1
|
Florini F, Visone JE, Hadjimichael E, Malpotra S, Nötzel C, Kafsack BFC, Deitsch KW. scRNA-seq reveals transcriptional plasticity of var gene expression in Plasmodium falciparum for host immune avoidance. Nat Microbiol 2025:10.1038/s41564-025-02008-5. [PMID: 40379932 DOI: 10.1038/s41564-025-02008-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 04/08/2025] [Indexed: 05/19/2025]
Abstract
Plasmodium falciparum evades antibody recognition through transcriptional switching between members of the var gene family, which encodes the major virulence factor and surface antigen on infected red blood cells. Previous work with clonal P. falciparum populations revealed var gene expression profiles inconsistent with uniform single var gene expression. However, the mechanisms underpinning this and how it might contribute to chronic infections were unclear. Here, using single-cell transcriptomics employing enrichment probes and a portable microwell system, we analysed var gene expression in clonal 3D7 and IT4 parasite lines. We show that in addition to mono-allelic var gene expression, individual parasites can simultaneously express multiple var genes or enter a state in which little or no var gene expression is detectable. Reduced var gene expression resulted in greatly decreased antibody recognition of infected cells. This transcriptional flexibility provides parasites with greater adaptive capacity and could explain the antigenically 'invisible' parasites observed in chronic asymptomatic infections.
Collapse
Affiliation(s)
- Francesca Florini
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY, USA
| | - Joseph E Visone
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY, USA
| | - Evi Hadjimichael
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY, USA
| | - Shivali Malpotra
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY, USA
| | - Christopher Nötzel
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, USA
| | - Björn F C Kafsack
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY, USA
| | - Kirk W Deitsch
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY, USA.
| |
Collapse
|
2
|
Hadjimichael E, Deitsch KW. Variable surface antigen expression, virulence, and persistent infection by Plasmodium falciparum malaria parasites. Microbiol Mol Biol Rev 2025; 89:e0011423. [PMID: 39807932 PMCID: PMC11948492 DOI: 10.1128/mmbr.00114-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025] Open
Abstract
SUMMARYThe human malaria parasite Plasmodium falciparum is known for its ability to maintain lengthy infections that can extend for over a year. This property is derived from the parasite's capacity to continuously alter the antigens expressed on the surface of the infected red blood cell, thereby avoiding antibody recognition and immune destruction. The primary target of the immune system is an antigen called PfEMP1 that serves as a cell surface receptor and enables infected cells to adhere to the vascular endothelium and thus avoid filtration by the spleen. The parasite's genome encodes approximately 60 antigenically distinct forms of PfEMP1, each encoded by individual members of the multicopy var gene family. This provides the parasite with a repertoire of antigenic types that it systematically cycles through over the course of an infection, thereby maintaining an infection until the repertoire is exhausted. While this model of antigenic variation based on var gene switching explains the dynamics of acute infections in individuals with limited anti-malarial immunity, it fails to explain reports of chronic, asymptomatic infections that can last over a decade. Recent field studies have led to a re-evaluation of previous conclusions regarding the prevalence of chronic infections, and the application of new technologies has provided insights into the molecular mechanisms that enable chronic infections and how these processes evolved.
Collapse
Affiliation(s)
- Evi Hadjimichael
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, USA
| | - Kirk W. Deitsch
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, USA
| |
Collapse
|
3
|
Tan MH, Tiedje KE, Feng Q, Zhan Q, Pascual M, Shim H, Chan YB, Day KP. A paradoxical population structure of var DBLα types in Africa. PLoS Pathog 2025; 21:e1012813. [PMID: 39903780 PMCID: PMC11793742 DOI: 10.1371/journal.ppat.1012813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 12/06/2024] [Indexed: 02/06/2025] Open
Abstract
The var multigene family encodes Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1), central to host-parasite interactions. Genome structure studies have identified three major groups of var genes by specific upstream sequences (upsA, B, or C). Var with these ups groups have different chromosomal locations, transcriptional directions, and associations with disease severity. Here we explore temporal and spatial diversity of a region of var genes encoding the DBLα domain of PfEMP1 in Africa. By applying a novel ups classification algorithm (cUps) to publicly-available DBLα sequence datasets, we categorised DBLα according to association with the three ups groups, thereby avoiding the need to sequence complete genes. Data from deep sequencing of DBLα types in a local population in northern Ghana surveyed seven times from 2012 to 2017 found variants with rare-to-moderate-to-extreme frequencies, and the common variants were temporally stable in this local endemic area. Furthermore, we observed that every isolate repertoire, whether mono- or multiclonal, comprised DBLα types occurring with these frequency ranges implying a common genome structure. When comparing African countries of Ghana, Gabon, Malawi, and Uganda, we report that some DBLα types were consistently found at high frequencies in multiple African countries while others were common only at the country level. The implication of these local and pan-Africa population patterns is discussed in terms of advantage to the parasite with regards to within-host adaptation and resilience to malaria control.
