1
|
Lu J, Wang J, Han K, Tao Y, Dong J, Pan X, Wen X. Identification and validation of m 6A RNA methylation and ferroptosis-related biomarkers in sepsis: transcriptome combined with single-cell RNA sequencing. Front Immunol 2025; 16:1543517. [PMID: 40124361 PMCID: PMC11925765 DOI: 10.3389/fimmu.2025.1543517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 02/18/2025] [Indexed: 03/25/2025] Open
Abstract
Background Sepsis, a systemic inflammatory response syndrome triggered by infection, is associated with high mortality rates and an increasing global incidence. While N 6-methyladenosine (m6A) RNA methylation and ferroptosis are implicated in inflammatory diseases, their specific genes and mechanisms in sepsis remain unclear. Methods Transcriptomic datasets of sepsis, along with m6A-related genes (m6A-RGs) and ferroptosis-related genes (FRGs), were sourced from public databases. Differentially expressed genes (DEGs) were identified between the sepsis and control groups, and m6A-RGs were analyzed through weighted gene co-expression network analysis (WGCNA) to uncover m6A module genes. These were then intersected with DEGs and FRGs to identify candidate genes. Biomarkers were identified using two machine learning methods, receiver operating characteristic (ROC) curves, and expression validation, followed by the development of a nomogram. Further in-depth analyses of the biomarkers were performed, including functional enrichment, immune infiltration, drug prediction, and molecular docking. Single-cell analysis was conducted to identify distinct cell clusters and evaluate biomarker expression at the single-cell level. Finally, reverse transcription-quantitative PCR (RT-qPCR) was employed to validate biomarker expression in clinical samples. Results DPP4 and TXN were identified as key biomarkers, showing higher expression in control and sepsis samples, respectively. The nomogram incorporating these biomarkers demonstrated strong diagnostic potential. Enrichment analysis highlighted their involvement in spliceosome function and antigen processing and presentation. Differential analysis of immune cell types revealed significant correlations between biomarkers and immune cells, such as macrophages and activated dendritic cells. Drug predictions identified gambogenic acid and valacyclovir as potential treatments, which were successfully docked with the biomarkers. Single-cell analysis revealed that the biomarkers were predominantly expressed in CD4+ memory cells, and CD16+ and CD14+ monocytes. The expression of DPP4 was further validated in clinical samples. Conclusions DPP4 and TXN were validated as biomarkers for sepsis, with insights into immune infiltration and therapeutic potential at the single-cell level, offering novel perspectives for sepsis treatment.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xiaolan Wen
- Department of Emergency, People’s Hospital of Xinjiang Uygur Autonomous
Region, Urumqi, China
| |
Collapse
|
2
|
Liu L, Wang R, Pu X, Zha Y, Yang X, Fang X, Liu Y, Shao M, Zhu L, Ren X, Deng G, Yang K. D 4 -CHIP REVEALS IMPAIRED T-CELL FUNCTION IN SEPSIS: INSIGHTS FROM PLASMA MICROENVIRONMENT ANALYSIS AND MITOCHONDRIAL-TARGETED THERAPY. Shock 2025; 63:417-427. [PMID: 39178197 DOI: 10.1097/shk.0000000000002434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2024]
Abstract
ABSTRACT Background: Sepsis, a systemic inflammation syndrome initiated by infection, poses significant challenges due to its intricate pathophysiology. T cells play a crucial role in combating infections during sepsis. Despite previous observations indicating T-cell dysfunction in sepsis, reliable in vitro detection methods were lacking, and the factors influencing these impairments remained unclear. Methods: We developed a novel method using the D 4 -Chip to assess sepsis T-cell migration function. This microfluidic platform enabled precise analysis of migration function under controlled conditions. Additionally, We explored the impact of the plasma microenvironment on T-cell behavior, along with the redox environment in sepsis, and assessed the potential efficacy of Mitoquinone mesylate (MitoQ), a mitochondrial-targeted drug. Results: Our findings revealed impaired migration function in sepsis T cells compared to healthy controls. Interestingly, sepsis plasma enhanced the migration of healthy T cells, yet incubation with healthy plasma did not fully restore migration impairments in sepsis T cells. Subsequent investigations uncovered a significant increase in NADH/NAD+ levels in sepsis T cells, with healthy T cells exposed to various sepsis plasma conditions also showing elevated NADH/NAD+ levels. Importantly, MitoQ normalized abnormal intracellular NADH/NAD+ levels and enhanced the migration ability of T cells. Conclusions: Short-term incubation with sepsis plasma does not directly inhibit T-cell migration but instead affects T-cell function by disrupting the intracellular redox environment. Improving the intracellular redox environment of sepsis patients contributes to restoring impaired migration and proliferation, with MitoQ demonstrating therapeutic potential.
Collapse
Affiliation(s)
| | - Ruoyu Wang
- The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xuexue Pu
- The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yutao Zha
- The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | | | - Xiao Fang
- The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yong Liu
- Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| | - Min Shao
- The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ling Zhu
- Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| | - Xiaoou Ren
- Institute of Health Sciences and Technology, Institutes of Material Science and Information Technology, Anhui University, Hefei, China
| | - Guoqing Deng
- Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| | - Ke Yang
- Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| |
Collapse
|
3
|
Gao Z, Gong Z, Huang H, Ren X, Li Z, Gao P. Transcriptomic analysis of key genes and signaling pathways in sepsis-associated intestinal mucosal barrier damage. Gene 2025; 936:149137. [PMID: 39617276 DOI: 10.1016/j.gene.2024.149137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 10/19/2024] [Accepted: 11/27/2024] [Indexed: 12/12/2024]
Abstract
OBJECTIVES The aim is to analyze differentially expressed genes (DEGs) in mice with sepsis-related intestinal mucosal barrier damage and to explore the diagnostic and protective mechanisms of this condition at the transcriptome level. METHODS Small intestinal tissues from healthy male C57BL/6J mice subjected to Cecal ligation and puncture (CLP) and sham operation were collected. High-throughput sequencing was performed using the paired-end sequencing mode of the Illumina HiSeq platform. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were conducted on the differentially expressed genes (DEGs). A protein-protein interaction (PPI) network was constructed using the STRING database, and hub genes were identified with Cytoscape. These hub genes were then validated using quantitative real-time polymerase chain reaction (RT-qPCR). RESULTS A total of 239 DEGs were identified, with 49 upregulated and 130 downregulated genes. KEGG enrichment analysis showed that these DEGs were primarily involved in cytokine-cytokine receptor interaction, Th1 and Th2 cell differentiation, viral protein interactions with cytokines and their receptors, and the IL-17 signaling pathway. The top 10 hub genes were selected using the cytoHubba plugin. Experimental validation confirmed that the expression levels of TBX21, CSF3, IL-6, CXCR3, and CXCL9 matched the sequencing results. CONCLUSION TBX21, CSF3, IL-6,CXCR3, and CXCL9 may be potential biological markers for the diagnosis and treatment the sepsis-associated intestinal mucosal barrier.
Collapse
Affiliation(s)
- Zhao Gao
- Department of Emergency Medicine, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao 266003, PR China
| | | | - Hai Huang
- Department of Emergency Medicine, Changzhou Wujin People's Hospital, 2 Yongningbei Road, Changzhou 213000, PR China
| | - Xuemeng Ren
- Department of Emergency Medicine, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao 266003, PR China
| | - Zhenlu Li
- Department of Emergency Medicine, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao 266003, PR China.
| | - Peng Gao
- Department of Emergency Medicine, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao 266003, PR China.
| |
Collapse
|
4
|
Rao M, McGonagill PW, Brackenridge S, Remy KE, Caldwell CC, Hotchkiss RS, Moldawer LL, Griffith TS, Badovinac VP. FUNCTIONAL IMMUNOPHENOTYPING FOR PRECISION THERAPIES IN SEPSIS. Shock 2025; 63:189-201. [PMID: 39617419 DOI: 10.1097/shk.0000000000002511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
ABSTRACT Sepsis remains a significant cause of morbidity and mortality worldwide. Although many more patients are surviving the acute event, a substantial number enters a state of persistent inflammation and immunosuppression, rendering them more vulnerable to infections. Modulating the host immune response has been a focus of sepsis research for the past 50 years, yet novel therapies have been few and far between. Although many septic patients have similar clinical phenotypes, pathways affected by the septic event differ not only between individuals but also within an individual over the course of illness. These differences ultimately impact overall immune function and response to treatment. Defining the immune state, or endotype, of an individual is critical to understanding which patients will respond to a particular therapy. In this review, we highlight current approaches to define the immune endotype and propose that these technologies may be used to "prescreen" individuals to determine which therapies are most likely to be beneficial.
Collapse
Affiliation(s)
- Mahil Rao
- Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Patrick W McGonagill
- Department of Surgery, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Scott Brackenridge
- Department of Surgery, Harborview Medical Center, University of Washington School of Medicine, Seattle, Washington
| | - Kenneth E Remy
- Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Charles C Caldwell
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | | | - Lyle L Moldawer
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, Gainesville, Florida
| | | | | |
Collapse
|
5
|
Cavaillon JM, Chaudry IH. Facing stress and inflammation: From the cell to the planet. World J Exp Med 2024; 14:96422. [PMID: 39713080 PMCID: PMC11551703 DOI: 10.5493/wjem.v14.i4.96422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/27/2024] [Accepted: 09/19/2024] [Indexed: 10/31/2024] Open
Abstract
As identified in 1936 by Hans Selye, stress is shaping diseases through the induction of inflammation. But inflammation display some yin yang properties. On one hand inflammation is merging with the innate immune response aimed to fight infectious or sterile insults, on the other hand inflammation favors chronic physical or psychological disorders. Nature has equipped the cells, the organs, and the individuals with mediators and mechanisms that allow them to deal with stress, and even a good stress (eustress) has been associated with homeostasis. Likewise, societies and the planet are exposed to stressful settings, but wars and global warming suggest that the regulatory mechanisms are poorly efficient. In this review we list some inducers of the physiological stress, psychologic stress, societal stress, and planetary stress, and mention some of the great number of parameters which affect and modulate the response to stress and render it different from an individual to another, from the cellular level to the societal one. The cell, the organ, the individual, the society, and the planet share many stressors of which the consequences are extremely interconnected ending in the domino effect and the butterfly effect.
Collapse
Affiliation(s)
| | - Irshad H Chaudry
- Department of Surgery, University of Alabama Birmingham, Birmingham, AL 35294, United States
| |
Collapse
|
6
|
Yadav N, Kalata AC, Reynolds RA, Raappana A, Sather DN, Murphy SC. Identifying Plasmodium P36 and P52 antigens for coadministration with circumsporozoite protein to enhance vaccine efficacy. NPJ Vaccines 2024; 9:241. [PMID: 39643623 PMCID: PMC11624287 DOI: 10.1038/s41541-024-01040-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 11/26/2024] [Indexed: 12/09/2024] Open
Abstract
Vaccines targeting the complex pre-erythrocytic stage of Plasmodium parasites may benefit from the inclusion of multiple antigens. However, discerning protective effects can be difficult because newer candidates may not be as protective as leading antigens like the circumsporozoite protein (CSP) in the conventional pre-clinical mouse model. We developed a modified mouse model challenge strategy that maximizes the contribution of T cells induced by novel candidate antigens at the sporozoite challenge time point and used this approach to test Plasmodium P36 and P52 vaccine candidates alone and in concert with non-protective doses of CSP. Co-administration of P36 and/or P52 with CSP achieved 80-100% sterile protection in mice, compared to only 7-30% protection for each individual antigen. P36 and P52 vaccination induced murine CD4+ and CD8+ T cell responses, but not antibody responses. This study adds P36 and P52 as promising vaccine antigens that may enhance the protection achieved by CSP vaccination.
Collapse
Affiliation(s)
- Naveen Yadav
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
- Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle, WA, USA
| | - Anya C Kalata
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
- Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle, WA, USA
| | - Rebekah A Reynolds
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
- Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle, WA, USA
| | - Andrew Raappana
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, USA
| | - D Noah Sather
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, USA
| | - Sean C Murphy
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA.
- Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle, WA, USA.
- Department of Laboratories, Seattle Children's Hospital, Seattle, WA, USA.
- Department of Microbiology, University of Washington, Seattle, WA, USA.
| |
Collapse
|
7
|
Yadav N, Kalata AC, Reynolds RA, Raappana A, Sather DN, Murphy SC. Identifying Plasmodium P36 and P52 antigens for co-administration with circumsporozoite protein to enhance vaccine efficacy. RESEARCH SQUARE 2024:rs.3.rs-4909396. [PMID: 39399676 PMCID: PMC11469399 DOI: 10.21203/rs.3.rs-4909396/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Vaccines targeting the complex pre-erythrocytic stage of Plasmodium parasites may benefit from inclusion of multiple antigens. However, discerning protective effects can be difficult because newer candidates may not be as protective as leading antigens like the circumsporozoite protein (CSP) in the conventional pre-clinical mouse model. We developed a modified mouse model challenge strategy that maximizes the contribution of T cells induced by novel candidate antigens at the sporozoite challenge time point and used this approach to test Plasmodium P36 and P52 vaccine candidates alone and in concert with non-protective doses of CSP. Co-administration of P36 and/or P52 with CSP achieved 80-100% sterile protection in mice, compared to only 7-30% protection for each individual antigen. P36 and P52 vaccination induced murine CD4+ and CD8+ T cell responses, but not antibody responses. This study adds P36 and P52 as promising vaccine antigens that may enhance protection achieved by CSP vaccination.
