1
|
Kämper L, Kuhl I, Vallbracht M, Hoenen T, Linne U, Weber A, Chlanda P, Kracht M, Biedenkopf N. To be or not to be phosphorylated: understanding the role of Ebola virus nucleoprotein in the dynamic interplay with the transcriptional activator VP30 and the host phosphatase PP2A-B56. Emerg Microbes Infect 2025; 14:2447612. [PMID: 39726359 PMCID: PMC11727051 DOI: 10.1080/22221751.2024.2447612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/22/2024] [Accepted: 12/22/2024] [Indexed: 12/28/2024]
Abstract
Ebola virus (EBOV) transcription is essentially regulated via dynamic dephosphorylation of its viral transcription activator VP30 by the host phosphatase PP2A. The nucleoprotein NP has emerged as a third key player in the regulation of this process by recruiting both the regulatory subunit B56 of PP2A and its substrate VP30 to initiate VP30 dephosphorylation and hence viral transcription. Both binding sites are located in close proximity to each other in NP's C-terminal-disordered region. This study investigates NP's role in VP30 dephosphorylation and transcription activation, focussing on the spatial requirements of NP's binding sites. Increasing the distance between PP2A-B56 and VP30 at the NP interface revealed that close spatial and orientational contact is necessary for efficient VP30 dephosphorylation and viral transcription. Longer distances were lethal for recombinant EBOV except when a compensatory mutation, NP-T603I, occurred. This mutation, located between the NP binding sites for PP2A-B56 and VP30, fully restored functionality. Mass spectrometry showed that T603 is phosphorylated in recEBOV-NPwt virions. Mutational analysis indicated that T603I facilitates VP30 dephosphorylation in otherwise lethal recEBOV and that dynamic phosphorylation of NP-T603 is important for efficient primary viral transcription in the WT context. These findings emphasize the critical and evolutionarily pressured interplay between VP30 and PP2A-B56 within the NP C-terminal-disordered region and highlight the important role of NP on the regulation of viral transcription during the EBOV life cycle.
Collapse
Affiliation(s)
- Lennart Kämper
- Institute of Virology, Philipps-Universität Marburg, Marburg, Germany
| | - Ida Kuhl
- Institute of Virology, Philipps-Universität Marburg, Marburg, Germany
| | - Melina Vallbracht
- Department of Infectious Diseases, Virology, Heidelberg University, Heidelberg, Germany
- Research Center for Quantitative Analysis of Molecular and Cellular Systems – BioQuant, Heidelberg University, Heidelberg, Germany
| | - Thomas Hoenen
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald, Germany
| | - Uwe Linne
- Mass Spectrometry Facility, Department of Chemistry, Philipps-Universität Marburg, Marburg, Germany
| | - Axel Weber
- Rudolf Buchheim Institute of Pharmacology, Justus-Liebig University Gießen, Gießen, Germany
| | - Petr Chlanda
- Department of Infectious Diseases, Virology, Heidelberg University, Heidelberg, Germany
- Research Center for Quantitative Analysis of Molecular and Cellular Systems – BioQuant, Heidelberg University, Heidelberg, Germany
| | - Michael Kracht
- Rudolf Buchheim Institute of Pharmacology, Justus-Liebig University Gießen, Gießen, Germany
| | - Nadine Biedenkopf
- Institute of Virology, Philipps-Universität Marburg, Marburg, Germany
| |
Collapse
|
2
|
Basse V, Wang Y, Rodrigues-Machado C, Henry C, Richard CA, Leyrat C, Galloux M. Regulation of respiratory syncytial virus nucleoprotein oligomerization by phosphorylation. J Biol Chem 2025; 301:108256. [PMID: 39909382 PMCID: PMC11910103 DOI: 10.1016/j.jbc.2025.108256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 01/08/2025] [Accepted: 01/27/2025] [Indexed: 02/07/2025] Open
Abstract
The negative-sense RNA genome of respiratory syncytial virus (RSV) is encapsidated by the viral nucleoprotein N, forming a left-handed helical nucleocapsid which serves as template for the viral polymerase. Specific oligomerization of N along the viral genome necessitates a switch of conformation of N, from the neosynthesized monomeric and RNA-free N protein, named N0, to N-RNA oligomers. Although the binding of the N-terminal part of RSV phosphoprotein P plays the role of chaperone to impair RNA binding to N, N0-P interaction alone is not sufficient to prevent N oligomerization. Here, we explored the potential role of post translational modifications that could participate in the stability of N0. Among the post translational modifications specifically identified on recombinant monomeric N, we validated the presence of a phosphorylation site on residue Y88 of N which modulates N oligomerization. Our results suggest that RSV N oligomerization depends on the regulation by post translational modifications.
Collapse
Affiliation(s)
- Vincent Basse
- Unité de Virologie et Immunologie Moléculaires (VIM), Université Paris-Saclay, INRAE, Jouy-en-Josas, France
| | - Yao Wang
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | | | - Céline Henry
- Institut Micalis, Université Paris-Saclay, INRAE, AgroParisTech, Jouy-en-Josas, France
| | - Charles-Adrien Richard
- Unité de Virologie et Immunologie Moléculaires (VIM), Université Paris-Saclay, INRAE, Jouy-en-Josas, France
| | - Cédric Leyrat
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France.
| | - Marie Galloux
- Unité de Virologie et Immunologie Moléculaires (VIM), Université Paris-Saclay, INRAE, Jouy-en-Josas, France.
| |
Collapse
|
3
|
Zeng Y, Wang G, Yang H, Li H, Guo Y, Liu H, Xu X, Zhang C. Estimating the prevalence of six common respiratory viral infections in Zhangzhou, China using nasopharyngeal swabs in adults and throat swabs in Children. Sci Rep 2025; 15:487. [PMID: 39747673 PMCID: PMC11696165 DOI: 10.1038/s41598-024-84822-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 12/27/2024] [Indexed: 01/04/2025] Open
Abstract
Acute respiratory viral infections are a major public health concern worldwide, causing significant morbidity and economic burden. Understanding the epidemiological characteristics of these infections is crucial for effective control and prevention measures. The study aimed to investigate the epidemiology of six common respiratory viral infections in Zhangzhou, Fujian Province, China. Clinical and demographic information, along with throat swabs from children and nasopharyngeal swabs from adults, were collected from 19,523 patients from Jan 2023 to Aug 2024 in Zhangzhou, Fujian Province, China. Multiplex RT-PCR was performed to detected six respiratory viral pathogens. At least one virus was detected in 6911 cases, the positivity rate was 35.40%. A total of 440 cases of mixed infection with two or more viruses were detected, and the positivity rate of co-infection was 2.25%. Age-specific analysis revealed that RSV predominantly affected children aged 0-3 years, while FluA had a broader age distribution, with significant incidences in elderly (≥ 60 years old). Seasonal peaks in viral detection were observed in Mar and Jul 2023, as well as Apr 2024. Overall, there was no statistically significant difference in viral detection rates between sexes, with the exception of the 6-14 years age group, where males exhibited a higher rate. Co-infections were more prevalent during the summer months and were particularly common among children aged 1-3 years. The study highlights the distinct age, sex, and seasonal patterns of six common respiratory viral infections in Zhangzhou, China. These findings emphasize the need for targeted age-specific and seasonal public health interventions to effectively prevent and control these infections.
Collapse
Affiliation(s)
- Yuanjun Zeng
- Collaborative Innovation Center for Translation Medical Testing and Application Technology, Department of Medical Technology, Zhangzhou Health Vocational College, Zhangzhou, 363000, Fujian Province, People's Republic of China
| | - Guowei Wang
- Department of Laboratory Medicine, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, Fujian Province, People's Republic of China
| | - Huicong Yang
- Department of Laboratory Medicine, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, Fujian Province, People's Republic of China
| | - Hongmei Li
- Collaborative Innovation Center for Translation Medical Testing and Application Technology, Department of Medical Technology, Zhangzhou Health Vocational College, Zhangzhou, 363000, Fujian Province, People's Republic of China
| | - Yueli Guo
- Collaborative Innovation Center for Translation Medical Testing and Application Technology, Department of Medical Technology, Zhangzhou Health Vocational College, Zhangzhou, 363000, Fujian Province, People's Republic of China
| | - Huili Liu
- Collaborative Innovation Center for Translation Medical Testing and Application Technology, Department of Medical Technology, Zhangzhou Health Vocational College, Zhangzhou, 363000, Fujian Province, People's Republic of China
| | - Xiaojun Xu
- Nankeng Street Community Healthcare Center of Xiangcheng District, Zhangzhou, 363000, Fujian Province, People's Republic of China.
| | - Chunbin Zhang
- Collaborative Innovation Center for Translation Medical Testing and Application Technology, Department of Medical Technology, Zhangzhou Health Vocational College, Zhangzhou, 363000, Fujian Province, People's Republic of China.
| |
Collapse
|
4
|
Weinberger S, Stecher C, Kastner MT, Nekhai S, Steininger C. Mapping the Protein Phosphatase 1 Interactome in Human Cytomegalovirus Infection. Viruses 2024; 16:1961. [PMID: 39772267 PMCID: PMC11728760 DOI: 10.3390/v16121961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/16/2024] [Accepted: 12/20/2024] [Indexed: 01/16/2025] Open
Abstract
Protein phosphorylation is a crucial regulatory mechanism in cellular homeostasis. The human cytomegalovirus (HCMV) incorporates protein phosphatase 1 (PP1) into its tegument, yet the biological relevance and mechanisms of this incorporation remain unclear. Our study offers the first characterization of the PP1 interactome during HCMV infection and its alterations. Using co-immunoprecipitation, mass spectrometry, and quantitative proteomics, we identified 159 high-confidence interacting proteins (HCIPs) in the PP1 interactome, consisting of 126 human and 33 viral proteins. We observed significant temporal changes in the PP1 interactome following HCMV infection, including the altered interactions of PP1 regulatory subunits. Further analysis highlighted the central roles of these PP1 interacting proteins in intracellular trafficking, with particular emphasis on the trafficking protein particle complex and Rab GTPases, which are crucial for the virus's manipulation of host cellular processes in virion assembly and egress. Additionally, our study on the noncatalytic PP1 inhibitor 1E7-03 revealed a decrease in PP1's interaction with key HCMV proteins, supporting its potential as an antiviral agent. Our findings suggest that PP1 docking motifs are critical in viral-host interactions and offer new insights for antiviral strategies.
Collapse
Affiliation(s)
- Stefan Weinberger
- Division of Infectious Diseases and Tropical Medicine, Department of Medicine I, Medical University of Vienna, 1090 Vienna, Austria
| | - Carmen Stecher
- Division of Infectious Diseases and Tropical Medicine, Department of Medicine I, Medical University of Vienna, 1090 Vienna, Austria
| | - Marie-Theres Kastner
- Division of Infectious Diseases and Tropical Medicine, Department of Medicine I, Medical University of Vienna, 1090 Vienna, Austria
| | - Sergei Nekhai
- Center for Sickle Cell Disease, Howard University, Washington, DC 20059, USA
| | - Christoph Steininger
- Division of Infectious Diseases and Tropical Medicine, Department of Medicine I, Medical University of Vienna, 1090 Vienna, Austria
- Karl-Landsteiner Institute of Microbiome Research, 3100 St. Pölten, Austria
| |
Collapse
|
5
|
Ribeiro EDA, Leyrat C, Gérard FCA, Jamin M. Dimerization of Rabies Virus Phosphoprotein and Phosphorylation of Its Nucleoprotein Enhance Their Binding Affinity. Viruses 2024; 16:1735. [PMID: 39599850 PMCID: PMC11599015 DOI: 10.3390/v16111735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/30/2024] [Accepted: 10/31/2024] [Indexed: 11/29/2024] Open
Abstract
The dynamic interplay between a multimeric phosphoprotein (P) and polymeric nucleoprotein (N) in complex with the viral RNA is at the heart of the functioning of the RNA-synthesizing machine of negative-sense RNA viruses of the order Mononegavirales. P multimerization and N phosphorylation are often cited as key factors in regulating these interactions, but a detailed understanding of the molecular mechanisms is not yet available. Working with recombinant rabies virus (RABV) N and P proteins and using mainly surface plasmon resonance, we measured the binding interactions of full-length P dimers and of two monomeric fragments of either circular or linear N-RNA complexes, and we analyzed the equilibrium binding isotherms using different models. We found that RABV P binds with nanomolar affinity to both circular and linear N-RNA complexes and that the dimerization of P protein enhances the binding affinity by 15-30-fold as compared to the monomeric fragments, but less than expected for a bivalent ligand, in which the binding domains are connected by a flexible linker. We also showed that the phosphorylation of N at Ser389 creates high-affinity sites on the polymeric N-RNA complex that enhance the binding affinity of P by a factor of about 360.
Collapse
Affiliation(s)
| | | | | | - Marc Jamin
- Institut de Biologie Structurale, Université Grenoble Alpes, CEA, CNRS, 38000 Grenoble, France; (E.d.A.R.J.); (C.L.); (F.C.A.G.)
| |
Collapse
|
6
|
Wang L, Wang Y, Ke Z, Wang Z, Guo Y, Zhang Y, Zhang X, Guo Z, Wan B. Liquid-liquid phase separation: a new perspective on respiratory diseases. Front Immunol 2024; 15:1444253. [PMID: 39391315 PMCID: PMC11464301 DOI: 10.3389/fimmu.2024.1444253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 09/09/2024] [Indexed: 10/12/2024] Open
Abstract
Liquid-liquid phase separation (LLPS) is integral to various biological processes, facilitating signal transduction by creating a condensed, membrane-less environment that plays crucial roles in diverse physiological and pathological processes. Recent evidence has underscored the significance of LLPS in human health and disease. However, its implications in respiratory diseases remain poorly understood. This review explores current insights into the mechanisms and biological roles of LLPS, focusing particularly on its relevance to respiratory diseases, aiming to deepen our understanding and propose a new paradigm for studying phase separation in this context.
