1
|
Lin WH, Sheu SM, Wu CF, Huang WC, Hsu LJ, Yu KC, Cheng HC, Kao CY, Wu JJ, Wang MC, Teng CH. O-antigen of uropathogenic Escherichia coli is required for induction of neutrophil extracellular traps. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2025; 58:209-218. [PMID: 39725572 DOI: 10.1016/j.jmii.2024.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 11/02/2024] [Accepted: 12/16/2024] [Indexed: 12/28/2024]
Abstract
BACKGROUND Urinary tract infections (UTIs) are prevalent bacterial infection, with uropathogenic Escherichia coli (UPEC) as the primary causative agent. The outer membrane of UPEC contains a lipopolysaccharide (LPS), which plays crucial roles in the host's immune response to infection. Neutrophils use neutrophil extracellular traps (NETs) are mechanism by which neutrophils defend against bacterial infections. However, the exact mechanism by which a bacterial LPS induces NET formation is not well understood. Therefore, the objective of this study is to identify the possible mechanism of LPS-mediated NETs and dissect the LPS domains of UPEC that predominantly modulate NET formation and NET-mediated killing. METHODS To investigate the mechanism of bacterial LPS-induced NET formation, we constructed UPEC CFT073 mutants that had rfaD, rfaL and the wzzE deleted with individual LPS biosynthetic genes including the inner core synthase, O-antigen ligase and O-antigen polymerase, respectively. Subsequently, we evaluated the NET/reactive oxygen species (ROS)/IL-1β induction abilities and assessed the activation of toll-like receptor 4 (TLR4)/JNK signaling by CFT073 and its mutants. RESULTS The results showed that the O-antigen of CFT073 LPS is essential for inducing NET formation through TLR4/JNK/NOX pathways. Inhibition of either pathway significantly decreased the production of ROS, induction of NETs, and secretion of IL-1β. CONCLUSION Our results demonstrate that CFT073 LPS is essential for inducing ROS-dependent NETs and IL-1β secretion from neutrophils. This study also provides evidence for the crucial roles of O-antigen in the immune response to UPEC infection, as well as its potential as a therapeutic target for the treatment of UTIs.
Collapse
Affiliation(s)
- Wei-Hung Lin
- Division of Nephrology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shew-Meei Sheu
- Department of Medical Research, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chia-Yi City, Taiwan
| | - Ching-Fang Wu
- Division of Nephrology, Department of Internal Medicine, E-Da Cancer Hospital, Kaohsiung, Taiwan
| | - Wen-Chun Huang
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Li-Jin Hsu
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Kuan-Chieh Yu
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Hui-Ching Cheng
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Cheng-Yen Kao
- Institute of Microbiology and Immunology, School of Life Science, National Yang-Ming University, Taipei, Taiwan
| | - Jiunn-Jong Wu
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, Taiwan
| | - Ming-Cheng Wang
- Division of Nephrology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Institute of Clinical Pharmacy and Pharmaceutical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| | - Ching-Hao Teng
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
2
|
Liao WJ, Jiang YH, Jhang JF, Chen SF, Lee YK, Lee CL, Chang TL, Kuo HC. Pathophysiology and potential treatment modalities in women with recurrent urinary tract infection. Tzu Chi Med J 2025; 37:117-124. [PMID: 40321964 PMCID: PMC12048121 DOI: 10.4103/tcmj.tcmj_286_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/03/2024] [Accepted: 12/16/2024] [Indexed: 05/08/2025] Open
Abstract
Urinary tract infection (UTI) of the urinary bladder is a common bacterial infection that predominantly affects women, with many experiencing recurrent episodes. Recurrent UTIs (rUTIs) are associated with significant physical, psychological, and social difficulties. Further, they are closely related to lower urinary tract dysfunction (LUTD). LUTD affects bladder function and structure, thereby contributing to urinary urgency, frequency, and incontinence, which, in turn, increases the risk of recurrent infections due to impaired urothelial defense mechanisms. The current study explored the pathophysiology of LUTD in women with rUTIs. Potential treatments for rUTIs include long-term prophylactic antibiotics, probiotics, D-mannose, vaccines, small molecule inhibitors, and stem cell therapy. Moreover, it evaluated the use of platelet-rich plasma (PRP) therapy as a treatment modality for LUTD. PRP has regenerative and anti-inflammatory properties. Hence, it can be a promising option for enhancing urothelial barrier integrity and reducing infection recurrence. Repeated intravesical PRP injections are effective in improving bladder symptoms and decreasing UTI recurrences by enhancing the proliferative ability of the urothelium in patients with rUTIs. Further, this review examined the potential predictors of successful PRP treatment outcomes such as cytokine and urothelial biomarker levels, which provided insights into patient selection and individualized treatment strategies. Identifying the predictive biomarkers of treatment responsiveness is essential for optimizing PRP therapy. Hence, to improve the clinical outcomes and quality of life of patients with rUTIs, future research should focus on refining the use of PRP, exploring combination therapies, and validating biomarkers.
Collapse
Affiliation(s)
- Wei-Ju Liao
- Department of Urology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Yuan-Hong Jiang
- Department of Urology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Department of Urology, School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Jia-Fong Jhang
- Department of Urology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Department of Urology, School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Sheng-Fu Chen
- Department of Urology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Department of Urology, School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Yu Khun Lee
- Department of Urology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Department of Urology, School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Cheng-Ling Lee
- Department of Urology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Department of Urology, School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Tien-Lin Chang
- Department of Urology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Department of Urology, School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Hann-Chorng Kuo
- Department of Urology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Department of Urology, School of Medicine, Tzu Chi University, Hualien, Taiwan
| |
Collapse
|
3
|
Li L, Jiao Q, Yang Q, Lu H, Zhou X, Zhang Q, Zhang F, Li H, Tian Z, Zeng Z. A bladder-blood immune barrier constituted by suburothelial perivascular macrophages restrains uropathogen dissemination. Immunity 2025; 58:568-584.e6. [PMID: 40015270 DOI: 10.1016/j.immuni.2025.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 09/29/2024] [Accepted: 02/03/2025] [Indexed: 03/01/2025]
Abstract
Urinary tract infections (UTIs) predominantly occur in the bladder and can potentially progress into life-threatening sepsis if uropathogens spread unconstrainedly into the bloodstream. Here, we identified a subset of suburothelial perivascular macrophages (suPVMs) in the bladder that exerted a pivotal barrier function to prevent systemic bacterial dissemination during acute cystitis. During the initial phase of uropathogenic Escherichia coli (UPEC) infection, suPVMs actively captured UPEC invading the laminal propria and maintained the integrity of inflamed vessels. They subsequently underwent METosis to expel macrophage extracellular DNA traps (METs) into the urothelium to sequester bacteria within this avascular compartment. Matrix metallopeptidase-13 was released along with METs to promote neutrophil transuroepithelial migration. Replenished suPVMs from monocytes following a prior infection were functionally competent to confer protection against recurrent UTIs. Our study thus uncovers a bladder-blood immune barrier in restraining uropathogen dissemination, which could have implications for the prevention and treatment of urosepsis.
Collapse
Affiliation(s)
- Lu Li
- National Key Laboratory of Immune responses and Immunotherapy, Department of Oncology, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei 230001, China
| | - Qiancheng Jiao
- National Key Laboratory of Immune responses and Immunotherapy, Department of Oncology, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei 230001, China; Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Qianqian Yang
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Haisen Lu
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Xia Zhou
- National Key Laboratory of Immune responses and Immunotherapy, Department of Oncology, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei 230001, China; Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Qing Zhang
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Futing Zhang
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Hai Li
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Zhigang Tian
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Zhutian Zeng
- National Key Laboratory of Immune responses and Immunotherapy, Department of Oncology, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei 230001, China; Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China.
| |
Collapse
|
4
|
Mercado-Evans V, Branthoover H, Chew C, Serchejian C, Saltzman AB, Mejia ME, Zulk JJ, Cornax I, Nizet V, Patras KA. Tamm-Horsfall protein augments neutrophil NETosis during urinary tract infection. JCI Insight 2025; 10:e180024. [PMID: 39589812 PMCID: PMC11721310 DOI: 10.1172/jci.insight.180024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 11/19/2024] [Indexed: 11/28/2024] Open
Abstract
Urinary neutrophils are a hallmark of urinary tract infection (UTI), yet the mechanisms governing their activation, function, and efficacy in controlling infection remain incompletely understood. Tamm-Horsfall glycoprotein (THP), the most abundant protein in urine, uses terminal sialic acids to bind an inhibitory receptor and dampen neutrophil inflammatory responses. We hypothesized that neutrophil modulation is an integral part of THP-mediated host protection. In a UTI model, THP-deficient mice showed elevated urinary tract bacterial burdens, increased neutrophil recruitment, and more severe tissue histopathological changes compared with WT mice. Furthermore, THP-deficient mice displayed impaired urinary NETosis during UTI. To investigate the effect of THP on NETosis, we coupled in vitro fluorescence-based NET assays, proteomic analyses, and standard and imaging flow cytometry with peripheral human neutrophils. We found that THP increases proteins involved in respiratory chain, neutrophil granules, and chromatin remodeling pathways; enhances NETosis in an ROS-dependent manner; and drives NET-associated morphologic features including nuclear decondensation. These effects were observed only in the presence of a NETosis stimulus and could not be solely replicated with equivalent levels of sialic acid alone. We conclude that THP is a critical regulator of NETosis in the urinary tract, playing a key role in host defense against UTI.
