosuppression in tumor and granuloma microenvironments, exploring immunometabolism, cell plasticity, inflammatory signaling pathways, microbiomics, and up-to-date information derived from spatial multi-omics between TB and LC. Furthermore, we outline immunization-related molecular mechanisms underlying these two diseases and propose future research directions. By discussing recent advances and potential targets, this review aims to establish a foundation for developing future therapeutic strategies targeting LC with concurrent TB infection.
Collapse
Affiliation(s)
- Chunju Fang
- Department of Oncology, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Xuanlu He
- School of Clinical Medicine, Zunyi Medical University, Zunyi, China
| | - Fei Tang
- Department of Oncology, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Zi Wang
- Department of Oncology, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Cong Pan
- School of Biological Sciences, Guizhou Education University, Guiyang, China
- Translational Medicine Research Center, eBond Pharmaceutical Technology Co., Ltd., Chengdu, China
| | - Qi Zhang
- Department of Oncology, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Jing Wu
- Department of Oncology, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Qinglan Wang
- Department of Respiratory and Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Daishun Liu
- Department of Respiratory and Critical Care Medicine, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Yu Zhang
- Department of Oncology, Guizhou Provincial People’s Hospital, Guiyang, China
- National Health Commission Key Laboratory of Pulmonary Immune-Related Diseases, Guizhou Provincial People’s Hospital, Guiyang, China
| |
Collapse
|
5
|
Yao X, Cai H, Chen J, Yu F, Wu X, Shi Y, Hu Y, Xu Y, Xu Q, Liu Z. Increased long-term central memory T cells in patients with retreatment pulmonary tuberculosis. Front Immunol 2025; 16:1545537. [PMID: 40170853 PMCID: PMC11959053 DOI: 10.3389/fimmu.2025.1545537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Accepted: 02/18/2025] [Indexed: 04/03/2025] Open
Abstract
Background T cells are crucial in controlling Mycobacterium tuberculosis infection and disease progression. Nevertheless, the specific functions and changes of T lymphocyte subsets in retreatment tuberculosis remain poorly understand. The study aims to identify the changes in T lymphocyte subsets and the immunoprotective effect of TCM in retreatment tuberculosis. Method We collected venous blood from the participants and assessed using flow cytometry. Univariate analysis and regression model were used to evaluate the changes of T lymphocyte subsets and key subsets in retreatment tuberculosis. Results In the study, while the frequencies of CD4 and CD8 T cells were similar between primary and retreatment patients, retreatment patients exhibited a significant increase in TCM (P < 0.05), which may represent a protective factor for retreatment (adjusted OR=0.926, 95%CI: 0.860-0.996, P < 0.05) (adjusted OR=0.951, 95%CI: 0.912-0.992, P<0.05). Furthermore, TCM significantly increased in retreatment patients who achieved cure (P < 0.05), though were similar between the cure and no-cure for primary patients; The potentially protective effect of TCM in patients with repeated infection may possibly contribute by improving the efficacy of retreatment chemotherapy (adjusted OR=0.803, 95%CI: 0.677-0.953, P < 0.05) (adjusted OR=0.890, 95% CI: 0.812-0.976, P<0.05), particularly in those with lung injury (adjusted OR=0.780, 95% CI: 0.635-0.957, P< 0.05) (adjusted OR=0.805, 95% CI: 0.660-0.983, P<0.05). Conclusion Development of adjunct immunotherapies for increasing TCM responses may improve the efficacy of retreatment tuberculosis with existing and with novel chemotherapies.
Collapse
Affiliation(s)
- Xin Yao
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, China
| | - Haomin Cai
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jianxia Chen
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Fangyong Yu
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiaocui Wu
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yarong Shi
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, China
| | - Yang Hu
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yuyan Xu
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, China
| | - Qinghua Xu
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhonghua Liu
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, China
| |
Collapse
|
6
|
Chang E, Cavallo K, Behar SM. CD4 T cell dysfunction is associated with bacterial recrudescence during chronic tuberculosis. Nat Commun 2025; 16:2636. [PMID: 40097414 PMCID: PMC11914476 DOI: 10.1038/s41467-025-57819-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 03/04/2025] [Indexed: 03/19/2025] Open
Abstract
While most people contain Mycobacterium tuberculosis infection, some individuals develop active disease, usually within two years of infection. Why immunity fails after initially controlling infection is unknown. C57BL/6 mice control Mycobacterium tuberculosis for up to a year but ultimately succumb to disease. We hypothesize that the development of CD4 T cell dysfunction permits bacterial recrudescence. We developed a reductionist model to assess antigen-specific T cells during chronic infection and found evidence of CD4 T cell senescence and exhaustion. In C57BL/6 mice, CD4 T cells upregulate coinhibitory receptors and lose effector cytokine production. Single cell RNAseq shows that only a small number of CD4 T cells in the lungs of chronically infected mice are polyfunctional. While the origin and causal relationship between T-cell dysfunction and recrudescence remains uncertain, we propose T cell dysfunction leads to a feed-forward loop that causes increased bacillary numbers, greater T cell dysfunction, and progressive disease.
Collapse
Affiliation(s)
- Evelyn Chang
- Immunology and Microbiology Program, Morningside Graduate School of Biomedical Sciences, Worcester, MA, USA
- Department of Microbiology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Kelly Cavallo
- Department of Microbiology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Samuel M Behar
- Immunology and Microbiology Program, Morningside Graduate School of Biomedical Sciences, Worcester, MA, USA.
- Department of Microbiology, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
7
|
Boschiero C, Beshah E, Bakshi M, Miramontes E, Hebert D, Thompson PC, Li CJ, Zhu X, Zarlenga D, Liu GE, Tuo W. Transcriptional Profiling of Abomasal Mucosa from Young Calves Experimentally Infected with Ostertagia ostertagi. Int J Mol Sci 2025; 26:2264. [PMID: 40076885 PMCID: PMC11900041 DOI: 10.3390/ijms26052264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/21/2025] [Accepted: 02/24/2025] [Indexed: 03/14/2025] Open
Abstract
Ostertagia ostertagi, also known as the brown stomach worm, causes significant pathology in the abomasum, resulting in production and nutritional losses in cattle. Alternative control measures, such as vaccination, are urgently needed because of rapidly growing anthelmintic drug resistance. There is a need to understand host responses to the infection, especially immune responses, to advance vaccine discovery and design. Therefore, the present study investigated comprehensive changes in gene transcription in the abomasal mucosa of cattle infected with O. ostertagi at 0, 3-5, 7-9, 10, and 21 days post-infection (dpi) using RNA sequencing (RNA-seq). Compared to uninfected controls, infected animals exhibited significant increases in differentially expressed genes (DEGs) throughout the infection period. Infection induced more upregulated than downregulated genes in the abomasal fundic mucosa (FUN) when compared to the abomasal pyloric mucosa (PYL). The largest transcriptional changes occurred between 7-9 and 10 dpi during the final development of the L4 and their emergence from the gastric glands. Most DEGs are associated with host immunity, cellular reorganization, cell migration, and proliferation. Tuft/epithelial cell response to the infection was atypical, lacking an anticipated increase in key alarmin cytokine genes. Numerous genes associated with T helper (Th) 1, Th2, and Th17 responses and T cell exhaustion were upregulated, suggesting altered immune regulation. The data collectively indicate that O. ostertagi infection elicits massive host responses, particularly immune responses, which are intertwined with the parasite's disruption of abomasal function, which likely impairs the nutrient utilization of the host. The infection is characterized by the absence of a dominant Th response and displaying a mixed activation of Th1, Th2, and Th17 pathways. Elevated expression of T cell exhaustion genes and lack of increase in epithelial alarmin cytokine genes suggest a downregulation of, or a deficiency in initiating, effective host immunity to the infection. Understanding mechanisms of parasite-mediated immune evasion and their nutritional consequences will facilitate the rational design of protective vaccines against infections of complex nematode parasites.
Collapse
Affiliation(s)
- Clarissa Boschiero
- Animal Parasitic Diseases Laboratory, BARC, Agricultural Research Service, USDA, Beltsville, MD 20705, USA
- Department of Veterinary Medicine, University of Maryland, College Park, MD 20742, USA
| | - Ethiopia Beshah
- Animal Parasitic Diseases Laboratory, BARC, Agricultural Research Service, USDA, Beltsville, MD 20705, USA
| | - Mariam Bakshi
- Animal Parasitic Diseases Laboratory, BARC, Agricultural Research Service, USDA, Beltsville, MD 20705, USA
- Department of Veterinary Medicine, University of Maryland, College Park, MD 20742, USA
| | - Eliseo Miramontes
- Animal Parasitic Diseases Laboratory, BARC, Agricultural Research Service, USDA, Beltsville, MD 20705, USA
| | - Deborah Hebert
- Animal Parasitic Diseases Laboratory, BARC, Agricultural Research Service, USDA, Beltsville, MD 20705, USA
| | - Peter C. Thompson
- Animal Parasitic Diseases Laboratory, BARC, Agricultural Research Service, USDA, Beltsville, MD 20705, USA
| | - Cong-Jun Li
- Animal Genomics and Improvement Laboratory, BARC, Agricultural Research Service, USDA, Beltsville, MD 20705, USA
| | - Xiaoping Zhu
- Department of Veterinary Medicine, University of Maryland, College Park, MD 20742, USA
| | - Dante Zarlenga
- Animal Parasitic Diseases Laboratory, BARC, Agricultural Research Service, USDA, Beltsville, MD 20705, USA
| | - George E. Liu
- Animal Genomics and Improvement Laboratory, BARC, Agricultural Research Service, USDA, Beltsville, MD 20705, USA
| | - Wenbin Tuo
- Animal Parasitic Diseases Laboratory, BARC, Agricultural Research Service, USDA, Beltsville, MD 20705, USA
| |
Collapse
|
8
|
Henriksen NL, Jensen PØ, Jensen LK. Immune checkpoint blockade in experimental bacterial infections. J Infect 2025; 90:106391. [PMID: 39756696 DOI: 10.1016/j.jinf.2024.106391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/03/2024] [Accepted: 12/22/2024] [Indexed: 01/07/2025]
Abstract
Immune checkpoint inhibitors designed to reinvigorate immune responses suppressed by cancer cells have revolutionized cancer therapy. Similarities in immune dysregulation between cancer and infectious diseases have prompted investigations into the role of immune checkpoints in infectious diseases, including the therapeutic potential of immune checkpoint blockade and drug repurposing. While most research has centered around viral infections, data for bacterial infections are emerging. This systematic review reports on the in vivo effect of immune checkpoint blockade on bacterial burden and selected immune responses in preclinical studies of bacterial infection, aiming to assess if there could be a rationale for using immunotherapy for bacterial infections. Of the 42 analyzed studies, immune checkpoint blockade reduced the bacterial burden in 60% of studies, had no effect in 28% and increased the bacterial burden in 12%. Findings suggest that the effect of immune checkpoint blockade on bacterial burden is context-dependent and in part relates to the pathogen. Further preclinical research is required to understand how the therapeutic effect of immune checkpoint blockade is mediated in different bacterial infections, and if immune checkpoint blockade can be used as an adjuvant to conventional infection management strategies.
Collapse
Affiliation(s)
- Nicole L Henriksen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark.
| | - Peter Ø Jensen
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark; Department of Clinical Microbiology, Copenhagen University Hospital, Copenhagen, Denmark; Institute for Inflammation Research, Center for Rheumatology and Spine Diseases, Copenhagen University Hospital, Copenhagen, Denmark.
| | - Louise K Jensen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark.
| |
Collapse
|
9
|
Inthanachai T, Boonkrai C, Phakham T, Pisitkun T, Thaiwong R, Chuthaphakdikun V, Sakunrangsit N, Limprasutr V, Chinsuwan T, Hirankarn N, Suppipat K, Watanabe N, Tawinwung S. Novel B7-H3 CAR T cells show potent antitumor effects in glioblastoma: a preclinical study. J Immunother Cancer 2025; 13:e010083. [PMID: 39863300 PMCID: PMC11784176 DOI: 10.1136/jitc-2024-010083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 01/11/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND B7 homolog 3 (B7-H3), an overexpressed antigen across multiple solid cancers, represents a promising target for CAR T cell therapy. This study investigated the expression of B7-H3 across various solid tumors and developed novel monoclonal antibodies (mAbs) targeting B7-H3 for CAR T cell therapy. METHODS Expression of B7-H3 across various solid tumors was evaluated using RNA-seq data from TCGA, TARGET, and GTEx datasets and by flow cytometry staining. B7-H3-specific mAbs were developed by immunizing mice with human B7-H3, screening with ELISA, and analyzing kinetics with surface plasmon resonance. These mAbs were used to create second-generation CAR constructs, which were evaluated in vitro and in vivo for their antitumor function. RESULTS We identified four mAb clones from immunized mice, with three demonstrating high specificity and affinity. The second-generation B7-H3 CAR T cells derived from these mAbs exhibited robust cytotoxicity against B7-H3-positive targets and successfully infiltrated and eliminated tumor spheroids in vitro. In a xenograft mouse model of glioblastoma, these CAR T cells, particularly those derived from clone A2H4, eradicated the primary tumor, and effectively controlled rechallenge tumor, resulting in prolonged survival of the xenograft mice. In vivo T cell trafficking revealed high accumulation and persistence of A2H4-derived CAR T cells at the tumor site. CONCLUSIONS Our results provide novel B7-H3-targeted CAR T cells with high efficacy, paving the way for clinical translation of solid tumor treatment.
Collapse
Affiliation(s)
- Thananya Inthanachai
- Medical Microbiology, Interdisciplinary and International Program, Graduate School, Chulalongkorn University, Bangkok, Thailand
- Cellular Immunotherapy Research Unit, Chulalongkorn University, Bangkok, Thailand
| | - Chatikorn Boonkrai
- Center of Excellence in Systems Biology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Tanapati Phakham
- Center of Excellence in Systems Biology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Trairak Pisitkun
- Center of Excellence in Systems Biology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Rattapoom Thaiwong
- Cellular Immunotherapy Research Unit, Chulalongkorn University, Bangkok, Thailand
- Chulalongkorn Comprehensive Cancer Center, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Vichaya Chuthaphakdikun
- Cellular Immunotherapy Research Unit, Chulalongkorn University, Bangkok, Thailand
- Chulalongkorn Comprehensive Cancer Center, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Nithidol Sakunrangsit
- Cellular Immunotherapy Research Unit, Chulalongkorn University, Bangkok, Thailand
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Vudhiporn Limprasutr
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- Chulalongkorn University Laboratory Animal Center, Chulalongkorn University, Bangkok, Thailand
| | - Thanyavi Chinsuwan
- Cellular Immunotherapy Research Unit, Chulalongkorn University, Bangkok, Thailand
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Nattiya Hirankarn
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Koramit Suppipat
- Cellular Immunotherapy Research Unit, Chulalongkorn University, Bangkok, Thailand
- Department of Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Norihiro Watanabe
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas, USA
| | - Supannikar Tawinwung
- Cellular Immunotherapy Research Unit, Chulalongkorn University, Bangkok, Thailand
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
10
|
Shinkawa T, Chang E, Rakib T, Cavallo K, Lai R, Behar SM. CD226 identifies effector CD8 + T cells during tuberculosis and costimulates recognition of Mycobacterium tuberculosis-infected macrophages. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.22.634303. [PMID: 39896604 PMCID: PMC11785225 DOI: 10.1101/2025.01.22.634303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
CD8+ T cells defend against Mycobacterium tuberculosis (Mtb) infection but variably recognize Mtb-infected macrophages. To define how the diversity of lung parenchymal CD8+ T cells changes during chronic infection, cells from C57BL/6J mice infected for 6- and 41-weeks were analyzed by scRNA-seq. We identified an effector lineage, including a cluster that expresses high levels of cytotoxic effectors and cytokines, and dysfunctional lineage that transcriptionally resembles exhausted T cells. The most significant differentially expressed gene between two distinct CD8+ T cell lineages is CD226. Mtb-infected IFNγ-eYFP reporter mice revealed IFNγ production is enriched in CD226+CD8+ T cells, confirming these as functional T cells in vivo. Purified CD226+ but not CD226- CD8+ T cells recognize Mtb-infected macrophages, and CD226 blockade inhibits IFNγ and granzyme B production. Thus, CD226 costimulation is required for efficient CD8+ T cell recognition of Mtb-infected macrophages, and its expression identifies CD8+ T cells that recognize Mtb-infected macrophages.