Collapse
Affiliation(s)
- Li Wang
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
- Shanghai East Clinical Medical College, Nanjing Medical University, Nanjing, China
| | - Yongjun Wang
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
| | - Zhangmin Ke
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
| | - Zexu Wang
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
| | - Yufang Guo
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
| | - Yunlei Zhang
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
| | - Xiuwei Zhang
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
| | - Zhongliang Guo
- Shanghai East Clinical Medical College, Nanjing Medical University, Nanjing, China
| | - Bing Wan
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
7
|
Bracci N, Baer A, Flor R, Petraccione K, Stocker T, Zhou W, Ammosova T, Dinglasan RR, Nekhai S, Kehn-Hall K. CK1 and PP1 regulate Rift Valley fever virus genome replication through L protein phosphorylation. Antiviral Res 2024; 226:105895. [PMID: 38679165 DOI: 10.1016/j.antiviral.2024.105895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 04/15/2024] [Accepted: 04/22/2024] [Indexed: 05/01/2024]
Abstract
Rift Valley fever virus (RVFV) is an arbovirus in the Phenuiviridae family identified initially by the large 'abortion storms' observed among ruminants; RVFV can also infect humans. In humans, there is a wide variation of clinical symptoms ranging from subclinical to mild febrile illness to hepatitis, retinitis, delayed-onset encephalitis, or even hemorrhagic fever. The RVFV is a tri-segmented negative-sense RNA virus consisting of S, M, and L segments. The L segment encodes the RNA-dependent RNA polymerase (RdRp), termed the L protein, which is responsible for both viral mRNA synthesis and genome replication. Phosphorylation of viral RdRps is known to regulate viral replication. This study shows that RVFV L protein is serine phosphorylated and identified Casein Kinase 1 alpha (CK1α) and protein phosphatase 1 alpha (PP1α) as L protein binding partners. Inhibition of CK1 and PP1 through small molecule inhibitor treatment, D4476 and 1E7-03, respectively, caused a change in the phosphorylated status of the L protein. Inhibition of PP1α resulted in increased L protein phosphorylation whereas inhibition of CK1α decreased L protein phosphorylation. It was also found that in RVFV infected cells, PP1α localized to the cytoplasmic compartment. Treatment of RVFV infected cells with CK1 inhibitors reduced virus production in both mammalian and mosquito cells. Lastly, inhibition of either CK1 or PP1 reduced viral genomic RNA levels. These data indicate that L protein is phosphorylated and that CK1 and PP1 play a crucial role in regulating the L protein phosphorylation cycle, which is critical to viral RNA production and viral replication.
Collapse
Affiliation(s)
- Nicole Bracci
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Virginia, USA; Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Virginia, USA
| | - Alan Baer
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, Manassas, VA, USA
| | - Rafaela Flor
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Virginia, USA; Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Virginia, USA
| | - Kaylee Petraccione
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Virginia, USA; Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Virginia, USA
| | - Timothy Stocker
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Virginia, USA; Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Virginia, USA
| | - Weidong Zhou
- Center for Applied Proteomics and Molecular Medicine, School of Systems Biology, George Mason University, Manassas, VA, USA
| | - Tatiana Ammosova
- Center for Sickle Cell Disease, Department of Medicine, Howard University, Washington D.C., USA
| | - Rhoel R Dinglasan
- Emerging Pathogens Institute, University of Florida, Florida, USA; Department of Infectious Diseases & Immunology, College of Veterinary Medicine, University of Florida, Florida, USA
| | - Sergei Nekhai
- Center for Sickle Cell Disease, Department of Medicine, Howard University, Washington D.C., USA
| | - Kylene Kehn-Hall
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Virginia, USA; Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Virginia, USA.
| |
Collapse
|
8
|
Jobe F, Kelly JT, Simpson J, Wells J, Armstrong SD, Spick M, Lacey E, Logan L, Geifman N, Hawes P, Bailey D. Viral PIC-pocketing: RSV sequestration of translational preinitiation complexes into bi-phasic biomolecular condensates. J Virol 2024; 98:e0015324. [PMID: 38421168 PMCID: PMC10949503 DOI: 10.1128/jvi.00153-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 01/26/2024] [Indexed: 03/02/2024] Open
Abstract
Orthopneumoviruses characteristically form membrane-less cytoplasmic inclusion bodies (IBs) wherein RNA replication and transcription occur. Here, we report a strategy whereby the orthopneumoviruses sequester various components of the translational preinitiation complex machinery into viral inclusion bodies to facilitate translation of their own mRNAs-PIC-pocketing. Electron microscopy of respiratory syncytial virus (RSV)-infected cells revealed bi-phasic organization of IBs, specifically, spherical "droplets" nested within the larger inclusion. Using correlative light and electron microscopy, combined with fluorescence in situ hybridization, we showed that the observed bi-phasic morphology represents functional compartmentalization of the inclusion body and that these domains are synonymous with the previously reported inclusion body-associated granules (IBAGs). Detailed analysis demonstrated that IBAGs concentrate nascent viral mRNA, the viral M2-1 protein as well as components of eukaryotic translation initiation factors (eIF), eIF4F and eIF3, and 40S complexes involved in translation initiation. Interestingly, although ribopuromycylation-based imaging indicates that the majority of viral mRNA translation occurs in the cytoplasm, there was some evidence for intra-IBAG translation, consistent with the likely presence of ribosomes in a subset of IBAGs imaged by electron microscopy. Mass spectrometry analysis of sub-cellular fractions from RSV-infected cells identified significant modification of the cellular translation machinery; however, interestingly, ribopuromycylation assays showed no changes to global levels of translation. The mechanistic basis for this pathway was subsequently determined to involve the viral M2-1 protein interacting with eIF4G, likely to facilitate its transport between the cytoplasm and the separate phases of the viral inclusion body. In summary, our data show that these viral organelles function to spatially regulate early steps in viral translation within a highly selective bi-phasic biomolecular condensate. IMPORTANCE Respiratory syncytial viruses (RSVs) of cows and humans are a significant cause of morbidity and mortality in their respective populations. These RNA viruses replicate in the infected cells by compartmentalizing the cell's cytoplasm into distinct viral microdomains called inclusion bodies (IBs). In this paper, we show that these IBs are further compartmentalized into smaller structures that have significantly different density, as observed by electron microscopy. Within smaller intra-IB structures, we observed ribosomal components and evidence for active translation. These findings highlight that RSV may additionally compartmentalize translation to favor its own replication in the cell. These data contribute to our understanding of how RNA viruses hijack the cell to favor replication of their own genomes and may provide new targets for antiviral therapeutics in vivo.
Collapse
Affiliation(s)
| | | | | | - Joanna Wells
- The Pirbright Institute, Woking, Surrey, United Kingdom
| | - Stuart D. Armstrong
- Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Matt Spick
- School of Health Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, United Kingdom
| | - Emily Lacey
- The Pirbright Institute, Woking, Surrey, United Kingdom
| | - Leanne Logan
- The Pirbright Institute, Woking, Surrey, United Kingdom
| | - Nophar Geifman
- School of Health Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, United Kingdom
| | | | - Dalan Bailey
- The Pirbright Institute, Woking, Surrey, United Kingdom
| |
Collapse
|
9
|
Sun BW, Zhang PP, Wang ZH, Yao X, He ML, Bai RT, Che H, Lin J, Xie T, Hui Z, Ye XY, Wang LW. Prevention and Potential Treatment Strategies for Respiratory Syncytial Virus. Molecules 2024; 29:598. [PMID: 38338343 PMCID: PMC10856762 DOI: 10.3390/molecules29030598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 01/23/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Respiratory syncytial virus (RSV) is a significant viral pathogen that causes respiratory infections in infants, the elderly, and immunocompromised individuals. RSV-related illnesses impose a substantial economic burden worldwide annually. The molecular structure, function, and in vivo interaction mechanisms of RSV have received more comprehensive attention in recent times, and significant progress has been made in developing inhibitors targeting various stages of the RSV replication cycle. These include fusion inhibitors, RSV polymerase inhibitors, and nucleoprotein inhibitors, as well as FDA-approved RSV prophylactic drugs palivizumab and nirsevimab. The research community is hopeful that these developments might provide easier access to knowledge and might spark new ideas for research programs.
Collapse
Affiliation(s)
- Bo-Wen Sun
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (B.-W.S.); (P.-P.Z.); (Z.-H.W.); (X.Y.); (M.-L.H.); (R.-T.B.); (H.C.); (T.X.); (Z.H.)
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Peng-Peng Zhang
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (B.-W.S.); (P.-P.Z.); (Z.-H.W.); (X.Y.); (M.-L.H.); (R.-T.B.); (H.C.); (T.X.); (Z.H.)
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Zong-Hao Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (B.-W.S.); (P.-P.Z.); (Z.-H.W.); (X.Y.); (M.-L.H.); (R.-T.B.); (H.C.); (T.X.); (Z.H.)
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Xia Yao
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (B.-W.S.); (P.-P.Z.); (Z.-H.W.); (X.Y.); (M.-L.H.); (R.-T.B.); (H.C.); (T.X.); (Z.H.)
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Meng-Lan He
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (B.-W.S.); (P.-P.Z.); (Z.-H.W.); (X.Y.); (M.-L.H.); (R.-T.B.); (H.C.); (T.X.); (Z.H.)
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Rui-Ting Bai
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (B.-W.S.); (P.-P.Z.); (Z.-H.W.); (X.Y.); (M.-L.H.); (R.-T.B.); (H.C.); (T.X.); (Z.H.)
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Hao Che
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (B.-W.S.); (P.-P.Z.); (Z.-H.W.); (X.Y.); (M.-L.H.); (R.-T.B.); (H.C.); (T.X.); (Z.H.)
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Jing Lin
- Drug Discovery, Hangzhou Haolu Pharma Co., Hangzhou 311121, China;
| | - Tian Xie
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (B.-W.S.); (P.-P.Z.); (Z.-H.W.); (X.Y.); (M.-L.H.); (R.-T.B.); (H.C.); (T.X.); (Z.H.)
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Zi Hui
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (B.-W.S.); (P.-P.Z.); (Z.-H.W.); (X.Y.); (M.-L.H.); (R.-T.B.); (H.C.); (T.X.); (Z.H.)
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Xiang-Yang Ye
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (B.-W.S.); (P.-P.Z.); (Z.-H.W.); (X.Y.); (M.-L.H.); (R.-T.B.); (H.C.); (T.X.); (Z.H.)
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Li-Wei Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (B.-W.S.); (P.-P.Z.); (Z.-H.W.); (X.Y.); (M.-L.H.); (R.-T.B.); (H.C.); (T.X.); (Z.H.)
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
10
|
Merritt TN, Pei J, Leung DW. Pathogenicity and virulence of human respiratory syncytial virus: Multifunctional nonstructural proteins NS1 and NS2. Virulence 2023:2283897. [PMID: 37964591 DOI: 10.1080/21505594.2023.2283897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 11/09/2023] [Indexed: 11/16/2023] Open
Abstract
Human respiratory syncytial virus (hRSV) is a major cause of acute lower respiratory tract infections in children under the age of two as well as in the elderly and immunocompromised worldwide. Despite its discovery over 60 years ago and the global impact on human health, limited specific and effective prophylactic or therapeutic options have been available for hRSV infections. Part of the lack of treatment options is attributed to the legacy of vaccine failure in the 1960s using a formalin-inactivated RSV (FI-RSV), which led to enhancement of disease post exposure to hRSV infection and hampered subsequent development of vaccine candidates. Recent FDA approval of a vaccine for older adults and impending approval for a maternal vaccine are major advancements but leaves children between 6 months and 5 years of age unprotected. Part of this limitation can be attributed to a lack of complete understanding of the factors that contribute to hRSV pathogenesis. The nonstructural proteins NS1 and NS2 are multifunctional virulence factors that are unique to hRSV and that play critical roles during hRSV infection, including antagonizing interferon (IFN) signalling to modulate host responses to hRSV infection. However, the molecular mechanisms by which the nonstructural proteins mediate their IFN inhibitory functions have not been completely defined. Current progress on the characterization of NS1 and NS2 during infection provides deeper insight into their roles. Furthermore, reverse genetics systems for hRSV provide a viable strategy to generate attenuated viruses by introduction of select mutations while maintaining immunogenicity required to elicit a long-term protective response. Here we will review the current state of knowledge of the nonstructural proteins, their contributions to RSV pathogenesis, and their potential as targets for therapeutic development.
Collapse
Affiliation(s)
- Trudy N Merritt
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Jingjing Pei
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Daisy W Leung
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
11
|
Diot C, Richard CA, Risso-Ballester J, Martin D, Fix J, Eléouët JF, Sizun C, Rameix-Welti MA, Galloux M. Hardening of Respiratory Syncytial Virus Inclusion Bodies by Cyclopamine Proceeds through Perturbation of the Interactions of the M2-1 Protein with RNA and the P Protein. Int J Mol Sci 2023; 24:13862. [PMID: 37762166 PMCID: PMC10531356 DOI: 10.3390/ijms241813862] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 08/20/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Respiratory syncytial virus (RSV) RNA synthesis takes place in cytoplasmic viral factories also called inclusion bodies (IBs), which are membrane-less organelles concentrating the viral RNA polymerase complex. The assembly of IBs is driven by liquid-liquid phase separation promoted by interactions between the viral nucleoprotein N and the phosphoprotein P. We recently demonstrated that cyclopamine (CPM) inhibits RSV multiplication by disorganizing and hardening IBs. Although a single mutation in the viral transcription factor M2-1 induced resistance to CPM, the mechanism of action of CPM still remains to be characterized. Here, using FRAP experiments on reconstituted pseudo-IBs both in cellula and in vitro, we first demonstrated that CPM activity depends on the presence of M2-1 together with N and P. We showed that CPM impairs the competition between P and RNA binding to M2-1. As mutations on both P and M2-1 induced resistance against CPM activity, we suggest that CPM may affect the dynamics of the M2-1-P interaction, thereby affecting the relative mobility of the proteins contained in RSV IBs. Overall, our results reveal that stabilizing viral protein-protein interactions is an attractive new antiviral approach. They pave the way for the rational chemical optimization of new specific anti-RSV molecules.
Collapse
Affiliation(s)
- Cédric Diot
- Institut Pasteur, Université Paris Cité, M3P, F-75015 Paris, France;
- INSERM, UMR 1173 (2I), Université Paris-Saclay-Versailles St. Quentin, M3P, F-78180 Versailles, France;
| | - Charles-Adrien Richard
- INRAE, Unité de Virologie et Immunologie Moléculaires (VIM), Université Paris-Saclay-Versailles St. Quentin, F-78350 Jouy-en-Josas, France; (C.-A.R.); (D.M.); (J.F.); (J.-F.E.)
| | - Jennifer Risso-Ballester
- INSERM, UMR 1173 (2I), Université Paris-Saclay-Versailles St. Quentin, M3P, F-78180 Versailles, France;
| | - Davy Martin
- INRAE, Unité de Virologie et Immunologie Moléculaires (VIM), Université Paris-Saclay-Versailles St. Quentin, F-78350 Jouy-en-Josas, France; (C.-A.R.); (D.M.); (J.F.); (J.-F.E.)
| | - Jenna Fix
- INRAE, Unité de Virologie et Immunologie Moléculaires (VIM), Université Paris-Saclay-Versailles St. Quentin, F-78350 Jouy-en-Josas, France; (C.-A.R.); (D.M.); (J.F.); (J.-F.E.)
| | - Jean-François Eléouët
- INRAE, Unité de Virologie et Immunologie Moléculaires (VIM), Université Paris-Saclay-Versailles St. Quentin, F-78350 Jouy-en-Josas, France; (C.-A.R.); (D.M.); (J.F.); (J.-F.E.)
| | - Christina Sizun
- Institut de Chimie des Substances Naturelles, CNRS, Université Paris-Saclay, F-91190 Gif-sur-Yvette, France;
| | - Marie-Anne Rameix-Welti
- INSERM, UMR 1173 (2I), Université Paris-Saclay-Versailles St. Quentin, M3P, F-78180 Versailles, France;
- Laboratoire de Microbiologie, Hôpital Ambroise Paré, Assistance Publique des Hôpitaux de Paris, DMU15, F-75015 Paris, France
| | - Marie Galloux
- INRAE, Unité de Virologie et Immunologie Moléculaires (VIM), Université Paris-Saclay-Versailles St. Quentin, F-78350 Jouy-en-Josas, France; (C.-A.R.); (D.M.); (J.F.); (J.-F.E.)
| |
Collapse
|
12
|
Salgueiro M, Camporeale G, Visentin A, Aran M, Pellizza L, Esperante SA, Corbat A, Grecco H, Sousa B, Esperón R, Borkosky SS, de Prat-Gay G. Molten Globule Driven and Self-downmodulated Phase Separation of a Viral Factory Scaffold. J Mol Biol 2023; 435:168153. [PMID: 37210029 DOI: 10.1016/j.jmb.2023.168153] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/09/2023] [Accepted: 05/12/2023] [Indexed: 05/22/2023]
Abstract
Viral factories of liquid-like nature serve as sites for transcription and replication in most viruses. The respiratory syncytial virus factories include replication proteins, brought together by the phosphoprotein (P) RNA polymerase cofactor, present across non-segmented negative stranded RNA viruses. Homotypic liquid-liquid phase separation of RSV-P is governed by an α-helical molten globule domain, and strongly self-downmodulated by adjacent sequences. Condensation of P with the nucleoprotein N is stoichiometrically tuned, defining aggregate-droplet and droplet-dissolution boundaries. Time course analysis show small N-P nuclei gradually coalescing into large granules in transfected cells. This behavior is recapitulated in infection, with small puncta evolving to large viral factories, strongly suggesting that P-N nucleation-condensation sequentially drives viral factories. Thus, the tendency of P to undergo phase separation is moderate and latent in the full-length protein but unleashed in the presence of N or when neighboring disordered sequences are deleted. This, together with its capacity to rescue nucleoprotein-RNA aggregates suggests a role as a "solvent-protein".