Collapse
Affiliation(s)
- Vicki Mercado-Evans
- Department of Molecular Virology and Microbiology
- Medical Scientist Training Program
| | | | | | | | - Alexander B. Saltzman
- Mass Spectrometry Proteomics Core, Baylor College of Medicine (BCM), Houston, Texas, USA
| | | | | | | | - Victor Nizet
- Department of Pediatrics and
- Skaggs School of Pharmacy and Pharmaceutical Sciences, UCSD, La Jolla, California, USA
| | - Kathryn A. Patras
- Department of Molecular Virology and Microbiology
- Department of Pediatrics and
- Alkek Center for Metagenomics and Microbiome Research, BCM, Houston, Texas, USA
| |
Collapse
|
5
|
Andrade GM, Campos EP, Ruiz-Rosado JDD, Canseco EGM, Lee A, Vasquez-Martinez G. Prostaglandins suppress neutrophil function after sexual intercourse and may promote urinary tract infections. Med Hypotheses 2024; 192:111481. [DOI: 10.1016/j.mehy.2024.111481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
|
6
|
Iddrisu AK, Owusu G, Doe SK, Yeboah AA, Agyapong J, Yankey N. Uropathogens and their antibiotic susceptibility patterns among diabetic patients at st. john of god hospital, duayaw nkwanta, Ghana: a cross-sectional study. Health Sci Rep 2024; 7:e70072. [PMID: 39296635 PMCID: PMC11409053 DOI: 10.1002/hsr2.70072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 08/31/2024] [Accepted: 09/04/2024] [Indexed: 09/21/2024] Open
Abstract
Background Uropathogens are microorganisms that cause urinary tract infections (UTIs). Owing to higher blood glucose levels and compromised immune functions, treatment of uropathogens in diabetic patients is a challenge. Aim This study aims to assess the prevalence of uropathogens and their antibiotic susceptibility among diabetic patients at St. John of God Hospital at Duayaw Nkwanta (SJGHDN) in the Ahafo region of Ghana. Methods The cross-sectional study recruited 175 diabetic patients at SJGHDN between August and September 2023. Questionnaires were used to collect patients' background information. Fasting Blood Sugar (FBS) was assessed by using a glucometer. Urine samples were examined for the presence of uropathogens. A sterile inoculating loop with a calibrated volume of 2 µl was used for plating. Each colony equals 500 CFU/mL. Significant uropathogen was determined by multiplying the counted colonies by 500 to obtain CFU/mL. Positive uropathogen was defined as CFU ≥ 105/mL. Significant uropathogen was defined as ≥200 colonies per sample. The disc diffusion method was used to determine antibiotic susceptibility. Results Out of the 175 patients, 19.4% expressed various uropathogens with Escherichia coli being the predominant. Suboptimal glucose level was the most significant risk factor (p = 0.038). Glucosuria (p = 0.036), hazy urine (p = 0.028), positive leukocyte esterase (p = 0.001), and pus cells in urine sediment (p = 0.020) were significant indicators of uropathogen occurrence. Klebsiella pneumonia and Proteus mirabilis were resistant to ≥4 antibiotics. Amikacin, nitrofurantoin, levofloxacin, ciprofloxacin, and ceftriaxone demonstrated efficacy against the isolates. Conclusion This study underscores the notable prevalence of uropathogens in diabetic patients and the alarming levels of antibiotic resistance observed. The results highlight the critical need for vigilant monitoring and customized treatment approaches, particularly for diabetic patients exhibiting risk factors such as elevated urine glucose levels, cloudy urine, and presence of leukocyte esterase and pus cells in urine sediment. The significant resistance to frequently used antibiotics like co-trimoxazole and tetracycline points to the necessity of routine susceptibility testing and the use of alternative antibiotics for effective treatment. These findings can assist healthcare providers in more effectively managing and preventing UTIs in diabetic populations.
Collapse
Affiliation(s)
- Abdul-Karim Iddrisu
- Department of Mathematics and Statistics University of Energy and Natural Resources Sunyani Ghana
| | - George Owusu
- Department of Medical Laboratory Science University of Energy and Natural Resources Sunyani Ghana
| | - Samuel Kofi Doe
- Department of Medical Laboratory Science University of Energy and Natural Resources Sunyani Ghana
| | - Augustine Apraku Yeboah
- Department of Medical Laboratory Science University of Energy and Natural Resources Sunyani Ghana
| | - Joseph Agyapong
- Department of Medical Laboratory Science University of Energy and Natural Resources Sunyani Ghana
| | - Nicholas Yankey
- Department of Medical Laboratory Science University of Energy and Natural Resources Sunyani Ghana
| |
Collapse
|
7
|
Naskar M, Choi HW. A Dynamic Interplay of Innate Immune Responses During Urinary Tract Infection. Immune Netw 2024; 24:e31. [PMID: 39246616 PMCID: PMC11377947 DOI: 10.4110/in.2024.24.e31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/12/2024] [Accepted: 07/17/2024] [Indexed: 09/10/2024] Open
Abstract
Urinary tract infections (UTIs) represent one of the most prevalent bacterial infections globally, manifesting in diverse clinical phenotypes with varying degrees of severity and complications. The mechanisms underlying UTIs are gradually being elucidated, leading to an enhanced understanding of the immune responses involved. Innate immune cells play a crucial defensive role against uropathogenic bacteria through various mechanisms. Despite their significant contributions to host defense, these cells often fail to achieve complete clearance of uropathogens, necessitating the frequent prescription of antibiotics for UTI patients. However, the persistence of infections and related pathological symptoms in the absence of innate immune cells in animal models underscore the importance of innate immunity in UTIs. Therefore, the host protective functions of innate immune cells, including neutrophils, macrophages, mast cells, NK cells, innate lymphoid cells, and γδ T cells, are delicately coordinated and timely regulated by a variety of cytokines to ensure successful pathogen clearance.
Collapse
Affiliation(s)
- Manisha Naskar
- Division of Life Sciences, Korea University, Seoul 02841, Korea
| | - Hae Woong Choi
- Division of Life Sciences, Korea University, Seoul 02841, Korea
| |
Collapse
|
8
|
Shoctor NA, Brady MP, McLeish KR, Lightman RR, Davis-Johnson L, Lynn C, Dubbaka A, Tandon S, Daniels MW, Rane MJ, Barati MT, Caster DJ, Powell DW. Increased Urine Excretion of Neutrophil Granule Cargo in Active Proliferative Lupus Nephritis. KIDNEY360 2024; 5:1154-1166. [PMID: 39207891 PMCID: PMC11371349 DOI: 10.34067/kid.0000000000000491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 06/10/2024] [Indexed: 09/04/2024]
Abstract
Key Points Neutrophil degranulation participates in glomerular injury in proliferative lupus nephritis. Urine excretion of neutrophil granule proteins is a potential diagnostic for proliferative lupus nephritis. Background Lupus nephritis (LN) occurs in more than half of patients with systemic lupus erythematosus, but the cellular and molecular events that contribute to LN are not clearly defined. We reported previously that neutrophil degranulation participates in glomerular injury in mouse models of acute LN. This study tests the hypothesis that glomerular recruitment and subsequent activation of neutrophils result in urine excretion of neutrophil granule constituents that are predictive of glomerular inflammation in proliferative LN. Methods Urine and serum levels of 11 neutrophil granule proteins were measured by antibody-based array in patients with proliferative LN and healthy donors (HDs), and the results were confirmed by ELISA. Glomerular neutrophil accumulation was assessed in biopsies of patients with LN who contributed urine for granule cargo quantitation and normal kidney tissue by microscopy. Degranulation was measured by flow cytometry in neutrophils isolated from patients with LN and HD controls by cell surface granule markers CD63 (azurophilic), CC66b (specific), and CD35 (secretory). Nonparametric statistical analyses were performed and corrected for multiple comparisons. Results Eight granule proteins (myeloperoxidase, neutrophil elastase, azurocidin, olfactomedin-4, lactoferrin, alpha-1-acid glycoprotein 1, matrix metalloproteinase 9, and cathelicidin) were significantly elevated in urine from patients with active proliferative LN by array and/or ELISA, whereas only neutrophil elastase was increased in LN serum. Urine excretion of alpha-1-acid glycoprotein 1 declined in patients who achieved remission. The majority of LN glomeruli contained ≥3 neutrophils. Basal levels of specific granule markers were increased in neutrophils from patients with LN compared with HD controls. Serum from patients with active LN stimulated specific and secretory, but not azurophilic granule, release by HD neutrophils. Conclusions Circulating neutrophils in patients with LN are primed for enhanced degranulation. Glomerular recruitment of those primed neutrophils leads to release and urine excretion of neutrophil granule cargo that serves as a urine marker of active glomerular inflammation in proliferative LN.
Collapse
Affiliation(s)
- Nicholas A. Shoctor
- Division of Nephrology and Hypertension, University of Louisville School of Medicine, Louisville, Kentucky
| | - Makayla P. Brady
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, Kentucky
| | - Kenneth R. McLeish
- Division of Nephrology and Hypertension, University of Louisville School of Medicine, Louisville, Kentucky
| | | | | | - Conner Lynn
- University of Louisville School of Medicine, Louisville, Kentucky
| | - Anjali Dubbaka
- Department of Internal Medicine, University of Louisville School of Medicine, Louisville, Kentucky
| | - Shweta Tandon
- Division of Nephrology and Hypertension, University of Louisville School of Medicine, Louisville, Kentucky
| | - Michael W. Daniels
- Department of Bioinformatics and Biostatistics, University of Louisville School of Public Health and Information Sciences, Louisville, Kentucky
| | - Madhavi J. Rane
- Division of Nephrology and Hypertension, University of Louisville School of Medicine, Louisville, Kentucky
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, Kentucky
| | - Michelle T. Barati
- Division of Nephrology and Hypertension, University of Louisville School of Medicine, Louisville, Kentucky
| | - Dawn J. Caster
- Division of Nephrology and Hypertension, University of Louisville School of Medicine, Louisville, Kentucky
| | - David W. Powell
- Division of Nephrology and Hypertension, University of Louisville School of Medicine, Louisville, Kentucky
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, Kentucky
| |
Collapse
|
9
|
Garout W. Prevalence and risk factors of urinary tract infection among children with bronchiolitis. Pediatr Neonatol 2024; 65:348-353. [PMID: 38044234 DOI: 10.1016/j.pedneo.2023.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 07/24/2023] [Accepted: 08/24/2023] [Indexed: 12/05/2023] Open
Abstract
BACKGROUND The co-occurrence of bronchiolitis and urinary tract infections (UTI) in hospitalized children is associated with high morbidity and economic strain. However, due to a low prevalence (<3%) and inconsistent diagnostic criteria, there is ongoing debate regarding the necessity of systematic screening. This study estimated the prevalence of UTI among children admitted for bronchiolitis and analyzed the associated demographic and clinical factors. METHODS A 5-year (2016-2020) retrospective chart review was conducted among all children admitted for bronchiolitis at a referral pediatrics department in Jeddah, Saudi Arabia. UTI was diagnosed according to the American Association of Pediatrics criteria. Demographic, clinical, microbiological, and imaging data were extracted from the hospital electronic records. RESULTS Of the 491 cases of children with bronchiolitis, urine culture and analysis were available for 320 patients. Based on urine culture criteria alone, the prevalence of UTI was 13.1% (95% CI 9.6-17.3), and the most common pathogens included E. coli (33.3%), K. pneumoniae (23.8%), and Enterococcus faecalis (14.3%), and 13 (31.0%) of the isolates were EBSL. By considering urinalysis criteria, i.e., pyuria or nitrituria, the estimated prevalence of UTI decreased to 3.4% (1.7-6.1%), and the most common pathogens were K. pneumoniae (5/11) and E. coli (3/11), with 6/11 ESBL-producing isolates. Regurgitation associated with a higher risk of UTI compared to absence of regurgitation (5.3% versus 0.8%; p = 0.031). Urinary tract ultrasound showed high specificity (98.7-100%) and negative predictive value (97.4-97.7%) in UTI using either criterion. CONCLUSIONS There is a higher prevalence of UTI among children with bronchiolitis in the study center, which has several implications in screening, diagnosis, and management. Further multicenter studies are required to enhance the external validity of these findings and assess the cost-effectiveness of screening strategy at a national level.
