1
|
Laybourn HA, Hellemann Polhaus C, Kristensen C, Lyngfeldt Henriksen B, Zhang Y, Brogaard L, Larsen CA, Trebbien R, Larsen LE, Kalogeropoulos K, Auf dem Keller U, Skovgaard K. Multi-omics analysis reveals the impact of influenza a virus host adaptation on immune signatures in pig tracheal tissue. Front Immunol 2024; 15:1432743. [PMID: 39247193 PMCID: PMC11378526 DOI: 10.3389/fimmu.2024.1432743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/29/2024] [Indexed: 09/10/2024] Open
Abstract
Introduction Influenza A virus (IAV) infection is a global respiratory disease, which annually leads to 3-5 million cases of severe illness, resulting in 290,000-650,000 deaths. Additionally, during the past century, four global IAV pandemics have claimed millions of human lives. The epithelial lining of the trachea plays a vital role during IAV infection, both as point of viral entry and replication as well as in the antiviral immune response. Tracheal tissue is generally inaccessible from human patients, which makes animal models crucial for the study of the tracheal host immune response. Method In this study, pigs were inoculated with swine- or human-adapted H1N1 IAV to gain insight into how host adaptation of IAV shapes the innate immune response during infection. In-depth multi-omics analysis (global proteomics and RNA sequencing) of the host response in upper and lower tracheal tissue was conducted, and results were validated by microfluidic qPCR. Additionally, a subset of samples was selected for histopathological examination. Results A classical innate antiviral immune response was induced in both upper and lower trachea after infection with either swine- or human-adapted IAV with upregulation of genes and higher abundance of proteins associated with viral infection and recognition, accompanied by a significant induction of interferon stimulated genes with corresponding higher proteins concentrations. Infection with the swine-adapted virus induced a much stronger immune response compared to infection with a human-adapted IAV strain in the lower trachea, which could be a consequence of a higher viral load and a higher degree of inflammation. Discussion Central components of the JAK-STAT pathway, apoptosis, pyrimidine metabolism, and the cytoskeleton were significantly altered depending on infection with swine- or human-adapted virus and might be relevant mechanisms in relation to antiviral immunity against putative zoonotic IAV. Based on our findings, we hypothesize that during host adaptation, IAV evolve to modulate important host cell elements to favor viral infectivity and replication.
Collapse
Affiliation(s)
- Helena Aagaard Laybourn
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | | | - Charlotte Kristensen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Yaolei Zhang
- Qingdao Key Laboratory of Marine Genomics, BGI-Qingdao, Qingdao, China
| | - Louise Brogaard
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Cathrine Agnete Larsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Ramona Trebbien
- Department of Virus and Microbiological Special Diagnostics, Statens Serum Institut, Copenhagen, Denmark
| | - Lars Erik Larsen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Ulrich Auf dem Keller
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Kerstin Skovgaard
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
2
|
Uderhardt S, Neag G, Germain RN. Dynamic Multiplex Tissue Imaging in Inflammation Research. ANNUAL REVIEW OF PATHOLOGY 2024; 19:43-67. [PMID: 37722698 DOI: 10.1146/annurev-pathmechdis-070323-124158] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
Inflammation is a highly dynamic process with immune cells that continuously interact with each other and parenchymal components as they migrate through tissue. The dynamic cellular responses and interaction patterns are a function of the complex tissue environment that cannot be fully reconstructed ex vivo, making it necessary to assess cell dynamics and changing spatial patterning in vivo. These dynamics often play out deep within tissues, requiring the optical focus to be placed far below the surface of an opaque organ. With the emergence of commercially available two-photon excitation lasers that can be combined with existing imaging systems, new avenues for imaging deep tissues over long periods of time have become available. We discuss a selected subset of studies illustrating how two-photon microscopy (2PM) has helped to relate the dynamics of immune cells to their in situ function and to understand the molecular patterns that govern their behavior in vivo. We also review some key practical aspects of 2PM methods and point out issues that can confound the results, so that readers can better evaluate the reliability of conclusions drawn using this technology.
Collapse
Affiliation(s)
- Stefan Uderhardt
- Department of Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
- Exploratory Research Unit, Optical Imaging Competence Centre, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Georgiana Neag
- Department of Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
- Exploratory Research Unit, Optical Imaging Competence Centre, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Ronald N Germain
- Lymphocyte Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
- Center for Advanced Tissue Imaging (CAT-I), National Institute of Allergy and Infectious Diseases and National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA;
| |
Collapse
|
3
|
Torres DJ, Mrass P, Byrum J, Gonzales A, Martinez DN, Juarez E, Thompson E, Vezys V, Moses ME, Cannon JL. Quantitative analyses of T cell motion in tissue reveals factors driving T cell search in tissues. eLife 2023; 12:e84916. [PMID: 37870221 PMCID: PMC10672806 DOI: 10.7554/elife.84916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 10/22/2023] [Indexed: 10/24/2023] Open
Abstract
T cells are required to clear infection, and T cell motion plays a role in how quickly a T cell finds its target, from initial naive T cell activation by a dendritic cell to interaction with target cells in infected tissue. To better understand how different tissue environments affect T cell motility, we compared multiple features of T cell motion including speed, persistence, turning angle, directionality, and confinement of T cells moving in multiple murine tissues using microscopy. We quantitatively analyzed naive T cell motility within the lymph node and compared motility parameters with activated CD8 T cells moving within the villi of small intestine and lung under different activation conditions. Our motility analysis found that while the speeds and the overall displacement of T cells vary within all tissues analyzed, T cells in all tissues tended to persist at the same speed. Interestingly, we found that T cells in the lung show a marked population of T cells turning at close to 180o, while T cells in lymph nodes and villi do not exhibit this "reversing" movement. T cells in the lung also showed significantly decreased meandering ratios and increased confinement compared to T cells in lymph nodes and villi. These differences in motility patterns led to a decrease in the total volume scanned by T cells in lung compared to T cells in lymph node and villi. These results suggest that the tissue environment in which T cells move can impact the type of motility and ultimately, the efficiency of T cell search for target cells within specialized tissues such as the lung.
