1
|
Kang H, Kim H, Lee J, Jeon JH, Kim S, Park Y, Joo I, Kim H. Genetic Characteristics of Multidrug-Resistant Salmonella Isolated from Poultry Meat in South Korea. Microorganisms 2024; 12:1646. [PMID: 39203488 PMCID: PMC11356708 DOI: 10.3390/microorganisms12081646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 09/03/2024] Open
Abstract
Given the lack of genetic characterization data for multidrug-resistant (MDR) Salmonella in South Korean poultry, we analyzed 53 MDR Salmonella strains from 1232 poultry meat samples (723 chicken, 509 duck) using whole-genome sequencing. Five serotypes were identified: S. Infantis (30/53, 56.6%), S. Enteritidis (11/53, 20.8%), S. Virchow (9/53, 17.0%), S. Agona (2/53, 3.8%), and S. Indiana (1/53, 1.9%). Sequence types (STs) included ST32, ST11, ST16, ST13, and ST17, with three major clusters, each having two subclusters. Eight core genome sequence types (cgSTs) were identified: 225993, 2268, 58360, 150996, 232041, 96964, 117577, and 267045. Salmonella Infantis and S. Enteritidis had two (117577, 267045) and three (225993, 2268, 58360) cgSTs, respectively, whereas S. Virchow showed allelic differences in identical cgSTs. The S. Enteritidis subcluster was classified as chicken or duck. Twenty-eight antimicrobial resistance genes (ARGs), 10 plasmid replicons, 11 Salmonella pathogenicity islands (SPIs), and 230 virulence genes were identified, showing distinct profiles by cluster and subcluster. Salmonella Infantis, the primary MDR Salmonella, carried the IncFIB (pN55391) plasmid, 10-11 ARGs, nine SPIs, and approximately 163 virulence genes. Three major MDR Salmonella serotypes (S. Infantis, S. Enteritidis, and S. Virchow) had specific genetic profiles that can inform epidemiological surveillance.
Collapse
Affiliation(s)
- Haiseong Kang
- Food Microbiology Division, Food Safety Evaluation Department, National Institute of Food and Drug Safety Evaluation, Cheongju 28159, Republic of Korea; (H.K.); (H.K.); (J.L.); (J.H.J.); (Y.P.); (I.J.)
| | - Hansol Kim
- Food Microbiology Division, Food Safety Evaluation Department, National Institute of Food and Drug Safety Evaluation, Cheongju 28159, Republic of Korea; (H.K.); (H.K.); (J.L.); (J.H.J.); (Y.P.); (I.J.)
| | - Jonghoon Lee
- Food Microbiology Division, Food Safety Evaluation Department, National Institute of Food and Drug Safety Evaluation, Cheongju 28159, Republic of Korea; (H.K.); (H.K.); (J.L.); (J.H.J.); (Y.P.); (I.J.)
| | - Ji Hye Jeon
- Food Microbiology Division, Food Safety Evaluation Department, National Institute of Food and Drug Safety Evaluation, Cheongju 28159, Republic of Korea; (H.K.); (H.K.); (J.L.); (J.H.J.); (Y.P.); (I.J.)
| | - Seokhwan Kim
- Food Standard Division, Ministry of Food and Drug Safety, Cheongju 28159, Republic of Korea;
| | - Yongchjun Park
- Food Microbiology Division, Food Safety Evaluation Department, National Institute of Food and Drug Safety Evaluation, Cheongju 28159, Republic of Korea; (H.K.); (H.K.); (J.L.); (J.H.J.); (Y.P.); (I.J.)
| | - Insun Joo
- Food Microbiology Division, Food Safety Evaluation Department, National Institute of Food and Drug Safety Evaluation, Cheongju 28159, Republic of Korea; (H.K.); (H.K.); (J.L.); (J.H.J.); (Y.P.); (I.J.)
| | - Hyochin Kim
- Food Microbiology Division, Food Safety Evaluation Department, National Institute of Food and Drug Safety Evaluation, Cheongju 28159, Republic of Korea; (H.K.); (H.K.); (J.L.); (J.H.J.); (Y.P.); (I.J.)
| |
Collapse
|
2
|
Diamant I, Adani B, Sylman M, Rahav G, Gal-Mor O. The transcriptional regulation of the horizontally acquired iron uptake system, yersiniabactin and its contribution to oxidative stress tolerance and pathogenicity of globally emerging salmonella strains. Gut Microbes 2024; 16:2369339. [PMID: 38962965 PMCID: PMC11225919 DOI: 10.1080/19490976.2024.2369339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 06/12/2024] [Indexed: 07/05/2024] Open
Abstract
The bacterial species Salmonella enterica (S. enterica) is a highly diverse pathogen containing more than 2600 distinct serovars, which can infect a wide range of animal and human hosts. Recent global emergence of multidrug resistant strains, from serovars Infantis and Muenchen is associated with acquisition of the epidemic megaplasmid, pESI that augments antimicrobial resistance and pathogenicity. One of the main pESI's virulence factors is the potent iron uptake system, yersiniabactin encoded by fyuA, irp2-irp1-ybtUTE, ybtA, and ybtPQXS gene cluster. Here we show that yersiniabactin, has an underappreciated distribution among different S. enterica serovars and subspecies, integrated in their chromosome or carried by different conjugative plasmids, including pESI. While the genetic organization and the coding sequence of the yersiniabactin genes are generally conserved, a 201-bp insertion sequence upstream to ybtA, was identified in pESI. Despite this insertion, pESI-encoded yersiniabactin is regulated by YbtA and the ancestral Ferric Uptake Regulator (Fur), which binds directly to the ybtA and irp2 promoters. Furthermore, we show that yersiniabactin genes are specifically induced during the mid-late logarithmic growth phase and in response to iron-starvation or hydrogen peroxide. Concurring, yersiniabactin was found to play a previously unknown role in oxidative stress tolerance and to enhance intestinal colonization of S. Infantis in mice. These results indicate that yersiniabactin contributes to Salmonella fitness and pathogenicity in vivo and is likely to play a role in the rapid dissemination of pESI among globally emerging Salmonella lineages.