Collapse
|
10
|
Mercado-Evans V, Chew C, Serchejian C, Saltzman A, Mejia ME, Zulk JJ, Cornax I, Nizet V, Patras KA. Tamm-Horsfall protein augments neutrophil NETosis during urinary tract infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.01.578501. [PMID: 38370726 PMCID: PMC10871275 DOI: 10.1101/2024.02.01.578501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Urinary neutrophils are a hallmark of urinary tract infection (UTI), yet the mechanisms governing their activation, function, and efficacy in controlling infection remain incompletely understood. Tamm-Horsfall glycoprotein (THP), the most abundant protein in urine, uses terminal sialic acids to bind an inhibitory receptor and dampen neutrophil inflammatory responses. We hypothesized that neutrophil modulation is an integral part of THP-mediated host protection. In a UTI model, THP-deficient mice showed elevated urinary tract bacterial burdens, increased neutrophil recruitment, and more severe tissue histopathological changes compared to WT mice. Furthermore, THP-deficient mice displayed impaired urinary NETosis during UTI. To investigate the impact of THP on NETosis, we coupled in vitro fluorescence-based NET assays, proteomic analyses, and standard and imaging flow cytometry with peripheral human neutrophils. We found that THP increases proteins involved in respiratory chain, neutrophil granules, and chromatin remodeling pathways, enhances NETosis in an ROS-dependent manner, and drives NET-associated morphologic features including nuclear decondensation. These effects were observed only in the presence of a NETosis stimulus and could not be solely replicated with equivalent levels of sialic acid alone. We conclude that THP is a critical regulator of NETosis in the urinary tract, playing a key role in host defense against UTI.
Collapse
Affiliation(s)
- Vicki Mercado-Evans
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
- Medical Scientist Training Program, Baylor College of Medicine, Houston, Texas, USA
| | - Claude Chew
- Cytometry and Cell Sorting Core, Baylor College of Medicine, Houston, Texas, USA
| | - Camille Serchejian
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Alexander Saltzman
- Mass Spectrometry Proteomics Core, Baylor College of Medicine, Houston, Texas, USA
| | - Marlyd E. Mejia
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Jacob J. Zulk
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Ingrid Cornax
- Department of Pediatrics, UC San Diego, La Jolla, California, USA
| | - Victor Nizet
- Department of Pediatrics, UC San Diego, La Jolla, California, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, UC San Diego, La Jolla, California, USA
| | - Kathryn A. Patras
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
- Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
11
|
Pearson MM, Shea AE, Pahil S, Smith SN, Forsyth VS, Mobley HLT. Organ agar serves as physiologically relevant alternative for in vivo bacterial colonization. Infect Immun 2023; 91:e0035523. [PMID: 37850748 PMCID: PMC10652904 DOI: 10.1128/iai.00355-23] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 09/15/2023] [Indexed: 10/19/2023] Open
Abstract
Animal models for host-microbial interactions have proven valuable, yielding physiologically relevant data that may be otherwise difficult to obtain. Unfortunately, such models are lacking or nonexistent for many microbes. Here, we introduce organ agar, a straightforward method to enable the screening of large mutant libraries while avoiding physiological bottlenecks. We demonstrate that growth defects on organ agar were translatable to bacterial colonization deficiencies in a murine model. Specifically, we present a urinary tract infection agar model to interrogate an ordered library of Proteus mirabilis transposon mutants, with accurate prediction of bacterial genes critical for host colonization. Thus, we demonstrate the ability of ex vivo organ agar to reproduce in vivo deficiencies. Organ agar was also useful for identifying previously unknown links between biosynthetic genes and swarming motility. This work provides a readily adoptable technique that is economical and uses substantially fewer animals. We anticipate this method will be useful for a wide variety of microorganisms, both pathogenic and commensal, in a diverse range of model host species.
Collapse
Affiliation(s)
- Melanie M. Pearson
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| | - Allyson E. Shea
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| | - Sapna Pahil
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| | - Sara N. Smith
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| | - Valerie S. Forsyth
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| | - Harry L. T. Mobley
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
12
|
Petchakup C, Chen YYC, Tay HM, Ong HB, Hon PY, De PP, Yeo TW, Li KHH, Vasoo S, Hou HW. Rapid Screening of Urinary Tract Infection Using Microfluidic Inertial-Impedance Cytometry. ACS Sens 2023; 8:3136-3145. [PMID: 37477562 DOI: 10.1021/acssensors.3c00819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
Urinary tract infection (UTI) diagnosis based on urine culture for bacteriuria analysis is time-consuming and often leads to wastage of hospital resources due to false-positive UTI cases. Direct cellular phenotyping (e.g., RBCs, neutrophils, epithelial cells) of urine samples remains a technical challenge as low cell concentrations, and urine characteristics (conductivities, pH, microbes) can affect the accuracy of cell measurements. In this work, we report a microfluidic inertial-impedance cytometry technique for label-free rapid (<5 min) neutrophil sorting and impedance profiling from urine directly. Based on size-based inertial focusing effects, neutrophils are isolated, concentrated, and resuspended in saline (buffer exchange) to improve consistency in impedance-based single-cell analysis. We first observed that both urine pH and the presence of bacteria can affect neutrophil high-frequency impedance measurements possibly due to changes in nucleus morphology as neutrophils undergo NETosis and phagocytosis, respectively. As a proof-of-concept for clinical testing, we report for the first time, rapid UTI testing based on multiparametric impedance profiling of putative neutrophils (electrical size, membrane properties, and distribution) in urine samples from non-UTI (n = 20) and UTI patients (n = 20). A significant increase in cell count was observed in UTI samples, and biophysical parameters were used to develop a UTI classifier with an area under the receiver operating characteristic curve of 0.84. Overall, the developed platform facilitates rapid culture-free urine screening which can be further developed to assess disease severity in UTI and other urologic diseases based on neutrophil electrical signatures.
Collapse
Affiliation(s)
- Chayakorn Petchakup
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | | | - Hui Min Tay
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Hong Boon Ong
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Pei Yun Hon
- National Center for Infectious Disease, Tan Tock Seng Hospital, Singapore 308442, Singapore
| | - Partha Pratim De
- Department of Laboratory Medicine, Tan Tock Seng Hospital, Singapore 308433, Singapore
| | - Tsin Wen Yeo
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
| | - King Ho Holden Li
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Shawn Vasoo
- National Center for Infectious Disease, Tan Tock Seng Hospital, Singapore 308442, Singapore
| | - Han Wei Hou
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
| |
Collapse
|
13
|
Stensballe A, Bennike TB, Ravn-Haren G, Mortensen A, Aboo C, Knudsen LA, Rühlemann MC, Birkelund S, Bang C, Franke A, Vogel U, Hansen AK, Andersen V. Impaired Abcb1a function and red meat in a translational colitis mouse model induces inflammation and alters microbiota composition. Front Med (Lausanne) 2023; 10:1200317. [PMID: 37588005 PMCID: PMC10425965 DOI: 10.3389/fmed.2023.1200317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/20/2023] [Indexed: 08/18/2023] Open
Abstract
Inflammatory Bowel Disease (IBD) affects approximately 0.3% of the global population, with incidence rates rising dramatically worldwide. Emerging evidence points to an interplay between exposome factors such as diet and gut microbiota, host genetics, and the immune system as crucial elements in IBD development. ATP-binding cassette (ABC) transporters, including human p-glycoprotein encoded by the Abcb1 gene, influence intestinal inflammation, and their expression may interact with environmental factors such as diet and gut microbes. Our study aimed to examine the impact of protein sources on a genetic colitis mouse model. Methods Abcb1a-deficient colitis mice were fed either casein or red meat-supplemented diets to investigate potential colitis-aggravating components in red meat and their effects on host-microbiota interactions. We conducted deep label free quantitative proteomic inflammation profiling of gastrointestinal tissue (colon, ileum) and urine, and determined the overall microbiome in feces using 16S rRNA gene sequencing. Microbiota shifts by diet and protein transporter impairment were addressed by multivariate statistical analysis. Colon and systemic gut inflammation were validated through histology and immune assays, respectively. Results A quantitative discovery based proteomic analysis of intestinal tissue and urine revealed associations between ileum and urine proteomes in relation to Abcb1a deficiency. The absence of Abcb1a efflux pump function and diet-induced intestinal inflammation impacted multiple systemic immune processes, including extensive neutrophil extracellular trap (NET) components observed in relation to neutrophil degranulation throughout the gastrointestinal tract. The colitis model's microbiome differed significantly from that of wild-type mice, indicating the substantial influence of efflux transporter deficiency on microbiota. Conclusion The proteomic and microbiota analyzes of a well-established murine model enabled the correlation of gastrointestinal interactions not readily identifiable in human cohorts. Insights into dysregulated biological pathways in this disease model might offer translational biomarkers based on NETs and improved understanding of IBD pathogenesis in human patients. Our findings demonstrate that drug transporter deficiency induces substantial changes in the microbiota, leading to increased levels of IBD-associated strains and resulting in intestinal inflammation. GRAPHICAL ABSTRACT.