Collapse
Affiliation(s)
| | - Paulus Mrass
- Department of Molecular Genetics and Microbiology, University of New Mexico School of MedicineAlbuquerqueUnited States
| | - Janie Byrum
- Department of Molecular Genetics and Microbiology, University of New Mexico School of MedicineAlbuquerqueUnited States
| | | | | | | | - Emily Thompson
- Department of Microbiology and Immunology, University of Minnesota Medical SchoolMinneapolisUnited States
| | - Vaiva Vezys
- Department of Microbiology and Immunology, University of Minnesota Medical SchoolMinneapolisUnited States
| | - Melanie E Moses
- Department of Computer Science, University of New MexicoAlbuquerqueUnited States
| | - Judy L Cannon
- Department of Molecular Genetics and Microbiology, University of New Mexico School of MedicineAlbuquerqueUnited States
- Autophagy, Inflammation, and Metabolism Center of Biomedical Research Excellence, University of New Mexico School of MedicineAlbuquerqueUnited States
| |
Collapse
|
4
|
Reilly EC, Sportiello M, Emo KL, Amitrano AM, Jha R, Kumar ABR, Laniewski NG, Yang H, Kim M, Topham DJ. CD49a Identifies Polyfunctional Memory CD8 T Cell Subsets that Persist in the Lungs After Influenza Infection. Front Immunol 2021; 12:728669. [PMID: 34566986 PMCID: PMC8462271 DOI: 10.3389/fimmu.2021.728669] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 08/23/2021] [Indexed: 12/13/2022] Open
Abstract
CD8 T cell memory offers critical antiviral protection, even in the absence of neutralizing antibodies. The paradigm is that CD8 T cell memory within the lung tissue consists of a mix of circulating TEM cells and non-circulating TRM cells. However, based on our analysis, the heterogeneity within the tissue is much higher, identifying TCM, TEM, TRM, and a multitude of populations which do not perfectly fit these classifications. Further interrogation of the populations shows that TRM cells that express CD49a, both with and without CD103, have increased and diverse effector potential compared with CD49a negative populations. These populations function as a one-man band, displaying antiviral activity, chemokine production, release of GM-CSF, and the ability to kill specific targets in vitro with delayed kinetics compared with effector CD8 T cells. Together, this study establishes that CD49a defines multiple polyfunctional CD8 memory subsets after clearance of influenza infection, which act to eliminate virus in the absence of direct killing, recruit and mature innate immune cells, and destroy infected cells if the virus persists.
Collapse
Affiliation(s)
- Emma C. Reilly
- Center for Vaccine Biology and Immunology, University of Rochester Medical Center, Rochester, NY, United States
| | - Mike Sportiello
- Center for Vaccine Biology and Immunology, University of Rochester Medical Center, Rochester, NY, United States
| | - Kris Lambert Emo
- Center for Vaccine Biology and Immunology, University of Rochester Medical Center, Rochester, NY, United States
| | - Andrea M. Amitrano
- Center for Vaccine Biology and Immunology, University of Rochester Medical Center, Rochester, NY, United States
| | - Rakshanda Jha
- Center for Vaccine Biology and Immunology, University of Rochester Medical Center, Rochester, NY, United States
| | - Ashwin B. R. Kumar
- Center for Vaccine Biology and Immunology, University of Rochester Medical Center, Rochester, NY, United States
| | - Nathan G. Laniewski
- Center for Vaccine Biology and Immunology, University of Rochester Medical Center, Rochester, NY, United States
- Department of Pediatrics, University of Rochester Medical Center, Rochester, NY, United States
| | - Hongmei Yang
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, NY, United States
| | - Minsoo Kim
- Center for Vaccine Biology and Immunology, University of Rochester Medical Center, Rochester, NY, United States
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, United States
| | - David J. Topham
- Center for Vaccine Biology and Immunology, University of Rochester Medical Center, Rochester, NY, United States
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, United States
| |
Collapse
|
5
|
Quantifying dose-, strain-, and tissue-specific kinetics of parainfluenza virus infection. PLoS Comput Biol 2021; 17:e1009299. [PMID: 34383757 PMCID: PMC8384156 DOI: 10.1371/journal.pcbi.1009299] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 08/24/2021] [Accepted: 07/23/2021] [Indexed: 11/25/2022] Open
Abstract
Human parainfluenza viruses (HPIVs) are a leading cause of acute respiratory infection hospitalization in children, yet little is known about how dose, strain, tissue tropism, and individual heterogeneity affects the processes driving growth and clearance kinetics. Longitudinal measurements are possible by using reporter Sendai viruses, the murine counterpart of HPIV 1, that express luciferase, where the insertion location yields a wild-type (rSeV-luc(M-F*)) or attenuated (rSeV-luc(P-M)) phenotype. Bioluminescence from individual animals suggests that there is a rapid increase in expression followed by a peak, biphasic clearance, and resolution. However, these kinetics vary between individuals and with dose, strain, and whether the infection was initiated in the upper and/or lower respiratory tract. To quantify the differences, we translated the bioluminescence measurements from the nasopharynx, trachea, and lung into viral loads and used a mathematical model together a nonlinear mixed effects approach to define the mechanisms distinguishing each scenario. The results confirmed a higher rate of virus production with the rSeV-luc(M-F*) virus compared to its attenuated counterpart, and suggested that low doses result in disproportionately fewer infected cells. The analyses indicated faster infectivity and infected cell clearance rates in the lung and that higher viral doses, and concomitantly higher infected cell numbers, resulted in more rapid clearance. This parameter was also highly variable amongst individuals, which was particularly evident during infection in the lung. These critical differences provide important insight into distinct HPIV dynamics, and show how bioluminescence data can be combined with quantitative analyses to dissect host-, virus-, and dose-dependent effects. Human parainfluenza viruses (HPIVs) cause acute respiratory infections and can lead to the hospitalization of children. HPIV infection severity may vary due to dose, strain, patient, and whether the infection initiates within the upper or lower respiratory tract. There is a need to determine how the rates of virus spread and clearance change in different infection scenarios in order to better understand varying clinical manifestations. The significance of our research is in identifying the dominant mechanisms driving strain-, dose-, and tissue-specific HPIV infection kinetics, and in pairing bioluminescence data with quantitative analyses to determine how the same virus can yield patient-specific outcomes. This work enhances our understanding of HPIV infection and broadens our knowledge viral dynamics in the upper and lower respiratory tracts.