Collapse
Affiliation(s)
- Mariano Salgueiro
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA) CONICET, Buenos Aires, Argentina
| | - Gabriela Camporeale
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA) CONICET, Buenos Aires, Argentina
| | - Araceli Visentin
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA) CONICET, Buenos Aires, Argentina
| | - Martin Aran
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA) CONICET, Buenos Aires, Argentina
| | - Leonardo Pellizza
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA) CONICET, Buenos Aires, Argentina
| | | | - Agustín Corbat
- Facultad de Ciencias Exactas y Naturales (FCEN), Universidad de Buenos Aires, and IFIBA, CONICET, Buenos Aires, Argentina
| | - Hernán Grecco
- Facultad de Ciencias Exactas y Naturales (FCEN), Universidad de Buenos Aires, and IFIBA, CONICET, Buenos Aires, Argentina
| | - Belén Sousa
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA) CONICET, Buenos Aires, Argentina
| | - Ramiro Esperón
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA) CONICET, Buenos Aires, Argentina
| | - Silvia S Borkosky
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA) CONICET, Buenos Aires, Argentina
| | - Gonzalo de Prat-Gay
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA) CONICET, Buenos Aires, Argentina.
| |
Collapse
|
13
|
Zhang S, Pei G, Li B, Li P, Lin Y. Abnormal phase separation of biomacromolecules in human diseases. Acta Biochim Biophys Sin (Shanghai) 2023; 55:1133-1152. [PMID: 37475546 PMCID: PMC10423695 DOI: 10.3724/abbs.2023139] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 07/07/2023] [Indexed: 07/22/2023] Open
Abstract
Membrane-less organelles (MLOs) formed through liquid-liquid phase separation (LLPS) are associated with numerous important biological functions, but the abnormal phase separation will also dysregulate the physiological processes. Emerging evidence points to the importance of LLPS in human health and diseases. Nevertheless, despite recent advancements, our knowledge of the molecular relationship between LLPS and diseases is frequently incomplete. In this review, we outline our current understanding about how aberrant LLPS affects developmental disorders, tandem repeat disorders, cancers and viral infection. We also examine disease mechanisms driven by aberrant condensates, and highlight potential treatment approaches. This study seeks to expand our understanding of LLPS by providing a valuable new paradigm for understanding phase separation and human disorders, as well as to further translate our current knowledge regarding LLPS into therapeutic discoveries.
Collapse
Affiliation(s)
- Songhao Zhang
- State Key Laboratory of Membrane BiologyTsinghua University-Peking University Joint Centre for Life SciencesSchool of Life SciencesTsinghua UniversityBeijing100084China
- IDG/McGovern Institute for Brain Research at Tsinghua UniversityBeijing100084China
| | - Gaofeng Pei
- State Key Laboratory of Membrane BiologyTsinghua University-Peking University Joint Centre for Life SciencesSchool of Life SciencesTsinghua UniversityBeijing100084China
- Frontier Research Center for Biological StructureTsinghua UniversityBeijing100084China
| | - Boya Li
- State Key Laboratory of Membrane BiologyTsinghua University-Peking University Joint Centre for Life SciencesSchool of Life SciencesTsinghua UniversityBeijing100084China
- IDG/McGovern Institute for Brain Research at Tsinghua UniversityBeijing100084China
| | - Pilong Li
- State Key Laboratory of Membrane BiologyTsinghua University-Peking University Joint Centre for Life SciencesSchool of Life SciencesTsinghua UniversityBeijing100084China
- Frontier Research Center for Biological StructureTsinghua UniversityBeijing100084China
| | - Yi Lin
- State Key Laboratory of Membrane BiologyTsinghua University-Peking University Joint Centre for Life SciencesSchool of Life SciencesTsinghua UniversityBeijing100084China
- IDG/McGovern Institute for Brain Research at Tsinghua UniversityBeijing100084China
| |
Collapse
|
14
|
Risso-Ballester J, Rameix-Welti MA. Spatial resolution of virus replication: RSV and cytoplasmic inclusion bodies. Adv Virus Res 2023; 116:1-43. [PMID: 37524479 DOI: 10.1016/bs.aivir.2023.06.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Respiratory Syncytial Virus (RSV) is a major cause of respiratory illness in young children, elderly and immunocompromised individuals worldwide representing a severe burden for health systems. The urgent development of vaccines or specific antivirals against RSV is impaired by the lack of knowledge regarding its replication mechanisms. RSV is a negative-sense single-stranded RNA (ssRNA) virus belonging to the Mononegavirales order (MNV) which includes other viruses pathogenic to humans as Rabies (RabV), Ebola (EBOV), or measles (MeV) viruses. Transcription and replication of viral genomes occur within cytoplasmatic virus-induced spherical inclusions, commonly referred as inclusion bodies (IBs). Recently IBs were shown to exhibit properties of membrane-less organelles (MLO) arising by liquid-liquid phase separation (LLPS). Compartmentalization of viral RNA synthesis steps in viral-induced MLO is indeed a common feature of MNV. Strikingly these key compartments still remain mysterious. Most of our current knowledge on IBs relies on the use of fluorescence microscopy. The ability to fluorescently label IBs in cells has been key to uncover their dynamics and nature. The generation of recombinant viruses expressing a fluorescently-labeled viral protein and the immunolabeling or the expression of viral fusion proteins known to be recruited in IBs are some of the tools used to visualize IBs in infected cells. In this chapter, microscope techniques and the most relevant studies that have shed light on RSV IBs fundamental aspects, including biogenesis, organization and dynamics are being discussed and brought to light with the investigations carried out on other MNV.
Collapse
Affiliation(s)
| | - Marie-Anne Rameix-Welti
- Institut Pasteur, Université Paris-Saclay, Université de Versailles St. Quentin, UMR 1173 (2I), INSERM, Paris, France; Assistance Publique des Hôpitaux de Paris, Hôpital Ambroise Paré, Laboratoire de Microbiologie, DMU15, Paris, France.
| |
Collapse
|
15
|
Xie E, Ahmad S, Smyth RP, Sieben C. Advanced fluorescence microscopy in respiratory virus cell biology. Adv Virus Res 2023; 116:123-172. [PMID: 37524480 DOI: 10.1016/bs.aivir.2023.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Respiratory viruses are a major public health burden across all age groups around the globe, and are associated with high morbidity and mortality rates. They can be transmitted by multiple routes, including physical contact or droplets and aerosols, resulting in efficient spreading within the human population. Investigations of the cell biology of virus replication are thus of utmost importance to gain a better understanding of virus-induced pathogenicity and the development of antiviral countermeasures. Light and fluorescence microscopy techniques have revolutionized investigations of the cell biology of virus infection by allowing the study of the localization and dynamics of viral or cellular components directly in infected cells. Advanced microscopy including high- and super-resolution microscopy techniques available today can visualize biological processes at the single-virus and even single-molecule level, thus opening a unique view on virus infection. We will highlight how fluorescence microscopy has supported investigations on virus cell biology by focusing on three major respiratory viruses: respiratory syncytial virus (RSV), Influenza A virus (IAV) and SARS-CoV-2. We will review our current knowledge of virus replication and highlight how fluorescence microscopy has helped to improve our state of understanding. We will start by introducing major imaging and labeling modalities and conclude the chapter with a perspective discussion on remaining challenges and potential opportunities.
Collapse
Affiliation(s)
- Enyu Xie
- Nanoscale Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Shazeb Ahmad
- Helmholtz Institute for RNA-based Infection Research, Helmholtz Centre for Infection Research, Würzburg, Germany
| | - Redmond P Smyth
- Helmholtz Institute for RNA-based Infection Research, Helmholtz Centre for Infection Research, Würzburg, Germany; Faculty of Medicine, University of Würzburg, Würzburg, Germany
| | - Christian Sieben
- Nanoscale Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany; Institute of Genetics, Technische Universität Braunschweig, Braunschweig, Germany.
| |
Collapse
|
16
|
Visentin A, Demitroff N, Salgueiro M, Borkosky SS, Uversky VN, Camporeale G, de Prat-Gay G. Assembly of the Tripartite and RNA Condensates of the Respiratory Syncytial Virus Factory Proteins In Vitro: Role of the Transcription Antiterminator M 2-1. Viruses 2023; 15:1329. [PMID: 37376628 DOI: 10.3390/v15061329] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/01/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
A wide variety of viruses replicate in liquid-like viral factories. Non-segmented negative stranded RNA viruses share a nucleoprotein (N) and a phosphoprotein (P) that together emerge as the main drivers of liquid-liquid phase separation. The respiratory syncytial virus includes the transcription antiterminator M2-1, which binds RNA and maximizes RNA transcriptase processivity. We recapitulate the assembly mechanism of condensates of the three proteins and the role played by RNA. M2-1 displays a strong propensity for condensation by itself and with RNA through the formation of electrostatically driven protein-RNA coacervates based on the amphiphilic behavior of M2-1 and finely tuned by stoichiometry. M2-1 incorporates into tripartite condensates with N and P, modulating their size through an interplay with P, where M2-1 is both client and modulator. RNA is incorporated into the tripartite condensates adopting a heterogeneous distribution, reminiscent of the M2-1-RNA IBAG granules within the viral factories. Ionic strength dependence indicates that M2-1 behaves differently in the protein phase as opposed to the protein-RNA phase, in line with the subcompartmentalization observed in viral factories. This work dissects the biochemical grounds for the formation and fate of the RSV condensates in vitro and provides clues to interrogate the mechanism under the highly complex infection context.
Collapse
Affiliation(s)
- Araceli Visentin
- Instituto Leloir, IIB-BA Conicet, Av. Patricias Argentinas 435, Buenos Aires 1405, Argentina
| | - Nicolás Demitroff
- Instituto Leloir, IIB-BA Conicet, Av. Patricias Argentinas 435, Buenos Aires 1405, Argentina
| | - Mariano Salgueiro
- Instituto Leloir, IIB-BA Conicet, Av. Patricias Argentinas 435, Buenos Aires 1405, Argentina
| | - Silvia Susana Borkosky
- Instituto Leloir, IIB-BA Conicet, Av. Patricias Argentinas 435, Buenos Aires 1405, Argentina
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Gabriela Camporeale
- Instituto Leloir, IIB-BA Conicet, Av. Patricias Argentinas 435, Buenos Aires 1405, Argentina
| | - Gonzalo de Prat-Gay
- Instituto Leloir, IIB-BA Conicet, Av. Patricias Argentinas 435, Buenos Aires 1405, Argentina
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials (CNPEM), Campinas 13083-970, SP, Brazil
| |
Collapse
|
17
|
Sizun C. Biophysical Reviews' "Meet the Editors Series": a profile of Christina Sizun. Biophys Rev 2023; 15:301-304. [PMID: 37396447 PMCID: PMC10310629 DOI: 10.1007/s12551-023-01071-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2023] [Indexed: 07/04/2023] Open
Abstract
This edition of the continuing "Biophysical Reviews Meet the Editors Series" introduces Dr. Christina Sizun, physical chemist, member of the Biophysical Reviews editorial board and current Treasurer of the International Union for Pure and Applied Biophysics (IUPAB).
Collapse
Affiliation(s)
- Christina Sizun
- Institut de Chimie des Substances Naturelles, Centre National de la Recherche Scientifique, Université Paris-Saclay, Gif-sur-Yvette, France
| |
Collapse
|
18
|
Thompson RE, Edmonds K, Dutch RE. Specific Residues in the C-Terminal Domain of the Human Metapneumovirus Phosphoprotein Are Indispensable for Formation of Viral Replication Centers and Regulation of the Function of the Viral Polymerase Complex. J Virol 2023; 97:e0003023. [PMID: 37092993 PMCID: PMC10231248 DOI: 10.1128/jvi.00030-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/30/2023] [Indexed: 04/25/2023] Open
Abstract
Human metapneumovirus (HMPV) is a negative-strand RNA virus that frequently causes respiratory tract infections in infants, the elderly, and the immunocompromised. A hallmark of HMPV infection is the formation of membraneless, liquid-like replication and transcription centers in the cytosol termed inclusion bodies (IBs). The HMPV phosphoprotein (P) and nucleoprotein (N) are the minimal viral proteins necessary to form IB-like structures, and both proteins are required for the viral polymerase to synthesize RNA during infection. HMPV P is a homotetramer with regions of intrinsic disorder and has several known and predicted phosphorylation sites of unknown function. In this study, we found that the P C-terminal intrinsically disordered domain (CTD) must be present to facilitate IB formation with HMPV N, while either the N-terminal intrinsically disordered domain or the central oligomerization domain was dispensable. Alanine substitution at a single tyrosine residue within the CTD abrogated IB formation and reduced coimmunoprecipitation with HMPV N. Mutations to C-terminal phosphorylation sites revealed a potential role for phosphorylation in regulating RNA synthesis and P binding partners within IBs. Phosphorylation mutations which reduced RNA synthesis in a reporter assay produced comparable results in a recombinant viral rescue system, measured as an inability to produce infectious viral particles with genomes containing these single P mutations. This work highlights the critical role HMPV P plays in facilitating a key step of the viral life cycle and reveals the potential role for phosphorylation in regulating the function of this significant viral protein. IMPORTANCE Human metapneumovirus (HMPV) infects global populations, with severe respiratory tract infections occurring in infants, the elderly, and the immunocompromised. There are currently no FDA-approved therapeutics available to prevent or treat HMPV infection. Therefore, understanding how HMPV replicates is vital for the identification of novel targets for therapeutic development. During HMPV infection, viral RNA synthesis proteins localize to membraneless structures called inclusion bodies (IBs), which are sites of genome replication and transcription. The HMPV phosphoprotein (P) is necessary for IBs to form and for the virus to synthesize RNA, but it is not known how this protein contributes to IB formation or if it is capable of regulating viral replication. We show that the C-terminal domain of P is the location of a molecular interaction driving IB formation and contains potential phosphorylation sites where amino acid charge regulates the function of the viral polymerase complex.