Collapse
Affiliation(s)
- Allan Stensballe
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
- Clinical Cancer Research Center, Aalborg University Hospital, Aalborg, Denmark
| | - Tue Bjerg Bennike
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Gitte Ravn-Haren
- National Food Institute, Technical University of Denmark, Lyngby, Denmark
| | - Alicja Mortensen
- National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Christopher Aboo
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
- Sino-Danish Center for Research and Education, University of Chinese Academy of Sciences, Beijing, China
| | - Lina Almind Knudsen
- Institute of Regional Health Research-Center Soenderjylland, University of Southern Denmark, Odense, Denmark
| | - Malte C. Rühlemann
- Institute of Clinical Molecular Biology, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Svend Birkelund
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Corinne Bang
- Institute of Clinical Molecular Biology, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Ulla Vogel
- National Food Institute, Technical University of Denmark, Lyngby, Denmark
- National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Axel Kornerup Hansen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Vibeke Andersen
- Institute of Regional Health Research-Center Soenderjylland, University of Southern Denmark, Odense, Denmark
- Molecular Diagnostic and Clinical Research Unit, University Hospital of Southern Denmark, Aabenraa, Denmark
- Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
14
|
Pearson MM, Shea AE, Pahil S, Smith SN, Forsyth VS, Mobley HLT. Organ agar serves as physiologically relevant alternative for in vivo colonization. RESEARCH SQUARE 2023:rs.3.rs-2777869. [PMID: 37293055 PMCID: PMC10246091 DOI: 10.21203/rs.3.rs-2777869/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Animal models for host-microbial interactions have proven valuable, yielding physiologically relevant data that may be otherwise difficult to obtain. Unfortunately, such models are lacking or nonexistent for many microbes. Here, we introduce organ agar, a straightforward method to enable the screening of large mutant libraries while avoiding physiological bottlenecks. We demonstrate that growth defects on organ agar were translatable to colonization deficiencies in a murine model. Specifically, we present a urinary tract infection agar model to interrogate an ordered library of Proteus mirabilis transposon mutants, with accurate prediction of bacterial genes critical for host colonization. Thus, we demonstrate the ability of ex vivo organ agar to reproduce in vivo deficiencies. This work provides a readily adoptable technique that is economical and uses substantially fewer animals. We anticipate this method will be useful for a wide variety of microorganisms, both pathogenic and commensal, in a diverse range of model host species.
Collapse
Affiliation(s)
- Melanie M. Pearson
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| | | | | | - Sara N. Smith
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| | - Valerie S. Forsyth
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| | - Harry L. T. Mobley
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
15
|
Goldspink A, Schmitz J, Babyak O, Brauns N, Milleck J, Breloh AM, Fleig SV, Jobin K, Schwarz L, Haller H, Wagenlehner F, Bräsen JH, Kurts C, von Vietinghoff S. Kidney medullary sodium chloride concentrations induce neutrophil and monocyte extracellular DNA traps that defend against pyelonephritis in vivo. Kidney Int 2023:S0085-2538(23)00265-X. [PMID: 37098380 DOI: 10.1016/j.kint.2023.03.034] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 03/10/2023] [Accepted: 03/17/2023] [Indexed: 04/27/2023]
Abstract
Urinary tract infections are common. Here, we delineate a role of extracellular DNA trap (ET) formation in kidney antibacterial defense and determine mechanisms of their formation in the hyperosmotic environment of the kidney medulla. ET of granulocytic and monocytic origin were present in the kidneys of patients with pyelonephritis along with systemically elevated citrullinated histone levels. Inhibition of the transcription coregulatory, peptidylarginine deaminase 4 (PAD4), required for ET formation, prevented kidney ET formation and promoted pyelonephritis in mice. ETs predominantly accumulated in the kidney medulla. The role of medullary sodium chloride and urea concentrations in ET formation was then investigated. Medullary-range sodium chloride, but not urea, dose-, time- and PAD4-dependently induced ET formation even in the absence of other stimuli. Moderately elevated sodium chloride promoted myeloid cell apoptosis. Sodium gluconate also promoted cell death, proposing a role for sodium ions in this process. Sodium chloride induced myeloid cell calcium influx. Calcium ion-free media or -chelation reduced sodium chloride-induced apoptosis and ET formation while bacterial lipopolysaccharide amplified it. Autologous serum improved bacterial killing in the presence of sodium chloride-induced ET. Depletion of the kidney sodium chloride gradient by loop diuretic therapy diminished kidney medullary ET formation and increased pyelonephritis severity. Thus, our data demonstrate that ETs may protect the kidney against ascending uropathogenic E. coli and delineate kidney medullary range sodium chloride concentrations as novel inducers of programmed myeloid cell death.
Collapse
Affiliation(s)
| | | | - Olena Babyak
- Institute of Experimental Immunology, University Clinic and Rheinische Friedrich-Wilhelms Universität Bonn, Bonn
| | - Nicolas Brauns
- Department of Internal Medicine, Division of Nephrology and Hypertension, Hannover Medical School, Hannover
| | | | - Anne M Breloh
- Department of Internal Medicine, Division of Nephrology and Hypertension, Hannover Medical School, Hannover
| | - Susanne V Fleig
- Nephrology Section, First Medical Clinic; Department of Geriatrics, University Hospital RWTH Aachen, Aachen
| | - Katarzyna Jobin
- Institute of Experimental Immunology, University Clinic and Rheinische Friedrich-Wilhelms Universität Bonn, Bonn; Würzburg Institute of Systems Immunology, Max Planck Research Group at the Julius-Maximilians-Universität, Würzburg
| | - Lisa Schwarz
- Department of Urology, Pediatric Urology and Andrology, Justus Liebig University Giessen, Giessen, Germany
| | - Hermann Haller
- Department of Internal Medicine, Division of Nephrology and Hypertension, Hannover Medical School, Hannover
| | - Florian Wagenlehner
- Department of Urology, Pediatric Urology and Andrology, Justus Liebig University Giessen, Giessen, Germany
| | | | - Christian Kurts
- Institute of Experimental Immunology, University Clinic and Rheinische Friedrich-Wilhelms Universität Bonn, Bonn
| | - Sibylle von Vietinghoff
- Nephrology Section, First Medical Clinic; Department of Internal Medicine, Division of Nephrology and Hypertension, Hannover Medical School, Hannover.
| |
Collapse
|
16
|
Chen ZZ, Johnson L, Trahtemberg U, Baker A, Huq S, Dufresne J, Bowden P, Miao M, Ho JA, Hsu CC, Dos Santos CC, Marshall JG. Mitochondria and cytochrome components released into the plasma of severe COVID-19 and ICU acute respiratory distress syndrome patients. Clin Proteomics 2023; 20:17. [PMID: 37031181 PMCID: PMC10082440 DOI: 10.1186/s12014-023-09394-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 01/20/2023] [Indexed: 04/10/2023] Open
Abstract
INTRODUCTION Proteomic analysis of human plasma by LC-ESI-MS/MS has discovered a limited number of new cellular protein biomarkers that may be confirmed by independent biochemical methods. Analysis of COVID-19 plasma has indicated the re-purposing of known biomarkers that might be used as prognostic markers of COVID-19 infection. However, multiple molecular approaches have previously indicated that the SARS-COV2 infection cycle is linked to the biology of mitochondria and that the response to infections may involve the action of heme containing oxidative enzymes. METHODS Human plasma from COVID-19 and ICU-ARDS was analyzed by classical analytical biochemistry techniques and classical frequency-based statistical approaches to look for prognostic markers of severe COVID-19 lung damage. Plasma proteins from COVID-19 and ICU-ARDS were identified and enumerated versus the controls of normal human plasma (NHP) by LC-ESI-MS/MS. The observation frequency of proteins detected in COVID-19 and ICU-ARDS patients were compared to normal human plasma, alongside random and noise MS/MS spectra controls, using the Chi Square (χ2) distribution. RESULTS PCR showed the presence of MT-ND1 DNA in the plasma of COVID-19, ICU-ARDS, as well as normal human plasma. Mitochondrial proteins such as MRPL, L2HGDH, ATP, CYB, CYTB, CYP, NDUF and others, were increased in COVID-19 and ICU-ARDS plasma. The apparent activity of the cytochrome components were tested alongside NHP by dot blotting on PVDF against a purified cytochrome c standard preparation for H2O2 dependent reaction with luminol as measured by enhanced chemiluminescence (ECL) that showed increased activity in COVID-19 and ICU-ARDS patients. DISCUSSION The results from PCR, LC-ESI-MS/MS of tryptic peptides, and cytochrome ECL assays confirmed that mitochondrial components were present in the plasma, in agreement with the established central role of the mitochondria in SARS-COV-2 biology. The cytochrome activity assay showed that there was the equivalent of at least nanogram amounts of cytochrome(s) in the plasma sample that should be clearly detectable by LC-ESI-MS/MS. The release of the luminol oxidase activity from cells into plasma forms the basis of a simple and rapid test for the severity of cell damage and lung injury in COVID-19 infection and ICU-ARDS.
Collapse
Affiliation(s)
- Zhuo Zhen Chen
- Department of Chemistry and Biology, Faculty of Science, Toronto Metropolitan, University, 350 Victoria Street, Toronto, ON, Canada
| | - Lloyd Johnson
- Department of Chemistry and Biology, Faculty of Science, Toronto Metropolitan, University, 350 Victoria Street, Toronto, ON, Canada
| | - Uriel Trahtemberg
- St. Michael's Hospital, Keenan Research Centre for Biomedical Science, Toronto, Canada
| | - Andrew Baker
- St. Michael's Hospital, Keenan Research Centre for Biomedical Science, Toronto, Canada
| | - Saaimatul Huq
- Department of Chemistry and Biology, Faculty of Science, Toronto Metropolitan, University, 350 Victoria Street, Toronto, ON, Canada
| | | | | | | | - Ja-An Ho
- Department of Chemistry, National Taiwan University, Taipei, Taiwan
| | - Cheng-Chih Hsu
- Department of Chemistry, National Taiwan University, Taipei, Taiwan
| | - Claudia C Dos Santos
- St. Michael's Hospital, Keenan Research Centre for Biomedical Science, Toronto, Canada.
| | - John G Marshall
- Department of Chemistry and Biology, Faculty of Science, Toronto Metropolitan, University, 350 Victoria Street, Toronto, ON, Canada.
