1
|
Bouma RG, Wang AZ, den Haan JMM. Exploring CD169 + Macrophages as Key Targets for Vaccination and Therapeutic Interventions. Vaccines (Basel) 2025; 13:330. [PMID: 40266235 PMCID: PMC11946325 DOI: 10.3390/vaccines13030330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 03/12/2025] [Accepted: 03/17/2025] [Indexed: 04/24/2025] Open
Abstract
CD169 is a sialic acid-binding immunoglobulin-like lectin (Siglec-1, sialoadhesin) that is expressed by subsets of tissue-resident macrophages and circulating monocytes. This receptor interacts with α2,3-linked Neu5Ac on glycoproteins as well as glycolipids present on the surface of immune cells and pathogens. CD169-expressing macrophages exert tissue-specific homeostatic functions, but they also have opposing effects on the immune response. CD169+ macrophages act as a pathogen filter, protect against infectious diseases, and enhance adaptive immunity, but at the same time pathogens also exploit them to enable further dissemination. In cancer, CD169+ macrophages in tumor-draining lymph nodes are correlated with better clinical outcomes. In inflammatory diseases, CD169 expression is upregulated on monocytes and on monocyte-derived macrophages and this correlates with the disease state. Given their role in promoting adaptive immunity, CD169+ macrophages are currently investigated as targets for vaccination strategies against cancer. In this review, we describe the studies investigating the importance of CD169 and CD169+ macrophages in several disease settings and the vaccination strategies currently under investigation.
Collapse
Affiliation(s)
- Rianne G. Bouma
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Cancer Immunology, 1081 HV Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, 1081 HV Amsterdam, The Netherlands
| | - Aru Z. Wang
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Cancer Immunology, 1081 HV Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, 1081 HV Amsterdam, The Netherlands
| | - Joke M. M. den Haan
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Cancer Immunology, 1081 HV Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
2
|
Mihalić A, Železnjak J, Lisnić B, Jonjić S, Juranić Lisnić V, Brizić I. Immune surveillance of cytomegalovirus in tissues. Cell Mol Immunol 2024; 21:959-981. [PMID: 39134803 PMCID: PMC11364667 DOI: 10.1038/s41423-024-01186-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/14/2024] [Indexed: 09/01/2024] Open
Abstract
Cytomegalovirus (CMV), a representative member of the Betaherpesvirinae subfamily of herpesviruses, is common in the human population, but immunocompetent individuals are generally asymptomatic when infected with this virus. However, in immunocompromised individuals and immunologically immature fetuses and newborns, CMV can cause a wide range of often long-lasting morbidities and even death. CMV is not only widespread throughout the population but it is also widespread in its hosts, infecting and establishing latency in nearly all tissues and organs. Thus, understanding the pathogenesis of and immune responses to this virus is a prerequisite for developing effective prevention and treatment strategies. Multiple arms of the immune system are engaged to contain the infection, and general concepts of immune control of CMV are now reasonably well understood. Nonetheless, in recent years, tissue-specific immune responses have emerged as an essential factor for resolving CMV infection. As tissues differ in biology and function, so do immune responses to CMV and pathological processes during infection. This review discusses state-of-the-art knowledge of the immune response to CMV infection in tissues, with particular emphasis on several well-studied and most commonly affected organs.
Collapse
Affiliation(s)
- Andrea Mihalić
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Jelena Železnjak
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Berislav Lisnić
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Stipan Jonjić
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
- Department of Biomedical Sciences, Croatian Academy of Sciences and Arts, Rijeka, Croatia
| | - Vanda Juranić Lisnić
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia.
| | - Ilija Brizić
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia.
| |
Collapse
|
3
|
Melo-Silva CR, Sigal LJ. Innate and adaptive immune responses that control lymph-borne viruses in the draining lymph node. Cell Mol Immunol 2024; 21:999-1007. [PMID: 38918577 PMCID: PMC11364670 DOI: 10.1038/s41423-024-01188-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 05/23/2024] [Indexed: 06/27/2024] Open
Abstract
The interstitial fluids in tissues are constantly drained into the lymph nodes (LNs) as lymph through afferent lymphatic vessels and from LNs into the blood through efferent lymphatics. LNs are strategically positioned and have the appropriate cellular composition to serve as sites of adaptive immune initiation against invading pathogens. However, for lymph-borne viruses, which disseminate from the entry site to other tissues through the lymphatic system, immune cells in the draining LN (dLN) also play critical roles in curbing systemic viral dissemination during primary and secondary infections. Lymph-borne viruses in tissues can be transported to dLNs as free virions in the lymph or within infected cells. Regardless of the entry mechanism, infected myeloid antigen-presenting cells, including various subtypes of dendritic cells, inflammatory monocytes, and macrophages, play a critical role in initiating the innate immune response within the dLN. This innate immune response involves cellular crosstalk between infected and bystander innate immune cells that ultimately produce type I interferons (IFN-Is) and other cytokines and recruit inflammatory monocytes and natural killer (NK) cells. IFN-I and NK cell cytotoxicity can restrict systemic viral spread during primary infections and prevent serious disease. Additionally, the memory CD8+ T-cells that reside or rapidly migrate to the dLN can contribute to disease prevention during secondary viral infections. This review explores the intricate innate immune responses orchestrated within dLNs that contain primary viral infections and the role of memory CD8+ T-cells following secondary infection or CD8+ T-cell vaccination.