Collapse
Affiliation(s)
- Rachel Erin Thompson
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Kearstin Edmonds
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Rebecca Ellis Dutch
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| |
Collapse
|
19
|
Yang S, Shen W, Hu J, Cai S, Zhang C, Jin S, Guan X, Wu J, Wu Y, Cui J. Molecular mechanisms and cellular functions of liquid-liquid phase separation during antiviral immune responses. Front Immunol 2023; 14:1162211. [PMID: 37251408 PMCID: PMC10210139 DOI: 10.3389/fimmu.2023.1162211] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 04/25/2023] [Indexed: 05/31/2023] Open
Abstract
Spatiotemporal separation of cellular components is vital to ensure biochemical processes. Membrane-bound organelles such as mitochondria and nuclei play a major role in isolating intracellular components, while membraneless organelles (MLOs) are accumulatively uncovered via liquid-liquid phase separation (LLPS) to mediate cellular spatiotemporal organization. MLOs orchestrate various key cellular processes, including protein localization, supramolecular assembly, gene expression, and signal transduction. During viral infection, LLPS not only participates in viral replication but also contributes to host antiviral immune responses. Therefore, a more comprehensive understanding of the roles of LLPS in virus infection may open up new avenues for treating viral infectious diseases. In this review, we focus on the antiviral defense mechanisms of LLPS in innate immunity and discuss the involvement of LLPS during viral replication and immune evasion escape, as well as the strategy of targeting LLPS to treat viral infectious diseases.
Collapse
Affiliation(s)
- Shuai Yang
- The First Affiliated Hospital of Sun Yat-sen University, Ministry of Education MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
- Ministry of Education Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Weishan Shen
- Department of Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jiajia Hu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Sihui Cai
- Ministry of Education Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Chenqiu Zhang
- Ministry of Education Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Shouheng Jin
- Ministry of Education Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xiangdong Guan
- Department of Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jianfeng Wu
- Department of Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yaoxing Wu
- The First Affiliated Hospital of Sun Yat-sen University, Ministry of Education MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
- Department of Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jun Cui
- The First Affiliated Hospital of Sun Yat-sen University, Ministry of Education MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
- Ministry of Education Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
20
|
Mihalič F, Simonetti L, Giudice G, Sander MR, Lindqvist R, Peters MBA, Benz C, Kassa E, Badgujar D, Inturi R, Ali M, Krystkowiak I, Sayadi A, Andersson E, Aronsson H, Söderberg O, Dobritzsch D, Petsalaki E, Överby AK, Jemth P, Davey NE, Ivarsson Y. Large-scale phage-based screening reveals extensive pan-viral mimicry of host short linear motifs. Nat Commun 2023; 14:2409. [PMID: 37100772 PMCID: PMC10132805 DOI: 10.1038/s41467-023-38015-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 04/12/2023] [Indexed: 04/28/2023] Open
Abstract
Viruses mimic host short linear motifs (SLiMs) to hijack and deregulate cellular functions. Studies of motif-mediated interactions therefore provide insight into virus-host dependencies, and reveal targets for therapeutic intervention. Here, we describe the pan-viral discovery of 1712 SLiM-based virus-host interactions using a phage peptidome tiling the intrinsically disordered protein regions of 229 RNA viruses. We find mimicry of host SLiMs to be a ubiquitous viral strategy, reveal novel host proteins hijacked by viruses, and identify cellular pathways frequently deregulated by viral motif mimicry. Using structural and biophysical analyses, we show that viral mimicry-based interactions have similar binding strength and bound conformations as endogenous interactions. Finally, we establish polyadenylate-binding protein 1 as a potential target for broad-spectrum antiviral agent development. Our platform enables rapid discovery of mechanisms of viral interference and the identification of potential therapeutic targets which can aid in combating future epidemics and pandemics.
Collapse
Affiliation(s)
- Filip Mihalič
- Department of Medical Biochemistry and Microbiology, Uppsala University, Box 582, Husargatan 3, 751 23, Uppsala, Sweden
| | - Leandro Simonetti
- Department of Chemistry - BMC, Uppsala University, Box 576, Husargatan 3, 751 23, Uppsala, Sweden
| | - Girolamo Giudice
- European Molecular Biology Laboratory-European Bioinformatics Institute, Hinxton, CB10 1SD, UK
| | - Marie Rubin Sander
- Department of Pharmaceutical Biosciences, Uppsala University, Husargatan 3, Box 591, SE-751 24, Uppsala, Sweden
| | - Richard Lindqvist
- Department of Clinical Microbiology, Umeå University, 90187, Umeå, Sweden
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, 90186, Umeå, Sweden
| | - Marie Berit Akpiroro Peters
- Department of Clinical Microbiology, Umeå University, 90187, Umeå, Sweden
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, 90186, Umeå, Sweden
| | - Caroline Benz
- Department of Chemistry - BMC, Uppsala University, Box 576, Husargatan 3, 751 23, Uppsala, Sweden
| | - Eszter Kassa
- Department of Chemistry - BMC, Uppsala University, Box 576, Husargatan 3, 751 23, Uppsala, Sweden
| | - Dilip Badgujar
- Department of Chemistry - BMC, Uppsala University, Box 576, Husargatan 3, 751 23, Uppsala, Sweden
| | - Raviteja Inturi
- Department of Medical Biochemistry and Microbiology, Uppsala University, Box 582, Husargatan 3, 751 23, Uppsala, Sweden
| | - Muhammad Ali
- Department of Chemistry - BMC, Uppsala University, Box 576, Husargatan 3, 751 23, Uppsala, Sweden
| | - Izabella Krystkowiak
- Division of Cancer Biology, The Institute of Cancer Research, 237 Fulham Road, London, SW3 6JB, UK
| | - Ahmed Sayadi
- Department of Chemistry - BMC, Uppsala University, Box 576, Husargatan 3, 751 23, Uppsala, Sweden
| | - Eva Andersson
- Department of Medical Biochemistry and Microbiology, Uppsala University, Box 582, Husargatan 3, 751 23, Uppsala, Sweden
| | - Hanna Aronsson
- Department of Medical Biochemistry and Microbiology, Uppsala University, Box 582, Husargatan 3, 751 23, Uppsala, Sweden
| | - Ola Söderberg
- Department of Pharmaceutical Biosciences, Uppsala University, Husargatan 3, Box 591, SE-751 24, Uppsala, Sweden
| | - Doreen Dobritzsch
- Department of Chemistry - BMC, Uppsala University, Box 576, Husargatan 3, 751 23, Uppsala, Sweden
| | - Evangelia Petsalaki
- European Molecular Biology Laboratory-European Bioinformatics Institute, Hinxton, CB10 1SD, UK
| | - Anna K Överby
- Department of Clinical Microbiology, Umeå University, 90187, Umeå, Sweden
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, 90186, Umeå, Sweden
| | - Per Jemth
- Department of Medical Biochemistry and Microbiology, Uppsala University, Box 582, Husargatan 3, 751 23, Uppsala, Sweden.
| | - Norman E Davey
- Division of Cancer Biology, The Institute of Cancer Research, 237 Fulham Road, London, SW3 6JB, UK.
| | - Ylva Ivarsson
- Department of Chemistry - BMC, Uppsala University, Box 576, Husargatan 3, 751 23, Uppsala, Sweden.
| |
Collapse
|
21
|
Sutto-Ortiz P, Eléouët JF, Ferron F, Decroly E. Biochemistry of the Respiratory Syncytial Virus L Protein Embedding RNA Polymerase and Capping Activities. Viruses 2023; 15:v15020341. [PMID: 36851554 PMCID: PMC9960070 DOI: 10.3390/v15020341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/12/2023] [Accepted: 01/21/2023] [Indexed: 01/27/2023] Open
Abstract
The human respiratory syncytial virus (RSV) is a negative-sense, single-stranded RNA virus. It is the major cause of severe acute lower respiratory tract infection in infants, the elderly population, and immunocompromised individuals. There is still no approved vaccine or antiviral treatment against RSV disease, but new monoclonal prophylactic antibodies are yet to be commercialized, and clinical trials are in progress. Hence, urgent efforts are needed to develop efficient therapeutic treatments. RSV RNA synthesis comprises viral transcription and replication that are catalyzed by the large protein (L) in coordination with the phosphoprotein polymerase cofactor (P), the nucleoprotein (N), and the M2-1 transcription factor. The replication/transcription is orchestrated by the L protein, which contains three conserved enzymatic domains: the RNA-dependent RNA polymerase (RdRp), the polyribonucleotidyl transferase (PRNTase or capping), and the methyltransferase (MTase) domain. These activities are essential for the RSV replicative cycle and are thus considered as attractive targets for the development of therapeutic agents. In this review, we summarize recent findings about RSV L domains structure that highlight how the enzymatic activities of RSV L domains are interconnected, discuss the most relevant and recent antivirals developments that target the replication/transcription complex, and conclude with a perspective on identified knowledge gaps that enable new research directions.
Collapse
Affiliation(s)
| | - Jean-François Eléouët
- Unité de Virologie et Immunologie Moléculaires, INRAE, Université Paris Saclay, F78350 Jouy en Josas, France
| | - François Ferron
- Aix Marseille Université, CNRS, AFMB, UMR, 7257 Marseille, France
- European Virus Bioinformatics Center, Leutragraben 1, 07743 Jena, Germany
| | - Etienne Decroly
- Aix Marseille Université, CNRS, AFMB, UMR, 7257 Marseille, France
- Correspondence:
| |
Collapse
|
22
|
Liaisons dangereuses: Intrinsic Disorder in Cellular Proteins Recruited to Viral Infection-Related Biocondensates. Int J Mol Sci 2023; 24:ijms24032151. [PMID: 36768473 PMCID: PMC9917183 DOI: 10.3390/ijms24032151] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/11/2023] [Accepted: 01/19/2023] [Indexed: 01/25/2023] Open
Abstract
Liquid-liquid phase separation (LLPS) is responsible for the formation of so-called membrane-less organelles (MLOs) that are essential for the spatio-temporal organization of the cell. Intrinsically disordered proteins (IDPs) or regions (IDRs), either alone or in conjunction with nucleic acids, are involved in the formation of these intracellular condensates. Notably, viruses exploit LLPS at their own benefit to form viral replication compartments. Beyond giving rise to biomolecular condensates, viral proteins are also known to partition into cellular MLOs, thus raising the question as to whether these cellular phase-separating proteins are drivers of LLPS or behave as clients/regulators. Here, we focus on a set of eukaryotic proteins that are either sequestered in viral factories or colocalize with viral proteins within cellular MLOs, with the primary goal of gathering organized, predicted, and experimental information on these proteins, which constitute promising targets for innovative antiviral strategies. Using various computational approaches, we thoroughly investigated their disorder content and inherent propensity to undergo LLPS, along with their biological functions and interactivity networks. Results show that these proteins are on average, though to varying degrees, enriched in disorder, with their propensity for phase separation being correlated, as expected, with their disorder content. A trend, which awaits further validation, tends to emerge whereby the most disordered proteins serve as drivers, while more ordered cellular proteins tend instead to be clients of viral factories. In light of their high disorder content and their annotated LLPS behavior, most proteins in our data set are drivers or co-drivers of molecular condensation, foreshadowing a key role of these cellular proteins in the scaffolding of viral infection-related MLOs.
Collapse
|
23
|
Yuan B, Peng Q, Cheng J, Wang M, Zhong J, Qi J, Gao GF, Shi Y. Structure of the Ebola virus polymerase complex. Nature 2022; 610:394-401. [PMID: 36171293 PMCID: PMC9517992 DOI: 10.1038/s41586-022-05271-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 08/24/2022] [Indexed: 11/24/2022]
Abstract
Filoviruses, including Ebola virus, pose an increasing threat to the public health. Although two therapeutic monoclonal antibodies have been approved to treat the Ebola virus disease1,2, there are no approved broadly reactive drugs to control diverse filovirus infection. Filovirus has a large polymerase (L) protein and the cofactor viral protein 35 (VP35), which constitute the basic functional unit responsible for virus genome RNA synthesis3. Owing to its conservation, the L-VP35 polymerase complex is a promising target for broadly reactive antiviral drugs. Here we determined the structure of Ebola virus L protein in complex with tetrameric VP35 using cryo-electron microscopy (state 1). Structural analysis revealed that Ebola virus L possesses a filovirus-specific insertion element that is essential for RNA synthesis, and that VP35 interacts extensively with the N-terminal region of L by three protomers of the VP35 tetramer. Notably, we captured the complex structure in a second conformation with the unambiguous priming loop and supporting helix away from polymerase active site (state 2). Moreover, we demonstrated that the century-old drug suramin could inhibit the activity of the Ebola virus polymerase in an enzymatic assay. The structure of the L-VP35-suramin complex reveals that suramin can bind at the highly conserved NTP entry channel to prevent substrates from entering the active site. These findings reveal the mechanism of Ebola virus replication and may guide the development of more powerful anti-filovirus drugs.
Collapse
Affiliation(s)
- Bin Yuan
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Qi Peng
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Jinlong Cheng
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Min Wang
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Jin Zhong
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Jianxun Qi
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - George F Gao
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China.
- Center for Influenza Research and Early-Warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Disease (CEEID), Chinese Academy of Sciences, Beijing, China.
- Research Unit of Adaptive Evolution and Control of Emerging Viruses, Chinese Academy of Medical Sciences, Beijing, China.
| | - Yi Shi
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China.
- Center for Influenza Research and Early-Warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Disease (CEEID), Chinese Academy of Sciences, Beijing, China.