Collapse
Affiliation(s)
- Mun Hua Tan
- Department of Microbiology and Immunology, Bio21 Institute and The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Australia
| | - Kathryn E. Tiedje
- Department of Microbiology and Immunology, Bio21 Institute and The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Australia
| | - Qian Feng
- School of Mathematics and Statistics / Melbourne Integrative Genomics, The University of Melbourne, Melbourne, Australia
| | - Qi Zhan
- Committee on Genetics, Genomics and Systems Biology, The University of Chicago, Chicago, Illinois, United States of America
| | - Mercedes Pascual
- Department of Biology, New York University, New York, New York, United States of America
| | - Heejung Shim
- School of Mathematics and Statistics / Melbourne Integrative Genomics, The University of Melbourne, Melbourne, Australia
| | - Yao-ban Chan
- School of Mathematics and Statistics / Melbourne Integrative Genomics, The University of Melbourne, Melbourne, Australia
| | - Karen P. Day
- Department of Microbiology and Immunology, Bio21 Institute and The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Australia
| |
Collapse
|
4
|
Kinyua AW, Turner L, Kimingi HW, Mwai K, Mwikali K, Andisi C, Sim BKL, Bejon P, Kapulu MC, Kinyanjui SM, Lavstsen T, Abdi AI. Antibodies to PfEMP1 and variant surface antigens: Protection after controlled human malaria infection in semi-immune Kenyan adults. J Infect 2024; 89:106252. [PMID: 39182654 PMCID: PMC11409615 DOI: 10.1016/j.jinf.2024.106252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024]
Abstract
OBJECTIVES Acquisition of antibodies to Plasmodium falciparum variant surface antigens (VSA) expressed on infected red blood cells (iRBCs) is associated with naturally acquired immunity to malaria. We have previously shown that antibodies to VSA on iRBCs are associated with protection against parasite growth in the context of controlled human malaria infection (CHMI). This study explored whether antibodies to recombinant antigens derived from PfEMP1 domains were independently associated with protection during CHMI in semi-immune Kenyan adults. METHODS We used a multiplex bead assay to measure levels of IgG antibody against a panel of 27 recombinant PfEMP1 antigens derived from the PfEMP1 repertoire of the 3D7 parasite clone. We measured IgG levels in plasma samples collected from the CHMI participants before inoculation with Sanaria® PfSPZ Challenge, on the day of diagnosis, and 35 days post-inoculation. Univariable and multivariable Cox regression analysis was used to evaluate the relationship between the levels of antibodies to the antigens and CHMI outcome. We also adjusted for previous data including antibodies to VSA on iRBCs, and we assessed the kinetics of antibody acquisition to the different PfEMP1 recombinant antigens over time. RESULTS All study participants had detectable antibodies to multiple PfEMP1 proteins before inoculation. All PfEMP1 antigens were associated with protection against parasite growth to the threshold criteria for treatment in CHMI, albeit with substantial collinearity. However, individual PfEMP1 antigens were not independently associated with protection following adjustment for breadth of reactivity to VSA on iRBCs and schizont extract. In addition, antibodies to PfEMP1 antigens derived from group B PfEMP1 were induced and sustained in the participants who could not control parasite growth. CONCLUSION This study shows that the breadth of antibody response to VSA on iRBCs, and not to specific PfEMP1 antigens, is predictive of protection against malaria in CHMI.
Collapse
Affiliation(s)
- Ann W Kinyua
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute, Wellcome Trust Research Programme, Kilifi, Kenya
| | - Louise Turner
- Centre for translational Medicine & Parasitology, Department of Immunology and Microbiology, University of Copenhagen and Department of Infectious Diseases, Righospitalet, Copenhagen, Denmark
| | - Hannah W Kimingi
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute, Wellcome Trust Research Programme, Kilifi, Kenya
| | - Kennedy Mwai
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute, Wellcome Trust Research Programme, Kilifi, Kenya
| | - Kioko Mwikali
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute, Wellcome Trust Research Programme, Kilifi, Kenya
| | - Cheryl Andisi
- Pwani University Bioscience Research Centre, Pwani University, Kilifi, Kenya
| | | | - Philip Bejon
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute, Wellcome Trust Research Programme, Kilifi, Kenya; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University Oxford, Oxford, United Kingdom
| | - Melissa C Kapulu
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute, Wellcome Trust Research Programme, Kilifi, Kenya; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University Oxford, Oxford, United Kingdom
| | - Samson M Kinyanjui
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute, Wellcome Trust Research Programme, Kilifi, Kenya; Pwani University Bioscience Research Centre, Pwani University, Kilifi, Kenya; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University Oxford, Oxford, United Kingdom; School of Business Studies, Strathmore University, Nairobi, Kenya
| | - Thomas Lavstsen
- Centre for translational Medicine & Parasitology, Department of Immunology and Microbiology, University of Copenhagen and Department of Infectious Diseases, Righospitalet, Copenhagen, Denmark
| | - Abdirahman I Abdi
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute, Wellcome Trust Research Programme, Kilifi, Kenya; Pwani University Bioscience Research Centre, Pwani University, Kilifi, Kenya; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University Oxford, Oxford, United Kingdom.
| |
Collapse
|
5
|
Hviid L, Jensen AR, Deitsch KW. PfEMP1 and var genes - Still of key importance in Plasmodium falciparum malaria pathogenesis and immunity. ADVANCES IN PARASITOLOGY 2024; 125:53-103. [PMID: 39095112 DOI: 10.1016/bs.apar.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
The most severe form of malaria, caused by infection with Plasmodium falciparum parasites, continues to be an important cause of human suffering and poverty. The P. falciparum erythrocyte membrane protein 1 (PfEMP1) family of clonally variant antigens, which mediates the adhesion of infected erythrocytes to the vascular endothelium in various tissues and organs, is a central component of the pathogenesis of the disease and a key target of the acquired immune response to malaria. Much new knowledge has accumulated since we published a systematic overview of the PfEMP1 family almost ten years ago. In this chapter, we therefore aim to summarize research progress since 2015 on the structure, function, regulation etc. of this key protein family of arguably the most important human parasite. Recent insights regarding PfEMP1-specific immune responses and PfEMP1-specific vaccination against malaria, as well as an outlook for the coming years are also covered.