Collapse
Affiliation(s)
- Carolina R Melo-Silva
- Department of Microbiology and Immunology, Thomas Jefferson University, Bluemle Life Sciences Building Room 709, 233 South 10th Street, Philadelphia, PA, 19107, USA.
| | - Luis J Sigal
- Department of Microbiology and Immunology, Thomas Jefferson University, Bluemle Life Sciences Building Room 709, 233 South 10th Street, Philadelphia, PA, 19107, USA.
| |
Collapse
|
4
|
Rodrigo MB, De Min A, Jorch SK, Martin-Higueras C, Baumgart AK, Goldyn B, Becker S, Garbi N, Lemmermann NA, Kurts C. Dual fluorescence reporter mice for Ccl3 transcription, translation, and intercellular communication. J Exp Med 2024; 221:e20231814. [PMID: 38661718 PMCID: PMC11044946 DOI: 10.1084/jem.20231814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 02/21/2024] [Accepted: 03/27/2024] [Indexed: 04/26/2024] Open
Abstract
Chemokines guide immune cells during their response against pathogens and tumors. Various techniques exist to determine chemokine production, but none to identify cells that directly sense chemokines in vivo. We have generated CCL3-EASER (ErAse, SEnd, Receive) mice that simultaneously report for Ccl3 transcription and translation, allow identifying Ccl3-sensing cells, and permit inducible deletion of Ccl3-producing cells. We infected these mice with murine cytomegalovirus (mCMV), where Ccl3 and NK cells are critical defense mediators. We found that NK cells transcribed Ccl3 already in homeostasis, but Ccl3 translation required type I interferon signaling in infected organs during early infection. NK cells were both the principal Ccl3 producers and sensors of Ccl3, indicating auto/paracrine communication that amplified NK cell response, and this was essential for the early defense against mCMV. CCL3-EASER mice represent the prototype of a new class of dual fluorescence reporter mice for analyzing cellular communication via chemokines, which may be applied also to other chemokines and disease models.
Collapse
Affiliation(s)
- Maria Belen Rodrigo
- Institute of Molecular Medicine and Experimental Immunology, Faculty of Medicine, University Hospital of Bonn University, Bonn, Germany
| | - Anna De Min
- Institute of Molecular Medicine and Experimental Immunology, Faculty of Medicine, University Hospital of Bonn University, Bonn, Germany
| | - Selina Kathleen Jorch
- Institute of Molecular Medicine and Experimental Immunology, Faculty of Medicine, University Hospital of Bonn University, Bonn, Germany
| | - Cristina Martin-Higueras
- Institute of Molecular Medicine and Experimental Immunology, Faculty of Medicine, University Hospital of Bonn University, Bonn, Germany
| | - Ann-Kathrin Baumgart
- Institute of Molecular Medicine and Experimental Immunology, Faculty of Medicine, University Hospital of Bonn University, Bonn, Germany
| | - Beata Goldyn
- Institute of Molecular Medicine and Experimental Immunology, Faculty of Medicine, University Hospital of Bonn University, Bonn, Germany
| | - Sara Becker
- Institute of Virology, Faculty of Medicine, University Hospital of Bonn University, Bonn, Germany
| | - Natalio Garbi
- Institute of Molecular Medicine and Experimental Immunology, Faculty of Medicine, University Hospital of Bonn University, Bonn, Germany
| | - Niels A. Lemmermann
- Institute of Virology, Faculty of Medicine, University Hospital of Bonn University, Bonn, Germany
- Institute for Virology, University Medical Center Mainz, Mainz, Germany
| | - Christian Kurts
- Institute of Molecular Medicine and Experimental Immunology, Faculty of Medicine, University Hospital of Bonn University, Bonn, Germany
| |
Collapse
|
5
|
Xie W, Bruce K, Belz GT, Farrell HE, Stevenson PG. Indirect CD4 + T cell protection against mouse gamma-herpesvirus infection via interferon gamma. J Virol 2024; 98:e0049324. [PMID: 38578092 PMCID: PMC11092340 DOI: 10.1128/jvi.00493-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 03/15/2024] [Indexed: 04/06/2024] Open
Abstract
CD4+ T cells play a key role in γ-herpesvirus infection control. However, the mechanisms involved are unclear. Murine herpesvirus type 4 (MuHV-4) allows relevant immune pathways to be dissected experimentally in mice. In the lungs, it colonizes myeloid cells, which can express MHC class II (MHCII), and type 1 alveolar epithelial cells (AEC1), which lack it. Nevertheless, CD4+ T cells can control AEC1 infection, and this control depends on MHCII expression in myeloid cells. Interferon-gamma (IFNγ) is a major component of CD4+ T cell-dependent MuHV-4 control. Here, we show that the action of IFNγ is also indirect, as CD4+ T cell-mediated control of AEC1 infection depended on IFNγ receptor (IFNγR1) expression in CD11c+ cells. Indirect control also depended on natural killer (NK) cells. Together, the data suggest that the activation of MHCII+ CD11c+ antigen-presenting cells is key to the CD4+ T cell/NK cell protection axis. By contrast, CD8+ T cell control of AEC1 infection appeared to operate independently. IMPORTANCE CD4+ T cells are critical for the control of gamma-herpesvirus infection; they act indirectly, by recruiting natural killer (NK) cells to attack infected target cells. Here, we report that the CD4+ T cell/NK cell axis of gamma-herpesvirus control requires interferon-γ engagement of CD11c+ dendritic cells. This mechanism of CD4+ T cell control releases the need for the direct engagement of CD4+ T cells with virus-infected cells and may be a common strategy for host control of immune-evasive pathogens.
Collapse
Affiliation(s)
- Wanxiaojie Xie
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia
| | - Kimberley Bruce
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia
| | - Gabrielle T. Belz
- The University of Queensland Frazer Institute, Brisbane, Queensland, Australia
| | - Helen E. Farrell
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia
| | - Philip G. Stevenson
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
6
|
Shen W, Wang C, Jiang J, He Y, Liang Q, Hu K. Targeted delivery of herpes simplex virus glycoprotein D to CD169 + macrophages using ganglioside liposomes alleviates herpes simplex keratitis in mice. J Control Release 2024; 365:208-218. [PMID: 37981051 DOI: 10.1016/j.jconrel.2023.11.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 10/12/2023] [Accepted: 11/13/2023] [Indexed: 11/21/2023]
Abstract
Herpes simplex keratitis (HSK) is a common blinding corneal disease caused by herpes simplex virus type 1 (HSV-1) infection. Antiviral drugs and corticosteroids haven't shown adequate therapeutic efficacy. During the early stage of HSV-1 infection, macrophages serve as the first line of defense. In particular, CD169+ macrophages play an important role in phagocytosis and antigen presentation. Therefore, we constructed GM-gD-lip, a ganglioside GM1 liposome vaccine encapsulating HSV-1 glycoprotein D and targeting CD169+ macrophages. After subconjunctival injection of the vaccine, we evaluated the survival rate and ocular surface lesions of the HSK mice, as well as the virus levels in the tear fluid, corneas, and trigeminal ganglia. We discovered that GM-gD-lip reduced HSV-1 viral load and alleviated the clinical severity of HSK. The GM-gD-lip also increased the number of corneal infiltrating macrophages, especially CD169+ macrophages, and polarized them toward M1. Furthermore, the number of dendritic cells (DCs) and CD8+ T cells in the ocular draining lymph nodes was significantly increased. These findings demonstrated that GM-gD-lip polarized CD169+ macrophages toward M1 to eliminate the virus while cross-presenting antigens to CD8+ T cells via DCs to activate adaptive immunity, ultimately attenuating the severity of HSK. The use of GM-gD-lip as an immunotherapeutic method for the treatment of HSK has significant implications.