Collapse
Affiliation(s)
- Naveen Yadav
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, United States of America
- Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle, WA, United States of America
| | - Anya C. Kalata
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, United States of America
- Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle, WA, United States of America
| | - Rebekah A. Reynolds
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, United States of America
- Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle, WA, United States of America
| | - Andrew Raappana
- Seattle Children’s Research Institute, Seattle, WA, United States of America
| | - D. Noah Sather
- Seattle Children’s Research Institute, Seattle, WA, United States of America
| | - Sean C. Murphy
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, United States of America
- Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle, WA, United States of America
- Department of Microbiology, University of Washington, Seattle, WA, United States of America
- Seattle Children’s Research Institute, Seattle, WA, United States of America
| |
Collapse
|
8
|
van de Wall S, Anthony SM, Hancox LS, Pewe LL, Langlois RA, Zehn D, Badovinac VP, Harty JT. Dynamic landscapes and protective immunity coordinated by influenza-specific lung-resident memory CD8 + T cells revealed by intravital imaging. Immunity 2024; 57:1878-1892.e5. [PMID: 39043185 PMCID: PMC12001675 DOI: 10.1016/j.immuni.2024.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 04/09/2024] [Accepted: 06/28/2024] [Indexed: 07/25/2024]
Abstract
Lung-tissue-resident memory (TRM) CD8+ T cells are critical for heterosubtypic immunity against influenza virus (IAV) reinfection. How TRM cells surveil the lung, respond to infection, and interact with other cells remains unresolved. Here, we used IAV infection of mice in combination with intravital and static imaging to define the spatiotemporal dynamics of lung TRM cells before and after recall infection. CD69+CD103+ TRM cells preferentially localized to lung sites of prior IAV infection, where they exhibited patrolling behavior. After rechallenge, lung TRM cells formed tight clusters in an antigen-dependent manner. Transcriptomic analysis of IAV-specific TRM cells revealed the expression of several factors that regulate myeloid cell biology. In vivo rechallenge experiments demonstrated that protection elicited by TRM cells is orchestrated in part by interferon (IFN)-γ-mediated recruitment of inflammatory monocytes into the lungs. Overall, these data illustrate the dynamic landscapes of CD103+ lung TRM cells that mediate early protective immunity against IAV infection.
Collapse
Affiliation(s)
- Stephanie van de Wall
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Scott M Anthony
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Lisa S Hancox
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Lecia L Pewe
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Ryan A Langlois
- University of Minnesota, Department of Microbiology and Immunology and the Center for Immunology, Minneapolis, MN, USA
| | - Dietmar Zehn
- TUM Center for Infection Prevention (ZIP) and Division of Animal Physiology and Immunology, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Vladimir P Badovinac
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA; Interdisciplinary Graduate Program in Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - John T Harty
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA; Interdisciplinary Graduate Program in Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
9
|
Assis PA, Allen RM, Schaller MA, Kunkel SL, Bermick JR. Metabolic reprogramming and dysregulated IL-17 production impairs CD4 T cell function post sepsis. iScience 2024; 27:110114. [PMID: 39015145 PMCID: PMC11251092 DOI: 10.1016/j.isci.2024.110114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/05/2023] [Accepted: 05/23/2024] [Indexed: 07/18/2024] Open
Abstract
Sepsis survivors are at high risk for infection-related rehospitalization and mortality for years following the resolution of the acute septic event. These infection-causing microorganisms generally do not cause disease in immunocompetent hosts, suggesting that the post-septic immune response is compromised. Given the importance of CD4 T cells in the development of long-lasting protective immunity, we analyzed their post-septic function. Here we showed that sepsis induced chronic increased and non-specific production of IL-17 by CD4 T cells, resulting in the inability to mount an effective immune response to a secondary pneumonia challenge. Altered cell function was associated with metabolic reprogramming, characterized by mitochondrial dysfunction and increased glycolysis. This metabolic reprogramming began during the acute septic event and persisted long after sepsis had resolved. Our findings reveal cell metabolism as a potential therapeutic target. Given the critical role of cell metabolism in the physiological and pathophysiological processes of immune cells, these findings reveal a potential new therapeutic target to help mitigate sepsis survivors' susceptibility to secondary infections.
Collapse
Affiliation(s)
- Patricia A. Assis
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Ronald M. Allen
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Matthew A. Schaller
- Division of Pulmonary, Critical Care & Sleep Medicine, University of Florida College of Medicine, Gainesville, FL, USA
| | - Steven L. Kunkel
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Jennifer R. Bermick
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
10
|
Cavaillon JM, Chousterman BG, Skirecki T. Compartmentalization of the inflammatory response during bacterial sepsis and severe COVID-19. JOURNAL OF INTENSIVE MEDICINE 2024; 4:326-340. [PMID: 39035623 PMCID: PMC11258514 DOI: 10.1016/j.jointm.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 01/04/2024] [Accepted: 01/06/2024] [Indexed: 07/23/2024]
Abstract
Acute infections cause local and systemic disorders which can lead in the most severe forms to multi-organ failure and eventually to death. The host response to infection encompasses a large spectrum of reactions with a concomitant activation of the so-called inflammatory response aimed at fighting the infectious agent and removing damaged tissues or cells, and the anti-inflammatory response aimed at controlling inflammation and initiating the healing process. Fine-tuning at the local and systemic levels is key to preventing local and remote injury due to immune system activation. Thus, during bacterial sepsis and Coronavirus disease 2019 (COVID-19), concomitant systemic and compartmentalized pro-inflammatory and compensatory anti-inflammatory responses are occurring. Immune cells (e.g., macrophages, neutrophils, natural killer cells, and T-lymphocytes), as well as endothelial cells, differ from one compartment to another and contribute to specific organ responses to sterile and microbial insult. Furthermore, tissue-specific microbiota influences the local and systemic response. A better understanding of the tissue-specific immune status, the organ immunity crosstalk, and the role of specific mediators during sepsis and COVID-19 can foster the development of more accurate biomarkers for better diagnosis and prognosis and help to define appropriate host-targeted treatments and vaccines in the context of precision medicine.
Collapse
Affiliation(s)
| | - Benjamin G. Chousterman
- Department of Anesthesia and Critical Care, Lariboisière University Hospital, DMU Parabol, APHP Nord, Paris, France
- Inserm U942, University of Paris, Paris, France
| | - Tomasz Skirecki
- Department of Translational Immunology and Experimental Intensive Care, Centre of Postgraduate Medical Education, Warsaw, Poland
| |
Collapse
|
11
|
Silva EE, Moioffer SJ, Hassert M, Berton RR, Smith MG, van de Wall S, Meyerholz DK, Griffith TS, Harty JT, Badovinac VP. Defining Parameters That Modulate Susceptibility and Protection to Respiratory Murine Coronavirus MHV1 Infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:563-575. [PMID: 38149923 PMCID: PMC10872354 DOI: 10.4049/jimmunol.2300434] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 11/28/2023] [Indexed: 12/28/2023]
Abstract
Patients infected with SARS-CoV-2 experience variable disease susceptibility, and patients with comorbidities such as sepsis are often hospitalized for COVID-19 complications. However, the extent to which initial infectious inoculum dose determines disease outcomes and whether this can be used for immunological priming in a genetically susceptible host has not been completely defined. We used an established SARS-like murine model in which responses to primary and/or secondary challenges with murine hepatitis virus type 1 (MHV-1) were analyzed. We compared the response to infection in genetically susceptible C3H/HeJ mice, genetically resistant C57BL/6J mice, and genetically diverse, variably susceptible outbred Swiss Webster mice. Although defined as genetically susceptible to MHV-1, C3H/HeJ mice displayed decreasing dose-dependent pathological changes in disease severity and lung infiltrate/edema, as well as lymphopenia. Importantly, an asymptomatic dose (500 PFU) was identified that yielded no measurable morbidity/mortality postinfection in C3H/HeJ mice. Polymicrobial sepsis induced via cecal ligation and puncture converted asymptomatic infections in C3H/HeJ and C57BL/6J mice to more pronounced disease, modeling the impact of sepsis as a comorbidity to β-coronavirus infection. We then used low-dose infection as an immunological priming event in C3H/HeJ mice, which provided neutralizing Ab-dependent, but not circulating CD4/CD8 T cell-dependent, protection against a high-dose MHV-1 early rechallenge. Together, these data define how infection dose, immunological status, and comorbidities modulate outcomes of primary and secondary β-coronavirus infections in hosts with variable susceptibility.
Collapse
Affiliation(s)
- Elvia E Silva
- Department of Pathology, University of Iowa, Iowa City, IA
- Interdisciplinary Program in Immunology, University of Iowa, Iowa City, IA
| | | | - Mariah Hassert
- Department of Pathology, University of Iowa, Iowa City, IA
| | - Roger R Berton
- Department of Pathology, University of Iowa, Iowa City, IA
- Interdisciplinary Program in Immunology, University of Iowa, Iowa City, IA
| | - Matthew G Smith
- Department of Pathology, University of Iowa, Iowa City, IA
- Interdisciplinary Program in Immunology, University of Iowa, Iowa City, IA
| | | | | | - Thomas S Griffith
- Department of Urology, University of Minnesota, Minneapolis, MN
- Minneapolis Veterans Affairs Health Care System, Minneapolis, MN
| | - John T Harty
- Department of Pathology, University of Iowa, Iowa City, IA
- Interdisciplinary Program in Immunology, University of Iowa, Iowa City, IA
| | - Vladimir P Badovinac
- Department of Pathology, University of Iowa, Iowa City, IA
- Interdisciplinary Program in Immunology, University of Iowa, Iowa City, IA
| |
Collapse
|
12
|
Yadav N, Parthiban C, Billman ZP, Stone BC, Watson FN, Zhou K, Olsen TM, Cruz Talavera I, Seilie AM, Kalata AC, Matsubara J, Shears MJ, Reynolds RA, Murphy SC. More time to kill: A longer liver stage increases T cell-mediated protection against pre-erythrocytic malaria. iScience 2023; 26:108489. [PMID: 38162031 PMCID: PMC10755051 DOI: 10.1016/j.isci.2023.108489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 10/16/2023] [Accepted: 11/14/2023] [Indexed: 01/03/2024] Open
Abstract
Liver stage (LS) Plasmodia mature in 2-2.5 days in rodents compared to 5-6 days in humans. Plasmodium-specific CD8+ T cell expansion differs across these varied timespans. To mimic the kinetics of CD8+ T cells of human Plasmodium infection, a two-dose challenge mouse model that achieved 4-5 days of LS antigen exposure was developed. In this model, mice were inoculated with a non-protective, low dose of late-arresting, genetically attenuated sporozoites to initiate T cell activation and then re-inoculated 2-3 days later with wild-type sporozoites. Vaccines that partially protected against traditional challenge completely protected against two-dose challenge. During the challenge period, CD8+ T cell frequencies increased in the livers of two-dose challenged mice but not in traditionally challenged mice, further suggesting that this model better recapitulates kinetics of CD8+ T cell expansion in humans during the P. falciparum LS. Vaccine development and antigen discovery efforts may be aided by using the two-dose challenge strategy.
Collapse
Affiliation(s)
- Naveen Yadav
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
- Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle, WA, USA
| | - Chaitra Parthiban
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
- Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle, WA, USA
| | - Zachary P. Billman
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
- Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle, WA, USA
| | - Brad C. Stone
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
- Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle, WA, USA
| | - Felicia N. Watson
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
- Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle, WA, USA
| | - Kevin Zhou
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
- Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle, WA, USA
| | - Tayla M. Olsen
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
- Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle, WA, USA
| | - Irene Cruz Talavera
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
- Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle, WA, USA
| | - Annette Mariko Seilie
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
- Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle, WA, USA
| | - Anya C. Kalata
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
- Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle, WA, USA
| | - Jokichi Matsubara
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
- Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle, WA, USA
| | - Melanie J. Shears
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
- Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle, WA, USA
| | - Rebekah A. Reynolds
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
- Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle, WA, USA
| | - Sean C. Murphy
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
- Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle, WA, USA
- Department of Microbiology, University of Washington, Seattle, WA, USA
| |
Collapse
|
13
|
Berton RR, McGonagil PW, Jensen IJ, Ybarra TK, Bishop GA, Harty JT, Griffith TS, Badovinac VP. Sepsis leads to lasting changes in phenotype and function of naïve CD8 T cells. PLoS Pathog 2023; 19:e1011720. [PMID: 37824591 PMCID: PMC10597476 DOI: 10.1371/journal.ppat.1011720] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 10/24/2023] [Accepted: 09/27/2023] [Indexed: 10/14/2023] Open
Abstract
Sepsis, an amplified immune response to systemic infection, is characterized by a transient cytokine storm followed by chronic immune dysfunction. Consequently, sepsis survivors are highly susceptible to newly introduced infections, suggesting sepsis can influence the function and composition of the naïve CD8 T cell pool and resulting pathogen-induced primary CD8 T cell responses. Here, we explored the extent to which sepsis induces phenotypic and functional changes within the naïve CD8 T cell pool. To interrogate this, the cecal ligation and puncture (CLP) mouse model of polymicrobial sepsis was used. In normal, non-septic mice, we show type-I interferon (IFN I)-mediated signaling plays an important role in driving the phenotypic and functional heterogeneity in the naïve CD8 T cell compartment leading to increased representation of Ly6C+ naïve CD8 T cells. In response to viral infection after sepsis resolution, naïve Ly6C+ CD8 T cells generated more primary effector and memory CD8 T cells with slower conversion to a central memory CD8 T cell phenotype (Tcm) than Ly6C- naïve CD8 T cells. Importantly, as a potent inducer of cytokine storm and IFN I production, sepsis leads to increased representation of Ly6C+ naïve CD8 T cells that maintained their heightened ability to respond (i.e., effector and memory CD8 T cell accumulation and cytokine production) to primary LCMV infection. Lastly, longitudinal analyses of peripheral blood samples obtained from septic patients revealed profound changes in CD8 T cell subset composition and frequency compared to healthy controls. Thus, sepsis has the capacity to alter the composition of naïve CD8 T cells, directly influencing primary CD8 T cell responses to newly introduced infections.