Collapse
Affiliation(s)
- Lars Hviid
- Centre for translational Medicine and Parasitology, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark; Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark.
| | - Anja R Jensen
- Centre for translational Medicine and Parasitology, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Kirk W Deitsch
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY, United States
| |
Collapse
|
6
|
Walker IS, Rogerson SJ. Pathogenicity and virulence of malaria: Sticky problems and tricky solutions. Virulence 2023; 14:2150456. [PMID: 36419237 PMCID: PMC9815252 DOI: 10.1080/21505594.2022.2150456] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 11/25/2022] Open
Abstract
Infections with Plasmodium falciparum and Plasmodium vivax cause over 600,000 deaths each year, concentrated in Africa and in young children, but much of the world's population remain at risk of infection. In this article, we review the latest developments in the immunogenicity and pathogenesis of malaria, with a particular focus on P. falciparum, the leading malaria killer. Pathogenic factors include parasite-derived toxins and variant surface antigens on infected erythrocytes that mediate sequestration in the deep vasculature. Host response to parasite toxins and to variant antigens is an important determinant of disease severity. Understanding how parasites sequester, and how antibody to variant antigens could prevent sequestration, may lead to new approaches to treat and prevent disease. Difficulties in malaria diagnosis, drug resistance, and specific challenges of treating P. vivax pose challenges to malaria elimination, but vaccines and other preventive strategies may offer improved disease control.
Collapse
Affiliation(s)
- Isobel S Walker
- Department of Infectious Diseases, The University of Melbourne, The Doherty Institute, Melbourne, Australia
| | - Stephen J Rogerson
- Department of Infectious Diseases, The University of Melbourne, The Doherty Institute, Melbourne, Australia
| |
Collapse
|
7
|
Wichers-Misterek JS, Krumkamp R, Held J, von Thien H, Wittmann I, Höppner YD, Ruge JM, Moser K, Dara A, Strauss J, Esen M, Fendel R, Sulyok Z, Jeninga MD, Kremsner PG, Sim BKL, Hoffman SL, Duffy MF, Otto TD, Gilberger TW, Silva JC, Mordmüller B, Petter M, Bachmann A. The exception that proves the rule: Virulence gene expression at the onset of Plasmodium falciparum blood stage infections. PLoS Pathog 2023; 19:e1011468. [PMID: 37384799 DOI: 10.1371/journal.ppat.1011468] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 06/07/2023] [Indexed: 07/01/2023] Open
Abstract
Controlled human malaria infections (CHMI) are a valuable tool to study parasite gene expression in vivo under defined conditions. In previous studies, virulence gene expression was analyzed in samples from volunteers infected with the Plasmodium falciparum (Pf) NF54 isolate, which is of African origin. Here, we provide an in-depth investigation of parasite virulence gene expression in malaria-naïve European volunteers undergoing CHMI with the genetically distinct Pf 7G8 clone, originating in Brazil. Differential expression of var genes, encoding major virulence factors of Pf, PfEMP1s, was assessed in ex vivo parasite samples as well as in parasites from the in vitro cell bank culture that was used to generate the sporozoites (SPZ) for CHMI (Sanaria PfSPZ Challenge (7G8)). We report broad activation of mainly B-type subtelomeric located var genes at the onset of a 7G8 blood stage infection in naïve volunteers, mirroring the NF54 expression study and suggesting that the expression of virulence-associated genes is generally reset during transmission from the mosquito to the human host. However, in 7G8 parasites, we additionally detected a continuously expressed single C-type variant, Pf7G8_040025600, that was most highly expressed in both pre-mosquito cell bank and volunteer samples, suggesting that 7G8, unlike NF54, maintains expression of some previously expressed var variants during transmission. This suggests that in a new host, the parasite may preferentially express the variants that previously allowed successful infection and transmission. Trial registration: ClinicalTrials.gov - NCT02704533; 2018-004523-36.
Collapse
Affiliation(s)
- Jan Stephan Wichers-Misterek
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Centre for Structural Systems Biology, Hamburg, Germany, Hamburg, Germany
- Biology Department, University of Hamburg, Hamburg, Germany
| | - Ralf Krumkamp
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Center for Infection Research (DZIF), partner site Hamburg-Borstel-Lübeck-Riems, Hamburg/Borstel/Lübeck/Riems, Germany
| | - Jana Held
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
- German Center for Infection Research (DZIF), partner site Tübingen, Tübingen, Germany
| | - Heidrun von Thien
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Centre for Structural Systems Biology, Hamburg, Germany, Hamburg, Germany
- Biology Department, University of Hamburg, Hamburg, Germany
| | - Irene Wittmann
- Institute of Microbiology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Yannick Daniel Höppner
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Centre for Structural Systems Biology, Hamburg, Germany, Hamburg, Germany
- Biology Department, University of Hamburg, Hamburg, Germany
- German Center for Infection Research (DZIF), partner site Hamburg-Borstel-Lübeck-Riems, Hamburg/Borstel/Lübeck/Riems, Germany
| | - Julia M Ruge
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Centre for Structural Systems Biology, Hamburg, Germany, Hamburg, Germany
- Biology Department, University of Hamburg, Hamburg, Germany
- German Center for Infection Research (DZIF), partner site Hamburg-Borstel-Lübeck-Riems, Hamburg/Borstel/Lübeck/Riems, Germany
| | - Kara Moser
- Institute for Genome Sciences, University of Maryland, School of Medicine, Baltimore, Maryland, United States of America
| | - Antoine Dara
- Institute for Genome Sciences, University of Maryland, School of Medicine, Baltimore, Maryland, United States of America
| | - Jan Strauss
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Centre for Structural Systems Biology, Hamburg, Germany, Hamburg, Germany
- Biology Department, University of Hamburg, Hamburg, Germany
| | - Meral Esen
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
- German Center for Infection Research (DZIF), partner site Tübingen, Tübingen, Germany
- Cluster of Excellence: EXC 2124: Controlling Microbes to Fight Infection, Tübingen, Germany
| | - Rolf Fendel
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
- German Center for Infection Research (DZIF), partner site Tübingen, Tübingen, Germany
| | - Zita Sulyok
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
- German Center for Infection Research (DZIF), partner site Tübingen, Tübingen, Germany
| | - Myriam D Jeninga