Collapse
Affiliation(s)
- Tomoyo Shinkawa
- Department of Microbiology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Evelyn Chang
- Department of Microbiology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
- Immunology and Microbiology Program, Graduate School of Biomedical Science, Worcester, Massachusetts, USA
| | - Tasfia Rakib
- Department of Microbiology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
- Immunology and Microbiology Program, Graduate School of Biomedical Science, Worcester, Massachusetts, USA
| | - Kelly Cavallo
- Department of Microbiology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Rocky Lai
- Department of Microbiology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Samuel M. Behar
- Department of Microbiology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
11
|
Chang E, Cavallo K, Behar SM. CD4 T cell dysfunction is associated with bacterial recrudescence during chronic tuberculosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.22.634376. [PMID: 39896548 PMCID: PMC11785196 DOI: 10.1101/2025.01.22.634376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
While most people contain Mycobacterium tuberculosis infection, some individuals develop active disease, usually within two years of infection. Why immunity fails after initially controlling infection is unknown. C57BL/6 mice control Mycobacterium tuberculosis for up to a year but ultimately succumb to disease. We hypothesize that the development of CD4 T cell dysfunction permits bacterial recrudescence. We developed a reductionist model to assess antigen-specific T cells during chronic infection and found evidence of CD4 T cell senescence and exhaustion. In C57BL/6 mice, CD4 T cells upregulate coinhibitory receptors and lose effector cytokine production. Single cell RNAseq shows that only a small number of CD4 T cells in the lungs of chronically infected mice are polyfunctional. While the origin and causal relationship between T-cell dysfunction and recrudescence remains uncertain, we propose T cell dysfunction leads to a feed-forward loop that causes increased bacillary numbers, greater T cell dysfunction, and progressive disease.
Collapse
Affiliation(s)
- Evelyn Chang
- Immunology and Microbiology Program, Graduate School of Biomedical Science, Worcester, Massachusetts, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Kelly Cavallo
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Samuel M. Behar
- Immunology and Microbiology Program, Graduate School of Biomedical Science, Worcester, Massachusetts, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
12
|
Chauhan P, Pandey P, Ramniwas S, Khan F, Maqsood R. Deciphering the Correlation between the Emergence of Lung Carcinoma Associated with Tuberculosis-related Inflammation. Endocr Metab Immune Disord Drug Targets 2025; 25:291-299. [PMID: 38831573 DOI: 10.2174/0118715303301146240522095638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/14/2024] [Accepted: 03/18/2024] [Indexed: 06/05/2024]
Abstract
Lung cancer and tuberculosis (TB) are classified as the second-most life-threatening diseases globally. They both are exclusively represented as major public health risks and might exhibit similar symptoms, occasionally diagnosed simultaneously. Several epidemiological studies suggest that TB is a significant risk factor for the progression of lung cancer. The staggering mortality rates of pulmonary disorders are intrinsically connected to lung cancer and TB. Numerous factors play a pivotal role in the development of TB and may promote lung carcinogenesis, particularly among the geriatric population. Understanding the intricacies involved in the association between lung carcinogenesis and TB has become a crucial demand of current research. Consequently, this study aims to comprehensively review current knowledge on the relationship between tuberculosis-related inflammation and the emergence of lung carcinoma, highlighting the impact of persistent inflammation on lung tissue, immune modulation, fibrosis, aspects of reactive oxygen species, and an altered microenvironment that are linked to the progression of tuberculosis and subsequently trigger lung carcinoma.
Collapse
Affiliation(s)
- Prashant Chauhan
- Department of Biotechnology, Noida Institute of Engineering and Technology, Greater Noida, Uttar Pradesh, India
| | - Pratibha Pandey
- Department of Biotechnology, Noida Institute of Engineering and Technology, Greater Noida, Uttar Pradesh, India
- Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| | - Seema Ramniwas
- University Centre of Research and Development, University Institute of Biotechnology, Chandigarh University Gharuan, Mohali, Punjab, India
| | - Fahad Khan
- Department of Biotechnology, Noida Institute of Engineering and Technology, Greater Noida, Uttar Pradesh, India
| | - Ramish Maqsood
- Department of Biotechnology, Noida Institute of Engineering and Technology, Greater Noida, Uttar Pradesh, India
| |
Collapse
|
13
|
Lyu J, Narum DE, Baldwin SL, Larsen SE, Bai X, Griffith DE, Dartois V, Naidoo T, Steyn AJC, Coler RN, Chan ED. Understanding the development of tuberculous granulomas: insights into host protection and pathogenesis, a review in humans and animals. Front Immunol 2024; 15:1427559. [PMID: 39717773 PMCID: PMC11663721 DOI: 10.3389/fimmu.2024.1427559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 11/18/2024] [Indexed: 12/25/2024] Open
Abstract
Granulomas, organized aggregates of immune cells which form in response to Mycobacterium tuberculosis (Mtb), are characteristic but not exclusive of tuberculosis (TB). Despite existing investigations on TB granulomas, the determinants that differentiate host-protective granulomas from granulomas that contribute to TB pathogenesis are often disputed. Thus, the goal of this narrative review is to help clarify the existing literature on such determinants. We adopt the a priori view that TB granulomas are host-protective organelles and discuss the molecular and cellular determinants that induce protective granulomas and those that promote their failure. While reports about protective TB granulomas and their failure may initially seem contradictory, it is increasingly recognized that either deficiencies or excesses of the molecular and cellular components in TB granuloma formation may be detrimental to the host. More specifically, insufficient or excessive expression/representation of the following components have been reported to skew granulomas toward the less protective phenotype: (i) epithelioid macrophages; (ii) type 1 adaptive immune response; (iii) type 2 adaptive immune response; (iv) tumor necrosis factor; (v) interleukin-12; (vi) interleukin-17; (vii) matrix metalloproteinases; (viii) hypoxia in the TB granulomas; (ix) hypoxia inducible factor-1 alpha; (x) aerobic glycolysis; (xi) indoleamine 2,3-dioxygenase activity; (xii) heme oxygenase-1 activity; (xiii) immune checkpoint; (xiv) leukotriene A4 hydrolase activity; (xv) nuclear-factor-kappa B; and (xvi) transforming growth factor-beta. Rather, more precise and timely coordinated immune responses appear essential for eradication or containment of Mtb infection. Since there are several animal models of infection with Mtb, other species within the Mtb complex, and the surrogate Mycobacterium marinum - whether natural (cattle, elephants) or experimental (zebrafish, mouse, guinea pig, rabbit, mini pig, goat, non-human primate) infections - we also compared the TB granulomatous response and other pathologic lung lesions in various animals infected with one of these mycobacteria with that of human pulmonary TB. Identifying components that dictate the formation of host-protective granulomas and the circumstances that result in their failure can enhance our understanding of the macrocosm of human TB and facilitate the development of novel remedies - whether they be direct therapeutics or indirect interventions - to efficiently eliminate Mtb infection and prevent its pathologic sequelae.
Collapse
Affiliation(s)
- Jiwon Lyu
- Division of Pulmonary and Critical Medicine, Soon Chun Hyang University Cheonan Hospital, Seoul, Republic of Korea
- Department of Academic Affairs, National Jewish Health, Denver, CO, United States
| | - Drew E. Narum
- Department of Academic Affairs, National Jewish Health, Denver, CO, United States
| | - Susan L. Baldwin
- Center for Global Infectious Diseases, Seattle Children’s Research Institute, Seattle, WA, United States
| | - Sasha E. Larsen
- Center for Global Infectious Diseases, Seattle Children’s Research Institute, Seattle, WA, United States
| | - Xiyuan Bai
- Department of Academic Affairs, National Jewish Health, Denver, CO, United States
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Aurora, CO, United States
| | - David E. Griffith
- Department of Medicine, National Jewish Health, Denver, CO, United States
| | - Véronique Dartois
- Center for Discovery and Innovation, Hackensack Meridian School of Medicine, Nutley, NJ, United States
| | - Threnesan Naidoo
- Departments of Forensic & Legal Medicine and Laboratory Medicine & Pathology, Faculty of Medicine & Health Sciences, Walter Sisulu University, Mthatha, South Africa
| | - Adrie J. C. Steyn
- Africa Health Research Institute, University of KwaZulu-Natal, Durban, South Africa
- Department of Microbiology and Centers for AIDS Research and Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Rhea N. Coler
- Center for Global Infectious Diseases, Seattle Children’s Research Institute, Seattle, WA, United States
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, United States
- Department of Global Health, University of Washington, Seattle, WA, United States
| | - Edward D. Chan
- Department of Academic Affairs, National Jewish Health, Denver, CO, United States
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Aurora, CO, United States
- Department of Medicine, Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, CO, United States
| |
Collapse
|
14
|
Vats D, Rani G, Arora A, Sharma V, Rathore I, Mubeen SA, Singh A. Tuberculosis and T cells: Impact of T cell diversity in tuberculosis infection. Tuberculosis (Edinb) 2024; 149:102567. [PMID: 39305817 DOI: 10.1016/j.tube.2024.102567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/07/2024] [Accepted: 09/11/2024] [Indexed: 11/30/2024]
Abstract
Tuberculosis is a global threat and is still a leading cause of death due to an infectious agent. The infection is spread through inhalation of M. tb containing aerosol droplets. Bacteria after reaching the lung alveoli are engulfed by alveolar macrophages, leading to an immune response. Then, pro-inflammatory cytokines are released by these macrophages, recruiting other antigen-presenting cells like dendritic cells. These cells phagocytose the bacteria and present mycobacterial antigens to naïve T cells. After activation by DCs, T cells differentiate into various T cells subsets, viz. CD4+, CD8+, Th17, Treg, Tfh cells and others display enormous diversification in their characteristics and functions. This review comprises a comprehensive literature on conventional and unconventional T cells, highlighting the polyfunctional T cells as well, their role in controlling TB infection, and their implications in the spectrum of TB infection. While some subsets such as CD4+ T cells are extensively studied, some T cell subsets such as gamma delta T cells and Tfh cells remain poorly understood in the pathophysiology of tuberculosis, despite having significant potential implications. The goal of TB eradication can be assisted by development of better vaccines against TB, which can effectively induce a robust and long-term T cells memory. The same has been discussed in the latter part of this review. BCG being the standalone commercialised TB vaccine so far has its limitations. Strategies for the enhancement of BCG along with novel studies in vaccine development, has also been discussed in great detail. Lastly, T cells display a complex interplay of an adaptive immune response against TB, with activation and enhancement of the innate immune responses. Therefore, it is critical to fully understand the role of various T cells subsets in pathophysiology of tuberculosis to provide better therapeutic inventions and improve patient care.
Collapse
Affiliation(s)
- Deepak Vats
- All India Institute of Medical Sciences, New Delhi, India
| | - Geeta Rani
- All India Institute of Medical Sciences, New Delhi, India
| | - Alisha Arora
- All India Institute of Medical Sciences, New Delhi, India
| | - Vidushi Sharma
- All India Institute of Medical Sciences, New Delhi, India
| | - Isha Rathore
- All India Institute of Medical Sciences, New Delhi, India
| | | | - Archana Singh
- All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
15
|
Cumming BM, Addicott KW, Maruri F, Pillay V, Asmal R, Moodley S, Barreto-Durate B, Araújo-Pereira M, Mazibuko M, Mhlane Z, Mbatha N, Khan K, Makhari S, Karim F, Peetluk L, Pym AS, Moosa MYS, van der Heijden YF, Sterling TS, Andrade BB, Leslie A, Steyn AJC. Longitudinal mitochondrial bioenergetic signatures of blood monocytes and lymphocytes improve during treatment of drug-susceptible pulmonary tuberculosis patients Monocyte/lymphocyte bioenergetic signatures post-TB treatment. Front Immunol 2024; 15:1465448. [PMID: 39606220 PMCID: PMC11599235 DOI: 10.3389/fimmu.2024.1465448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/17/2024] [Indexed: 11/29/2024] Open
Abstract
The impact of human pulmonary tuberculosis (TB) on the bioenergetic metabolism of circulating immune cells remains elusive, as does the resolution of these effects with TB treatment. In this study, the rates of oxidative phosphorylation (OXPHOS) and glycolysis in circulating lymphocytes and monocytes of patients with drug-susceptible TB at diagnosis, 2 months, and 6 months during treatment, and 12 months after diagnosis were investigated using extracellular flux analysis. At diagnosis, the bioenergetic parameters of both blood lymphocytes and monocytes of TB patients were severely impaired in comparison to non-TB and non-HIV-infected controls. However, most bioenergetic parameters were not affected by HIV status or glycemic index. Treatment of TB patients restored the % spare respiratory capacity (%SRC) of the circulating lymphocytes to that observed in non-TB and non-HIV infected controls by 12 months. Treatment also improved the maximal respiration of circulating lymphocytes and the %SRC of circulating monocytes of the TB patients. Notably, the differential correlation of the clinical and bioenergetic parameters of the monocytes and lymphocytes from the controls and TB patients at baseline and month 12 was consistent with improved metabolic health and resolution of inflammation following successful TB treatment. Network analysis of the bioenergetic parameters of circulating immune cells with serum cytokine levels indicated a highly coordinated immune response at month 6. These findings underscore the importance of metabolic health in combating TB, supporting the need for further investigation of the bioenergetic immunometabolism associated with TB infection for novel therapeutic approaches aimed at bolstering cellular energetics to enhance immune responses and expedite recovery in TB patients.