Collapse
Affiliation(s)
- Wenhao Shen
- Department of Ophthalmology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Rd,Nanjing, Jiangsu, China.
| | - Chenchen Wang
- The Eye Hospital of Wenzhou Medical University, Wenzhou Medical University, 618 Fengqi East Rd, Hangzhou, Zhejiang, China.
| | - Jiaxuan Jiang
- Department of Ophthalmology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Rd,Nanjing, Jiangsu, China.
| | - Yun He
- Department of Ophthalmology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Rd,Nanjing, Jiangsu, China.
| | - Qi Liang
- Department of Ophthalmology, Sir Run Run Shaw Hospital, Zhejiang University School of medicine, 3 Qingchun East Road, Hangzhou, Zhejiang, China.
| | - Kai Hu
- Department of Ophthalmology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Rd,Nanjing, Jiangsu, China.
| |
Collapse
|
7
|
Abstract
CD4+ T cells are key to controlling cytomegalovirus infections. Salivary gland infection by murine cytomegalovirus (MCMV) provides a way to identify mechanisms. CD11c+ dendritic cells (DC) disseminate MCMV to the salivary glands, where they transfer infection to acinar cells. Antiviral CD4+ T cells are often considered to be directly cytotoxic for cells expressing major histocompatibility complex class II (MHCII). However, persistently infected salivary gland acinar cells are MHCII- and are presumably inaccessible to direct CD4 T cell recognition. Here, we show that CD4+ T cell depletion amplified infection of MHCII- acinar cells but not MHCII+ cells. MCMV-infected mice with disrupted MHCII on CD11c+ cells showed increased MHCII- acinar infection; antiviral CD4+ T cells were still primed, but their recruitment to the salivary glands was reduced, suggesting that engagement with local MHCII+ DC is important for antiviral protection. As MCMV downregulates MHCII on infected DC, the DC participating in CD4 protection may thus be uninfected. NK cells and gamma interferon (IFN-γ) may also contribute to CD4+ T cell-dependent virus control: CD4 T cell depletion reduced NK cell recruitment to the salivary glands, and both NK cell and IFN-γ depletion equalized infection between MHCII-disrupted and control mice. Taken together, these results suggest that CD4+ T cells protect indirectly against infected acinar cells in the salivary gland via DC engagement, requiring the recruitment of NK cells and the action of IFN-γ. Congruence of these results with an established CD4+ T cell/NK cell axis of gammaherpesvirus infection control suggests a common mode of defense against evasive viruses. IMPORTANCE Cytomegalovirus infections commonly cause problems in immunocompromised patients and in pregnancy. We lack effective vaccines. CD4+ T cells play an important role in normal infection control, yet how they act has been unknown. Using murine cytomegalovirus as an accessible model, we show that CD4+ T cells are unlikely to recognize infected cells directly. We propose that CD4+ T cells interact with uninfected cells that present viral antigens and recruit other immune cells to attack infected targets. These data present a new outlook on understanding how CD4+ T cell-directed control protects against persistent cytomegalovirus infection.
Collapse
|
8
|
Huang JY, Lyons-Cohen MR, Gerner MY. Information flow in the spatiotemporal organization of immune responses. Immunol Rev 2022; 306:93-107. [PMID: 34845729 PMCID: PMC8837692 DOI: 10.1111/imr.13046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/11/2021] [Accepted: 11/15/2021] [Indexed: 12/15/2022]
Abstract
Immune responses must be rapid, tightly orchestrated, and tailored to the encountered stimulus. Lymphatic vessels facilitate this process by continuously collecting immunological information (ie, antigens, immune cells, and soluble mediators) about the current state of peripheral tissues, and transporting these via the lymph across the lymphatic system. Lymph nodes (LNs), which are critical meeting points for innate and adaptive immune cells, are strategically located along the lymphatic network to intercept this information. Within LNs, immune cells are spatially organized, allowing them to efficiently respond to information delivered by the lymph, and to either promote immune homeostasis or mount protective immune responses. These responses involve the activation and functional cooperation of multiple distinct cell types and are tailored to the specific inflammatory conditions. The natural patterns of lymph flow can also generate spatial gradients of antigens and agonists within draining LNs, which can in turn further regulate innate cell function and localization, as well as the downstream generation of adaptive immunity. In this review, we explore how information transmitted by the lymph shapes the spatiotemporal organization of innate and adaptive immune responses in LNs, with particular focus on steady state and Type-I vs. Type-II inflammation.