Collapse
Affiliation(s)
- Imbar Diamant
- The Infectious Diseases Research Laboratory, Sheba Medical Center, Tel-Hashomer, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Boaz Adani
- The Infectious Diseases Research Laboratory, Sheba Medical Center, Tel-Hashomer, Israel
| | - Meir Sylman
- The Infectious Diseases Research Laboratory, Sheba Medical Center, Tel-Hashomer, Israel
| | - Galia Rahav
- The Infectious Diseases Research Laboratory, Sheba Medical Center, Tel-Hashomer, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ohad Gal-Mor
- The Infectious Diseases Research Laboratory, Sheba Medical Center, Tel-Hashomer, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Clinical Microbiology and Immunology, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
3
|
Vinueza-Burgos C, Medina-Santana J, Maldonado R, Vásquez Y, Lincango L, Villagomez E, Gómez C, Ron-Garrido L, Cevallos-Almeida MB. Evaluation of Virulence of Salmonella Infantis and Salmonella Enteritidis with In Vitro and In Vivo Models. Foodborne Pathog Dis 2023; 20:484-491. [PMID: 37668605 DOI: 10.1089/fpd.2023.0060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023] Open
Abstract
Salmonella Infantis and Enteritidis serovars have been reported as important causes of salmonellosis in humans worldwide. However, the virulence of these two serovars has yet to be compared. To evaluate the virulence of Salmonella Infantis (n = 23) and Salmonella Enteritidis (n = 7), we used two models: the Caco2 cells model (in vitro) and the Galleria mellonella model (in vivo). Additionally, the virulence genes of all tested strains were contrasted with phenotypic outcomes. Results showed that adhesion means were 18.2% for Salmonella Enteritidis and 38.2% for Salmonella Infantis strains. Invasion means were 77.1% for Salmonella Enteritidis and 56.2% for Salmonella Infantis strains. Significant differences were found between serovars in adherence and invasion assays. Mortality rates (58% for Salmonella Enteritidis and 62.6% for Salmonella Infantis) were not significantly different between serotypes. The distribution of virulence genes showed that genes fae (fimbrial adherence determinants) and shdA (nonfimbrial adherence determinants) were only found in Salmonella Infantis strains. On the other hand, the rck gene (invasion) and Plasmid-encoded fimbriae genes (pef A, B, C, D) were present in Salmonella Enteritidis exclusively. In conclusion, this study shows that Salmonella Enteritidis has a higher virulence potential under experimental conditions than Salmonella Infantis. However, more studies are needed to determine the risk that Salmonella Infantis could represent compared with Salmonella Enteritidis. Moreover, other in vivo models should be considered to assess the virulence of these serovars.
Collapse
Affiliation(s)
- Christian Vinueza-Burgos
- Unidad de Investigación en Enfermedades Transmitidas por Alimentos y Resistencia a los Antimicrobianos (UNIETAR), Universidad Central del Ecuador, Quito, Ecuador
| | - Jose Medina-Santana
- Unidad de Investigación en Enfermedades Transmitidas por Alimentos y Resistencia a los Antimicrobianos (UNIETAR), Universidad Central del Ecuador, Quito, Ecuador
| | - Ruben Maldonado
- Laboratorio de Sanidad Animal Agencia de Regulación y Control Fito y Zoosanitario, Quito, Ecuador
| | - Yuly Vásquez
- Laboratorio de Bacteriología y Micología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Central del Ecuador, Quito, Ecuador
| | - Lisseth Lincango
- Laboratorio de Bacteriología y Micología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Central del Ecuador, Quito, Ecuador
| | - Emilia Villagomez
- Laboratorio de Bacteriología y Micología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Central del Ecuador, Quito, Ecuador
| | - Carlos Gómez
- Laboratorio de Bacteriología y Micología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Central del Ecuador, Quito, Ecuador
| | - Lenin Ron-Garrido
- Centro Internacional de Zoonosis, Universidad Central del Ecuador, Quito, Ecuador
| | - María Belén Cevallos-Almeida
- Laboratorio de Bacteriología y Micología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Central del Ecuador, Quito, Ecuador
| |
Collapse
|
4
|
Piscon B, Pia Esposito E, Fichtman B, Samburski G, Efremushkin L, Amselem S, Harel A, Rahav G, Zarrilli R, Gal-Mor O. The Effect of Outer Space and Other Environmental Cues on Bacterial Conjugation. Microbiol Spectr 2023; 11:e0368822. [PMID: 36995224 PMCID: PMC10269834 DOI: 10.1128/spectrum.03688-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 03/11/2023] [Indexed: 03/31/2023] Open
Abstract
Bacterial conjugation is one of the most abundant horizontal gene transfer (HGT) mechanisms, playing a fundamental role in prokaryote evolution. A better understanding of bacterial conjugation and its cross talk with the environment is needed for a more complete understanding of HGT mechanisms and to fight the dissemination of malicious genes between bacteria. Here, we studied the effect of outer space, microgravity, and additional key environmental cues on transfer (tra) gene expression and conjugation efficiency, using the under studied broad-host range plasmid pN3, as a model. High resolution scanning electron microscopy revealed the morphology of the pN3 conjugative pili and mating pair formation during conjugation. Using a nanosatellite carrying a miniaturized lab, we studied pN3 conjugation in outer space, and used qRT-PCR, Western blotting and mating assays to determine the effect of ground physicochemical parameters on tra gene expression and conjugation. We showed for the first time that bacterial conjugation can occur in outer space and on the ground, under microgravity-simulated conditions. Furthermore, we demonstrated that microgravity, liquid media, elevated temperature, nutrient depletion, high osmolarity and low oxygen significantly reduce pN3 conjugation. Interestingly, under some of these conditions we observed an inverse correlation between tra gene transcription and conjugation frequency and found that induction of at least traK and traL can negatively affect pN3 conjugation frequency in a dose-dependent manner. Collectively, these results uncover pN3 regulation by various environmental cues and highlight the diversity of conjugation systems and the different ways in which they may be regulated in response to abiotic signals. IMPORTANCE Bacterial conjugation is a highly ubiquitous and promiscuous process, by which a donor bacterium transfers a large portion of genetic material to a recipient cell. This mechanism of horizontal gene transfer plays an important role in bacterial evolution and in the ability of bacteria to acquire resistance to antimicrobial drugs and disinfectants. Bacterial conjugation is a complex and energy-consuming process, that is tightly regulated and largely affected by various environmental signals sensed by the bacterial cell. Comprehensive knowledge about bacterial conjugation and the ways it is affected by environmental cues is required to better understand bacterial ecology and evolution and to find new effective ways to counteract the threating dissemination of antibiotic resistance genes between bacterial populations. Moreover, characterizing this process under stress or suboptimal growth conditions such as elevated temperatures, high salinity or in the outer space, may provide insights relevant to future habitat environmental conditions.
Collapse
Affiliation(s)
- Bar Piscon
- The Infectious Diseases Research Laboratory, Sheba Medical Center, Tel-Hashomer, Israel
- Department of Clinical Microbiology and Immunology, Tel Aviv University, Tel Aviv, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Eliana Pia Esposito
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Boris Fichtman
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Guy Samburski
- SpacePharma R&D Israel LTD., Herzliya Pituach, Israel & SpacePharma SA, Courgenay, Switzerland
| | - Lihi Efremushkin
- SpacePharma R&D Israel LTD., Herzliya Pituach, Israel & SpacePharma SA, Courgenay, Switzerland
| | - Shimon Amselem
- SpacePharma R&D Israel LTD., Herzliya Pituach, Israel & SpacePharma SA, Courgenay, Switzerland
| | - Amnon Harel
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Galia Rahav
- The Infectious Diseases Research Laboratory, Sheba Medical Center, Tel-Hashomer, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Raffaele Zarrilli
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Ohad Gal-Mor
- The Infectious Diseases Research Laboratory, Sheba Medical Center, Tel-Hashomer, Israel
- Department of Clinical Microbiology and Immunology, Tel Aviv University, Tel Aviv, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
5
|
Dos Santos AMP, Panzenhagen P, Ferrari RG, Conte-Junior CA. Large-scale genomic analysis reveals the pESI-like megaplasmid presence in Salmonella Agona, Muenchen, Schwarzengrund, and Senftenberg. Food Microbiol 2022; 108:104112. [PMID: 36088119 DOI: 10.1016/j.fm.2022.104112] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 08/01/2022] [Accepted: 08/06/2022] [Indexed: 11/16/2022]
Abstract
Salmonella spp. remains one of the main pathogens causing diarrhea in humans worldwide. Lately, Salmonella Infantis has become endemic in several European, American, and Asian countries, presenting a multi-drug resistance profile and increased virulence. Various studies have attributed the high endemicity of Salmonella Infantis to pESI (plasmid to Emergent Salmonella Infantis). The ease of Salmonella to acquire pESI is of concern to health authorities and the food production chain. We searched for the presence of pESI in Salmonella genomes from the NCBI to understand the distribution of pESI worldwide and predict the main serovars and sequence types associated with the plasmid. We identified the pESI backbone, virulence, and resistance genes among Salmonella spp. isolated from 45 countries on five continents. We found the pESI-like structure in four different serovars: S. Muenchen, S. Schwarzengrund, S. Agona and S. Senftenberg. The pESI markers were also identified in 24 different sequence types. Most of the analyzed genomes were isolated from poultry, especially broiler and chicken. These results confirm the high dissemination of pESI-like megaplasmid among Salmonella Infantis worldwide and its ability to infect different serovars, as well as placing poultry production as the most favorable environment for pESI dissemination. Therefore, further studies are needed to prevent the spread of pESI to humans and the food chain.
