1
|
Thiesson A, Confort MP, Desloire S, Kohl A, Arnaud F, Ratinier M. Genetic diversity of Toscana virus glycoproteins affects the kinetics of virus entry and the infectivity of newly produced virions. NPJ VIRUSES 2025; 3:28. [PMID: 40295709 PMCID: PMC12000347 DOI: 10.1038/s44298-025-00113-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 03/31/2025] [Indexed: 04/30/2025]
Abstract
Toscana virus (TOSV) is a pathogenic and transmissible Phlebovirus of the Bunyavirales order. To date, two principal genetic lineages (A and B) have been identified and the impact of TOSV genetic diversity on its biology is still unknown. We used a reverse genetic approach based on two TOSV strains belonging to lineage A or B (i.e., TOSV-A and TOSV-B) and displaying different in vitro replicative fitness. Our results demonstrate that the sequences of Gn and Gc glycoproteins are responsible for the differences in replicative fitness between the two TOSV strains. Moreover, our data show that TOSV-A and TOSV-B display different entry kinetics and that newly-produced virions have different infectivity. This comparative approach demonstrates that the genetic diversity of TOSV can significantly impact viral properties and highlights the need for better molecular characterisation of the genomes of circulating TOSV strains, with a particular focus on the viral Gn and Gc glycoproteins.
Collapse
Affiliation(s)
- Adrien Thiesson
- IVPC UMR754, INRAE, Universite Claude Bernard Lyon 1, EPHE, Université PSL, Lyon, France
| | - Marie-Pierre Confort
- IVPC UMR754, INRAE, Universite Claude Bernard Lyon 1, EPHE, Université PSL, Lyon, France
| | - Sophie Desloire
- IVPC UMR754, INRAE, Universite Claude Bernard Lyon 1, EPHE, Université PSL, Lyon, France
| | - Alain Kohl
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
- Centre for Neglected Tropical Diseases, Departments of Tropical Disease Biology and Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Frédérick Arnaud
- IVPC UMR754, INRAE, Universite Claude Bernard Lyon 1, EPHE, Université PSL, Lyon, France.
| | - Maxime Ratinier
- IVPC UMR754, INRAE, Universite Claude Bernard Lyon 1, EPHE, Université PSL, Lyon, France.
| |
Collapse
|
2
|
Harris EK, Balaraman V, Keating CC, McDowell C, Kimble JB, De La Mota-Peynado A, Borland EM, Graham B, Wilson WC, Richt JA, Kading RC, Gaudreault NN. Co-Infection of Culex tarsalis Mosquitoes with Rift Valley Fever Phlebovirus Strains Results in Efficient Viral Reassortment. Viruses 2025; 17:88. [PMID: 39861876 PMCID: PMC11768849 DOI: 10.3390/v17010088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/06/2025] [Accepted: 01/07/2025] [Indexed: 01/27/2025] Open
Abstract
Rift Valley fever phlebovirus (RVFV) is a zoonotic mosquito-borne pathogen endemic to sub-Saharan Africa and the Arabian Peninsula which causes Rift Valley fever in ruminant livestock and humans. Co-infection with divergent viral strains can produce reassortment among the L, S, and M segments of the RVFV genome. Reassortment events can produce novel genotypes with altered virulence, transmission dynamics, and/or mosquito host range. This can have severe implications in areas where RVFV is endemic and convolutes our ability to anticipate transmission and circulation in novel geographic regions. Previously, we evaluated the frequency of RVFV reassortment in a susceptible ruminant host and observed low rates of reassortment (0-1.7%). Here, we tested the hypothesis that reassortment occurs predominantly in the mosquito using a highly permissive vector, Culex tarsalis. Cells derived from Cx. tarsalis or adult mosquitoes were co-infected with either two virulent (Kenya-128B-15 and SA01-1322) or a virulent and attenuated (Kenya-128B-15 and MP-12) strain of RVFV. Our results showed approximately 2% of virus genotypes isolated from co-infected Cx. tarsalis-derived cells were reassortant. Co-infected mosquitoes infected via infectious bloodmeal resulted in a higher percentage of reassortant virus (2-60%) isolated from midgut and salivary tissues at 14 days post-infection. The percentage of reassortant genotypes isolated from the midguts of mosquitoes co-infected with Kenya-128B-15 and SA01-1322 was similar to that of mosquitoes co-infected with Kenya-128B-15 and MP-12- strains (60 vs. 47%). However, only 2% of virus isolated from the salivary glands of Kenya-128B-15 and SA01-1322 co-infected mosquitoes represented reassortant genotypes. This was contrasted by 54% reassortment in the salivary glands of mosquitoes co-infected with Kenya-128B-15 and MP-12 strains. Furthermore, we observed preferential inclusion of genomic segments from the three parental strains among the reassorted viruses. Replication curves of select reassorted genotypes were significantly higher in Vero cells but not in Culex-derived cells. These data imply that mosquitoes play a crucial role in the reassortment of RVFV and potentially contribute to driving evolution of the virus.
Collapse
Affiliation(s)
- Emma K. Harris
- Center for Vector-Borne Infectious Diseases, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA; (E.K.H.); (B.G.)
| | - Velmurugan Balaraman
- Center of Excellence for Emerging and Zoonotic Animal Diseases, Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS 66506, USA (C.M.); (J.A.R.)
| | - Cassidy C. Keating
- Center of Excellence for Emerging and Zoonotic Animal Diseases, Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS 66506, USA (C.M.); (J.A.R.)
| | - Chester McDowell
- Center of Excellence for Emerging and Zoonotic Animal Diseases, Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS 66506, USA (C.M.); (J.A.R.)
| | - J. Brian Kimble
- Foreign Arthropod-Borne Animal Diseases Research Unit, United States Department of Agriculture, Agricultural Research Service, National Bio and Agro-Defense Facility, Manhattan, KS 66505, USA; (J.B.K.); (A.D.L.M.-P.); (W.C.W.)
| | - Alina De La Mota-Peynado
- Foreign Arthropod-Borne Animal Diseases Research Unit, United States Department of Agriculture, Agricultural Research Service, National Bio and Agro-Defense Facility, Manhattan, KS 66505, USA; (J.B.K.); (A.D.L.M.-P.); (W.C.W.)
| | - Erin M. Borland
- Center for Vector-Borne Infectious Diseases, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA; (E.K.H.); (B.G.)
| | - Barbara Graham
- Center for Vector-Borne Infectious Diseases, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA; (E.K.H.); (B.G.)
| | - William C. Wilson
- Foreign Arthropod-Borne Animal Diseases Research Unit, United States Department of Agriculture, Agricultural Research Service, National Bio and Agro-Defense Facility, Manhattan, KS 66505, USA; (J.B.K.); (A.D.L.M.-P.); (W.C.W.)
| | - Juergen A. Richt
- Center of Excellence for Emerging and Zoonotic Animal Diseases, Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS 66506, USA (C.M.); (J.A.R.)
| | - Rebekah C. Kading
- Center for Vector-Borne Infectious Diseases, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA; (E.K.H.); (B.G.)
| | - Natasha N. Gaudreault
- Center of Excellence for Emerging and Zoonotic Animal Diseases, Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS 66506, USA (C.M.); (J.A.R.)
| |
Collapse
|
3
|
Chabert M, Lacôte S, Marianneau P, Confort MP, Aurine N, Pédarrieu A, Doumbia B, Ould Baba Ould Gueya M, Habiboullah H, Beyatt ABEM, Lo MM, Nichols J, Sreenu VB, da Silva Filipe A, Colle MA, Pain B, Cêtre-Sossah C, Arnaud F, Ratinier M. Comparative study of two Rift Valley fever virus field strains originating from Mauritania. PLoS Negl Trop Dis 2024; 18:e0012728. [PMID: 39652604 DOI: 10.1371/journal.pntd.0012728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 12/19/2024] [Accepted: 11/26/2024] [Indexed: 12/21/2024] Open
Abstract
Rift Valley fever (RVF) is one of the major viral arthropod-borne diseases in Africa. In recent decades, RVF virus (RVFV), the causative agent of RVF, has been responsible for multiple outbreaks in West Africa with important consequences on human and animal health. In particular, an outbreak occurred in 2010 after heavy rains in the desertic region of Adrar, Mauritania. It was characterized by the appearance of severe clinical signs among dromedary camels. Another one occurred in 2013-2014 across Senegal and the southern part of Mauritania. In this study, we characterized two RVFV field strains isolated during these two outbreaks. The first strain, MRU25010-30, was isolated from a camel (2010) while the second, MRU2687-3, was isolated from a goat (2013). By deep-sequencing and rapid amplification of cDNA-ends by polymerase chain reaction, we successfully sequenced the complete genome of these two RVFV strains as well as the reference laboratory strain ZH548. Phylogenetic analysis showed that the two field viruses belong to two different RVFV genetic lineages. Moreover, we showed that MRU25010-30 replicates more efficiently in various in vitro cell culture models than MRU2687-3 and ZH548. In vivo, MRU25010-30 caused rapid death of BALB/c mice and proved to be more virulent than MRU2687-3, regardless of the route of inoculation (subcutaneous or intranasal). The virulence of MRU25010-30 is associated with a high viral load in the liver and serum of infected mice, while the death of mice infected with MRU2687-3 and ZH548 correlated with a high viral load in the brain. Altogether, the data presented in this study provide new avenues to unveil the molecular viral determinants that modulate RVFV virulence and replication capacity.
Collapse
Affiliation(s)
- Mehdi Chabert
- IVPC UMR754, INRAE, Universite Claude Bernard Lyon 1, EPHE, Université PSL, Lyon, France
- CIRAD, UMR ASTRE, Montpellier Cedex, France
- ASTRE, Univ Montpellier, CIRAD, INRAE, Montpellier, France
| | | | | | - Marie-Pierre Confort
- IVPC UMR754, INRAE, Universite Claude Bernard Lyon 1, EPHE, Université PSL, Lyon, France
| | - Noémie Aurine
- Université Lyon 1, INSERM, INRAE, Stem Cell and Brain Research Institute, U1208, USC1361, Bron, France
| | - Aurélie Pédarrieu
- CIRAD, UMR ASTRE, Montpellier Cedex, France
- ASTRE, Univ Montpellier, CIRAD, INRAE, Montpellier, France
| | - Baba Doumbia
- Direction des Services Vétérinaires, Ministère de l'élevage, Nouakchott, Mauritania
| | | | | | | | | | - Jenna Nichols
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Vattipally B Sreenu
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Ana da Silva Filipe
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | | | - Bertrand Pain
- Université Lyon 1, INSERM, INRAE, Stem Cell and Brain Research Institute, U1208, USC1361, Bron, France
| | - Catherine Cêtre-Sossah
- CIRAD, UMR ASTRE, Montpellier Cedex, France
- ASTRE, Univ Montpellier, CIRAD, INRAE, Montpellier, France
| | - Frédérick Arnaud
- IVPC UMR754, INRAE, Universite Claude Bernard Lyon 1, EPHE, Université PSL, Lyon, France
| | - Maxime Ratinier
- IVPC UMR754, INRAE, Universite Claude Bernard Lyon 1, EPHE, Université PSL, Lyon, France
| |
Collapse
|
4
|
Zhou CM, Jiang ZZ, Liu N, Yu XJ. Current insights into human pathogenic phenuiviruses and the host immune system. Virulence 2024; 15:2384563. [PMID: 39072499 PMCID: PMC11290763 DOI: 10.1080/21505594.2024.2384563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/09/2024] [Accepted: 07/18/2024] [Indexed: 07/30/2024] Open
Abstract
Phenuiviruses are a class of segmented negative-sense single-stranded RNA viruses, typically consisting of three RNA segments that encode four distinct proteins. The emergence of pathogenic phenuivirus strains, such as Rift Valley fever phlebovirus (RVFV) in sub-Saharan Africa, Severe Fever with Thrombocytopenia Syndrome Virus (SFTSV) in East and Southeast Asia, and Heartland Virus (HRTV) in the United States has presented considerable challenges to global public health in recent years. The innate immune system plays a crucial role as the initial defense mechanism of the host against invading pathogens. In addition to continued research aimed at elucidating the epidemiological characteristics of phenuivirus, significant advancements have been made in investigating its viral virulence factors (glycoprotein, non-structural protein, and nucleoprotein) and potential host-pathogen interactions. Specifically, efforts have focused on understanding mechanisms of viral immune evasion, viral assembly and egress, and host immune networks involving immune cells, programmed cell death, inflammation, nucleic acid receptors, etc. Furthermore, a plethora of technological advancements, including metagenomics, metabolomics, single-cell transcriptomics, proteomics, gene editing, monoclonal antibodies, and vaccines, have been utilized to further our understanding of phenuivirus pathogenesis and host immune responses. Hence, this review aims to provide a comprehensive overview of the current understanding of the mechanisms of host recognition, viral immune evasion, and potential therapeutic approaches during human pathogenic phenuivirus infections focusing particularly on RVFV and SFTSV.