- Institute of Microbiology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Peter G Kremsner
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
- German Center for Infection Research (DZIF), partner site Tübingen, Tübingen, Germany
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
| | - B Kim Lee Sim
- Sanaria Inc., Rockville, Maryland, United States of America
| | | | - Michael F Duffy
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
| | - Thomas D Otto
- School of Infection & Immunity, University of Glasgow, Glasgow, United Kingdom
| | - Tim-Wolf Gilberger
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Centre for Structural Systems Biology, Hamburg, Germany, Hamburg, Germany
- Biology Department, University of Hamburg, Hamburg, Germany
| | - Joana C Silva
- Institute for Genome Sciences, University of Maryland, School of Medicine, Baltimore, Maryland, United States of America
- Department of Microbiology and Immunology, University of Maryland, School of Medicine, Baltimore, Maryland, United States of America
- Global Health and Tropical Medicine, GHTM, Instituto de Higiene e Medicina Tropical, IHMT, Universidade NOVA de Lisboa, UNL, Lisboa, Portugal
| | - Benjamin Mordmüller
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
- German Center for Infection Research (DZIF), partner site Tübingen, Tübingen, Germany
| | - Michaela Petter
- Institute of Microbiology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
| | - Anna Bachmann
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Centre for Structural Systems Biology, Hamburg, Germany, Hamburg, Germany
- Biology Department, University of Hamburg, Hamburg, Germany
- German Center for Infection Research (DZIF), partner site Hamburg-Borstel-Lübeck-Riems, Hamburg/Borstel/Lübeck/Riems, Germany
| |
Collapse
|
8
|
Schneider V, Visone J, Harris C, Florini F, Hadjimichael E, Zhang X, Gross M, Rhee K, Ben Mamoun C, Kafsack B, Deitsch K. The human malaria parasite Plasmodium falciparum can sense environmental changes and respond by antigenic switching. Proc Natl Acad Sci U S A 2023; 120:e2302152120. [PMID: 37068249 PMCID: PMC10151525 DOI: 10.1073/pnas.2302152120] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 03/20/2023] [Indexed: 04/19/2023] Open
Abstract
The primary antigenic and virulence determinant of the human malaria parasite Plasmodium falciparum is a variant surface protein called PfEMP1. Different forms of PfEMP1 are encoded by a multicopy gene family called var, and switching between active genes enables the parasites to evade the antibody response of their human hosts. var gene switching is key for the maintenance of chronic infections; however, what controls switching is unknown, although it has been suggested to occur at a constant frequency with little or no environmental influence. var gene transcription is controlled epigenetically through the activity of histone methyltransferases (HMTs). Studies in model systems have shown that metabolism and epigenetic control of gene expression are linked through the availability of intracellular S-adenosylmethionine (SAM), the principal methyl donor in biological methylation modifications, which can fluctuate based on nutrient availability. To determine whether environmental conditions and changes in metabolism can influence var gene expression, P. falciparum was cultured in media with altered concentrations of nutrients involved in SAM metabolism. We found that conditions that influence lipid metabolism induce var gene switching, indicating that parasites can respond to changes in their environment by altering var gene expression patterns. Genetic modifications that directly modified expression of the enzymes that control SAM levels similarly led to profound changes in var gene expression, confirming that changes in SAM availability modulate var gene switching. These observations directly challenge the paradigm that antigenic variation in P. falciparum follows an intrinsic, programed switching rate, which operates independently of any external stimuli.
Collapse
Affiliation(s)
- Victoria M. Schneider
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, Ithaca, NY14853
- Laboratory of Chemical Biology and Microbial Pathogenesis, Rockefeller University, New York, NY 10065
| | - Joseph E. Visone
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, Ithaca, NY14853
| | - Chantal T. Harris
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, Ithaca, NY14853
| | - Francesca Florini
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, Ithaca, NY14853
| | - Evi Hadjimichael
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, Ithaca, NY14853
| | - Xu Zhang
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, Ithaca, NY14853
| | - Mackensie R. Gross
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, Ithaca, NY14853
| | - Kyu Y. Rhee
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, Ithaca, NY14853
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, Cornell University, Ithaca, NY14853
| | - Choukri Ben Mamoun
- Section of Infectious Disease, Department of Microbial Pathogenesis, Yale School of Medicine, Yale University New Haven, CT 06510
| | - Björn F. C. Kafsack
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, Ithaca, NY14853
| | - Kirk W. Deitsch
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, Ithaca, NY14853
| |
Collapse
|
9
|
Zhang X, Florini F, Visone JE, Lionardi I, Gross MR, Patel V, Deitsch KW. A coordinated transcriptional switching network mediates antigenic variation of human malaria parasites. eLife 2022; 11:e83840. [PMID: 36515978 PMCID: PMC9833823 DOI: 10.7554/elife.83840] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/13/2022] [Indexed: 12/15/2022] Open
Abstract
Malaria parasites avoid immune clearance through their ability to systematically alter antigens exposed on the surface of infected red blood cells. This is accomplished by tightly regulated transcriptional control of individual members of a large, multicopy gene family called var and is the key to both the virulence and chronic nature of malaria infections. Expression of var genes is mutually exclusive and controlled epigenetically, however how large populations of parasites coordinate var gene switching to avoid premature exposure of the antigenic repertoire is unknown. Here, we provide evidence for a transcriptional network anchored by a universally conserved gene called var2csa that coordinates the switching process. We describe a structured switching bias that shifts overtime and could shape the pattern of var expression over the course of a lengthy infection. Our results provide an explanation for a previously mysterious aspect of malaria infections and shed light on how parasites possessing a relatively small repertoire of variant antigen-encoding genes can coordinate switching events to limit antigen exposure, thereby maintaining chronic infections.