- Research Unit of Adaptive Evolution and Control of Emerging Viruses, Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
24
|
Gonnin L, Richard CA, Gutsche I, Chevret D, Troussier J, Vasseur JJ, Debart F, Eléouët JF, Galloux M. Importance of RNA length for in vitro encapsidation by the nucleoprotein of human Respiratory Syncytial Virus. J Biol Chem 2022; 298:102337. [PMID: 35931116 PMCID: PMC9436823 DOI: 10.1016/j.jbc.2022.102337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 11/29/2022] Open
Abstract
Respiratory syncytial virus has a negative-sense single-stranded RNA genome constitutively encapsidated by the viral nucleoprotein N, forming a helical nucleocapsid which is the template for viral transcription and replication by the viral polymerase L. Recruitment of L onto the nucleocapsid depends on the viral phosphoprotein P, which is an essential L cofactor. A prerequisite for genome and antigenome encapsidation is the presence of the monomeric, RNA-free, neosynthesized N protein, named N0. Stabilization of N0 depends on the binding of the N-terminal residues of P to its surface, which prevents N oligomerization. However, the mechanism involved in the transition from N0-P to nucleocapsid assembly, and thus in the specificity of viral genome encapsidation, is still unknown. Furthermore, the specific role of N oligomerization and RNA in the morphogenesis of viral factories, where viral transcription and replication occur, have not been elucidated although the interaction between P and N complexed to RNA has been shown to be responsible for this process. Here, using a chimeric protein comprising N and the first 40 N-terminal residues of P, we succeeded in purifying a recombinant N0-like protein competent for RNA encapsidation in vitro. Our results showed the importance of RNA length for stable encapsidation and revealed that the nature of the 5′ end of RNA does not explain the specificity of encapsidation. Finally, we showed that RNA encapsidation is crucial for the in vitro reconstitution of pseudo-viral factories. Together, our findings provide insight into respiratory syncytial virus viral genome encapsidation specificity.
Collapse
Affiliation(s)
- Lorène Gonnin
- Université Paris-Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, France
| | | | - Irina Gutsche
- University of Grenoble Alpes, CEA, CNRS, IBS, Grenoble, France
| | - Didier Chevret
- Université Paris-Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, France
| | - Joris Troussier
- IBMM, Université de Montpellier, ENSCM, CNRS, UMR 5247, Montpellier, France
| | | | - Françoise Debart
- IBMM, Université de Montpellier, ENSCM, CNRS, UMR 5247, Montpellier, France
| | | | - Marie Galloux
- Université Paris-Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, France.
| |
Collapse
|
25
|
Sourimant J, Lieber CM, Yoon JJ, Toots M, Govindarajan M, Udumula V, Sakamoto K, Natchus MG, Patti J, Vernachio J, Plemper RK. Orally efficacious lead of the AVG inhibitor series targeting a dynamic interface in the respiratory syncytial virus polymerase. SCIENCE ADVANCES 2022; 8:eabo2236. [PMID: 35749502 PMCID: PMC9232112 DOI: 10.1126/sciadv.abo2236] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
Respiratory syncytial virus (RSV) is a leading cause of lower respiratory infections in infants and the immunocompromised, yet no efficient therapeutic exists. We have identified the AVG class of allosteric inhibitors of RSV RNA synthesis. Here, we demonstrate through biolayer interferometry and in vitro RNA-dependent RNA polymerase (RdRP) assays that AVG compounds bind to the viral polymerase, stalling the polymerase in initiation conformation. Resistance profiling revealed a unique escape pattern, suggesting a discrete docking pose. Affinity mapping using photoreactive AVG analogs identified the interface of polymerase core, capping, and connector domains as a molecular target site. A first-generation lead showed nanomolar potency against RSV in human airway epithelium organoids but lacked in vivo efficacy. Docking pose-informed synthetic optimization generated orally efficacious AVG-388, which showed potent efficacy in the RSV mouse model when administered therapeutically. This study maps a druggable target in the RSV RdRP and establishes clinical potential of the AVG chemotype against RSV disease.
Collapse
Affiliation(s)
- Julien Sourimant
- Center for Translational Antiviral Research, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| | - Carolin M. Lieber
- Center for Translational Antiviral Research, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| | - Jeong-Joong Yoon
- Center for Translational Antiviral Research, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| | - Mart Toots
- Center for Translational Antiviral Research, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| | | | - Venkata Udumula
- Emory Institute for Drug Development, Emory University, Atlanta, GA 30322, USA
| | - Kaori Sakamoto
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Michael G. Natchus
- Emory Institute for Drug Development, Emory University, Atlanta, GA 30322, USA
| | - Joseph Patti
- Aviragen Therapeutics Inc, Alpharetta, GA 30009, USA
| | | | - Richard K. Plemper
- Center for Translational Antiviral Research, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| |
Collapse
|
26
|
Fan X, Guo Q, Zhang J, Du H, Qin X. Response mechanism of ♀ Epinephelus fuscoguttatus × ♂ Epinephelus lanceolatus under low-temperature and waterless stresses using TMT proteomic analysis. PROTOPLASMA 2022; 259:217-231. [PMID: 33950303 PMCID: PMC8752522 DOI: 10.1007/s00709-021-01654-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 04/20/2021] [Indexed: 06/12/2023]
Abstract
♀Epinephelus fuscoguttatus × ♂Epinephelus lanceolatus, a hybrid grouper created from artificial breeding, has been widely developed over the past decades. However, the study focusing on lukewarm high-protein-content fish species using advanced techniques has rarely been reported. In this work, the TMT (tandem mass tag)-assisted technique was employed to explore its differentially expressed proteins and response mechanisms under low-temperature dormant and waterless stresses. Our findings suggest that 162 and 258 differentially expressed proteins were identified under low-temperature dormant and waterless stresses, respectively. The waterless preservation treatment further identifies 93 differentially expressed proteins. The identified proteins are categorized and found to participate in lipid metabolism, glycometabolism, oxidative stress, immune response, protein and amino acid metabolism, signal transduction, and other functions. Accordingly, the factors that affect the response mechanisms are highlighted to provide new evidences at protein level.
Collapse
Affiliation(s)
- Xiuping Fan
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Zhanjiang, 524088, China
- Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, 524088, China
| | - Qiaoyu Guo
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Zhanjiang, 524088, China
| | - Jiasheng Zhang
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Zhanjiang, 524088, China
| | - Huan Du
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Zhanjiang, 524088, China
| | - Xiaoming Qin
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Zhanjiang, 524088, China.
- Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, 524088, China.
| |
Collapse
|
27
|
Interactions between the Nucleoprotein and the Phosphoprotein of Pneumoviruses: Structural Insight for Rational Design of Antivirals. Viruses 2021; 13:v13122449. [PMID: 34960719 PMCID: PMC8706346 DOI: 10.3390/v13122449] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/30/2021] [Accepted: 12/01/2021] [Indexed: 11/17/2022] Open
Abstract
Pneumoviruses include pathogenic human and animal viruses, the most known and studied being the human respiratory syncytial virus (hRSV) and the metapneumovirus (hMPV), which are the major cause of severe acute respiratory tract illness in young children worldwide, and main pathogens infecting elderly and immune-compromised people. The transcription and replication of these viruses take place in specific cytoplasmic inclusions called inclusion bodies (IBs). These activities depend on viral polymerase L, associated with its cofactor phosphoprotein P, for the recognition of the viral RNA genome encapsidated by the nucleoprotein N, forming the nucleocapsid (NC). The polymerase activities rely on diverse transient protein-protein interactions orchestrated by P playing the hub role. Among these interactions, P interacts with the NC to recruit L to the genome. The P protein also plays the role of chaperone to maintain the neosynthesized N monomeric and RNA-free (called N0) before specific encapsidation of the viral genome and antigenome. This review aims at giving an overview of recent structural information obtained for hRSV and hMPV P, N, and more specifically for P-NC and N0-P complexes that pave the way for the rational design of new antivirals against those viruses.
Collapse
|
28
|
Abstract
Viruses have evolved precise mechanisms for using the cellular physiological pathways for their perpetuation. These virus-driven biochemical events must be separated in space and time from those of the host cell. In recent years, granular structures, known for over a century for rabies virus, were shown to host viral gene function and were named using terms such as viroplasms, replication sites, inclusion bodies, or viral factories (VFs). More recently, these VFs were shown to be liquid-like, sharing properties with membrane-less organelles driven by liquid–liquid phase separation (LLPS) in a process widely referred to as biomolecular condensation. Some of the best described examples of these structures come from negative stranded RNA viruses, where micrometer size VFs are formed toward the end of the infectious cycle. We here discuss some basic principles of LLPS in connection with several examples of VFs and propose a view, which integrates viral replication mechanisms with the biochemistry underlying liquid-like organelles. In this view, viral protein and RNA components gradually accumulate up to a critical point during infection where phase separation is triggered. This yields an increase in transcription that leads in turn to increased translation and a consequent growth of initially formed condensates. According to chemical principles behind phase separation, an increase in the concentration of components increases the size of the condensate. A positive feedback cycle would thus generate in which crucial components, in particular nucleoproteins and viral polymerases, reach their highest levels required for genome replication. Progress in understanding viral biomolecular condensation leads to exploration of novel therapeutics. Furthermore, it provides insights into the fundamentals of phase separation in the regulation of cellular gene function given that virus replication and transcription, in particular those requiring host polymerases, are governed by the same biochemical principles.
Collapse
|
29
|
Cardone C, Caseau CM, Bardiaux B, Thureaux A, Galloux M, Bajorek M, Eléouët JF, Litaudon M, Bontems F, Sizun C. A Structural and Dynamic Analysis of the Partially Disordered Polymerase-Binding Domain in RSV Phosphoprotein. Biomolecules 2021; 11:biom11081225. [PMID: 34439894 PMCID: PMC8392014 DOI: 10.3390/biom11081225] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/10/2021] [Accepted: 08/13/2021] [Indexed: 12/11/2022] Open
Abstract
The phosphoprotein P of Mononegavirales (MNV) is an essential co-factor of the viral RNA polymerase L. Its prime function is to recruit L to the ribonucleocapsid composed of the viral genome encapsidated by the nucleoprotein N. MNV phosphoproteins often contain a high degree of disorder. In Pneumoviridae phosphoproteins, the only domain with well-defined structure is a small oligomerization domain (POD). We previously characterized the differential disorder in respiratory syncytial virus (RSV) phosphoprotein by NMR. We showed that outside of RSV POD, the intrinsically disordered N-and C-terminal regions displayed a structural and dynamic diversity ranging from random coil to high helical propensity. Here we provide additional insight into the dynamic behavior of PCα, a domain that is C-terminal to POD and constitutes the RSV L-binding region together with POD. By using small phosphoprotein fragments centered on or adjacent to POD, we obtained a structural picture of the POD–PCα region in solution, at the single residue level by NMR and at lower resolution by complementary biophysical methods. We probed POD–PCα inter-domain contacts and showed that small molecules were able to modify the dynamics of PCα. These structural properties are fundamental to the peculiar binding mode of RSV phosphoprotein to L, where each of the four protomers binds to L in a different way.
Collapse
Affiliation(s)
- Christophe Cardone
- Institut de Chimie des Substances Naturelles, CNRS, Université Paris Saclay, 91190 Gif-sur-Yvette, France; (C.C.); (C.-M.C.); (M.L.); (F.B.)
| | - Claire-Marie Caseau
- Institut de Chimie des Substances Naturelles, CNRS, Université Paris Saclay, 91190 Gif-sur-Yvette, France; (C.C.); (C.-M.C.); (M.L.); (F.B.)
| | - Benjamin Bardiaux
- Structural Bioinformatics Unit, Department of Structural Biology and Chemistry, Institut Pasteur, CNRS UMR3528, 78015 Paris, France;
| | | | - Marie Galloux
- Unité de Virologie et Immunologie Moléculaires, INRAE, Université Paris Saclay, 78352 Jouy-en-Josas, France; (M.G.); (M.B.); (J.-F.E.)
| | - Monika Bajorek
- Unité de Virologie et Immunologie Moléculaires, INRAE, Université Paris Saclay, 78352 Jouy-en-Josas, France; (M.G.); (M.B.); (J.-F.E.)
| | - Jean-François Eléouët
- Unité de Virologie et Immunologie Moléculaires, INRAE, Université Paris Saclay, 78352 Jouy-en-Josas, France; (M.G.); (M.B.); (J.-F.E.)
| | - Marc Litaudon
- Institut de Chimie des Substances Naturelles, CNRS, Université Paris Saclay, 91190 Gif-sur-Yvette, France; (C.C.); (C.-M.C.); (M.L.); (F.B.)
| | - François Bontems
- Institut de Chimie des Substances Naturelles, CNRS, Université Paris Saclay, 91190 Gif-sur-Yvette, France; (C.C.); (C.-M.C.); (M.L.); (F.B.)
| | - Christina Sizun
- Institut de Chimie des Substances Naturelles, CNRS, Université Paris Saclay, 91190 Gif-sur-Yvette, France; (C.C.); (C.-M.C.); (M.L.); (F.B.)
- Correspondence:
| |
Collapse
|
30
|
Rahman F, Libre C, Oleinikov A, Tcherniuk S. Chloroquine and pyrimethamine inhibit the replication of human respiratory syncytial virus A. J Gen Virol 2021; 102. [PMID: 34342560 DOI: 10.1099/jgv.0.001627] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Human respiratory syncytial virus (hRSV) is a major cause of respiratory illness in young children and can cause severe infections in the elderly or in immunocompromised adults. To date, there is no vaccine to prevent hRSV infections, and disease management is limited to preventive care by palivizumab in infants and supportive care for adults. Intervention with small-molecule antivirals specific for hRSV represents a good alternative, but no such compounds are currently approved. The investigation of existing drugs for new therapeutic purposes (drug repositioning) can be a faster approach to address this issue. In this study, we show that chloroquine and pyrimethamine inhibit the replication of human respiratory syncytial virus A (long strain) and synergistically increase the anti-replicative effect of ribavirin in cellulo. Moreover, chloroquine, but not pyrimethamine, inhibits hRSV replication in the mouse model. Our results show that chloroquine can potentially be an interesting compound for treatment of hRSV infection in monotherapy or in combination with other antivirals.
Collapse
Affiliation(s)
- Fryad Rahman
- Department of Biology, College of Science, University of Sulaimani, Kurdistan Region, Iraq.,Department of Molecular Biology, High Quality Laboratory, Anwar Sheikha Medical City, Sulaymaniyah, Iraq
| | - Camille Libre
- Cancer Research Center of Lyon, INSERM U1052 UMR CNRS 5286, Equipe labellisée Ligue Contre le Cancer, Université de Lyon, 69008 Lyon, France
| | - Andrew Oleinikov
- Charles E. Schmidt College of Medicine, Department of Biomedical Science, Florida Atlantic University, 777 Glades Rd, Boca Raton, FL, 33431, USA
| | - Sergey Tcherniuk
- Unité de Virologie et Immunologie Moléculaires, INRA, Université Paris SaclayJouy-en-Josas, France.,Department of Biological Sciences, Youth Academy of Sciences, Kiev, Ukraine
| |
Collapse
|
31
|
Cyclophilin A Inhibits Human Respiratory Syncytial Virus (RSV) Replication by Binding to RSV-N through Its PPIase Activity. J Virol 2021; 95:e0056321. [PMID: 34011546 PMCID: PMC8274602 DOI: 10.1128/jvi.00563-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Human respiratory syncytial virus (hRSV) is the most common pathogen which causes acute lower respiratory infection (ALRI) in infants. Recently, virus-host interaction has become a hot spot of virus-related research, and it needs to be further elaborated for RSV infection. In this study, we found that RSV infection significantly increased the expression of cyclophilin A (cypA) in clinical patients, mice, and epithelial cells. Therefore, we evaluated the function of cypA in RSV replication and demonstrated that virus proliferation was accelerated in cypA knockdown host cells but restrained in cypA-overexpressing host cells. Furthermore, we proved that cypA limited RSV replication depending on its PPIase activity. Moreover, we performed liquid chromatography-mass spectrometry, and the results showed that cypA could interact with several viral proteins, such as RSV-N, RSV-P, and RSV-M2-1. Finally, the interaction between cypA and RSV-N was certified by coimmunoprecipitation and immunofluorescence. Those results provided strong evidence that cypA may play an inhibitory role in RSV replication through interaction with RSV-N via its PPIase activity. IMPORTANCE RSV-N, packed in the viral genome to form the ribonucleoprotein (RNP) complex, which is recognized by the RSV RNA-dependent RNA polymerase (RdRp) complex to initiate viral replication and transcription, plays an indispensable role in the viral biosynthesis process. cypA, binding to RSV-N, may impair this function by weakening the interaction between RSV-N and RSV-P, thus leading to decreased viral production. Our research provides novel insight into cypA antiviral function, including binding to viral capsid protein to inhibit viral replication, which may be helpful for new antiviral drug exploration.