Collapse
Affiliation(s)
- Bridgette M. Cumming
- Africa Health Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Kelvin W. Addicott
- Africa Health Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Fernanda Maruri
- Vanderbilt Tuberculosis Center, Vanderbilt University School of Medicine, Nashville, TN, United States
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Vanessa Pillay
- Africa Health Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Rukaya Asmal
- Africa Health Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Sashen Moodley
- Africa Health Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Beatriz Barreto-Durate
- Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Salvador, Brazil
- Laboratório de Pesquisa Clínica e Translacional, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Bahia, Brazil
| | - Mariana Araújo-Pereira
- Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Salvador, Brazil
- Laboratório de Pesquisa Clínica e Translacional, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Bahia, Brazil
| | - Matilda Mazibuko
- Africa Health Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Zoey Mhlane
- Africa Health Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Nikiwe Mbatha
- Africa Health Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Khadija Khan
- Africa Health Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Senamile Makhari
- Africa Health Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Farina Karim
- Africa Health Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Lauren Peetluk
- Vanderbilt Tuberculosis Center, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Alexander S. Pym
- Africa Health Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | | | - Yuri F. van der Heijden
- Vanderbilt Tuberculosis Center, Vanderbilt University School of Medicine, Nashville, TN, United States
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, United States
- Global Division, The Aurum Institute, Johannesburg, South Africa
| | - Timothy S. Sterling
- Vanderbilt Tuberculosis Center, Vanderbilt University School of Medicine, Nashville, TN, United States
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Bruno B. Andrade
- Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Salvador, Brazil
- Laboratório de Pesquisa Clínica e Translacional, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Bahia, Brazil
| | - Alasdair Leslie
- Africa Health Research Institute, University of KwaZulu-Natal, Durban, South Africa
- Department of Infectious Diseases, University of KwaZulu-Natal, Durban, South Africa
- Department of Infection and Immunity, University College of London, London, United Kingdom
| | - Adrie J. C. Steyn
- Africa Health Research Institute, University of KwaZulu-Natal, Durban, South Africa
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, United States
- Centers for AIDS Research and Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
16
|
Jiang J, Cao Z, Li B, Ma X, Deng X, Yang B, Liu Y, Zhai F, Cheng X. Disseminated tuberculosis is associated with impaired T cell immunity mediated by non-canonical NF-κB pathway. J Infect 2024; 89:106231. [PMID: 39032519 DOI: 10.1016/j.jinf.2024.106231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/25/2024] [Accepted: 07/15/2024] [Indexed: 07/23/2024]
Abstract
OBJECTIVES The mechanism that leads to disseminated tuberculosis in HIV-negative patients is still largely unknown. T cell subsets and signaling pathways that were associated with disseminated tuberculosis were investigated. METHODS Single-cell profiling of whole T cells was performed to identify T cell subsets and enriched signaling pathways that were associated with disseminated tuberculosis. Flow cytometric analysis and blocking experiment were used to investigate the findings obtained by transcriptome sequencing. RESULTS Patients with disseminated tuberculosis had depleted Th1, Tc1 and Tc17 cell subsets, and IFNG was the most down-regulated gene in both CD4 and CD8 T cells. Gene Ontology analysis showed that non-canonical NF-κB signaling pathway, including NFKB2 and RELB genes, was significantly down-regulated and was probably associated with disseminated tuberculosis. Expression of several TNF superfamily ligands and receptors, such as LTA and TNF genes, were suppressed in patients with disseminated tuberculosis. Blocking of TNF-α and soluble LTα showed that TNF-α was involved in IFN-γ production and LTα influenced TNF-α expression in T cells. CONCLUSIONS Impaired T cell IFN-γ response mediated by suppression of TNF and non-canonical NF-κB signaling pathways might be responsible for disseminated tuberculosis.
Collapse
Affiliation(s)
- Jing Jiang
- Institute of Research, Beijing Key Laboratory of Organ Transplantation and Immune Regulation, Senior Department of Respiratory and Critical Care Medicine, the Eighth Medical Center of PLA General Hospital, Beijing, China
| | - Zhihong Cao
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute of Tuberculosis Research, Senior Department of Tuberculosis, the Eighth Medical Center of PLA General Hospital, Beijing, China
| | - Binyu Li
- Institute of Research, Beijing Key Laboratory of Organ Transplantation and Immune Regulation, Senior Department of Respiratory and Critical Care Medicine, the Eighth Medical Center of PLA General Hospital, Beijing, China
| | - Xihui Ma
- Institute of Research, Beijing Key Laboratory of Organ Transplantation and Immune Regulation, Senior Department of Respiratory and Critical Care Medicine, the Eighth Medical Center of PLA General Hospital, Beijing, China
| | - Xianping Deng
- Department of Laboratory Medicine, the Eighth Medical Center of PLA General Hospital, Beijing, China
| | - Bingfen Yang
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute of Tuberculosis Research, Senior Department of Tuberculosis, the Eighth Medical Center of PLA General Hospital, Beijing, China
| | - Yanhua Liu
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute of Tuberculosis Research, Senior Department of Tuberculosis, the Eighth Medical Center of PLA General Hospital, Beijing, China
| | - Fei Zhai
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute of Tuberculosis Research, Senior Department of Tuberculosis, the Eighth Medical Center of PLA General Hospital, Beijing, China
| | - Xiaoxing Cheng
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute of Tuberculosis Research, Senior Department of Tuberculosis, the Eighth Medical Center of PLA General Hospital, Beijing, China.
| |
Collapse
|
17
|
McCulloch TR, Rossi GR, Miranda-Hernandez S, Valencia-Hernandez AM, Alim L, Belle CJ, Krause A, Zacchi LF, Lam PY, Nakamura K, Kupz A, Wells TJ, Souza-Fonseca-Guimaraes F. The immune checkpoint TIGIT is upregulated on T cells during bacterial infection and is a potential target for immunotherapy. Immunol Cell Biol 2024; 102:721-733. [PMID: 38873699 DOI: 10.1111/imcb.12794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 05/25/2024] [Accepted: 05/25/2024] [Indexed: 06/15/2024]
Abstract
Antibiotic resistance is a major public health threat, and alternatives to antibiotic therapy are urgently needed. Immunotherapy, particularly the blockade of inhibitory immune checkpoints, is a leading treatment option in cancer and autoimmunity. In this study, we used a murine model of Salmonella Typhimurium infection to investigate whether immune checkpoint blockade could be applied to bacterial infection. We found that the immune checkpoint T-cell immunoglobulin and ITIM domain (TIGIT) was significantly upregulated on lymphocytes during infection, particularly on CD4+ T cells, drastically limiting their proinflammatory function. Blockade of TIGIT in vivo using monoclonal antibodies was able to enhance immunity and improve bacterial clearance. The efficacy of anti-TIGIT was dependent on the capacity of the antibody to bind to Fc (fragment crystallizable) receptors, giving important insights into the mechanism of anti-TIGIT therapy. This research suggests that targeting immune checkpoints, such as TIGIT, has the potential to enhance immune responses toward bacteria and restore antibacterial treatment options in the face of antibiotic resistance.
Collapse
Affiliation(s)
- Timothy R McCulloch
- Frazer Institute, Faculty of Medicine, The University of Queensland, Woolloongabba, QLD, Australia
| | - Gustavo R Rossi
- Frazer Institute, Faculty of Medicine, The University of Queensland, Woolloongabba, QLD, Australia
| | - Socorro Miranda-Hernandez
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD, Australia
| | | | - Louisa Alim
- Frazer Institute, Faculty of Medicine, The University of Queensland, Woolloongabba, QLD, Australia
| | - Clemence J Belle
- Frazer Institute, Faculty of Medicine, The University of Queensland, Woolloongabba, QLD, Australia
| | - Andrew Krause
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD, Australia
| | - Lucia F Zacchi
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD, Australia
| | - Pui Yeng Lam
- Frazer Institute, Faculty of Medicine, The University of Queensland, Woolloongabba, QLD, Australia
| | - Kyohei Nakamura
- QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Andreas Kupz
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| | - Timothy J Wells
- Frazer Institute, Faculty of Medicine, The University of Queensland, Woolloongabba, QLD, Australia
- Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD, Australia
| | | |
Collapse
|
18
|
Headley CA, Gautam S, Olmo‐Fontanez A, Garcia‐Vilanova A, Dwivedi V, Schami A, Weintraub S, Tsao PS, Torrelles JB, Turner J. Mitochondrial Transplantation Promotes Protective Effector and Memory CD4 + T Cell Response During Mycobacterium Tuberculosis Infection and Diminishes Exhaustion and Senescence in Elderly CD4 + T cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401077. [PMID: 39039808 PMCID: PMC11423092 DOI: 10.1002/advs.202401077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/16/2024] [Indexed: 07/24/2024]
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (M.tb), is a major global health concern, particularly affecting those with weakened immune systems, including the elderly. CD4+ T cell response is crucial for immunity against M.tb, but chronic infections and aging can lead to T cell exhaustion and senescence, worsening TB disease. Mitochondrial dysfunction, prevalent in aging and chronic diseases, disrupts cellular metabolism, increases oxidative stress, and impairs T-cell functions. This study investigates the effect of mitochondrial transplantation (mito-transfer) on CD4+ T cell differentiation and function in aged mouse models and human CD4+ T cells from elderly individuals. Mito-transfer in naïve CD4+ T cells is found to promote protective effector and memory T cell generation during M.tb infection in mice. Additionally, it improves elderly human T cell function by increasing mitochondrial mass and altering cytokine production, thereby reducing markers of exhaustion and senescence. These findings suggest mito-transfer as a novel approach to enhance aged CD4+ T cell functionality, potentially benefiting immune responses in the elderly and chronic TB patients. This has broader implications for diseases where mitochondrial dysfunction contributes to T-cell exhaustion and senescence.
Collapse
Affiliation(s)
- Colwyn A. Headley
- Host‐Pathogen Interactions ProgramTexas Biomedical Research InstituteSan AntonioTX78227USA
- Biomedical Sciences Graduate ProgramThe Ohio State UniversityColumbusOH43201USA
- Stanford Cardiovascular InstituteStanford University School of MedicineStanfordCA94305USA
| | - Shalini Gautam
- Host‐Pathogen Interactions ProgramTexas Biomedical Research InstituteSan AntonioTX78227USA
| | - Angelica Olmo‐Fontanez
- Population Health ProgramTexas Biomedical Research InstituteSan AntonioTX78227USA
- Southwest National Primate Research CenterTexas Biomedical Research InstituteSan AntonioTX78227USA
| | | | - Varun Dwivedi
- Host‐Pathogen Interactions ProgramTexas Biomedical Research InstituteSan AntonioTX78227USA
| | - Alyssa Schami
- Population Health ProgramTexas Biomedical Research InstituteSan AntonioTX78227USA
| | - Susan Weintraub
- Department of Biochemistry & Structural BiologyUT health San AntonioSan AntonioTX78229USA
| | - Philip S. Tsao
- Stanford Cardiovascular InstituteStanford University School of MedicineStanfordCA94305USA
| | - Jordi B. Torrelles
- Population Health ProgramTexas Biomedical Research InstituteSan AntonioTX78227USA
- Internaltional Center for the Advancement of Research & Education (I•CARE)Texas Biomedical Research InstituteSan AntonioTX78227USA
| | - Joanne Turner
- Host‐Pathogen Interactions ProgramTexas Biomedical Research InstituteSan AntonioTX78227USA
- Abigail Wexner Research Institute at Nationwide Children's HospitalColumbusOH43205USA
| |
Collapse
|
19
|
Fazeli P, Kalani M, Mahdavi M, Hosseini M. The significance of stem cell-like memory T cells in viral and bacterial vaccines: A mini review. Int Immunopharmacol 2024; 137:112441. [PMID: 38852525 DOI: 10.1016/j.intimp.2024.112441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/01/2024] [Accepted: 06/05/2024] [Indexed: 06/11/2024]
Abstract
Vaccination has become a widely used method to induce immune protection against microbial pathogens, including viral and bacterial microorganisms. Both humoral and cellular immunity serve a critical role in neutralizing and eliminating these pathogens. An effective vaccine should be able to induce a long-lasting immune memory response. Recent investigations on different subsets of T cells have identified a new subset of T cells using multi-parameter flow cytometry, which possess stem cell-like properties and the ability to mount a rapid immune response upon re-exposure to antigens known as stem cell-like memory T cells (TSCM). One of the major challenges with current vaccines is their limited ability to maintain long-term memory in the adaptive immune system. Recent evidence suggests that a specific subgroup of memory T cells has the unique ability to retain their longevity for up to 25 years, as observed in the case of the yellow fever vaccine. Therefore, in this study, we tried to explore and discuss the potential role of this new T cell memory subset in the development of viral and bacterial vaccines.
Collapse
Affiliation(s)
- Pooria Fazeli
- Truama Research Center, Rajaee (Emtiaz) Trauma Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehdi Kalani
- Department of Immunology, Prof. Alborzi Clinical Microbiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Maryam Hosseini
- Truama Research Center, Emtiaz Trauma Hospital, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
20
|
Wang J, Chai Q, Lei Z, Wang Y, He J, Ge P, Lu Z, Qiang L, Zhao D, Yu S, Qiu C, Zhong Y, Li BX, Zhang L, Pang Y, Gao GF, Liu CH. LILRB1-HLA-G axis defines a checkpoint driving natural killer cell exhaustion in tuberculosis. EMBO Mol Med 2024; 16:1755-1790. [PMID: 39030302 PMCID: PMC11319715 DOI: 10.1038/s44321-024-00106-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 07/03/2024] [Accepted: 07/05/2024] [Indexed: 07/21/2024] Open
Abstract
Chronic infections, including Mycobacterium tuberculosis (Mtb)-caused tuberculosis (TB), can induce host immune exhaustion. However, the key checkpoint molecules involved in this process and the underlying regulatory mechanisms remain largely undefined, which impede the application of checkpoint-based immunotherapy in infectious diseases. Here, through adopting time-of-flight mass cytometry and transcriptional profiling to systematically analyze natural killer (NK) cell surface receptors, we identify leukocyte immunoglobulin like receptor B1 (LILRB1) as a critical checkpoint receptor that defines a TB-associated cell subset (LILRB1+ NK cells) and drives NK cell exhaustion in TB. Mechanistically, Mtb-infected macrophages display high expression of human leukocyte antigen-G (HLA-G), which upregulates and activates LILRB1 on NK cells to impair their functions by inhibiting mitogen-activated protein kinase (MAPK) signaling via tyrosine phosphatases SHP1/2. Furthermore, LILRB1 blockade restores NK cell-dependent anti-Mtb immunity in immuno-humanized mice. Thus, LILRB1-HLA-G axis constitutes a NK cell immune checkpoint in TB and serves as a promising immunotherapy target.