Collapse
Affiliation(s)
| | | | - Michael Y Gerner
- Corresponding author: Michael Gerner, , Address: 750 Republican Street Seattle, WA 98109, Phone: 206-685-3610
| |
Collapse
|
9
|
Holtappels R, Freitag K, Renzaho A, Becker S, Lemmermann NA, Reddehase MJ. Revisiting CD8 T-cell 'Memory Inflation': New Insights with Implications for Cytomegaloviruses as Vaccine Vectors. Vaccines (Basel) 2020; 8:vaccines8030402. [PMID: 32707744 PMCID: PMC7563500 DOI: 10.3390/vaccines8030402] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/09/2020] [Accepted: 07/17/2020] [Indexed: 12/12/2022] Open
Abstract
Murine models of cytomegalovirus (CMV) infection have revealed an exceptional kinetics of the immune response. After resolution of productive infection, transient contraction of the viral epitope-specific CD8 T-cell pool was found to be followed by a pool expansion specific for certain viral epitopes during non-productive ‘latent’ infection. This phenomenon, known as ‘memory inflation’ (MI), was found to be based on inflationary KLRG1+CD62L− effector-memory T cells (iTEM) that depend on repetitive restimulation. MI gained substantial interest for employing CMV as vaccine vector by replacing MI-driving CMV epitopes with foreign epitopes for generating high numbers of protective memory cells specific for unrelated pathogens. The concept of an MI-driving CMV vector is questioned by human studies disputing MI in humans. A bias towards MI in experimental models may have resulted from systemic infection. We have here studied local murine CMV infection as a route that is more closely matching routine human vaccine application. Notably, KLRG1−CD62L+ central memory T cells (TCM) and conventional KLRG1−CD62L− effector memory T cells (cTEM) were found to expand, associated with ‘avidity maturation’, whereas the pool size of iTEM steadily declined over time. The establishment of high avidity CD8 T-cell central memory encourages one to pursue the concept of CMV vector-based vaccines.
Collapse
|
10
|
Baasch S, Ruzsics Z, Henneke P. Cytomegaloviruses and Macrophages-Friends and Foes From Early on? Front Immunol 2020; 11:793. [PMID: 32477336 PMCID: PMC7235172 DOI: 10.3389/fimmu.2020.00793] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 04/07/2020] [Indexed: 01/01/2023] Open
Abstract
Starting at birth, newborn infants are exposed to numerous microorganisms. Adaptation of the innate immune system to them is a delicate process, with potentially advantageous and harmful implications for health development. Cytomegaloviruses (CMVs) are highly adapted to their specific mammalian hosts, with which they share millions of years of co-evolution. Throughout the history of mankind, human CMV has infected most infants in the first months of life without overt implications for health. Thus, CMV infections are intertwined with normal immune development. Nonetheless, CMV has retained substantial pathogenicity following infection in utero or in situations of immunosuppression, leading to pathology in virtually any organ and particularly the central nervous system (CNS). CMVs enter the host through mucosal interfaces of the gastrointestinal and respiratory tract, where macrophages (MACs) are the most abundant immune cell type. Tissue MACs and their potential progenitors, monocytes, are established target cells of CMVs. Recently, several discoveries have revolutionized our understanding on the pre- and postnatal development and site-specific adaptation of tissue MACs. In this review, we explore experimental evidences and concepts on how CMV infections may impact on MAC development and activation as part of host-virus co-adaptation.
Collapse
Affiliation(s)
- Sebastian Baasch
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Center for Pediatrics and Adolescent Medicine, University of Freiburg, Freiburg, Germany
| | - Zsolt Ruzsics
- Institute of Virology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Philipp Henneke
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Center for Pediatrics and Adolescent Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
11
|
A CD4 + T Cell-NK Cell Axis of Gammaherpesvirus Control. J Virol 2020; 94:JVI.01545-19. [PMID: 31694958 DOI: 10.1128/jvi.01545-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 10/31/2019] [Indexed: 01/27/2023] Open
Abstract
CD4+ T cells are essential to control herpesviruses. Murid herpesvirus 4 (MuHV-4)-driven lung disease in CD4+ T-cell-deficient mice provides a well-studied example. Protective CD4+ T cells have been hypothesized to kill infected cells directly. However, removing major histocompatibility complex class II (MHCII) from LysM+ or CD11c+ cells increased MuHV-4 replication not in those cells but in type 1 alveolar epithelial cells, which lack MHCII, LysM, or CD11c. Disruption of MHCII in infected cells had no effect. Therefore, CD4+ T cells engaged uninfected presenting cells and protected indirectly. Mice lacking MHCII in LysM+ or CD11c+ cells maintained systemic antiviral CD4+ T cell responses, but recruited fewer CD4+ T cells into infected lungs. NK cell infiltration was also reduced, and NK cell depletion normalized infection between MHCII-deficient and control mice. Therefore, NK cell recruitment seemed to be an important component of CD4+ T-cell-dependent protection. Disruption of viral CD8+ T cell evasion made this defense redundant, suggesting that it is important mainly to control CD8-evasive pathogens.IMPORTANCE Gammaherpesviruses are widespread and cause cancers. CD4+ T cells are a key defense. We found that they defend indirectly, engaging uninfected presenting cells and recruiting innate immune cells to attack infected targets. This segregation of CD4+ T cells from immediate contact with infection helps the immune system to cope with viral evasion. Priming this defense by vaccination offers a way to protect against gammaherpesvirus-induced cancers.
Collapse
|
12
|
Perez-Shibayama C, Gil-Cruz C, Ludewig B. Fibroblastic reticular cells at the nexus of innate and adaptive immune responses. Immunol Rev 2020; 289:31-41. [PMID: 30977192 PMCID: PMC6850313 DOI: 10.1111/imr.12748] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 01/25/2019] [Indexed: 12/11/2022]
Abstract
Lymphoid organs guarantee productive immune cell interactions through the establishment of distinct microenvironmental niches that are built by fibroblastic reticular cells (FRC). These specialized immune‐interacting fibroblasts coordinate the migration and positioning of lymphoid and myeloid cells in lymphoid organs and provide essential survival and differentiation factors during homeostasis and immune activation. In this review, we will outline the current knowledge on FRC functions in secondary lymphoid organs such as lymph nodes, spleen and Peyer's patches and will discuss how FRCs contribute to the regulation of immune processes in fat‐associated lymphoid clusters. Moreover, recent evidence indicates that FRC critically impact immune regulatory processes, for example, through cytokine deprivation during immune activation or through fostering the induction of regulatory T cells. Finally, we highlight how different FRC subsets integrate innate immunological signals and molecular cues from immune cells to fulfill their function as nexus between innate and adaptive immune responses.