- Integrated BioBank of Luxembourg, Luxembourg Institute of Health, 6 R. Nicolas-Ernest Barblé, Luxembourg, Luxembourg.
| |
Collapse
|
17
|
Krivošíková K, Šupčíková N, Gaál Kovalčíková A, Janko J, Pastorek M, Celec P, Podracká Ľ, Tóthová Ľ. Neutrophil extracellular traps in urinary tract infection. Front Pediatr 2023; 11:1154139. [PMID: 37020646 PMCID: PMC10067609 DOI: 10.3389/fped.2023.1154139] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 02/27/2023] [Indexed: 04/07/2023] Open
Abstract
Background Urinary tract infections (UTI) are common types of bacterial infection in children. UTI treatment is aimed to prevent complications including hypertension, proteinuria, and progression to chronic kidney disease. Activated neutrophils release chromatin-based structures associated with antimicrobial proteins called neutrophil extracellular traps (NETs). We aimed to describe the role of NET-associated markers in children with UTI as well as the role of NETs formation in a mouse model of UTI. Materials and methods Markers of NETs including extracellular DNA (ecDNA), myeloperoxidase (MPO) and cathelicidin were analyzed in children with febrile UTI caused by E. coli (n = 98, aged 0.3-1.3 years) and in healthy controls (n = 50, 0.5-5.2 years). Moreover, an acute experimental model of UTI was performed on PAD4 knock-out mice with diminished NETs formation (n = 18), and on wild-type mice (n = 15). Results Children with UTI had significantly higher urinary NETs markers including total ecDNA, nuclear DNA and mitochondrial DNA, altogether with MPO and cathelicidin. The concentrations of MPO and cathelicidin positively correlated with ecDNA (r = 0.53, p ≤ 0.001; r = 0.56, p ≤ 0.001, respectively) and the number of leukocytes in the urine (r = 0.29, p ≤ 0.05; r = 0.27, p ≤ 0.05, respectively). Moreover, urinary MPO was positively associated with cathelicidin (r = 0.61, p ≤ 0.001). In the experimental model, bacterial load in the bladder (20-fold) and kidneys (300-fold) was significantly higher in PAD4 knock-out mice than in wild-type mice. Conclusion Higher urinary NETs makers-ecDNA, MPO and cathelicidin and their correlation with leukocyturia in children with UTI confirmed our hypothesis about the association between NETs and UTI in children. Higher bacterial load in mice with diminished NETs formation suggests that NETs are not only a simple consequence of UTI, but might play a direct role in the prevention of pyelonephritis and other UTI complications.
Collapse
Affiliation(s)
- Katarína Krivošíková
- Department of Pediatrics, National Institute of Children’s Diseases and Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Nadja Šupčíková
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Alexandra Gaál Kovalčíková
- Department of Pediatrics, National Institute of Children’s Diseases and Faculty of Medicine, Comenius University, Bratislava, Slovakia
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Jakub Janko
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Michal Pastorek
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Peter Celec
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Ľudmila Podracká
- Department of Pediatrics, National Institute of Children’s Diseases and Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Ľubomíra Tóthová
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia
- Correspondence: Ľubomíra Tóthová
| |
Collapse
|
18
|
Wang AS, Steers NJ, Parab AR, Gachon F, Sweet MJ, Mysorekar IU. Timing is everything: impact of development, ageing and circadian rhythm on macrophage functions in urinary tract infections. Mucosal Immunol 2022; 15:1114-1126. [PMID: 36038769 DOI: 10.1038/s41385-022-00558-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/31/2022] [Accepted: 08/08/2022] [Indexed: 02/04/2023]
Abstract
The bladder supports a diversity of macrophage populations with functional roles related to homeostasis and host defense, including clearance of cell debris from tissue, immune surveillance, and inflammatory responses. This review examines these roles with particular attention given to macrophage origins, differentiation, recruitment, and engagement in host defense against urinary tract infections (UTIs), where these cells recognize uropathogens through a combination of receptor-mediated responses. Time is an important variable that is often overlooked in many clinical and biological studies, including in relation to macrophages and UTIs. Given that ageing is a significant factor in urinary tract infection pathogenesis and macrophages have been shown to harbor their own circadian system, this review also explores the influence of age on macrophage functions and the role of diurnal variations in macrophage functions in host defense and inflammation during UTIs. We provide a conceptual framework for future studies that address these key knowledge gaps.
Collapse
Affiliation(s)
- Alison S Wang
- Institute for Molecular Bioscience (IMB) and IMB Centre for Inflammation and Disease Research, The University of Queensland, St. Lucia, QLD, Australia.,Australian Infectious Diseases Research Centre, The University of Queensland, St. Lucia, QLD, Australia
| | - Nicholas J Steers
- Division of Nephrology, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA.
| | - Adwaita R Parab
- Department of Medicine, Section of Infectious Diseases, Baylor College of Medicine, Houston, TX, USA
| | - Frédéric Gachon
- Institute for Molecular Bioscience (IMB) and IMB Centre for Inflammation and Disease Research, The University of Queensland, St. Lucia, QLD, Australia
| | - Matthew J Sweet
- Institute for Molecular Bioscience (IMB) and IMB Centre for Inflammation and Disease Research, The University of Queensland, St. Lucia, QLD, Australia. .,Australian Infectious Diseases Research Centre, The University of Queensland, St. Lucia, QLD, Australia.
| | - Indira U Mysorekar
- Department of Medicine, Section of Infectious Diseases, Baylor College of Medicine, Houston, TX, USA. .,Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
19
|
Study of the Role of the Tyrosine Kinase Receptor MerTK in the Development of Kidney Ischemia-Reperfusion Injury in RCS Rats. Int J Mol Sci 2021; 22:ijms222212103. [PMID: 34829984 PMCID: PMC8618874 DOI: 10.3390/ijms222212103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/31/2021] [Accepted: 11/03/2021] [Indexed: 11/16/2022] Open
Abstract
Renal ischaemia reperfusion (I/R) triggers a cascade of events including oxidative stress, apoptotic body and microparticle (MP) formation as well as an acute inflammatory process that may contribute to organ failure. Macrophages are recruited to phagocytose cell debris and MPs. The tyrosine kinase receptor MerTK is a major player in the phagocytosis process. Experimental models of renal I/R events are of major importance for identifying I/R key players and for elaborating novel therapeutical approaches. A major aim of our study was to investigate possible involvement of MerTK in renal I/R. We performed our study on both natural mutant rats for MerTK (referred to as RCS) and on wild type rats referred to as WT. I/R was established by of bilateral clamping of the renal pedicles for 30' followed by three days of reperfusion. Plasma samples were analysed for creatinine, aspartate aminotransferase (ASAT), lactate dehydrogenase (LDH), kidney injury molecule -1 (KIM-1), and neutrophil gelatinase-associated lipocalin (NGAL) levels and for MPs. Kidney tissue damage and CD68-positive cell requirement were analysed by histochemistry. monocyte chemoattractant protein-1 (MCP-1), myeloperoxidase (MPO), inducible nitric oxide synthase (iNOS), and histone 3A (H3A) levels in kidney tissue lysates were analysed by western blotting. The phagocytic activity of blood-isolated monocytes collected from RCS or WT towards annexin-V positive bodies derived from cultured renal cell was assessed by fluorescence-activated single cell sorting (FACS) and confocal microscopy analyses. The renal I/R model for RCS rat described for the first time here paves the way for further investigations of MerTK-dependent events in renal tissue injury and repair mechanisms.
Collapse
|
20
|
Sharma K, Dhar N, Thacker VV, Simonet TM, Signorino-Gelo F, Knott GW, McKinney JD. Dynamic persistence of UPEC intracellular bacterial communities in a human bladder-chip model of urinary tract infection. eLife 2021; 10:66481. [PMID: 34219648 PMCID: PMC8354636 DOI: 10.7554/elife.66481] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 07/04/2021] [Indexed: 12/23/2022] Open
Abstract
Uropathogenic Escherichia coli (UPEC) proliferate within superficial bladder umbrella cells to form intracellular bacterial communities (IBCs) during early stages of urinary tract infections. However, the dynamic responses of IBCs to host stresses and antibiotic therapy are difficult to assess in situ. We develop a human bladder-chip model wherein umbrella cells and bladder microvascular endothelial cells are co-cultured under flow in urine and nutritive media respectively, and bladder filling and voiding mimicked mechanically by application and release of linear strain. Using time-lapse microscopy, we show that rapid recruitment of neutrophils from the vascular channel to sites of infection leads to swarm and neutrophil extracellular trap formation but does not prevent IBC formation. Subsequently, we tracked bacterial growth dynamics in individual IBCs through two cycles of antibiotic administration interspersed with recovery periods which revealed that the elimination of bacteria within IBCs by the antibiotic was delayed, and in some instances, did not occur at all. During the recovery period, rapid proliferation in a significant fraction of IBCs reseeded new foci of infection through bacterial shedding and host cell exfoliation. These insights reinforce a dynamic role for IBCs as harbors of bacterial persistence, with significant consequences for non-compliance with antibiotic regimens. Urinary tract infections are one of the most common reasons people need antibiotics. These bacterial infections are typically caused by uropathogenic Escherichia coli (also known as UPEC), which either float freely in the urine and wash away when the bladder empties, or form communities inside cells that the bladder struggles to clear. It is possible that the bacteria living within cells are also more protected from the immune system and antibiotics. But this is hard to study in animal models. To overcome this, Sharma et al. built a ‘bladder-chip’ which mimics the interface between the blood vessels and the tissue layers of the human bladder. Similar chip devices have also been made for other organs. However, until now, no such model had been developed for the bladder. On the chip created by Sharma et al. is a layer of bladder cells which sit at the bottom of a channel filled with diluted human urine. These cells were infected with UPEC, and then imaged over time to see how the bacteria moved, interacted with the bladder cells, and aggregated together. Immune cells from human blood were then added to a vascular channel underneath the bladder tissue, which is coated with endothelial cells that normally line blood vessels. The immune cells rapidly crossed the endothelial barrier and entered the bladder tissue, and swarmed around sites of infection. In some instances, they released the contents of their cells to form net-like traps to catch the bacteria. But these traps failed to remove the bacteria living inside bladder cells. Antibiotics were then added to the urine flowing over the bladder cells as well as the vascular channel, similar to how drugs would be delivered in live human tissue. Sharma et al. discovered that the antibiotics killed bacteria residing in bladder cells slower than bacteria floating freely in the urine. Furthermore, they found that bacteria living in tightly packed communities within bladder cells were more likely to survive treatment and go on to re-infect other parts of the tissue. Antibiotic resistance is a pressing global challenge, and recurrent urinary tract infections are a significant contributor. The bladder-chip presented here could further our understanding of how these bacterial infections develop in vivo and how good antibiotics are at removing them. This could help researchers identify the best dosing and treatment strategies, as well as provide a platform for rapidly testing new antibiotic drugs and other therapies.