Collapse
|
6
|
Lopez-Ichikawa M, Vu NK, Nijagal A, Rubinsky B, Chang TT. Neutrophils are important for the development of pro-reparative macrophages after irreversible electroporation of the liver in mice. Sci Rep 2021; 11:14986. [PMID: 34294763 PMCID: PMC8298444 DOI: 10.1038/s41598-021-94016-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 06/22/2021] [Indexed: 12/14/2022] Open
Abstract
Irreversible electroporation (IRE) is a non-thermal tissue ablative technology that has emerging applications in surgical oncology and regenerative surgery. To advance its therapeutic usefulness, it is important to understand the mechanisms through which IRE induces cell death and the role of the innate immune system in mediating subsequent regenerative repair. Through intravital imaging of the liver in mice, we show that IRE produces distinctive tissue injury features, including delayed yet robust recruitment of neutrophils, consistent with programmed necrosis. IRE treatment converts the monocyte/macrophage balance from pro-inflammatory to pro-reparative populations, and depletion of neutrophils inhibits this conversion. Reduced generation of pro-reparative Ly6CloF4/80hi macrophages correlates with lower numbers of SOX9+ hepatic progenitor cells in areas of macrophage clusters within the IRE injury zone. Our findings suggest that neutrophils play an important role in promoting the development of pro-reparative Ly6Clo monocytes/macrophages at the site of IRE injury, thus establishing conditions of regenerative repair.
Collapse
Affiliation(s)
- Maya Lopez-Ichikawa
- Department of Surgery, University of California, San Francisco, 513 Parnassus Avenue, San Francisco, CA, 94143, USA
| | - Ngan K Vu
- Department of Surgery, University of California, San Francisco, 513 Parnassus Avenue, San Francisco, CA, 94143, USA
| | - Amar Nijagal
- Department of Surgery, University of California, San Francisco, 513 Parnassus Avenue, San Francisco, CA, 94143, USA
| | - Boris Rubinsky
- Department of Mechanical Engineering, University of California, Berkeley, 6124 Etcheverry Hall, Berkeley, CA, 94720, USA
| | - Tammy T Chang
- Department of Surgery, University of California, San Francisco, 513 Parnassus Avenue, San Francisco, CA, 94143, USA.
| |
Collapse
|
7
|
Myers MA, Smith AP, Lane LC, Moquin DJ, Aogo R, Woolard S, Thomas P, Vogel P, Smith AM. Dynamically linking influenza virus infection kinetics, lung injury, inflammation, and disease severity. eLife 2021; 10:68864. [PMID: 34282728 PMCID: PMC8370774 DOI: 10.7554/elife.68864] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 07/14/2021] [Indexed: 12/12/2022] Open
Abstract
Influenza viruses cause a significant amount of morbidity and mortality. Understanding host immune control efficacy and how different factors influence lung injury and disease severity are critical. We established and validated dynamical connections between viral loads, infected cells, CD8+ T cells, lung injury, inflammation, and disease severity using an integrative mathematical model-experiment exchange. Our results showed that the dynamics of inflammation and virus-inflicted lung injury are distinct and nonlinearly related to disease severity, and that these two pathologic measurements can be independently predicted using the model-derived infected cell dynamics. Our findings further indicated that the relative CD8+ T cell dynamics paralleled the percent of the lung that had resolved with the rate of CD8+ T cell-mediated clearance rapidly accelerating by over 48,000 times in 2 days. This complimented our analyses showing a negative correlation between the efficacy of innate and adaptive immune-mediated infected cell clearance, and that infection duration was driven by CD8+ T cell magnitude rather than efficacy and could be significantly prolonged if the ratio of CD8+ T cells to infected cells was sufficiently low. These links between important pathogen kinetics and host pathology enhance our ability to forecast disease progression, potential complications, and therapeutic efficacy.
Collapse
Affiliation(s)
- Margaret A Myers
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, United States
| | - Amanda P Smith
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, United States
| | - Lindey C Lane
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, United States
| | - David J Moquin
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, United States
| | - Rosemary Aogo
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, United States
| | - Stacie Woolard
- Flow Cytometry Core, St. Jude Children's Research Hospital, Memphis, United States
| | - Paul Thomas
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, United States
| | - Peter Vogel
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, United States
| | - Amber M Smith
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, United States
| |
Collapse
|
8
|
Welten SPM, Oderbolz J, Yilmaz V, Bidgood SR, Gould V, Mercer J, Spörri R, Oxenius A. Influenza- and MCMV-induced memory CD8 T cells control respiratory vaccinia virus infection despite residence in distinct anatomical niches. Mucosal Immunol 2021; 14:728-742. [PMID: 33479479 PMCID: PMC8075924 DOI: 10.1038/s41385-020-00373-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 11/25/2020] [Accepted: 12/14/2020] [Indexed: 02/04/2023]
Abstract
Induction of memory CD8 T cells residing in peripheral tissues is of interest for T cell-based vaccines as these cells are located at mucosal and barrier sites and can immediately exert effector functions, thus providing protection in case of local pathogen encounter. Different memory CD8 T cell subsets patrol peripheral tissues, but it is unclear which subset is superior in providing protection upon secondary infections. We used influenza virus to induce predominantly tissue resident memory T cells or cytomegalovirus to elicit a large pool of effector-like memory cells in the lungs and determined their early protective capacity and mechanism of reactivation. Both memory CD8 T cell pools have unique characteristics with respect to their phenotype, localization, and maintenance. However, these distinct features do not translate into different capacities to control a respiratory vaccinia virus challenge in an antigen-specific manner, although differential activation mechanisms are utilized. While influenza-induced memory CD8 T cells respond to antigen by local proliferation, MCMV-induced memory CD8 T cells relocate from the vasculature into the tissue in an antigen-independent and partially chemokine-driven manner. Together these results bear relevance for the development of vaccines aimed at eliciting a protective memory CD8 T cell pool at mucosal sites.
Collapse
Affiliation(s)
- Suzanne P M Welten
- Institute of Microbiology, ETH Zürich, Vladimir-Prelog-Weg 4, 8093, Zürich, Switzerland
| | - Josua Oderbolz
- Institute of Microbiology, ETH Zürich, Vladimir-Prelog-Weg 4, 8093, Zürich, Switzerland
| | - Vural Yilmaz
- Institute of Microbiology, ETH Zürich, Vladimir-Prelog-Weg 4, 8093, Zürich, Switzerland
| | - Susanna R Bidgood
- MRC-Laboratory for Molecular Cell Biology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Victoria Gould
- MRC-Laboratory for Molecular Cell Biology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Jason Mercer
- MRC-Laboratory for Molecular Cell Biology, University College London, Gower Street, London, WC1E 6BT, UK
- Institute of Microbiology and Infection, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Roman Spörri
- Institute of Microbiology, ETH Zürich, Vladimir-Prelog-Weg 4, 8093, Zürich, Switzerland
| | - Annette Oxenius
- Institute of Microbiology, ETH Zürich, Vladimir-Prelog-Weg 4, 8093, Zürich, Switzerland.