Collapse
Affiliation(s)
- Chuan-Min Zhou
- Gastrointestinal Disease Diagnosis and Treatment Center, The First Hospital of Hebei Medical University, Shijiazhuang, China
- Department of General Surgery, Hebei Key Laboratory of Colorectal Cancer Precision Diagnosis and Treatment, The First Hospital of Hebei Medical University, Shijiazhuang, China
- Central Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Ze-Zheng Jiang
- State Key Laboratory of Virology, School of Public Health, Wuhan University, Wuhan, China
| | - Ning Liu
- Department of Quality and Operations Management, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xue-Jie Yu
- State Key Laboratory of Virology, School of Public Health, Wuhan University, Wuhan, China
| |
Collapse
|
5
|
Michalakis Y, Blanc S. Aspects of the lifestyle of multipartite viruses apply to monopartite segmented and perhaps nonsegmented viruses. NPJ VIRUSES 2024; 2:31. [PMID: 40295805 PMCID: PMC11721093 DOI: 10.1038/s44298-024-00045-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 07/04/2024] [Indexed: 04/30/2025]
Abstract
Recent research on faba bean necrotic stunt virus, aiming to understand how multipartite viruses function and potentially their existence, revealed three surprising features: a non-uniform segment frequency distribution (genome formula), a multicellular functioning, and the non-concomitant transmission of genomic segments. We review the occurrence of these features in other multipartite viruses and discuss their potential operation in monopartite viruses with segmented genomes and perhaps even in viruses with nonsegmented genomes.
Collapse
Affiliation(s)
| | - Stéphane Blanc
- PHIM, Université Montpellier, IRD, CIRAD, INRAE, Institut Agro, Montpellier, France.
| |
Collapse
|
6
|
Johnson ML, Zwart MP. Robust Approaches to the Quantitative Analysis of Genome Formula Variation in Multipartite and Segmented Viruses. Viruses 2024; 16:270. [PMID: 38400045 PMCID: PMC10892338 DOI: 10.3390/v16020270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/22/2024] [Accepted: 02/01/2024] [Indexed: 02/25/2024] Open
Abstract
When viruses have segmented genomes, the set of frequencies describing the abundance of segments is called the genome formula. The genome formula is often unbalanced and highly variable for both segmented and multipartite viruses. A growing number of studies are quantifying the genome formula to measure its effects on infection and to consider its ecological and evolutionary implications. Different approaches have been reported for analyzing genome formula data, including qualitative description, applying standard statistical tests such as ANOVA, and customized analyses. However, these approaches have different shortcomings, and test assumptions are often unmet, potentially leading to erroneous conclusions. Here, we address these challenges, leading to a threefold contribution. First, we propose a simple metric for analyzing genome formula variation: the genome formula distance. We describe the properties of this metric and provide a framework for understanding metric values. Second, we explain how this metric can be applied for different purposes, including testing for genome-formula differences and comparing observations to a reference genome formula value. Third, we re-analyze published data to illustrate the applications and weigh the evidence for previous conclusions. Our re-analysis of published datasets confirms many previous results but also provides evidence that the genome formula can be carried over from the inoculum to the virus population in a host. The simple procedures we propose contribute to the robust and accessible analysis of genome-formula data.
Collapse
|
7
|
Bermúdez-Méndez E, Wichgers Schreur PJ. Single-Molecule Visualization of Bunyavirus Genome Segments Using Fluorescence In Situ Hybridization. Methods Mol Biol 2024; 2824:347-360. [PMID: 39039422 DOI: 10.1007/978-1-0716-3926-9_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
The genome of most bunyaviruses is divided over three (S, M, and L) single-stranded RNA segments of negative polarity. The three viral RNA segments are essential to establish a productive infection. RNA fluorescence in situ hybridization (FISH) enables the detection, localization, and quantification of RNA molecules at single-molecule resolution. This chapter describes an RNA FISH method to directly visualize individual segment-specific bunyavirus RNAs in fixed infected cells and in mature virus particles, using Rift Valley fever virus as an example. Imaging of bunyavirus RNA segments is a valuable experimental tool to investigate fundamental aspects of the bunyavirus life cycle, such as virus replication, genome packaging, and virion assembly, among others.
Collapse
Affiliation(s)
- Erick Bermúdez-Méndez
- Department of Virology & Molecular Biology, Wageningen Bioveterinary Research, Lelystad, The Netherlands
- Laboratory of Virology, Wageningen University & Research, Wageningen, The Netherlands
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet & Karolinska University Hospital, Stockholm, Sweden
| | - Paul J Wichgers Schreur
- Department of Virology & Molecular Biology, Wageningen Bioveterinary Research, Lelystad, The Netherlands.
| |
Collapse
|
8
|
Wang G, Tian X, Peng R, Huang Y, Li Y, Li Z, Hu X, Luo Z, Zhang Y, Cui X, Niu L, Lu G, Yang F, Gao L, Chan JFW, Jin Q, Yin F, Tang C, Ren Y, Du J. Genomic and phylogenetic profiling of RNA of tick-borne arboviruses in Hainan Island, China. Microbes Infect 2024; 26:105218. [PMID: 37714509 DOI: 10.1016/j.micinf.2023.105218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/11/2023] [Accepted: 09/11/2023] [Indexed: 09/17/2023]
Abstract
Ticks act as vectors and hosts of numerous arboviruses. Examples of medically important arboviruses include the tick-borne encephalitis virus, Crimean Congo hemorrhagic fever, and severe fever with thrombocytopenia syndrome. Recently, some novel arboviruses have been identified in blood specimens of patients with unexplained fever and a history of tick bites in Inner Mongolia. Consequently, tick-borne viruses are a major focus of infectious disease research. However, the spectrum of tick-borne viruses in subtropical areas of China has yet to be sufficiently characterized. In this study, we collected 855 ticks from canine and bovine hosts in four locations in Hainan Province. The ticks were combined into 18 pools according to genus and location. Viral RNA-sequence libraries were subjected to transcriptome sequencing analysis. Molecular clues from metagenomic analyses were used to classify sequence reads into virus species, genera, or families. The diverse viral reads closely associated with mammals were assigned to 12 viral families and important tick-borne viruses, such as Jingmen, Beiji nairovirus, and Colorado tick fever. Our virome and phylogenetic analyses of the arbovirus strains provide basic data for preventing and controlling human infectious diseases caused by tick-borne viruses in the subtropical areas of China.
Collapse
Affiliation(s)
- Gaoyu Wang
- Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, 571199, China
| | - Xiuying Tian
- Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, 571199, China
| | - Ruoyan Peng
- Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, 571199, China
| | - Yi Huang
- Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, 571199, China
| | - Youyou Li
- Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, 571199, China
| | - Zihan Li
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China; Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, 571199, China
| | - Xiaoyuan Hu
- Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, 571199, China
| | - Zufen Luo
- Department of Infectious Disease, the Second Affiliated Hospital of Hainan Medical University, Haikou, 570216, China
| | - Yun Zhang
- Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, 571199, China
| | - Xiuji Cui
- Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, 571199, China
| | - Lina Niu
- Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, 571199, China
| | - Gang Lu
- Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, 571199, China
| | - Fan Yang
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
| | - Lei Gao
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
| | - Jasper Fuk-Woo Chan
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Qi Jin
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
| | - Feifei Yin
- Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, 571199, China
| | - Chuanning Tang
- Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, 571199, China.
| | - Yi Ren
- Haikou Maternal and Child Health Hospital, Haikou, 570102, China.
| | - Jiang Du
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China; Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, 571199, China.
| |
Collapse
|
9
|
Sänger L, Williams HM, Yu D, Vogel D, Kosinski J, Rosenthal M, Uetrecht C. RNA to Rule Them All: Critical Steps in Lassa Virus Ribonucleoparticle Assembly and Recruitment. J Am Chem Soc 2023; 145:27958-27974. [PMID: 38104324 PMCID: PMC10755698 DOI: 10.1021/jacs.3c07325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 12/19/2023]
Abstract
Lassa virus is a negative-strand RNA virus with only four structural proteins that causes periodic outbreaks in West Africa. The nucleoprotein (NP) encapsidates the viral genome, forming ribonucleoprotein complexes (RNPs) together with the viral RNA and the L protein. RNPs must be continuously restructured during viral genome replication and transcription. The Z protein is important for membrane recruitment of RNPs, viral particle assembly, and budding and has also been shown to interact with the L protein. However, the interaction of NP, viral RNA, and Z is poorly understood. Here, we characterize the interactions between Lassa virus NP, Z, and RNA using structural mass spectrometry. We identify the presence of RNA as the driver for the disassembly of ring-like NP trimers, a storage form, into monomers to subsequently form higher order RNA-bound NP assemblies. We locate the interaction site of Z and NP and demonstrate that while NP binds Z independently of the presence of RNA, this interaction is pH-dependent. These data improve our understanding of RNP assembly, recruitment, and release in Lassa virus.
Collapse
Affiliation(s)
- Lennart Sänger
- Bernhard
Nocht Institute for Tropical Medicine, Bernhard-Nocht-Straße 74, 20359 Hamburg, Germany
- CSSB
Centre for Structural Systems Biology, Notkestraße 85, 22607 Hamburg, Germany
- Leibniz
Institute of Virology (LIV), Notkestraße 85, 22607 Hamburg, Germany
| | - Harry M. Williams
- Bernhard
Nocht Institute for Tropical Medicine, Bernhard-Nocht-Straße 74, 20359 Hamburg, Germany
- CSSB
Centre for Structural Systems Biology, Notkestraße 85, 22607 Hamburg, Germany
| | - Dingquan Yu
- CSSB
Centre for Structural Systems Biology, Notkestraße 85, 22607 Hamburg, Germany
- European
Molecular Biology Laboratory Notkestraße 85, 22607 Hamburg, Germany
| | - Dominik Vogel
- Bernhard
Nocht Institute for Tropical Medicine, Bernhard-Nocht-Straße 74, 20359 Hamburg, Germany
| | - Jan Kosinski
- CSSB
Centre for Structural Systems Biology, Notkestraße 85, 22607 Hamburg, Germany
- European
Molecular Biology Laboratory Notkestraße 85, 22607 Hamburg, Germany
- Structural
and Computational Biology Unit, European
Molecular Biology Laboratory, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Maria Rosenthal
- Bernhard
Nocht Institute for Tropical Medicine, Bernhard-Nocht-Straße 74, 20359 Hamburg, Germany
- CSSB
Centre for Structural Systems Biology, Notkestraße 85, 22607 Hamburg, Germany
- Fraunhofer
Institute for Translational Medicine and Pharmacology (ITMP), Discovery Research ScreeningPort, Schnackenburgallee 114, 22525 Hamburg, Germany
| | - Charlotte Uetrecht
- CSSB
Centre for Structural Systems Biology, Notkestraße 85, 22607 Hamburg, Germany
- Leibniz
Institute of Virology (LIV), Notkestraße 85, 22607 Hamburg, Germany
- Faculty
V: School of Life Sciences, University of
Siegen, Am Eichenhang 50, 57076 Siegen, Germany
- Deutsches
Elektronen-Synchrotron (DESY), Notkestr. 85, 22607 Hamburg, Germany
| |
Collapse
|
10
|
Sabsay KR, te Velthuis AJW. Negative and ambisense RNA virus ribonucleocapsids: more than protective armor. Microbiol Mol Biol Rev 2023; 87:e0008223. [PMID: 37750733 PMCID: PMC10732063 DOI: 10.1128/mmbr.00082-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023] Open
Abstract
SUMMARYNegative and ambisense RNA viruses are the causative agents of important human diseases such as influenza, measles, Lassa fever, and Ebola hemorrhagic fever. The viral genome of these RNA viruses consists of one or more single-stranded RNA molecules that are encapsidated by viral nucleocapsid proteins to form a ribonucleoprotein complex (RNP). This RNP acts as protection, as a scaffold for RNA folding, and as the context for viral replication and transcription by a viral RNA polymerase. However, the roles of the viral nucleoproteins extend beyond these functions during the viral infection cycle. Recent advances in structural biology techniques and analysis methods have provided new insights into the formation, function, dynamics, and evolution of negative sense virus nucleocapsid proteins, as well as the role that they play in host innate immune responses against viral infection. In this review, we discuss the various roles of nucleocapsid proteins, both in the context of RNPs and in RNA-free states, as well as the open questions that remain.
Collapse
Affiliation(s)
- Kimberly R. Sabsay
- Lewis Thomas Laboratory, Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, USA
| | - Aartjan J. W. te Velthuis
- Lewis Thomas Laboratory, Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| |
Collapse
|
11
|
Yvon M, German TL, Ullman DE, Dasgupta R, Parker MH, Ben-Mahmoud S, Verdin E, Gognalons P, Ancelin A, Laï Kee Him J, Girard J, Vernerey MS, Fernandez E, Filloux D, Roumagnac P, Bron P, Michalakis Y, Blanc S. The genome of a bunyavirus cannot be defined at the level of the viral particle but only at the scale of the viral population. Proc Natl Acad Sci U S A 2023; 120:e2309412120. [PMID: 37983500 PMCID: PMC10691328 DOI: 10.1073/pnas.2309412120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 10/21/2023] [Indexed: 11/22/2023] Open
Abstract
Bunyaviruses are enveloped negative or ambisense single-stranded RNA viruses with a genome divided into several segments. The canonical view depicts each viral particle packaging one copy of each genomic segment in one polarity named the viral strand. Several opposing observations revealed nonequal ratios of the segments, uneven number of segments per virion, and even packaging of viral complementary strands. Unfortunately, these observations result from studies often addressing other questions, on distinct viral species, and not using accurate quantitative methods. Hence, what RNA segments and strands are packaged as the genome of any bunyavirus remains largely ambiguous. We addressed this issue by first investigating the virion size distribution and RNA content in populations of the tomato spotted wilt virus (TSWV) using microscopy and tomography. These revealed heterogeneity in viral particle volume and amount of RNA content, with a surprising lack of correlation between the two. Then, the ratios of all genomic segments and strands were established using RNA sequencing and qRT-PCR. Within virions, both plus and minus strands (but no mRNA) are packaged for each of the three L, M, and S segments, in reproducible nonequimolar proportions determined by those in total cell extracts. These results show that virions differ in their genomic content but together build up a highly reproducible genetic composition of the viral population. This resembles the genome formula described for multipartite viruses, with which some species of the order Bunyavirales may share some aspects of the way of life, particularly emerging properties at a supravirion scale.