Collapse
Affiliation(s)
- Kunal Sharma
- School of Life Sciences, Swiss Federal Institute of Technology in Lausanne (EPFL), Lausanne, Switzerland
| | - Neeraj Dhar
- School of Life Sciences, Swiss Federal Institute of Technology in Lausanne (EPFL), Lausanne, Switzerland
| | - Vivek V Thacker
- School of Life Sciences, Swiss Federal Institute of Technology in Lausanne (EPFL), Lausanne, Switzerland
| | - Thomas M Simonet
- School of Life Sciences, Swiss Federal Institute of Technology in Lausanne (EPFL), Lausanne, Switzerland
| | - Francois Signorino-Gelo
- School of Life Sciences, Swiss Federal Institute of Technology in Lausanne (EPFL), Lausanne, Switzerland
| | - Graham W Knott
- School of Life Sciences, Swiss Federal Institute of Technology in Lausanne (EPFL), Lausanne, Switzerland
| | - John D McKinney
- School of Life Sciences, Swiss Federal Institute of Technology in Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
21
|
Yu Y, Singh H, Tsitrin T, Bekele S, Lin YH, Sikorski P, Moncera KJ, Torralba MG, Morrow L, Wolcott R, Nelson KE, Pieper R. Urethral Catheter Biofilms Reveal Plasticity in Bacterial Composition and Metabolism and Withstand Host Immune Defenses in Hypoxic Environment. Front Med (Lausanne) 2021; 8:667462. [PMID: 34249966 PMCID: PMC8260951 DOI: 10.3389/fmed.2021.667462] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 05/06/2021] [Indexed: 11/18/2022] Open
Abstract
Biofilms composed of multiple microorganisms colonize the surfaces of indwelling urethral catheters that are used serially by neurogenic bladder patients and cause chronic infections. Well-adapted pathogens in this niche are Escherichia coli, Proteus, and Enterococcus spp., species that cycle through adhesion and multilayered cell growth, trigger host immune responses, are starved off nutrients, and then disperse. Viable microbial foci retained in the urinary tract recolonize catheter surfaces. The molecular adaptations of bacteria in catheter biofilms (CBs) are not well-understood, promising new insights into this pathology based on host and microbial meta-omics analyses from clinical specimens. We examined catheters from nine neurogenic bladder patients longitudinally over up to 6 months. Taxonomic analyses from 16S rRNA gene sequencing and liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based proteomics revealed that 95% of all catheter and corresponding urinary pellet (UP) samples contained bacteria. CB biomasses were dominated by Enterobacteriaceae spp. and often accompanied by lactic acid and anaerobic bacteria. Systemic antibiotic drug treatments of patients resulted in either transient or lasting microbial community perturbations. Neutrophil effector proteins were abundant not only in UP but also CB samples, indicating their penetration of biofilm surfaces. In the context of one patient who advanced to a kidney infection, Proteus mirabilis proteomic data suggested a combination of factors associated with this disease complication: CB biomasses were high; the bacteria produced urease alkalinizing the pH and triggering urinary salt deposition on luminal catheter surfaces; P. mirabilis utilized energy-producing respiratory systems more than in CBs from other patients. The NADH:quinone oxidoreductase II (Nqr), a Na+ translocating enzyme not operating as a proton pump, and the nitrate reductase A (Nar) equipped the pathogen with electron transport chains promoting growth under hypoxic conditions. Both P. mirabilis and E. coli featured repertoires of transition metal ion acquisition systems in response to human host-mediated iron and zinc sequestration. We discovered a new drug target, the Nqr respiratory system, whose deactivation may compromise P. mirabilis growth in a basic pH milieu. Animal models would not allow such molecular-level insights into polymicrobial biofilm metabolism and interactions because the complexity cannot be replicated.
Collapse
Affiliation(s)
- Yanbao Yu
- J. Craig Venter Institute, Rockville, MD, United States
| | | | | | | | - Yi-Han Lin
- J. Craig Venter Institute, Rockville, MD, United States
| | | | | | | | - Lisa Morrow
- Southwest Regional Wound Care Center, Lubbock, TX, United States
| | - Randall Wolcott
- Southwest Regional Wound Care Center, Lubbock, TX, United States
| | - Karen E. Nelson
- J. Craig Venter Institute, Rockville, MD, United States
- J. Craig Venter Institute, La Jolla, CA, United States
| | | |
Collapse
|
22
|
To Trap a Pathogen: Neutrophil Extracellular Traps and Their Role in Mucosal Epithelial and Skin Diseases. Cells 2021; 10:cells10061469. [PMID: 34208037 PMCID: PMC8230648 DOI: 10.3390/cells10061469] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/28/2021] [Accepted: 06/03/2021] [Indexed: 12/18/2022] Open
Abstract
Neutrophils are the most abundant circulating innate immune cells and comprise the first immune defense line, as they are the most rapidly recruited cells at sites of infection or inflammation. Their main microbicidal mechanisms are degranulation, phagocytosis, cytokine secretion and the formation of extracellular traps. Neutrophil extracellular traps (NETs) are a microbicidal mechanism that involves neutrophil death. Since their discovery, in vitro and in vivo neutrophils have been challenged with a range of stimuli capable of inducing or inhibiting NET formation, with the objective to understand its function and regulation in health and disease. These networks composed of DNA and granular components are capable of immobilizing and killing pathogens. They comprise enzymes such as myeloperoxidase, elastase, cathepsin G, acid hydrolases and cationic peptides, all with antimicrobial and antifungal activity. Therefore, the excessive formation of NETs can also lead to tissue damage and promote local and systemic inflammation. Based on this concept, in this review, we focus on the role of NETs in different infectious and inflammatory diseases of the mucosal epithelia and skin.
Collapse
|
23
|
HaileMariam M, Yu Y, Singh H, Teklu T, Wondale B, Worku A, Zewude A, Mounaud S, Tsitrin T, Legesse M, Gobena A, Pieper R. Protein and Microbial Biomarkers in Sputum Discern Acute and Latent Tuberculosis in Investigation of Pastoral Ethiopian Cohort. Front Cell Infect Microbiol 2021; 11:595554. [PMID: 34150670 PMCID: PMC8212885 DOI: 10.3389/fcimb.2021.595554] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 03/22/2021] [Indexed: 01/01/2023] Open
Abstract
Differential diagnosis of tuberculosis (TB) and latent TB infection (LTBI) remains a public health priority in high TB burden countries. Pulmonary TB is diagnosed by sputum smear microscopy, chest X-rays, and PCR tests for distinct Mycobacterium tuberculosis (Mtb) genes. Clinical tests to diagnose LTBI rely on immune cell stimulation in blood plasma with TB-specific antigens followed by measurements of interferon-γ concentrations. The latter is an important cytokine for cellular immune responses against Mtb in infected lung tissues. Sputum smear microscopy and chest X-rays are not sufficiently sensitive while both PCR and interferon-γ release assays are expensive. Alternative biomarkers for the development of diagnostic tests to discern TB disease states are desirable. This study's objective was to discover sputum diagnostic biomarker candidates from the analysis of samples from 161 human subjects including TB patients, individuals with LTBI, negative community controls (NCC) from the province South Omo, a pastoral region in Ethiopia. We analyzed 16S rRNA gene-based bacterial taxonomies and proteomic profiles. The sputum microbiota did not reveal statistically significant differences in α-diversity comparing the cohorts. The genus Mycobacterium, representing Mtb, was only identified for the TB group which also featured reduced abundance of the genus Rothia in comparison with the LTBI and NCC groups. Rothia is a respiratory tract commensal and may be sensitive to the inflammatory milieu generated by infection with Mtb. Proteomic data supported innate immune responses against the pathogen in subjects with pulmonary TB. Ferritin, an iron storage protein released by damaged host cells, was markedly increased in abundance in TB sputum compared to the LTBI and NCC groups, along with the α-1-acid glycoproteins ORM1 and ORM2. These proteins are acute phase reactants and inhibit excessive neutrophil activation. Proteomic data highlight the effector roles of neutrophils in the anti-Mtb response which was not observed for LTBI cases. Less abundant in the sputum of the LTBI group, compared to the NCC group, were two immunomodulatory proteins, mitochondrial TSPO and the extracellular ribonuclease T2. If validated, these proteins are of interest as new biomarkers for diagnosis of LTBI.
Collapse
Affiliation(s)
- Milkessa HaileMariam
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Yanbao Yu
- J. Craig Venter Institute, Rockville, MD, United States
| | - Harinder Singh
- J. Craig Venter Institute, Rockville, MD, United States
| | - Takele Teklu
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
- Department of Immunology and Molecular Biology, University of Gondar, Gondar, Ethiopia
| | - Biniam Wondale
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
- Department of Biology, Arba Minch University, Arba Minch, Ethiopia
| | - Adane Worku
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Aboma Zewude
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| | | | - Tamara Tsitrin
- J. Craig Venter Institute, Rockville, MD, United States
| | - Mengistu Legesse
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Ameni Gobena
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Rembert Pieper
- J. Craig Venter Institute, Rockville, MD, United States
| |
Collapse
|
24
|
Fetz AE, Bowlin GL. Neutrophil Extracellular Traps: Inflammation and Biomaterial Preconditioning for Tissue Engineering. TISSUE ENGINEERING PART B-REVIEWS 2021; 28:437-450. [PMID: 33736452 DOI: 10.1089/ten.teb.2021.0013] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Tissue injury initiates a tissue repair program, characterized by acute inflammation and recruitment of immune cells, dominated by neutrophils. Neutrophils prevent infection in the injured tissue through multiple effector functions, including the production of reactive oxygen species, the release of granules, the phagocytosis of invaders, and the extrusion of neutrophil extracellular traps (NETs). However, these canonical protective mechanisms can also have detrimental effects both in the context of infection and in response to sterile injuries. Of particular interest to biomaterials and tissue engineering is the release of NETs, which are extracellular structures composed of decondensed chromatin and various toxic nuclear and granular components. These structures and their dysregulated release can cause collateral tissue damage, uncontrolled inflammation, and fibrosis and prevent the neutrophil from exerting its prohealing functions. This review discusses our knowledge of NETs, including their composition and morphology, signaling pathways, inhibitors, and contribution to inflammatory pathologies, as well as their role in the resolution of inflammation. In addition, we summarize what is known about the release of NETs as a preconditioning event in the response to biomaterials and highlight future considerations to target the neutrophil response and enhance biomaterial-guided tissue repair and regeneration. Impact statement Neutrophil extracellular trap (NET) release is an active process programmed into the neutrophil's molecular machinery to prevent infection. However, the release of NETs on biomaterials appears to be a significant preconditioning event that influences the potential for tissue healing with largely detrimental consequences. Given their contribution to inflammatory pathologies, this review highlights the role of NETs in the response to biomaterials. Together, the studies discussed in this review suggest that biomaterials should be designed to regulate NET release to avoid maladaptive immune responses and improve the therapeutic potential of tissue-engineered biomaterials and their applications in the clinical setting.