Collapse
Affiliation(s)
| | - Cristina Gil-Cruz
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Burkhard Ludewig
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| |
Collapse
|
13
|
Farrell HE, Bruce K, Redwood AJ, Stevenson PG. Murine cytomegalovirus disseminates independently of CX3CR1, CCL2 or its m131/m129 chemokine homologue. J Gen Virol 2019; 100:1695-1700. [PMID: 31609196 DOI: 10.1099/jgv.0.001333] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Cytomegaloviruses (CMVs) use myeloid cells to move within their hosts. Murine CMV (MCMV) colonizes the salivary glands for long-term shedding, and reaches them via CD11c+ infected cells. A need to recruit patrolling monocytes for systemic spread has been proposed, based on poor salivary gland infection in fractalkine receptor (CX3CR1)-deficient mice. We found no significant CX3CR1 dependence of salivary gland infection. CCL2 and the viral m131/m129 chemokine homologue were also redundant for acute MCMV spread, arguing against a need for inflammation or infection to recruit additional monocytes to the entry site. M131/m129 promoted salivary gland infection, but only after the initial seeding of infected cells to this site. Our data support the idea that MCMV disseminates by infecting and mobilizing tissue-resident dendritic cells.
Collapse
Affiliation(s)
- Helen E Farrell
- School of Chemistry and Molecular Biosciences and Child Health Research Centre, University of Queensland, Brisbane, Australia
| | - Kimberley Bruce
- School of Chemistry and Molecular Biosciences and Child Health Research Centre, University of Queensland, Brisbane, Australia
| | - Alec J Redwood
- The Institute for Respiratory Health, University of Western Australia, Crawley WA 6009, Australia
| | - Philip G Stevenson
- School of Chemistry and Molecular Biosciences and Child Health Research Centre, University of Queensland, Brisbane, Australia
| |
Collapse
|
14
|
Abstract
Viruses are causative agents for many diseases and infect all living organisms on the planet. Development of effective therapies has relied on our ability to isolate and culture viruses in vitro, allowing mechanistic studies and strategic interventions. While this reductionist approach is necessary, testing the relevance of in vitro findings often takes a very long time. New developments in imaging technologies are transforming our experimental approach where viral pathogenesis can be studied in vivo at multiple spatial and temporal resolutions. Here, we outline a vision of a top-down approach using noninvasive whole-body imaging as a guide for in-depth characterization of key tissues, physiologically relevant cell types, and pathways of spread to elucidate mechanisms of virus spread and pathogenesis. Tool development toward imaging of infectious diseases is expected to transform clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Pradeep D Uchil
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut 06510, USA; , , ,
| | - Kelsey A Haugh
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut 06510, USA; , , ,
| | - Ruoxi Pi
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut 06510, USA; , , ,
| | - Walther Mothes
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut 06510, USA; , , ,
| |
Collapse
|
15
|
Picarda G, Benedict CA. Cytomegalovirus: Shape-Shifting the Immune System. THE JOURNAL OF IMMUNOLOGY 2019; 200:3881-3889. [PMID: 29866770 DOI: 10.4049/jimmunol.1800171] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 03/26/2018] [Indexed: 11/19/2022]
Abstract
Systems-based based approaches have begun to shed light on extrinsic factors that contribute to immune system variation. Among these, CMV (HHV-5, a β-herpesvirus) imposes a surprisingly profound impact. Most of the world's population is CMV+, and the virus goes through three distinct infection phases en route to establishing lifelong détente with its host. Immune control of CMV in each phase recruits unique arms of host defense, and in turn the virus employs multiple immune-modulatory strategies that help facilitate the establishment of lifelong persistence. In this review, we explain how CMV shapes immunity and discuss the impact it may have on overall health.
Collapse
Affiliation(s)
- Gaëlle Picarda
- Division of Immune Regulation, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037; and
| | - Chris A Benedict
- Division of Immune Regulation, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037; and .,Center for Infectious Disease, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037
| |
Collapse
|
16
|
Abstract
Cytomegaloviruses (CMVs) are large, complex pathogens that persistently and systemically colonize most mammals. Human cytomegalovirus (HCMV) causes congenital harm, and has proved hard to control. One problem is that key vaccine targets - virus entry and spread in naive hosts - remain ill-defined. As CMVs predate human speciation, those of other mammals can provide new insight. Murine CMV (MCMV) enters new hosts via olfactory neurons. Like HCMV it binds to heparan, which is lacking from most differentiated apical epithelia but is displayed on olfactory neuronal cilia. It then spreads via infected dendritic cells (DCs), which migrate to draining lymph nodes (LNs), rejoin the circulation by entering high endothelial venules (HEVs), and extravasate into other tissues. This migration depends quantitatively on M33, a constitutively active viral G protein-coupled receptor (GPCR). The homologous US28 GPCR of HCMV can substitute for M33 in allowing MCMV-infected DCs to leave LNs via HEVs, so HCMV could potentially use the same route. The capacity of DCs to seed MCMV to tissues, and for other DCs to collect it for redistribution, suggest that DC recirculation chronically maintains and links diverse CMV reservoirs through lytic exchange.
Collapse
Affiliation(s)
- Helen E Farrell
- School of Chemistry and Molecular Biosciences and Child Health Research Centre, University of Queensland, Brisbane, Australia
| | - Philip G Stevenson
- School of Chemistry and Molecular Biosciences and Child Health Research Centre, University of Queensland, Brisbane, Australia
| |
Collapse
|
17
|
Uchil PD, Pi R, Haugh KA, Ladinsky MS, Ventura JD, Barrett BS, Santiago ML, Bjorkman PJ, Kassiotis G, Sewald X, Mothes W. A Protective Role for the Lectin CD169/Siglec-1 against a Pathogenic Murine Retrovirus. Cell Host Microbe 2019; 25:87-100.e10. [PMID: 30595553 PMCID: PMC6331384 DOI: 10.1016/j.chom.2018.11.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 10/08/2018] [Accepted: 11/05/2018] [Indexed: 01/23/2023]
Abstract
Lymph- and blood-borne retroviruses exploit CD169/Siglec-1-mediated capture by subcapsular sinus and marginal zone metallophilic macrophages for trans-infection of permissive lymphocytes. However, the impact of CD169-mediated virus capture on retrovirus dissemination and pathogenesis in vivo is unknown. In a murine model of the splenomegaly-inducing retrovirus Friend virus complex (FVC) infection, we find that while CD169 promoted draining lymph node infection, it limited systemic spread to the spleen. At the spleen, CD169-expressing macrophages captured incoming blood-borne retroviruses and limited their spread to the erythroblasts in the red pulp where FVC manifests its pathogenesis. CD169-mediated retroviral capture activated conventional dendritic cells 1 (cDC1s) and promoted cytotoxic CD8+ T cell responses, resulting in efficient clearing of FVC-infected cells. Accordingly, CD169 blockade led to higher viral loads and accelerated death in susceptible mouse strains. Thus, CD169 plays a protective role during FVC pathogenesis by reducing viral dissemination to erythroblasts and eliciting an effective cytotoxic T lymphocyte response via cDC1s.