Collapse
Affiliation(s)
- Michel Yvon
- PHIM, Univ Montpellier, INRAE, CIRAD, IRD, Institut Agro, Montpellier34398, France
| | - Thomas L. German
- Department of Entomology, University of Wisconsin, Wisconsin53706, Madison
| | - Diane E. Ullman
- Department of Entomology and Nematology, University of California, California95616, Davis
| | - Ranjit Dasgupta
- Department of Entomology, University of Wisconsin, Wisconsin53706, Madison
| | - Maxwell H. Parker
- Department of Entomology, University of Wisconsin, Wisconsin53706, Madison
| | - Sulley Ben-Mahmoud
- Department of Entomology and Nematology, University of California, California95616, Davis
| | - Eric Verdin
- Pathologie végétale, INRAE, Avignon84143, France
| | | | - Aurélie Ancelin
- CBS, Univ Montpellier, CNRS, INSERM, Montpellier34090, France
| | | | - Justine Girard
- CBS, Univ Montpellier, CNRS, INSERM, Montpellier34090, France
| | | | - Emmanuel Fernandez
- PHIM, Univ Montpellier, INRAE, CIRAD, IRD, Institut Agro, Montpellier34398, France
| | - Denis Filloux
- PHIM, Univ Montpellier, INRAE, CIRAD, IRD, Institut Agro, Montpellier34398, France
| | - Philippe Roumagnac
- PHIM, Univ Montpellier, INRAE, CIRAD, IRD, Institut Agro, Montpellier34398, France
| | - Patrick Bron
- CBS, Univ Montpellier, CNRS, INSERM, Montpellier34090, France
| | | | - Stéphane Blanc
- PHIM, Univ Montpellier, INRAE, CIRAD, IRD, Institut Agro, Montpellier34398, France
| |
Collapse
|
12
|
Alkan C, Jurado-Cobena E, Ikegami T. Advancements in Rift Valley fever vaccines: a historical overview and prospects for next generation candidates. NPJ Vaccines 2023; 8:171. [PMID: 37925544 PMCID: PMC10625542 DOI: 10.1038/s41541-023-00769-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 10/18/2023] [Indexed: 11/06/2023] Open
Abstract
Rift Valley fever (RVF) is a zoonotic viral disease transmitted by mosquitoes and causes abortion storms, fetal malformations, and newborn animal deaths in livestock ruminants. In humans, RVF can manifest as hemorrhagic fever, encephalitis, or retinitis. Outbreaks of RVF have been occurring in Africa since the early 20th century and continue to pose a threat to both humans and animals in various regions such as Africa, Madagascar, the Comoros, Saudi Arabia, and Yemen. The development of RVF vaccines is crucial in preventing mortality and morbidity and reducing the spread of the virus. While several veterinary vaccines have been licensed in endemic countries, there are currently no licensed RVF vaccines for human use. This review provides an overview of the existing RVF vaccines, as well as potential candidates for future studies on RVF vaccine development, including next-generation vaccines that show promise in combating the disease in both humans and animals.
Collapse
Affiliation(s)
- Cigdem Alkan
- Department of Pathology, The University of Texas Medical Branch at Galveston, 301 University Blvd, Galveston, TX, 77555, USA
| | - Eduardo Jurado-Cobena
- Department of Microbiology and Immunology, The University of Texas Medical Branch at Galveston, 301 University Blvd, Galveston, TX, 77555, USA
| | - Tetsuro Ikegami
- Department of Pathology, The University of Texas Medical Branch at Galveston, 301 University Blvd, Galveston, TX, 77555, USA.
- The Sealy Institute for Vaccine Sciences, The University of Texas Medical Branch at Galveston, 301 University Blvd, Galveston, TX, 77555, USA.
- The Center for Biodefense and Emerging Infectious Diseases, The University of Texas Medical Branch at Galveston, 301 University Blvd, Galveston, TX, 77555, USA.
| |
Collapse
|
13
|
Liu Y, Potts JL, Bloch D, Nian K, McCormick CA, Fanari O, Rouhanifard SH. Paired Capture and FISH Detection of Individual Virions Enable Cell-Free Determination of Infectious Titers. ACS Sens 2023; 8:2563-2571. [PMID: 37368999 PMCID: PMC10621038 DOI: 10.1021/acssensors.3c00239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023]
Abstract
Early detection of viruses can prevent the uncontrolled spread of viral infections. Determination of viral infectivity is also critical for determining the dosage of gene therapies, including vector-based vaccines, CAR T-cell therapies, and CRISPR therapeutics. In both cases, for viral pathogens and viral vector delivery vehicles, fast and accurate measurement of infectious titers is desirable. The most common methods for virus detection are antigen-based (rapid but not sensitive) and polymerase chain reaction (PCR)-based (sensitive but not rapid). Current viral titration methods heavily rely on cultured cells, which introduces variability within labs and between labs. Thus, it is highly desirable to directly determine the infectious titer without using cells. Here, we report the development of a direct, fast, and sensitive assay for virus detection (dubbed rapid capture fluorescence in situ hybridization (FISH) or rapture FISH) and cell-free determination of infectious titers. Importantly, we demonstrate that the virions captured are "infectious," thus serving as a more consistent proxy of infectious titers. This assay is unique because it first captures viruses bearing an intact coat protein using an aptamer and then detects genomes directly in individual virions using fluorescence in situ hybridization (FISH); thus, it is selective for infectious particles (i.e., positive for coat proteins and positive for genomes).
Collapse
Affiliation(s)
- Yifang Liu
- Department of Bioengineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Jacob L. Potts
- Department of Bioengineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Dylan Bloch
- Department of Bioengineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Keqing Nian
- Department of Bioengineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Caroline A. McCormick
- Department of Bioengineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Oleksandra Fanari
- Department of Bioengineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Sara H. Rouhanifard
- Department of Bioengineering, Northeastern University, Boston, Massachusetts 02115, United States
| |
Collapse
|
14
|
LaPointe A, Gale M, Kell AM. Orthohantavirus Replication in the Context of Innate Immunity. Viruses 2023; 15:1130. [PMID: 37243216 PMCID: PMC10220641 DOI: 10.3390/v15051130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/05/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023] Open
Abstract
Orthohantaviruses are rodent-borne, negative-sense RNA viruses that are capable of causing severe vascular disease in humans. Over the course of viral evolution, these viruses have tailored their replication cycles in such a way as to avoid and/or antagonize host innate immune responses. In the rodent reservoir, this results in life long asymptomatic infections. However, in hosts other than its co-evolved reservoir, the mechanisms for subduing the innate immune response may be less efficient or absent, potentially leading to disease and/or viral clearance. In the case of human orthohantavirus infection, the interaction of the innate immune response with viral replication is thought to give rise to severe vascular disease. The orthohantavirus field has made significant advancements in understanding how these viruses replicate and interact with host innate immune responses since their identification by Dr. Ho Wang Lee and colleagues in 1976. Therefore, the purpose of this review, as part of this special issue dedicated to Dr. Lee, was to summarize the current knowledge of orthohantavirus replication, how viral replication activates innate immunity, and how the host antiviral response, in turn, impacts viral replication.
Collapse
Affiliation(s)
- Autumn LaPointe
- Department of Molecular Genetics and Microbiology, University of New Mexico, 915 Camino de Salud NE, Albuquerque, NM 87131, USA
| | - Michael Gale
- Department of Immunology, Center for Innate Immunity and Immune Disease, University of Washington, Seattle, WA 98109, USA
| | - Alison M. Kell
- Department of Molecular Genetics and Microbiology, University of New Mexico, 915 Camino de Salud NE, Albuquerque, NM 87131, USA
| |
Collapse
|
15
|
Abstract
Unlike many segmented negative-sense RNA viruses, most members of the Bunyavirales bud at Golgi membranes, as opposed to the plasma membrane. Central players in this assembly process are the envelope glycoproteins, Gn and Gc, which upon translation undergo proteolytic processing, glycosylation and trafficking to the Golgi, where they interact with ribonucleoprotein genome segments and bud into Golgi-derived compartments. The processes involved in genome packaging during virion assembly can lead to the generation of reassorted viruses, if a cell is co-infected with two different bunyaviruses, due to mismatching of viral genome segment packaging. This can lead to viruses with high pathogenic potential, as demonstrated by the emergence of Schmallenberg virus. This review focuses on the assembly pathways of tri-segmented bunyaviruses, highlighting some areas in need of further research to understand these important pathogens with zoonotic potential.
Collapse
Affiliation(s)
- Jake Barker
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, UK
| | - Luis L P daSilva
- Departamento de Biologia Celular e Molecular, Centro de Pesquisa em Virologia, Faculdade de Medicina de Ribeirão Preto, University of São Paulo, State of São Paulo, Brazil
| | - Colin M Crump
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, UK
| |
Collapse
|
16
|
Wichgers Schreur PJ, Bird BH, Ikegami T, Bermúdez-Méndez E, Kortekaas J. Perspectives of Next-Generation Live-Attenuated Rift Valley Fever Vaccines for Animal and Human Use. Vaccines (Basel) 2023; 11:vaccines11030707. [PMID: 36992291 DOI: 10.3390/vaccines11030707] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/10/2023] [Accepted: 03/14/2023] [Indexed: 03/31/2023] Open
Abstract
Live-attenuated Rift Valley fever (RVF) vaccines transiently replicate in the vaccinated host, thereby effectively initiating an innate and adaptive immune response. Rift Valley fever virus (RVFV)-specific neutralizing antibodies are considered the main correlate of protection. Vaccination with classical live-attenuated RVF vaccines during gestation in livestock has been associated with fetal malformations, stillbirths, and fetal demise. Facilitated by an increased understanding of the RVFV infection and replication cycle and availability of reverse genetics systems, novel rationally-designed live-attenuated candidate RVF vaccines with improved safety profiles have been developed. Several of these experimental vaccines are currently advancing beyond the proof-of-concept phase and are being evaluated for application in both animals and humans. We here provide perspectives on some of these next-generation live-attenuated RVF vaccines and highlight the opportunities and challenges of these approaches to improve global health.
Collapse
Affiliation(s)
- Paul J Wichgers Schreur
- Department of Virology and Molecular Biology, Wageningen Bioveterinary Research, Wageningen University & Research, 8221 RA Lelystad, The Netherlands
- BunyaVax B.V., 8221 RA Lelystad, The Netherlands
| | - Brian H Bird
- One Health Institute, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Tetsuro Ikegami
- Department of Pathology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
- The Sealy Institute for Vaccine Sciences, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
- The Center for Biodefense and Emerging Infectious Diseases, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | - Erick Bermúdez-Méndez
- Department of Virology and Molecular Biology, Wageningen Bioveterinary Research, Wageningen University & Research, 8221 RA Lelystad, The Netherlands
- Laboratory of Virology, Wageningen University & Research, 6708 PB Wageningen, The Netherlands
| | - Jeroen Kortekaas
- Department of Virology and Molecular Biology, Wageningen Bioveterinary Research, Wageningen University & Research, 8221 RA Lelystad, The Netherlands
- Laboratory of Virology, Wageningen University & Research, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
17
|
Modrego A, Carlero D, Arranz R, Martín-Benito J. CryoEM of Viral Ribonucleoproteins and Nucleocapsids of Single-Stranded RNA Viruses. Viruses 2023; 15:v15030653. [PMID: 36992363 PMCID: PMC10053253 DOI: 10.3390/v15030653] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/24/2023] [Accepted: 02/25/2023] [Indexed: 03/05/2023] Open
Abstract
Single-stranded RNA viruses (ssRNAv) are characterized by their biological diversity and great adaptability to different hosts; traits which make them a major threat to human health due to their potential to cause zoonotic outbreaks. A detailed understanding of the mechanisms involved in viral proliferation is essential to address the challenges posed by these pathogens. Key to these processes are ribonucleoproteins (RNPs), the genome-containing RNA-protein complexes whose function is to carry out viral transcription and replication. Structural determination of RNPs can provide crucial information on the molecular mechanisms of these processes, paving the way for the development of new, more effective strategies to control and prevent the spread of ssRNAv diseases. In this scenario, cryogenic electron microscopy (cryoEM), relying on the technical and methodological revolution it has undergone in recent years, can provide invaluable help in elucidating how these macromolecular complexes are organized, packaged within the virion, or the functional implications of these structures. In this review, we summarize some of the most prominent achievements by cryoEM in the study of RNP and nucleocapsid structures in lipid-enveloped ssRNAv.