Collapse
Affiliation(s)
- Anamaria M P Dos Santos
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, 21941-598, Brazil; Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, 21941-909, Brazil; Graduate Program in Food Science (PPGCAL), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, 21941-909, Brazil
| | - Pedro Panzenhagen
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, 21941-598, Brazil; Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, 21941-909, Brazil; Graduate Program in Veterinary Hygiene (PGHIGVET), Faculty of Veterinary Medicine, Fluminense Federal University (UFF), Vital Brazil Filho, Niterói, RJ, 24230-340, Brazil.
| | - Rafaela G Ferrari
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, 21941-598, Brazil; Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, 21941-909, Brazil; Department of Animal Science, College for Agricultural Sciences, Federal University of Paraiba (CCA/UFPB), Areia, PB, Brazil
| | - Carlos A Conte-Junior
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, 21941-598, Brazil; Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, 21941-909, Brazil; Graduate Program in Food Science (PPGCAL), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, 21941-909, Brazil; Graduate Program in Veterinary Hygiene (PGHIGVET), Faculty of Veterinary Medicine, Fluminense Federal University (UFF), Vital Brazil Filho, Niterói, RJ, 24230-340, Brazil; Graduate Program in Sanitary Surveillance (PPGVS), National Institute of Health Quality Control (INCQS), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, RJ, 21040-900, Brazil; Graduate Program in Chemistry (PGQu), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, 21941-909, Brazil
| |
Collapse
|
6
|
Drauch V, Mitra T, Liebhart D, Hess M, Hess C. Infection dynamics of Salmonella Infantis vary considerably between chicken lines. Avian Pathol 2022; 51:561-573. [PMID: 35938538 DOI: 10.1080/03079457.2022.2108373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
AbstractSalmonella (S.) Infantis is the most common serovar in broilers and broiler meat in the European Union. In the field, fast-growing broilers are reported to be more affected than slow-growing and layer birds. The present study investigated the infection dynamics and immunological response of four chicken lines in the course of a S. Infantis infection. Two commercial chicken lines, Ross 308 and Hubbard ISA-JA-757, and two experimentally chicken lines, specific pathogen free (SPF) layers and broilers, were infected at 2 days of age. Investigations focused on faecal shedding, bacterial colonisation, humoral and cellular immune response in the blood. Ross and SPF broilers were mainly attributed as high shedders followed by Hubbard. SPF layers showed the least shedding. This is in agreement with the caecal colonisation, SPF layers harboured significant less bacteria. Systemic spread of S. Infantis to liver and spleen was highest in Ross being statistically significant at 7 days of age compared to the other lines. Spread of infection to in-contact birds, was noticed 5 days post infection in every line. Antibody response occurred in every chicken line from day 21 of age onwards. In contrast to the other chicken lines, significant differences in T cell subsets and monocytes/macrophages were found between infected and negative Hubbard birds at 7 days of age. Uninfected SPF birds had significant higher immune cell counts (T cell subsets, B cells and monocytes /macrophages) compared to uninfected commercial birds, a fact important for future experimental settings. The results illustrate that the infection dynamics of S. Infantis is influenced by the chicken line resulting in a higher risk of transmission to humans from fast-growing broilers.
Collapse
Affiliation(s)
- V Drauch
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria
| | - T Mitra
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria
| | - D Liebhart
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria
| | - M Hess
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria
| | - C Hess
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria
| |
Collapse
|
7
|
Increased Prevalence of Salmonella Infantis Isolated from Raw Chicken and Turkey Products in the United States Is Due to a Single Clonal Lineage Carrying the pESI Plasmid. Microorganisms 2022; 10:microorganisms10071478. [PMID: 35889197 PMCID: PMC9318337 DOI: 10.3390/microorganisms10071478] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/15/2022] [Accepted: 07/20/2022] [Indexed: 12/10/2022] Open
Abstract
Infantis has recently become one of the most common serotypes of Salmonella isolated in the U.S. from raw meat samples collected in processing facilities and in retail stores. Investigations have determined that the majority of these isolates contain the pESI plasmid, but there has not been a large-scale investigation of the chromosome of these isolates. Here, we investigated 3276 whole-genome sequences of Salmonella Infantis with and without the pESI plasmid to understand chromosomal differences between plasmid carriage groups. S. Infantis genomes arranged into multiple clades with a single clade containing the isolates carrying the plasmid. Fifty-eight SNPs were identified in complete linkage disequilibrium between isolates that did and did not carry the plasmid. However, there were no unique genes present only in the genomes of isolates containing the plasmid. On average, isolates with the plasmid did contain more insertion sequences than those without (p < 0.05). Given that S. Infantis isolates carrying pESI form a single clade, it can be inferred that the increase in carriage of this plasmid in the U.S. is due to rapid clonal expansion of a single strain rather than as a result of multiple transfer events. As this S. Infantis clone does not contain any unique chromosomal genes, its proliferation appears to be due to pESI plasmid-encoded genes that may be advantageous in the chickens and turkeys or in their environment.