Collapse
Affiliation(s)
- Roger R. Berton
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, Iowa, United States of America
- Department of Pathology, University of Iowa, Iowa City, Iowa, United States of America
| | - Patrick W. McGonagil
- Department of Surgery, University of Iowa, Iowa City, Iowa, United States of America
| | - Isaac J. Jensen
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, Iowa, United States of America
- Department of Pathology, University of Iowa, Iowa City, Iowa, United States of America
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York City, New York, United States of America
| | - Tiffany K. Ybarra
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, Iowa, United States of America
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, United States of America
| | - Gail A. Bishop
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, Iowa, United States of America
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, United States of America
| | - John T. Harty
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, Iowa, United States of America
- Department of Pathology, University of Iowa, Iowa City, Iowa, United States of America
| | - Thomas S. Griffith
- Department of Urology, University of Minnesota, Minneapolis, Minnesota, United States of America
- Minneapolis Veterans Affairs Health Care System, Minneapolis, Minnesota, United States of America
| | - Vladimir P. Badovinac
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, Iowa, United States of America
- Department of Pathology, University of Iowa, Iowa City, Iowa, United States of America
| |
Collapse
|
14
|
van de Wall S, Crooks S, Varga SM, Badovinac VP, Harty JT. Cutting Edge: Influenza-Induced CD11alo Airway CD103+ Tissue Resident Memory T Cells Exhibit Compromised IFN-γ Production after In Vivo TCR Stimulation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:1025-1030. [PMID: 36912465 PMCID: PMC10229141 DOI: 10.4049/jimmunol.2200931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 02/17/2023] [Indexed: 03/14/2023]
Abstract
Although tissue resident memory T cells (TRM) in the lung confer robust protection against secondary influenza infection, their in vivo production of IFN-γ is unknown. In this study, using a mouse model, we evaluated production of IFN-γ by influenza-induced TRM (defined as CD103+) that localize to the airways or lung parenchyma. Airway TRM consist of both CD11ahi and CD11alo populations, with low CD11a expression signifying prolonged airway residence. In vitro, high-dose peptide stimulation evoked IFN-γ from most CD11ahi airway and parenchymal TRM, whereas most CD11alo airway TRM did not produce IFN-γ. In vivo production of IFN-γ was clearly detectable in CD11ahi airway and parenchymal TRM but essentially absent in CD11alo airway TRM, irrespective of airway-instilled peptide concentration or influenza reinfection. The majority of IFN-γ-producing airway TRM in vivo were CD11ahi, suggesting recent airway entry. These results question the contribution of long-term CD11alo airway TRM to influenza immunity and reinforce the importance of defining TRM tissue compartment-specific contributions to protective immunity.
Collapse
Affiliation(s)
| | - Sequoia Crooks
- Department of Pathology, University of Iowa, Iowa City, IA, USA
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA 52242, USA
| | - Steven M. Varga
- Department of Pathology, University of Iowa, Iowa City, IA, USA
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA 52242, USA
| | - Vladimir P. Badovinac
- Department of Pathology, University of Iowa, Iowa City, IA, USA
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA 52242, USA
| | - John T. Harty
- Department of Pathology, University of Iowa, Iowa City, IA, USA
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
15
|
Heidarian M, Griffith TS, Badovinac VP. Sepsis-induced changes in differentiation, maintenance, and function of memory CD8 T cell subsets. Front Immunol 2023; 14:1130009. [PMID: 36756117 PMCID: PMC9899844 DOI: 10.3389/fimmu.2023.1130009] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 01/09/2023] [Indexed: 01/24/2023] Open
Abstract
Formation of long-lasting memory lymphocytes is one of the foundational characteristics of adaptive immunity and the basis of many vaccination strategies. Following the rapid expansion and contraction of effector CD8 T cells, the surviving antigen (Ag)-specific cells give rise to the memory CD8 T cells that persist for a long time and are phenotypically and functionally distinct from their naïve counterparts. Significant heterogeneity exists within the memory CD8 T cell pool, as different subsets display distinct tissue localization preferences, cytotoxic ability, and proliferative capacity, but all memory CD8 T cells are equipped to mount an enhanced immune response upon Ag re-encounter. Memory CD8 T cells demonstrate numerical stability under homeostatic conditions, but sepsis causes a significant decline in the number of memory CD8 T cells and diminishes their Ag-dependent and -independent functions. Sepsis also rewires the transcriptional profile of memory CD8 T cells, which profoundly impacts memory CD8 T cell differentiation and, ultimately, the protective capacity of memory CD8 T cells upon subsequent stimulation. This review delves into different aspects of memory CD8 T cell subsets as well as the immediate and long-term impact of sepsis on memory CD8 T cell biology.
Collapse
Affiliation(s)
| | - Thomas S. Griffith
- Department of Urology, University of Minnesota, Minneapolis, MN, United States,Minneapolis Veterans Affairs Health Care System, Minneapolis, MN, United States
| | - Vladimir P. Badovinac
- Department of Pathology, University of Iowa, Iowa, IA, United States,Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa, IA, United States,*Correspondence: Vladimir P. Badovinac,
| |
Collapse
|
16
|
Moioffer SJ, Berton RR, McGonagill PW, Jensen IJ, Griffith TS, Badovinac VP. Inefficient Recovery of Repeatedly Stimulated Memory CD8 T Cells after Polymicrobial Sepsis Induction Leads to Changes in Memory CD8 T Cell Pool Composition. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:168-179. [PMID: 36480268 PMCID: PMC9840817 DOI: 10.4049/jimmunol.2200676] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/09/2022] [Indexed: 01/03/2023]
Abstract
Long-lasting sepsis-induced immunoparalysis has been principally studied in primary (1°) memory CD8 T cells; however, the impact of sepsis on memory CD8 T cells with a history of repeated cognate Ag encounters is largely unknown but important in understanding the role of sepsis in shaping the pre-existing memory CD8 T cell compartment. Higher-order memory CD8 T cells are crucial in providing immunity against common pathogens that reinfect the host or are generated by repeated vaccination. In this study, we analyzed peripheral blood from septic patients and show that memory CD8 T cells with defined Ag specificity for recurring CMV infection proliferate less than bulk populations of central memory CD8 T cells. Using TCR-transgenic T cells to generate 1° and higher-order (quaternary [4°]) memory T cells within the same host, we demonstrate that the susceptibility and loss of both memory subsets are similar after sepsis induction, and sepsis diminished Ag-dependent and -independent (bystander) functions of these memory subsets equally. Both the 1° and 4° memory T cell populations proliferated in a sepsis-induced lymphopenic environment; however, due to the intrinsic differences in baseline proliferative capacity, expression of receptors (e.g., CD127/CD122), and responsiveness to homeostatic cytokines, 1° memory T cells become overrepresented over time in sepsis survivors. Finally, IL-7/anti-IL-7 mAb complex treatment early after sepsis induction preferentially rescued the proliferation and accumulation of 1° memory T cells, whereas recovery of 4° memory T cells was less pronounced. Thus, inefficient recovery of repeatedly stimulated memory cells after polymicrobial sepsis induction leads to changes in memory T cell pool composition, a notion with important implications in devising strategies to recover the number and function of pre-existing memory CD8 T cells in sepsis survivors.
Collapse
Affiliation(s)
| | - Roger R. Berton
- Department of Pathology, University of Iowa, Iowa City, IA;,Interdisciplinary Program in Immunology, University of Iowa, Iowa City, IA
| | | | - Isaac J. Jensen
- Columbia University Irving Medical Center, University of Minnesota, Minneapolis, MN
| | - Thomas S. Griffith
- Department of Urology, University of Minnesota, Minneapolis, MN,,Minneapolis Veterans Affairs Health Care System, Minneapolis, MN
| | - Vladimir P. Badovinac
- Department of Pathology, University of Iowa, Iowa City, IA;,Interdisciplinary Program in Immunology, University of Iowa, Iowa City, IA
| |
Collapse
|
17
|
Berton RR, Jensen IJ, Harty JT, Griffith TS, Badovinac VP. Inflammation Controls Susceptibility of Immune-Experienced Mice to Sepsis. Immunohorizons 2022; 6:528-542. [PMID: 35878936 PMCID: PMC9650784 DOI: 10.4049/immunohorizons.2200050] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 06/30/2022] [Indexed: 11/19/2022] Open
Abstract
Sepsis, an amplified immune response to systemic infection that leads to life-threatening organ dysfunction, affects >125,000 people/day worldwide with 20% mortality. Modest therapeutic progress for sepsis has been made, in part because of the lack of therapeutic translatability between mouse-based experimental models and humans. One potential reason for this difference stems from the extensive use of immunologically naive specific pathogen-free mice in preclinical research. To address this issue, we used sequential infections with well-defined BSL-2 pathogens to establish a novel immune-experienced mouse model (specific pathogen experienced [SPexp]) to determine the extent to which immunological experience and/or inflammation influences the host capacity to respond to subsequent infections, including sepsis. Consistent with their immunological experience, SPexp inbred or outbred mice had significant changes in the composition and activation status of multiple leukocyte populations known to influence the severity of cecal ligation and puncture-induced sepsis. Importantly, by varying the timing of sepsis induction, we found the level of basal inflammation controls sepsis-induced morbidity and mortality in SPexp mice. In addition, although a beneficial role of NK cells in sepsis was recently demonstrated in specific pathogen-free mice, NK cell depletion before cecal ligation and puncture induction in SPexp mice lead to diminished mortality, suggesting NK cells may have beneficial or detrimental roles in the response to septic insult dependent on host immune status. Thus, data highlight the importance of utilizing immune-experienced models for preclinical studies to interrogate the cellular/molecular mechanism(s) that could be therapeutically exploited during severe and dysregulated infection-induced inflammatory responses, such as sepsis.
Collapse
Affiliation(s)
- Roger R Berton
- Department of Pathology, University of Iowa, Iowa City, IA.,Interdisciplinary Program in Immunology, University of Iowa, Iowa City, IA
| | - Isaac J Jensen
- Department of Pathology, University of Iowa, Iowa City, IA.,Interdisciplinary Program in Immunology, University of Iowa, Iowa City, IA.,Department of Microbiology and Immunology, Columbia University, New York, NY
| | - John T Harty
- Department of Pathology, University of Iowa, Iowa City, IA.,Interdisciplinary Program in Immunology, University of Iowa, Iowa City, IA
| | - Thomas S Griffith
- Department of Urology, University of Minnesota, Minneapolis, MN; and.,Minneapolis VA Health Care System, Minneapolis, MN
| | - Vladimir P Badovinac
- Department of Pathology, University of Iowa, Iowa City, IA; .,Interdisciplinary Program in Immunology, University of Iowa, Iowa City, IA
| |
Collapse
|
18
|
Vrba SM, Hickman HD. Imaging viral infection in vivo to gain unique perspectives on cellular antiviral immunity. Immunol Rev 2022; 306:200-217. [PMID: 34796538 PMCID: PMC9073719 DOI: 10.1111/imr.13037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 10/17/2021] [Indexed: 11/29/2022]
Abstract
The past decade has seen near continual global public health crises caused by emerging viral infections. Extraordinary increases in our knowledge of the mechanisms underlying successful antiviral immune responses in animal models and during human infection have accompanied these viral outbreaks. Keeping pace with the rapidly advancing field of viral immunology, innovations in microscopy have afforded a previously unseen view of viral infection occurring in real-time in living animals. Here, we review the contribution of intravital imaging to our understanding of cell-mediated immune responses to viral infections, with a particular focus on studies that visualize the antiviral effector cells responding to infection as well as virus-infected cells. We discuss methods to visualize viral infection in vivo using intravital microscopy (IVM) and significant findings arising through the application of IVM to viral infection. Collectively, these works underscore the importance of developing a comprehensive spatial understanding of the relationships between immune effectors and virus-infected cells and how this has enabled unique discoveries about virus/host interactions and antiviral effector cell biology.
Collapse
Affiliation(s)
- Sophia M. Vrba
- Laboratory of Clinical Immunology and Microbiology, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Heather D. Hickman
- Laboratory of Clinical Immunology and Microbiology, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
19
|
Li X, Ma G, Zhang C, Chen M, Huang X, Gu C. miR-34a overexpression protects against hippocampal neuron damage caused by ketamine-induced anesthesia in immature rats through the Notch-1/NF-κB signaling pathway. Am J Transl Res 2021; 13:13452-13461. [PMID: 35035687 PMCID: PMC8748079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 10/20/2021] [Indexed: 06/14/2023]
Abstract
OBJECTIVE To investigate the protective effect of miR-34a overexpression on hippocampal neuron damage caused by ketamine-induced anesthesia in immature rats and the underlying mechanism. METHODS A total of 48 male SD rats were divided into control group (CG, n=12), ketamine group (KG, n=12), negative control group (NCG, n=12), and intervention group (IG, n=12) by using the random number table method. Neurological function, cognitive function, pathological changes of brain tissues, inflammatory cytokines, as well as mRNA expression levels of Notch-1, NICD, RBP-JK, and Hes-1 in brain tissues were detected in the four groups. RESULTS The scores of auricular, paw withdrawal, corneal reflex, and escape reflexes of IG were higher than those of KG and NCG (P<0.05). At day 3 after intervention, the escape latency, time of staying in the quadrants of original platform, and times of crossing the quadrants of original platform of IG were lower than those of KG and NCG (P<0.05). HE staining results revealed that the morphology and structure of a few neurons and glial cells in IG were changed, and the intercellular space was increased. The brain tissues of NCG demonstrated marked neuron damage with unclear structure; these changes were less significant for KG. The levels of TNF-α, IL-1β, and IL-6 of IG were lower than those of KG and CG (P<0.05). CONCLUSIONS miR-34a overexpression exhibited a potent protective effect on hippocampal neuron damage caused by ketamine-induced anesthesia in immature rats.