Collapse
Affiliation(s)
- Andrea Modrego
- Departamento de Estructura de Macromoléculas, Centro Nacional de Biotecnología Consejo Superior de Investigaciones Científicas (CNB-CSIC), 28049 Madrid, Spain
| | - Diego Carlero
- Departamento de Estructura de Macromoléculas, Centro Nacional de Biotecnología Consejo Superior de Investigaciones Científicas (CNB-CSIC), 28049 Madrid, Spain
- Departamento de Física de la Materia Condensada, Universidad Autónoma de Madrid (UAM), 28049 Madrid, Spain
| | - Rocío Arranz
- Departamento de Estructura de Macromoléculas, Centro Nacional de Biotecnología Consejo Superior de Investigaciones Científicas (CNB-CSIC), 28049 Madrid, Spain
- Correspondence: (R.A.); (J.M.-B.)
| | - Jaime Martín-Benito
- Departamento de Estructura de Macromoléculas, Centro Nacional de Biotecnología Consejo Superior de Investigaciones Científicas (CNB-CSIC), 28049 Madrid, Spain
- Correspondence: (R.A.); (J.M.-B.)
| |
Collapse
|
18
|
Bermúdez-Méndez E, Bronsvoort KF, Zwart MP, van de Water S, Cárdenas-Rey I, Vloet RPM, Koenraadt CJM, Pijlman GP, Kortekaas J, Wichgers Schreur PJ. Incomplete bunyavirus particles can cooperatively support virus infection and spread. PLoS Biol 2022; 20:e3001870. [PMID: 36378688 PMCID: PMC9665397 DOI: 10.1371/journal.pbio.3001870] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 10/06/2022] [Indexed: 11/16/2022] Open
Abstract
Bunyaviruses lack a specific mechanism to ensure the incorporation of a complete set of genome segments into each virion, explaining the generation of incomplete virus particles lacking one or more genome segments. Such incomplete virus particles, which may represent the majority of particles produced, are generally considered to interfere with virus infection and spread. Using the three-segmented arthropod-borne Rift Valley fever virus as a model bunyavirus, we here show that two distinct incomplete virus particle populations unable to spread autonomously are able to efficiently complement each other in both mammalian and insect cells following co-infection. We further show that complementing incomplete virus particles can co-infect mosquitoes, resulting in the reconstitution of infectious virus that is able to disseminate to the mosquito salivary glands. Computational models of infection dynamics predict that incomplete virus particles can positively impact virus spread over a wide range of conditions, with the strongest effect at intermediate multiplicities of infection. Our findings suggest that incomplete particles may play a significant role in within-host spread and between-host transmission, reminiscent of the infection cycle of multipartite viruses.
Collapse
Affiliation(s)
- Erick Bermúdez-Méndez
- Department of Virology and Molecular Biology, Wageningen Bioveterinary Research, Lelystad, The Netherlands
- Laboratory of Virology, Wageningen University & Research, Wageningen, The Netherlands
| | - Kirsten F. Bronsvoort
- Department of Virology and Molecular Biology, Wageningen Bioveterinary Research, Lelystad, The Netherlands
| | - Mark P. Zwart
- Department of Microbial Ecology, The Netherlands Institute of Ecology, Wageningen, The Netherlands
| | - Sandra van de Water
- Department of Virology and Molecular Biology, Wageningen Bioveterinary Research, Lelystad, The Netherlands
| | - Ingrid Cárdenas-Rey
- Department of Bacteriology, Host-Pathogen Interactions and Diagnostics Development, Wageningen Bioveterinary Research, Lelystad, The Netherlands
- Laboratory of Genetics, Wageningen University & Research, Wageningen, The Netherlands
| | - Rianka P. M. Vloet
- Department of Virology and Molecular Biology, Wageningen Bioveterinary Research, Lelystad, The Netherlands
| | | | - Gorben P. Pijlman
- Laboratory of Virology, Wageningen University & Research, Wageningen, The Netherlands
| | - Jeroen Kortekaas
- Department of Virology and Molecular Biology, Wageningen Bioveterinary Research, Lelystad, The Netherlands
- Laboratory of Virology, Wageningen University & Research, Wageningen, The Netherlands
| | - Paul J. Wichgers Schreur
- Department of Virology and Molecular Biology, Wageningen Bioveterinary Research, Lelystad, The Netherlands
- * E-mail:
| |
Collapse
|
19
|
Boshra H. An Overview of the Infectious Cycle of Bunyaviruses. Viruses 2022; 14:2139. [PMID: 36298693 PMCID: PMC9610998 DOI: 10.3390/v14102139] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/19/2022] [Accepted: 09/26/2022] [Indexed: 11/17/2022] Open
Abstract
Bunyaviruses represent the largest group of RNA viruses and are the causative agent of a variety of febrile and hemorrhagic illnesses. Originally characterized as a single serotype in Africa, the number of described bunyaviruses now exceeds over 500, with its presence detected around the world. These predominantly tri-segmented, single-stranded RNA viruses are transmitted primarily through arthropod and rodent vectors and can infect a wide variety of animals and plants. Although encoding for a small number of proteins, these viruses can inflict potentially fatal disease outcomes and have even developed strategies to suppress the innate antiviral immune mechanisms of the infected host. This short review will attempt to provide an overall description of the order Bunyavirales, describing the mechanisms behind their infection, replication, and their evasion of the host immune response. Furthermore, the historical context of these viruses will be presented, starting from their original discovery almost 80 years ago to the most recent research pertaining to viral replication and host immune response.
Collapse
Affiliation(s)
- Hani Boshra
- Global Urgent and Advanced Research and Development (GUARD), 911 Rue Principale, Batiscan, QC G0X 1A0, Canada
| |
Collapse
|
20
|
Bracci N, de la Fuente C, Saleem S, Pinkham C, Narayanan A, García-Sastre A, Balaraman V, Richt JA, Wilson W, Kehn-Hall K. Rift Valley fever virus Gn V5-epitope tagged virus enables identification of UBR4 as a Gn interacting protein that facilitates Rift Valley fever virus production. Virology 2022; 567:65-76. [PMID: 35032865 PMCID: PMC8877469 DOI: 10.1016/j.virol.2021.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 11/15/2021] [Accepted: 12/31/2021] [Indexed: 02/03/2023]
Abstract
Rift Valley fever virus (RVFV) is an arbovirus that was first reported in the Rift Valley of Kenya which causes significant disease in humans and livestock. RVFV is a tri-segmented, negative-sense RNA virus consisting of a L, M, and S segments with the M segment encoding the glycoproteins Gn and Gc. Host factors that interact with Gn are largely unknown. To this end, two viruses containing an epitope tag (V5) on the Gn protein in position 105 or 229 (V5Gn105 and V5Gn229) were generated using the RVFV MP-12 vaccine strain as a backbone. The V5-tag insertion minimally impacted Gn functionality as measured by replication kinetics, Gn localization, and antibody neutralization assays. A proteomics-based approach was used to identify novel Gn-binding host proteins, including the E3 ubiquitin-protein ligase, UBR4. Depletion of UBR4 resulted in a significant decrease in RVFV titers and a reduction in viral RNA production.
Collapse
Affiliation(s)
- Nicole Bracci
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University,National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University
| | - Cynthia de la Fuente
- The National Institutes of Health, National Institute of Allergy and Infectious Diseases, DEA,National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University
| | - Sahar Saleem
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University
| | - Chelsea Pinkham
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University
| | - Aarthi Narayanan
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University
| | | | - Velmurugan Balaraman
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University
| | - Juergen A. Richt
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University
| | - William Wilson
- National Bio and Agro-Defense Facility, Agricultural Research Service, USDA
| | - Kylene Kehn-Hall
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University,National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University,Center for Zoonotic and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University,Corresponding Author: Kylene Kehn-Hall, Ph.D., Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Integrated Life Sciences Building, 1981 Kraft Drive, Blacksburg, VA 24060 USA,
| |
Collapse
|
21
|
Alem F, Olanrewaju AA, Omole S, Hobbs HE, Ahsan N, Matulis G, Brantner CA, Zhou W, Petricoin EF, Liotta LA, Caputi M, Bavari S, Wu Y, Kashanchi F, Hakami RM. Exosomes originating from infection with the cytoplasmic single-stranded RNA virus Rift Valley fever virus (RVFV) protect recipient cells by inducing RIG-I mediated IFN-B response that leads to activation of autophagy. Cell Biosci 2021; 11:220. [PMID: 34953502 PMCID: PMC8710069 DOI: 10.1186/s13578-021-00732-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 12/12/2021] [Indexed: 12/12/2022] Open
Abstract
Background Although multiple studies have demonstrated a role for exosomes during virus infections, our understanding of the mechanisms by which exosome exchange regulates immune response during viral infections and affects viral pathogenesis is still in its infancy. In particular, very little is known for cytoplasmic single-stranded RNA viruses such as SARS-CoV-2 and Rift Valley fever virus (RVFV). We have used RVFV infection as a model for cytoplasmic single-stranded RNA viruses to address this gap in knowledge. RVFV is a highly pathogenic agent that causes RVF, a zoonotic disease for which no effective therapeutic or approved human vaccine exist. Results We show here that exosomes released from cells infected with RVFV (designated as EXi-RVFV) serve a protective role for the host and provide a mechanistic model for these effects. Our results show that treatment of both naïve immune cells (U937 monocytes) and naïve non-immune cells (HSAECs) with EXi-RVFV induces a strong RIG-I dependent activation of IFN-B. We also demonstrate that this strong anti-viral response leads to activation of autophagy in treated cells and correlates with resistance to subsequent viral infection. Since we have shown that viral RNA genome is associated with EXi-RVFV, RIG-I activation might be mediated by the presence of packaged viral RNA sequences. Conclusions Using RVFV infection as a model for cytoplasmic single-stranded RNA viruses, our results show a novel mechanism of host protection by exosomes released from infected cells (EXi) whereby the EXi activate RIG-I to induce IFN-dependent activation of autophagy in naïve recipient cells including monocytes. Because monocytes serve as reservoirs for RVFV replication, this EXi-RVFV-induced activation of autophagy in monocytes may work to slow down or halt viral dissemination in the infected organism. These findings offer novel mechanistic insights that may aid in future development of effective vaccines or therapeutics, and that may be applicable for a better molecular understanding of how exosome release regulates innate immune response to other cytoplasmic single-stranded RNA viruses. Supplementary Information The online version contains supplementary material available at 10.1186/s13578-021-00732-z.
Collapse
Affiliation(s)
- Farhang Alem
- School of Systems Biology, George Mason University, Manassas, VA, USA.,Center for Infectious Disease Research (Formerly, National Center for Biodefense and Infectious Diseases), George Mason University, Manassas, VA, USA
| | - Adeyemi A Olanrewaju
- School of Systems Biology, George Mason University, Manassas, VA, USA.,Center for Infectious Disease Research (Formerly, National Center for Biodefense and Infectious Diseases), George Mason University, Manassas, VA, USA
| | - Samson Omole
- School of Systems Biology, George Mason University, Manassas, VA, USA.,Center for Infectious Disease Research (Formerly, National Center for Biodefense and Infectious Diseases), George Mason University, Manassas, VA, USA
| | - Heather E Hobbs
- School of Systems Biology, George Mason University, Manassas, VA, USA.,Center for Infectious Disease Research (Formerly, National Center for Biodefense and Infectious Diseases), George Mason University, Manassas, VA, USA
| | - Noor Ahsan
- School of Systems Biology, George Mason University, Manassas, VA, USA.,Center for Infectious Disease Research (Formerly, National Center for Biodefense and Infectious Diseases), George Mason University, Manassas, VA, USA.,Lentigen Technology, Inc., Gaithersburg, MD, USA
| | - Graham Matulis
- School of Systems Biology, George Mason University, Manassas, VA, USA.,Center for Infectious Disease Research (Formerly, National Center for Biodefense and Infectious Diseases), George Mason University, Manassas, VA, USA
| | - Christine A Brantner
- Nanofabrication and Imaging Center, George Washington University, Washington, DC, USA
| | - Weidong Zhou
- School of Systems Biology, George Mason University, Manassas, VA, USA.,Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, USA
| | - Emanuel F Petricoin
- School of Systems Biology, George Mason University, Manassas, VA, USA.,Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, USA
| | - Lance A Liotta
- School of Systems Biology, George Mason University, Manassas, VA, USA.,Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, USA
| | - Massimo Caputi
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, USA
| | | | - Yuntao Wu
- School of Systems Biology, George Mason University, Manassas, VA, USA.,Center for Infectious Disease Research (Formerly, National Center for Biodefense and Infectious Diseases), George Mason University, Manassas, VA, USA
| | - Fatah Kashanchi
- School of Systems Biology, George Mason University, Manassas, VA, USA
| | - Ramin M Hakami
- School of Systems Biology, George Mason University, Manassas, VA, USA. .,Center for Infectious Disease Research (Formerly, National Center for Biodefense and Infectious Diseases), George Mason University, Manassas, VA, USA.
| |
Collapse
|
22
|
Hayashi M, Schultz EP, Lanchy JM, Lodmell JS. Time-Resolved Analysis of N-RNA Interactions during RVFV Infection Shows Qualitative and Quantitative Shifts in RNA Encapsidation and Packaging. Viruses 2021; 13:2417. [PMID: 34960686 PMCID: PMC8704896 DOI: 10.3390/v13122417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/28/2021] [Accepted: 11/29/2021] [Indexed: 11/16/2022] Open
Abstract
Rift Valley fever virus (RVFV) is a negative-sense, tripartite RNA virus that is endemic to Africa and the Arabian Peninsula. It can cause severe disease and mortality in humans and domestic livestock and is a concern for its potential to spread more globally. RVFV's nucleocapsid protein (N) is an RNA-binding protein that is necessary for viral transcription, replication, and the production of nascent viral particles. We have conducted crosslinking, immunoprecipitation, and sequencing (CLIP-seq) to characterize N interactions with host and viral RNAs during infection. In parallel, to precisely measure intracellular N levels, we employed multiple reaction monitoring mass spectrometry (MRM-MS). Our results show that N binds mostly to host RNAs at early stages of infection, yielding nascent virus particles of reduced infectivity. The expression of N plateaus 10 h post-infection, whereas the intracellular viral RNA concentration continues to increase. Moreover, the virions produced later in infection have higher infectivity. Taken together, the detailed examination of these N-RNA interactions provides insight into how the regulated expression of N and viral RNA produces both infectious and incomplete, noninfectious particles.