Collapse
|
8
|
Cheng RA, Orsi RH, Wiedmann M. The Number and Type of Chaperone-Usher Fimbriae Reflect Phylogenetic Clade Rather than Host Range in Salmonella. mSystems 2022; 7:e0011522. [PMID: 35467401 PMCID: PMC9238391 DOI: 10.1128/msystems.00115-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 04/03/2022] [Indexed: 01/21/2023] Open
Abstract
Salmonella is one of the most successful foodborne pathogens worldwide, owing in part to its ability to colonize or infect a wide range of hosts. Salmonella serovars are known to encode a variety of different fimbriae (hairlike organelles that facilitate binding to surfaces); however, the distribution, number, and sequence diversity of fimbriae encoded across different lineages of Salmonella were unknown. We queried whole-genome sequence (WGS) data for 242 Salmonella enterica subsp. enterica (subspecies enterica) isolates from the top 217 serovars associated with isolation from humans and agricultural animals; this effort identified 2,894 chaperone-usher (CU)-type fimbrial usher sequences, representing the most conserved component of CU fimbriae. On average, isolates encoded 12 different CU fimbrial ushers (6 to 18 per genome), although the distribution varied significantly (P = 1.328E-08) by phylogenetic clade, with isolates in section Typhi having significantly fewer fimbrial ushers than isolates in clade A2 (medians = 10 and 12 ushers, respectively). Characterization of fimbriae in additional non-enterica subspecies genomes suggested that 8 fimbrial ushers were classified as being unique to subspecies enterica isolates, suggesting that the majority of fimbriae were most likely acquired prior to the divergence of subspecies enterica. Characterization of mobile elements suggested that plasmids represent an important vehicle facilitating the acquisition of a wide range of fimbrial ushers, particularly for the acquisition of fimbriae from other Gram-negative genera. Overall, our results suggest that differences in the number and type of fimbriae encoded most likely reflect differences in phylogenetic clade rather than differences in host range. IMPORTANCE Fimbriae of the CU assembly pathway represent important organelles that mediate Salmonella's interactions with host tissues and abiotic surfaces. Our analyses provide a comprehensive overview of the diversity of CU fimbriae in Salmonella spp., highlighting that the majority of CU fimbriae are distributed broadly across multiple subspecies and suggesting that acquisition most likely occurred prior to the divergence of subspecies enterica. Our data also suggest that plasmids represent the primary vehicles facilitating the horizontal transfer of diverse CU fimbriae in Salmonella. Finally, the observed high sequence similarity between some ushers suggests that different names may have been assigned to closely related fimbrial ushers that likely should be represented by a single designation. This highlights the need to establish standard criteria for fimbria classification and nomenclature, which will also facilitate future studies seeking to associate virulence factors with adaptation to or differences in the likelihood of causing disease in a given host.
Collapse
Affiliation(s)
- Rachel A. Cheng
- Department of Food Science, Cornell University, Ithaca, New York, USA
| | - Renato H. Orsi
- Department of Food Science, Cornell University, Ithaca, New York, USA
| | - Martin Wiedmann
- Department of Food Science, Cornell University, Ithaca, New York, USA
| |
Collapse
|
9
|
Cohen E, Kriger O, Amit S, Davidovich M, Rahav G, Gal-Mor O. The emergence of a multidrug resistant Salmonella Muenchen in Israel is associated with horizontal acquisition of the epidemic pESI plasmid. Clin Microbiol Infect 2022; 28:1499.e7-1499.e14. [PMID: 35654317 DOI: 10.1016/j.cmi.2022.05.029] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 05/19/2022] [Accepted: 05/23/2022] [Indexed: 11/29/2022]
Abstract
OBJECTIVES Horizontal acquisition of mobile genetic elements is a powerful evolutionary driving force that can profoundly affect pathogens epidemiology and their interactions with the environment and host. In the last decade, the role of the epidemic megaplasmid, pESI was demonstrated in the global emergence of multi-drug resistant (MDR) Salmonella enterica serovar Infantis strains, but it was unknown if this was a one-time phenomenon, or that pESI can drive the emergence of other pathogens. METHODS Epidemiological, molecular, whole genome sequencing, de-novo assembly, bioinformatics and genetic approaches were used to analyze the emergence of a pESI-positive Salmonella enterica serovar Muenchen strain in Israel. RESULTS Since 2018, we report the emergence and high prevalence of S. Muenchen in Israel, which consisted at 2020, 40% (1055/2671) of all clinical Salmonella isolates. We show that the emergence of S. Muenchen is dominated by a clonal MDR strain, report its complete assembled genome sequence, and demonstrate that in contrast to preemergent strains, it harbors the epidemic megaplasmid, pESI, which can be self-mobilized into E. coli and other Salmonella serovars. Additionally, we identified bioinformatically highly similar genomes of clinical isolates that were recently collected in South Africa, UK and USA. CONCLUSIONS This is a second documented case of a pathogen emergence associated with pESI acquisition. Considering the genetic cargo of pESI that enhances resistance, stress tolerance and virulence, and its ability to conjugate into prevalent Salmonella serovars, we provide further support that pESI facilities the emergence and spreading of new Salmonella strains.
Collapse
Affiliation(s)
- Emiliano Cohen
- The Infectious Diseases Research Laboratory, Sheba Medical Center, Tel-Hashomer, Israel
| | - Or Kriger
- Microbiology Laboratory, Sheba Medical Center
| | - Sharon Amit
- Microbiology Laboratory, Sheba Medical Center
| | - Maya Davidovich
- Public Health Laboratories - Jerusalem, Ministry of Health, Jerusalem, Israel
| | - Galia Rahav
- The Infectious Diseases Research Laboratory, Sheba Medical Center, Tel-Hashomer, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ohad Gal-Mor
- The Infectious Diseases Research Laboratory, Sheba Medical Center, Tel-Hashomer, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Department of Clinical Microbiology and Immunology, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
10
|
Koczerka M, Lantier I, Pinard A, Morillon M, Deperne J, Gal-Mor O, Grépinet O, Virlogeux-Payant I. In Vivo Tracking of Bacterial Colonization in Different Murine Models Using Bioluminescence: The Example of Salmonella. Methods Mol Biol 2022; 2427:235-248. [PMID: 35619038 DOI: 10.1007/978-1-0716-1971-1_19] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Applications of bioluminescence for the in vivo study of pathogenic microorganisms are numerous, ranging from the quantification of virulence gene expression to measuring the effect of antimicrobial molecules on the colonization of tissues and organs by the pathogen. Most studies are performed in mice, but recent works demonstrate that this technique is applicable to larger animals like fish, guinea pigs, ferrets, and chickens. Here, we describe the construction and the utilization of a constitutively luminescent strain of Salmonella Typhimurium to monitor in vivo and ex vivo the colonization of mice in the gastroenteritis, typhoid fever, and asymptomatic carriage models of Salmonella infection.
Collapse
Affiliation(s)
| | | | | | | | | | - Ohad Gal-Mor
- The Infectious Diseases Research Laboratory, Sheba Medical Center, Tel-Hashomer, Israel
- The Department of Clinical Microbiology and Immunology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | | | |
Collapse
|
11
|
Egorova A, Mikhaylova Y, Saenko S, Tyumentseva M, Tyumentsev A, Karbyshev K, Chernyshkov A, Manzeniuk I, Akimkin V, Shelenkov A. Comparative Whole-Genome Analysis of Russian Foodborne Multidrug-Resistant Salmonella Infantis Isolates. Microorganisms 2021; 10:89. [PMID: 35056538 PMCID: PMC8781764 DOI: 10.3390/microorganisms10010089] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/27/2021] [Accepted: 12/30/2021] [Indexed: 12/19/2022] Open
Abstract
Non-typhoidal Salmonella infections remain a significant public health problem worldwide. In this study, we present the first detailed genomic analysis report based on short-read (Illumina) whole-genome sequencing (WGS) of 45 multidrug-resistant (MDR) Salmonella enterica subsp. enterica serotype Infantis isolates from poultry and meat product samples obtained in Russia during 2018-2020, and long-read (MinION) WGS of five more representative isolates. We sought to determine whether foodborne S. Infantis have acquired new characteristics, traits, and dynamics in MDR growth in recent years. All sequenced isolates belonged to the sequence type ST32 and more than the half of isolates was characterized by six similar antimicrobial susceptibility profiles, most of which corresponded well with the antimicrobial resistance determinants to aminoglycosides, sulphonamides, tetracycline, and chloramphenicol revealed in silico. Some of the isolates were characterized by the presence of several types of plasmids simultaneously. Plasmid typing using WGS revealed Col440I, ColpVC, ColRNAI, IncFIB, IncFII, IncX1, IncHI2, IncHI2A, and IncN replicons. The identified virulence genes for 45 whole genomes of S. Infantis were similar and included 129 genes encoding structural components of the cell, factors responsible for successful invasion of the host, and secreted products. These data will be a valuable contribution to further comparative genomics of S. Infantis circulating in Russia, as well as to epidemiological surveillance of foodborne Salmonella isolates and investigations of Salmonella outbreaks.