Collapse
Affiliation(s)
- Xueyan Li
- Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital (North District)Suzhou 215000, Jiangsu, China
| | - Genshan Ma
- Tumor Hospital Affiliated to Nantong University, Nantong Tumor HospitalNantong 226001, Jiangsu, China
| | - Chun Zhang
- Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital (North District)Suzhou 215000, Jiangsu, China
| | - Mo Chen
- Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital (North District)Suzhou 215000, Jiangsu, China
| | - Xiaochen Huang
- Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital (North District)Suzhou 215000, Jiangsu, China
| | - Chengyong Gu
- Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital (North District)Suzhou 215000, Jiangsu, China
| |
Collapse
|
20
|
Lefebvre MN, Surette FA, Anthony SM, Vijay R, Jensen IJ, Pewe LL, Hancox LS, Van Braeckel-Budimir N, van de Wall S, Urban SL, Mix MR, Kurup SP, Badovinac VP, Butler NS, Harty JT. Expeditious recruitment of circulating memory CD8 T cells to the liver facilitates control of malaria. Cell Rep 2021; 37:109956. [PMID: 34731605 PMCID: PMC8628427 DOI: 10.1016/j.celrep.2021.109956] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/08/2021] [Accepted: 10/15/2021] [Indexed: 12/15/2022] Open
Abstract
Circulating memory CD8 T cell trafficking and protective capacity during liver-stage malaria infection remains undefined. We find that effector memory CD8 T cells (Tem) infiltrate the liver within 6 hours after malarial or bacterial infections and mediate pathogen clearance. Tem recruitment coincides with rapid transcriptional upregulation of inflammatory genes in Plasmodium-infected livers. Recruitment requires CD8 T cell-intrinsic LFA-1 expression and the presence of liver phagocytes. Rapid Tem liver infiltration is distinct from recruitment to other non-lymphoid tissues in that it occurs both in the absence of liver tissue resident memory "sensing-and-alarm" function and ∼42 hours earlier than in lung infection by influenza virus. These data demonstrate relevance for Tem in protection against malaria and provide generalizable mechanistic insights germane to control of liver infections.
Collapse
Affiliation(s)
- Mitchell N Lefebvre
- Department of Pathology, University of Iowa, Carver College of Medicine, Iowa City, IA 52246, USA; Medical Scientist Training Program, University of Iowa, Carver College of Medicine, Iowa City, IA 52246, USA; Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA 52246, USA
| | - Fionna A Surette
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA 52246, USA; Department of Microbiology and Immunology, University of Iowa, Carver College of Medicine, Iowa City, IA 52246, USA
| | - Scott M Anthony
- Department of Pathology, University of Iowa, Carver College of Medicine, Iowa City, IA 52246, USA
| | - Rahul Vijay
- Department of Microbiology and Immunology, University of Iowa, Carver College of Medicine, Iowa City, IA 52246, USA
| | - Isaac J Jensen
- Department of Pathology, University of Iowa, Carver College of Medicine, Iowa City, IA 52246, USA; Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA 52246, USA
| | - Lecia L Pewe
- Department of Pathology, University of Iowa, Carver College of Medicine, Iowa City, IA 52246, USA
| | - Lisa S Hancox
- Department of Pathology, University of Iowa, Carver College of Medicine, Iowa City, IA 52246, USA
| | | | - Stephanie van de Wall
- Department of Pathology, University of Iowa, Carver College of Medicine, Iowa City, IA 52246, USA
| | - Stina L Urban
- Department of Pathology, University of Iowa, Carver College of Medicine, Iowa City, IA 52246, USA
| | - Madison R Mix
- Department of Pathology, University of Iowa, Carver College of Medicine, Iowa City, IA 52246, USA; Medical Scientist Training Program, University of Iowa, Carver College of Medicine, Iowa City, IA 52246, USA; Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA 52246, USA
| | - Samarchith P Kurup
- Department of Pathology, University of Iowa, Carver College of Medicine, Iowa City, IA 52246, USA
| | - Vladimir P Badovinac
- Department of Pathology, University of Iowa, Carver College of Medicine, Iowa City, IA 52246, USA; Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA 52246, USA; Department of Microbiology and Immunology, University of Iowa, Carver College of Medicine, Iowa City, IA 52246, USA
| | - Noah S Butler
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA 52246, USA; Department of Microbiology and Immunology, University of Iowa, Carver College of Medicine, Iowa City, IA 52246, USA
| | - John T Harty
- Department of Pathology, University of Iowa, Carver College of Medicine, Iowa City, IA 52246, USA; Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA 52246, USA.
| |
Collapse
|
21
|
Jensen IJ, Li X, McGonagill PW, Shan Q, Fosdick MG, Tremblay MM, Houtman JCD, Xue HH, Griffith TS, Peng W, Badovinac VP. Sepsis leads to lasting changes in phenotype and function of memory CD8 T cells. eLife 2021; 10:e70989. [PMID: 34652273 PMCID: PMC8589447 DOI: 10.7554/elife.70989] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 10/14/2021] [Indexed: 12/13/2022] Open
Abstract
The global health burden due to sepsis and the associated cytokine storm is substantial. While early intervention has improved survival during the cytokine storm, those that survive can enter a state of chronic immunoparalysis defined by transient lymphopenia and functional deficits of surviving cells. Memory CD8 T cells provide rapid cytolysis and cytokine production following re-encounter with their cognate antigen to promote long-term immunity, and CD8 T cell impairment due to sepsis can pre-dispose individuals to re-infection. While the acute influence of sepsis on memory CD8 T cells has been characterized, if and to what extent pre-existing memory CD8 T cells recover remains unknown. Here, we observed that central memory CD8 T cells (TCM) from septic patients proliferate more than those from healthy individuals. Utilizing LCMV immune mice and a CLP model to induce sepsis, we demonstrated that TCM proliferation is associated with numerical recovery of pathogen-specific memory CD8 T cells following sepsis-induced lymphopenia. This increased proliferation leads to changes in composition of memory CD8 T cell compartment and altered tissue localization. Further, memory CD8 T cells from sepsis survivors have an altered transcriptional profile and chromatin accessibility indicating long-lasting T cell intrinsic changes. The sepsis-induced changes in the composition of the memory CD8 T cell pool and transcriptional landscape culminated in altered T cell function and reduced capacity to control L. monocytogenes infection. Thus, sepsis leads to long-term alterations in memory CD8 T cell phenotype, protective function and localization potentially changing host capacity to respond to re-infection.
Collapse
Affiliation(s)
- Isaac J Jensen
- Department of Pathology, University of IowaIowa CityUnited States
| | - Xiang Li
- Department of Physics, The George Washington UniversityWashingtonUnited States
| | | | - Qiang Shan
- Center for Discovery and Innovation, Hackensack University Medical CenterNutleyUnited States
| | - Micaela G Fosdick
- Interdisciplinary Graduate Program in Molecular Medicine, University of IowaIowa CityUnited States
| | - Mikaela M Tremblay
- Interdisciplinary Graduate Program in Molecular Medicine, University of IowaIowa CityUnited States
| | - Jon CD Houtman
- Interdisciplinary Graduate Program in Molecular Medicine, University of IowaIowa CityUnited States
- Interdisciplinary Graduate Program in Molecular Medicine, University of IowaIowa CityUnited States
| | - Hai-Hui Xue
- Center for Discovery and Innovation, Hackensack University Medical CenterNutleyUnited States
| | - Thomas S Griffith
- Microbiology, Immunology, and Cancer Biology PhD Program, University of MinnesotaMinneapolisUnited States
- Department of Urology, University of MinnesotaMinneapolisUnited States
- Center for Immunology, University of MinnesotaMinneapolisUnited States
- Masonic Cancer Center, University of MinnesotaMinneapolisUnited States
- Minneapolis VA Health Care SystemMinneapolisUnited States
| | - Weiqun Peng
- Department of Physics, The George Washington UniversityWashingtonUnited States
| | - Vladimir P Badovinac
- Department of Pathology, University of IowaIowa CityUnited States
- Interdisciplinary Graduate Program in Molecular Medicine, University of IowaIowa CityUnited States
| |
Collapse
|
22
|
Moioffer SJ, Danahy DB, van de Wall S, Jensen IJ, Sjaastad FV, Anthony SM, Harty JT, Griffith TS, Badovinac VP. Severity of Sepsis Determines the Degree of Impairment Observed in Circulatory and Tissue-Resident Memory CD8 T Cell Populations. THE JOURNAL OF IMMUNOLOGY 2021; 207:1871-1881. [PMID: 34479943 DOI: 10.4049/jimmunol.2001142] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 07/27/2021] [Indexed: 12/29/2022]
Abstract
Sepsis reduces the number and function of memory CD8 T cells within the host, contributing to the long-lasting state of immunoparalysis. Interestingly, the relative susceptibility of memory CD8 T cell subsets to quantitative/qualitative changes differ after cecal ligation and puncture (CLP)-induced sepsis. Compared with circulatory memory CD8 T cells (TCIRCM), moderate sepsis (0-10% mortality) does not result in numerical decline of CD8 tissue-resident memory T cells (TRM), which retain their "sensing and alarm" IFN-γ-mediated effector function. To interrogate this biologically important dichotomy, vaccinia virus-immune C57BL/6 (B6) mice containing CD8 TCIRCM and skin TRM underwent moderate or severe (∼50% mortality) sepsis. Severe sepsis led to increased morbidity and mortality characterized by increased inflammation compared with moderate CLP or sham controls. Severe CLP mice also displayed increased vascular permeability in the ears. Interestingly, skin CD103+ CD8 TRM, detected by i.v. exclusion or two-photon microscopy, underwent apoptosis and subsequent numerical loss following severe sepsis, which was not observed in mice that experienced moderate CLP or sham surgeries. Consequently, severe septic mice showed diminished CD8 T cell-mediated protection to localized skin reinfection. Finally, the relationship between severity of sepsis and demise in circulatory versus tissue-embedded memory CD8 T cell populations was confirmed by examining tumor-infiltrating and nonspecific CD8 T cells in B16 melanoma tumors. Thus, sepsis can differentially affect the presence and function of Ag-specific CD8 T cells that reside inside tissues/tumors depending on the severity of the insult, a notion with direct relevance to sepsis survivors and their ability to mount protective memory CD8 T cell-dependent responses to localized Ag re-encounter.
Collapse
Affiliation(s)
| | - Derek B Danahy
- Department of Pathology, University of Iowa, Iowa City, IA.,Interdisciplinary Program in Immunology, University of Iowa, Iowa City, IA
| | | | - Isaac J Jensen
- Department of Pathology, University of Iowa, Iowa City, IA.,Interdisciplinary Program in Immunology, University of Iowa, Iowa City, IA
| | | | | | - John T Harty
- Department of Pathology, University of Iowa, Iowa City, IA.,Interdisciplinary Program in Immunology, University of Iowa, Iowa City, IA
| | - Thomas S Griffith
- Department of Urology, University of Minnesota, Minneapolis, MN.,Minneapolis Veterans Affairs Health Care System, Minneapolis, MN; and
| | - Vladimir P Badovinac
- Department of Pathology, University of Iowa, Iowa City, IA; .,Interdisciplinary Program in Immunology, University of Iowa, Iowa City, IA.,Department of Microbiology and Immunology, University of Iowa, Iowa City, IA
| |
Collapse
|
23
|
Emmanuel T, Mistegård J, Bregnhøj A, Johansen C, Iversen L. Tissue-Resident Memory T Cells in Skin Diseases: A Systematic Review. Int J Mol Sci 2021; 22:ijms22169004. [PMID: 34445713 PMCID: PMC8396505 DOI: 10.3390/ijms22169004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/09/2021] [Accepted: 08/17/2021] [Indexed: 02/06/2023] Open
Abstract
In health, the non-recirculating nature and long-term persistence of tissue-resident memory T cells (TRMs) in tissues protects against invading pathogens. In disease, pathogenic TRMs contribute to the recurring traits of many skin diseases. We aimed to conduct a systematic literature review on the current understanding of the role of TRMs in skin diseases and identify gaps as well as future research paths. EMBASE, PubMed, SCOPUS, Web of Science, Clinicaltrials.gov and WHO Trials Registry were searched systematically for relevant studies from their inception to October 2020. Included studies were reviewed independently by two authors. This study was conducted in accordance with the PRISMA-S guidelines. This protocol was registered with the PROSPERO database (ref: CRD42020206416). We identified 96 studies meeting the inclusion criteria. TRMs have mostly been investigated in murine skin and in relation to infectious skin diseases. Pathogenic TRMs have been characterized in various skin diseases including psoriasis, vitiligo and cutaneous T-cell lymphoma. Studies are needed to discover biomarkers that may delineate TRMs poised for pathogenic activity in skin diseases and establish to which extent TRMs are contingent on the local skin microenvironment. Additionally, future studies may investigate the effects of current treatments on the persistence of pathogenic TRMs in human skin.
Collapse
|
24
|
Miljković Đ, Stanisavljević S, Jensen IJ, Griffith TS, Badovinac VP. Sepsis and multiple sclerosis: Causative links and outcomes. Immunol Lett 2021; 238:40-46. [PMID: 34320384 DOI: 10.1016/j.imlet.2021.07.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 06/08/2021] [Accepted: 07/21/2021] [Indexed: 10/20/2022]
Abstract
Sepsis is a life-threatening condition characterized by an acute cytokine storm followed by prolonged dysfunction of the immune system in the survivors. Post-septic lymphopenia and functional deficits of the remaining immune cells lead to increased susceptibility to secondary infections and other morbid conditions causing late death in the patients. This state of post-septic immunoparalysis may also influence disorders stemming from inappropriate or overactive immune responses, such as autoimmune and immunoinflammatory diseases, including multiple sclerosis. In addition, ongoing autoimmunity likely influences the susceptibility to and outcome of sepsis. This review article addresses the bidirectional relationship between sepsis and multiple sclerosis, with a focus on the immunologic mechanisms of the interaction and potential directions for future studies.