Collapse
Affiliation(s)
- Miyuki Hayashi
- Department of Chemistry and Biochemistry, University of Montana, Missoula, MT 59812, USA;
- Center for Biomolecular Structure and Dynamics, Missoula, MT 59812, USA;
| | - Eric P. Schultz
- Center for Biomolecular Structure and Dynamics, Missoula, MT 59812, USA;
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA;
| | - Jean-Marc Lanchy
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA;
| | - J. Stephen Lodmell
- Center for Biomolecular Structure and Dynamics, Missoula, MT 59812, USA;
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA;
| |
Collapse
|
23
|
Yan JM, Zhang WK, Yan LN, Jiao YJ, Zhou CM, Yu XJ. Bunyavirus SFTSV exploits autophagic flux for viral assembly and egress. Autophagy 2021; 18:1599-1612. [PMID: 34747299 PMCID: PMC9298452 DOI: 10.1080/15548627.2021.1994296] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2022] Open
Abstract
Severe fever with thrombocytopenia syndrome virus (SFTSV) is an emerging negatively stranded enveloped RNA bunyavirus that causes SFTS with a high case fatality rate of up to 30%. Macroautophagy/autophagy is an evolutionarily conserved process involved in the maintenance of host homeostasis, which exhibits anti-viral or pro-viral responses in reaction to different viral challenges. However, the interaction between the bunyavirus SFTSV and the autophagic process is still largely unclear. By establishing various autophagy-deficient cell lines, we found that SFTSV triggered RB1CC1/FIP200-BECN1-ATG5-dependent classical autophagy flux. SFTSV nucleoprotein induced BECN1-dependent autophagy by disrupting the BECN1-BCL2 association. Importantly, SFTSV utilized autophagy for the viral life cycle, which not only assembled in autophagosomes derived from the ERGIC and Golgi complex, but also utilized autophagic vesicles for exocytosis. Taken together, our results suggest a novel virus-autophagy interaction model in which bunyavirus SFTSV induces classical autophagy flux for viral assembly and egress processes, suggesting that autophagy inhibition may be a novel therapy for treating or releasing SFTS.
Collapse
Affiliation(s)
- Jia-Min Yan
- State Key Laboratory of Virology, School of Public Health, Wuhan University, Wuhan, China
| | - Wen-Kang Zhang
- State Key Laboratory of Virology, School of Public Health, Wuhan University, Wuhan, China
| | - Li-Na Yan
- State Key Laboratory of Virology, School of Public Health, Wuhan University, Wuhan, China
| | - Yong-Jun Jiao
- Nhc Key laboratory of Enteric Pathogenic Microbiology, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China, Nanjing, China
| | - Chuan-Min Zhou
- State Key Laboratory of Virology, School of Public Health, Wuhan University, Wuhan, China.,Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xue-Jie Yu
- State Key Laboratory of Virology, School of Public Health, Wuhan University, Wuhan, China
| |
Collapse
|
24
|
RNA Structures and Their Role in Selective Genome Packaging. Viruses 2021; 13:v13091788. [PMID: 34578369 PMCID: PMC8472981 DOI: 10.3390/v13091788] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/31/2021] [Accepted: 09/02/2021] [Indexed: 12/13/2022] Open
Abstract
To generate infectious viral particles, viruses must specifically select their genomic RNA from milieu that contains a complex mixture of cellular or non-genomic viral RNAs. In this review, we focus on the role of viral encoded RNA structures in genome packaging. We first discuss how packaging signals are constructed from local and long-range base pairings within viral genomes, as well as inter-molecular interactions between viral and host RNAs. Then, how genome packaging is regulated by the biophysical properties of RNA. Finally, we examine the impact of RNA packaging signals on viral evolution.
Collapse
|
25
|
Acheampong KK, Schaff DL, Emert BL, Lake J, Reffsin S, Shea EK, Comar CE, Litzky LA, Khurram NA, Linn RL, Feldman M, Weiss SR, Montone KT, Cherry S, Shaffer SM. Multiplexed detection of SARS-CoV-2 genomic and subgenomic RNA using in situ hybridization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.08.11.455959. [PMID: 34401878 PMCID: PMC8366794 DOI: 10.1101/2021.08.11.455959] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The widespread Coronavirus Disease 2019 (COVID-19) is caused by infection with the novel coronavirus SARS-CoV-2. Currently, we have a limited toolset available for visualizing SARS-CoV-2 in cells and tissues, particularly in tissues from patients who died from COVID-19. Generally, single-molecule RNA FISH techniques have shown mixed results in formalin fixed paraffin embedded tissues such as those preserved from human autopsies. Here, we present a platform for preparing autopsy tissue for visualizing SARS-CoV-2 RNA using RNA FISH with amplification by hybridization chain reaction (HCR). We developed probe sets that target different regions of SARS-CoV-2 (including ORF1a and N) as well as probe sets that specifically target SARS-CoV-2 subgenomic mRNAs. We validated these probe sets in cell culture and tissues (lung, lymph node, and placenta) from infected patients. Using this technology, we observe distinct subcellular localization patterns of the ORF1a and N regions, with the ORF1a concentrated around the nucleus and the N showing a diffuse distribution across the cytoplasm. In human lung tissue, we performed multiplexed RNA FISH HCR for SARS-CoV-2 and cell-type specific marker genes. We found viral RNA in cells containing the alveolar type 2 (AT2) cell marker gene (SFTPC) and the alveolar macrophage marker gene (MARCO), but did not identify viral RNA in cells containing the alveolar type 1 (AT1) cell marker gene (AGER). Moreover, we observed distinct subcellular localization patterns of viral RNA in AT2 cells and alveolar macrophages, consistent with phagocytosis of infected cells. In sum, we demonstrate the use of RNA FISH HCR for visualizing different RNA species from SARS-CoV-2 in cell lines and FFPE autopsy specimens. Furthermore, we multiplex this assay with probes for cellular genes to determine what cell-types are infected within the lung. We anticipate that this platform could be broadly useful for studying SARS-CoV-2 pathology in tissues as well as extended for other applications including investigating the viral life cycle, viral diagnostics, and drug screening.
Collapse
Affiliation(s)
- Kofi K Acheampong
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Dylan L Schaff
- Department of Bioengineering, School of Engineering Arts and Sciences, University of Pennsylvania, Philadelphia, PA
| | - Benjamin L Emert
- Genomics and Computational Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Jonathan Lake
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Sam Reffsin
- Department of Bioengineering, School of Engineering Arts and Sciences, University of Pennsylvania, Philadelphia, PA
| | - Emily K Shea
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Courtney E Comar
- Department of Microbiology, University of Pennsylvania, Philadelphia PA
- Penn Center for Research on Coronaviruses and Other Emerging Pathogens, Philadelphia, PA
| | - Leslie A Litzky
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Nigar A Khurram
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Department of Pathology, Northwestern University, Feinberg School of Medicine, Chicago, IL
| | - Rebecca L Linn
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Division of Anatomic Pathology, The Children's Hospital of Philadelphia, Philadelphia, PA
| | - Michael Feldman
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Susan R Weiss
- Department of Microbiology, University of Pennsylvania, Philadelphia PA
- Penn Center for Research on Coronaviruses and Other Emerging Pathogens, Philadelphia, PA
| | - Kathleen T Montone
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Sara Cherry
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Penn Center for Research on Coronaviruses and Other Emerging Pathogens, Philadelphia, PA
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA
| | - Sydney M Shaffer
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Department of Bioengineering, School of Engineering Arts and Sciences, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
26
|
Yue L, Li C, Xu M, Wu M, Ding J, Liu J, Zhang X, Yuan Z. Probing the spatiotemporal patterns of HBV multiplication reveals novel features of its subcellular processes. PLoS Pathog 2021; 17:e1009838. [PMID: 34370796 PMCID: PMC8376071 DOI: 10.1371/journal.ppat.1009838] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 08/19/2021] [Accepted: 07/25/2021] [Indexed: 02/06/2023] Open
Abstract
Through evolution, Hepatitis B Virus (HBV) developed highly intricate mechanisms exploiting host resources for its multiplication within a constrained genetic coding capacity. Yet a clear picture of viral hitchhiking of cellular processes with spatial resolution is still largely unsolved. Here, by leveraging bDNA-based fluorescence in situ hybridization (FISH) combined with immunofluorescence, we developed a microscopic approach for multiplex detection of viral nucleic acids and proteins, which enabled us to probe some of the key aspects of HBV life cycle. We confirmed the slow kinetics and revealed the high variability of viral replication at single-cell level. We directly visualized HBV minichromosome in contact with acetylated histone 3 and RNA polymerase II and observed HBV-induced degradation of Smc5/6 complex only in primary hepatocytes. We quantified the frequency of HBV pregenomic RNAs occupied by translating ribosome or capsids. Statistics at molecular level suggested a rapid translation phase followed by a slow encapsidation and maturation phase. Finally, the roles of microtubules (MTs) on nucleocapsid assembly and virion morphogenesis were analyzed. Disruption of MTs resulted in the perinuclear retention of nucleocapsid. Meanwhile, large multivesicular body (MVB) formation was significantly disturbed as evidenced by the increase in number and decrease in volume of CD63+ vesicles, thus inhibiting mature virion secretion. In conclusion, these data provided spatially resolved molecular snapshots in the context of specific subcellular activities. The heterogeneity observed at single-cell level afforded valuable molecular insights which are otherwise unavailable from bulk measurements. HBV is a hepatotropic, enveloped virus with a partially double-stranded relaxed circular DNA genome. Studies on the molecular biology of HBV mainly rely on biochemical extraction and bulk quantification methods. Detailed spatiotemporal information on virus components in subcellular context is still lacking. Here, we re-evaluated the reproduction schemes of HBV by fluorescence in situ hybridization (FISH). We visualized cccDNA minichromosome formation in an epigenetic context, identified pgRNA associated with actively translating ribosomes and capsids. Moreover, the active participation of microtubules in nucleocapsid transport and MVB-mediated virion secretion was identified. These observations have broad implications for understanding the HBV replication cycle and may facilitate the identification of novel antiviral targets.
Collapse
Affiliation(s)
- Lei Yue
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
- Research Unit, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Chang Li
- Research Unit, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Mingzhu Xu
- Research Unit, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Min Wu
- Research Unit, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Jiahui Ding
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jiangxia Liu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiaonan Zhang
- Research Unit, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
- Centre for Research in Therapeutic Solutions, Biomedical Sciences, Faculty of Science and Technology, University of Canberra, ACT, Australia
- * E-mail: (XZ); (ZY)
| | - Zhenghong Yuan
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
- Research Unit, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
- * E-mail: (XZ); (ZY)
| |
Collapse
|
27
|
Meier K, Thorkelsson SR, Quemin ERJ, Rosenthal M. Hantavirus Replication Cycle-An Updated Structural Virology Perspective. Viruses 2021; 13:1561. [PMID: 34452426 PMCID: PMC8402763 DOI: 10.3390/v13081561] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/31/2021] [Accepted: 08/02/2021] [Indexed: 11/17/2022] Open
Abstract
Hantaviruses infect a wide range of hosts including insectivores and rodents and can also cause zoonotic infections in humans, which can lead to severe disease with possible fatal outcomes. Hantavirus outbreaks are usually linked to the population dynamics of the host animals and their habitats being in close proximity to humans, which is becoming increasingly important in a globalized world. Currently there is neither an approved vaccine nor a specific and effective antiviral treatment available for use in humans. Hantaviruses belong to the order Bunyavirales with a tri-segmented negative-sense RNA genome. They encode only five viral proteins and replicate and transcribe their genome in the cytoplasm of infected cells. However, many details of the viral amplification cycle are still unknown. In recent years, structural biology methods such as cryo-electron tomography, cryo-electron microscopy, and crystallography have contributed essentially to our understanding of virus entry by membrane fusion as well as genome encapsidation by the nucleoprotein. In this review, we provide an update on the hantavirus replication cycle with a special focus on structural virology aspects.
Collapse
Affiliation(s)
- Kristina Meier
- Department of Virology, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany;
| | - Sigurdur R. Thorkelsson
- Centre for Structural Systems Biology, Leibniz Institute for Experimental Virology, University of Hamburg, 22607 Hamburg, Germany;
| | - Emmanuelle R. J. Quemin
- Centre for Structural Systems Biology, Leibniz Institute for Experimental Virology, University of Hamburg, 22607 Hamburg, Germany;
| | - Maria Rosenthal
- Department of Virology, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany;
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, 22525 Hamburg, Germany
| |
Collapse
|
28
|
Abstract
Multipartite virus genomes are composed of several segments, each packaged in a distinct viral particle. Although this puzzling genome architecture is found in ∼17% of known viral species, its distribution among hosts or among distinct types of genome-composing nucleic acid remains poorly understood. No convincing advantage of multipartitism has been identified, yet the maintenance of genomic integrity appears problematic. Here we review recent studies shedding light on these issues. Multipartite viruses rapidly modify the copy number of each segment/gene from one host species to another, a putative benefit if host switches are common. One multipartite virus functions in a multicellular way: The segments do not all need to be present in the same cell and can functionally complement across cells, maintaining genome integrity within hosts. The genomic integrity maintenance during host-to-host transmission needs further elucidation. These features challenge several virology foundations and could apply to other multicomponent viral systems.