Collapse
Affiliation(s)
- Pradeep D Uchil
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06510, USA.
| | - Ruoxi Pi
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Kelsey A Haugh
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Mark S Ladinsky
- Department of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - John D Ventura
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Brad S Barrett
- Division of Infectious Diseases, University of Colorado Denver, 12700 East 19th Avenue, Aurora, CO 80045, USA
| | - Mario L Santiago
- Division of Infectious Diseases, University of Colorado Denver, 12700 East 19th Avenue, Aurora, CO 80045, USA
| | - Pamela J Bjorkman
- Department of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - George Kassiotis
- Retrovirus Immunology, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Xaver Sewald
- Max von Pettenkofer Institute & Gene Center, Virology, National Reference Center for Retroviruses, Faculty of Medicine, LMU München, Munich, Germany; German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| | - Walther Mothes
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06510, USA.
| |
Collapse
|
18
|
Moran I, Grootveld AK, Nguyen A, Phan TG. Subcapsular Sinus Macrophages: The Seat of Innate and Adaptive Memory in Murine Lymph Nodes. Trends Immunol 2018; 40:35-48. [PMID: 30502023 DOI: 10.1016/j.it.2018.11.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 10/30/2018] [Accepted: 11/07/2018] [Indexed: 01/16/2023]
Abstract
Subcapsular sinus (SCS) macrophages are strategically positioned at the lymph-tissue interface in the lymph node to trap and present antigen to B cells. Recent murine data has shown that SCS macrophages also prevent the systemic spread of lymph-borne pathogens and are capable of activating a diverse range of innate effector and adaptive memory cells, including follicular memory T cells and memory B cells (Bmems), that are either pre-positioned or rapidly recruited to the subcapsular niche following infection and inflammation. Furthermore, Bmems are rapidly reactivated to differentiate into plasma cells in subcapsular proliferative foci (SPF). Thus, understanding how SCS macrophages coordinate both innate and adaptive memory responses in the subcapsular niche can provide new opportunities to bolster immunity against pathogens and cancer.
Collapse
Affiliation(s)
- Imogen Moran
- Immunology Division, Garvan Institute of Medical Research, Sydney, Australia; St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, Australia.
| | - Abigail K Grootveld
- Immunology Division, Garvan Institute of Medical Research, Sydney, Australia; Department of Biology and Biochemistry, Faculty of Science, University of Bath, Bath, UK
| | - Akira Nguyen
- Immunology Division, Garvan Institute of Medical Research, Sydney, Australia; St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Tri Giang Phan
- Immunology Division, Garvan Institute of Medical Research, Sydney, Australia; St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, Australia.
| |
Collapse
|
19
|
Grabowska J, Lopez-Venegas MA, Affandi AJ, den Haan JMM. CD169 + Macrophages Capture and Dendritic Cells Instruct: The Interplay of the Gatekeeper and the General of the Immune System. Front Immunol 2018; 9:2472. [PMID: 30416504 PMCID: PMC6212557 DOI: 10.3389/fimmu.2018.02472] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 10/05/2018] [Indexed: 12/14/2022] Open
Abstract
Since the seminal discovery of dendritic cells (DCs) by Steinman and Cohn in 1973, there has been an ongoing debate to what extent macrophages and DCs are related and perform different functions. The current view is that macrophages and DCs originate from different lineages and that only DCs have the capacity to initiate adaptive immunity. Nevertheless, as we will discuss in this review, lymphoid tissue resident CD169+ macrophages have been shown to act in concert with DCs to promote or suppress adaptive immune responses for pathogens and self-antigens, respectively. Accordingly, we propose a functional alliance between CD169+ macrophages and DCs in which a division of tasks is established. CD169+ macrophages are responsible for the capture of pathogens and are frequently the first cell type infected and thereby provide a confined source of antigen. Subsequently, cross-presenting DCs interact with these antigen-containing CD169+ macrophages, pick up antigens and activate T cells. The cross-priming of T cells by DCs is enhanced by the localized production of type I interferons (IFN-I) derived from CD169+ macrophages and plasmacytoid DCs (pDCs) that induces DC maturation. The interaction between CD169+ macrophages and DCs appears not only to be essential for immune responses against pathogens, but also plays a role in the induction of self-tolerance and immune responses against cancer. In this review we will discuss the studies that demonstrate the collaboration between CD169+ macrophages and DCs in adaptive immunity.
Collapse
Affiliation(s)
- Joanna Grabowska
- Department of Molecular Cell Biology and Immunology, Amsterdam University Medical Center, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Miguel A Lopez-Venegas
- Department of Molecular Cell Biology and Immunology, Amsterdam University Medical Center, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Alsya J Affandi
- Department of Molecular Cell Biology and Immunology, Amsterdam University Medical Center, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Joke M M den Haan
- Department of Molecular Cell Biology and Immunology, Amsterdam University Medical Center, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
20
|
Abstract
Lymph nodes have been studied for decades as the main site of the adaptive immune response. In this Viewpoint, we outline how the lymph nodes have another less appreciated function as an active innate barrier. Lymph nodes drain lymphatic fluid from tissues that are exposed to the external environment, such as the skin, lung, or gut. Pathogens that travel through lymphatics should be able to enter the circulation, if it were not for the strategic localization of lymph nodes along lymphatics which prevent systemic access. There is growing evidence for several populations of innate immune cells in the lymph node that function to control pathogens. Understanding how the lymph node functions as an active innate barrier can contribute to improving defenses against dissemination of infections in patients.