Collapse
Affiliation(s)
- Xu Zhang
- Department of Microbiology and Immunology, Weill Cornell Medical CollegeNew YorkUnited States
| | - Francesca Florini
- Department of Microbiology and Immunology, Weill Cornell Medical CollegeNew YorkUnited States
| | - Joseph E Visone
- Department of Microbiology and Immunology, Weill Cornell Medical CollegeNew YorkUnited States
| | - Irina Lionardi
- Jill Roberts Center for Inflammatory Bowel Disease, Weill Cornell Medical CollegeNew YorkUnited States
| | - Mackensie R Gross
- Department of Microbiology and Immunology, Weill Cornell Medical CollegeNew YorkUnited States
| | - Valay Patel
- Department of Microbiology and Immunology, Weill Cornell Medical CollegeNew YorkUnited States
| | - Kirk W Deitsch
- Department of Microbiology and Immunology, Weill Cornell Medical CollegeNew YorkUnited States
| |
Collapse
|
10
|
Nortey LN, Anning AS, Nakotey GK, Ussif AM, Opoku YK, Osei SA, Aboagye B, Ghartey-Kwansah G. Genetics of cerebral malaria: pathogenesis, biomarkers and emerging therapeutic interventions. Cell Biosci 2022; 12:91. [PMID: 35715862 PMCID: PMC9204375 DOI: 10.1186/s13578-022-00830-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 06/07/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Cerebral malaria (CM) is a preeminent cause of severe disease and premature deaths in Sub-Saharan Africa, where an estimated 90% of cases occur. The key features of CM are a deep, unarousable coma that persists for longer than 1 h in patients with peripheral Plasmodium falciparum and no other explanation for encephalopathy. Significant research efforts on CM in the last few decades have focused on unravelling the molecular underpinnings of the disease pathogenesis and the identification of potential targets for therapeutic or pharmacologic intervention. These efforts have been greatly aided by the generation and study of mouse models of CM, which have provided great insights into key events of CM pathogenesis, revealed an interesting interplay of host versus parasite factors that determine the progression of malaria to severe disease and exposed possible targets for therapeutic intervention in severe disease.
Main Body
This paper reviews our current understanding of the pathogenic and immunologic factors involved in CM. We present the current view of the roles of certain gene products e.g., the var gene, ABCA-1, ICAM-1, TNF-alpha, CD-36, PfEMP-1 and G6PD, in CM pathogenesis. We also present alterations in the blood–brain barrier as a consequence of disease proliferation as well as complicated host and parasite interactions, including the T-cell immune reaction, reduced deformation of erythrocytes and cytoadherence. We further looked at recent advances in cerebral malaria treatment interventions by emphasizing on biomarkers, new diagnostic tools and emerging therapeutic options.
Conclusion
Finally, we discuss how the current understanding of some of these pathogenic and immunologic factors could inform the development of novel therapeutic interventions to fight CM.
Collapse
|
11
|
CD36-A Host Receptor Necessary for Malaria Parasites to Establish and Maintain Infection. Microorganisms 2022; 10:microorganisms10122356. [PMID: 36557610 PMCID: PMC9785914 DOI: 10.3390/microorganisms10122356] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/21/2022] [Accepted: 11/27/2022] [Indexed: 11/30/2022] Open
Abstract
Plasmodium falciparum-infected erythrocytes (PfIEs) present P. falciparum erythrocyte membrane protein 1 proteins (PfEMP1s) on the cell surface, via which they cytoadhere to various endothelial cell receptors (ECRs) on the walls of human blood vessels. This prevents the parasite from passing through the spleen, which would lead to its elimination. Each P. falciparum isolate has about 60 different PfEMP1s acting as ligands, and at least 24 ECRs have been identified as interaction partners. Interestingly, in every parasite genome sequenced to date, at least 75% of the encoded PfEMP1s have a binding domain for the scavenger receptor CD36 widely distributed on host endothelial cells and many other cell types. Here, we discuss why the interaction between PfIEs and CD36 is optimal to maintain a finely regulated equilibrium that allows the parasite to multiply and spread while causing minimal harm to the host in most infections.
Collapse
|
12
|
Chew M, Ye W, Omelianczyk RI, Pasaje CF, Hoo R, Chen Q, Niles JC, Chen J, Preiser P. Selective expression of variant surface antigens enables Plasmodium falciparum to evade immune clearance in vivo. Nat Commun 2022; 13:4067. [PMID: 35831417 PMCID: PMC9279368 DOI: 10.1038/s41467-022-31741-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 06/30/2022] [Indexed: 11/09/2022] Open
Abstract
Plasmodium falciparum has developed extensive mechanisms to evade host immune clearance. Currently, most of our understanding is based on in vitro studies of individual parasite variant surface antigens and how this relates to the processes in vivo is not well-understood. Here, we have used a humanized mouse model to identify parasite factors important for in vivo growth. We show that upregulation of the specific PfEMP1, VAR2CSA, provides the parasite with protection from macrophage phagocytosis and clearance in the humanized mice. Furthermore, parasites adapted to thrive in the humanized mice show reduced NK cell-mediated killing through interaction with the immune inhibitory receptor, LILRB1. Taken together, these findings reveal new insights into the molecular and cellular mechanisms that the parasite utilizes to coordinate immune escape in vivo. Identification and targeting of these specific parasite variant surface antigens crucial for immune evasion provides a unique approach for therapy.