Collapse
Affiliation(s)
- Yannis Michalakis
- Maladies Infectieuses et Vecteurs Écologie, Génétique, Évolution et Contrôle (MIVEGEC), Centre National de la Recherche Scientifique (CNRS), Institut de Recherche pour le Développement (IRD), Université Montpellier, 34394 Montpellier, France;
| | - Stéphane Blanc
- Unité Mixte de Recherche-Biologie et Génétique des Interactions Plante-Parasite (UMR BGPI), Institut National de Recherche en Agriculture, Alimentation et Environnement (INRAE), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), Montpellier SupAgro, Université Montpellier, 34398 Montpellier, France;
| |
Collapse
|
29
|
Characterization of the Molecular Interactions That Govern the Packaging of Viral RNA Segments into Rift Valley Fever Phlebovirus Particles. J Virol 2021; 95:e0042921. [PMID: 33952635 DOI: 10.1128/jvi.00429-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Rift Valley fever phlebovirus (RVFV) has a single-stranded, negative-sense RNA genome, consisting of L, M, and S segments. The virion carries two envelope glycoproteins, Gn and Gc, along with ribonucleoprotein complexes (RNPs), composed of encapsidated genomes carrying N protein and the viral polymerase, L protein. A quantitative analysis of the profile of viral RNA segments packaged into RVFV particles showed that all three genomic RNA segments had similar packaging abilities, whereas among antigenomic RNA segments, the antigenomic S RNA, which serves as the template for the transcription of mRNA expressing the RVFV virulence factor, NSs, displayed a significantly higher packaging ability. To delineate the factor(s) governing the packaging of RVFV RNA segments, we characterized the interactions between Gn and viral RNPs in RVFV-infected cells. Coimmunoprecipitation analysis demonstrated the interaction of Gn with N protein, L protein, and viral RNAs in RVFV-infected cells. Furthermore, UV-cross-linking and immunoprecipitation analysis revealed, for the first time in bunyaviruses, the presence of a direct interaction between Gn and all the viral RNA segments in RVFV-infected cells. Notably, analysis of the ability of Gn to bind to RVFV RNA segments indicated a positive correlation with their respective packaging abilities and highlighted a binding preference of Gn for antigenomic S RNA, among the antigenomic RNA segments, suggesting the presence of a selection mechanism for antigenomic S RNA incorporation into infectious RVFV particles. Collectively, the results of our study illuminate the importance of a direct interaction between Gn and viral RNA segments in determining their efficiency of incorporation into RVFV particles. IMPORTANCE Rift Valley fever phlebovirus, a bunyavirus, is a mosquito-borne, segmented RNA virus that can cause severe disease in humans and ruminants. An essential step in RVFV life cycle is the packaging of viral RNA segments to produce infectious virus particles for dissemination to new hosts. However, there are key gaps in knowledge regarding the mechanisms that regulate viral RNA packaging efficiency in bunyaviruses. Our studies investigating the mechanism of RNA packaging in RVFV revealed the presence of a direct interaction between the viral envelope glycoprotein, Gn, and the viral RNA segments in infected cells, for the first time in bunyaviruses. Furthermore, our data strongly indicate a critical role for the direct interaction between Gn and viral RNAs in determining the efficiency of incorporation of viral RNA segments into RVFV particles. Clarifying the fundamental mechanisms of RNA packaging in RVFV would be valuable for the development of antivirals and live-attenuated vaccines.
Collapse
|
30
|
Zhou CM, Yu XJ. Unraveling the Underlying Interaction Mechanism Between Dabie bandavirus and Innate Immune Response. Front Immunol 2021; 12:676861. [PMID: 34122440 PMCID: PMC8190332 DOI: 10.3389/fimmu.2021.676861] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 05/10/2021] [Indexed: 12/22/2022] Open
Abstract
The genus Bandavirus consists of seven tick-borne bunyaviruses, among which four are known to infect humans. Dabie bandavirus, severe fever with thrombocytopenia syndrome virus (SFTSV), poses serious threats to public health worldwide. SFTSV is a tick-borne virus mainly reported in China, South Korea, and Japan with a mortality rate of up to 30%. To date, most immunology-related studies focused on the antagonistic role of SFTSV non-structural protein (NSs) in sequestering RIG-I-like-receptors (RLRs)-mediated type I interferon (IFN) induction and type I IFN mediated signaling pathway. It is still elusive whether the interaction of SFTSV and other conserved innate immune responses exists. As of now, no specific vaccines or therapeutics are approved for SFTSV prevention or treatments respectively, in part due to a lack of comprehensive understanding of the molecular interactions occurring between SFTSV and hosts. Hence, it is necessary to fully understand the host-virus interactions including antiviral responses and viral evasion mechanisms. In this review, we highlight the recent progress in understanding the pathogenesis of SFTS and speculate underlying novel mechanisms in response to SFTSV infection.
Collapse
Affiliation(s)
- Chuan-min Zhou
- State Key Laboratory of Virology, School of Health Sciences, Wuhan University, Wuhan, China
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xue-jie Yu
- State Key Laboratory of Virology, School of Health Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
31
|
López CB. Defective Viral Particles. Virology 2021. [DOI: 10.1002/9781119818526.ch5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
32
|
Bermúdez-Méndez E, Katrukha EA, Spruit CM, Kortekaas J, Wichgers Schreur PJ. Visualizing the ribonucleoprotein content of single bunyavirus virions reveals more efficient genome packaging in the arthropod host. Commun Biol 2021; 4:345. [PMID: 33753850 PMCID: PMC7985392 DOI: 10.1038/s42003-021-01821-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 02/09/2021] [Indexed: 01/31/2023] Open
Abstract
Bunyaviruses have a genome that is divided over multiple segments. Genome segmentation complicates the generation of progeny virus, since each newly formed virus particle should preferably contain a full set of genome segments in order to disseminate efficiently within and between hosts. Here, we combine immunofluorescence and fluorescence in situ hybridization techniques to simultaneously visualize bunyavirus progeny virions and their genomic content at single-molecule resolution in the context of singly infected cells. Using Rift Valley fever virus and Schmallenberg virus as prototype tri-segmented bunyaviruses, we show that bunyavirus genome packaging is influenced by the intracellular viral genome content of individual cells, which results in greatly variable packaging efficiencies within a cell population. We further show that bunyavirus genome packaging is more efficient in insect cells compared to mammalian cells and provide new insights on the possibility that incomplete particles may contribute to bunyavirus spread as well.
Collapse
Affiliation(s)
- Erick Bermúdez-Méndez
- Department of Virology, Wageningen Bioveterinary Research, Lelystad, The Netherlands
- Laboratory of Virology, Wageningen University, Wageningen, The Netherlands
| | - Eugene A Katrukha
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Cindy M Spruit
- Department of Virology, Wageningen Bioveterinary Research, Lelystad, The Netherlands
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Jeroen Kortekaas
- Department of Virology, Wageningen Bioveterinary Research, Lelystad, The Netherlands
- Laboratory of Virology, Wageningen University, Wageningen, The Netherlands
| | | |
Collapse
|
33
|
Acheampong KK, Schaff DL, Emert BL, Lake J, Reffsin S, Shea EK, Comar CE, Litzky LA, Khurram NA, Linn RL, Feldman M, Weiss SR, Montone KT, Cherry S, Shaffer SM. Subcellular Detection of SARS-CoV-2 RNA in Human Tissue Reveals Distinct Localization in Alveolar Type 2 Pneumocytes and Alveolar Macrophages. mBio 2021; 13:e0375121. [PMID: 35130722 PMCID: PMC8822351 DOI: 10.1128/mbio.03751-21] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 01/18/2022] [Indexed: 01/08/2023] Open
Abstract
The widespread coronavirus disease 2019 (COVID-19) is caused by infection with the novel coronavirus SARS-CoV-2. Currently, we have limited understanding of which cells become infected with SARS-CoV-2 in human tissues and where viral RNA localizes on the subcellular level. Here, we present a platform for preparing autopsy tissue for visualizing SARS-CoV-2 RNA using RNA fluorescence in situ hybridization (FISH) with amplification by hybridization chain reaction. We developed probe sets that target different regions of SARS-CoV-2 (including ORF1a and N), as well as probe sets that specifically target SARS-CoV-2 subgenomic mRNAs. We validated these probe sets in cell culture and tissues (lung, lymph node, and placenta) from infected patients. Using this technology, we observe distinct subcellular localization patterns of the ORF1a and N regions. In human lung tissue, we performed multiplexed RNA FISH HCR for SARS-CoV-2 and cell-type-specific marker genes. We found viral RNA in cells containing the alveolar type 2 (AT2) cell marker gene (SFTPC) and the alveolar macrophage marker gene (MARCO) but did not identify viral RNA in cells containing the alveolar type 1 (AT1) cell marker gene (AGER). Moreover, we observed distinct subcellular localization patterns of viral RNA in AT2 cells and alveolar macrophages. In sum, we demonstrate the use of RNA FISH HCR for visualizing different RNA species from SARS-CoV-2 in cell lines and FFPE (formalin fixation and paraffin embedding) autopsy specimens. We anticipate that this platform could be broadly useful for studying SARS-CoV-2 pathology in tissues, as well as extended for other applications, including investigating the viral life cycle, viral diagnostics, and drug screening. IMPORTANCE Here, we developed an in situ RNA detection assay for RNA generated by the SARS-CoV-2 virus. We found viral RNA in lung, lymph node, and placenta samples from pathology specimens from COVID patients. Using high-magnification microscopy, we can visualize the subcellular distribution of these RNA in single cells.
Collapse
Affiliation(s)
- Kofi K. Acheampong
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Dylan L. Schaff
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Benjamin L. Emert
- Genomics and Computational Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jonathan Lake
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Sam Reffsin
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Emily K. Shea
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Courtney E. Comar
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Penn Center for Research on Coronaviruses and Other Emerging Pathogens, Philadelphia, Pennsylvania, USA
- Clinical Microbiology Laboratory, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Infectious Disease Diagnostics Laboratory, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Leslie A. Litzky
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Nigar A. Khurram
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Pathology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Rebecca L. Linn
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Division of Anatomic Pathology, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Michael Feldman
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Susan R. Weiss
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Penn Center for Research on Coronaviruses and Other Emerging Pathogens, Philadelphia, Pennsylvania, USA
| | - Kathleen T. Montone
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Sara Cherry
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Penn Center for Research on Coronaviruses and Other Emerging Pathogens, Philadelphia, Pennsylvania, USA
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Sydney M. Shaffer
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
34
|
Shi J, Shen S, Wu H, Zhang Y, Deng F. Metagenomic Profiling of Viruses Associated with Rhipicephalus microplus Ticks in Yunnan Province, China. Virol Sin 2021; 36:623-635. [PMID: 33400089 DOI: 10.1007/s12250-020-00319-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 10/10/2020] [Indexed: 12/14/2022] Open
Abstract
Ticks are well known as vectors of many viruses which usually do great harm to human and animal health. Yunnan Province, widely covered by flourishing vegetation and mainly relying on farming husbandry, is abundant with Rhipicephalus microplus ticks. Therefore, it is of great significance to characterize the viral profile present in R. microplus parasitizing on cattle in Yunnan Province. In this study, a total of 7387 R. microplus ticks were collected from cattle and buffalo in the northwest and southeast areas of Yunnan Province from 2015 to 2017. We investigated the virome of R. microplus using next-generation sequencing (NGS) and the prevalence of important identified viruses among tick groups by RT-PCR. It revealed the presence of diverse virus concerning chu-, rhabdo-, phlebo-, flavi- and parvo- viruses in Yunnan. These viruses consist of single-stranded, circular and segmented sense RNAs, showing a greatly diversity in genomic organization. Furthermore, continuous epidemiological survey among ticks reveals broad prevalence of three viruses (Yunnan mivirus 1, Wuhan tick vrius 1 and YN tick-associated phlebovirus 1) and two possible prevalent viruses including a flavivirus-like segmented virus (Jingmen tick virus) and a bovine hokovirus 2 in Yunnan. Serological investigation among cattle indicates that these identified viruses may be infectious to cattle and can elicit corresponding antibody. Our findings on R. microplus-associated viral community will contribute to the prevention of viral disease and tracking the viral evolution. Further analysis is needed to better elucidate the pathogenicity and natural circulation of these viruses.
Collapse
Affiliation(s)
- Junming Shi
- State Key Laboratory of Virology and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shu Shen
- State Key Laboratory of Virology and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Hui Wu
- Institute of Preventive Medicine, School of Public Health, Dali University, Dali, 671000, China.,Xianning Center for Disease Control and Prevention, Xinanning, 437000, China
| | - Yunzhi Zhang
- Institute of Preventive Medicine, School of Public Health, Dali University, Dali, 671000, China.
| | - Fei Deng
- State Key Laboratory of Virology and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China.
| |
Collapse
|
35
|
Suomalainen M, Prasad V, Kannan A, Greber UF. Cell-to-cell and genome-to-genome variability of adenovirus transcription tuned by the cell cycle. J Cell Sci 2020; 134:jcs252544. [PMID: 32917739 DOI: 10.1242/jcs.252544] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 08/27/2020] [Indexed: 12/11/2022] Open
Abstract
In clonal cultures, not all cells are equally susceptible to virus infection, and the mechanisms underlying this are poorly understood. Here, we developed image-based single-cell measurements to scrutinize the heterogeneity of adenovirus (AdV) infection. AdV delivers, transcribes and replicates a linear double-stranded DNA genome in the nucleus. We measured the abundance of viral transcripts using single-molecule RNA fluorescence in situ hybridization (FISH) and the incoming 5-ethynyl-2'-deoxycytidine (EdC)-tagged viral genomes using a copper(I)-catalyzed azide-alkyne cycloaddition (click) reaction. Surprisingly, expression of the immediate early gene E1A only moderately correlated with the number of viral genomes in the cell nucleus. Intranuclear genome-to-genome heterogeneity was found at the level of viral transcription and, in accordance, individual genomes exhibited heterogeneous replication activity. By analyzing the cell cycle state, we found that G1 cells exhibited the highest E1A gene expression and displayed increased correlation between E1A gene expression and viral genome copy numbers. The combined image-based single-molecule procedures described here are ideally suited to explore the cell-to-cell variability in viral gene expression in a range of different settings, including the innate immune response.