Collapse
Affiliation(s)
- Jing Wang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Qiyao Chai
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Zehui Lei
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Yiru Wang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Jiehua He
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Pupu Ge
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Zhe Lu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Lihua Qiang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Dongdong Zhao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Shanshan Yu
- Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Changgen Qiu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Yanzhao Zhong
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Bing-Xi Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Lingqiang Zhang
- State Key Laboratory of Proteomics, National Center for Protein Sciences, Beijing Institute of Lifeomics, Beijing, China
| | - Yu Pang
- Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China.
| | - George Fu Gao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China.
| | - Cui Hua Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
21
|
Flores-Gonzalez J, Ramón-Luing LA, Falfán-Valencia R, Batista CVF, Soto-Alvarez S, Huerta-Nuñez L, Chávez-Galán L. The presence of cytotoxic CD4 and exhausted-like CD8+ T-cells is a signature of active tuberculosis. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167219. [PMID: 38734321 DOI: 10.1016/j.bbadis.2024.167219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/22/2024] [Accepted: 05/02/2024] [Indexed: 05/13/2024]
Abstract
Chronic infections induce CD4+ T-cells with cytotoxic functions (CD4 CTLs); at present, it is still unknown whether latent tuberculosis (LTB) and active tuberculosis (ATB) induce CD4 CTLs. Plasma and cells from four patient groups-uninfected contact (UC), LTB, and ATB (divided as sensitive [DS-TB]- or resistant [DR-TB]-drug)-were evaluated by flow cytometry, q-PCR, and proteomics. The data showed that ATB patients had an increased frequency of CD4+ T-cells and a decreased frequency of CD8+ T-cells. The latter displays an exhausted-like profile characterized by CD39, CD279, and TIM-3 expression. ATB had a high frequency of CD4 + perforin+ cells, suggesting a CD4 CTL profile. The expression (at the transcriptional level) of granzyme A, granzyme B, granulysin, and perforin, as well as the genes T-bet (Tbx21) and NKG2D (Klrk1), in enriched CD4+ T-cells, confirmed the cytotoxic signature of CD4+ T-cells during ATB (which was stronger in DS-TB than in DR-TB). Moreover, proteomic analysis revealed the presence of HSP70 (in DS-TB) and annexin A5 (in DR-TB), which are molecules that have been associated with favoring the CD4 CTL profile. Finally, we found that lipids from Mycobacterium tuberculosis increased the presence of CD4 CTLs in DR-TB patients. Our data suggest that ATB is characterized by exhausted-like CD8+ T-cells, which, together with a specific microenvironment, favor the presence of CD4 CTLs.
Collapse
Affiliation(s)
- Julio Flores-Gonzalez
- Laboratory of Integrative Immunology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City 14080. Mexico
| | - Lucero A Ramón-Luing
- Laboratory of Integrative Immunology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City 14080. Mexico
| | - Ramcés Falfán-Valencia
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico
| | - Cesar V F Batista
- Laboratory of Pharmacology, Escuela Militar de Graduados de Sanidad, Universidad del Ejército y Fuerza Aérea Mexicana, Mexico City 11200, Mexico
| | - Silverio Soto-Alvarez
- Laboratory of Pharmacology, Escuela Militar de Graduados de Sanidad, Universidad del Ejército y Fuerza Aérea Mexicana, Mexico City 11200, Mexico
| | - Lidia Huerta-Nuñez
- Laboratory of Pharmacology, Escuela Militar de Graduados de Sanidad, Universidad del Ejército y Fuerza Aérea Mexicana, Mexico City 11200, Mexico
| | - Leslie Chávez-Galán
- Laboratory of Integrative Immunology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City 14080. Mexico.
| |
Collapse
|
22
|
Lai R, Williams T, Rakib T, Lee J, Behar SM. Heterogeneity in lung macrophage control of Mycobacterium tuberculosis is modulated by T cells. Nat Commun 2024; 15:5710. [PMID: 38977711 PMCID: PMC11231272 DOI: 10.1038/s41467-024-48515-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 05/03/2024] [Indexed: 07/10/2024] Open
Abstract
Following Mycobacterium tuberculosis infection, alveolar macrophages are initially infected but ineffectively restrict bacterial replication. The distribution of M. tuberculosis among different cell types in the lung changes with the onset of T cell immunity when the dominant infected cellular niche shifts from alveolar to monocyte-derived macrophages (MDM). We hypothesize that changes in bacterial distribution among different cell types is driven by differences in T cell recognition of infected cells and their subsequent activation of antimicrobial effector mechanisms. We show that CD4 and CD8 T cells efficiently eliminate M. tuberculosis infection in alveolar macrophages, but they have less impact on suppressing infection in MDM, which may be a bacterial niche. Importantly, CD4 T cell responses enhance MDM recruitment to the lung. Thus, the outcome of infection depends on the interaction between the T cell subset and the infected cell; both contribute to the resolution and persistence of the infection.
Collapse
Affiliation(s)
- Rocky Lai
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, USA
| | - Travis Williams
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, USA
| | - Tasfia Rakib
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, USA
| | - Jinhee Lee
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, USA
| | - Samuel M Behar
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
23
|
Cohen SB, Urdahl KB. Weaponizing the bystander T cell army to fight tuberculosis. Proc Natl Acad Sci U S A 2024; 121:e2407559121. [PMID: 38814874 PMCID: PMC11161741 DOI: 10.1073/pnas.2407559121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024] Open
Affiliation(s)
- Sara B. Cohen
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA98109
| | - Kevin B. Urdahl
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA98109
- Department of Pediatrics, University of Washington, Seattle, WA98195
| |
Collapse
|
24
|
Choreño-Parra JA, Ramon-Luing LA, Castillejos M, Ortega-Martínez E, Tapia-García AR, Matías-Martínez MB, Cruz-Lagunas A, Ramírez-Martínez G, Gómez-García IA, Ramírez-Noyola JA, Garcia-Padrón B, López-Salinas KG, Jiménez-Juárez F, Guadarrama-Ortiz P, Salinas-Lara C, Bozena-Piekarska K, Muñóz-Torrico M, Chávez-Galán L, Zúñiga J. The rs11684747 and rs55790676 SNPs of ADAM17 influence tuberculosis susceptibility and plasma levels of TNF, TNFR1, and TNFR2. Front Microbiol 2024; 15:1392782. [PMID: 38881671 PMCID: PMC11177089 DOI: 10.3389/fmicb.2024.1392782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/15/2024] [Indexed: 06/18/2024] Open
Abstract
Introduction The proteolytic activity of A Disintegrin and Metalloproteinase 17 (ADAM17) regulates the release of tumor necrosis factor (TNF) and TNF receptors (TNFRs) from cell surfaces. These molecules play important roles in tuberculosis (TB) shaping innate immune reactions and granuloma formation. Methods Here, we investigated whether single nucleotide polymorphisms (SNPs) of ADAM17 influence TNF and TNFRs levels in 224 patients with active TB (ATB) and 118 healthy close contacts. Also, we looked for significant associations between SNPs of ADAM17 and ATB status. TNF, TNFR1, and TNFR2 levels were measured in plasma samples by ELISA. Four SNPs of ADAM17 (rs12692386, rs1524668, rs11684747, and rs55790676) were analyzed in DNA isolated from peripheral blood leucocytes. The association between ATB status, genotype, and cytokines was analyzed by multiple regression models. Results Our results showed a higher frequency of rs11684747 and rs55790676 in close contacts than ATB patients. Coincidentally, heterozygous to these SNPs of ADAM17 showed higher plasma levels of TNF compared to homozygous to their respective ancestral alleles. Strikingly, the levels of TNF and TNFRs distinguished participant groups, with ATB patients displaying lower TNF and higher TNFR1/TNFR2 levels compared to their close contacts. Conclusion These findings suggest a role for SNPs of ADAM17 in genetic susceptibility to ATB.
Collapse
Affiliation(s)
- José Alberto Choreño-Parra
- Dirección de Enseñanza, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City, Mexico
- Laboratory of Immunobiology and Genetics, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Lucero A Ramon-Luing
- Laboratory of Integrative Immunology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Manuel Castillejos
- Departamento de Epidemiología Hospitalaria e Infectología, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Emmanuel Ortega-Martínez
- Posgrado en Ciencias Quimicobiológicas, SEPI, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
- Department of Pathology, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Mexico City, Mexico
- Red MEDICI, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla de Baz, Mexico
| | - Alan Rodrigo Tapia-García
- Laboratory of Immunobiology and Genetics, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
- Red MEDICI, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla de Baz, Mexico
| | - Melvin Barish Matías-Martínez
- Laboratory of Immunobiology and Genetics, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Mexico City, Mexico
| | - Alfredo Cruz-Lagunas
- Laboratory of Immunobiology and Genetics, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Gustavo Ramírez-Martínez
- Laboratory of Immunobiology and Genetics, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Itzel Alejandra Gómez-García
- Laboratory of Immunobiology and Genetics, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Mexico City, Mexico
| | - Jazmín Ariadna Ramírez-Noyola
- Laboratory of Immunobiology and Genetics, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
- Sección de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Beatriz Garcia-Padrón
- Laboratory of Immunobiology and Genetics, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
- Red MEDICI, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla de Baz, Mexico
| | - Karen Gabriel López-Salinas
- Laboratory of Immunobiology and Genetics, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Mexico City, Mexico
| | - Fabiola Jiménez-Juárez
- Laboratory of Immunobiology and Genetics, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Mexico City, Mexico
| | | | - Citlaltepetl Salinas-Lara
- Department of Pathology, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Mexico City, Mexico
- Red MEDICI, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla de Baz, Mexico
| | - Karolina Bozena-Piekarska
- Dirección de Enseñanza, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City, Mexico
| | - Marcela Muñóz-Torrico
- Clínica de Tuberculosis, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Leslie Chávez-Galán
- Laboratory of Integrative Immunology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Joaquín Zúñiga
- Laboratory of Immunobiology and Genetics, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Mexico City, Mexico
| |
Collapse
|
25
|
Liu CW, Wu LSH, Lin CJ, Wu HC, Liu KC, Lee SW. Association of tuberculosis risk with genetic polymorphisms of the immune checkpoint genes PDCD1, CTLA-4, and TIM3. PLoS One 2024; 19:e0303431. [PMID: 38723011 PMCID: PMC11081348 DOI: 10.1371/journal.pone.0303431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
The immune checkpoint proteins were reported to involve to host resistance to Mycobacteria tuberculosis (Mtb). Here, we evaluated 11 single nucleotide polymorphisms (SNPs) in PDCD1, CTLA4, and HAVCR2 genes between participants with and without TB infection. Genomic DNA isolated from 285 patients with TB and 270 controls without TB infection were used to perform the genotyping assay. Odds ratios were used to characterize the association of 11 SNPs with TB risk. In this study, the various genotypes of the 11 SNPs did not differ significantly in frequency between the non-TB and TB groups. When patients were stratified by sex, however, men differed significantly from women in genotype frequencies at HAVCR2 rs13170556. Odds ratios indicated that rs2227982, rs13170556, rs231775, and rs231779 were sex-specifically associated with TB risk. In addition, the combinations of rs2227982/rs13170556 GA/TC in men and the A-C-C haplotype of rs231775-rs231777-rs231779 in women were significantly associated with TB risk. Our results indicate that rs2227982 in PDCD1 and rs13170556 in HAVCR2 are associated with increased TB susceptibility in men and that the CTLA4 haplotype appears protective against TB in women.
Collapse
Affiliation(s)
- Chi-Wei Liu
- Department of Internal Medicine, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan, Taiwan
- Translational Medicine Center, Taoyuan General Hospital, Department of Health and Welfare, Taoyuan, Taiwan
| | - Lawrence Shih-Hsin Wu
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Center for Allergy, Immunology, and Microbiome (A.I.M.), China Medical University Hospital, Taichung, Taiwan
| | - Chou-Jui Lin
- Department of Internal Medicine, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan, Taiwan
| | - Hsing-Chu Wu
- Department of Internal Medicine, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan, Taiwan
| | - Kuei-Chi Liu
- Department of Internal Medicine, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan, Taiwan
| | - Shih-Wei Lee
- Department of Internal Medicine, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan, Taiwan
- Department of Nursing, Yuanpei University of Medical Technology, Hsinchu, Taiwan
| |
Collapse
|
26
|
Paterson RL, La Manna MP, Arena De Souza V, Walker A, Gibbs-Howe D, Kulkarni R, Fergusson JR, Mulakkal NC, Monteiro M, Bunjobpol W, Dembek M, Martin-Urdiroz M, Grant T, Barber C, Garay-Baquero DJ, Tezera LB, Lowne D, Britton-Rivet C, Pengelly R, Chepisiuk N, Singh PK, Woon AP, Powlesland AS, McCully ML, Caccamo N, Salio M, Badami GD, Dorrell L, Knox A, Robinson R, Elkington P, Dieli F, Lepore M, Leonard S, Godinho LF. An HLA-E-targeted TCR bispecific molecule redirects T cell immunity against Mycobacterium tuberculosis. Proc Natl Acad Sci U S A 2024; 121:e2318003121. [PMID: 38691588 PMCID: PMC11087797 DOI: 10.1073/pnas.2318003121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 03/08/2024] [Indexed: 05/03/2024] Open
Abstract
Peptides presented by HLA-E, a molecule with very limited polymorphism, represent attractive targets for T cell receptor (TCR)-based immunotherapies to circumvent the limitations imposed by the high polymorphism of classical HLA genes in the human population. Here, we describe a TCR-based bispecific molecule that potently and selectively binds HLA-E in complex with a peptide encoded by the inhA gene of Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis in humans. We reveal the biophysical and structural bases underpinning the potency and specificity of this molecule and demonstrate its ability to redirect polyclonal T cells to target HLA-E-expressing cells transduced with mycobacterial inhA as well as primary cells infected with virulent Mtb. Additionally, we demonstrate elimination of Mtb-infected cells and reduction of intracellular Mtb growth. Our study suggests an approach to enhance host T cell immunity against Mtb and provides proof of principle for an innovative TCR-based therapeutic strategy overcoming HLA polymorphism and therefore applicable to a broader patient population.