Collapse
Affiliation(s)
- Marvin Chew
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.,Singapore-MIT Alliance for Research and Technology, Antimicrobial Resistance Interdisciplinary Research Group, Singapore, Singapore
| | - Weijian Ye
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.,Singapore-MIT Alliance for Research and Technology, Antimicrobial Resistance Interdisciplinary Research Group, Singapore, Singapore
| | | | - Charisse Flerida Pasaje
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Regina Hoo
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.,Wellcome Sanger Institute, Hinxton, Cambridgeshire, CB101SA, UK
| | - Qingfeng Chen
- Humanized Mouse Unit, Institute of Molecular and Cell Biology, Agency of Science, Technology and Research, Singapore, Singapore
| | - Jacquin C Niles
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jianzhu Chen
- Singapore-MIT Alliance for Research and Technology, Antimicrobial Resistance Interdisciplinary Research Group, Singapore, Singapore. .,Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Peter Preiser
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore. .,Singapore-MIT Alliance for Research and Technology, Antimicrobial Resistance Interdisciplinary Research Group, Singapore, Singapore.
| |
Collapse
|
13
|
Abstract
"The Primate Malarias" book has been a uniquely important resource for multiple generations of scientists, since its debut in 1971, and remains pertinent to the present day. Indeed, nonhuman primates (NHPs) have been instrumental for major breakthroughs in basic and pre-clinical research on malaria for over 50 years. Research involving NHPs have provided critical insights and data that have been essential for malaria research on many parasite species, drugs, vaccines, pathogenesis, and transmission, leading to improved clinical care and advancing research goals for malaria control, elimination, and eradication. Whilst most malaria scientists over the decades have been studying Plasmodium falciparum, with NHP infections, in clinical studies with humans, or using in vitro culture or rodent model systems, others have been dedicated to advancing research on Plasmodium vivax, as well as on phylogenetically related simian species, including Plasmodium cynomolgi, Plasmodium coatneyi, and Plasmodium knowlesi. In-depth study of these four phylogenetically related species over the years has spawned the design of NHP longitudinal infection strategies for gathering information about ongoing infections, which can be related to human infections. These Plasmodium-NHP infection model systems are reviewed here, with emphasis on modern systems biological approaches to studying longitudinal infections, pathogenesis, immunity, and vaccines. Recent discoveries capitalizing on NHP longitudinal infections include an advanced understanding of chronic infections, relapses, anaemia, and immune memory. With quickly emerging new technological advances, more in-depth research and mechanistic discoveries can be anticipated on these and additional critical topics, including hypnozoite biology, antigenic variation, gametocyte transmission, bone marrow dysfunction, and loss of uninfected RBCs. New strategies and insights published by the Malaria Host-Pathogen Interaction Center (MaHPIC) are recapped here along with a vision that stresses the importance of educating future experts well trained in utilizing NHP infection model systems for the pursuit of innovative, effective interventions against malaria.
Collapse
Affiliation(s)
- Mary R Galinski
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA.
- Emory Vaccine Center, Emory University, Atlanta, GA, USA.
- Emory National Primate Research Center (Yerkes National Primate Research Center), Emory University, Atlanta, GA, USA.
| |
Collapse
|
14
|
Alkema M, Yap XZ, de Jong GM, Reuling IJ, de Mast Q, van Crevel R, Ockenhouse CF, Collins KA, Bousema T, McCall MBB, Sauerwein RW. Controlled human malaria infections by mosquito bites induce more severe clinical symptoms than asexual blood-stage challenge infections. EBioMedicine 2022; 77:103919. [PMID: 35278741 PMCID: PMC8917304 DOI: 10.1016/j.ebiom.2022.103919] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/19/2022] [Accepted: 02/21/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Fever and inflammation are a hallmark of clinical Plasmodium falciparum (Pf) malaria induced by circulating asexual parasites. Although clinical manifestations of inflammation are associated with parasite density, this relationship is influenced by a complex network of immune-modulating factors of both human and parasite origin. METHODS In the Controlled Human Malaria infection (CHMI) model, we compared clinical inflammation in healthy malaria-naïve volunteers infected by either Pf-infected mosquito bites (MB, n=12) or intravenous administration of Pf-infected red blood cells (BS, n=12). FINDINGS All volunteers developed patent parasitaemia, but both the incidence and duration of severe adverse events were significantly higher after MB infection. Similarly, clinical laboratory markers of inflammation were significantly increased in the MB-group, as well as serum pro-inflammatory cytokine concentrations including IFN-γ, IL-6, MCP1 and IL-8. Parasite load, as reflected by maximum parasite density and area under the curve, was similar, but median duration of parasitaemia until treatment was longer in the BS-group compared to the MB-group (8 days [range 8 - 8 days] versus 5·5 days [range 3·5 - 12·5 days]). The in vitro response of subsets of peripheral blood mononuclear cells showed attenuated Pf-specific IFNγ production by γδ T-cells in the BS-arm. INTERPRETATION In conclusion, irrespective the parasite load, Pf-infections by MB induce stronger signs and symptoms of inflammation compared to CHMI by BS infection. The pathophysiological basis remains speculative but may relate to induced immune tolerance. FUNDING The trial was supported by PATH's Malaria Vaccine Initiative; the current analyses were supported by the AMMODO Science Award 2019 (TB).