Collapse
Affiliation(s)
- Maarit Suomalainen
- Department of Molecular Life Sciences, University of Zurich, 8057 Zurich, Switzerland
| | - Vibhu Prasad
- Department of Molecular Life Sciences, University of Zurich, 8057 Zurich, Switzerland
| | - Abhilash Kannan
- Department of Molecular Life Sciences, University of Zurich, 8057 Zurich, Switzerland
| | - Urs F Greber
- Department of Molecular Life Sciences, University of Zurich, 8057 Zurich, Switzerland
| |
Collapse
|
36
|
Jones JE, Le Sage V, Lakdawala SS. Viral and host heterogeneity and their effects on the viral life cycle. Nat Rev Microbiol 2020; 19:272-282. [PMID: 33024309 PMCID: PMC7537587 DOI: 10.1038/s41579-020-00449-9] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/03/2020] [Indexed: 02/08/2023]
Abstract
Traditionally, the viral replication cycle is envisioned as a single, well-defined loop with four major steps: attachment and entry into a target cell, replication of the viral genome, maturation of viral proteins and genome packaging into infectious progeny, and egress and dissemination to the next target cell. However, for many viruses, a growing body of evidence points towards extreme heterogeneity in each of these steps. In this Review, we reassess the major steps of the viral replication cycle by highlighting recent advances that show considerable variability during viral infection. First, we discuss heterogeneity in entry receptors, followed by a discussion on error-prone and low-fidelity polymerases and their impact on viral diversity. Next, we cover the implications of heterogeneity in genome packaging and assembly on virion morphology. Last, we explore alternative egress mechanisms, including tunnelling nanotubes and host microvesicles. In summary, we discuss the implications of viral phenotypic, morphological and genetic heterogeneity on pathogenesis and medicine. This Review highlights common themes and unique features that give nuance to the viral replication cycle.
Collapse
Affiliation(s)
- Jennifer E Jones
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Valerie Le Sage
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Seema S Lakdawala
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA. .,Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
37
|
Mastrodomenico V, Esin JJ, Qazi S, Khomutov MA, Ivanov AV, Mukhopadhyay S, Mounce BC. Virion-Associated Polyamines Transmit with Bunyaviruses to Maintain Infectivity and Promote Entry. ACS Infect Dis 2020; 6:2490-2501. [PMID: 32687697 DOI: 10.1021/acsinfecdis.0c00402] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Viruses require host cell metabolites to productively infect, and the mechanisms by which viruses usurp these molecules are diverse. One group of cellular metabolites important in virus infection is the polyamines, small positively charged molecules involved in cell cycle, translation, and nucleic acid metabolism, among other cellular functions. Polyamines support replication of diverse viruses, and they are important for processes such as transcription, translation, and viral protein enzymatic activity. Rift Valley fever virus (RVFV) is a negative and ambisense RNA virus that requires polyamines to produce infectious particles. In polyamine depleted conditions, noninfectious particles are produced that interfere with virus replication and stimulate immune signaling. Here, we find that RVFV relies on virion-associated polyamines to maintain infectivity and enhance viral entry. We show that RVFV replication is facilitated by a limited set of polyamines and that spermidine and closely related molecules associate with purified virions and transmit from cell to cell during infection. Virion-associated spermidine maintains virion infectivity, as virions devoid of polyamines rapidly lose infectivity and are temperature sensitive. Further, virions without polyamines bind to cells but exhibit a defect in entry, requiring more acidic conditions than virions containing spermidine. These data highlight a unique role for polyamines, and spermidine particularly, to maintain virus infectivity. Further, these studies are the first to identify polyamines associated with RVFV virions. Targeting polyamines represents a promising antiviral strategy, and this work highlights a new mechanism by which we can inhibit virus replication through FDA-approved polyamine depleting pharmaceuticals.
Collapse
Affiliation(s)
- Vincent Mastrodomenico
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois 60153, United States
| | - Jeremy J Esin
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois 60153, United States
- Infectious Disease and Immunology Research Institute, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois 60153, United States
| | - Shefah Qazi
- Department of Biology, Indiana University, Bloomington, Indiana 47405, United States
| | - Maxim A Khomutov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - Alexander V Ivanov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | | | - Bryan C Mounce
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois 60153, United States
- Infectious Disease and Immunology Research Institute, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois 60153, United States
| |
Collapse
|
38
|
Katsiani A, Stainton D, Lamour K, Tzanetakis IE. The population structure of Rose rosette virus in the USA. J Gen Virol 2020; 101:676-684. [PMID: 32375952 DOI: 10.1099/jgv.0.001418] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Rose rosette virus (RRV) (genus Emaravirus) is the causal agent of the homonymous disease, the most destructive malady of roses in the USA. Although the importance of the disease is recognized, little sequence information and no full genomes are available for RRV, a multi-segmented RNA virus. To better understand the population structure of the virus we implemented a Hi-Plex PCR amplicon high-throughput sequencing approach to sequence all 7 segments and to quantify polymorphisms in 91 RRV isolates collected from 16 states in the USA. Analysis revealed insertion/deletion (indel) polymorphisms primarily in the 5' and 3' non-coding, but also within coding regions, including some resulting in changes of protein length. Phylogenetic analysis showed little geographical structuring, suggesting that topography does not have a strong influence on virus evolution. Overall, the virus populations were homogeneous, possibly because of regular movement of plants, the recent emergence of RRV and/or because the virus is under strong purification selection to preserve its integrity and biological functions.
Collapse
Affiliation(s)
- Asimina Katsiani
- Department of Entomology and Plant Pathology, Division of Agriculture, University of Arkansas System, Fayetteville AR 72701, USA
| | - Daisy Stainton
- Department of Entomology and Plant Pathology, Division of Agriculture, University of Arkansas System, Fayetteville AR 72701, USA
| | - Kurt Lamour
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN 37996, USA
| | - Ioannis E Tzanetakis
- Department of Entomology and Plant Pathology, Division of Agriculture, University of Arkansas System, Fayetteville AR 72701, USA
| |
Collapse
|
39
|
Gwon YD, Strand M, Lindqvist R, Nilsson E, Saleeb M, Elofsson M, Överby AK, Evander M. Antiviral Activity of Benzavir-2 against Emerging Flaviviruses. Viruses 2020; 12:v12030351. [PMID: 32235763 PMCID: PMC7150796 DOI: 10.3390/v12030351] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/16/2020] [Accepted: 03/18/2020] [Indexed: 02/07/2023] Open
Abstract
Most flaviviruses are arthropod-borne viruses, transmitted by either ticks or mosquitoes, and cause morbidity and mortality worldwide. They are endemic in many countries and have recently emerged in new regions, such as the Zika virus (ZIKV) in South-and Central America, the West Nile virus (WNV) in North America, and the Yellow fever virus (YFV) in Brazil and many African countries, highlighting the need for preparedness. Currently, there are no antiviral drugs available to treat flavivirus infections. We have previously discovered a broad-spectrum antiviral compound, benzavir-2, with potent antiviral activity against both DNA- and RNA-viruses. Our purpose was to investigate the inhibitory activity of benzavir-2 against flaviviruses. We used a ZIKV ZsGreen-expressing vector, two lineages of wild-type ZIKV, and other medically important flaviviruses. Benzavir-2 inhibited ZIKV derived reporter gene expression with an EC50 value of 0.8 ± 0.1 µM. Furthermore, ZIKV plaque formation, progeny virus production, and viral RNA expression were strongly inhibited. In addition, 2.5 µM of benzavir-2 reduced infection in vitro in three to five orders of magnitude for five other flaviviruses: WNV, YFV, the tick-borne encephalitis virus, Japanese encephalitis virus, and dengue virus. In conclusion, benzavir-2 was a potent inhibitor of flavivirus infection, which supported the broad-spectrum antiviral activity of benzavir-2.
Collapse
Affiliation(s)
- Yong-Dae Gwon
- Department of Clinical Microbiology, Virology, Umeå University, 90185 Umeå, Sweden; (Y.-D.G.); (M.S.); (R.L.); (E.N.); (A.K.Ö.)
- Umeå Centre for Microbial Research (UCMR), Umeå University, 90187 Umeå, Sweden;
| | - Mårten Strand
- Department of Clinical Microbiology, Virology, Umeå University, 90185 Umeå, Sweden; (Y.-D.G.); (M.S.); (R.L.); (E.N.); (A.K.Ö.)
| | - Richard Lindqvist
- Department of Clinical Microbiology, Virology, Umeå University, 90185 Umeå, Sweden; (Y.-D.G.); (M.S.); (R.L.); (E.N.); (A.K.Ö.)
- Umeå Centre for Microbial Research (UCMR), Umeå University, 90187 Umeå, Sweden;
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, 90187 Umeå, Sweden
| | - Emma Nilsson
- Department of Clinical Microbiology, Virology, Umeå University, 90185 Umeå, Sweden; (Y.-D.G.); (M.S.); (R.L.); (E.N.); (A.K.Ö.)
- Umeå Centre for Microbial Research (UCMR), Umeå University, 90187 Umeå, Sweden;
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, 90187 Umeå, Sweden
| | - Michael Saleeb
- Department of Chemistry, Umeå University, 90187 Umeå, Sweden;
| | - Mikael Elofsson
- Umeå Centre for Microbial Research (UCMR), Umeå University, 90187 Umeå, Sweden;
- Department of Chemistry, Umeå University, 90187 Umeå, Sweden;
| | - Anna K. Överby
- Department of Clinical Microbiology, Virology, Umeå University, 90185 Umeå, Sweden; (Y.-D.G.); (M.S.); (R.L.); (E.N.); (A.K.Ö.)
- Umeå Centre for Microbial Research (UCMR), Umeå University, 90187 Umeå, Sweden;
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, 90187 Umeå, Sweden
| | - Magnus Evander
- Department of Clinical Microbiology, Virology, Umeå University, 90185 Umeå, Sweden; (Y.-D.G.); (M.S.); (R.L.); (E.N.); (A.K.Ö.)
- Umeå Centre for Microbial Research (UCMR), Umeå University, 90187 Umeå, Sweden;
- Correspondence: ; Tel.: +46-90-785-1790
| |
Collapse
|
40
|
A strand-specific real-time quantitative RT-PCR assay for distinguishing the genomic and antigenomic RNAs of Rift Valley fever phlebovirus. J Virol Methods 2019; 272:113701. [PMID: 31315022 DOI: 10.1016/j.jviromet.2019.113701] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 07/13/2019] [Indexed: 11/21/2022]
Abstract
Rift Valley Fever phlebovirus (RVFV), genus Phlebovirus, family Phenuiviridae, order Bunyavirales, has a single-stranded, negative-sense RNA genome, consisting of L, M and S segments. Here, we report the establishment of a strand-specific, quantitative reverse transcription (RT)-PCR assay system that can selectively distinguish between the genomic and antigenomic RNAs of each of the three viral RNA segments produced in RVFV-infected cells. To circumvent the obstacle of primer-independent cDNA synthesis during RT, we used a tagged, strand-specific RT primer, carrying a non-viral 'tag' sequence at the 5' end, which ensured the strand-specificity through the selective amplification of only the tagged cDNA in the real-time PCR assay. We used this assay system to examine the kinetics of intracellular accumulation of genomic and antigenomic viral RNAs in mammalian cells infected with the MP-12 strain of RVFV. The genomic RNA copy numbers, for all three viral RNA segments, were higher than that of their corresponding antigenomic RNAs throughout the time-course of infection, with a notable exception, wherein the M segment genomic and antigenomic RNAs exhibited similar copy numbers at specific times post-infection. Overall, this assay system could be a useful tool to gain an insight into the mechanisms of RNA replication and packaging in RVFV.
Collapse
|
41
|
Abstract
Many organisms disperse in groups, yet this process is understudied in viruses. Recent work, however, has uncovered different types of collective infectious units, all of which lead to the joint delivery of multiple viral genome copies to target cells, favoring co-infections. Collective spread of viruses can occur through widely different mechanisms, including virion aggregation driven by specific extracellular components, cloaking inside lipid vesicles, encasement in protein matrices, or binding to cell surfaces. Cell-to-cell viral spread, which allows the transmission of individual virions in a confined environment, is yet another mode of clustered virus dissemination. Nevertheless, the selective advantages of dispersing in groups remain poorly understood in most cases. Collective dispersal might have emerged as a means of sharing efficacious viral transmission vehicles. Alternatively, increasing the cellular multiplicity of infection may confer certain short-term benefits to viruses, such as overwhelming antiviral responses, avoiding early stochastic loss of viral components required for initiating infection, or complementing genetic defects present in different viral genomes. However, increasing infection multiplicity may also entail long-term costs, such as mutation accumulation and the evolution of defective particles or other types of cheater viruses. These costs and benefits, in turn, should depend on the genetic relatedness among collective infectious unit members. Establishing the genetic basis of collective viral dispersal and performing controlled experiments to pinpoint fitness effects at different spatial and temporal scales should help us clarify the implications of these spread modes for viral fitness, pathogenicity, and evolution.