Collapse
Affiliation(s)
- Anna Egorova
- Central Research Institute of Epidemiology, Novogireevskaya str., 3a, 111123 Moscow, Russia; (Y.M.); (S.S.); (M.T.); (A.T.); (K.K.); (A.C.); (I.M.); (V.A.); (A.S.)
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Drauch V, Kornschober C, Palmieri N, Hess M, Hess C. Infection dynamics of Salmonella Infantis strains displaying different genetic backgrounds - with or without pESI-like plasmid - vary considerably. Emerg Microbes Infect 2021; 10:1471-1480. [PMID: 34197273 PMCID: PMC8300933 DOI: 10.1080/22221751.2021.1951124] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/07/2021] [Accepted: 06/29/2021] [Indexed: 12/02/2022]
Abstract
Food-borne infections with Salmonella are among the most common causes of human diseases worldwide, and infections with the serovar Infantis are becoming increasingly important. So far, diverse phenotypes and genotypes of S. Infantis have been reported. Therefore, the present study aimed to investigate the infection dynamics of two different S. Infantis strains in broilers. For this purpose, 15 birds were infected on day 2 of life with 108 CFU/ml of a pESI+ or a pESI- S. Infantis strain, respectively. Ten uninfected birds served as in-contact birds to monitor transmission. In both groups, an increase of infection was observed from 7 days of age onwards, reaching its peak at 28 days. However, the pESI+ strain proved significantly more virulent being re-isolated from most cloacal swabs and organs by direct plating. In contrast, the pESI- strain could be re-isolated from cloacal swabs and caeca only when enrichment was applied. Although the excretion of this strain was limited, the transmission level to in-contact birds was similar to the pESI+ strain. Differences in infection dynamics were also reflected in the antibody response: whereas the pESI+ strain provoked a significant increase in antibodies, antibody levels following infection with the pESI- strain remained in the range of negative control birds. The actual findings provide for the first time evidence of S. Infantis strain-specific infectivity in broilers and confirm previous observations in the field regarding differences in persistence on farms and resistance against disinfectants.
Collapse
Affiliation(s)
- Victoria Drauch
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| | | | - Nicola Palmieri
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| | - Michael Hess
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| | - Claudia Hess
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| |
Collapse
|
13
|
Vaid RK, Thakur Z, Anand T, Kumar S, Tripathi BN. Comparative genome analysis of Salmonella enterica serovar Gallinarum biovars Pullorum and Gallinarum decodes strain specific genes. PLoS One 2021; 16:e0255612. [PMID: 34411120 PMCID: PMC8375982 DOI: 10.1371/journal.pone.0255612] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 07/19/2021] [Indexed: 12/27/2022] Open
Abstract
Salmonella enterica serovar Gallinarum biovar Pullorum (bvP) and biovar Gallinarum (bvG) are the etiological agents of pullorum disease (PD) and fowl typhoid (FT) respectively, which cause huge economic losses to poultry industry especially in developing countries including India. Vaccination and biosecurity measures are currently being employed to control and reduce the S. Gallinarum infections. High endemicity, poor implementation of hygiene and lack of effective vaccines pose challenges in prevention and control of disease in intensively maintained poultry flocks. Comparative genome analysis unravels similarities and dissimilarities thus facilitating identification of genomic features that aids in pathogenesis, niche adaptation and in tracing of evolutionary history. The present investigation was carried out to assess the genotypic differences amongst S.enterica serovar Gallinarum strains including Indian strain S. Gallinarum Sal40 VTCCBAA614. The comparative genome analysis revealed an open pan-genome consisting of 5091 coding sequence (CDS) with 3270 CDS belonging to core-genome, 1254 CDS to dispensable genome and strain specific genes i.e. singletons ranging from 3 to 102 amongst the analyzed strains. Moreover, the investigated strains exhibited diversity in genomic features such as virulence factors, genomic islands, prophage regions, toxin-antitoxin cassettes, and acquired antimicrobial resistance genes. Core genome identified in the study can give important leads in the direction of design of rapid and reliable diagnostics, and vaccine design for effective infection control as well as eradication. Additionally, the identified genetic differences among the S. enterica serovar Gallinarum strains could be used for bacterial typing, structure based inhibitor development by future experimental investigations on the data generated.
Collapse
Affiliation(s)
- Rajesh Kumar Vaid
- Bacteriology Laboratory, National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, Haryana, India
| | - Zoozeal Thakur
- Bacteriology Laboratory, National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, Haryana, India
| | - Taruna Anand
- Bacteriology Laboratory, National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, Haryana, India
| | - Sanjay Kumar
- Bacteriology Laboratory, ICAR-National Research Centre on Equines, Hisar, Haryana, India
| | | |
Collapse
|
14
|
Dos Santos AMP, Panzenhagen P, Ferrari RG, Rodrigues GL, Conte-Junior CA. The pESI megaplasmid conferring virulence and multiple-drug resistance is detected in a Salmonella Infantis genome from Brazil. INFECTION GENETICS AND EVOLUTION 2021; 95:104934. [PMID: 34029725 DOI: 10.1016/j.meegid.2021.104934] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 04/21/2021] [Accepted: 05/19/2021] [Indexed: 11/20/2022]
Affiliation(s)
- Anamaria M P Dos Santos
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ 21941-598, Brazil; Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ 21941-909, Brazil
| | - Pedro Panzenhagen
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ 21941-598, Brazil; Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ 21941-909, Brazil
| | - Rafaela G Ferrari
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ 21941-598, Brazil; Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ 21941-909, Brazil.