| |
Collapse
|
9
|
Wu W, Tian L, Zhang W, Booth JL, Ainsua-Enrich E, Kovats S, Brown BR, Metcalf JP. Long-term cigarette smoke exposure dysregulates pulmonary T cell response and IFN-γ protection to influenza virus in mouse. Respir Res 2021; 22:112. [PMID: 33879121 PMCID: PMC8056367 DOI: 10.1186/s12931-021-01713-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 04/12/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Influenza is a highly contagious, acute, febrile respiratory infection caused by a negative-sense, single-stranded RNA virus, which belongs in the Orthomyxoviridae family. Cigarette smoke (CS) exposure worsens influenza infection in terms of frequency and severity in both human and animal models. METHODS C57BL/6 mice with or without CS exposure for 6 weeks were inoculated intranasally with a single, non-lethal dose of the influenza A virus (IAV) A/Puerto Rico/8/1934 (PR8) strain. At 7 and 10 days after infection, lung and mediastinal lymph nodes (MLN) cells were collected to determine the numbers of total CD4 + and CD8 + T cells, and IAV-specific CD4 + and CD8 + T cells, using flow cytometry. Bronchoalveolar lavage fluid (BALF) was also collected to determine IFN-γ levels and total protein concentration. RESULTS Although long-term CS exposure suppressed early pulmonary IAV-antigen specific CD8 + and CD4 + T cell numbers and IFN-γ production in response to IAV infection on day 7 post-infection, CS enhanced numbers of these cells and IFN-γ production on day 10. The changes of total protein concentration in BALF are consistent with the changes in the IFN-γ amounts between day 7 and 10, which suggested that excessive IFN-γ impaired barrier function and caused lung injury at the later stage of infection. CONCLUSIONS Our results demonstrated that prior CS exposure caused a biphasic T cell and IFN-γ response to subsequent infection with influenza in the lung. Specifically, the number of IAV antigen-specific T cells on day 10 was greatly increased by CS exposure even though CS decreased the number of the same group of cells on day 7. The result suggested that CS affected the kinetics of the T cell response to IAV, which was suppressed at an early stage and exaggerated at a later stage. This study is the first to describe the different effect of long-term CS on T cell responses to IAV at early and late stages of infection in vivo.
Collapse
Affiliation(s)
- Wenxin Wu
- Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Oklahoma Health Sciences Center, Room 425, RP1, 800 N. Research Pkwy., Oklahoma City, OK, 73104, USA.
| | - Lili Tian
- Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Oklahoma Health Sciences Center, Room 425, RP1, 800 N. Research Pkwy., Oklahoma City, OK, 73104, USA
| | - Wei Zhang
- Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Oklahoma Health Sciences Center, Room 425, RP1, 800 N. Research Pkwy., Oklahoma City, OK, 73104, USA
| | - J Leland Booth
- Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Oklahoma Health Sciences Center, Room 425, RP1, 800 N. Research Pkwy., Oklahoma City, OK, 73104, USA
| | - Erola Ainsua-Enrich
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Susan Kovats
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Brent R Brown
- Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Oklahoma Health Sciences Center, Room 425, RP1, 800 N. Research Pkwy., Oklahoma City, OK, 73104, USA
| | - Jordan P Metcalf
- Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Oklahoma Health Sciences Center, Room 425, RP1, 800 N. Research Pkwy., Oklahoma City, OK, 73104, USA.
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- Veterans Affairs Medical Center, Oklahoma City, OK, USA.
| |
Collapse
|
10
|
Topham DJ, DeDiego ML, Nogales A, Sangster MY, Sant A. Immunity to Influenza Infection in Humans. Cold Spring Harb Perspect Med 2021; 11:a038729. [PMID: 31871226 PMCID: PMC7919402 DOI: 10.1101/cshperspect.a038729] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This review discusses the human immune responses to influenza infection with some insights from studies using animal models, such as experimental infection of mice. Recent technological advances in the study of human immune responses have greatly added to our knowledge of the infection and immune responses, and therefore much of the focus is on recent studies that have moved the field forward. We consider the complexity of the adaptive response generated by many sequential encounters through infection and vaccination.
Collapse
Affiliation(s)
- David J Topham
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York 14642, USA
| | - Marta L DeDiego
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Cientificas, 28049 Madrid, Spain
| | - Aitor Nogales
- Instituto Nacional de Investigación y Tecnologia Agraria y Ailmentaria, 28040 Madrid, Spain
| | - Mark Y Sangster
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York 14642, USA
| | - Andrea Sant
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York 14642, USA
| |
Collapse
|
11
|
Yuan C, Jin Y, Li Y, Zhang E, Zhang P, Yang Q. PEDV infection in neonatal piglets through the nasal cavity is mediated by subepithelial CD3 + T cells. Vet Res 2021; 52:26. [PMID: 33597007 PMCID: PMC7888150 DOI: 10.1186/s13567-020-00883-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 12/16/2020] [Indexed: 01/18/2023] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) primarily infects neonatal piglets causing catastrophic effects on the global pig farming industry. PEDV infects piglets through the nasal cavity, a process in which dendritic cells (DCs) play an important role. However, neonatal piglets have fewer nasal DCs. This study found that subepithelial CD3+ T cells mediated PEDV invasion through the nasal cavity in neonatal piglets. PEDV could replicate in the nasal epithelial cells (NECs) isolated from the nasal cavity of neonatal piglets. Infection of NECs with PEDV could induce antiviral and inflammatory cytokines at the late stage. The infected NECs mediated transfer of virus to CD3+ T cells distributed in the subepithelial of the nasal cavity via cell-to-cell contact. The infected CD3+ T cells could migrate to the intestine via blood circulation, causing intestinal infection in neonatal piglets. Thus, the findings of this study indicate the importance of CD3+T cells in the dissemination of PEDV from the nasal cavity to the intestinal mucosa in neonatal piglets.