Collapse
Affiliation(s)
- Allison E Fetz
- Department of Biomedical Engineering, University of Memphis, Memphis, Tennessee, USA
| | - Gary L Bowlin
- Department of Biomedical Engineering, University of Memphis, Memphis, Tennessee, USA
| |
Collapse
|
25
|
Yu Y, O'Rourke A, Lin YH, Singh H, Eguez RV, Beyhan S, Nelson KE. Predictive Signatures of 19 Antibiotic-Induced Escherichia coli Proteomes. ACS Infect Dis 2020; 6:2120-2129. [PMID: 32673475 DOI: 10.1021/acsinfecdis.0c00196] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Identifying the mode of action (MOA) of antibacterial compounds is the fundamental basis for the development of new antibiotics, and the challenge increases with the emerging secondary and indirect effect from antibiotic stress. Although various omics-based system biology approaches are currently available, enhanced throughput, accuracy, and comprehensiveness are still desirable to better define antibiotic MOA. Using label-free quantitative proteomics, we present here a comprehensive reference map of proteomic signatures of Escherichia coli under challenge of 19 individual antibiotics. Applying several machine learning techniques, we derived a panel of 14 proteins that can be used to classify the antibiotics into different MOAs with nearly 100% accuracy. These proteins tend to mediate diverse bacterial cellular and metabolic processes. Transcriptomic level profiling correlates well with protein expression changes in discriminating different antibiotics. The reported expression signatures will aid future studies in identifying MOA of unknown compounds and facilitate the discovery of novel antibiotics.
Collapse
Affiliation(s)
- Yanbao Yu
- J. Craig Venter Institute, 9605 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Aubrie O'Rourke
- J. Craig Venter Institute, 4120 Capricorn Lane, La Jolla, California 92037, United States
| | - Yi-Han Lin
- J. Craig Venter Institute, 9605 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Harinder Singh
- J. Craig Venter Institute, 9605 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Rodrigo Vargas Eguez
- J. Craig Venter Institute, 9605 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Sinem Beyhan
- J. Craig Venter Institute, 4120 Capricorn Lane, La Jolla, California 92037, United States
| | - Karen E Nelson
- J. Craig Venter Institute, 9605 Medical Center Drive, Rockville, Maryland 20850, United States
- J. Craig Venter Institute, 4120 Capricorn Lane, La Jolla, California 92037, United States
| |
Collapse
|
26
|
Doolin T, Amir HM, Duong L, Rosenzweig R, Urban LA, Bosch M, Pol A, Gross SP, Siryaporn A. Mammalian histones facilitate antimicrobial synergy by disrupting the bacterial proton gradient and chromosome organization. Nat Commun 2020; 11:3888. [PMID: 32753666 PMCID: PMC7403156 DOI: 10.1038/s41467-020-17699-z] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 07/07/2020] [Indexed: 12/30/2022] Open
Abstract
First proposed as antimicrobial agents, histones were later recognized for their role in condensing chromosomes. Histone antimicrobial activity has been reported in innate immune responses. However, how histones kill bacteria has remained elusive. The co-localization of histones with antimicrobial peptides (AMPs) in immune cells suggests that histones may be part of a larger antimicrobial mechanism in vivo. Here we report that histone H2A enters E. coli and S. aureus through membrane pores formed by the AMPs LL-37 and magainin-2. H2A enhances AMP-induced pores, depolarizes the bacterial membrane potential, and impairs membrane recovery. Inside the cytoplasm, H2A reorganizes bacterial chromosomal DNA and inhibits global transcription. Whereas bacteria recover from the pore-forming effects of LL-37, the concomitant effects of H2A and LL-37 are irrecoverable. Their combination constitutes a positive feedback loop that exponentially amplifies their antimicrobial activities, causing antimicrobial synergy. More generally, treatment with H2A and the pore-forming antibiotic polymyxin B completely eradicates bacterial growth.
Collapse
Affiliation(s)
- Tory Doolin
- Department of Developmental and Cell Biology, UC Irvine, Irvine, CA, 92697, USA
| | - Henry M Amir
- Department of Physics & Astronomy, UC Irvine, Irvine, CA, 92697, USA
| | - Leora Duong
- Department of Molecular Biology & Biochemistry, UC Irvine, Irvine, CA, 92697, USA
| | - Rachel Rosenzweig
- Department of Materials Sciences and Engineering, UC Irvine, Irvine, CA, 92697, USA
| | - Lauren A Urban
- Department of Microbiology and Molecular Genetics, UC Irvine, Irvine, CA, 92697, USA
| | - Marta Bosch
- Cell Compartments and Signaling Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, 08036, Spain
- Department of Biomedical Sciences, Faculty of Medicine, Universitat de Barcelona, Barcelona, 08036, Spain
| | - Albert Pol
- Cell Compartments and Signaling Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, 08036, Spain
- Department of Biomedical Sciences, Faculty of Medicine, Universitat de Barcelona, Barcelona, 08036, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, 08010, Spain
| | - Steven P Gross
- Department of Developmental and Cell Biology, UC Irvine, Irvine, CA, 92697, USA.
- Department of Physics & Astronomy, UC Irvine, Irvine, CA, 92697, USA.
| | - Albert Siryaporn
- Department of Physics & Astronomy, UC Irvine, Irvine, CA, 92697, USA.
- Department of Molecular Biology & Biochemistry, UC Irvine, Irvine, CA, 92697, USA.
| |
Collapse
|
27
|
Kidney dendritic cells: fundamental biology and functional roles in health and disease. Nat Rev Nephrol 2020; 16:391-407. [PMID: 32372062 DOI: 10.1038/s41581-020-0272-y] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2020] [Indexed: 02/06/2023]
Abstract
Dendritic cells (DCs) are chief inducers of adaptive immunity and regulate local inflammatory responses across the body. Together with macrophages, the other main type of mononuclear phagocyte, DCs constitute the most abundant component of the intrarenal immune system. This network of functionally specialized immune cells constantly surveys its microenvironment for signs of injury or infection, which trigger the initiation of an immune response. In the healthy kidney, DCs coordinate effective immune responses, for example, by recruiting neutrophils for bacterial clearance in pyelonephritis. The pro-inflammatory actions of DCs can, however, also contribute to tissue damage in various types of acute kidney injury and chronic glomerulonephritis, as DCs recruit and activate effector T cells, which release toxic mediators and maintain tubulointerstitial immune infiltrates. These actions are counterbalanced by DC subsets that promote the activation and maintenance of regulatory T cells to support resolution of the immune response and allow kidney repair. Several studies have investigated the multiple roles for DCs in kidney homeostasis and disease, but it has become clear that current tools and subset markers are not sufficient to accurately distinguish DCs from macrophages. Multidimensional transcriptomic analysis studies promise to improve mononuclear phagocyte classification and provide a clearer view of DC ontogeny and subsets.
Collapse
|
28
|
Doolin T, Gross S, Siryaporn A. Physical Mechanisms of Bacterial Killing by Histones. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1267:117-133. [PMID: 32894480 DOI: 10.1007/978-3-030-46886-6_7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Antibiotic resistance is a global epidemic, becoming increasingly pressing due to its rapid spread. There is thus a critical need to develop new therapeutic approaches. In addition to searching for new antibiotics, looking into existing mechanisms of natural host defense may enable researchers to improve existing defense mechanisms, and to develop effective, synthetic drugs guided by natural principles. Histones, primarily known for their role in condensing mammalian DNA, are antimicrobial and share biochemical similarities with antimicrobial peptides (AMPs); however, the mechanism by which histones kill bacteria is largely unknown. Both AMPs and histones are similar in size, cationic, contain a high proportion of hydrophobic amino acids, and possess the ability to form alpha helices. AMPs, which mostly kill bacteria through permeabilization or disruption of the biological membrane, have recently garnered significant attention for playing a key role in host defenses. This chapter outlines the structure and function of histone proteins as they compare to AMPs and provides an overview of their role in innate immune responses, especially regarding the action of specific histones against microorganisms and their potential mechanism of action against microbial pathogens.
Collapse
Affiliation(s)
- Tory Doolin
- Department of Developmental and Cell Biology, UC Irvine, Irvine, CA, USA
| | - Steven Gross
- Department of Developmental and Cell Biology, UC Irvine, Irvine, CA, USA. .,Department of Physics & Astronomy, UC Irvine, Irvine, CA, USA.
| | - Albert Siryaporn
- Department of Physics & Astronomy, UC Irvine, Irvine, CA, USA. .,Department of Molecular Biology & Biochemistry, UC Irvine, Irvine, CA, USA.
| |
Collapse
|
29
|
Song Y, Kadiyala U, Weerappuli P, Valdez JJ, Yalavarthi S, Louttit C, Knight JS, Moon JJ, Weiss DS, VanEpps JS, Takayama S. Antimicrobial Microwebs of DNA-Histone Inspired from Neutrophil Extracellular Traps. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1807436. [PMID: 30698844 PMCID: PMC6467213 DOI: 10.1002/adma.201807436] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 01/16/2019] [Indexed: 05/07/2023]
Abstract
Neutrophil extracellular traps (NETs) are decondensed chromatin networks released by neutrophils that can trap and kill pathogens but can also paradoxically promote biofilms. The mechanism of NET functions remains ambiguous, at least in part, due to their complex and variable compositions. To unravel the antimicrobial performance of NETs, a minimalistic NET-like synthetic structure, termed "microwebs," is produced by the sonochemical complexation of DNA and histone. The prepared microwebs have structural similarity to NETs at the nanometer to micrometer dimensions but with well-defined molecular compositions. Microwebs prepared with different DNA to histone ratios show that microwebs trap pathogenic Escherichia coli in a manner similar to NETs when the zeta potential of the microwebs is positive. The DNA nanofiber networks and the bactericidal histone constituting the microwebs inhibit the growth of E. coli. Moreover, microwebs work synergistically with colistin sulfate, a common and a last-resort antibiotic, by targeting the cell envelope of pathogenic bacteria. The synthesis of microwebs enables mechanistic studies not possible with NETs, and it opens new possibilities for constructing biomimetic bacterial microenvironments to better understand and predict physiological pathogen responses.