Collapse
Affiliation(s)
- Manon Alkema
- Department of Medical Microbiology, Radboud Center for Infectious Diseases, Radboud university medical center, 6500 HB Nijmegen, The Netherlands
| | - X Zen Yap
- Department of Medical Microbiology, Radboud Center for Infectious Diseases, Radboud university medical center, 6500 HB Nijmegen, The Netherlands
| | - Gerdie M de Jong
- Department of Medical Microbiology and Infectious Diseases, University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands
| | - Isaie J Reuling
- Department of Medical Microbiology, Radboud Center for Infectious Diseases, Radboud university medical center, 6500 HB Nijmegen, The Netherlands
| | - Quirijn de Mast
- Department of Internal Medicine, Radboud Center for Infectious Diseases, Radboud university medical center, 6500 HB Nijmegen, The Netherlands
| | - Reinout van Crevel
- Department of Internal Medicine, Radboud Center for Infectious Diseases, Radboud university medical center, 6500 HB Nijmegen, The Netherlands
| | | | - Katharine A Collins
- Department of Medical Microbiology, Radboud Center for Infectious Diseases, Radboud university medical center, 6500 HB Nijmegen, The Netherlands
| | - Teun Bousema
- Department of Medical Microbiology, Radboud Center for Infectious Diseases, Radboud university medical center, 6500 HB Nijmegen, The Netherlands
| | - Matthew B B McCall
- Department of Medical Microbiology, Radboud Center for Infectious Diseases, Radboud university medical center, 6500 HB Nijmegen, The Netherlands.
| | - Robert W Sauerwein
- Department of Medical Microbiology, Radboud Center for Infectious Diseases, Radboud university medical center, 6500 HB Nijmegen, The Netherlands.
| |
Collapse
|
15
|
Voinson M, Nunn CL, Goldberg A. Primate malarias as a model for cross-species parasite transmission. eLife 2022; 11:e69628. [PMID: 35086643 PMCID: PMC8798051 DOI: 10.7554/elife.69628] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 01/14/2022] [Indexed: 12/16/2022] Open
Abstract
Parasites regularly switch into new host species, representing a disease burden and conservation risk to the hosts. The distribution of these parasites also gives insight into characteristics of ecological networks and genetic mechanisms of host-parasite interactions. Some parasites are shared across many species, whereas others tend to be restricted to hosts from a single species. Understanding the mechanisms producing this distribution of host specificity can enable more effective interventions and potentially identify genetic targets for vaccines or therapies. As ecological connections between human and local animal populations increase, the risk to human and wildlife health from novel parasites also increases. Which of these parasites will fizzle out and which have the potential to become widespread in humans? We consider the case of primate malarias, caused by Plasmodium parasites, to investigate the interacting ecological and evolutionary mechanisms that put human and nonhuman primates at risk for infection. Plasmodium host switching from nonhuman primates to humans led to ancient introductions of the most common malaria-causing agents in humans today, and new parasite switching is a growing threat, especially in Asia and South America. Based on a wild host-Plasmodium occurrence database, we highlight geographic areas of concern and potential areas to target further sampling. We also discuss methodological developments that will facilitate clinical and field-based interventions to improve human and wildlife health based on this eco-evolutionary perspective.
Collapse
Affiliation(s)
- Marina Voinson
- Department of Evolutionary Anthropology, Duke UniversityDurhamUnited States
| | - Charles L Nunn
- Department of Evolutionary Anthropology, Duke UniversityDurhamUnited States
- Duke Global Health, Duke UniversityDurhamUnited States
| | - Amy Goldberg
- Department of Evolutionary Anthropology, Duke UniversityDurhamUnited States
| |
Collapse
|
16
|
Abstract
Quantitative real-time PCR (qPCR) is a simple and sensitive method for determining the amount of a specific target DNA sequence present in a sample. Compared to RNA-seq, reverse transcription qPCR (RT-qPCR) is fast, requires only low input material and is easy to analyze. Therefore, qPCR is widely used to analyze gene expression in P. falciparum, including analyses of the multicopy gene families encoding variant surface antigens (VSAs), whose expression is clonally variant and prone to changes over time. In the recent years, several P. falciparum genomes of culture-adapted strains have been sequenced, providing the knowledge to design variable gene family-specific qPCR primers for each P. falciparum genetic background. Here, we describe the required materials, methods and key factors to perform RT-qPCR experiments to determine VSA transcript abundances in the P. falciparum clones 3D7/NF54, IT4, HB3, and 7G8.
Collapse
Affiliation(s)
- Anna Bachmann
- Molecular Biology and Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany.
- Centre for Structural Systems Biology, Hamburg, Germany.
- Biology Department, University of Hamburg, Hamburg, Germany.