| | - Grazielle L Rodrigues
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ 21941-598, Brazil; Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ 21941-909, Brazil
| | - Carlos A Conte-Junior
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ 21941-598, Brazil; Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ 21941-909, Brazil; Graduate Program in Food Science (PPGCAL), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ 21941-909, Brazil; Graduate Program in Veterinary Hygiene (PPGHV), Faculty of Veterinary Medicine, Fluminense Federal University (UFF), Vital Brazil Filho, Niterói, RJ 24230-340, Brazil; Graduate Program in Sanitary Surveillance (PPGVS), National Institute of Health Quality Control (INCQS), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, RJ 21040-900, Brazil; Graduate Program in Chemistry (PGQu), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ 21941-909, Brazil
| |
Collapse
|
15
|
Cohen E, Azriel S, Auster O, Gal A, Zitronblat C, Mikhlin S, Scharte F, Hensel M, Rahav G, Gal-Mor O. Pathoadaptation of the passerine-associated Salmonella enterica serovar Typhimurium lineage to the avian host. PLoS Pathog 2021; 17:e1009451. [PMID: 33739988 PMCID: PMC8011750 DOI: 10.1371/journal.ppat.1009451] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 03/31/2021] [Accepted: 03/04/2021] [Indexed: 12/15/2022] Open
Abstract
Salmonella enterica is a diverse bacterial pathogen and a primary cause of human and animal infections. While many S. enterica serovars present a broad host-specificity, several specialized pathotypes have been adapted to colonize and cause disease in one or limited numbers of host species. The underlying mechanisms defining Salmonella host-specificity are far from understood. Here, we present genetic analysis, phenotypic characterization and virulence profiling of a monophasic S. enterica serovar Typhimurium strain that was isolated from several wild sparrows in Israel. Whole genome sequencing and complete assembly of its genome demonstrate a unique genetic signature that includes the integration of the BTP1 prophage, loss of the virulence plasmid, pSLT and pseudogene accumulation in multiple T3SS-2 effectors (sseJ, steC, gogB, sseK2, and sseK3), catalase (katE), tetrathionate respiration (ttrB) and several adhesion/ colonization factors (lpfD, fimH, bigA, ratB, siiC and siiE) encoded genes. Correspondingly, this strain demonstrates impaired biofilm formation, intolerance to oxidative stress and compromised intracellular replication within non-phagocytic host cells. Moreover, while this strain showed attenuated pathogenicity in the mouse, it was highly virulent and caused an inflammatory disease in an avian host. Overall, our findings demonstrate a unique phenotypic profile and genetic makeup of an overlooked S. Typhimurium sparrow-associated lineage and present distinct genetic signatures that are likely to contribute to its pathoadaptation to passerine birds. During Salmonella enterica evolution, many different ecological niches have been effectively occupied by this highly diverse bacterial pathogen. While many S. enterica serovars successfully maintained their ability to infect and colonize in a wide-array of host species, a few biotypes have evolved to colonize and cause a disease in only one or a small group of hosts. The evolutionary dynamic and the mechanisms shaping the host-specificity of Salmonella adapted strains are important to better understand Salmonella pathogenicity and its ecology, but still not fully understood. Here, we report genetic and phenotypic characterization of a S. Typhimurium strain that was isolated from several wild sparrows in Israel. This strain presented unique phenotypic profile that included impaired biofilm formation, high sensitivity to oxidative stress and reduced intracellular replication in non-phagocytic cells. In addition, while this strain was able to cause high inflammatory disease in an avian host, it was highly attenuated in the mouse model. Genome analysis identified that specific genetic signatures found in the sparrow strain are more frequently associated with poultry isolates than clinical isolates of S. Typhimurium. These genetic features are expected to accumulatively contribute toward the adaptation of this strain to birds.
Collapse
Affiliation(s)
- Emiliano Cohen
- The Infectious Diseases Research Laboratory, Sheba Medical Center, Tel-Hashomer, Israel
| | - Shalevet Azriel
- The Infectious Diseases Research Laboratory, Sheba Medical Center, Tel-Hashomer, Israel
| | - Oren Auster
- The Infectious Diseases Research Laboratory, Sheba Medical Center, Tel-Hashomer, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Clinical Microbiology and Immunology, Tel Aviv University, Tel Aviv, Israel
| | - Adiv Gal
- Faculty of Sciences, Kibbutzim College, Tel-Aviv Israel
| | | | | | - Felix Scharte
- Abteilung Mikrobiologie, Universität Osnabrück, Osnabrück, Germany
| | - Michael Hensel
- Abteilung Mikrobiologie, Universität Osnabrück, Osnabrück, Germany
| | - Galia Rahav
- The Infectious Diseases Research Laboratory, Sheba Medical Center, Tel-Hashomer, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ohad Gal-Mor
- The Infectious Diseases Research Laboratory, Sheba Medical Center, Tel-Hashomer, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Clinical Microbiology and Immunology, Tel Aviv University, Tel Aviv, Israel
- * E-mail:
| |
Collapse
|
16
|
Cheng RA, Wiedmann M. Recent Advances in Our Understanding of the Diversity and Roles of Chaperone-Usher Fimbriae in Facilitating Salmonella Host and Tissue Tropism. Front Cell Infect Microbiol 2021; 10:628043. [PMID: 33614531 PMCID: PMC7886704 DOI: 10.3389/fcimb.2020.628043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 12/21/2020] [Indexed: 01/04/2023] Open
Abstract
Salmonella enterica is one of the most diverse and successful pathogens, representing a species with >2,600 serovars with a variety of adaptations that enable colonization and infection of a wide range of hosts. Fimbriae, thin hair-like projections that cover the surface of Salmonella, are thought to be the primary organelles that mediate Salmonella's interaction with, and adherence to, the host intestinal epithelium, representing an important step in the infection process. The recent expansion in genome sequencing efforts has enabled the discovery of novel fimbriae, thereby providing new perspectives on fimbrial diversity and distribution among a broad number of serovars. In this review, we provide an updated overview of the evolutionary events that shaped the Salmonella chaperone-usher fimbriome in light of recent phylogenetic studies describing the population structure of Salmonella enterica. Furthermore, we discuss the complexities of the chaperone-usher fimbriae-mediated host-pathogen interactions and the apparent redundant roles of chaperone-usher fimbriae in host and tissue tropism.
Collapse
Affiliation(s)
- Rachel A. Cheng
- Department of Food Science, Cornell University, Ithaca, NY, United States
| | | |
Collapse
|
17
|
Wellawa DH, Allan B, White AP, Köster W. Iron-Uptake Systems of Chicken-Associated Salmonella Serovars and Their Role in Colonizing the Avian Host. Microorganisms 2020; 8:E1203. [PMID: 32784620 PMCID: PMC7465098 DOI: 10.3390/microorganisms8081203] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 07/30/2020] [Accepted: 07/31/2020] [Indexed: 01/09/2023] Open
Abstract
Iron is an essential micronutrient for most bacteria. Salmonella enterica strains, representing human and animal pathogens, have adopted several mechanisms to sequester iron from the environment depending on availability and source. Chickens act as a major reservoir for Salmonella enterica strains which can lead to outbreaks of human salmonellosis. In this review article we summarize the current understanding of the contribution of iron-uptake systems to the virulence of non-typhoidal S. enterica strains in colonizing chickens. We aim to address the gap in knowledge in this field, to help understand and define the interactions between S. enterica and these important hosts, in comparison to mammalian models.
Collapse
Affiliation(s)
- Dinesh H. Wellawa
- Vaccine & Infectious Disease Organization-International Vaccine Centre, University of Saskatchewan, 120 Veterinary Rd., Saskatoon, SK S7N 5E3, Canada; (D.H.W.); (B.A.); (A.P.W.)