Collapse
Affiliation(s)
| | - Marco P. La Manna
- Department of Biomedicine, Neurosciences and Advanced Diagnostic, University of Palermo, Palermo90127, Italy
- Central Laboratory of Advanced Diagnosis and Biomedical Research, Azienda Ospedaliera Universitaria Policlinico Paolo Giaccone, University of Palermo, Palermo90127, Italy
| | | | - Andrew Walker
- Immunocore Ltd., Abingdon, OxfordshireOX14 4RY, United Kingdom
| | - Dawn Gibbs-Howe
- Immunocore Ltd., Abingdon, OxfordshireOX14 4RY, United Kingdom
| | - Rakesh Kulkarni
- Immunocore Ltd., Abingdon, OxfordshireOX14 4RY, United Kingdom
| | | | | | - Mauro Monteiro
- Immunocore Ltd., Abingdon, OxfordshireOX14 4RY, United Kingdom
| | | | - Marcin Dembek
- Immunocore Ltd., Abingdon, OxfordshireOX14 4RY, United Kingdom
| | | | - Tressan Grant
- Immunocore Ltd., Abingdon, OxfordshireOX14 4RY, United Kingdom
| | - Claire Barber
- Immunocore Ltd., Abingdon, OxfordshireOX14 4RY, United Kingdom
| | - Diana J. Garay-Baquero
- National Institute for Health and Care Research, Biomedical Research Centre and Institute for Life Sciences, Faculty of Medicine, University of Southampton, SouthamptonSO16 6YD, United Kingdom
| | - Liku Bekele Tezera
- Department of Biomedicine, Neurosciences and Advanced Diagnostic, University of Palermo, Palermo90127, Italy
| | - David Lowne
- Immunocore Ltd., Abingdon, OxfordshireOX14 4RY, United Kingdom
| | | | - Robert Pengelly
- Immunocore Ltd., Abingdon, OxfordshireOX14 4RY, United Kingdom
| | | | | | - Amanda P. Woon
- Immunocore Ltd., Abingdon, OxfordshireOX14 4RY, United Kingdom
| | | | | | - Nadia Caccamo
- Department of Biomedicine, Neurosciences and Advanced Diagnostic, University of Palermo, Palermo90127, Italy
- Central Laboratory of Advanced Diagnosis and Biomedical Research, Azienda Ospedaliera Universitaria Policlinico Paolo Giaccone, University of Palermo, Palermo90127, Italy
| | - Mariolina Salio
- Immunocore Ltd., Abingdon, OxfordshireOX14 4RY, United Kingdom
| | - Giusto Davide Badami
- Department of Biomedicine, Neurosciences and Advanced Diagnostic, University of Palermo, Palermo90127, Italy
- Central Laboratory of Advanced Diagnosis and Biomedical Research, Azienda Ospedaliera Universitaria Policlinico Paolo Giaccone, University of Palermo, Palermo90127, Italy
| | - Lucy Dorrell
- Immunocore Ltd., Abingdon, OxfordshireOX14 4RY, United Kingdom
| | - Andrew Knox
- Immunocore Ltd., Abingdon, OxfordshireOX14 4RY, United Kingdom
| | - Ross Robinson
- Immunocore Ltd., Abingdon, OxfordshireOX14 4RY, United Kingdom
| | - Paul Elkington
- National Institute for Health and Care Research, Biomedical Research Centre and Institute for Life Sciences, Faculty of Medicine, University of Southampton, SouthamptonSO16 6YD, United Kingdom
| | - Francesco Dieli
- Department of Biomedicine, Neurosciences and Advanced Diagnostic, University of Palermo, Palermo90127, Italy
- Central Laboratory of Advanced Diagnosis and Biomedical Research, Azienda Ospedaliera Universitaria Policlinico Paolo Giaccone, University of Palermo, Palermo90127, Italy
| | - Marco Lepore
- Immunocore Ltd., Abingdon, OxfordshireOX14 4RY, United Kingdom
| | - Sarah Leonard
- Immunocore Ltd., Abingdon, OxfordshireOX14 4RY, United Kingdom
| | - Luis F. Godinho
- Immunocore Ltd., Abingdon, OxfordshireOX14 4RY, United Kingdom
| |
Collapse
|
27
|
van Dorst MMAR, Pyuza JJ, Nkurunungi G, Kullaya VI, Smits HH, Hogendoorn PCW, Wammes LJ, Everts B, Elliott AM, Jochems SP, Yazdanbakhsh M. Immunological factors linked to geographical variation in vaccine responses. Nat Rev Immunol 2024; 24:250-263. [PMID: 37770632 DOI: 10.1038/s41577-023-00941-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2023] [Indexed: 09/30/2023]
Abstract
Vaccination is one of medicine's greatest achievements; however, its full potential is hampered by considerable variation in efficacy across populations and geographical regions. For example, attenuated malaria vaccines in high-income countries confer almost 100% protection, whereas in low-income regions these same vaccines achieve only 20-50% protection. This trend is also observed for other vaccines, such as bacillus Calmette-Guérin (BCG), rotavirus and yellow fever vaccines, in terms of either immunogenicity or efficacy. Multiple environmental factors affect vaccine responses, including pathogen exposure, microbiota composition and dietary nutrients. However, there has been variable success with interventions that target these individual factors, highlighting the need for a better understanding of their downstream immunological mechanisms to develop new ways of modulating vaccine responses. Here, we review the immunological factors that underlie geographical variation in vaccine responses. Through the identification of causal pathways that link environmental influences to vaccine responsiveness, it might become possible to devise modulatory compounds that can complement vaccines for better outcomes in regions where they are needed most.
Collapse
Affiliation(s)
- Marloes M A R van Dorst
- Department of Parasitology, Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | - Jeremia J Pyuza
- Department of Parasitology, Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
- Department of Pathology, Kilimanjaro Christian Medical Centre, Moshi, Tanzania
| | - Gyaviira Nkurunungi
- Immunomodulation and Vaccines Programme, Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine Uganda Research Unit, Entebbe, Uganda
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, UK
| | - Vesla I Kullaya
- Kilimanjaro Clinical Research Institute, Kilimanjaro Christian Medical Centre, Moshi, Tanzania
| | - Hermelijn H Smits
- Department of Parasitology, Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | | | - Linda J Wammes
- Department of Medical Microbiology, Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | - Bart Everts
- Department of Parasitology, Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | - Alison M Elliott
- Immunomodulation and Vaccines Programme, Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine Uganda Research Unit, Entebbe, Uganda
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, UK
| | - Simon P Jochems
- Department of Parasitology, Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | - Maria Yazdanbakhsh
- Department of Parasitology, Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands.
| |
Collapse
|
28
|
Liu X, Chen L, Peng W, Deng H, Ni H, Tong H, Hu H, Wang S, Qian J, Liang A, Chen K. Th17/Treg balance: the bloom and wane in the pathophysiology of sepsis. Front Immunol 2024; 15:1356869. [PMID: 38558800 PMCID: PMC10978743 DOI: 10.3389/fimmu.2024.1356869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 02/20/2024] [Indexed: 04/04/2024] Open
Abstract
Sepsis is a multi-organ dysfunction characterized by an unregulated host response to infection. It is associated with high morbidity, rapid disease progression, and high mortality. Current therapies mainly focus on symptomatic treatment, such as blood volume supplementation and antibiotic use, but their effectiveness is limited. Th17/Treg balance, based on its inflammatory property, plays a crucial role in determining the direction of the inflammatory response and the regression of organ damage in sepsis patients. This review provides a summary of the changes in T-helper (Th) 17 cell and regulatory T (Treg) cell differentiation and function during sepsis, the heterogeneity of Th17/Treg balance in the inflammatory response, and the relationship between Th17/Treg balance and organ damage. Th17/Treg balance exerts significant control over the bloom and wanes in host inflammatory response throughout sepsis.
Collapse
Affiliation(s)
- Xinyong Liu
- Department of Critical Care Medicine, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Longwang Chen
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wei Peng
- Department of Critical Care Medicine, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Hongsheng Deng
- Department of Critical Care Medicine, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Hongying Ni
- Department of Critical Care Medicine, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Hongjie Tong
- Department of Critical Care Medicine, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Hangbo Hu
- Department of Critical Care Medicine, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Shengchao Wang
- Department of Critical Care Medicine, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Jin Qian
- Department of Critical Care Medicine, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Andong Liang
- Nursing Faculty, School of Medicine, Jinhua Polytechnic, Jinhua, China
| | - Kun Chen
- Department of Critical Care Medicine, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| |
Collapse
|
29
|
Vaddi A, Hulsebus HJ, O’Neill EL, Knight V, Chan ED. A narrative review of the controversy on the risk of mycobacterial infections with immune checkpoint inhibitor use: does Goldilocks have the answer? J Thorac Dis 2024; 16:1601-1624. [PMID: 38505086 PMCID: PMC10944775 DOI: 10.21037/jtd-23-1395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 01/11/2024] [Indexed: 03/21/2024]
Abstract
Background and Objective Immune checkpoint inhibitors (ICIs) have revolutionized oncologic treatment. Whether ICIs increase susceptibility to or provide protection against mycobacterial infections remains controversial. The objective of this narrative review is to summarize the literature on the link between ICI use and mycobacterial infections-tuberculosis and non-tuberculous mycobacterial (NTM) infections-and to critically discuss evidence linking ICIs with mycobacterial infections, the possible confounders, and, if indeed the ICIs predispose to such infections, the potential mechanisms of how this may occur. Methods We conducted a literature search on PubMed for relevant articles published from 2011 to current time [2024] utilizing specific keywords of "immune checkpoint inhibitors", "programmed cell death protein-1", "PD-1", "programmed death-ligand 1", "PD-L1", "cytotoxic T-lymphocyte-associated protein-4", or "CTLA-4" with that of "non-tuberculous mycobacterial lung disease", "tuberculosis", or "mycobacteria". The bibliographies of identified papers were perused for additional relevant articles. Key Content and Findings Ex vivo studies using human cells indicate that ICIs would be salubrious for the host against mycobacteria. Yet, many case reports associate ICI use with mycobacterial infections, mostly tuberculosis. Potential confounders include immunosuppression from the cancer, concomitant use of immunosuppressive drugs, lung injury and distortion from chemotherapeutics or radiation, and reporting bias. Mice with genetic disruption of the programmed cell death protein-1 (PD-1) gene are paradoxically more susceptible to Mycobacterium tuberculosis (M. tuberculosis). In contrast, mice administered neutralizing antibody to T cell immunoglobulin and mucin domain-containing protein 3 (TIM3) or knocked out for TIM3 gene have greater capacity to control an M. tuberculosis infection. We posit that hosts with greater baseline immunodeficiency are more likely to derive benefit from ICIs against mycobacterial infections than those with more intact immunity, where ICIs are more likely to be detrimental. Conclusions Studies are needed to test the hypothesis that ICIs may either protect or predispose to mycobacterial infections, depending on the baseline host immune status. Prospective studies are required of patients on ICIs that control for potential confounders as anecdotal case reports are insufficient to provide a causal link. Murine studies with ICIs are also required to corroborate or refute studies of mice with genetic disruption of an immune checkpoint.
Collapse
Affiliation(s)
- Akshara Vaddi
- Department of Biology, University of Wisconsin, Madison, WI, USA
| | - Holly J. Hulsebus
- Complement Laboratory, Advance Diagnostics, National Jewish Health, Denver, CO, USA
| | - Emily L. O’Neill
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Vijaya Knight
- Clinical and Translational Allergy and Immunology Laboratory, Children’s Hospital Colorado, Aurora, CO, USA
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Edward D. Chan
- Department of Medicine, Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, CO, USA
- Department of Academic Affairs, National Jewish Health, Denver, CO, USA
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| |
Collapse
|
30
|
Headley CA, Gautam S, Olmo-Fontanez A, Garcia-Vilanova A, Dwivedi V, Schami A, Weintraub S, Tsao PS, Torrelles JB, Turner J. Mitochondrial Transplantation promotes protective effector and memory CD4 + T cell response during Mycobacterium tuberculosis infection and diminishes exhaustion and senescence in elderly CD4 + T cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.24.577036. [PMID: 38328206 PMCID: PMC10849707 DOI: 10.1101/2024.01.24.577036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Tuberculosis (TB), caused by the bacterium Mycobacterium tuberculosis (M.tb), remains a significant health concern worldwide, especially in populations with weakened or compromised immune systems, such as the elderly. Proper adaptive immune function, particularly a CD4+ T cell response, is central to host immunity against M.tb. Chronic infections, such as M.tb, as well as aging promote T cell exhaustion and senescence, which can impair immune control and promote progression to TB disease. Mitochondrial dysfunction contributes to T cell dysfunction, both in aging and chronic infections and diseases. Mitochondrial perturbations can disrupt cellular metabolism, enhance oxidative stress, and impair T-cell signaling and effector functions. This study examined the impact of mitochondrial transplantation (mito-transfer) on CD4+ T cell differentiation and function using aged mouse models and human CD4+ T cells from elderly individuals. Our study revealed that mito-transfer in naïve CD4+ T cells promoted the generation of protective effector and memory CD4+ T cells during M.tb infection in mice. Further, mito-transfer enhanced the function of elderly human T cells by increasing their mitochondrial mass and modulating cytokine production, which in turn reduced exhaustion and senescence cell markers. Our results suggest that mito-transfer could be a novel strategy to reestablish aged CD4+ T cell function, potentially improving immune responses in the elderly and chronic TB patients, with a broader implication for other diseases where mitochondrial dysfunction is linked to T cell exhaustion and senescence.
Collapse
Affiliation(s)
- Colwyn A. Headley
- Host-Pathogen Interactions Program, Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
- Biomedical Sciences Graduate Program, The Ohio State University, Columbus, OH, 43201, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, 94305
| | - Shalini Gautam
- Host-Pathogen Interactions Program, Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
| | - Angelica Olmo-Fontanez
- Population Health Program, Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
| | - Andreu Garcia-Vilanova
- Population Health Program, Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
| | - Varun Dwivedi
- Host-Pathogen Interactions Program, Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
| | - Alyssa Schami
- Population Health Program, Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
| | - Susan Weintraub
- Department of Biochemistry & Structural Biology, UT health San Antonio, TX, 78229, USA
| | - Philip S. Tsao
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, 94305
| | - Jordi B. Torrelles
- Population Health Program, Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
- Internaltional Center for the Advancement of Research & Education (I•CARE), Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
| | - Joanne Turner
- Host-Pathogen Interactions Program, Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
| |
Collapse
|
31
|
Ghoshal A, Verma A, Bhaskar A, Dwivedi VP. The uncharted territory of host-pathogen interaction in tuberculosis. Front Immunol 2024; 15:1339467. [PMID: 38312835 PMCID: PMC10834760 DOI: 10.3389/fimmu.2024.1339467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/03/2024] [Indexed: 02/06/2024] Open
Abstract
Mycobacterium tuberculosis (M.tb) effectively manipulates the host processes to establish the deadly respiratory disease, Tuberculosis (TB). M.tb has developed key mechanisms to disrupt the host cell health to combat immune responses and replicate efficaciously. M.tb antigens such as ESAT-6, 19kDa lipoprotein, Hip1, and Hsp70 destroy the integrity of cell organelles (Mitochondria, Endoplasmic Reticulum, Nucleus, Phagosomes) or delay innate/adaptive cell responses. This is followed by the induction of cellular stress responses in the host. Such cells can either undergo various cell death processes such as apoptosis or necrosis, or mount effective immune responses to clear the invading pathogen. Further, to combat the infection progression, the host secretes extracellular vesicles such as exosomes to initiate immune signaling. The exosomes can contain M.tb as well as host cell-derived peptides that can act as a double-edged sword in the immune signaling event. The host-symbiont microbiota produces various metabolites that are beneficial for maintaining healthy tissue microenvironment. In juxtaposition to the above-mentioned mechanisms, M.tb dysregulates the gut and respiratory microbiome to support its replication and dissemination process. The above-mentioned interconnected host cellular processes of Immunometabolism, Cellular stress, Host Microbiome, and Extracellular vesicles are less explored in the realm of exploration of novel Host-directed therapies for TB. Therefore, this review highlights the intertwined host cellular processes to control M.tb survival and showcases the important factors that can be targeted for designing efficacious therapy.