Collapse
|
32
|
A condensate-hardening drug blocks RSV replication in vivo. Nature 2021; 595:596-599. [PMID: 34234347 DOI: 10.1038/s41586-021-03703-z] [Citation(s) in RCA: 136] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 06/07/2021] [Indexed: 12/31/2022]
Abstract
Biomolecular condensates have emerged as an important subcellular organizing principle1. Replication of many viruses, including human respiratory syncytial virus (RSV), occurs in virus-induced compartments called inclusion bodies (IBs) or viroplasm2,3. IBs of negative-strand RNA viruses were recently shown to be biomolecular condensates that form through phase separation4,5. Here we report that the steroidal alkaloid cyclopamine and its chemical analogue A3E inhibit RSV replication by disorganizing and hardening IB condensates. The actions of cyclopamine and A3E were blocked by a point mutation in the RSV transcription factor M2-1. IB disorganization occurred within minutes, which suggests that these molecules directly act on the liquid properties of the IBs. A3E and cyclopamine inhibit RSV in the lungs of infected mice and are condensate-targeting drug-like small molecules that have in vivo activity. Our data show that condensate-hardening drugs may enable the pharmacological modulation of not only many previously undruggable targets in viral replication but also transcription factors at cancer-driving super-enhancers6.
Collapse
|
33
|
Dolnik O, Gerresheim GK, Biedenkopf N. New Perspectives on the Biogenesis of Viral Inclusion Bodies in Negative-Sense RNA Virus Infections. Cells 2021; 10:cells10061460. [PMID: 34200781 PMCID: PMC8230417 DOI: 10.3390/cells10061460] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/06/2021] [Accepted: 06/08/2021] [Indexed: 12/13/2022] Open
Abstract
Infections by negative strand RNA viruses (NSVs) induce the formation of viral inclusion bodies (IBs) in the host cell that segregate viral as well as cellular proteins to enable efficient viral replication. The induction of those membrane-less viral compartments leads inevitably to structural remodeling of the cellular architecture. Recent studies suggested that viral IBs have properties of biomolecular condensates (or liquid organelles), as have previously been shown for other membrane-less cellular compartments like stress granules or P-bodies. Biomolecular condensates are highly dynamic structures formed by liquid-liquid phase separation (LLPS). Key drivers for LLPS in cells are multivalent protein:protein and protein:RNA interactions leading to specialized areas in the cell that recruit molecules with similar properties, while other non-similar molecules are excluded. These typical features of cellular biomolecular condensates are also a common characteristic in the biogenesis of viral inclusion bodies. Viral IBs are predominantly induced by the expression of the viral nucleoprotein (N, NP) and phosphoprotein (P); both are characterized by a special protein architecture containing multiple disordered regions and RNA-binding domains that contribute to different protein functions. P keeps N soluble after expression to allow a concerted binding of N to the viral RNA. This results in the encapsidation of the viral genome by N, while P acts additionally as a cofactor for the viral polymerase, enabling viral transcription and replication. Here, we will review the formation and function of those viral inclusion bodies upon infection with NSVs with respect to their nature as biomolecular condensates.
Collapse
|
34
|
Braun MR, Noton SL, Blanchard EL, Shareef A, Santangelo PJ, Johnson WE, Fearns R. Respiratory syncytial virus M2-1 protein associates non-specifically with viral messenger RNA and with specific cellular messenger RNA transcripts. PLoS Pathog 2021; 17:e1009589. [PMID: 34003848 PMCID: PMC8162694 DOI: 10.1371/journal.ppat.1009589] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 05/28/2021] [Accepted: 04/26/2021] [Indexed: 11/18/2022] Open
Abstract
Respiratory syncytial virus (RSV) is a major cause of respiratory disease in infants and the elderly. RSV is a non-segmented negative strand RNA virus. The viral M2-1 protein plays a key role in viral transcription, serving as an elongation factor to enable synthesis of full-length mRNAs. M2-1 contains an unusual CCCH zinc-finger motif that is conserved in the related human metapneumovirus M2-1 protein and filovirus VP30 proteins. Previous biochemical studies have suggested that RSV M2-1 might bind to specific virus RNA sequences, such as the transcription gene end signals or poly A tails, but there was no clear consensus on what RSV sequences it binds. To determine if M2-1 binds to specific RSV RNA sequences during infection, we mapped points of M2-1:RNA interactions in RSV-infected cells at 8 and 18 hours post infection using crosslinking immunoprecipitation with RNA sequencing (CLIP-Seq). This analysis revealed that M2-1 interacts specifically with positive sense RSV RNA, but not negative sense genome RNA. It also showed that M2-1 makes contacts along the length of each viral mRNA, indicating that M2-1 functions as a component of the transcriptase complex, transiently associating with nascent mRNA being extruded from the polymerase. In addition, we found that M2-1 binds specific cellular mRNAs. In contrast to the situation with RSV mRNA, M2-1 binds discrete sites within cellular mRNAs, with a preference for A/U rich sequences. These results suggest that in addition to its previously described role in transcription elongation, M2-1 might have an additional role involving cellular RNA interactions.
Collapse
Affiliation(s)
- Molly R. Braun
- Department of Microbiology, Boston University School of Medicine; National Emerging Infectious Diseases Laboratories, Boston University, Boston, Massachusetts, United States of America
| | - Sarah L. Noton
- Department of Microbiology, Boston University School of Medicine; National Emerging Infectious Diseases Laboratories, Boston University, Boston, Massachusetts, United States of America
| | - Emmeline L. Blanchard
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, United States of America
| | - Afzaal Shareef
- Department of Microbiology, Boston University School of Medicine; National Emerging Infectious Diseases Laboratories, Boston University, Boston, Massachusetts, United States of America
| | - Philip J. Santangelo
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, United States of America
| | - W. Evan Johnson
- Division of Computational Biomedicine and Bioinformatics Program and Department of Biostatistics, Boston University, Boston, Massachusetts, United States of America
| | - Rachel Fearns
- Department of Microbiology, Boston University School of Medicine; National Emerging Infectious Diseases Laboratories, Boston University, Boston, Massachusetts, United States of America
| |
Collapse
|
35
|
Lin GL, Golubchik T, Drysdale S, O'Connor D, Jefferies K, Brown A, de Cesare M, Bonsall D, Ansari MA, Aerssens J, Bont L, Openshaw P, Martinón-Torres F, Bowden R, Pollard AJ. Simultaneous Viral Whole-Genome Sequencing and Differential Expression Profiling in Respiratory Syncytial Virus Infection of Infants. J Infect Dis 2021; 222:S666-S671. [PMID: 32702120 DOI: 10.1093/infdis/jiaa448] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 07/18/2020] [Indexed: 11/12/2022] Open
Abstract
Targeted metagenomics using strand-specific libraries with target enrichment is a sensitive, generalized approach to pathogen sequencing and transcriptome profiling. Using this method, we recovered 13 (76%) complete human respiratory syncytial virus (RSV) genomes from 17 clinical respiratory samples, reconstructed the phylogeny of the infecting viruses, and detected differential gene expression between 2 RSV subgroups, specifically, a lower expression of the P gene and a higher expression of the M2 gene in RSV-A than in RSV-B. This methodology can help to relate viral genetics to clinical phenotype and facilitate ongoing population-level RSV surveillance and vaccine development. Clinical Trials Registration. NCT03627572 and NCT03756766.
Collapse
Affiliation(s)
- Gu-Lung Lin
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, United Kingdom.,National Institute for Health Research Oxford Biomedical Research Centre, Oxford, United Kingdom
| | - Tanya Golubchik
- Big Data Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Simon Drysdale
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, United Kingdom.,National Institute for Health Research Oxford Biomedical Research Centre, Oxford, United Kingdom.,Department of Paediatrics, St George's University Hospitals NHS Foundation Trust, London, United Kingdom
| | - Daniel O'Connor
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, United Kingdom.,National Institute for Health Research Oxford Biomedical Research Centre, Oxford, United Kingdom
| | - Kimberley Jefferies
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, United Kingdom.,National Institute for Health Research Oxford Biomedical Research Centre, Oxford, United Kingdom
| | - Anthony Brown
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom
| | | | - David Bonsall
- Big Data Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom.,Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - M Azim Ansari
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Jeroen Aerssens
- Translational Biomarkers, Infectious Diseases Therapeutic Area, Janssen Pharmaceutica NV, Beerse, Belgium
| | - Louis Bont
- Department of Pediatrics, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, the Netherlands.,ReSViNET Foundation, Zeist, the Netherlands
| | - Peter Openshaw
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Federico Martinón-Torres
- Translational Pediatrics and Infectious Diseases, Hospital Clínico Universitario de Santiago de Compostela, Santiago de Compostela, Spain.,Genetics, Vaccines, Infectious Diseases, and Pediatrics Research Group, Instituto de Investigación Sanitaria de Santiago de Compostela, Santiago de Compostela, Spain
| | - Rory Bowden
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Andrew J Pollard
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, United Kingdom.,National Institute for Health Research Oxford Biomedical Research Centre, Oxford, United Kingdom
| | | |
Collapse
|
36
|
Tetramerization of Phosphoprotein is Essential for Respiratory Syncytial Virus Budding while its N Terminal Region Mediates Direct Interactions with the Matrix Protein. J Virol 2021; 95:JVI.02217-20. [PMID: 33408180 PMCID: PMC8092690 DOI: 10.1128/jvi.02217-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
It was shown previously that the Matrix (M), Phosphoprotein (P), and the Fusion (F) proteins of Respiratory syncytial virus (RSV) are sufficient to produce virus-like particles (VLPs) that resemble the RSV infection-induced virions. However, the exact mechanism and interactions among the three proteins are not known. This work examines the interaction between P and M during RSV assembly and budding. We show that M interacts with P in the absence of other viral proteins in cells using a Split Nano Luciferase assay. By using recombinant proteins, we demonstrate a direct interaction between M and P. By using Nuclear Magnetic Resonance (NMR) we identify three novel M interaction sites on P, namely site I in the αN2 region, site II in the 115-125 region, and the oligomerization domain (OD). We show that the OD, and likely the tetrameric structural organization of P, is required for virus-like filament formation and VLP release. Although sites I and II are not required for VLP formation, they appear to modulate P levels in RSV VLPs.Importance Human RSV is the commonest cause of infantile bronchiolitis in the developed world and of childhood deaths in resource-poor settings. It is a major unmet target for vaccines and anti-viral drugs. The lack of knowledge of RSV budding mechanism presents a continuing challenge for VLP production for vaccine purpose. We show that direct interaction between P and M modulates RSV VLP budding. This further emphasizes P as a central regulator of RSV life cycle, as an essential actor for transcription and replication early during infection and as a mediator for assembly and budding in the later stages for virus production.
Collapse
|
37
|
Cardone C, Caseau CM, Pereira N, Sizun C. Pneumoviral Phosphoprotein, a Multidomain Adaptor-Like Protein of Apparent Low Structural Complexity and High Conformational Versatility. Int J Mol Sci 2021; 22:ijms22041537. [PMID: 33546457 PMCID: PMC7913705 DOI: 10.3390/ijms22041537] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 01/31/2021] [Accepted: 02/01/2021] [Indexed: 01/16/2023] Open
Abstract
Mononegavirales phosphoproteins (P) are essential co-factors of the viral polymerase by serving as a linchpin between the catalytic subunit and the ribonucleoprotein template. They have highly diverged, but their overall architecture is conserved. They are multidomain proteins, which all possess an oligomerization domain that separates N- and C-terminal domains. Large intrinsically disordered regions constitute their hallmark. Here, we exemplify their structural features and interaction potential, based on the Pneumoviridae P proteins. These P proteins are rather small, and their oligomerization domain is the only part with a defined 3D structure, owing to a quaternary arrangement. All other parts are either flexible or form short-lived secondary structure elements that transiently associate with the rest of the protein. Pneumoviridae P proteins interact with several viral and cellular proteins that are essential for viral transcription and replication. The combination of intrinsic disorder and tetrameric organization enables them to structurally adapt to different partners and to act as adaptor-like platforms to bring the latter close in space. Transient structures are stabilized in complex with protein partners. This class of proteins gives an insight into the structural versatility of non-globular intrinsically disordered protein domains.
Collapse
|
38
|
Nevers Q, Albertini AA, Lagaudrière-Gesbert C, Gaudin Y. Negri bodies and other virus membrane-less replication compartments. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2020; 1867:118831. [PMID: 32835749 PMCID: PMC7442162 DOI: 10.1016/j.bbamcr.2020.118831] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/14/2020] [Accepted: 08/14/2020] [Indexed: 12/25/2022]
Abstract
Viruses reshape the organization of the cell interior to achieve different steps of their cellular cycle. Particularly, viral replication and assembly often take place in viral factories where specific viral and cellular proteins as well as nucleic acids concentrate. Viral factories can be either membrane-delimited or devoid of any cellular membranes. In the latter case, they are referred as membrane-less replication compartments. The most emblematic ones are the Negri bodies, which are inclusion bodies that constitute the hallmark of rabies virus infection. Interestingly, Negri bodies and several other viral replication compartments have been shown to arise from a liquid-liquid phase separation process and, thus, constitute a new class of liquid organelles. This is a paradigm shift in the field of virus replication. Here, we review the different aspects of membrane-less virus replication compartments with a focus on the Mononegavirales order and discuss their interactions with the host cell machineries and the cytoskeleton. We particularly examine the interplay between viral factories and the cellular innate immune response, of which several components also form membrane-less condensates in infected cells.