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
| | - Brenda Allan
- Vaccine & Infectious Disease Organization-International Vaccine Centre, University of Saskatchewan, 120 Veterinary Rd., Saskatoon, SK S7N 5E3, Canada; (D.H.W.); (B.A.); (A.P.W.)
| | - Aaron P. White
- Vaccine & Infectious Disease Organization-International Vaccine Centre, University of Saskatchewan, 120 Veterinary Rd., Saskatoon, SK S7N 5E3, Canada; (D.H.W.); (B.A.); (A.P.W.)
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
| | - Wolfgang Köster
- Vaccine & Infectious Disease Organization-International Vaccine Centre, University of Saskatchewan, 120 Veterinary Rd., Saskatoon, SK S7N 5E3, Canada; (D.H.W.); (B.A.); (A.P.W.)
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
| |
Collapse
|
18
|
Chu B, Zhu Y, Su J, Xia B, Zou Y, Nie J, Zhang W, Wang J. Butyrate-mediated autophagy inhibition limits cytosolic Salmonella Infantis replication in the colon of pigs treated with a mixture of Lactobacillus and Bacillus. Vet Res 2020; 51:99. [PMID: 32758277 PMCID: PMC7409499 DOI: 10.1186/s13567-020-00823-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 07/22/2020] [Indexed: 01/07/2023] Open
Abstract
Probiotics as an effective and safe strategy for controlling Salmonella infection are much sought after, while autophagy is a central issue in eliminating intracellular pathogens of intestinal epithelial cells. In this study, an animal model of colitis has been developed by infecting weaned pigs orally with a strain of Salmonella Infantis in order to illuminate the potential efficacy of a mixture of Lactobacillus and Bacillus (CBB-MIX) in the resistance to Salmonella infection by regulating butyrate-mediated autophagy. We found that CBB-MIX alleviated S. Infantis-induced colitis and tissue damage. Autophagy markers ATG5, Beclin-1, and the LC3-II/I ratio were significantly enhanced by S. Infantis infection, while treatment with CBB-MIX suppressed S. Infantis-induced autophagy. Additionally, S. Infantis-induced colonic microbial dysbiosis was restored by this treatment, which also preserved the abundance of the butyrate-producing bacteria and the butyrate concentration in the colon. A Caco-2 cell model of S. Infantis infection showed that butyrate had the same effect as the CBB-MIX in restraining S. Infantis-induced autophagy activation. Further, the intracellular S. Infantis load assay indicated that butyrate restricted the replication of cytosolic S. Infantis rather than that in Salmonella-containing vacuoles. Suppression of autophagy by knockdown of ATG5 also attenuated S. Infantis-induced cell injury. Moreover, hyper-replication of cytosolic S. Infantis in Caco-2 cells was significantly decreased when autophagy was inhibited. Our data demonstrated that Salmonella may benefit from autophagy for cytosolic replication and butyrate-mediated autophagy inhibition reduced the intracellular Salmonella load in pigs treated with a probiotic mixture of Lactobacillus and Bacillus.
Collapse
Affiliation(s)
- Bingxin Chu
- College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, People's Republic of China
| | - Yaohong Zhu
- College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, People's Republic of China
| | - Jinhui Su
- College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, People's Republic of China
| | - Bing Xia
- College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, People's Republic of China
| | - Yunjing Zou
- College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, People's Republic of China
| | - Jiawei Nie
- College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, People's Republic of China
| | - Wei Zhang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, No. 9 Shuguanghuayuan Middle Road, Beijing, 100097, People's Republic of China.
| | - Jiufeng Wang
- College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, People's Republic of China.
| |
Collapse
|
19
|
García-Soto S, Abdel-Glil MY, Tomaso H, Linde J, Methner U. Emergence of Multidrug-Resistant Salmonella enterica Subspecies enterica Serovar Infantis of Multilocus Sequence Type 2283 in German Broiler Farms. Front Microbiol 2020; 11:1741. [PMID: 32765483 PMCID: PMC7380084 DOI: 10.3389/fmicb.2020.01741] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 07/03/2020] [Indexed: 12/18/2022] Open
Abstract
During the last decade, Salmonella enterica subspecies enterica serovar Infantis (S. Infantis) has become more prevalent across Europe with an increased capability to persist in broiler farms. In this study, we aimed to identify potential genetic causes for the increased emergence and longer persistence of S. Infantis in German poultry farms by high-throughput-sequencing. Broiler derived S. Infantis strains from two decades, the 1990s (n = 12) and the 2010s (n = 18), were examined phenotypically and genotypically to detect potential differences responsible for increased prevalence and persistence. S. Infantis organisms were characterized by serotyping and determining antimicrobial susceptibility using the microdilution method. Genotypic characteristics were analyzed by whole genome sequencing (WGS) to detect antimicrobial resistance and virulence genes as well as plasmids. To detect possible clonal relatedness within S. Infantis organisms, 17 accessible genomes from previous studies about emergent S. Infantis were downloaded and analyzed using complete genome sequence of SI119944 from Israel as reference. In contrast to the broiler derived antibiotic-sensitive S. Infantis strains from the 1990s, the majority of strains from the 2010s (15 out of 18) revealed a multidrug-resistance (MDR) phenotype that encodes for at least three antimicrobials families: aminoglycosides [ant(3“)-Ia], sulfonamides (sul1), and tetracyclines [tet(A)]. Moreover, these MDR strains carry a virulence gene pattern missing in strains from the 1990s. It includes genes encoding for fimbriae clusters, the yersiniabactin siderophore, mercury and disinfectants resistance and toxin/antitoxin complexes. In depth genomic analysis confirmed that the 15 MDR strains from the 2010s carry a pESI-like megaplasmid with resistance and virulence gene patterns detected in the emerged S. Infantis strain SI119944 from Israel and clones inside and outside Europe. Genotyping analysis revealed two sequence types (STs) among the resistant strains from the 2010s, ST2283 (n = 13) and ST32 (n = 2). The sensitive strains from the 1990s, belong to sequence type ST32 (n = 10) and ST1032 (n = 2). Therefore, this study confirms the emergence of a MDR S. Infantis pESI-like clone of ST2283 in German broiler farms with presumably high tendency of dissemination. Further studies on the epidemiology and control of S. Infantis in broilers are needed to prevent the transfer from poultry into the human food chain.
Collapse
Affiliation(s)
- Silvia García-Soto
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institute, Jena, Germany
| | - Mostafa Y Abdel-Glil
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institute, Jena, Germany
| | - Herbert Tomaso
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institute, Jena, Germany
| | - Jörg Linde
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institute, Jena, Germany
| | - Ulrich Methner
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institute, Jena, Germany
| |
Collapse
|
20
|
Cohen E, Rahav G, Gal-Mor O. Genome Sequence of an Emerging Salmonella enterica Serovar Infantis and Genomic Comparison with Other S. Infantis Strains. Genome Biol Evol 2020; 12:151-159. [PMID: 32145019 PMCID: PMC7144548 DOI: 10.1093/gbe/evaa048] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/03/2020] [Indexed: 12/14/2022] Open
Abstract
Salmonella enterica serovar Infantis (S. Infantis) is one of the dominant serovars of the bacterial pathogen S. enterica. In recent years, the number of human infections caused by S. Infantis has been increasing in many countries, and often the emerging population harbors a unique virulence-resistant megaplasmid called plasmid of emerging S. Infantis (pESI). Here, we report the complete gap-free genome sequence of the S. Infantis Israeli emerging clone and compare its chromosome and pESI sequences with other complete S. Infantis genomes. We show a conserved presence of the Salmonella pathogenicity islands 1-6, 9, 11, 12, and CS54 and a common integration of five bacteriophages in the S. Infantis chromosome. In contrast, we found variable presence of additionally three chromosomally integrated phages and eight modular regions in pESI, which contribute to the genetic and phenotypic diversity (including antimicrobial resistance) of this ubiquitous foodborne pathogen.