Collapse
Affiliation(s)
| | | | | | - Ved Prakash Dwivedi
- Immunobiology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| |
Collapse
|
32
|
Wang C, Zou RQ, He GZ. Progress in mechanism-based diagnosis and treatment of tuberculosis comorbid with tumor. Front Immunol 2024; 15:1344821. [PMID: 38298194 PMCID: PMC10827852 DOI: 10.3389/fimmu.2024.1344821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 01/02/2024] [Indexed: 02/02/2024] Open
Abstract
Tuberculosis (TB) and tumor, with similarities in immune response and pathogenesis, are diseases that are prone to produce autoimmune stress response to the host immune system. With a symbiotic relationship between the two, TB can facilitate the occurrence and development of tumors, while tumor causes TB reactivation. In this review, we systematically sorted out the incidence trends and influencing factors of TB and tumor, focusing on the potential pathogenesis of TB and tumor, to provide a pathway for the co-pathogenesis of TB comorbid with tumor (TCWT). Based on this, we summarized the latest progress in the diagnosis and treatment of TCWT, and provided ideas for further exploration of clinical trials and new drug development of TCWT.
Collapse
Affiliation(s)
- Chuan Wang
- School of Public Health, Kunming Medical University, Kunming, China
| | - Rong-Qi Zou
- Vice Director of Center of Sports Injury Prevention, Treatment and Rehabilitation China National Institute of Sports Medicine A2 Pangmen, Beijing, China
| | - Guo-Zhong He
- School of Public Health, Kunming Medical University, Kunming, China
| |
Collapse
|
33
|
Zhuang L, Yang L, Li L, Ye Z, Gong W. Mycobacterium tuberculosis: immune response, biomarkers, and therapeutic intervention. MedComm (Beijing) 2024; 5:e419. [PMID: 38188605 PMCID: PMC10771061 DOI: 10.1002/mco2.419] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 10/03/2023] [Accepted: 10/12/2023] [Indexed: 01/09/2024] Open
Abstract
Although tuberculosis (TB) is an infectious disease, the progression of the disease following Mycobacterium tuberculosis (MTB) infection is closely associated with the host's immune response. In this review, a comprehensive analysis of TB prevention, diagnosis, and treatment was conducted from an immunological perspective. First, we delved into the host's immune response mechanisms against MTB infection as well as the immune evasion mechanisms of the bacteria. Addressing the challenges currently faced in TB diagnosis and treatment, we also emphasized the importance of protein, genetic, and immunological biomarkers, aiming to provide new insights for early and personalized diagnosis and treatment of TB. Building upon this foundation, we further discussed intervention strategies involving chemical and immunological treatments for the increasingly critical issue of drug-resistant TB and other forms of TB. Finally, we summarized TB prevention, diagnosis, and treatment challenges and put forward future perspectives. Overall, these findings provide valuable insights into the immunological aspects of TB and offer new directions toward achieving the WHO's goal of eradicating TB by 2035.
Collapse
Affiliation(s)
- Li Zhuang
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and TreatmentSenior Department of Tuberculosis, the Eighth Medical Center of PLA General HospitalBeijingChina
- Senior Department of TuberculosisHebei North UniversityZhangjiakouHebeiChina
| | - Ling Yang
- Senior Department of TuberculosisHebei North UniversityZhangjiakouHebeiChina
| | - Linsheng Li
- Senior Department of TuberculosisHebei North UniversityZhangjiakouHebeiChina
| | - Zhaoyang Ye
- Senior Department of TuberculosisHebei North UniversityZhangjiakouHebeiChina
| | - Wenping Gong
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and TreatmentSenior Department of Tuberculosis, the Eighth Medical Center of PLA General HospitalBeijingChina
| |
Collapse
|
34
|
Gress AR, Ronayne CE, Thiede JM, Meyerholz DK, Okurut S, Stumpf J, Mathes TV, Ssebambulidde K, Meya DB, Cresswell FV, Boulware DR, Bold TD. Recently activated CD4 T cells in tuberculosis express OX40 as a target for host-directed immunotherapy. Nat Commun 2023; 14:8423. [PMID: 38110410 PMCID: PMC10728168 DOI: 10.1038/s41467-023-44152-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/01/2023] [Indexed: 12/20/2023] Open
Abstract
After Mycobacterium tuberculosis (Mtb) infection, many effector T cells traffic to the lungs, but few become activated. Here we use an antigen receptor reporter mouse (Nur77-GFP) to identify recently activated CD4 T cells in the lungs. These Nur77-GFPHI cells contain expanded TCR clonotypes, have elevated expression of co-stimulatory genes such as Tnfrsf4/OX40, and are functionally more protective than Nur77-GFPLO cells. By contrast, Nur77-GFPLO cells express markers of terminal exhaustion and cytotoxicity, and the trafficking receptor S1pr5, associated with vascular localization. A short course of immunotherapy targeting OX40+ cells transiently expands CD4 T cell numbers and shifts their phenotype towards parenchymal protective cells. Moreover, OX40 agonist immunotherapy decreases the lung bacterial burden and extends host survival, offering an additive benefit to antibiotics. CD4 T cells from the cerebrospinal fluid of humans with HIV-associated tuberculous meningitis commonly express surface OX40 protein, while CD8 T cells do not. Our data thus propose OX40 as a marker of recently activated CD4 T cells at the infection site and a potential target for immunotherapy in tuberculosis.
Collapse
Affiliation(s)
- Abigail R Gress
- Department of Medicine, University of Minnesota, 420 Delaware Street, SE MMC 250, Minneapolis, MN, 55455, USA
- Center for Immunology, 2101 6th St SE, WMBB 2-118, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Christine E Ronayne
- Department of Medicine, University of Minnesota, 420 Delaware Street, SE MMC 250, Minneapolis, MN, 55455, USA
- Center for Immunology, 2101 6th St SE, WMBB 2-118, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Joshua M Thiede
- Department of Medicine, University of Minnesota, 420 Delaware Street, SE MMC 250, Minneapolis, MN, 55455, USA
- Center for Immunology, 2101 6th St SE, WMBB 2-118, University of Minnesota, Minneapolis, MN, 55455, USA
| | - David K Meyerholz
- Department of Pathology, Roy J. and Lucille A. Carver College of Medicine, 1165 Medical Laboratories (ML), 51 Newton Rd, University of Iowa, Iowa City, IA, 52242, USA
| | - Samuel Okurut
- Infectious Diseases Institute, P.O. Box 22418, Makerere University, Kampala, Uganda
| | - Julia Stumpf
- Department of Medicine, University of Minnesota, 420 Delaware Street, SE MMC 250, Minneapolis, MN, 55455, USA
| | - Tailor V Mathes
- Department of Medicine, University of Minnesota, 420 Delaware Street, SE MMC 250, Minneapolis, MN, 55455, USA
- Center for Immunology, 2101 6th St SE, WMBB 2-118, University of Minnesota, Minneapolis, MN, 55455, USA
| | | | - David B Meya
- Infectious Diseases Institute, P.O. Box 22418, Makerere University, Kampala, Uganda
| | - Fiona V Cresswell
- Infectious Diseases Institute, P.O. Box 22418, Makerere University, Kampala, Uganda
- MRC/UVRI and London School of Hygiene and Tropical Medicine Uganda Research Unit, PO Box 49, Plot 51-59, Nakiwogo Road Entebbe, Entebbe, Uganda
- Department of Global Health and Infection, Brighton and Sussex Medical School, Brighton, East Sussex, BN1 9PX, UK
| | - David R Boulware
- Department of Medicine, University of Minnesota, 420 Delaware Street, SE MMC 250, Minneapolis, MN, 55455, USA
| | - Tyler D Bold
- Department of Medicine, University of Minnesota, 420 Delaware Street, SE MMC 250, Minneapolis, MN, 55455, USA.
- Center for Immunology, 2101 6th St SE, WMBB 2-118, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
35
|
Lai R, Williams T, Rakib T, Lee J, Behar SM. Heterogeneity in lung macrophage control of Mycobacterium tuberculosis is determined by T cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.29.569283. [PMID: 38076803 PMCID: PMC10705395 DOI: 10.1101/2023.11.29.569283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Following Mycobacterium tuberculosis infection, alveolar macrophages are initially infected but ineffectively restrict bacterial replication. The distribution of M. tuberculosis among different cell types in the lung changes with the onset of T cell immunity when the dominant infected cellular niche shifts from alveolar to monocyte-derived macrophages (MDM). We hypothesize that changes in bacterial distribution among different cell types is driven by differences in T cell recognition of infected cells and their subsequent activation of antimicrobial effector mechanisms. We show that CD4 and CD8 T cells efficiently eliminate M. tuberculosis infection in alveolar macrophages, but they have less impact on suppressing infection in MDM, which may be a bacterial niche. Importantly, CD4 T cell responses enhance MDM recruitment to the lung. Thus, the outcome of infection depends on the interaction between the T cell subset and the infected cell; both contribute to the resolution and persistence of the infection.
Collapse
Affiliation(s)
- Rocky Lai
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Travis Williams
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Tasfia Rakib
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Jinhee Lee
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Samuel M. Behar
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
36
|
Li LS, Yang L, Zhuang L, Ye ZY, Zhao WG, Gong WP. From immunology to artificial intelligence: revolutionizing latent tuberculosis infection diagnosis with machine learning. Mil Med Res 2023; 10:58. [PMID: 38017571 PMCID: PMC10685516 DOI: 10.1186/s40779-023-00490-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 11/06/2023] [Indexed: 11/30/2023] Open
Abstract
Latent tuberculosis infection (LTBI) has become a major source of active tuberculosis (ATB). Although the tuberculin skin test and interferon-gamma release assay can be used to diagnose LTBI, these methods can only differentiate infected individuals from healthy ones but cannot discriminate between LTBI and ATB. Thus, the diagnosis of LTBI faces many challenges, such as the lack of effective biomarkers from Mycobacterium tuberculosis (MTB) for distinguishing LTBI, the low diagnostic efficacy of biomarkers derived from the human host, and the absence of a gold standard to differentiate between LTBI and ATB. Sputum culture, as the gold standard for diagnosing tuberculosis, is time-consuming and cannot distinguish between ATB and LTBI. In this article, we review the pathogenesis of MTB and the immune mechanisms of the host in LTBI, including the innate and adaptive immune responses, multiple immune evasion mechanisms of MTB, and epigenetic regulation. Based on this knowledge, we summarize the current status and challenges in diagnosing LTBI and present the application of machine learning (ML) in LTBI diagnosis, as well as the advantages and limitations of ML in this context. Finally, we discuss the future development directions of ML applied to LTBI diagnosis.
Collapse
Affiliation(s)
- Lin-Sheng Li
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, the Eighth Medical Center of PLA General Hospital, Beijing, 100091, China
- Hebei North University, Zhangjiakou, 075000, Hebei, China
- Senior Department of Respiratory and Critical Care Medicine, the Eighth Medical Center of PLA General Hospital, Beijing, 100091, China
| | - Ling Yang
- Hebei North University, Zhangjiakou, 075000, Hebei, China
| | - Li Zhuang
- Hebei North University, Zhangjiakou, 075000, Hebei, China
| | - Zhao-Yang Ye
- Hebei North University, Zhangjiakou, 075000, Hebei, China
| | - Wei-Guo Zhao
- Senior Department of Respiratory and Critical Care Medicine, the Eighth Medical Center of PLA General Hospital, Beijing, 100091, China.
| | - Wen-Ping Gong
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, the Eighth Medical Center of PLA General Hospital, Beijing, 100091, China.
| |
Collapse
|
37
|
Kaufmann SHE. Vaccine development against tuberculosis before and after Covid-19. Front Immunol 2023; 14:1273938. [PMID: 38035095 PMCID: PMC10684952 DOI: 10.3389/fimmu.2023.1273938] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/16/2023] [Indexed: 12/02/2023] Open
Abstract
Coronavirus disease (Covid-19) has not only shaped awareness of the impact of infectious diseases on global health. It has also provided instructive lessons for better prevention strategies against new and current infectious diseases of major importance. Tuberculosis (TB) is a major current health threat caused by Mycobacterium tuberculosis (Mtb) which has claimed more lives than any other pathogen over the last few centuries. Hence, better intervention measures, notably novel vaccines, are urgently needed to accomplish the goal of the World Health Organization to end TB by 2030. This article describes how the research and development of TB vaccines can benefit from recent developments in the Covid-19 vaccine pipeline from research to clinical development and outlines how the field of TB research can pursue its own approaches. It begins with a brief discussion of major vaccine platforms in general terms followed by a short description of the most widely applied Covid-19 vaccines. Next, different vaccination regimes and particular hurdles for TB vaccine research and development are described. This specifically considers the complex immune mechanisms underlying protection and pathology in TB which involve innate as well as acquired immune mechanisms and strongly depend on fine tuning the response. A brief description of the TB vaccine candidates that have entered clinical trials follows. Finally, it discusses how experiences from Covid-19 vaccine research, development, and rollout can and have been applied to the TB vaccine pipeline, emphasizing similarities and dissimilarities.
Collapse
Affiliation(s)
- Stefan H. E. Kaufmann
- Max Planck Institute for Infection Biology, Berlin, Germany
- Systems Immunology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Hagler Institute for Advanced Study, Texas A&M University, College Station, TX, United States
| |
Collapse
|
38
|
Singh DK, Bhaskar A, Pahuja I, Shaji A, Moitra B, Shi Y, Dwivedi VP, Das G. Cotreatment With Clofazimine and Rapamycin Eliminates Drug-Resistant Tuberculosis by Inducing Polyfunctional Central Memory T-Cell Responses. J Infect Dis 2023; 228:1166-1178. [PMID: 37290049 DOI: 10.1093/infdis/jiad214] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/10/2023] [Accepted: 06/07/2023] [Indexed: 06/10/2023] Open
Abstract
Mycobacterium tuberculosis, the causative agent of tuberculosis, is acquiring drug resistance at a faster rate than the discovery of new antibiotics. Therefore, alternate therapies that can limit the drug resistance and disease recurrence are urgently needed. Emerging evidence indicates that combined treatment with antibiotics and an immunomodulator provides superior treatment efficacy. Clofazimine (CFZ) enhances the generation of T central memory (TCM) cells by blocking the Kv1.3+ potassium channels. Rapamycin (RAPA) facilitates M. tuberculosis clearance by inducing autophagy. In this study, we observed that cotreatment with CFZ and RAPA potently eliminates both multiple and extensively drug-resistant (MDR and XDR) clinical isolates of M. tuberculosis in a mouse model by inducing robust T-cell memory and polyfunctional TCM responses. Furthermore, cotreatment reduces the expression of latency-associated genes of M. tuberculosis in human macrophages. Therefore, CFZ and RAPA cotherapy holds promise for treating patients infected with MDR and XDR strains of M. tuberculosis.