Collapse
Affiliation(s)
- Quentin Nevers
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Aurélie A Albertini
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Cécile Lagaudrière-Gesbert
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Yves Gaudin
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France.
| |
Collapse
|
39
|
Biophysical and Dynamic Characterization of Fine-Tuned Binding of the Human Respiratory Syncytial Virus M2-1 Core Domain to Long RNAs. J Virol 2020; 94:JVI.01505-20. [PMID: 32938771 DOI: 10.1128/jvi.01505-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 09/15/2020] [Indexed: 11/20/2022] Open
Abstract
The human respiratory syncytial virus (hRSV) M2-1 protein functions as a processivity and antitermination factor of the viral polymerase complex. Here, the first evidence that the hRSV M2-1 core domain (cdM2-1) alone has an unfolding activity for long RNAs is presented and the biophysical and dynamic characterization of the cdM2-1/RNA complex is provided. The main contact region of cdM2-1 with RNA was the α1-α2-α5-α6 helix bundle, which suffered local conformational changes and promoted the RNA unfolding activity. This activity may be triggered by base-pairing recognition. RNA molecules wrap around the whole cdM2-1, protruding their termini over the domain. The α2-α3 and α3-α4 loops of cdM2-1 were marked by an increase in picosecond internal motions upon RNA binding, even though they are not directly involved in the interaction. The results revealed that the cdM2-1/RNA complex originates from a fine-tuned binding, contributing to the unraveling interaction aspects necessary for M2-1 activity.IMPORTANCE The main outcome is the molecular description of the fine-tuned binding of the cdM2-1/RNA complex and the provision of evidence that the domain alone has unfolding activity for long RNAs. This binding mode is essential in the understanding of the function in the full-length protein. Human respiratory syncytial virus (hRSV), an orthopneumovirus, stands out for the unique role of its M2-1 protein as a transcriptional antitermination factor able to increase RNA polymerase processivity.
Collapse
|
40
|
Wu L, Jin D, Wang D, Jing X, Gong P, Qin Y, Chen M. The two-stage interaction of Ebola virus VP40 with nucleoprotein results in a switch from viral RNA synthesis to virion assembly/budding. Protein Cell 2020; 13:120-140. [PMID: 33141416 PMCID: PMC8783937 DOI: 10.1007/s13238-020-00764-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 07/06/2020] [Indexed: 11/28/2022] Open
Abstract
Ebola virus (EBOV) is an enveloped negative-sense RNA virus and a member of the filovirus family. Nucleoprotein (NP) expression alone leads to the formation of inclusion bodies (IBs), which are critical for viral RNA synthesis. The matrix protein, VP40, not only plays a critical role in virus assembly/budding, but also can regulate transcription and replication of the viral genome. However, the molecular mechanism by which VP40 regulates viral RNA synthesis and virion assembly/budding is unknown. Here, we show that within IBs the N-terminus of NP recruits VP40 and is required for VLP-containing NP release. Furthermore, we find four point mutations (L692A, P697A, P698A and W699A) within the C-terminal hydrophobic core of NP result in a stronger VP40-NP interaction within IBs, sequestering VP40 within IBs, reducing VP40-VLP egress, abolishing the incorporation of NC-like structures into VP40-VLP, and inhibiting viral RNA synthesis, suggesting that the interaction of N-terminus of NP with VP40 induces a conformational change in the C-terminus of NP. Consequently, the C-terminal hydrophobic core of NP is exposed and binds VP40, thereby inhibiting RNA synthesis and initiating virion assembly/budding.
Collapse
Affiliation(s)
- Linjuan Wu
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Dongning Jin
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Dan Wang
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Xuping Jing
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Peng Gong
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Yali Qin
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| | - Mingzhou Chen
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
41
|
Jobe F, Simpson J, Hawes P, Guzman E, Bailey D. Respiratory Syncytial Virus Sequesters NF-κB Subunit p65 to Cytoplasmic Inclusion Bodies To Inhibit Innate Immune Signaling. J Virol 2020; 94:JVI.01380-20. [PMID: 32878896 PMCID: PMC7592213 DOI: 10.1128/jvi.01380-20] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 08/28/2020] [Indexed: 12/20/2022] Open
Abstract
Viruses routinely employ strategies to prevent the activation of innate immune signaling in infected cells. Respiratory syncytial virus (RSV) is no exception, as it encodes two accessory proteins (NS1 and NS2) which are well established to block interferon signaling. However, RSV-encoded mechanisms for inhibiting NF-κB signaling are less well characterized. In this study, we identified RSV-mediated antagonism of this pathway, independent of the NS1 and NS2 proteins and indeed distinct from other known viral mechanisms of NF-κB inhibition. In both human and bovine RSV-infected cells, we demonstrated that the p65 subunit of NF-κB is rerouted to perinuclear puncta in the cytoplasm, which are synonymous with viral inclusion bodies (IBs), the site for viral RNA replication. Captured p65 was unable to translocate to the nucleus or transactivate a NF-κB reporter following tumor necrosis factor alpha (TNF-α) stimulation, confirming the immune-antagonistic nature of this sequestration. Subsequently, we used correlative light electron microscopy (CLEM) to colocalize the RSV N protein and p65 within bovine RSV (bRSV) IBs, which are granular, membraneless regions of cytoplasm with liquid organelle-like properties. Additional characterization of bRSV IBs indicated that although they are likely formed by liquid-liquid phase separation (LLPS), they have a differential sensitivity to hypotonic shock proportional to their size. Together, these data identify a novel mechanism for viral antagonism of innate immune signaling which relies on sequestration of the NF-κB subunit p65 to a biomolecular condensate-a mechanism conserved across the Orthopneumovirus genus and not host-cell specific. More generally, they provide additional evidence that RNA virus IBs are important immunomodulatory complexes within infected cells.IMPORTANCE Many viruses replicate almost entirely in the cytoplasm of infected cells; however, how these pathogens are able to compartmentalize their life cycle to provide favorable conditions for replication and to avoid the litany of antiviral detection mechanisms in the cytoplasm remains relatively uncharacterized. In this manuscript, we show that bovine respiratory syncytial virus (bRSV), which infects cattle, does this by generating inclusion bodies in the cytoplasm of infected cells. We confirm that both bRSV and human RSV viral RNA replication takes place in these inclusion bodies, likely meaning these organelles are a functionally conserved feature of this group of viruses (the orthopneumoviruses). Importantly, we also showed that these organelles are able to capture important innate immune transcription factors (in this case NF-KB), blocking the normal signaling processes that tell the nucleus the cell is infected, which may help us to understand how these viruses cause disease.
Collapse
Affiliation(s)
| | | | - Philippa Hawes
- The Pirbright Institute, Guildford, Surrey, United Kingdom
| | - Efrain Guzman
- The Pirbright Institute, Guildford, Surrey, United Kingdom
| | - Dalan Bailey
- The Pirbright Institute, Guildford, Surrey, United Kingdom
| |
Collapse
|
42
|
Minimal Elements Required for the Formation of Respiratory Syncytial Virus Cytoplasmic Inclusion Bodies In Vivo and In Vitro. mBio 2020; 11:mBio.01202-20. [PMID: 32963000 PMCID: PMC7512546 DOI: 10.1128/mbio.01202-20] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Respiratory syncytial virus (RSV) is the leading cause of lower respiratory tract illness in infants, elderly, and immunocompromised people. No vaccine or efficient antiviral treatment is available against this virus. The replication and transcription steps of the viral genome are appealing mechanisms to target for the development of new antiviral strategies. These activities take place within cytoplasmic inclusion bodies (IBs) that assemble during infection. Although expression of both the viral nucleoprotein (N) and phosphoprotein (P) allows induction of the formation of these IBs, the mechanism sustaining their assembly remains poorly characterized. Here, we identified key elements of N and P required for the scaffolding of IBs and managed for the first time to reconstitute RSV pseudo-IBs in vitro by coincubating recombinant N and P proteins. Our results provide strong evidence that the biogenesis of RSV IBs occurs through liquid-liquid phase transition mediated by N-P interactions. Infection of host cells by the respiratory syncytial virus (RSV) is characterized by the formation of spherical cytoplasmic inclusion bodies (IBs). These structures, which concentrate all the proteins of the polymerase complex as well as some cellular proteins, were initially considered aggresomes formed by viral dead-end products. However, recent studies revealed that IBs are viral factories where viral RNA synthesis, i.e., replication and transcription, occurs. The analysis of IBs by electron microscopy revealed that they are membrane-less structures, and accumulated data on their structure, organization, and kinetics of formation revealed that IBs share the characteristics of cellular organelles, such as P-bodies or stress granules, suggesting that their morphogenesis depends on a liquid-liquid phase separation mechanism. It was previously shown that expression of the RSV nucleoprotein N and phosphoprotein P of the polymerase complex is sufficient to induce the formation of pseudo-IBs. Here, using a series of truncated P proteins, we identified the domains of P required for IB formation and show that the oligomeric state of N, provided it can interact with RNA, is critical for their morphogenesis. We also show that pseudo-IBs can form in vitro when recombinant N and P proteins are mixed. Finally, using fluorescence recovery after photobleaching approaches, we reveal that in cellula and in vitro IBs are liquid organelles. Our results strongly support the liquid-liquid phase separation nature of IBs and pave the way for further characterization of their dynamics.
Collapse
|
43
|
Dawson AR, Wilson GM, Freiberger EC, Mondal A, Coon JJ, Mehle A. Phosphorylation controls RNA binding and transcription by the influenza virus polymerase. PLoS Pathog 2020; 16:e1008841. [PMID: 32881973 PMCID: PMC7494117 DOI: 10.1371/journal.ppat.1008841] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 09/16/2020] [Accepted: 07/25/2020] [Indexed: 12/03/2022] Open
Abstract
The influenza virus polymerase transcribes and replicates the viral genome. The proper timing and balance of polymerase activity is important for successful replication. Genome replication is controlled in part by phosphorylation of NP that regulates assembly of the replication machinery. However, it remains unclear whether phosphorylation directly regulated polymerase activity. Here we identified polymerase phosphosites that control its function. Mutating phosphosites in the catalytic subunit PB1 altered polymerase activity and virus replication. Biochemical analyses revealed phosphorylation events that disrupted global polymerase function by blocking the NTP entry channel or preventing RNA binding. We also identified a regulatory site that split polymerase function by specifically suppressing transcription. These experiments show that host kinases phospho-regulate viral RNA synthesis directly by modulating polymerase activity and indirectly by controlling assembly of replication machinery. Further, they suggest polymerase phosphorylation may bias replication versus transcription at discrete times or locations during the infectious cycle. The influenza virus polymerase is a multifunctional enzyme directing viral gene expression and genome replication. Immediately following infection, the polymerase primarily performs transcription to make the viral mRNAs that program the replication cycle. The polymerase then shifts output to produce more copies of the viral genome at later stages of infection. The balance between transcription and replication is critical for successful infection. Here we identify phosphorylation sites within the viral polymerase and describe how these post-translational modifications control polymerase activity. Cellular kinases modify the viral polymerase. We identified a phosphorylation site in the catalytic subunit PB1 that selectively disables transcription, but not replication. We also describe a phosphorylation site in PB1 that disrupts binding to viral RNAs, disabling all activities of the polymerase. These modifications may establish polymerases with specialized function, and help regulate the balance between transcription and replication throughout the viral life cycle.
Collapse
Affiliation(s)
- Anthony R. Dawson
- Department of Medical Microbiology & Immunology, University of Wisconsin–Madison, Madison, WI, United States of America
| | - Gary M. Wilson
- Department of Chemistry, University of Wisconsin–Madison, Madison, WI, United States of America
| | - Elyse C. Freiberger
- Department of Biomolecular Chemistry, University of Wisconsin–Madison, Madison, WI, United States of America
| | - Arindam Mondal
- Department of Medical Microbiology & Immunology, University of Wisconsin–Madison, Madison, WI, United States of America
| | - Joshua J. Coon
- Department of Chemistry, University of Wisconsin–Madison, Madison, WI, United States of America
- Department of Biomolecular Chemistry, University of Wisconsin–Madison, Madison, WI, United States of America
| | - Andrew Mehle
- Department of Medical Microbiology & Immunology, University of Wisconsin–Madison, Madison, WI, United States of America
- * E-mail:
| |
Collapse
|
44
|
Interferon-Induced Protein 44 and Interferon-Induced Protein 44-Like Restrict Replication of Respiratory Syncytial Virus. J Virol 2020; 94:JVI.00297-20. [PMID: 32611756 PMCID: PMC7459546 DOI: 10.1128/jvi.00297-20] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 06/23/2020] [Indexed: 12/12/2022] Open
Abstract
RSV infects all children under 2 years of age, but only a subset of children get severe disease. We hypothesize that susceptibility to severe RSV necessitating hospitalization in children without predefined risk factors is, in part, mediated at the antiviral gene level. However, there is a large array of antiviral genes, particularly in the ISG family, the mechanism of which is poorly understood. Having previously identified IFI44 and IFI44L as possible genes of interest in a bioinformatic screen, we dissected the function of these two genes in the control of RSV. Through a range of overexpression and knockout studies, we show that the genes are antiviral and antiproliferative. This study is important because IFI44 and IFI44L are upregulated after a wide range of viral infections, and IFI44L can serve as a diagnostic biomarker of viral infection. Cellular intrinsic immunity, mediated by the expression of an array of interferon-stimulated antiviral genes, is a vital part of host defense. We have previously used a bioinformatic screen to identify two interferon-stimulated genes (ISG) with poorly characterized function, interferon-induced protein 44 (IFI44) and interferon-induced protein 44-like (IFI44L), as potentially being important in respiratory syncytial virus (RSV) infection. Using overexpression systems, CRISPR-Cas9-mediated knockout, and a knockout mouse model, we investigated the antiviral capability of these genes in the control of RSV replication. Overexpression of IFI44 or IFI44L was sufficient to restrict RSV infection at an early time postinfection. Knocking out these genes in mammalian airway epithelial cells increased levels of infection. Both genes express antiproliferative factors that have no effect on RSV attachment but reduce RSV replication in a minigenome assay. The loss of Ifi44 was associated with a more severe infection phenotype in a mouse model of infection. These studies demonstrate a function for IFI44 and IFI44L in controlling RSV infection. IMPORTANCE RSV infects all children under 2 years of age, but only a subset of children get severe disease. We hypothesize that susceptibility to severe RSV necessitating hospitalization in children without predefined risk factors is, in part, mediated at the antiviral gene level. However, there is a large array of antiviral genes, particularly in the ISG family, the mechanism of which is poorly understood. Having previously identified IFI44 and IFI44L as possible genes of interest in a bioinformatic screen, we dissected the function of these two genes in the control of RSV. Through a range of overexpression and knockout studies, we show that the genes are antiviral and antiproliferative. This study is important because IFI44 and IFI44L are upregulated after a wide range of viral infections, and IFI44L can serve as a diagnostic biomarker of viral infection.
Collapse
|
45
|
Hara K, Yaita K, Khamrin P, Kumthip K, Kashiwagi T, Eléouët JF, Rameix-Welti MA, Watanabe H. A small fragmented P protein of respiratory syncytial virus inhibits virus infection by targeting P protein. J Gen Virol 2020; 101:21-32. [PMID: 31702536 DOI: 10.1099/jgv.0.001350] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Peptide-based inhibitors hold promising potential in the development of antiviral therapy. Here, we investigated the antiviral potential of fragmented viral proteins derived from ribonucleoprotein (RNP) components of the human respiratory syncytial virus (HRSV). Based on a mimicking approach that targets the functional domains of viral proteins, we designed various fragments of nucleoprotein (N), matrix protein M2-1 and phosphoprotein (P) and tested the antiviral activity in an RSV mini-genome system. We found that the fragment comprising residues 130-180 and 212-241 in the C-terminal region of P (81 amino acid length), denoted as P Fr, significantly inhibited the polymerase activity through competitive binding to the full-length P. Further deletion analysis of P Fr suggested that three functional domains in P Fr (oligomerization, L-binding and nucleocapsid binding) are required for maximum inhibitory activity. More importantly, a purified recombinant P Fr displayed significant antiviral activity at low nanomolar range in RSV-infected HEp-2 cells. These results highlight P as an important target for the development of antiviral compounds against RSV and other paramyxoviruses.