Collapse
Affiliation(s)
- Emiliano Cohen
- The Infectious Diseases Research Laboratory, Sheba Medical Center, Tel-Hashomer, Israel
| | - Galia Rahav
- The Infectious Diseases Research Laboratory, Sheba Medical Center, Tel-Hashomer, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Israel
| | - Ohad Gal-Mor
- The Infectious Diseases Research Laboratory, Sheba Medical Center, Tel-Hashomer, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Israel
- Department of Clinical Microbiology and Immunology, Tel Aviv University, Israel
| |
Collapse
|
21
|
Nguyen SV, Harhay DM, Bono JL, Smith TPL, Fields PI, Dinsmore BA, Santovenia M, Wang R, Bosilevac JM, Harhay GP. Comparative genomics of Salmonella enterica serovar Montevideo reveals lineage-specific gene differences that may influence ecological niche association. Microb Genom 2018; 4:e000202. [PMID: 30052174 PMCID: PMC6159554 DOI: 10.1099/mgen.0.000202] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 07/05/2018] [Indexed: 01/01/2023] Open
Abstract
Salmonella enterica serovar Montevideo has been linked to recent foodborne illness outbreaks resulting from contamination of products such as fruits, vegetables, seeds and spices. Studies have shown that Montevideo also is frequently associated with healthy cattle and can be isolated from ground beef, yet human salmonellosis outbreaks of Montevideo associated with ground beef contamination are rare. This disparity fuelled our interest in characterizing the genomic differences between Montevideo strains isolated from healthy cattle and beef products, and those isolated from human patients and outbreak sources. To that end, we sequenced 13 Montevideo strains to completion, producing high-quality genome assemblies of isolates from human patients (n=8) or from healthy cattle at slaughter (n=5). Comparative analysis of sequence data from this study and publicly available sequences (n=72) shows that Montevideo falls into four previously established clades, differentially occupied by cattle and human strains. The results of these analyses reveal differences in metabolic islands, environmental adhesion determinants and virulence factors within each clade, and suggest explanations for the infrequent association between bovine isolates and human illnesses.
Collapse
Affiliation(s)
- Scott V. Nguyen
- UCD-Centre for Food Safety, School of Public Health, Physiotherapy and Sports Science, University College Dublin, Belfield, Dublin D04 N2E5, Ireland
| | - Dayna M. Harhay
- USDA-ARS-US Meat Animal Research Center, Clay Center, NE 68933, USA
| | - James L. Bono
- USDA-ARS-US Meat Animal Research Center, Clay Center, NE 68933, USA
| | | | - Patricia I. Fields
- Enteric Disease Laboratory Branch, Division of Foodborne, Waterborne, and Environmental Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Blake A. Dinsmore
- Enteric Disease Laboratory Branch, Division of Foodborne, Waterborne, and Environmental Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Monica Santovenia
- Enteric Disease Laboratory Branch, Division of Foodborne, Waterborne, and Environmental Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Rong Wang
- USDA-ARS-US Meat Animal Research Center, Clay Center, NE 68933, USA
| | | | | |
Collapse
|
22
|
Azriel S, Goren A, Shomer I, Aviv G, Rahav G, Gal-Mor O. The Typhi colonization factor (Tcf) is encoded by multiple non-typhoidal Salmonella serovars but exhibits a varying expression profile and interchanging contribution to intestinal colonization. Virulence 2017; 8:1791-1807. [PMID: 28922626 DOI: 10.1080/21505594.2017.1380766] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Salmonella enterica serovars Typhi and Paratyphi A are human-restricted pathogens and the leading causative agents of enteric fever. The Typhi colonization factor (Tcf) is a chaperone-usher fimbria, thought to play a role in the host-specificity of typhoidal serovars. Here we show that the tcf cluster (tcfABCD tinR tioA) is present in at least 25 non-typhoidal Salmonella (NTS) serovars and demonstrate its native expression in clinically-important serovars including Schwarzengrund, 9,12:l,v:-, Choleraesuis, Bredeney, Heidelberg, Montevideo, Virchow and Infantis. Although the genetic organization of the tcf cluster is well conserved, the N-terminal half of the fimbrial adhesin, TcfD is highly diverse, suggesting different binding properties of distinct tcfD variants. Comparison of tcfA expression in typhoidal and NTS serovars demonstrated unexpected differences in its expression profiles, with the highest transcription levels in S. Typhi, S. Choleraesuis and S. Infantis. In the latter, tcf is induced in rich broth and under microaerobic conditions, characterizing the intestines of warm blooded animals. Furthermore, Tcf is negatively regulated by the ancestral leucine-responsive transcriptional regulator (Lrp). Using the colitis mouse model, we demonstrate that during mice infection tcfA is expressed at higher levels by S. Infantis than S. Schwarzengrund or S. Heidelberg. Moreover, while Tcf is dispensable for S. Schwarzengrund and S. Heidelberg mouse colonization, Tcf is involved in cecum and colon colonization by S. Infantis. Taken together, our results establish that Tcf is broadly encoded by multiple NTS serovars, but presents variable expression profiles and contributes differently to their virulence.
Collapse
Affiliation(s)
- Shalhevet Azriel
- a The Infectious Diseases Research Laboratory, Sheba Medical Center , Tel-Hashomer , Israel
| | - Alina Goren
- a The Infectious Diseases Research Laboratory, Sheba Medical Center , Tel-Hashomer , Israel.,b Department of Clinical Microbiology and Immunology , Tel-Aviv University , Tel-Aviv , Israel.,c Sackler Faculty of Medicine, Tel-Aviv University , Tel-Aviv , Israel
| | - Inna Shomer
- a The Infectious Diseases Research Laboratory, Sheba Medical Center , Tel-Hashomer , Israel
| | - Gili Aviv
- a The Infectious Diseases Research Laboratory, Sheba Medical Center , Tel-Hashomer , Israel.,b Department of Clinical Microbiology and Immunology , Tel-Aviv University , Tel-Aviv , Israel.,c Sackler Faculty of Medicine, Tel-Aviv University , Tel-Aviv , Israel
| | - Galia Rahav
- a The Infectious Diseases Research Laboratory, Sheba Medical Center , Tel-Hashomer , Israel.,c Sackler Faculty of Medicine, Tel-Aviv University , Tel-Aviv , Israel
| | - Ohad Gal-Mor
- a The Infectious Diseases Research Laboratory, Sheba Medical Center , Tel-Hashomer , Israel.,b Department of Clinical Microbiology and Immunology , Tel-Aviv University , Tel-Aviv , Israel.,c Sackler Faculty of Medicine, Tel-Aviv University , Tel-Aviv , Israel
| |
Collapse
|