Collapse
Affiliation(s)
- Đorđe Miljković
- Department of Immunology, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia.
| | - Suzana Stanisavljević
- Department of Immunology, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia
| | - Isaac J Jensen
- Department of Pathology, Department of Microbiology and Immunology, Interdisciplinary Program in Immunology, University of Iowa, Iowa City, IA 52242, USA
| | - Thomas S Griffith
- Microbiology, Immunology, and Cancer Biology PhD Program, Department of Urology, Center for Immunology, Masonic Cancer Center, University of Minnesota, Minneapolis VA Health Care System, Minneapolis, MN 55417, USA
| | - Vladimir P Badovinac
- Department of Pathology, Department of Microbiology and Immunology, Interdisciplinary Program in Immunology, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
25
|
Chen CW, Bennion KB, Swift DA, Morrow KN, Zhang W, Oami T, Coopersmith CM, Ford ML. Tumor-Specific T Cells Exacerbate Mortality and Immune Dysregulation during Sepsis. THE JOURNAL OF IMMUNOLOGY 2021; 206:2412-2419. [PMID: 33911005 DOI: 10.4049/jimmunol.2000865] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 03/08/2021] [Indexed: 11/19/2022]
Abstract
Sepsis induces significant immune dysregulation characterized by lymphocyte apoptosis and alterations in the cytokine milieu. Because cancer patients exhibit a 10-fold greater risk of developing sepsis compared with the general population, we aimed to understand how pre-existing malignancy alters sepsis-induced immune dysregulation. To address this question, we assessed the impact of tumor-specific CD8+ T cells on the immune response in a mouse model of cecal ligation and puncture (CLP)-induced sepsis. Tumor-bearing animals containing Thy1.1+ tumor-specific CD8+ T cells were subjected to CLP, and groups of animals received anti-Thy1.1 mAb to deplete tumor-specific CD8+ T cells or isotype control. Results indicated that depleting tumor-specific T cells significantly improved mortality from sepsis. The presence of tumor-specific CD8+ T cells resulted in increased expression of the 2B4 coinhibitory receptor and increased apoptosis of endogenous CD8+ T cells. Moreover, tumor-specific T cells were not reduced in number in the tumors during sepsis but did exhibit impaired IFN-γ production in the tumor, tumor draining lymph node, and spleen 24 h after CLP. Our research provides novel insight into the mechanisms by which pre-existing malignancy contributes to increased mortality during sepsis.
Collapse
Affiliation(s)
- Ching-Wen Chen
- Immunology and Molecular Pathogenesis Graduate Program, Laney Graduate School, Emory University, Atlanta, GA.,Department of Surgery, Emory University School of Medicine, Atlanta, GA
| | - Kelsey B Bennion
- Department of Surgery, Emory University School of Medicine, Atlanta, GA.,Cancer Biology Graduate Program, Laney Graduate School, Emory University, Atlanta, GA
| | - David A Swift
- Department of Surgery, Emory University School of Medicine, Atlanta, GA
| | - Kristen N Morrow
- Immunology and Molecular Pathogenesis Graduate Program, Laney Graduate School, Emory University, Atlanta, GA.,Department of Surgery, Emory University School of Medicine, Atlanta, GA
| | - Wenxiao Zhang
- Department of Surgery, Emory University School of Medicine, Atlanta, GA.,Department of Critical Care Medicine, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, China
| | - Takehiko Oami
- Department of Surgery, Emory University School of Medicine, Atlanta, GA.,Department of Emergency and Critical Care Medicine, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Craig M Coopersmith
- Department of Surgery, Emory University School of Medicine, Atlanta, GA .,Emory Critical Care Center, Emory University School of Medicine, Atlanta, GA
| | - Mandy L Ford
- Department of Surgery, Emory University School of Medicine, Atlanta, GA .,Emory Transplant Center, Emory University School of Medicine, Atlanta, GA
| |
Collapse
|
26
|
Jensen IJ, McGonagill PW, Butler NS, Harty JT, Griffith TS, Badovinac VP. NK Cell-Derived IL-10 Supports Host Survival during Sepsis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2021; 206:1171-1180. [PMID: 33514512 PMCID: PMC7946778 DOI: 10.4049/jimmunol.2001131] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 12/29/2020] [Indexed: 02/06/2023]
Abstract
The dysregulated sepsis-induced cytokine storm evoked during systemic infection consists of biphasic and interconnected pro- and anti-inflammatory responses. The contrasting inflammatory cytokine responses determine the severity of the septic event, lymphopenia, host survival, and the ensuing long-lasting immunoparalysis state. NK cells, because of their capacity to elaborate pro- (i.e., IFN-γ) and anti-inflammatory (i.e., IL-10) responses, exist at the inflection of sepsis-induced inflammatory responses. Thus, NK cell activity could be beneficial or detrimental during sepsis. In this study, we demonstrate that murine NK cells promote host survival during sepsis by limiting the scope and duration of the cytokine storm. Specifically, NK cell-derived IL-10, produced in response to IL-15, is relevant to clinical manifestations in septic patients and critical for survival during sepsis. This role of NK cells demonstrates that regulatory mechanisms of classical inflammatory cells are beneficial and critical for controlling systemic inflammation, a notion relevant for therapeutic interventions during dysregulated infection-induced inflammatory responses.
Collapse
Affiliation(s)
- Isaac J Jensen
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA 52242
- Department of Pathology, University of Iowa, Iowa City, IA 52242
| | | | - Noah S Butler
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA 52242
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA 52242
| | - John T Harty
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA 52242
- Department of Pathology, University of Iowa, Iowa City, IA 52242
| | - Thomas S Griffith
- Microbiology, Immunology, and Cancer Biology PhD Program, University of Minnesota, Minneapolis, MN 55455
- Department of Urology, University of Minnesota, Minneapolis, MN 55455
- Center for Immunology, University of Minnesota, Minneapolis, MN 55455
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455; and
- Minneapolis Veterans Affairs Health Care System, Minneapolis, MN 55417
| | - Vladimir P Badovinac
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA 52242;
- Department of Pathology, University of Iowa, Iowa City, IA 52242
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA 52242
| |
Collapse
|
27
|
van de Wall S, Badovinac VP, Harty JT. Influenza-Specific Lung-Resident Memory CD8 + T Cells. Cold Spring Harb Perspect Biol 2021; 13:cshperspect.a037978. [PMID: 33288540 PMCID: PMC7849341 DOI: 10.1101/cshperspect.a037978] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Despite the availability of seasonal vaccines, influenza A (IAV) prevails as a leading cause of respiratory infection worldwide. Current vaccination efforts aim at increasing protection against heterologous and potentially pandemic IAV strains. Lung-resident CD8+ T cells (Trm) generated upon IAV infection are vital for heterosubtypic immunity to IAV reexposure and provide quick and robust responses upon reactivation. Yet, protection wanes with time as lung Trm cell numbers decline, a contrasting feature with Trm cells at other mucosal sites such as the skin. In this review, we discuss current data on lung Trm compared to Trm cells in other tissues. Furthermore, major knowledge gaps in the generation and maintenance of IAV-specific lung Trm are addressed and mechanisms that may contribute to their decline are discussed. Further understanding in the mechanisms that govern effector function versus immunopathology is paramount for future IAV vaccine design in enhancing durability of lung Trm cells.
Collapse
Affiliation(s)
- Stephanie van de Wall
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa 52242, USA
| | - Vladimer P. Badovinac
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa 52242, USA;,Department of Pathology,, University of Iowa, Iowa City, Iowa 52242, USA;,Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, Iowa 52242, USA
| | - John T. Harty
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa 52242, USA;,Department of Pathology,, University of Iowa, Iowa City, Iowa 52242, USA;,Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, Iowa 52242, USA
| |
Collapse
|
28
|
Rodrigues PRS, Picco N, Morgan BP, Ghazal P. Sepsis target validation for repurposing and combining complement and immune checkpoint inhibition therapeutics. Expert Opin Drug Discov 2020; 16:537-551. [PMID: 33206027 DOI: 10.1080/17460441.2021.1851186] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Introduction: Sepsis is a disease that occurs due to an adverse immune response to infection by bacteria, viruses and fungi and is the leading pathway to death by infection. The hallmarks for maladapted immune reactions in severe sepsis, which contribute to multiple organ failure and death, are bookended by the exacerbated activation of the complement system to protracted T-cell dysfunction states orchestrated by immune checkpoint control. Despite major advances in our understanding of the condition, there remains to be either a definitive test or an effective therapeutic intervention.Areas covered: The authors consider a combinational drug therapy approach using new biologics, and mathematical modeling for predicting patient responses, in targeting innate and adaptive immune mediators underlying sepsis. Special consideration is given for emerging complement and immune checkpoint inhibitors that may be repurposed for sepsis treatment.Expert opinion: In order to overcome the challenges inherent to finding new therapies for the complex dysregulated host response to infection that drives sepsis, it is necessary to move away from monotherapy and promote precision for personalized combinatory therapies. Notably, combinatory therapy should be guided by predictive systems models of the immune-metabolic characteristics of an individual's disease progression.
Collapse
Affiliation(s)
- Patrícia R S Rodrigues
- School of Medicine, Systems Immunity Research Institute, Cardiff University, Cardiff, UK
| | - Noemi Picco
- Department of Mathematics, Swansea University, Swansea, UK
| | - B Paul Morgan
- School of Medicine, Systems Immunity Research Institute, Cardiff University, Cardiff, UK
| | - Peter Ghazal
- School of Medicine, Systems Immunity Research Institute, Cardiff University, Cardiff, UK
| |
Collapse
|
29
|
Jensen IJ, Jensen SN, Sjaastad FV, Gibson-Corley KN, Dileepan T, Griffith TS, Mangalam AK, Badovinac VP. Sepsis impedes EAE disease development and diminishes autoantigen-specific naive CD4 T cells. eLife 2020; 9:55800. [PMID: 33191915 PMCID: PMC7721438 DOI: 10.7554/elife.55800] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 11/15/2020] [Indexed: 12/14/2022] Open
Abstract
Evaluation of sepsis-induced immunoparalysis has highlighted how decreased lymphocyte number/function contribute to worsened infection/cancer. Yet, an interesting contrast exists with autoimmune disease development, wherein diminishing pathogenic effectors may benefit the post-septic host. Within this framework, the impact of cecal ligation and puncture (CLP)-induced sepsis on the development of experimental autoimmune encephalomyelitis (EAE) was explored. Notably, CLP mice have delayed onset and reduced disease severity, relative to sham mice. Reduction in disease severity was associated with reduced number, but not function, of autoantigen (MOG)-specific pathogenic CD4 T cells in the CNS during disease and draining lymph node during priming. Numerical deficits of CD4 T cell effectors are associated with the loss of MOG-specific naive precursors. Critically, transfer of MOG-TCR transgenic (2D2) CD4 T cells after, but not before, CLP led to EAE disease equivalent to sham mice. Thus, broad impairment of antigenic responses, including autoantigens, is a hallmark of sepsis-induced immunoparalysis. Sepsis is a life-threatening condition that can happen when the immune system overreacts to an infection and begins to damage tissues and organs in the body. It causes an extreme immune reaction called a cytokine storm, where the body releases uncontrolled levels of cytokines, proteins that are involved in coordinating the body’s response to infections. This in turn activates more immune cells, resulting in hyperinflammation. People who survive sepsis may have long-lasing impairments in their immune system that may leave them more vulnerable to infections or cancer. But scientists do not know exactly what causes these lasting immune problems or how to treat them. The fact that people are susceptible to cancer and infection after sepsis may offer a clue. It may suggest that the immune system is not able to attack bacteria or cancer cells. One way to explore this clue would be to test the effects of sepsis on autoimmune diseases, which cause the immune system to attack the body’s own cells. For example, in the autoimmune disease multiple sclerosis, the immune system attacks and destroys cells in the nervous system. If autoimmune disease is reduced after sepsis, it would suggest the cell-destroying abilities of the immune system are lessened. Using this approach, Jensen, Jensen et al. show that sepsis reduces the number of certain immune cells, called CD4 T cells, which are are responsible for an autoimmune attack of the central nervous system. In the experiments, mice that survived sepsis were evaluated for their ability to develop a multiple sclerosis-like disease. Mice that survived sepsis developed less severe or no autoimmune disease. After sepsis, these animals also had fewer CD4 T cells. However, when these immune cells were reinstated, the autoimmune disease emerged. The experiments help explain some of the immune system changes that occur after sepsis. Jensen, Jensen et al. suggest that rather than being completely detrimental, these changes may help to block harmful autoimmune responses. The experiments may also hint at new ways to combat autoimmune diseases by trying to replicate some of the immune-suppressing effects of sepsis. Studying the effect of sepsis on other autoimmune diseases in mice might provide more clues.
Collapse
Affiliation(s)
- Isaac J Jensen
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, United States
| | - Samantha N Jensen
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, United States
| | - Frances V Sjaastad
- Microbiology, Immunology, and Cancer Biology PhD Program, University of Minnesota, Minneapolis, United States
| | - Katherine N Gibson-Corley
- Department of Pathology, University of Iowa, Holden Comprehensive Cancer Center, University of Iowa Hospitals and Clinics, Iowa City, United States
| | - Thamothrampillai Dileepan
- Department of Microbiology and Immunology, University of Minnesota, Center for Immunology, Minneapolis, United States
| | - Thomas S Griffith
- Microbiology, Immunology, and Cancer Biology PhD Program, Department of Urology, Center for Immunology, Minneapolis VA Health Care System, University of Minnesota, Minneapolis, United States
| | - Ashutosh K Mangalam
- Interdisciplinary Graduate Program in Immunology, Department of Pathology, University of Iowa, Iowa City, United States
| | - Vladimir P Badovinac
- Interdisciplinary Graduate Program in Immunology, Department of Pathology, Department of Microbiology and Immunology, University of Iowa, Iowa City, United States
| |
Collapse
|
30
|
Microbial Exposure Enhances Immunity to Pathogens Recognized by TLR2 but Increases Susceptibility to Cytokine Storm through TLR4 Sensitization. Cell Rep 2020; 28:1729-1743.e5. [PMID: 31412243 DOI: 10.1016/j.celrep.2019.07.028] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 05/23/2019] [Accepted: 07/11/2019] [Indexed: 02/08/2023] Open
Abstract
Microbial exposures can define an individual's basal immune state. Cohousing specific pathogen-free (SPF) mice with pet store mice, which harbor numerous infectious microbes, results in global changes to the immune system, including increased circulating phagocytes and elevated inflammatory cytokines. How these differences in the basal immune state influence the acute response to systemic infection is unclear. Cohoused mice exhibit enhanced protection from virulent Listeria monocytogenes (LM) infection, but increased morbidity and mortality to polymicrobial sepsis. Cohoused mice have more TLR2+ and TLR4+ phagocytes, enhancing recognition of microbes through pattern-recognition receptors. However, the response to a TLR2 ligand is muted in cohoused mice, whereas the response to a TLR4 ligand is greatly amplified, suggesting a basis for the distinct response to Listeria monocytogenes and sepsis. Our data illustrate how microbial exposure can enhance the immune response to unrelated challenges but also increase the risk of immunopathology from a severe cytokine storm.