Collapse
Affiliation(s)
- Chen Yuan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Weigang 1, Nanjing, Jiangsu, 210095, China
| | - Yuxin Jin
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Weigang 1, Nanjing, Jiangsu, 210095, China
| | - Yuchen Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Weigang 1, Nanjing, Jiangsu, 210095, China
| | - En Zhang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Weigang 1, Nanjing, Jiangsu, 210095, China
| | - Penghao Zhang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Weigang 1, Nanjing, Jiangsu, 210095, China
| | - Qian Yang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Weigang 1, Nanjing, Jiangsu, 210095, China.
| |
Collapse
|
12
|
Emo K, Reilly EC, Sportiello M, Yang H, Topham DJ. T cell and chemokine receptors differentially control CD8 T cell motility behavior in the infected airways immediately before and after virus clearance in a primary infection. PLoS One 2020; 15:e0227157. [PMID: 32817719 PMCID: PMC7444504 DOI: 10.1371/journal.pone.0227157] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 04/21/2020] [Indexed: 11/19/2022] Open
Abstract
In mice, experimental influenza virus infection stimulates CD8 T cell infiltration of the airways. Virus is cleared by day 9, and between days 8 and 9 there is an abrupt change in CD8 T cell motility behavior transitioning from low velocity and high confinement on day 8, to high velocity with continued high confinement on day 9. We hypothesized that loss of virus and/or antigen signals in the context of high chemokine levels drives the T cells into a rapid surveillance mode. Virus infection induces chemokine production, which may change when the virus is cleared. We therefore sought to examine this period of rapid changes to the T cell environment in the tissue and seek evidence on the roles of peptide-MHC and chemokine receptor interactions. Experiments were performed to block G protein coupled receptor (GPCR) signaling with Pertussis toxin (Ptx). Ptx treatment generally reduced cell velocities and mildly increased confinement suggesting chemokine mediated arrest (velocity <2 μm/min) (Friedman RS, 2005), except on day 8 when velocity increased and confinement was relieved. Blocking specific peptide-MHC with monoclonal antibody unexpectedly decreased velocities on days 7 through 9, suggesting TCR/peptide-MHC interactions promote cell mobility in the tissue. Together, these results suggest the T cells are engaged with antigen bearing and chemokine producing cells that affect motility in ways that vary with the day after infection. The increase in velocities on day 9 were reversed by addition of specific peptide, consistent with the idea that antigen signals become limiting on day 9 compared to earlier time points. Thus, antigen and chemokine signals act to alternately promote and restrict CD8 T cell motility until the point of virus clearance, suggesting the switch in motility behavior on day 9 may be due to a combination of limiting antigen in the presence of high chemokine signals as the virus is cleared.
Collapse
Affiliation(s)
- Kris Emo
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, Rochester, NY, United States of America
| | - Emma C. Reilly
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, Rochester, NY, United States of America
| | - Mike Sportiello
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, Rochester, NY, United States of America
| | - Hongmei Yang
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, NY, United States of America
| | - David J. Topham
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, Rochester, NY, United States of America
- * E-mail:
| |
Collapse
|
13
|
Fernandes NRJ, Reilly NS, Schrock DC, Hocking DC, Oakes PW, Fowell DJ. CD4 + T Cell Interstitial Migration Controlled by Fibronectin in the Inflamed Skin. Front Immunol 2020; 11:1501. [PMID: 32793204 PMCID: PMC7393769 DOI: 10.3389/fimmu.2020.01501] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 06/09/2020] [Indexed: 01/21/2023] Open
Abstract
The extracellular matrix (ECM) is extensively remodeled during inflammation providing essential guidance cues for immune cell migration and signals for cell activation and survival. There is increasing interest in the therapeutic targeting of ECM to mitigate chronic inflammatory diseases and enhance access to the tumor microenvironment. T cells utilize the ECM as a scaffold for interstitial migration, dependent on T cell expression of matrix-binding integrins αVβ1/αVβ3 and tissue display of the respective RGD-containing ligands. The specific ECM components that control T cell migration are unclear. Fibronectin (FN), a canonical RGD-containing matrix component, is heavily upregulated in inflamed tissues and in vitro can serve as a substrate for leukocyte migration. However, limited by lack of tools to intravitally visualize and manipulate FN, the specific role of FN in effector T cell migration in vivo is unknown. Here, we utilize fluorescently-tagged FN to probe for FN deposition, and intravital multiphoton microscopy to visualize T cell migration relative to FN in the inflamed ear dermis. Th1 cells were found to migrate along FN fibers, with T cells appearing to actively push or pull against flexible FN fibers. To determine the importance of T cell interactions with FN, we used a specific inhibitor of FN polymerization, pUR4. Intradermal delivery of pUR4 (but not the control peptide) to the inflamed skin resulted in a local reduction in FN deposition. We also saw a striking attenuation of Th1 effector T cell movement at the pUR4 injection site, suggesting FN plays a key role in T cell interstitial migration. In mechanistic studies, pUR4 incubation with FN in vitro resulted in enhanced tethering of T cells to FN matrix, limiting productive migration. In vivo, such tethering led to increased Th1 accumulation in the inflamed dermis. Enhanced Th1 accumulation exacerbated inflammation with increased Th1 activation and IFNγ cytokine production. Thus, our studies highlight the importance of ECM FN fibrils for T cell migration in inflamed tissues and suggest that manipulating local levels of ECM FN may prove beneficial in promoting T cell accumulation in tissues and enhancing local immunity to infection or cancer.
Collapse
Affiliation(s)
- Ninoshka R. J. Fernandes
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, United States
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, United States
| | - Nicholas S. Reilly
- Department of Physics and Astronomy, University of Rochester, Rochester, NY, United States
| | - Dillon C. Schrock
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, United States
| | - Denise C. Hocking
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, United States
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, United States
| | - Patrick W. Oakes
- Department of Physics and Astronomy, University of Rochester, Rochester, NY, United States
- Department of Biology, University of Rochester, Rochester, NY, United States
| | - Deborah J. Fowell
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, United States
| |
Collapse
|
14
|
Lau D, Garçon F, Chandra A, Lechermann LM, Aloj L, Chilvers ER, Corrie PG, Okkenhaug K, Gallagher FA. Intravital Imaging of Adoptive T-Cell Morphology, Mobility and Trafficking Following Immune Checkpoint Inhibition in a Mouse Melanoma Model. Front Immunol 2020; 11:1514. [PMID: 32793206 PMCID: PMC7387409 DOI: 10.3389/fimmu.2020.01514] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 06/09/2020] [Indexed: 12/13/2022] Open
Abstract
Efficient T-cell targeting, infiltration and activation within tumors is crucial for successful adoptive T-cell therapy. Intravital microscopy is a powerful tool for the visualization of T-cell behavior within tumors, as well as spatial and temporal heterogeneity in response to immunotherapy. Here we describe an experimental approach for intravital imaging of adoptive T-cell morphology, mobility and trafficking in a skin-flap tumor model, following immune modulation with immune checkpoint inhibitors (ICIs) targeting PD-L1 and CTLA-4. A syngeneic model of ovalbumin and mCherry-expressing amelanotic mouse melanoma was used in conjunction with adoptively transferred OT-1+ cytotoxic T-cells expressing GFP to image antigen-specific live T-cell behavior within the tumor microenvironment. Dynamic image analysis of T-cell motility showed distinct CD8+ T-cell migration patterns and morpho-dynamics within different tumor compartments in response to ICIs: this approach was used to cluster T-cell behavior into four groups based on velocity and meandering index. The results showed that most T-cells within the tumor periphery demonstrated Lévy-like trajectories, consistent with tumor cell searching strategies. T-cells adjacent to tumor cells had reduced velocity and appeared to probe the local environment, consistent with cell-cell interactions. An increased number of T-cells were detected following treatment, traveling at lower mean velocities than controls, and demonstrating reduced displacement consistent with target engagement. Histogram-based analysis of immunofluorescent images from harvested tumors showed that in the ICI-treated mice there was a higher density of CD31+ vessels compared to untreated controls and a greater infiltration of T-cells towards the tumor core, consistent with increased cellular trafficking post-treatment.