Collapse
Affiliation(s)
- Dhiraj Kumar Singh
- Immunobiology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
- Special Center for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Ashima Bhaskar
- Immunobiology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Isha Pahuja
- Immunobiology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Aishwarya Shaji
- Immunobiology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Barnani Moitra
- Special Center for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Yufang Shi
- State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, People's Republic of China
| | - Ved Prakash Dwivedi
- Immunobiology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Gobardhan Das
- Special Center for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
39
|
Gong W, Du J. Excluding Participants With Mycobacteria Infections From Clinical Trials: A Critical Consideration in Evaluating the Efficacy of BCG Against COVID-19. J Korean Med Sci 2023; 38:e343. [PMID: 37904656 PMCID: PMC10615642 DOI: 10.3346/jkms.2023.38.e343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 09/01/2023] [Indexed: 11/01/2023] Open
Abstract
In the context of the coronavirus disease 2019 (COVID-19) pandemic, Bacillus Calmette-Guérin (BCG), a tuberculosis (TB) vaccine, has been investigated for its potential to prevent COVID-19 with conflicting outcomes. Currently, over 50 clinical trials have been conducted to assess the effectiveness of BCG in preventing COVID-19, but the results have shown considerable variations. After scrutinizing the data, it was discovered that some trials had enrolled individuals with active TB, latent TB infection, or a history of TB. This finding raises concerns about the reliability and validity of the trial outcomes. In this study, we explore the potential consequences of including these participants in clinical trials, including impaired host immunity, immune exhaustion, and the potential masking of the BCG vaccine's protective efficacy against COVID-19 by persistent mycobacterial infections. We also put forth several suggestions for future clinical trials. Our study underscores the criticality of excluding individuals with active or latent TB from clinical trials evaluating the efficacy of BCG in preventing COVID-19.
Collapse
Affiliation(s)
- Wenping Gong
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The 8th Medical Center of PLA General Hospital, Beijing, China.
| | - Jingli Du
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The 8th Medical Center of PLA General Hospital, Beijing, China.
| |
Collapse
|
40
|
Yang L, Zhuang L, Ye Z, Li L, Guan J, Gong W. Immunotherapy and biomarkers in patients with lung cancer with tuberculosis: Recent advances and future Directions. iScience 2023; 26:107881. [PMID: 37841590 PMCID: PMC10570004 DOI: 10.1016/j.isci.2023.107881] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023] Open
Abstract
Lung cancer (LC) and tuberculosis (TB) are two major global public health problems, and the incidence of LC-TB is currently on the rise. Therefore effective clinical interventions are crucial for LC-TB. The aim of this review is to provide up-to-date information on the immunological profile and therapeutic biomarkers in patients with LC-TB. We discuss the immune mechanisms involved, including the immune checkpoints that play an important role in the treatment of patients with LC-TB. In addition, we explore the susceptibility of patients with LC to TB and summarise the latest research on LC-TB. Finally, we discuss future prospects in this field, including the identification of potential targets for immune intervention. In conclusion, this review provides important insights into the complex relationship between LC and TB and highlights new advances in the detection and treatment of both diseases.
Collapse
Affiliation(s)
- Ling Yang
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, Eighth Medical Center of PLA General Hospital, Beijing 100091, China
- Hebei North University, Zhangjiakou, Hebei 075000, China
- Senior Department of Oncology, Fifth Medical Center of PLA General Hospital, Beijing 100071, China
| | - Li Zhuang
- Hebei North University, Zhangjiakou, Hebei 075000, China
| | - Zhaoyang Ye
- Hebei North University, Zhangjiakou, Hebei 075000, China
| | - Linsheng Li
- Hebei North University, Zhangjiakou, Hebei 075000, China
| | - Jingzhi Guan
- Senior Department of Oncology, Fifth Medical Center of PLA General Hospital, Beijing 100071, China
| | - Wenping Gong
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, Eighth Medical Center of PLA General Hospital, Beijing 100091, China
| |
Collapse
|
41
|
Acheampong I, Minadzi D, Adankwah E, Aniagyei W, Vivekanandan MM, Yeboah A, Arthur JF, Lamptey M, Abass MK, Kumbel F, Osei-Yeboah F, Gawusu A, Laing EF, Batsa Debrah L, Owusu DO, Debrah A, Mayatepek E, Seyfarth J, Phillips RO, Jacobsen M. Diminished Interleukin-7 receptor expression on T-cell subsets in tuberculosis patients. Hum Immunol 2023; 84:543-550. [PMID: 37580215 DOI: 10.1016/j.humimm.2023.08.141] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/03/2023] [Accepted: 08/07/2023] [Indexed: 08/16/2023]
Abstract
Immunopathology in human tuberculosis affects T-cell phenotype and functions. Previous studies identified impaired T-cell sensitivity to Interleukin (IL)-7 accompanied by lower IL-7 receptor α-chain (IL-7Rα) expression in patients with acute tuberculosis. In the present study, we characterized affected T-cell subsets and determined the influence of tuberculosis disease severity and treatment response. Tuberculosis patients (n = 89) as well as age- and gender-matched asymptomatic contacts (controls, n = 47) were recruited in Ghana. Mycobacterium (M.) tuberculosis sputum burden was monitored prior to and during treatment. Blood samples from all patients and controls were analyzed for IL-7Rα expression and T-cell markers by multi-colour flow cytometry. CD4+ and CD8+ T-cells of tuberculosis patients showed generally lower IL-7Rα expression as compared to controls. Concomitantly, tuberculosis patients had higher proportions of naïve and lower proportions of memory CD4+ T-cells. Notably, a subset of CD27 positive central memory T-cells (Tcm), which lacked IL-7Rα expression was enriched in tuberculosis patients as compared to controls. M. tuberculosis sputum burden was not associated with differences in IL-7Rα expression. Treatment duration and response showed no clear effects although IL-7Rα expression patterns were highly variable. These results suggested generally impaired generation of memory CD4+ T-cells and enrichment of a Tcm subset without IL-7Rα expression in patients with tuberculosis.
Collapse
Affiliation(s)
- Isaac Acheampong
- Kumasi Centre for Collaborative Research in Tropical Medicine (KCCR), Kumasi, Ghana
| | - Difery Minadzi
- Kumasi Centre for Collaborative Research in Tropical Medicine (KCCR), Kumasi, Ghana
| | - Ernest Adankwah
- Kumasi Centre for Collaborative Research in Tropical Medicine (KCCR), Kumasi, Ghana
| | - Wilfred Aniagyei
- Kumasi Centre for Collaborative Research in Tropical Medicine (KCCR), Kumasi, Ghana
| | | | - Augustine Yeboah
- Kumasi Centre for Collaborative Research in Tropical Medicine (KCCR), Kumasi, Ghana
| | - Joseph F Arthur
- Kumasi Centre for Collaborative Research in Tropical Medicine (KCCR), Kumasi, Ghana
| | - Millicent Lamptey
- Kumasi Centre for Collaborative Research in Tropical Medicine (KCCR), Kumasi, Ghana
| | | | | | | | - Amidu Gawusu
- Sene West Health Directorate, Kwame Danso, Ghana
| | - Edwin F Laing
- School of Medicine and Dentistry, College of Health Sciences, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana
| | - Linda Batsa Debrah
- Kumasi Centre for Collaborative Research in Tropical Medicine (KCCR), Kumasi, Ghana
| | - Dorcas O Owusu
- Kumasi Centre for Collaborative Research in Tropical Medicine (KCCR), Kumasi, Ghana
| | - Alexander Debrah
- Kumasi Centre for Collaborative Research in Tropical Medicine (KCCR), Kumasi, Ghana
| | - Ertan Mayatepek
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, University Hospital Duesseldorf, Heinrich-Heine University, 40225 Duesseldorf, Germany
| | - Julia Seyfarth
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, University Hospital Duesseldorf, Heinrich-Heine University, 40225 Duesseldorf, Germany
| | - Richard O Phillips
- Kumasi Centre for Collaborative Research in Tropical Medicine (KCCR), Kumasi, Ghana; School of Medicine and Dentistry, College of Health Sciences, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana
| | - Marc Jacobsen
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, University Hospital Duesseldorf, Heinrich-Heine University, 40225 Duesseldorf, Germany.
| |
Collapse
|
42
|
Li S, Hao L, Zhang J, Deng J, Hu X. Focus on T cell exhaustion: new advances in traditional Chinese medicine in infection and cancer. Chin Med 2023; 18:76. [PMID: 37355637 DOI: 10.1186/s13020-023-00785-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/16/2023] [Indexed: 06/26/2023] Open
Abstract
In chronic infections and cancers, T lymphocytes (T cells) are exposed to persistent antigen or inflammatory signals. The condition is often associated with a decline in T-cell function: a state called "exhaustion". T cell exhaustion is a state of T cell dysfunction characterized by increased expression of a series of inhibitory receptors (IRs), decreased effector function, and decreased cytokine secretion, accompanied by transcriptional and epigenetic changes and metabolic defects. The rise of immunotherapy, particularly the use of immune checkpoint inhibitors (ICIs), has dramatically changed the clinical treatment paradigm for patients. However, its low response rate, single target and high immunotoxicity limit its clinical application. The multiple immunomodulatory potential of traditional Chinese medicine (TCM) provides a new direction for improving the treatment of T cell exhaustion. Here, we review recent advances that have provided a clearer molecular understanding of T cell exhaustion, revealing the characteristics and causes of T cell exhaustion in persistent infections and cancers. In addition, this paper summarizes recent advances in improving T cell exhaustion in infectious diseases and cancer with the aim of providing a comprehensive and valuable source of information on TCM as an experimental study and their role in collaboration with ICIs therapy.
Collapse
Affiliation(s)
- Shenghao Li
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-Er-Qiao Road, Chengdu, 610072, Sichuan Province, People's Republic of China
- Chengdu University of Traditional Chinese Medicine, No. 37 Shi-Er-Qiao Road, Chengdu, 610075, Sichuan Province, People's Republic of China
| | - Liyuan Hao
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-Er-Qiao Road, Chengdu, 610072, Sichuan Province, People's Republic of China
- Chengdu University of Traditional Chinese Medicine, No. 37 Shi-Er-Qiao Road, Chengdu, 610075, Sichuan Province, People's Republic of China
| | - Junli Zhang
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-Er-Qiao Road, Chengdu, 610072, Sichuan Province, People's Republic of China
- Chengdu University of Traditional Chinese Medicine, No. 37 Shi-Er-Qiao Road, Chengdu, 610075, Sichuan Province, People's Republic of China
| | - Jiali Deng
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-Er-Qiao Road, Chengdu, 610072, Sichuan Province, People's Republic of China
- Chengdu University of Traditional Chinese Medicine, No. 37 Shi-Er-Qiao Road, Chengdu, 610075, Sichuan Province, People's Republic of China
| | - Xiaoyu Hu
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-Er-Qiao Road, Chengdu, 610072, Sichuan Province, People's Republic of China.
| |
Collapse
|
43
|
Touray BJ, Hanafy M, Phanse Y, Hildebrand R, Talaat AM. Protective RNA nanovaccines against Mycobacterium avium subspecies hominissuis. Front Immunol 2023; 14:1188754. [PMID: 37359562 PMCID: PMC10286238 DOI: 10.3389/fimmu.2023.1188754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 05/25/2023] [Indexed: 06/28/2023] Open
Abstract
The induction of an effective immune response is critical for the success of mRNA-based therapeutics. Here, we developed a nanoadjuvant system compromised of Quil-A and DOTAP (dioleoyl 3 trimethylammonium propane), hence named QTAP, for the efficient delivery of mRNA vaccine constructs into cells. Electron microscopy indicated that the complexation of mRNA with QTAP forms nanoparticles with an average size of 75 nm and which have ~90% encapsulation efficiency. The incorporation of pseudouridine-modified mRNA resulted in higher transfection efficiency and protein translation with low cytotoxicity than unmodified mRNA. When QTAP-mRNA or QTAP alone transfected macrophages, pro-inflammatory pathways (e.g., NLRP3, NF-kb, and MyD88) were upregulated, an indication of macrophage activation. In C57Bl/6 mice, QTAP nanovaccines encoding Ag85B and Hsp70 transcripts (QTAP-85B+H70) were able to elicit robust IgG antibody and IFN- ɣ, TNF-α, IL-2, and IL-17 cytokines responses. Following aerosol challenge with a clinical isolate of M. avium ss. hominissuis (M.ah), a significant reduction of mycobacterial counts was observed in lungs and spleens of only immunized animals at both 4- and 8-weeks post-challenge. As expected, reduced levels of M. ah were associated with diminished histological lesions and robust cell-mediated immunity. Interestingly, polyfunctional T-cells expressing IFN- ɣ, IL-2, and TNF- α were detected at 8 but not 4 weeks post-challenge. Overall, our analysis indicated that QTAP is a highly efficient transfection agent and could improve the immunogenicity of mRNA vaccines against pulmonary M. ah, an infection of significant public health importance, especially to the elderly and to those who are immune compromised.
Collapse
Affiliation(s)
- Bubacarr J.B. Touray
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, United States
| | - Mostafa Hanafy
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, United States
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | | | - Rachel Hildebrand
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, United States
| | - Adel M. Talaat
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, United States
- Pan Genome Systems, Madison, WI, United States
- Vireo Vaccines International, LLC, Madison, Wisconsin, United States
| |
Collapse
|
44
|
Khandelia P, Yadav S, Singh P. An overview of the BCG vaccine and its future scope. Indian J Tuberc 2023; 70 Suppl 1:S14-S23. [PMID: 38110255 DOI: 10.1016/j.ijtb.2023.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 05/15/2023] [Indexed: 12/20/2023]
Abstract
Despite intense elimination efforts, tuberculosis (TB) still poses a threat to world health, disproportionately affecting less developed and poorer countries. The Bacillus Calmette-Guérin (BCG) vaccine, the only anti-TB authorized vaccine can partially stop TB infection and transmission, however, its effectiveness ranges from 0 to 80%. As a result, there is an urgent need for a more potent TB vaccination given the widespread incidence of the disease. Enhancing BCG's effectiveness is also important due to the lack of other licensed vaccinations. Recently, fascinating research into BCG revaccination techniques by modulating its mode of action i.e., intravenous (IV) BCG delivery has yielded good clinical outcomes showing it still has a place in current vaccination regimens. We must thus go over the recent evidence that suggests trained immunity, and BCG vaccination techniques and describe how the vaccination confers protection against bacteria that cause both TB and non-tuberculosis. This review of the literature offers an updated summary and viewpoints on BCG-based TB immunization regimens (how it affects granulocytes at the epigenetic and hematopoietic stem cell levels which may be related to its efficacy), and also examines how the existing vaccine is being modified to be more effective, which may serve as an inspiration for future studies on the development of TB vaccines.