Collapse
|
31
|
Sjaastad FV, Kucaba TA, Dileepan T, Swanson W, Dail C, Cabrera-Perez J, Murphy KA, Badovinac VP, Griffith TS. Polymicrobial Sepsis Impairs Antigen-Specific Memory CD4 T Cell-Mediated Immunity. Front Immunol 2020; 11:1786. [PMID: 32903436 PMCID: PMC7435018 DOI: 10.3389/fimmu.2020.01786] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 07/03/2020] [Indexed: 11/13/2022] Open
Abstract
Patients who survive sepsis display prolonged immune dysfunction and heightened risk of secondary infection. CD4 T cells support a variety of cells required for protective immunity, and perturbations to the CD4 T cell compartment can decrease overall immune system fitness. Using the cecal ligation and puncture (CLP) mouse model of sepsis, we investigated the impact of sepsis on endogenous Ag-specific memory CD4 T cells generated in C57BL/6 (B6) mice infected with attenuated Listeria monocytogenes (Lm) expressing the I-Ab-restricted 2W1S epitope (Lm-2W). The number of 2W1S-specific memory CD4 T cells was significantly reduced on day 2 after sepsis induction, but recovered by day 14. In contrast to the transient numerical change, the 2W1S-specific memory CD4 T cells displayed prolonged functional impairment after sepsis, evidenced by a reduced recall response (proliferation and effector cytokine production) after restimulation with cognate Ag. To define the extent to which the observed functional impairments in the memory CD4 T cells impacts protection to secondary infection, B6 mice were infected with attenuated Salmonella enterica-2W (Se-2W) 30 days before sham or CLP surgery, and then challenged with virulent Se-2W after surgery. Pathogen burden was significantly higher in the CLP-treated mice compared to shams. Similar reductions in functional capacity and protection were noted for the endogenous OVA323-specific memory CD4 T cell population in sepsis survivors upon Lm-OVA challenge. Our data collectively show CLP-induced sepsis alters the number and function of Ag-specific memory CD4 T cells, which contributes (in part) to the characteristic long-lasting immunoparalysis seen after sepsis.
Collapse
Affiliation(s)
- Frances V Sjaastad
- Microbiology, Immunology, and Cancer Biology Ph.D. Program, University of Minnesota, Minneapolis, MN, United States
| | - Tamara A Kucaba
- Department of Urology, University of Minnesota, Minneapolis, MN, United States
| | - Thamotharampillai Dileepan
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN, United States.,Center for Immunology, University of Minnesota, Minneapolis, MN, United States
| | - Whitney Swanson
- Department of Urology, University of Minnesota, Minneapolis, MN, United States
| | - Cody Dail
- Medical Student Summer Research Program in Infection and Immunity, University of Minnesota, Minneapolis, MN, United States
| | - Javier Cabrera-Perez
- Microbiology, Immunology, and Cancer Biology Ph.D. Program, University of Minnesota, Minneapolis, MN, United States.,Medical Scientist Training Program, University of Minnesota, Minneapolis, MN, United States
| | - Katherine A Murphy
- Department of Urology, University of Minnesota, Minneapolis, MN, United States
| | - Vladimir P Badovinac
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA, United States.,Department of Pathology, University of Iowa, Iowa City, IA, United States.,Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, United States
| | - Thomas S Griffith
- Microbiology, Immunology, and Cancer Biology Ph.D. Program, University of Minnesota, Minneapolis, MN, United States.,Department of Urology, University of Minnesota, Minneapolis, MN, United States.,Center for Immunology, University of Minnesota, Minneapolis, MN, United States.,Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States.,Minneapolis VA Health Care System, Minneapolis, MN, United States
| |
Collapse
|
32
|
Martin MD, Badovinac VP, Griffith TS. CD4 T Cell Responses and the Sepsis-Induced Immunoparalysis State. Front Immunol 2020; 11:1364. [PMID: 32733454 PMCID: PMC7358556 DOI: 10.3389/fimmu.2020.01364] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 05/28/2020] [Indexed: 12/20/2022] Open
Abstract
Sepsis remains a major cause of death in the United States and worldwide, and costs associated with treating septic patients place a large burden on the healthcare industry. Patients who survive the acute phase of sepsis display long-term impairments in immune function due to reductions in numbers and function of many immune cell populations. This state of chronic immunoparalysis renders sepsis survivors increasingly susceptible to infection with newly or previously encountered infections. CD4 T cells play important roles in the development of cellular and humoral immune responses following infection. Understanding how sepsis impacts the CD4 T cell compartment is critical for informing efforts to develop treatments intended to restore immune system homeostasis following sepsis. This review will focus on the current understanding of how sepsis impacts the CD4 T cell responses, including numerical representation, repertoire diversity, phenotype and effector functionality, subset representation (e.g., Th1 and Treg frequency), and therapeutic efforts to restore CD4 T cell numbers and function following sepsis. Additionally, we will discuss recent efforts to model the acute sepsis phase and resulting immune dysfunction using mice that have previously encountered infection, which more accurately reflects the immune system of humans with a history of repeated infection throughout life. A thorough understanding of how sepsis impacts CD4 T cells based on previous studies and new models that accurately reflect the human immune system may improve translational value of research aimed at restoring CD4 T cell-mediated immunity, and overall immune fitness following sepsis.
Collapse
Affiliation(s)
- Matthew D. Martin
- Department of Urology, University of Minnesota, Minneapolis, MN, United States
| | - Vladimir P. Badovinac
- Department of Pathology, University of Iowa, Iowa City, IA, United States
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA, United States
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, United States
| | - Thomas S. Griffith
- Department of Urology, University of Minnesota, Minneapolis, MN, United States
- Microbiology, Immunology, and Cancer Biology PhD Program, University of Minnesota, Minneapolis, MN, United States
- Center for Immunology, University of Minnesota, Minneapolis, MN, United States
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States
- Minneapolis VA Healthcare System, Minneapolis, MN, United States
| |
Collapse
|
33
|
Hamilton SE, Badovinac VP, Beura LK, Pierson M, Jameson SC, Masopust D, Griffith TS. New Insights into the Immune System Using Dirty Mice. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2020; 205:3-11. [PMID: 32571979 PMCID: PMC7316151 DOI: 10.4049/jimmunol.2000171] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 05/04/2020] [Indexed: 02/06/2023]
Abstract
The mouse (Mus musculus) is the dominant organism used to investigate the mechanisms behind complex immunological responses because of their genetic similarity to humans and our ability to manipulate those genetics to understand downstream function. Indeed, our knowledge of immune system development, response to infection, and ways to therapeutically manipulate the immune response to combat disease were, in large part, delineated in the mouse. Despite the power of mouse-based immunology research, the translational efficacy of many new therapies from mouse to human is far from ideal. Recent data have highlighted how the naive, neonate-like immune system of specific pathogen-free mice differs dramatically in composition and function to mice living under barrier-free conditions (i.e., "dirty" mice). In this review, we discuss major findings to date and challenges faced when using dirty mice and specific areas of immunology research that may benefit from using animals with robust and varied microbial exposure.
Collapse
Affiliation(s)
- Sara E Hamilton
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455
- Microbiology, Immunology, and Cancer Biology Ph.D. Program, University of Minnesota, Minneapolis, MN 55455
- Center for Immunology, University of Minnesota, Minneapolis, MN 55455
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455
| | - Vladimir P Badovinac
- Department of Pathology, University of Iowa, Iowa City, IA 52242
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA 52242
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA 52242
| | - Lalit K Beura
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02912
| | - Mark Pierson
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455
| | - Stephen C Jameson
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455
- Microbiology, Immunology, and Cancer Biology Ph.D. Program, University of Minnesota, Minneapolis, MN 55455
- Center for Immunology, University of Minnesota, Minneapolis, MN 55455
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455
| | - David Masopust
- Microbiology, Immunology, and Cancer Biology Ph.D. Program, University of Minnesota, Minneapolis, MN 55455
- Center for Immunology, University of Minnesota, Minneapolis, MN 55455
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55455
| | - Thomas S Griffith
- Microbiology, Immunology, and Cancer Biology Ph.D. Program, University of Minnesota, Minneapolis, MN 55455;
- Center for Immunology, University of Minnesota, Minneapolis, MN 55455
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455
- Department of Urology, University of Minnesota, Minneapolis, MN 55455; and
- Minneapolis Veterans Affairs Health Care System, Minneapolis, MN 55417
| |
Collapse
|
34
|
Chronic Alcohol Ingestion Worsens Survival and Alters Gut Epithelial Apoptosis and CD8+ T Cell Function After Pseudomonas Aeruginosa Pneumonia-Induced Sepsis. Shock 2020; 51:453-463. [PMID: 29664837 DOI: 10.1097/shk.0000000000001163] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Mortality is higher in septic patients with a history of alcohol use disorder than in septic patients without a history of chronic alcohol usage. We have previously described a model of chronic alcohol ingestion followed by sepsis from cecal ligation and puncture in which alcohol-fed septic mice have higher mortality than water-fed septic mice, associated with altered gut integrity and increased production of TNF and IFNγ by splenic CD4 T cells without alterations in CD8 T cell function. The purpose of this study was to determine whether this represents a common host response to the combination of alcohol and sepsis by creating a new model in which mice with chronic alcohol ingestion were subjected to a different model of sepsis. C57Bl/6 mice were randomized to receive either alcohol or water for 12 weeks and then subjected to Pseudomonas aeruginosa pneumonia. Mice were sacrificed either 24 hours after the onset of sepsis or followed for survival. Alcohol-fed septic mice had significantly higher 7-day mortality than water-fed septic mice (96% vs 58%). This was associated with a 5-fold increase in intestinal apoptosis in alcohol-fed septic animals, accompanied by an increase in the pro-apoptotic protein Bax. Serum IL-6 levels were higher and IL-2 levels were lower in alcohol-fed septic mice. In contrast, CD8 T cell frequency was lower in alcohol-fed mice than water-fed septic mice, associated with increased production of IFNγ and TNF in stimulated splenocytes. No significant differences were noted in CD4 T cells, lung injury or bacteremia. Mice with chronic alcohol ingestion thus have increased mortality regardless of their septic insult, associated with changes in both the gut and the immune system.
Collapse
|
35
|
Danahy DB, Berton RR, Badovinac VP. Cutting Edge: Antitumor Immunity by Pathogen-Specific CD8 T Cells in the Absence of Cognate Antigen Recognition. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2020; 204:1431-1435. [PMID: 32051220 PMCID: PMC7310247 DOI: 10.4049/jimmunol.1901172] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 01/27/2020] [Indexed: 12/29/2022]
Abstract
Cancer prognosis often correlates with the number of tumor-infiltrating CD8 T cells, but many of these cells recognize pathogens that commonly infect humans. The contribution of pathogen-specific "bystander" CD8 T cells to antitumor immunity remains largely unknown. Inflammatory cytokines are sufficient for memory CD8 T cell activation and gain of effector functions, indicating tumor-derived inflammation could facilitate pathogen-specific CD8 T cells to participate in tumor control. In this study, we show in contrast to tumor-specific CD8 T cells that pathogen-specific primary memory CD8 T cells inside tumor were not able to exert their effector functions and influence tumor progression. However, infection-induced memory CD8 T cells with defined history of repeated Ag encounters (i.e., quaternary memory) showed increased sensitivity to tumor-derived inflammation that resulted in activation, gain of effector functions, and better control of tumor growth. Thus, memory CD8 T cells with heightened ability to recognize environmental inflammatory stimuli can contribute to antitumor immunity in the absence of cognate Ag recognition.
Collapse
MESH Headings
- Animals
- Antigens, Viral/administration & dosage
- Antigens, Viral/genetics
- Antigens, Viral/immunology
- Bacterial Vaccines/administration & dosage
- Bacterial Vaccines/genetics
- Bacterial Vaccines/immunology
- Cell Line, Tumor/transplantation
- Disease Models, Animal
- Disease Progression
- Female
- Glycoproteins/administration & dosage
- Glycoproteins/genetics
- Glycoproteins/immunology
- Humans
- Immunologic Memory
- Listeria monocytogenes/immunology
- Lymphocyte Activation
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytic choriomeningitis virus/immunology
- Male
- Mice
- Mice, Transgenic
- Neoplasms/immunology
- Neoplasms/pathology
- Peptide Fragments/administration & dosage
- Peptide Fragments/genetics
- Peptide Fragments/immunology
- T-Lymphocytes, Cytotoxic/immunology
- Tumor Microenvironment/immunology
- Vaccines, Attenuated/administration & dosage
- Vaccines, Attenuated/genetics
- Vaccines, Attenuated/immunology
- Vaccines, Synthetic/administration & dosage
- Vaccines, Synthetic/genetics
- Vaccines, Synthetic/immunology
- Viral Proteins/administration & dosage
- Viral Proteins/genetics
- Viral Proteins/immunology
Collapse
Affiliation(s)
- Derek B Danahy
- Interdisciplinary Program in Immunology, University of Iowa, Iowa City, IA 52242
- Department of Pathology, University of Iowa, Iowa City, IA 52242; and
| | - Roger R Berton
- Interdisciplinary Program in Immunology, University of Iowa, Iowa City, IA 52242
- Department of Pathology, University of Iowa, Iowa City, IA 52242; and
| | - Vladimir P Badovinac
- Interdisciplinary Program in Immunology, University of Iowa, Iowa City, IA 52242;
- Department of Pathology, University of Iowa, Iowa City, IA 52242; and
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA 52242
| |
Collapse
|
36
|
Monocytes Undergo Functional Reprogramming to Generate Immunosuppression through HIF-1 α Signaling Pathway in the Late Phase of Sepsis. Mediators Inflamm 2020; 2020:4235909. [PMID: 32089644 PMCID: PMC7029303 DOI: 10.1155/2020/4235909] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 10/08/2019] [Accepted: 11/20/2019] [Indexed: 01/05/2023] Open
Abstract
Severe pneumonia with sepsis is characterized by a dysregulated inflammatory response of endotoxin. In our study, we attempted to investigate the roles of the immune guardian cells (monocytes) in the immune-inflammatory response of severe pneumonia-induced sepsis. We performed analysis in the blood samples of human and animals with ELISA, western blot, flow cytometry (FCM) methods, etc. Results showed that the proinflammatory status shifted to hypoinflammatory phases during the sepsis process. In a clinical study, the levels of IL-1β, IL-6, TNF-α, etc., except for IL-10, were inhibited in the late phase of sepsis, while, in an animal study, the immune suppression status was attenuated with administration of the adenovirus Ade-HIF-1α. Conversely, the amount of IL-10 was lower in the adenovirus Ade-HIF-1α group compared with the sepsis model group and the Ade-control group. Moreover, in the clinical study, the programmed cell death-ligand 1 (PD-L1) was overexpressed in monocytes in the late phase of sepsis, while the expression of proteins HIF-1α and STAT3 was decreased in the late phase of sepsis. However, in the animal study, we found that the HIF-1α factor facilitated the inflammatory response. The expression of the proteins HIF-1α and STAT3 was increased, and the PD-L1 protein was decreased with the adenovirus Ade-HIF-1α administration compared with the rats without Ade-HIF-1α injection and with the Ade-control injection. Additionally, the proteins HIF-1α and STAT3 were coregulated at transcriptional levels during the inflammatory responses of sepsis. Taken together, monocytes undergo reprogramming to generate immunosuppression through the HIF-1α signaling pathway in the late phase of sepsis.