Collapse
Affiliation(s)
- Doreen Lau
- Cancer Research UK Cambridge Centre, Cambridge, United Kingdom
- Department of Radiology, University of Cambridge, Cambridge, United Kingdom
| | - Fabien Garçon
- Laboratory of Lymphocyte Signaling and Development, The Babraham Institute, Cambridge, United Kingdom
| | - Anita Chandra
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | | | - Luigi Aloj
- Cancer Research UK Cambridge Centre, Cambridge, United Kingdom
- Department of Radiology, University of Cambridge, Cambridge, United Kingdom
- Department of Nuclear Medicine, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Edwin R. Chilvers
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Pippa G. Corrie
- Department of Oncology, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Klaus Okkenhaug
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Ferdia A. Gallagher
- Cancer Research UK Cambridge Centre, Cambridge, United Kingdom
- Department of Radiology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
15
|
Live Visualization of Hemagglutinin Dynamics During Infection by Using a Novel Reporter Influenza A Virus. Viruses 2020; 12:v12060687. [PMID: 32604762 PMCID: PMC7354568 DOI: 10.3390/v12060687] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 06/21/2020] [Accepted: 06/22/2020] [Indexed: 12/14/2022] Open
Abstract
Live visualization of influenza A virus (IAV) structural proteins during viral infection in cells is highly sought objective to study different aspects of the viral replication cycle. To achieve this, we engineered an IAV to express a Tetra Cysteine tag (TC tag) from hemagglutinin (HA), which allows intracellular labeling of the engineered HA protein with biarsenic dyes and subsequent fluorescence detection. Using such constructs, we rescued a recombinant IAV with TC tag inserted in HA, in A/Puerto Rico/8/1934(H1N1) background (HA-TC). This recombinant HA-TC tag reporter IAV was replication-competent; however, as compared to wild type PR8 IAV, it was attenuated in multicycle replication. We confirmed expression of TC tag and biarsenical labeling of HA by immunofluorescence assay in cells infected with an HA-TC tag reporter IAV. Further, we used this reporter virus to visualize HA expression and translocation in IAV infected cells by live confocal imaging. We also tested the utility of the HA-TC IAV in testing chemical inhibitors of the HA translocation. Overall, HA-TC IAV is a versatile tool that will be useful for studying viral life cycle events, virus-host interactions, and anti-viral testing.
Collapse
|
16
|
T RM integrins CD103 and CD49a differentially support adherence and motility after resolution of influenza virus infection. Proc Natl Acad Sci U S A 2020; 117:12306-12314. [PMID: 32439709 PMCID: PMC7275699 DOI: 10.1073/pnas.1915681117] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Current influenza vaccination strategies require annual immunizations, with fairly low efficacy rates. One technique to improve protection against a greater breadth of influenza viruses is to elicit broadly cross-reactive cell-mediated immunity and generate a local population of cytotoxic T cells to respond to conserved regions of circulating viruses. However, this approach requires improved understanding of how these cells migrate within and attach to the tissue in order to persist and offer long-term immunity. This study investigates how receptors on the T cell surface impact the cell’s ability to interact with the tissue and provide evidence of which of these receptors are essential for protection. Furthermore, these studies reveal functional in vivo mechanisms of cellular markers used to characterize TRM. Tissue-resident memory CD8 T (TRM) cells are a unique immune memory subset that develops and remains in peripheral tissues at the site of infection, providing future host resistance upon reexposure to that pathogen. In the pulmonary system, TRM are identified through S1P antagonist CD69 and expression of integrins CD103/β7 and CD49a/CD29(β1). Contrary to the established role of CD69 on CD8 T cells, the functions of CD103 and CD49a on this population are not well defined. This study examines the expression patterns and functions of CD103 and CD49a with a specific focus on their impact on T cell motility during influenza virus infection. We show that the TRM cell surface phenotype develops by 2 wk postinfection, with the majority of the population expressing CD49a and a subset that is also positive for CD103. Despite a previously established role in retaining TRM in peripheral tissues, CD49a facilitates locomotion of virus-specific CD8 T cells, both in vitro and in vivo. These results demonstrate that CD49a may contribute to local surveillance mechanisms of the TRM population.
Collapse
|
17
|
Abstract
In mammals, adaptive immunity is mediated by a broadly diverse repertoire of naive B and T lymphocytes that recirculate between secondary lymphoid organs. Initial antigen exposure promotes lymphocyte clonal expansion and differentiation, including the formation of memory cells. Antigen-specific memory cells are maintained at higher frequencies than their naive counterparts and have different functional and homing abilities. Importantly, a subset of memory cells, known as tissue-resident memory cells, is maintained without recirculating in nonlymphoid tissues, often at barrier surfaces, where they can be reactivated by antigen and rapidly perform effector functions that help protect the tissue in which they reside. Although antigen-experienced B cells are abundant at many barrier surfaces, their characterization as tissue-resident memory B (BRM) cells is not well developed. In this study, we describe the characteristics of memory B cells in various locations and discuss their possible contributions to immunity and homeostasis as bona fide BRM cells.
Collapse
Affiliation(s)
- S. Rameeza Allie
- Division of Clinical Immunology and Rheumatology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Troy D. Randall
- Division of Clinical Immunology and Rheumatology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
18
|
Topham DJ. Serendipity: Reflections on Being Mentored by Dr. Peter Doherty. Viral Immunol 2020; 33:137-142. [PMID: 32286185 PMCID: PMC7185342 DOI: 10.1089/vim.2019.0181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
This is a semiautobiographical and scientific account of my time in the Doherty Laboratory from 1994 to 1999. It includes personal vignettes as well as discussion of how our work has impacted the fields of influenza, respiratory infections and immunity. I also point out the long-term impacts on my career.