Collapse
Affiliation(s)
- Ania Bogoslowski
- Calvin, Phoebe & Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Paul Kubes
- Calvin, Phoebe & Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| |
Collapse
|
21
|
Jackson JW, Sparer T. There Is Always Another Way! Cytomegalovirus' Multifaceted Dissemination Schemes. Viruses 2018; 10:v10070383. [PMID: 30037007 PMCID: PMC6071125 DOI: 10.3390/v10070383] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 07/17/2018] [Accepted: 07/18/2018] [Indexed: 12/12/2022] Open
Abstract
Human cytomegalovirus (HCMV) is a β-herpes virus that is a significant pathogen within immune compromised populations. HCMV morbidity is induced through viral dissemination and inflammation. Typically, viral dissemination is thought to follow Fenner's hypothesis where virus replicates at the site of infection, followed by replication in the draining lymph nodes, and eventually replicating within blood filtering organs. Although CMVs somewhat follow Fenner's hypothesis, they deviate from it by spreading primarily through innate immune cells as opposed to cell-free virus. Also, in vivo CMVs infect new cells via cell-to-cell spread and disseminate directly to secondary organs through novel mechanisms. We review the historic and recent literature pointing to CMV's direct dissemination to secondary organs and the genes that it has evolved for increasing its ability to disseminate. We also highlight aspects of CMV infection for studying viral dissemination when using in vivo animal models.
Collapse
Affiliation(s)
- Joseph W Jackson
- Department of Microbiology, University of Tennessee Knoxville, Knoxville, TN 37996, USA.
| | - Tim Sparer
- Department of Microbiology, University of Tennessee Knoxville, Knoxville, TN 37996, USA.
| |
Collapse
|
22
|
Yu XX, Han TT, Xu LL, Chang YJ, Huang XJ, Zhao XY. Effect of the in vivo application of granulocyte colony-stimulating factor on NK cells in bone marrow and peripheral blood. J Cell Mol Med 2018; 22:3025-3034. [PMID: 29575692 PMCID: PMC5980170 DOI: 10.1111/jcmm.13539] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 12/18/2017] [Indexed: 12/18/2022] Open
Abstract
Granulocyte colony‐stimulating factor (G‐CSF) has been widely used in the field of allogeneic haematopoietic stem cell transplantation (allo‐HSCT) for priming donor stem cells from the bone marrow (BM) to peripheral blood (PB) to collect stem cells more conveniently. Donor‐derived natural killer (NK) cells have important antitumour functions and immune regulatory roles post‐allo‐HSCT. The aim of this study was to evaluate the effect of G‐CSF on donors' NK cells in BM and PB. The percentage of NK cells among nuclear cells and lymphocyte was significantly decreased and led to increased ratio of T and NK cells in BM and PB post‐G‐CSF in vivo application. Relative expansion of CD56briNK cells led to a decreased ratio of CD56dim and CD56briNK subsets in BM and PB post‐G‐CSF in vivo application. The expression of CD62L, CD54, CD94, NKP30 and CXCR4 on NK cells was significantly increased in PB after G‐CSF treatment. G‐CSF treatment decreased the IFN‐γ‐secreting NK population (NK1) dramatically in BM and PB, but increased the IL‐13‐secreting NK (NK2), TGF‐β‐secreting NK (NK3) and IL‐10‐secreting NK (NKr) populations significantly in BM. Clinical data demonstrated that higher doses of NK1 infused into the allograft correlated with an increased incidence of chronic graft‐vs‐host disease post‐transplantation. Taken together, our results show that the in vivo application of G‐CSF can modulate NK subpopulations, leading to an increased ratio of T and NK cells and decreased ratio of CD56dim and CD56briNK cells as well as decreased NK1 populations in both PB and BM.
Collapse
Affiliation(s)
- Xing-Xing Yu
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Beijing, China
| | - Ting-Ting Han
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Ling-Ling Xu
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China.,Yantai YuHuangDing Hospital, Yantai, Shandong Province, China
| | - Ying-Jun Chang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Xiao-Jun Huang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Beijing, China.,Beijing Engineering Lab for Cell Therapy, Beijing, China
| | - Xiang-Yu Zhao
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China.,Beijing Engineering Lab for Cell Therapy, Beijing, China
| |
Collapse
|
23
|
Yu X, Xu L, Chang Y, Huang X, Zhao X. Rapid reconstitution of NK1 cells after allogeneic transplantation is associated with a reduced incidence of graft-versus-host disease. SCIENCE CHINA-LIFE SCIENCES 2018. [PMID: 29541991 DOI: 10.1007/s11427-017-9160-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The balance between immunostimulation and immunoregulation in T cell immunity is achieved by maintaining specific ratios of Th1, Th2, Th3 and Tr1 cells. Here, we investigate levels of type 1 (IFN-gamma; NK1), type 2 (IL-13; NK2), type 3 (TGF-beta; NK3) and regulatory (IL-10; NKr) cytokines in peripheral blood to assess the cytokine profiles of natural killer (NK) cells following human allogeneic hematopoietic stem cell transplantation (allo-HSCT). NK2 and NK3 cell expansion was observed after allo-HSCT; levels of NKr cells reached donor levels at day 15, though levels of NK1 cells were consistently lower than donor levels until day 60 after allo-HSCT. Multivariate analysis showed that a higher level of NK1 cells by day 15 was associated with a lower overall risk of acute graft-versus-host disease (GVHD) (HR 0.157, P=0.010) as well as II-IV acute GVHD (HR 0.260, P=0.059). Furthermore, higher levels of NK1 cells by day 15 were correlated with lower rates of cytomegalovirus (CMV) reactivation (HR 0.040, 0.005-0.348, P=0.003). These results indicate that rapid reconstitution of NK cells, especially NK1 cells, can help prevent the development of GVHD as well as CMV reactivation after allogeneic transplantation.