Collapse
|
37
|
Rubio I, Osuchowski MF, Shankar-Hari M, Skirecki T, Winkler MS, Lachmann G, La Rosée P, Monneret G, Venet F, Bauer M, Brunkhorst FM, Kox M, Cavaillon JM, Uhle F, Weigand MA, Flohé SB, Wiersinga WJ, Martin-Fernandez M, Almansa R, Martin-Loeches I, Torres A, Giamarellos-Bourboulis EJ, Girardis M, Cossarizza A, Netea MG, van der Poll T, Scherag A, Meisel C, Schefold JC, Bermejo-Martín JF. Current gaps in sepsis immunology: new opportunities for translational research. THE LANCET. INFECTIOUS DISEASES 2019; 19:e422-e436. [DOI: 10.1016/s1473-3099(19)30567-5] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 07/30/2019] [Accepted: 08/06/2019] [Indexed: 12/18/2022]
|
38
|
Ge C, Monk IR, Pizzolla A, Wang N, Bedford JG, Stinear TP, Westall GP, Wakim LM. Bystander Activation of Pulmonary Trm Cells Attenuates the Severity of Bacterial Pneumonia by Enhancing Neutrophil Recruitment. Cell Rep 2019; 29:4236-4244.e3. [DOI: 10.1016/j.celrep.2019.11.103] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 10/22/2019] [Accepted: 11/25/2019] [Indexed: 02/06/2023] Open
|
39
|
Cavaillon JM, Giamarellos-Bourboulis EJ. Immunosuppression is Inappropriately Qualifying the Immune Status of Septic and SIRS Patients. Shock 2019; 52:307-317. [PMID: 30239420 DOI: 10.1097/shk.0000000000001266] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Immunosuppression is the most commonly used concept to qualify the immune status of patients with either sterile systemic inflammatory response syndrome (SIRS) or sepsis. In this review we attempt to demonstrate that the concept of immunosuppression is an oversimplification of the complex anti-inflammatory response that occurs in patients dealing with a severe sterile or infectious insult. Particularly, the immune status of leukocytes varies greatly depending on the compartment from where they are derived from. Furthermore, although certain functions of immune cells present in the blood stream or in the hematopoietic organs can be significantly diminished, other functions are either unchanged or even enhanced. This juxtaposition illustrates that there is no global defect. The mechanisms called reprogramming or trained innate immunity are probably aimed at preventing a generalized deleterious inflammatory reaction, and work to maintain the defense mechanisms at their due levels.
Collapse
|
40
|
Danahy DB, Kurup SP, Winborn CS, Jensen IJ, Harty JT, Griffith TS, Badovinac VP. Sepsis-Induced State of Immunoparalysis Is Defined by Diminished CD8 T Cell-Mediated Antitumor Immunity. THE JOURNAL OF IMMUNOLOGY 2019; 203:725-735. [PMID: 31189573 DOI: 10.4049/jimmunol.1900435] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 05/27/2019] [Indexed: 01/15/2023]
Abstract
Patients who survive sepsis experience long-term immunoparalysis characterized by numerical and/or functional lesions in innate and adaptive immunity that increase the host's susceptibility to secondary complications. The extent to which tumor development/growth is affected in sepsis survivors remains unknown. In this study, we show cecal ligation and puncture (CLP) surgery renders mice permissive to increased B16 melanoma growth weeks/months after sepsis induction. CD8 T cells provide partial protection in this model, and tumors from sepsis survivors had a reduced frequency of CD8 tumor-infiltrating lymphocytes (TILs) concomitant with an increased tumor burden. Interestingly, the postseptic environment reduced the number of CD8 TILs with high expression of activating/inhibitory receptors PD-1 and LAG-3 (denoted PD-1hi) that define a tumor-specific CD8 T cell subset that retain some functional capacity. Direct ex vivo analysis of CD8 TILs from CLP hosts showed decreased proliferation, IFN-γ production, and survival compared with sham counterparts. To increase the frequency and/or functional capacity of PD-1hi CD8 TILs in tumor-bearing sepsis survivors, checkpoint blockade therapy using anti-PD-L1/anti-LAG-3 mAb was administered before or after the development of sepsis-induced lesions in CD8 TILs. Checkpoint blockade did not reduce tumor growth in CLP hosts when therapy was administered after PD-1hi CD8 TILs had become reduced in frequency and/or function. However, early therapeutic intervention before lesions were observed significantly reduced tumor growth to levels seen in nonseptic hosts receiving therapy. Thus, sepsis-induced immunoparalysis is defined by diminished CD8 T cell-mediated antitumor immunity that can respond to timely checkpoint blockade, further emphasizing the importance of early cancer detection in hosts that survive sepsis.
Collapse
Affiliation(s)
- Derek B Danahy
- Department of Pathology, University of Iowa, Iowa City, IA 52242.,Interdisciplinary Program in Immunology, University of Iowa, Iowa City, IA 52242
| | - Samarchith P Kurup
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA 52242; and
| | | | - Isaac J Jensen
- Department of Pathology, University of Iowa, Iowa City, IA 52242.,Interdisciplinary Program in Immunology, University of Iowa, Iowa City, IA 52242
| | - John T Harty
- Department of Pathology, University of Iowa, Iowa City, IA 52242.,Interdisciplinary Program in Immunology, University of Iowa, Iowa City, IA 52242.,Department of Microbiology and Immunology, University of Iowa, Iowa City, IA 52242; and
| | - Thomas S Griffith
- Department of Urology, University of Minnesota, Minneapolis, MN 55414
| | - Vladimir P Badovinac
- Department of Pathology, University of Iowa, Iowa City, IA 52242; .,Interdisciplinary Program in Immunology, University of Iowa, Iowa City, IA 52242.,Department of Microbiology and Immunology, University of Iowa, Iowa City, IA 52242; and
| |
Collapse
|
41
|
Danahy DB, Jensen IJ, Griffith TS, Badovinac VP. Cutting Edge: Polymicrobial Sepsis Has the Capacity to Reinvigorate Tumor-Infiltrating CD8 T Cells and Prolong Host Survival. THE JOURNAL OF IMMUNOLOGY 2019; 202:2843-2848. [PMID: 30971442 DOI: 10.4049/jimmunol.1900076] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 03/18/2019] [Indexed: 12/19/2022]
Abstract
Malignancy increases sepsis incidence 10-fold and elevates sepsis-associated mortality. Advances in treatment have improved survival of cancer patients shortly after sepsis, but there is a paucity of information on how sepsis impacts cancer growth, development, and prognosis. To test this, cecal ligation and puncture surgery was performed on B16 melanoma-bearing mice to show that sepsis has detrimental effects in hosts with advanced tumors, leading to increased mortality. Surprisingly, mice experiencing cecal ligation and puncture-induced sepsis earlier during tumor development exhibited CD8 T cell-dependent attenuation of tumor growth. Sepsis-resistant CD8 tumor-infiltrating T cells showed increased in vivo activation, effector IFN-γ cytokine production, proliferation, and expression of activation/inhibitory PD-1/LAG-3 receptors because of a sepsis-induced liberation of tumor Ags. Sepsis-reinvigorated CD8 tumor-infiltrating T cells were also amenable to (anti-PD-L1/LAG-3) checkpoint blockade therapy, further prolonging cancer-associated survival in sepsis survivors. Thus, sepsis has the capacity to improve tumor-specific CD8 T cell responses, leading to better cancer prognosis and increased survival.
Collapse
Affiliation(s)
- Derek B Danahy
- Interdisciplinary Program in Immunology, University of Iowa, Iowa City, IA 52242.,Department of Pathology, University of Iowa, Iowa City, IA 52242
| | - Isaac J Jensen
- Interdisciplinary Program in Immunology, University of Iowa, Iowa City, IA 52242.,Department of Pathology, University of Iowa, Iowa City, IA 52242
| | - Thomas S Griffith
- Department of Urology, University of Minnesota, Minneapolis, MN 55455; and
| | - Vladimir P Badovinac
- Interdisciplinary Program in Immunology, University of Iowa, Iowa City, IA 52242; .,Department of Pathology, University of Iowa, Iowa City, IA 52242.,Department of Microbiology and Immunology, University of Iowa, Iowa City, IA 52242
| |
Collapse
|
42
|
von Knethen A, Schäfer A, Kuchler L, Knape T, Christen U, Hintermann E, Fißlthaler B, Schröder K, Brandes RP, Genz B, Abshagen K, Pützer BM, Sha LK, Weigert A, Syed SN, Schulz M, Shah AM, Ernst A, Putyrski M, Finkelmeier F, Pesic M, Greten F, Hogardt M, Kempf VAJ, Gunne S, Parnham MJ, Brüne B. Tolerizing CTL by Sustained Hepatic PD-L1 Expression Provides a New Therapy Approach in Mouse Sepsis. Am J Cancer Res 2019; 9:2003-2016. [PMID: 31037153 PMCID: PMC6485280 DOI: 10.7150/thno.28057] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 01/16/2019] [Indexed: 02/06/2023] Open
Abstract
Cytotoxic T lymphocyte (CTL) activation contributes to liver damage during sepsis, but the mechanisms involved are largely unknown. Understanding the underlying principle will permit interference with CTL activation and thus, provide a new therapeutic option. Methods: To elucidate the mechanism leading to CTL activation we used the Hepa1-6 cell line in vitro and the mouse model of in vivo polymicrobial sepsis, following cecal-ligation and -puncture (CLP) in wildtype, myeloid specific NOX-2, global NOX2 and NOX4 knockout mice, and their survival as a final readout. In this in vivo setting, we also determined hepatic mRNA and protein expression as well as clinical parameters of liver damage - aspartate- and alanine amino-transaminases. Hepatocyte specific overexpression of PD-L1 was achieved in vivo by adenoviral infection and transposon-based gene transfer using hydrodynamic injection. Results: We observed downregulation of PD-L1 on hepatocytes in the murine sepsis model. Adenoviral and transposon-based gene transfer to restore PD-L1 expression, significantly improved survival and reduced the release of liver damage, as PD-L1 is a co-receptor that negatively regulates T cell function. Similar protection was observed during pharmacological intervention using recombinant PD-L1-Fc. N-acetylcysteine blocked the downregulation of PD-L1 suggesting the involvement of reactive oxygen species. This was confirmed in vivo, as we observed significant upregulation of PD-L1 expression in NOX4 knockout mice, following sham operation, whereas its expression in global as well as myeloid lineage NOX2 knockout mice was comparable to that in the wild type animals. PD-L1 expression remained high following CLP only in total NOX2 knockouts, resulting in significantly reduced release of liver damage markers. Conclusion: These results suggest that, contrary to common assumption, maintaining PD-L1 expression on hepatocytes improves liver damage and survival of mice during sepsis. We conclude that administering recombinant PD-L1 or inhibiting NOX2 activity might offer a new therapeutic option in sepsis.
Collapse
|
43
|
Jensen IJ, Sjaastad FV, Griffith TS, Badovinac VP. Sepsis-Induced T Cell Immunoparalysis: The Ins and Outs of Impaired T Cell Immunity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2019; 200:1543-1553. [PMID: 29463691 DOI: 10.4049/jimmunol.1701618] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 12/20/2017] [Indexed: 12/13/2022]
Abstract
Sepsis results in a deluge of pro- and anti-inflammatory cytokines, leading to lymphopenia and chronic immunoparalysis. Sepsis-induced long-lasting immunoparalysis is defined, in part, by impaired CD4 and CD8 αβ T cell responses in the postseptic environment. The dysfunction in T cell immunity affects naive, effector, and memory T cells and is not restricted to classical αβ T cells. Although sepsis-induced severe and transient lymphopenia is a contributory factor to diminished T cell immunity, T cell-intrinsic and -extrinsic factors/mechanisms also contribute to impaired T cell function. In this review, we summarize the current knowledge of how sepsis quantitatively and qualitatively impairs CD4 and CD8 T cell immunity of classical and nonclassical T cell subsets and discuss current therapeutic approaches being developed to boost the recovery of T cell immunity postsepsis induction.