Collapse
Affiliation(s)
- David J. Topham
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, University of Rochester Medical Center, Rochester, New York
| |
Collapse
|
19
|
Ueki H, Wang IH, Zhao D, Gunzer M, Kawaoka Y. Multicolor two-photon imaging of in vivo cellular pathophysiology upon influenza virus infection using the two-photon IMPRESS. Nat Protoc 2020; 15:1041-1065. [PMID: 31996843 PMCID: PMC7086515 DOI: 10.1038/s41596-019-0275-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 12/03/2019] [Indexed: 12/14/2022]
Abstract
In vivo two-photon imaging is a valuable technique for studies of viral pathogenesis and host responses to infection in vivo. In this protocol, we describe a methodology for analyzing influenza virus-infected lung in vivo by two-photon imaging microscopy. We describe the surgical procedure, how to stabilize the lung, and an approach to analyzing the data. Further, we provide a database of fluorescent dyes, antibodies, and reporter mouse lines that can be used in combination with a reporter influenza virus (Color-flu) for multicolor analysis. Setup of this model typically takes ~30 min and enables the observation of influenza virus-infected lungs for >4 h during the acute phase of the inflammation and at least 1 h in the lethal phase. This imaging system, which we termed two-photon IMPRESS (imaging pathophysiology research system), is broadly applicable to analyses of other respiratory pathogens and reveals disease progression at the cellular level in vivo.
Collapse
Affiliation(s)
- Hiroshi Ueki
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - I-Hsuan Wang
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Dongming Zhao
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Matthias Gunzer
- Institute for Experimental Immunology and Imaging, University Hospital, University Duisburg-Essen, Essen, Germany
| | - Yoshihiro Kawaoka
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo, Japan.
- Department of Special Pathogens, International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Tokyo, Japan.
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA.
| |
Collapse
|
20
|
Veres TZ. Visualizing immune responses of the airway mucosa. Cell Immunol 2018; 350:103865. [PMID: 30297084 DOI: 10.1016/j.cellimm.2018.10.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 05/03/2018] [Accepted: 10/01/2018] [Indexed: 12/19/2022]
Abstract
The airway mucosa is the primary tissue site exposed to inhaled particulate matter, which includes pathogens and allergens. While most inhaled particles are eliminated from the airways via mucociliary clearance, some pathogens may penetrate the mucosal epithelial barrier and an effective activation of the mucosal immune system is required to prevent further pathogen spread. Similarly, inhaled environmental allergens may induce an aberrant activation of immune cells in the airway mucosa, causing allergic airway disease. During the last years, several investigators employed advanced microscopic imaging on both intravital and tissue explant preparations to observe the dynamic behavior of various immune cells within their complex tissue environment. In the respiratory tract, most imaging studies focused on immune responses of the alveolar compartment in the lung periphery. However, equally important immunological events occur more proximally in the mucosa of the conducting airways, both during infection and allergic responses, calling for a more detailed imaging analysis also at this site. In this review, I will outline the technical challenges of designing microscopic imaging experiments in the conducting airways and summarize our recent efforts in understanding airway mucosal immune cell dynamics in steady-state conditions, during infection and allergy.
Collapse
Affiliation(s)
- Tibor Z Veres
- Lymphocyte Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, United States; MediCity Research Laboratory, University of Turku, Turku 20520, Finland.
| |
Collapse
|
21
|
Palomino-Segura M, Virgilio T, Morone D, Pizzagalli DU, Gonzalez SF. Imaging Cell Interaction in Tracheal Mucosa During Influenza Virus Infection Using Two-photon Intravital Microscopy. J Vis Exp 2018:58355. [PMID: 30176018 PMCID: PMC6128112 DOI: 10.3791/58355] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
The analysis of cell-cell or cell-pathogen interaction in vivo is an important tool to understand the dynamics of the immune response to infection. Two-photon intravital microscopy (2P-IVM) allows the observation of cell interactions in deep tissue in living animals, while minimizing the photobleaching generated during image acquisition. To date, different models for 2P-IVM of lymphoid and non-lymphoid organs have been described. However, imaging of respiratory organs remains a challenge due to the movement associated with the breathing cycle of the animal. Here, we describe a protocol to visualize in vivo immune cell interactions in the trachea of mice infected with influenza virus using 2P-IVM. To this purpose, we developed a custom imaging platform, which included the surgical exposure and intubation of the trachea, followed by the acquisition of dynamic images of neutrophils and dendritic cells (DC) in the mucosal epithelium. Additionally, we detailed the steps needed to perform influenza intranasal infection and flow cytometric analysis of immune cells in the trachea. Finally, we analyzed neutrophil and DC motility as well as their interactions during the course of a movie. This protocol allows for the generation of stable and bright 4D images necessary for the assessment of cell-cell interactions in the trachea.
Collapse
Affiliation(s)
- Miguel Palomino-Segura
- Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Università della Svizzera italiana (USI); Graduate School of Cellular and Molecular Sciences, Faculty of Medicine, University of Bern
| | - Tommaso Virgilio
- Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Università della Svizzera italiana (USI); Graduate School of Cellular and Molecular Sciences, Faculty of Medicine, University of Bern
| | - Diego Morone
- Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Università della Svizzera italiana (USI)
| | - Diego U Pizzagalli
- Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Università della Svizzera italiana (USI); Institute of Computational Science, Università della Svizzera italiana (USI)
| | - Santiago F Gonzalez
- Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Università della Svizzera italiana (USI);
| |
Collapse
|
22
|
Takamura S. Niches for the Long-Term Maintenance of Tissue-Resident Memory T Cells. Front Immunol 2018; 9:1214. [PMID: 29904388 PMCID: PMC5990602 DOI: 10.3389/fimmu.2018.01214] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 05/15/2018] [Indexed: 12/13/2022] Open
Abstract
Tissue-resident memory T cells (TRM cells) are a population of immune cells that reside in the lymphoid and non-lymphoid organs without recirculation through the blood. These important cells occupy and utilize unique anatomical and physiological niches that are distinct from those for other memory T cell populations, such as central memory T cells in the secondary lymphoid organs and effector memory T cells that circulate through the tissues. CD8+ TRM cells typically localize in the epithelial layers of barrier tissues where they are optimally positioned to act as sentinels to trigger antigen-specific protection against reinfection. CD4+ TRM cells typically localize below the epithelial layers, such as below the basement membrane, and cluster in lymphoid structures designed to optimize interactions with antigen-presenting cells upon reinfection. A key feature of TRM populations is their ability to be maintained in barrier tissues for prolonged periods of time. For example, skin CD8+ TRM cells displace epidermal niches originally occupied by γδ T cells, thereby enabling their stable persistence for years. It is also clear that the long-term maintenance of TRM cells in different microenvironments is dependent on multiple tissue-specific survival cues, although the specific details are poorly understood. However, not all TRM persist over the long term. Recently, we identified a new spatial niche for the maintenance of CD8+ TRM cells in the lung, which is created at the site of tissue regeneration after injury [termed repair-associated memory depots (RAMD)]. The short-lived nature of RAMD potentially explains the short lifespans of CD8+ TRM cells in this particular tissue. Clearly, a better understanding of the niche-dependent maintenance of TRM cells will be important for the development of vaccines designed to promote barrier immunity. In this review, we discuss recent advances in our understanding of the properties and nature of tissue-specific niches that maintain TRM cells in different tissues.