Collapse
Affiliation(s)
- Yang Song
- Wallace H Coulter Department of Biomedical Engineering & Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology & Emory School of Medicine, Atlanta, GA, 30332, USA
| | - Usha Kadiyala
- Department of Emergency Medicine, Michigan Center for Integrative Research in Critical Care, Biointerfaces Institute, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Priyan Weerappuli
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jordan J. Valdez
- Emory Antibiotic Resistance Center, Emory Vaccine Center, School of Medicine, Emory University, Atlanta, GA, 30307, USA
| | | | - Cameron Louttit
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jason S. Knight
- Division of Rheumatology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - James J. Moon
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - David S. Weiss
- Emory Antibiotic Resistance Center, Emory Vaccine Center, School of Medicine, Emory University, Atlanta, GA, 30307, USA
| | - J. Scott VanEpps
- Department of Emergency Medicine, Michigan Center for Integrative Research in Critical Care, Biointerfaces Institute, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Shuichi Takayama
- Wallace H Coulter Department of Biomedical Engineering & Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology & Emory School of Medicine, Atlanta, GA, 30332, USA
| |
Collapse
|
30
|
Abstract
Urinary tract infections (UTIs) are one of the most common bacterial infections. Conventional approaches to diagnose these infections rely on microbial urine culture, urine sediment microscopy and basic molecular urinalysis tests, in combination with assessments of patient symptoms that are indicative of UTI. The last decade has seen a more widespread clinical use of standardized MALDI-TOF methods to identify UTI-causing microbial agents. Shotgun proteomics methods to determine the extent of inflammation and types of immune cell effectors in urine have not become part of routine clinical tests. However, such methods are useful to investigate UTI pathogenesis, identify difficult-to-culture pathogens and understand antimicrobial effector mechanisms. The present chapter describes these approaches in order to gain quantitative and qualitative insights into inflammation and immune responses in patients with UTI and simultaneously profile the causative agents. The methods are also applicable to examine catheter-associated UTIs and vaginal infections from urine samples. Protocols provided here pertain to direct analyses of clinical specimens including urine sediments and urethral catheter biofilms.
Collapse
|
31
|
Abstract
Neutrophils are important mediators of the antimicrobial defense during urinary tract infections (UTIs). When activated at the site of infection, these innate immune cells phagocytose and neutralize an invading pathogen. Another neutrophil defense strategy is the release of effectors, such as antimicrobial peptides and proteins stored in neutrophil granules and reactive oxygen species. Their release can be facilitated by cellular signals that trigger chromatic decondensation and the disruption of nuclear membranes, followed by granule and plasma membrane disintegration, DNA release into the extracellular milieu, and neutrophil cell death. Neutrophil extracellular traps (NETs) form. If microbial pathogens are the cause of neutrophil infiltration, they are entrapped in the network of DNA fibers that characterize NETs and are exposed to antimicrobial granule effectors and histones that bind to the extracellular DNA fibers. Here, we describe nonmicroscopic methods applied to clinical (urine sediment) samples to identify and characterize NETs associated with UTI. A stepwise extraction procedure using PBS, deoxyribonuclease I digestion and SDS-based solubilization is described. This is followed by native gel analysis to visualize protein-DNA macromolecular assemblies and proteomic analysis to identify signature proteins and their quantities in NETs. Microbes observed to be entrapped in NETs in the process of the innate immune response to the infection are Escherichia coli, Klebsiella pneumoniae, Proteus mirabilis, Staphylococcus aureus, and Enterococcus faecalis.
Collapse
Affiliation(s)
- Yanbao Yu
- The J. Craig Venter Institute, Rockville, MD, USA
| | - Keehwan Kwon
- The J. Craig Venter Institute, Rockville, MD, USA
| | | |
Collapse
|
32
|
Zou T, Hashiya F, Wei Y, Yu Z, Pandian GN, Sugiyama H. Direct Observation of H3-H4 Octasome by High-Speed AFM. Chemistry 2018; 24:15998-16002. [DOI: 10.1002/chem.201804010] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Tingting Zou
- Department of Science; Graduate School of Science; Kyoto University, Sakyo; Kyoto 606-8502 Japan
| | - Fumitaka Hashiya
- Department of Science; Graduate School of Science; Kyoto University, Sakyo; Kyoto 606-8502 Japan
| | - Yulei Wei
- Department of Science; Graduate School of Science; Kyoto University, Sakyo; Kyoto 606-8502 Japan
| | - Zutao Yu
- Department of Science; Graduate School of Science; Kyoto University, Sakyo; Kyoto 606-8502 Japan
| | - Ganesh N. Pandian
- Institute for Integrated Cell-Material Sciences (iCeMS); Kyoto University; Yoshida Ushinomiya-cho Sakyo Kyoto 606-8501 Japan
| | - Hiroshi Sugiyama
- Department of Science; Graduate School of Science; Kyoto University, Sakyo; Kyoto 606-8502 Japan
- Institute for Integrated Cell-Material Sciences (iCeMS); Kyoto University; Yoshida Ushinomiya-cho Sakyo Kyoto 606-8501 Japan
| |
Collapse
|
33
|
Abstract
Neutrophils are essential to the homeostatic mission of safeguarding host tissues, responding rapidly and diversely to breaches of the host's barriers to infection, and returning tissues to a sterile state. In response to specific stimuli, neutrophils extrude modified chromatin structures decorated with specific cytoplasmic and granular proteins called neutrophil extracellular traps (NETs). Several pathways lead to this unique form of cell death (NETosis). Extracellular chromatin may have evolved to defend eukaryotic organisms against infection, and its release has at least three functions: trapping and killing of microbes, amplifying immune responses, and inducing coagulation. Here we review neutrophil development and heterogeneity with a focus on NETs, NET formation, and their relevance in host defense and disease.
Collapse
|
34
|
Armbruster CE, Mobley HLT, Pearson MM. Pathogenesis of Proteus mirabilis Infection. EcoSal Plus 2018; 8:10.1128/ecosalplus.ESP-0009-2017. [PMID: 29424333 PMCID: PMC5880328 DOI: 10.1128/ecosalplus.esp-0009-2017] [Citation(s) in RCA: 226] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Indexed: 01/10/2023]
Abstract
Proteus mirabilis, a Gram-negative rod-shaped bacterium most noted for its swarming motility and urease activity, frequently causes catheter-associated urinary tract infections (CAUTIs) that are often polymicrobial. These infections may be accompanied by urolithiasis, the development of bladder or kidney stones due to alkalinization of urine from urease-catalyzed urea hydrolysis. Adherence of the bacterium to epithelial and catheter surfaces is mediated by 17 different fimbriae, most notably MR/P fimbriae. Repressors of motility are often encoded by these fimbrial operons. Motility is mediated by flagella encoded on a single contiguous 54-kb chromosomal sequence. On agar plates, P. mirabilis undergoes a morphological conversion to a filamentous swarmer cell expressing hundreds of flagella. When swarms from different strains meet, a line of demarcation, a "Dienes line," develops due to the killing action of each strain's type VI secretion system. During infection, histological damage is caused by cytotoxins including hemolysin and a variety of proteases, some autotransported. The pathogenesis of infection, including assessment of individual genes or global screens for virulence or fitness factors has been assessed in murine models of ascending urinary tract infections or CAUTIs using both single-species and polymicrobial models. Global gene expression studies performed in culture and in the murine model have revealed the unique metabolism of this bacterium. Vaccines, using MR/P fimbria and its adhesin, MrpH, have been shown to be efficacious in the murine model. A comprehensive review of factors associated with urinary tract infection is presented, encompassing both historical perspectives and current advances.
Collapse
Affiliation(s)
- Chelsie E Armbruster
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14263
| | - Harry L T Mobley
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Melanie M Pearson
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109
| |
Collapse
|
35
|
Yu Y, Bekele S, Pieper R. Quick 96FASP for high throughput quantitative proteome analysis. J Proteomics 2017; 166:1-7. [PMID: 28669814 DOI: 10.1016/j.jprot.2017.06.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 05/19/2017] [Accepted: 06/27/2017] [Indexed: 10/19/2022]
Abstract
Filter aided sample preparation (FASP) is becoming a central method for proteomic sample cleanup and peptide generation prior to LC-MS analysis. We previously adapted this method to a 96-well filter plate, and applied to prepare protein digests from cell lysate and body fluid samples in a high throughput quantitative manner. While the 96FASP approach is scalable and can handle multiple samples simultaneously, two key advantages compared to single FASP, it is also time-consuming. The centrifugation-based liquid transfer on the filter plate takes 3-5 times longer than single filter. To address this limitation, we now present a quick 96FASP (named q96FASP) approach that, relying on the use of filter membranes with a large MWCO size (~30kDa), significantly reduces centrifugal times. We show that q96FASP allows the generation of protein digests derived from whole cell lysates and body fluids in a quality similar to that of the single FASP method. Processing a sample in multiple wells in parallel, we observed excellent experimental repeatability by label-free quantitation approach. We conclude that the q96FASP approach promises to be a promising cost- and time-effective method for shotgun proteomics and will be particularly useful in large scale biomarker discovery studies. SIGNIFICANCE High throughput sample processing is of particular interests for quantitative proteomics. The previously developed 96FASP is high throughput and appealing, however it is time-consuming in the context of centrifugation-based liquid transfer (~1.5h per spin). This study presents a truly high throughput sample preparation method based on large cut-off 96-well filter plate, which shortens the spin time to ~20min. To our knowledge, this is the first multi-well method that is entirely comparable with conventional FASP. This study thoroughly examined two types of filter plates and performed side-by-side comparisons with single FASP. Two types of samples, whole cell lysate of a UTI (urinary tract infection)-associated Klebsiella pneumoniae cell and human urine, were tested which demonstrated its capability for quantitative proteomics. The q96FSAP approach makes the filter plate-based approach more appealing for protein biomarker discovery projects, and could be broadly applied to large scale proteomics analysis.
Collapse
Affiliation(s)
- Yanbao Yu
- J. Craig Venter Institute, 9714 Medical Center Drive, Rockville, MD 20850, United States.
| | - Shiferaw Bekele
- J. Craig Venter Institute, 9714 Medical Center Drive, Rockville, MD 20850, United States
| | - Rembert Pieper
- J. Craig Venter Institute, 9714 Medical Center Drive, Rockville, MD 20850, United States
| |
Collapse
|