Collapse
Affiliation(s)
- Isaac J Jensen
- Interdisciplinary Program in Immunology, University of Iowa, Iowa City, IA 52242
| | - Frances V Sjaastad
- Microbiology, Immunology, and Cancer Biology Ph.D. Program, University of Minnesota, Minneapolis, MN 55455
| | - Thomas S Griffith
- Microbiology, Immunology, and Cancer Biology Ph.D. Program, University of Minnesota, Minneapolis, MN 55455.,Center for Immunology, University of Minnesota, Minneapolis, MN 55455.,Department of Urology, University of Minnesota, Minneapolis, MN 55455.,Minneapolis VA Health Care System, Minneapolis, MN 55455
| | - Vladimir P Badovinac
- Interdisciplinary Program in Immunology, University of Iowa, Iowa City, IA 52242; .,Department of Pathology, University of Iowa, Iowa City, IA 52242; and.,Department of Microbiology and Immunology, University of Iowa, Iowa City, IA 52242
| |
Collapse
|
44
|
Abstract
CD8 T cells comprising the memory pool display considerable heterogeneity, with individual cells differing in phenotype and function. This review will focus on our current understanding of heterogeneity within the antigen-specific memory CD8 T cell compartment and classifications of memory CD8 T cell subsets with defined and discrete functionalities. Recent data suggest that phenotype and/or function of numerically stable circulatory memory CD8 T cells are defined by the age of memory CD8 T cell (or time after initial antigen-encounter). In addition, history of antigen stimulations has a profound effect on memory CD8 T cell populations, suggesting that repeated infections (or vaccination) have the capacity to further shape the memory CD8 T cell pool. Finally, genetic background of hosts and history of exposure to diverse microorganisms likely contribute to the observed heterogeneity in the memory CD8 T cell compartment. Extending our tool box and exploring alternative mouse models (i.e., "dirty" and/or outbred mice) to encompass and better model diversity observed in humans will remain an important goal for the near future that will likely shed new light into the mechanisms that govern biology of memory CD8 T cells.
Collapse
Affiliation(s)
- Matthew D Martin
- Department of Pathology, University of Iowa, Iowa City, IA, United States
| | - Vladimir P Badovinac
- Department of Pathology, University of Iowa, Iowa City, IA, United States.,Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, United States.,Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA, United States
| |
Collapse
|
45
|
Sjaastad FV, Condotta SA, Kotov JA, Pape KA, Dail C, Danahy DB, Kucaba TA, Tygrett LT, Murphy KA, Cabrera-Perez J, Waldschmidt TJ, Badovinac VP, Griffith TS. Polymicrobial Sepsis Chronic Immunoparalysis Is Defined by Diminished Ag-Specific T Cell-Dependent B Cell Responses. Front Immunol 2018; 9:2532. [PMID: 30429857 PMCID: PMC6220049 DOI: 10.3389/fimmu.2018.02532] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 10/15/2018] [Indexed: 12/30/2022] Open
Abstract
Immunosuppression is one hallmark of sepsis, decreasing the host response to the primary septic pathogens and/or secondary nosocomial infections. CD4 T cells and B cells are among the array of immune cells that experience reductions in number and function during sepsis. “Help” from follicular helper (Tfh) CD4 T cells to B cells is needed for productive and protective humoral immunity, but there is a paucity of data defining the effect of sepsis on a primary CD4 T cell-dependent B cell response. Using the cecal ligation and puncture (CLP) mouse model of sepsis induction, we observed reduced antibody production in mice challenged with influenza A virus or TNP-KLH in alum early (2 days) and late (30 days) after CLP surgery compared to mice subjected to sham surgery. To better understand how these CD4 T cell-dependent B cell responses were altered by a septic event, we immunized mice with a Complete Freund's Adjuvant emulsion containing the MHC II-restricted peptide 2W1S56−68 coupled to the fluorochrome phycoerythrin (PE). Immunization with 2W1S-PE/CFA results in T cell-dependent B cell activation, giving us the ability to track defined populations of antigen-specific CD4 T cells and B cells responding to the same immunogen in the same mouse. Compared to sham mice, differentiation and class switching in PE-specific B cells were blunted in mice subjected to CLP surgery. Similarly, mice subjected to CLP had reduced expansion of 2W1S-specific T cells and Tfh differentiation after immunization. Our data suggest CLP-induced sepsis impacts humoral immunity by affecting the number and function of both antigen-specific B cells and CD4 Tfh cells, further defining the period of chronic immunoparalysis after sepsis induction.
Collapse
Affiliation(s)
- Frances V Sjaastad
- Microbiology, Immunology, and Cancer Biology Ph.D. Program, University of Minnesota, Minneapolis, MN, United States
| | | | - Jessica A Kotov
- Microbiology, Immunology, and Cancer Biology Ph.D. Program, University of Minnesota, Minneapolis, MN, United States
| | - Kathryn A Pape
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN, United States
| | - Cody Dail
- Medical Student Summer Research Program in Infection and Immunity, University of Minnesota, Minneapolis, MN, United States
| | - Derek B Danahy
- Department of Pathology, University of Iowa, Iowa City, IA, United States.,Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA, United States
| | - Tamara A Kucaba
- Department of Urology, University of Minnesota, Minneapolis, MN, United States
| | - Lorraine T Tygrett
- Department of Pathology, University of Iowa, Iowa City, IA, United States
| | - Katherine A Murphy
- Department of Urology, University of Minnesota, Minneapolis, MN, United States
| | - Javier Cabrera-Perez
- Microbiology, Immunology, and Cancer Biology Ph.D. Program, University of Minnesota, Minneapolis, MN, United States.,Medical Scientist Training Program, University of Minnesota, Minneapolis, MN, United States
| | | | - Vladimir P Badovinac
- Department of Pathology, University of Iowa, Iowa City, IA, United States.,Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA, United States.,Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, United States
| | - Thomas S Griffith
- Microbiology, Immunology, and Cancer Biology Ph.D. Program, University of Minnesota, Minneapolis, MN, United States.,Department of Urology, University of Minnesota, Minneapolis, MN, United States.,Center for Immunology, University of Minnesota, Minneapolis, MN, United States.,Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States.,Minneapolis VA Health Care System, Minneapolis, MN, United States
| |
Collapse
|
46
|
Jensen IJ, Winborn CS, Fosdick MG, Shao P, Tremblay MM, Shan Q, Tripathy SK, Snyder CM, Xue HH, Griffith TS, Houtman JC, Badovinac VP. Polymicrobial sepsis influences NK-cell-mediated immunity by diminishing NK-cell-intrinsic receptor-mediated effector responses to viral ligands or infections. PLoS Pathog 2018; 14:e1007405. [PMID: 30379932 PMCID: PMC6231673 DOI: 10.1371/journal.ppat.1007405] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 11/12/2018] [Accepted: 10/13/2018] [Indexed: 12/14/2022] Open
Abstract
The sepsis-induced cytokine storm leads to severe lymphopenia and reduced effector capacity of remaining/surviving cells. This results in a prolonged state of immunoparalysis, that contributes to enhanced morbidity/mortality of sepsis survivors upon secondary infection. The impact of sepsis on several lymphoid subsets has been characterized, yet its impact on NK-cells remains underappreciated-despite their critical role in controlling infection(s). Here, we observed numerical loss of NK-cells in multiple tissues after cecal-ligation-and-puncture (CLP)-induced sepsis. To elucidate the sepsis-induced lesions in surviving NK-cells, transcriptional profiles were evaluated and indicated changes consistent with impaired effector functionality. A corresponding deficit in NK-cell capacity to produce effector molecules following secondary infection and/or cytokine stimulation (IL-12,IL-18) further suggested a sepsis-induced NK-cell intrinsic impairment. To specifically probe NK-cell receptor-mediated function, the activating Ly49H receptor, that recognizes the murine cytomegalovirus (MCMV) m157 protein, served as a model receptor. Although relative expression of Ly49H receptor did not change, the number of Ly49H+ NK-cells in CLP hosts was reduced leading to impaired in vivo cytotoxicity and the capacity of NK-cells (on per-cell basis) to perform Ly49H-mediated degranulation, killing, and effector molecule production in vitro was also severely reduced. Mechanistically, Ly49H adaptor protein (DAP12) activation and clustering, assessed by TIRF microscopy, was compromised. This was further associated with diminished AKT phosphorylation and capacity to flux calcium following receptor stimulation. Importantly, DAP12 overexpression in NK-cells restored Ly49H/D receptors-mediated effector functions in CLP hosts. Finally, as a consequence of sepsis-dependent numerical and functional lesions in Ly49H+ NK-cells, host capacity to control MCMV infection was significantly impaired. Importantly, IL-2 complex (IL-2c) therapy after CLP improved numbers but not a function of NK-cells leading to enhanced immunity to MCMV challenge. Thus, the sepsis-induced immunoparalysis state includes numerical and NK-cell-intrinsic functional impairments, an instructive notion for future studies aimed in restoring NK-cell immunity in sepsis survivors.
Collapse
Affiliation(s)
- Isaac J. Jensen
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, Iowa, United States of America
- Department of Pathology, University of Iowa, Iowa City, Iowa, United States of America
| | - Christina S. Winborn
- Department of Pathology, University of Iowa, Iowa City, Iowa, United States of America
| | - Micaela G. Fosdick
- Interdisciplinary Graduate Program in Molecular Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Peng Shao
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, United States of America
| | - Mikaela M. Tremblay
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, United States of America
| | - Qiang Shan
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, United States of America
| | - Sandeep Kumar Tripathy
- Gastroenterology Division, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Christopher M. Snyder
- Department of Immunology and Microbiology, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Hai-Hui Xue
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, Iowa, United States of America
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, United States of America
| | - Thomas S. Griffith
- Microbiology, Immunology, and Cancer Biology Ph.D. Program, University of Minnesota, Minneapolis, Minnesota, United States of America
- Center for Immunology, University of Minnesota, Minneapolis, Minnesota, United States of America
- Department of Urology, University of Minnesota, Minneapolis, Minnesota, United States of America
- Minneapolis VA Health Care, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Jon C. Houtman
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, Iowa, United States of America
- Interdisciplinary Graduate Program in Molecular Medicine, University of Iowa, Iowa City, Iowa, United States of America
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, United States of America
| | - Vladimir P. Badovinac
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, Iowa, United States of America
- Department of Pathology, University of Iowa, Iowa City, Iowa, United States of America
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, United States of America
| |
Collapse
|
47
|
Muruganandah V, Sathkumara HD, Navarro S, Kupz A. A Systematic Review: The Role of Resident Memory T Cells in Infectious Diseases and Their Relevance for Vaccine Development. Front Immunol 2018; 9:1574. [PMID: 30038624 PMCID: PMC6046459 DOI: 10.3389/fimmu.2018.01574] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 06/25/2018] [Indexed: 12/12/2022] Open
Abstract
Background Resident memory T cells have emerged as key players in the immune response generated against a number of pathogens. Their ability to take residence in non-lymphoid peripheral tissues allows for the rapid deployment of secondary effector responses at the site of pathogen entry. This ability to provide enhanced regional immunity has gathered much attention, with the generation of resident memory T cells being the goal of many novel vaccines. Objectives This review aimed to systematically analyze published literature investigating the role of resident memory T cells in human infectious diseases. Known effector responses mounted by these cells are summarized and key strategies that are potentially influential in the rational design of resident memory T cell inducing vaccines have also been highlighted. Methods A Boolean search was applied to Medline, SCOPUS, and Web of Science. Studies that investigated the effector response generated by resident memory T cells and/or evaluated strategies for inducing these cells were included irrespective of published date. Studies must have utilized an established technique for identifying resident memory T cells such as T cell phenotyping. Results While over 600 publications were revealed by the search, 147 articles were eligible for inclusion. The reference lists of included articles were also screened for other eligible publications. This resulted in the inclusion of publications that studied resident memory T cells in the context of over 25 human pathogens. The vast majority of studies were conducted in mouse models and demonstrated that resident memory T cells mount protective immune responses. Conclusion Although the role resident memory T cells play in providing immunity varies depending on the pathogen and anatomical location they resided in, the evidence overall suggests that these cells are vital for the timely and optimal protection against a number of infectious diseases. The induction of resident memory T cells should be further investigated and seriously considered when designing new vaccines.
Collapse
Affiliation(s)
- Visai Muruganandah
- Centre for Biosecurity and Tropical Infectious Diseases, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| | - Harindra D Sathkumara
- Centre for Biosecurity and Tropical Infectious Diseases, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| | - Severine Navarro
- Centre for Biosecurity and Tropical Infectious Diseases, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia.,QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Andreas Kupz
- Centre for Biosecurity and Tropical Infectious Diseases, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| |
Collapse
|
48
|
Souquette A, Thomas PG. Past Life and Future Effects-How Heterologous Infections Alter Immunity to Influenza Viruses. Front Immunol 2018; 9:1071. [PMID: 29872429 PMCID: PMC5972221 DOI: 10.3389/fimmu.2018.01071] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Accepted: 04/30/2018] [Indexed: 12/21/2022] Open
Abstract
Influenza virus frequently mutates due to its error-prone polymerase. This feature contributes to influenza virus’s ability to evade pre-existing immunity, leading to annual epidemics and periodic pandemics. T cell memory plays a key protective role in the face of an antigenically distinct influenza virus strain because T cell targets are often derived from conserved internal proteins, whereas humoral immunity targets are often sites of increased mutation rates that are tolerated by the virus. Most studies of influenza T cell memory are conducted in naive, specific pathogen free mice and do not account for repetitive influenza infection throughout a lifetime, sequential acute heterologous infections between influenza infections, or heterologous chronic co-infections. By contrast to these mouse models, humans often experience numerous influenza infections, encounter heterologous acute infections between influenza infections, and are infected with at least one chronic virus. In this review, we discuss recent advances in understanding the effects of heterologous infections on the establishment and maintenance of CD8+ T cell immunological memory. Understanding the various factors that affect immune memory can provide insights into the development of more effective vaccines and increase reproducibility of translational studies between animal models and clinical results.
Collapse
Affiliation(s)
- Aisha Souquette
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Paul G Thomas
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, United States
| |
Collapse
|