Collapse
Affiliation(s)
- Xingxing Yu
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, 100044, China
- Peking-Tsinghua Center for Life Sciences, Beijing, 100871, China
| | - Lingling Xu
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, 100044, China
- Yantai YuHuangDing Hospital, Yantai, 264000, China
| | - Yingjun Chang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, 100044, China
| | - Xiaojun Huang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, 100044, China
- Peking-Tsinghua Center for Life Sciences, Beijing, 100871, China
| | - Xiangyu Zhao
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, 100044, China.
| |
Collapse
|
24
|
Type I Interferon Signaling to Dendritic Cells Limits Murid Herpesvirus 4 Spread from the Olfactory Epithelium. J Virol 2017; 91:JVI.00951-17. [PMID: 28904198 DOI: 10.1128/jvi.00951-17] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 09/08/2017] [Indexed: 12/23/2022] Open
Abstract
Murid herpesvirus 4 (MuHV-4) is a B cell-tropic gammaherpesvirus that can be studied in vivo Despite viral evasion, type I interferons (IFN-I) limit its spread. After MuHV-4 inoculation into footpads, IFN-I protect lymph node subcapsular sinus macrophages (SSM) against productive infection; after peritoneal inoculation, they protect splenic marginal zone macrophages, and they limit MuHV-4 replication in the lungs. While invasive infections can be used to test specific aspects of host colonization, it is also important to understand natural infection. MuHV-4 taken up spontaneously by alert mice enters them via olfactory neurons. We determined how IFN-I act in this context. Blocking IFN-I signaling did not increase neuronal infection but allowed the virus to spread to the adjacent respiratory epithelium. In lymph nodes, a complete IFN-I signaling block increased MuHV-4 lytic infection in SSM and increased the number of dendritic cells (DC) expressing viral green fluorescent protein (GFP) independently of lytic infection. A CD11c+ cell-directed signaling block increased infection of DC only. However, this was sufficient to increase downstream infection, consistent with DC providing the main viral route to B cells. The capacity of IFN-I to limit DC infection indicated that viral IFN-I evasion was only partly effective. Therefore, DC are a possible target for IFN-I-based interventions to reduce host colonization.IMPORTANCE Human gammaherpesviruses infect B cells and cause B cell cancers. Interventions to block virus binding to B cells have not stopped their infection. Therefore, we must identify other control points that are relevant to natural infection. Human infections are difficult to analyze. However, gammaherpesviruses colonize all mammals. A related gammaherpesvirus of mice reaches B cells not directly but via infected dendritic cells. We show that type I interferons, an important general antiviral defense, limit gammaherpesvirus B cell infection by acting on dendritic cells. Therefore, dendritic cell infection is a potential point of interferon-based therapeutic intervention.
Collapse
|
25
|
Reply to "Early Stochastic Dynamics in Human Cytomegalovirus Infection". J Virol 2017; 91:91/18/e01006-17. [PMID: 28839090 DOI: 10.1128/jvi.01006-17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
26
|
Transient Oral Human Cytomegalovirus Infections Indicate Inefficient Viral Spread from Very Few Initially Infected Cells. J Virol 2017; 91:JVI.00380-17. [PMID: 28381570 DOI: 10.1128/jvi.00380-17] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 03/27/2017] [Indexed: 12/31/2022] Open
Abstract
Cytomegalovirus (CMV) is acquired by the oral route in children, and primary infection is associated with abundant mucosal replication, as well as the establishment of latency in myeloid cells that results in lifelong infection. The efficiency of primary CMV infection in humans following oral exposure, however, is unknown. We consistently detected self-limited, low-level oral CMV shedding events, which we termed transient CMV infections, in a prospective birth cohort of 30 highly exposed CMV-uninfected infants. We estimated the likelihood of transient oral CMV infections by comparing their observed frequency to that of established primary infections, characterized by persistent high-level shedding, viremia, and seroconversion. We developed mathematical models of viral dynamics upon initial oral CMV infection and validated them using clinical shedding data. Transient infections comprised 76 to 88% of oral CMV shedding events. For this high percentage of transient infections to occur, we identified two mathematical prerequisites: a very small number of initially infected oral cells (1 to 4) and low viral infectivity (<1.5 new cells infected/cell). These observations indicate that oral CMV infection in infants typically begins with a single virus that spreads inefficiently to neighboring cells. Thus, although the incidence of CMV infection is high during infancy, our data provide a mechanistic framework to explain why multiple CMV exposures are typically required before infection is successfully established. These findings imply that a sufficiently primed immune response could prevent CMV from establishing latent infection in humans and support the achievability of a prophylactic CMV vaccine.IMPORTANCE CMV infects the majority of the world's population and is a major cause of birth defects. Developing a vaccine to prevent CMV infection would be extremely valuable but would be facilitated by a better understanding of how natural human CMV infection is acquired. We studied CMV acquisition in infants and found that infections are usually brief and self-limited and are successfully established relatively rarely. Thus, although most people eventually acquire CMV infection, it usually requires numerous exposures. Our analyses indicate that this is because the virus is surprisingly inefficient, barely replicating well enough to spread to neighboring cells in the mouth. Greater knowledge of why CMV infection usually fails may provide insight into how to prevent it from succeeding.
Collapse
|
27
|
IL-10: A Multifunctional Cytokine in Viral Infections. J Immunol Res 2017; 2017:6104054. [PMID: 28316998 PMCID: PMC5337865 DOI: 10.1155/2017/6104054] [Citation(s) in RCA: 236] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 01/13/2017] [Accepted: 02/01/2017] [Indexed: 12/15/2022] Open
Abstract
The anti-inflammatory master regulator IL-10 is critical to protect the host from tissue damage during acute phases of immune responses. This regulatory mechanism, central to T cell homeostasis, can be hijacked by viruses to evade immunity. IL-10 can be produced by virtually all immune cells, and it can also modulate the function of these cells. Understanding the effects of this multifunctional cytokine is therefore a complex task. In the present review we discuss the factors driving IL-10 production and the cellular sources of the cytokine during antiviral immune responses. We particularly focus on the IL-10 regulatory mechanisms that impact antiviral immune responses and how viruses can use this central regulatory pathway to evade immunity and establish chronic/latent infections.
Collapse
|