Collapse
Affiliation(s)
- Pallavi Khandelia
- Department of Biosciences, School of Basic and Applied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Shikha Yadav
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Pratichi Singh
- Department of Biosciences, School of Basic and Applied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India.
| |
Collapse
|
45
|
Qin Y, Wang Q, Shi J. Immune checkpoint modulating T cells and NK cells response to Mycobacterium tuberculosis infection. Microbiol Res 2023; 273:127393. [PMID: 37182283 DOI: 10.1016/j.micres.2023.127393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 04/07/2023] [Accepted: 04/22/2023] [Indexed: 05/16/2023]
Abstract
Many subversive mechanisms promote the occurrence and development of chronic infectious diseases and cancer, among which the down-regulated expression of immune-activating receptors and the enhanced expression of immune-inhibitory receptors accelerate the occurrence and progression of the disease. Recently, the use of immune checkpoint inhibitors has shown remarkable efficacy in the treatment of tumors in multiple organs. However, the expression of immune checkpoint molecules on natural killer (NK) cells by Mycobacterium tuberculosis (Mtb) infection and its impact on NK cell effector functions have been poorly studied. In this review, we focus on what is currently known about the expression of various immune checkpoints in NK cells following Mtb infection and how it alters NK cell-mediated host cytotoxicity and cytokine secretion. Unraveling the function of NK cells after the infection of host cells by Mtb is crucial for a comprehensive understanding of the innate immune mechanism of NK cells involved in tuberculosis and the evaluation of the efficacy of immunotherapies using immune checkpoint inhibitors to treat tuberculosis. In view of some similarities in the immune characteristics of T cells and NK cells, we reviewed the molecular mechanism of the interaction between T cells and Mtb, which can help us to further understand and explore the specific interaction mechanism between NK cells and Mtb.
Collapse
Affiliation(s)
- Yongwei Qin
- Department of Pathogen Biology, Medical College, Nantong University, No. 19 Qixiu Road, Nantong 226001, China.
| | - Qinglan Wang
- Department of Respiratory and Critical Care Medicine, Institute of Respiratory Health, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Jiahai Shi
- Department of Thoracic Surgery, Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, and Research Institution of Translational Medicine in Cardiothoracic Diseases in Affiliated Hospital of Nantong University, No. 20 Xisi Road, Nantong 226001, China
| |
Collapse
|
46
|
Swanson RV, Gupta A, Foreman TW, Lu L, Choreno-Parra JA, Mbandi SK, Rosa BA, Akter S, Das S, Ahmed M, Garcia-Hernandez MDLL, Singh DK, Esaulova E, Artyomov MN, Gommerman J, Mehra S, Zuniga J, Mitreva M, Scriba TJ, Rangel-Moreno J, Kaushal D, Khader SA. Antigen-specific B cells direct T follicular-like helper cells into lymphoid follicles to mediate Mycobacterium tuberculosis control. Nat Immunol 2023; 24:855-868. [PMID: 37012543 PMCID: PMC11133959 DOI: 10.1038/s41590-023-01476-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 02/24/2023] [Indexed: 04/05/2023]
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), is a global cause of death. Granuloma-associated lymphoid tissue (GrALT) correlates with protection during TB, but the mechanisms of protection are not understood. During TB, the transcription factor IRF4 in T cells but not B cells is required for the generation of the TH1 and TH17 subsets of helper T cells and follicular helper T (TFH)-like cellular responses. A population of IRF4+ T cells coexpress the transcription factor BCL6 during Mtb infection, and deletion of Bcl6 (Bcl6fl/fl) in CD4+ T cells (CD4cre) resulted in reduction of TFH-like cells, impaired localization within GrALT and increased Mtb burden. In contrast, the absence of germinal center B cells, MHC class II expression on B cells, antibody-producing plasma cells or interleukin-10-expressing B cells, did not increase Mtb susceptibility. Indeed, antigen-specific B cells enhance cytokine production and strategically localize TFH-like cells within GrALT via interactions between programmed cell death 1 (PD-1) and its ligand PD-L1 and mediate Mtb control in both mice and macaques.
Collapse
Affiliation(s)
- Rosemary V Swanson
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Ananya Gupta
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, MO, USA
- Department of Microbiology, University of Chicago, Chicago, IL, USA
| | - Taylor W Foreman
- Divisions of Bacteriology and Parasitology, Tulane National Primate Research Center, Covington, LA, USA
- AstraZeneca, Washington DC-Baltimore, MD, USA
| | - Lan Lu
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Jose Alberto Choreno-Parra
- Laboratory of Immunobiology and Genetics, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City, Mexico
| | - Stanley Kimbung Mbandi
- South African Tuberculosis Vaccine Initiative (SATVI), Institute of Infectious Disease and Molecular Medicine and Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Bruce A Rosa
- Division of Infectious Diseases, Department of Internal Medicine, Washington University in St. Louis, St. Louis, MO, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, USA
| | - Sadia Akter
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, MO, USA
- Department of Microbiology, University of Chicago, Chicago, IL, USA
| | - Shibali Das
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Mushtaq Ahmed
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, MO, USA
- Department of Microbiology, University of Chicago, Chicago, IL, USA
| | - Maria de la Luz Garcia-Hernandez
- Division of Allergy, Immunology and Rheumatology, Department of Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Dhiraj K Singh
- Southwest National Primate Research Centre (SNPRC) at Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Ekaterina Esaulova
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, MO, USA
| | - Maxim N Artyomov
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, MO, USA
| | | | - Smriti Mehra
- Divisions of Bacteriology and Parasitology, Tulane National Primate Research Center, Covington, LA, USA
- Southwest National Primate Research Centre (SNPRC) at Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Joaquin Zuniga
- Laboratory of Immunobiology and Genetics, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City, Mexico
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Campus Mexico City, Mexico
| | - Makedonka Mitreva
- Division of Infectious Diseases, Department of Internal Medicine, Washington University in St. Louis, St. Louis, MO, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, USA
| | - Thomas J Scriba
- South African Tuberculosis Vaccine Initiative (SATVI), Institute of Infectious Disease and Molecular Medicine and Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Javier Rangel-Moreno
- Division of Allergy, Immunology and Rheumatology, Department of Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Deepak Kaushal
- Southwest National Primate Research Centre (SNPRC) at Texas Biomedical Research Institute, San Antonio, TX, USA.
| | - Shabaana A Khader
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, MO, USA.
- Department of Microbiology, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
47
|
Qadri H, Shah AH, Alkhanani M, Almilaibary A, Mir MA. Immunotherapies against human bacterial and fungal infectious diseases: A review. Front Med (Lausanne) 2023; 10:1135541. [PMID: 37122338 PMCID: PMC10140573 DOI: 10.3389/fmed.2023.1135541] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 03/15/2023] [Indexed: 05/02/2023] Open
Abstract
Nations' ongoing struggles with a number of novel and reemerging infectious diseases, including the ongoing global health issue, the SARS-Co-V2 (severe acute respiratory syndrome coronavirus 2) outbreak, serve as proof that infectious diseases constitute a serious threat to the global public health. Moreover, the fatality rate in humans is rising as a result of the development of severe infectious diseases brought about by multiple drug-tolerant pathogenic microorganisms. The widespread use of traditional antimicrobial drugs, immunosuppressive medications, and other related factors led to the establishment of such drug resistant pathogenic microbial species. To overcome the difficulties commonly encountered by current infectious disease management and control processes, like inadequate effectiveness, toxicities, and the evolution of drug tolerance, new treatment solutions are required. Fortunately, immunotherapies already hold great potential for reducing these restrictions while simultaneously expanding the boundaries of healthcare and medicine, as shown by the latest discoveries and the success of drugs including monoclonal antibodies (MAbs), vaccinations, etc. Immunotherapies comprise methods for treating diseases that specifically target or affect the body's immune system and such immunological procedures/therapies strengthen the host's defenses to fight those infections. The immunotherapy-based treatments control the host's innate and adaptive immune responses, which are effective in treating different pathogenic microbial infections. As a result, diverse immunotherapeutic strategies are being researched more and more as alternative treatments for infectious diseases, leading to substantial improvements in our comprehension of the associations between pathogens and host immune system. In this review we will explore different immunotherapies and their usage for the assistance of a broad spectrum of infectious ailments caused by various human bacterial and fungal pathogenic microbes. We will discuss about the recent developments in the therapeutics against the growing human pathogenic microbial diseases and focus on the present and future of using immunotherapies to overcome these diseases. Graphical AbstractThe graphical abstract shows the therapeutic potential of different types of immunotherapies like vaccines, monoclonal antibodies-based therapies, etc., against different kinds of human Bacterial and Fungal microbial infections.
Collapse
Affiliation(s)
- Hafsa Qadri
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Abdul Haseeb Shah
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Mustfa Alkhanani
- Department of Biology, College of Sciences, University of Hafr Al Batin, Hafar Al Batin, Saudi Arabia
| | - Abdullah Almilaibary
- Department of Family and Community Medicine, Faculty of Medicine, Al Baha University, Al Baha, Saudi Arabia
| | - Manzoor Ahmad Mir
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, Jammu and Kashmir, India
| |
Collapse
|
48
|
Liu X, Li H, Li S, Yuan J, Pang Y. Maintenance and recall of memory T cell populations against tuberculosis: Implications for vaccine design. Front Immunol 2023; 14:1100741. [PMID: 37063832 PMCID: PMC10102482 DOI: 10.3389/fimmu.2023.1100741] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 03/24/2023] [Indexed: 04/03/2023] Open
Abstract
Despite the widespread use of standardised drug regimens, advanced diagnostics, and Mycobacterium bovis Bacille-Calmette-Guérin (BCG) vaccines, the global tuberculosis (TB) epidemic remains uncontrollable. To address this challenge, improved vaccines are urgently required that can elicit persistent immunologic memory, the hallmark of successful vaccines. Nonetheless, the processes underlying the induction and maintenance of immunologic memory are not entirely understood. Clarifying how memory T cells (Tm cells) are created and survive long term may be a crucial step towards the development of effective T cell–targeted vaccines. Here, we review research findings on the memory T cell response, which involves mobilization of several distinct Tm cell subsets that are required for efficient host suppression of M. tuberculosis (Mtb) activity. We also summaries current knowledge related to the T cell response-based host barrier against Mtb infection and discuss advantages and disadvantages of novel TB vaccine candidates.
Collapse
Affiliation(s)
| | | | | | | | - Yu Pang
- *Correspondence: Jinfeng Yuan, ; Yu Pang,
| |
Collapse
|
49
|
Pan J, Zhang X, Xu J, Chang Z, Xin Z, Wang G. Landscape of Exhausted T Cells in Tuberculosis Revealed by Single-Cell Sequencing. Microbiol Spectr 2023; 11:e0283922. [PMID: 36916943 PMCID: PMC10100881 DOI: 10.1128/spectrum.02839-22] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 02/13/2023] [Indexed: 03/16/2023] Open
Abstract
Tuberculosis, a contagious bacterial infection caused by Mycobacterium tuberculosis, is a substantial global health problem, impacting millions of lives annually. Exhausted T-cell signatures are critical for predicting clinical responses to tuberculosis infection. To obtain a panoramic transcriptional profile of T cells, we performed single-cell RNA-sequencing analysis of CD4+ T and CD8+ T cells isolated from peripheral blood mononuclear cells of healthy individuals and patients with tuberculosis. We identified seven subsets in CD8+ T cells and eight subsets in CD4+ T cells and elucidated the transcriptomic landscape changes and characteristics of each subset. We further investigated the cell-to-cell relationship of each subgroup of the two cell types. Different signature genes and pathways of exhausted CD4+ and CD8+ T cells were examined. We identified 12 genes with potential associations of T-cell exhaustion after tuberculosis infection. We also identified five genes as potential exhaustion marker genes. The CD8-EX3 subcluster in CD8+ T-exhausted cells was identified as an exhaustion-specific subcluster. The identified gene module further clarified the key factors influencing CD8+ T cell exhaustion. These data provide new insights into T-cell signatures in tuberculosis-exhausted populations. IMPORTANCE Identifying the changes in immune cells in response to infection can provide a better understanding of the effects of Mycobacterium tuberculosis on the host immune system. We performed single-cell RNA-sequencing analysis of CD4+ T and CD8+ T cells isolated from peripheral blood mononuclear cells of healthy individuals and patients with tuberculosis to reveal the cellular characteristics. Different signature genes and pathways of exhausted CD4+ and CD8+ T cells were examined. These will facilitate a more comprehensive understanding of the onset and underlying mechanism of T-cell exhaustion during active Mtb infection.
Collapse
Affiliation(s)
- Jiahui Pan
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Basic Medical Science, Jilin University, Changchun, China
| | - Xinyue Zhang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Basic Medical Science, Jilin University, Changchun, China
| | - Jianting Xu
- The First Hospital of Jilin University, Changchun, China
| | - Zecheng Chang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Basic Medical Science, Jilin University, Changchun, China
| | - Zhuoyuan Xin
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Basic Medical Science, Jilin University, Changchun, China
| | - Guoqing Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Basic Medical Science, Jilin University, Changchun, China
| |
Collapse
|
50
|
Chen R, Li M, Qin S, Lu H, Shen M, Lin X. STAT3 regulation of Mtb-specific T cell function in active pulmonary tuberculosis patients. Int Immunopharmacol 2023; 116:109748. [PMID: 36753982 DOI: 10.1016/j.intimp.2023.109748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 12/30/2022] [Accepted: 01/14/2023] [Indexed: 02/09/2023]
Abstract
BACKGROUND Tuberculosis (TB) remains one of the most serious infectious diseases in the world. Our aim was to investigate the regulatory role of STAT3 and pSTAT3 in the regulation of T cell immunophenotype and cell function. METHODS Twenty-five active pulmonary tuberculosis (APTB) patients, 18 latent tuberculosis infection (LTBI) patients, and 20 healthy controls (HCs) enrolled in this study. T cell phenotype and expression of STAT3 and pSTAT3 were detected by flow cytometry. RESULTS Compared with HCs, the expression of pSTAT3 in CD4+ T and CD8+ T cells in peripheral blood of APTB patients was increased, and the expression was higher in pleural effusion. Multifunctional T cells that simultaneously secrete IFN-γ, TNF-α and IL-17A have higher pSTAT3 expression levels. Mtb-specific T cells from APTB patients had a higher cell frequency of the STAT3+ pSTAT3+ phenotype and a reduced cell frequency of the STAT3+ pSTAT3- phenotype compared with LTBI patients. Mtb-specific T cells with STAT3+ pSTAT3+ phenotype had higher expression of PD-1 and PD-L1, while cells with STAT3+ pSTAT3- phenotype had higher expression of Bcl-2. CONCLUSIONS STAT3 and pSTAT3 in T cells of APTB patients feature in the process of anti-apoptosis and cytokine secretion. At the same time, the higher pSTAT3 may be related to the degree of cell functional exhaustion. The pSTAT3 level of T cells is related to the infection status and may indicate the clinical activity of the disease, which provides a new idea for the clinical identification and treatment of active pulmonary tuberculosis.
Collapse
Affiliation(s)
- Ruiqi Chen
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Meihui Li
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Shuang Qin
- Department of Clinical Laboratory, Jinan City People's Hospital, Jinan, Shandong 271100, China
| | - Hong Lu
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Mo Shen
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China.
| | - Xiangyang Lin
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China.
| |
Collapse
|