Collapse
Affiliation(s)
- Koyu Hara
- Department of Infection Control and Prevention, Kurume University School of Medicine, Fukuoka, 830-0011, Japan
| | - Kenichiro Yaita
- Division of Infectious diseases, Chidoribashi General Hospital, Fukuoka 812-8633, Japan
| | - Pattara Khamrin
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Kattareeya Kumthip
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Takahito Kashiwagi
- Department of Infection Control and Prevention, Kurume University School of Medicine, Fukuoka, 830-0011, Japan
| | - Jean-François Eléouët
- Unité de Virologie et Immunologie Moléculaires (UR892), INRA, Université Paris-Saclay, Jouy-en-Josas, France
| | - Marie-Anne Rameix-Welti
- AP-HP, Laboratoire de Microbiologie, Hôpital Ambroise Paré, Boulogne-Billancourt, France.,UMR1173, INSERM, Université de Versailles St. Quentin, Montigny le Bretonneux, France
| | - Hiroshi Watanabe
- Department of Infection Control and Prevention, Kurume University School of Medicine, Fukuoka, 830-0011, Japan
| |
Collapse
|
46
|
Gao Y, Cao D, Pawnikar S, John KP, Ahn HM, Hill S, Ha JM, Parikh P, Ogilvie C, Swain A, Yang A, Bell A, Salazar A, Miao Y, Liang B. Structure of the Human Respiratory Syncytial Virus M2-1 Protein in Complex with a Short Positive-Sense Gene-End RNA. Structure 2020; 28:979-990.e4. [PMID: 32697936 DOI: 10.1016/j.str.2020.07.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 06/19/2020] [Accepted: 07/01/2020] [Indexed: 12/25/2022]
Abstract
The M2-1 protein of human respiratory syncytial virus (HRSV) is a transcription anti-terminator that regulates the processivity of the HRSV RNA-dependent RNA polymerase (RdRP). Here, we report a crystal structure of HRSV M2-1 bound to a short positive-sense gene-end RNA (SH7) at 2.7 Å resolution. We identified multiple critical residues of M2-1 involved in RNA interaction and examined their roles using mutagenesis and MicroScale Thermophoresis (MST) assay. We found that hydrophobic residue Phe23 is indispensable for M2-1 to recognize the base of RNA. We also captured spontaneous binding of RNA (SH7) to M2-1 in all-atom simulations using a robust Gaussian accelerated molecular dynamics (GaMD) method. Both experiments and simulations revealed that the interactions of RNA with two separate domains of M2-1, the zinc-binding domain (ZBD) and the core domain (CD), are independent of each other. Collectively, our results provided a structural basis for RNA recognition by HRSV M2-1.
Collapse
Affiliation(s)
- Yunrong Gao
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322 USA
| | - Dongdong Cao
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322 USA
| | - Shristi Pawnikar
- Center for Computational Biology and Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66047, USA
| | - Karen P John
- Center for Computational Biology and Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66047, USA
| | - Hyunjun Max Ahn
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322 USA
| | - Shaylan Hill
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322 USA
| | - Ju Mi Ha
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322 USA
| | - Priyal Parikh
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322 USA
| | - Claire Ogilvie
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322 USA
| | - Anshuman Swain
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322 USA
| | - Amy Yang
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322 USA
| | - Amber Bell
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322 USA
| | - Angela Salazar
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322 USA
| | - Yinglong Miao
- Center for Computational Biology and Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66047, USA.
| | - Bo Liang
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322 USA.
| |
Collapse
|
47
|
The Interactome analysis of the Respiratory Syncytial Virus protein M2-1 suggests a new role in viral mRNA metabolism post-transcription. Sci Rep 2019; 9:15258. [PMID: 31649314 PMCID: PMC6813310 DOI: 10.1038/s41598-019-51746-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 10/07/2019] [Indexed: 01/18/2023] Open
Abstract
Human respiratory syncytial virus (RSV) is a globally prevalent negative-stranded RNA virus, which can cause life-threatening respiratory infections in young children, elderly people and immunocompromised patients. Its transcription termination factor M2-1 plays an essential role in viral transcription, but the mechanisms underpinning its function are still unclear. We investigated the cellular interactome of M2-1 using green fluorescent protein (GFP)-trap immunoprecipitation on RSV infected cells coupled with mass spectrometry analysis. We identified 137 potential cellular partners of M2-1, among which many proteins associated with mRNA metabolism, and particularly mRNA maturation, translation and stabilization. Among these, the cytoplasmic polyA-binding protein 1 (PABPC1), a candidate with a major role in both translation and mRNA stabilization, was confirmed to interact with M2-1 using protein complementation assay and specific immunoprecipitation. PABPC1 was also shown to colocalize with M2-1 from its accumulation in inclusion bodies associated granules (IBAGs) to its liberation in the cytoplasm. Altogether, these results strongly suggest that M2-1 interacts with viral mRNA and mRNA metabolism factors from transcription to translation, and imply that M2-1 may have an additional role in the fate of viral mRNA downstream of transcription.
Collapse
|
48
|
Gilman MSA, Liu C, Fung A, Behera I, Jordan P, Rigaux P, Ysebaert N, Tcherniuk S, Sourimant J, Eléouët JF, Sutto-Ortiz P, Decroly E, Roymans D, Jin Z, McLellan JS. Structure of the Respiratory Syncytial Virus Polymerase Complex. Cell 2019; 179:193-204.e14. [PMID: 31495574 PMCID: PMC7111336 DOI: 10.1016/j.cell.2019.08.014] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 08/03/2019] [Accepted: 08/06/2019] [Indexed: 01/29/2023]
Abstract
Numerous interventions are in clinical development for respiratory syncytial virus (RSV) infection, including small molecules that target viral transcription and replication. These processes are catalyzed by a complex comprising the RNA-dependent RNA polymerase (L) and the tetrameric phosphoprotein (P). RSV P recruits multiple proteins to the polymerase complex and, with the exception of its oligomerization domain, is thought to be intrinsically disordered. Despite their critical roles in RSV transcription and replication, structures of L and P have remained elusive. Here, we describe the 3.2-Å cryo-EM structure of RSV L bound to tetrameric P. The structure reveals a striking tentacular arrangement of P, with each of the four monomers adopting a distinct conformation. The structure also rationalizes inhibitor escape mutants and mutations observed in live-attenuated vaccine candidates. These results provide a framework for determining the molecular underpinnings of RSV replication and transcription and should facilitate the design of effective RSV inhibitors.
Collapse
Affiliation(s)
- Morgan S A Gilman
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Cheng Liu
- Janssen BioPharma, Inc., Janssen Pharmaceutical Companies, South San Francisco, CA 94080, USA
| | - Amy Fung
- Janssen BioPharma, Inc., Janssen Pharmaceutical Companies, South San Francisco, CA 94080, USA
| | - Ishani Behera
- Janssen BioPharma, Inc., Janssen Pharmaceutical Companies, South San Francisco, CA 94080, USA
| | - Paul Jordan
- Janssen BioPharma, Inc., Janssen Pharmaceutical Companies, South San Francisco, CA 94080, USA
| | - Peter Rigaux
- Janssen Infectious Diseases and Vaccines, 2340 Beerse, Belgium
| | - Nina Ysebaert
- Janssen Infectious Diseases and Vaccines, 2340 Beerse, Belgium
| | - Sergey Tcherniuk
- Unité de Virologie et Immunologie Moléculaires, INRA, Université Paris Saclay, 78350 Jouy en Josas, France
| | - Julien Sourimant
- Unité de Virologie et Immunologie Moléculaires, INRA, Université Paris Saclay, 78350 Jouy en Josas, France
| | - Jean-François Eléouët
- Unité de Virologie et Immunologie Moléculaires, INRA, Université Paris Saclay, 78350 Jouy en Josas, France
| | | | - Etienne Decroly
- Aix Marseille Université, CNRS, AFMB UMR 7257, Marseille, France
| | - Dirk Roymans
- Janssen Infectious Diseases and Vaccines, 2340 Beerse, Belgium
| | - Zhinan Jin
- Janssen BioPharma, Inc., Janssen Pharmaceutical Companies, South San Francisco, CA 94080, USA
| | - Jason S McLellan
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
49
|
Lin X, Ammosova T, Choy MS, Pietzsch CA, Ivanov A, Ahmad A, Saygideğer Y, Kumari N, Kovalskyy D, Üren A, Peti W, Bukreyev A, Nekhai S. Targeting the Non-catalytic RVxF Site of Protein Phosphatase-1 With Small Molecules for Ebola Virus Inhibition. Front Microbiol 2019; 10:2145. [PMID: 31572348 PMCID: PMC6753193 DOI: 10.3389/fmicb.2019.02145] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 08/30/2019] [Indexed: 12/17/2022] Open
Abstract
Ebola virus (EBOV) is a non-segmented negative-sense RNA virus that causes a severe human disease. The ongoing EBOV outbreak in the Eastern part of Democratic Republic of the Congo has resulted to date in over 2500 confirmed cases including over 1500 deaths. Difficulties with vaccine administration indicate the necessity for development of new general drugs and therapeutic strategies against EBOV. Host Ser/Thr protein phosphatases, particularly PP1 and PP2A, facilitate EBOV transcription by dephosphorylating the EBOV VP30 protein and switching activity of the polymerase complex toward replication. Previously, we developed small molecule 1E7-03 that targeted host protein phosphatase-1 (PP1) and induces phosphorylation of EBOV VP30 protein thus shifting transcription-replication balance and inhibiting EBOV replication. Here, we developed a new EBOV inhibitor, 1E7-07, that potently inhibits EBOV replication and displays significantly improved metabolic stability when compared to previously described 1E7-03. Proteome analysis of VP30 shows that 1E7-07 increases its phosphorylation on Thr-119 and Ser-124 over 3-fold with p < 0.001, which likely contributes to EBOV inhibition. We analyzed 1E7-07 binding to PP1 using a mass spectrometry-based protein painting approach. Combined with computational docking, protein painting shows that 1E7-07 binds to several PP1 sites including the RVxF site, C-terminal groove and NIPP1-helix binding pocket. Further analysis using surface plasmon resonance and a split NanoBiT system demonstrates that 1E7-07 binds primarily to the RVxF site. Together, detailed analysis of 1E7-07 binding to PP1 and identification of the RVxF site as the main binding site opens up an opportunity for future development of PP1-targeting EBOV inhibitors.
Collapse
Affiliation(s)
- Xionghao Lin
- Center for Sickle Cell Disease, College of Medicine, Howard University, Washington, DC, United States
- College of Dentistry, Howard University, Washington, DC, United States
| | - Tatiana Ammosova
- Center for Sickle Cell Disease, College of Medicine, Howard University, Washington, DC, United States
- Department of Medicine, College of Medicine, Howard University, Washington, DC, United States
- Yakut Science Centre of Complex Medical Problems, Yakutsk, Russia
| | - Meng S. Choy
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, United States
| | - Colette A. Pietzsch
- Department of Pathology, Department of Microbiology and Immunology, and Galveston National Laboratory, University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Andrey Ivanov
- Center for Sickle Cell Disease, College of Medicine, Howard University, Washington, DC, United States
| | - Asrar Ahmad
- Center for Sickle Cell Disease, College of Medicine, Howard University, Washington, DC, United States
| | - Yasemin Saygideğer
- Georgetown Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, United States
| | - Namita Kumari
- Center for Sickle Cell Disease, College of Medicine, Howard University, Washington, DC, United States
| | - Dmytro Kovalskyy
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, TX, United States
| | - Aykut Üren
- Georgetown Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, United States
| | - Wolfgang Peti
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, United States
| | - Alexander Bukreyev
- Department of Pathology, Department of Microbiology and Immunology, and Galveston National Laboratory, University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Sergei Nekhai
- Center for Sickle Cell Disease, College of Medicine, Howard University, Washington, DC, United States
- Department of Medicine, College of Medicine, Howard University, Washington, DC, United States
| |
Collapse
|
50
|
Vuono EA, Ramirez-Medina E, Holinka LG, Baker-Branstetter R, Borca MV, Gladue DP. Interaction of Structural Glycoprotein E2 of Classical Swine Fever Virus with Protein Phosphatase 1 Catalytic Subunit Beta (PPP1CB). Viruses 2019; 11:v11040307. [PMID: 30934875 PMCID: PMC6521620 DOI: 10.3390/v11040307] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 03/22/2019] [Accepted: 03/25/2019] [Indexed: 02/06/2023] Open
Abstract
Classical swine fever virus (CSFV) E2 protein, the major virus structural glycoprotein, is an essential component of the viral envelope. E2 is involved in virus absorption, induction of a protective immune response and is critical for virulence in swine. Using the yeast two-hybrid system, we identified protein phosphatase 1 catalytic subunit beta (PPP1CB), which is part of the Protein Phosphatase 1 (PP1) complex, as a specific binding host partner for E2. We further confirmed the occurrence of this interaction in CSFV-infected swine cells by using two independent methodologies: Co-immunoprecipitation and Proximity Ligation Assay. In addition, we demonstrated that pharmacological activation of the PP1 pathway has a negative effect on CSFV replication while inhibition of the PP1 pathway or knockdown of PPP1CB by siRNA had no observed effect. Overall, our data suggests that the CSFV E2 and PPP1CB protein interact in infected cells, and that activation of the PP1 pathway decreases virus replication.
Collapse
Affiliation(s)
- Elizabeth A Vuono
- Plum Island Animal Disease Center, ARS, USDA, Greenport, NY 11944, USA.
- Oak Ridge Institute for Science and Education (ORISE), Oak Ridge, TN 37830, USA.
| | - Elizabeth Ramirez-Medina
- Plum Island Animal Disease Center, ARS, USDA, Greenport, NY 11944, USA.
- Department of Pathobiology and Veterinary Science, University of Connecticut, Storrs, CT 06269, USA.
| | - Lauren G Holinka
- Plum Island Animal Disease Center, ARS, USDA, Greenport, NY 11944, USA.
| | - Ryan Baker-Branstetter
- Plum Island Animal Disease Center, ARS, USDA, Greenport, NY 11944, USA.
- Oak Ridge Institute for Science and Education (ORISE), Oak Ridge, TN 37830, USA.
| | - Manuel V Borca
- Plum Island Animal Disease Center, ARS, USDA, Greenport, NY 11944, USA.
| | - Douglas P Gladue
- Plum Island Animal Disease Center, ARS, USDA, Greenport, NY 11944, USA.
| |
Collapse
|