Collapse
Affiliation(s)
- Rafael Sanjuán
- Institute for Integrative Systems Biology (I2SysBio), Consejo Superior de Investigaciones Científicas-Universitat de València, C/Catedrático Agustín Escardino 9, Paterna, València, Spain
| | - María-Isabel Thoulouze
- Institut Pasteur, Structural Virology Unit, Biofilm & Viral Transmission Group, Paris, France
| |
Collapse
|
42
|
Abstract
Defective viral genomes (DVGs) are generated during viral replication and are unable to carry out a full replication cycle unless coinfected with a full-length virus. DVGs are produced by many viruses, and their presence correlates with alterations in infection outcomes. Historically, DVGs were studied for their ability to interfere with standard virus replication as well as for their association with viral persistence. More recently, a critical role for DVGs in inducing the innate immune response during infection was appreciated. Here we review the role of DVGs of RNA viruses in shaping outcomes of experimental as well as natural infections and explore the mechanisms by which DVGs impact infection outcome.
Collapse
Affiliation(s)
- Emmanuelle Genoyer
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA;
| | - Carolina B López
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA;
| |
Collapse
|
43
|
Sicard A, Pirolles E, Gallet R, Vernerey MS, Yvon M, Urbino C, Peterschmitt M, Gutierrez S, Michalakis Y, Blanc S. A multicellular way of life for a multipartite virus. eLife 2019; 8:43599. [PMID: 30857590 PMCID: PMC6414197 DOI: 10.7554/elife.43599] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 02/26/2019] [Indexed: 11/13/2022] Open
Abstract
A founding paradigm in virology is that the spatial unit of the viral replication cycle is an individual cell. Multipartite viruses have a segmented genome where each segment is encapsidated separately. In this situation the viral genome is not recapitulated in a single virus particle but in the viral population. How multipartite viruses manage to efficiently infect individual cells with all segments, thus with the whole genome information, is a long-standing but perhaps deceptive mystery. By localizing and quantifying the genome segments of a nanovirus in host plant tissues we show that they rarely co-occur within individual cells. We further demonstrate that distinct segments accumulate independently in different cells and that the viral system is functional through complementation across cells. Our observation deviates from the classical conceptual framework in virology and opens an alternative possibility (at least for nanoviruses) where the infection can operate at a level above the individual cell level, defining a viral multicellular way of life.
Collapse
Affiliation(s)
- Anne Sicard
- BGPI, INRA, CIRAD, Montpellier SupAgro, Université de Montpellier, Montpellier, France
| | - Elodie Pirolles
- BGPI, INRA, CIRAD, Montpellier SupAgro, Université de Montpellier, Montpellier, France
| | - Romain Gallet
- BGPI, INRA, CIRAD, Montpellier SupAgro, Université de Montpellier, Montpellier, France
| | | | - Michel Yvon
- BGPI, INRA, CIRAD, Montpellier SupAgro, Université de Montpellier, Montpellier, France
| | - Cica Urbino
- BGPI, INRA, CIRAD, Montpellier SupAgro, Université de Montpellier, Montpellier, France.,CIRAD, BGPI, INRA, Montpellier SupAgro, Université de Montpellier, Montpellier, France
| | - Michel Peterschmitt
- BGPI, INRA, CIRAD, Montpellier SupAgro, Université de Montpellier, Montpellier, France.,CIRAD, BGPI, INRA, Montpellier SupAgro, Université de Montpellier, Montpellier, France
| | - Serafin Gutierrez
- BGPI, INRA, CIRAD, Montpellier SupAgro, Université de Montpellier, Montpellier, France
| | | | - Stéphane Blanc
- BGPI, INRA, CIRAD, Montpellier SupAgro, Université de Montpellier, Montpellier, France
| |
Collapse
|
44
|
Ragan IK, Schuck KN, Upreti D, Odendaal L, Richt JA, Trujillo JD, Wilson WC, Davis AS. Rift Valley Fever Viral RNA Detection by In Situ Hybridization in Formalin-Fixed, Paraffin-Embedded Tissues. Vector Borne Zoonotic Dis 2019; 19:553-556. [PMID: 30720389 DOI: 10.1089/vbz.2018.2383] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Sporadic outbreaks of Rift Valley fever virus (RVFV), a zoonotic, mosquito-borne Phlebovirus, cause abortion storms and death in sheep and cattle resulting in catastrophic economic impacts in endemic regions of Africa. More recently, with changes in competent vector distribution, growing international trade, and its potential use for bioterrorism, RVFV has become a transboundary animal disease of significant concern. New and sensitive techniques that determine RVFV presence, while lessening the potential for environmental contamination and human risk, through the use of inactivated, noninfectious samples such as formalin-fixed, paraffin-embedded (FFPE) tissues are needed. FFPE tissue in situ hybridization (ISH) enables the detection of nucleic acid sequences within the visual context of cellular and tissue morphology. Here, we present a chromogenic pan-RVFV ISH assay based on RNAscope® technology, which is able to detect multiple RVFV strains in FFPE tissues, enabling visual correlation of RVFV RNA presence with histopathologic lesions.
Collapse
Affiliation(s)
- Izabela K Ragan
- 1 Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas
| | - Kaitlynn N Schuck
- 1 Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas
| | - Deepa Upreti
- 1 Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas
| | - Lieza Odendaal
- 2 Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, Pretoria, South Africa
| | - Juergen A Richt
- 1 Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas
| | - Jessie D Trujillo
- 1 Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas
| | - William C Wilson
- 3 USDA-ARS Arthropod-Borne Animal Diseases Research Unit, Center for Grain and Animal Health Research, Manhattan, Kansas
| | - A Sally Davis
- 1 Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas.,2 Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, Pretoria, South Africa
| |
Collapse
|
45
|
Ter Horst S, Conceição-Neto N, Neyts J, Rocha-Pereira J. Structural and functional similarities in bunyaviruses: Perspectives for pan-bunya antivirals. Rev Med Virol 2019; 29:e2039. [PMID: 30746831 PMCID: PMC7169261 DOI: 10.1002/rmv.2039] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 11/29/2018] [Accepted: 01/17/2019] [Indexed: 01/03/2023]
Abstract
The order of Bunyavirales includes numerous (re)emerging viruses that collectively have a major impact on human and animal health worldwide. There are no vaccines for human use or antiviral drugs available to prevent or treat infections with any of these viruses. The development of efficacious and safe drugs and vaccines is a pressing matter. Ideally, such antivirals possess pan‐bunyavirus antiviral activity, allowing the containment of every bunya‐related threat. The fact that many bunyaviruses need to be handled in laboratories with biosafety level 3 or 4, the great variety of species and the frequent emergence of novel species complicate such efforts. We here examined the potential druggable targets of bunyaviruses, together with the level of conservation of their biological functions, structure, and genetic similarity by means of heatmap analysis. In the light of this, we revised the available models and tools currently available, pointing out directions for antiviral drug discovery.
Collapse
Affiliation(s)
- Sebastiaan Ter Horst
- Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, KU Leuven, Leuven, Belgium
| | - Nádia Conceição-Neto
- Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Clinical and Epidemiological Virology, KU Leuven, Leuven, Belgium
| | - Johan Neyts
- Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, KU Leuven, Leuven, Belgium
| | - Joana Rocha-Pereira
- Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, KU Leuven, Leuven, Belgium
| |
Collapse
|
46
|
Gaudreault NN, Indran SV, Balaraman V, Wilson WC, Richt JA. Molecular aspects of Rift Valley fever virus and the emergence of reassortants. Virus Genes 2019; 55:1-11. [PMID: 30426314 DOI: 10.1007/s11262-018-1611-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 11/03/2018] [Indexed: 10/27/2022]
Abstract
Rift Valley fever phlebovirus (RVFV) is a mosquito-transmitted pathogen endemic to sub-Saharan Africa and the Arabian Peninsula. RVFV is a threat to both animal and human health and has costly economic consequences mainly related to livestock production and trade. Competent hosts and vectors for RVFV are widespread, existing outside of endemic countries including the USA. Thus, the possibility of RVFV spreading to the USA or other countries worldwide is of significant concern. RVFV (genus Phlebovirus) is comprised of an enveloped virion containing a three-segmented, negative-stranded RNA genome that is able to undergo genetic reassortment. Reassortment has the potential to produce viruses that are more pathogenic, easily transmissible, and that have wider vector or host range. This is especially concerning because of the wide use of live attenuated vaccine strains throughout endemic countries. This review focuses on the molecular aspects of RVFV, genetic diversity of RVFV strains, and RVFV reassortment.
Collapse
Affiliation(s)
- Natasha N Gaudreault
- Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, 1800 Denison Avenue, Manhattan, KS, 66506, USA.
| | - Sabarish V Indran
- Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, 1800 Denison Avenue, Manhattan, KS, 66506, USA
| | - Velmurugan Balaraman
- Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, 1800 Denison Avenue, Manhattan, KS, 66506, USA
| | - William C Wilson
- United States Department of Agriculture, Agricultural Research Service, Arthropod Borne Animal Disease Research Unit, 1515 College Avenue, Manhattan, KS, 66506, USA
| | - Juergen A Richt
- Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, 1800 Denison Avenue, Manhattan, KS, 66506, USA.
| |
Collapse
|
47
|
Nikolic J, Lagaudrière-Gesbert C, Scrima N, Blondel D, Gaudin Y. Structure and Function of Negri Bodies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1215:111-127. [PMID: 31317498 DOI: 10.1007/978-3-030-14741-9_6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Replication and assembly of many viruses occur in viral factories which are specialized intracellular compartments formed during viral infection. For rabies virus, those viral factories are called Negri bodies (NBs). NBs are cytoplasmic inclusion bodies in which viral RNAs (mRNAs as well as genomic and antigenomic RNAs) are synthesized. NBs are spherical, they can fuse together, and can reversibly deform when encountering a physical barrier. All these characteristics are similar to those of eukaryotic membrane-less liquid organelles which contribute to the compartmentalization of the cell interior. Indeed, the liquid nature of NBs has been confirmed by FRAP experiments. The co-expression of rabies virus nucleoprotein N and phosphoprotein P is sufficient to induce the formation of cytoplasmic inclusions recapitulating NBs properties. Remarkably, P and N have features similar to those of cellular proteins involved in liquid organelles formation: N is an RNA-binding protein and P contains intrinsically disordered domains. An overview of the literature indicates that formation of liquid viral factories by phase separation is probably common among Mononegavirales. This allows specific recruitment and concentration of viral proteins. Finally, as virus-associated molecular patterns recognized by cellular sensors of RNA virus replication are probably essentially present in the viral factory, there should be a subtle interplay (which remains to be characterized) between those liquid structures and the cellular proteins which trigger the innate immune response.
Collapse
Affiliation(s)
- Jovan Nikolic
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette cedex, France
| | - Cécile Lagaudrière-Gesbert
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette cedex, France
| | - Nathalie Scrima
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette cedex, France
| | - Danielle Blondel
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette cedex, France.
| | - Yves Gaudin
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette cedex, France.
| |
Collapse
|
48
|
Wichgers Schreur PJ, Kormelink R, Kortekaas J. Genome packaging of the Bunyavirales. Curr Opin Virol 2018; 33:151-155. [PMID: 30227361 DOI: 10.1016/j.coviro.2018.08.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 08/17/2018] [Accepted: 08/28/2018] [Indexed: 11/18/2022]
Abstract
The order Bunyavirales comprises nine families of enveloped, negative-strand RNA viruses. Depending on the family and genus, bunyaviruses (i.e. now referring to all members of the Bunyavirales) contain genomes consisting of two to six segments. Each genome segment is encapsidated by multiple copies of the nucleocapsid (N) protein and one or a few molecules of the viral polymerase, forming so-called ribonucleoproteins (RNPs). Incorporation of RNPs into virions is mediated by the interaction of N with the cytoplasmic tails of the structural glycoproteins. Although some selectivity exists in the packaging of RNPs into virions, which seems to be driven by the 5' and 3'-untranslated regions of the genomic RNA segments, evidence is accumulating that bunyavirus genome packaging is a stochastic process.
Collapse
Affiliation(s)
| | - Richard Kormelink
- Laboratory of Virology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Jeroen Kortekaas
- Wageningen Bioveterinary Research, Houtribweg 39, 8221 RA Lelystad, The Netherlands; Laboratory of Virology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
49
|
|
50
|
Sanjuán R. Collective properties of viral infectivity. Curr Opin Virol 2018; 33:1-6. [PMID: 30015082 DOI: 10.1016/j.coviro.2018.06.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 06/14/2018] [Accepted: 06/19/2018] [Indexed: 12/22/2022]
Abstract
Individual virions typically fail to infect cells. Such decoupling between virions and infectious units is most evident in multicomponent and other segmented viruses, but is also frequent in non-segmented viruses. Despite being a well-known observation, the causes and implications of low single-virion infectivity often remain unclear. In principle, this can originate from intrinsic genetic and/or structural virion defects, but also from host infection barriers that limit early viral proliferation. Hence, viruses may have evolved strategies to increase the per-virion likelihood of establishing successful infections. This can be achieved by adopting spread modes that elevate the multiplicity of infection at the cellular level, including direct cell-to-cell viral transfer, encapsulation of multiple virions in microvesicles or other intercellular vehicles, virion aggregation, and virion binding to microbiota. In turn, increasing the multiplicity of infection could favor the evolution of defective viruses, hence modifying the fitness value of these spread modes.
Collapse
Affiliation(s)
- Rafael Sanjuán
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València, València 46980, Spain.
| |
Collapse
|