Collapse
Affiliation(s)
- Shiki Takamura
- Department of Immunology, Faculty of Medicine, Kindai University, Osaka, Japan
| |
Collapse
|
23
|
Bhat P, Leggatt G, Waterhouse N, Frazer IH. Interferon-γ derived from cytotoxic lymphocytes directly enhances their motility and cytotoxicity. Cell Death Dis 2017; 8:e2836. [PMID: 28569770 PMCID: PMC5520949 DOI: 10.1038/cddis.2017.67] [Citation(s) in RCA: 343] [Impact Index Per Article: 42.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 01/08/2017] [Accepted: 01/09/2017] [Indexed: 12/11/2022]
Abstract
Interferon gamma (IFNγ) is a key moderator of cell-mediated immunity with diverse, mainly pro-inflammatory actions on immunocytes and target tissue. Recent studies have shown it may enhance anti-tumor and antiviral effects of CD8 T cells. Here we investigate the mechanisms by which IFNγ mediates CD8 T-cell cytotoxic function. We show that in vivo, antigen-specific CD8 T cells that produce INFγ are necessary to effect rejection of skin grafts expressing OVA as a transgene in keratinocytes. The ability of CD8 T cells to produce IFNγ enhanced their ability to migrate to the site of antigen-presenting skin cells. By in vivo imaging, we show that CTL motility, particularly speed, during graft rejection was enhanced by locally available IFNγ. We then used a reductionist two-cell model of CTL effectors and keratinocyte targets to investigate the effects of locally available (paracrine) and CTL-producing (autocrine) IFNγ on the motility behavior and killing ability of the CTL. Using live-cell imaging by prolonged time-lapse microscopy of primary effector CD8 T cells and antigen-expressing primary keratinocyte targets, we show that CD8 T-cell cytotoxic function and motility is enhanced by locally available IFNγ. Conversely, deprivation of either autocrine or paracrine IFNγ, or blockade of IFNγ signaling to CTL markedly reduced their cytotoxic function, their kinematics, and effector cell survival. We conclude that in vitro and in vivo, autocrine production of IFNγ by CTL enhances their motility and promotes killing of primary target keratinocytes. The absolute need for local IFNγ to enable cytotoxic CD8 T-cell function is of significance for immunotherapy for chronic viral infection and for cancer.
Collapse
Affiliation(s)
- Purnima Bhat
- The University of Queensland Diamantina Institute, Translational Research Institute, 37 Kent Street, Woolloongabba, QLD 4102, Australia.,Medical School, John Curtin School of Medical Research, Garran Rd, Australian National University, Canberra, ACT 2601, Australia
| | - Graham Leggatt
- The University of Queensland Diamantina Institute, Translational Research Institute, 37 Kent Street, Woolloongabba, QLD 4102, Australia
| | - Nigel Waterhouse
- QIMR Berghofer Medical Research Institute, 300 Herston Road, Brisbane, 4006, QLD. Australia
| | - Ian H Frazer
- The University of Queensland Diamantina Institute, Translational Research Institute, 37 Kent Street, Woolloongabba, QLD 4102, Australia
| |
Collapse
|
24
|
Hickman HD. New insights into antiviral immunity gained through intravital imaging. Curr Opin Virol 2017; 22:59-63. [PMID: 28081484 DOI: 10.1016/j.coviro.2016.11.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 11/22/2016] [Indexed: 01/25/2023]
Abstract
Viral infections pose an ongoing challenge for mankind. Much of our knowledge of the immune response to viral infections comes from ex vivo analyses of infected animals, which provide important yet static information about events occurring within the host. Recently, a relatively new technique known as intravital microscopy (IVM) has been applied to the study of antiviral immunity. Intravital imaging affords a unique, real-time view of both viral dynamics and the ensuing immune response (along with their interplay) in the living animal. This review details some of the newest observations about the antiviral immune response gained using IVM.
Collapse
Affiliation(s)
- Heather D Hickman
- Laboratory of Viral Diseases, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, United States.
| |
Collapse
|
25
|
Reilly EC, Lambert-Emo K, Topham DJ. The Effects of Acute Neutrophil Depletion on Resolution of Acute Influenza Infection, Establishment of Tissue Resident Memory (TRM), and Heterosubtypic Immunity. PLoS One 2016; 11:e0164247. [PMID: 27741316 PMCID: PMC5065200 DOI: 10.1371/journal.pone.0164247] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 09/12/2016] [Indexed: 11/18/2022] Open
Abstract
After disease resolution, a small subset of influenza specific CD8+ T cells can remain in the airways of the lung as a tissue resident memory population (TRM). These cells are critical for protection from subsequent infections with heterosubtypic influenza viruses. Although it is well established that expression of the collagen IV binding integrin alpha 1 is necessary for the retention and maintenance of TRM cells, other requirements allowing them to localize to the airways and persist are less well understood. We recently demonstrated that inhibition of neutrophils or neutrophil derived chemokine CXCL12 during acute influenza virus infection reduces the effector T cell response and affects the ability of these cells to localize to the airways. We therefore sought to determine whether the defects that occur in the absence of neutrophils would persist throughout resolution of the disease and impact the development of the TRM population. Interestingly, the early alterations in the CD8+ T cell response recover by two weeks post-infection, and mice form a protective population of TRM cells. Overall, these observations show that acute neutrophil depletion results in a delay in the effector CD8+ T cell response, but does not adversely impact the development of TRM.
Collapse
Affiliation(s)
- Emma C. Reilly
- David H. Smith Center for Vaccine Biology and Immunology, University of Rochester Medical Center, Rochester, New York, United States of America
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Kris Lambert-Emo
- David H. Smith Center for Vaccine Biology and Immunology, University of Rochester Medical Center, Rochester, New York, United States of America
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, United States of America
| | - David J. Topham
- David H. Smith Center for Vaccine Biology and Immunology, University of Rochester Medical Center, Rochester, New York, United States of America
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, United States of America
- * E-mail:
| |
Collapse
|