- German Center for Infection Research (DZIF), Partner Site Hamburg-Borstel-Lübeck-Riems, Hamburg, Germany.
| | - Thomas Lavstsen
- Centre for Medical Parasitology at Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
- Department of Infectious Diseases, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
17
|
Characterization of Apicomplexan Amino Acid Transporters (ApiATs) in the Malaria Parasite Plasmodium falciparum. mSphere 2021; 6:e0074321. [PMID: 34756057 PMCID: PMC8579892 DOI: 10.1128/msphere.00743-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
During the symptomatic human blood phase, malaria parasites replicate within red blood cells. Parasite proliferation relies on the uptake of nutrients, such as amino acids, from the host cell and blood plasma, requiring transport across multiple membranes. Amino acids are delivered to the parasite through the parasite-surrounding vacuolar compartment by specialized nutrient-permeable channels of the erythrocyte membrane and the parasitophorous vacuole membrane (PVM). However, further transport of amino acids across the parasite plasma membrane (PPM) is currently not well characterized. In this study, we focused on a family of Apicomplexan amino acid transporters (ApiATs) that comprises five members in Plasmodium falciparum. First, we localized four of the P. falciparum ApiATs (PfApiATs) at the PPM using endogenous green fluorescent protein (GFP) tagging. Next, we applied reverse genetic approaches to probe into their essentiality during asexual replication and gametocytogenesis. Upon inducible knockdown and targeted gene disruption, a reduced asexual parasite proliferation was detected for PfApiAT2 and PfApiAT4. Functional inactivation of individual PfApiATs targeted in this study had no effect on gametocyte development. Our data suggest that individual PfApiATs are partially redundant during asexual in vitro proliferation and fully redundant during gametocytogenesis of P. falciparum parasites. IMPORTANCE Malaria parasites live and multiply inside cells. To facilitate their extremely fast intracellular proliferation, they hijack and transform their host cells. This also requires the active uptake of nutrients, such as amino acids, from the host cell and the surrounding environment through various membranes that are the consequence of the parasite’s intracellular lifestyle. In this paper, we focus on a family of putative amino acid transporters termed ApiAT. We show expression and localization of four transporters in the parasite plasma membrane of Plasmodium falciparum-infected erythrocytes that represent one interface of the pathogen to its host cell. We probed into the impact of functional inactivation of individual transporters on parasite growth in asexual and sexual blood stages of P. falciparum and reveal that only two of them show a modest but significant reduction in parasite proliferation but no impact on gametocytogenesis, pointing toward dispensability within this transporter family.
Collapse
|
18
|
Gnangnon B, Duraisingh MT, Buckee CO. Deconstructing the parasite multiplication rate of Plasmodium falciparum. Trends Parasitol 2021; 37:922-932. [PMID: 34119440 DOI: 10.1016/j.pt.2021.05.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 05/05/2021] [Accepted: 05/06/2021] [Indexed: 01/22/2023]
Abstract
Epidemiological indicators describing population-level malaria transmission dynamics are widely used to guide policy recommendations. However, the determinants of malaria outcomes within individuals are still poorly understood. This conceptual gap partly reflects the fact that there are few indicators that robustly predict the trajectory of individual infections or clinical outcomes. The parasite multiplication rate (PMR) is a widely used indicator for the Plasmodium intraerythrocytic development cycle (IDC), for example, but its relationship to clinical outcomes is complex. Here, we review its calculation and use in P. falciparum malaria research, as well as the parasite and host factors that impact it. We also provide examples of metrics that can help to link within-host dynamics to malaria clinical outcomes when used alongside the PMR.
Collapse
Affiliation(s)
- Bénédicte Gnangnon
- Center for Communicable Diseases Dynamics, Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Immunology & Infectious Diseases Department, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Manoj T Duraisingh
- Immunology & Infectious Diseases Department, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Caroline O Buckee
- Center for Communicable Diseases Dynamics, Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| |
Collapse
|
19
|
Azasi Y, Low LM, Just AN, Raghavan SSR, Wang CW, Valenzuela-Leon P, Rowe JA, Smith JD, Lavstsen T, Turner L, Calvo E, Miller LH. Complement C1s cleaves PfEMP1 at interdomain conserved sites inhibiting Plasmodium falciparum cytoadherence. Proc Natl Acad Sci U S A 2021; 118:e2104166118. [PMID: 34035177 PMCID: PMC8179237 DOI: 10.1073/pnas.2104166118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023] Open
Abstract
Cytoadhesion of Plasmodium falciparum-infected erythrocytes (IEs) to the endothelial lining of blood vessels protects parasites from splenic destruction, but also leads to detrimental inflammation and vessel occlusion. Surface display of the P. falciparum erythrocyte membrane protein 1 (PfEMP1) adhesion ligands exposes them to host antibodies and serum proteins. PfEMP1 are important targets of acquired immunity to malaria, and through evolution, the protein family has expanded and diversified to bind a select set of host receptors through antigenically diversified receptor-binding domains. Here, we show that complement component 1s (C1s) in serum cleaves PfEMP1 at semiconserved arginine motifs located at interdomain regions between the receptor-binding domains, rendering the IE incapable of binding the two main PfEMP1 receptors, CD36 and endothelial protein C receptor (EPCR). Bioinformatic analyses of PfEMP1 protein sequences from 15 P. falciparum genomes found the C1s motif was present in most PfEMP1 variants. Prediction of C1s cleavage and loss of binding to endothelial receptors was further corroborated by testing of several different parasite lines. These observations suggest that the parasites have maintained susceptibility for cleavage by the serine protease, C1s, and provides evidence for a complex relationship between the complement system and the P. falciparum cytoadhesion virulence determinant.
Collapse
Affiliation(s)
- Yvonne Azasi
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, NIH, Rockville, MD 20852
| | - Leanne M Low
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, NIH, Rockville, MD 20852
| | - Ashley N Just
- Centre for Medical Parasitology, Department of International Health, Immunology and Microbiology, University of Copenhagen, 2200 Copenhagen, Denmark
- Department of Infectious Diseases, Rigshospitalet, 2100 Copenhagen, Denmark
| | - Sai S R Raghavan
- Centre for Medical Parasitology, Department of International Health, Immunology and Microbiology, University of Copenhagen, 2200 Copenhagen, Denmark
- Department of Infectious Diseases, Rigshospitalet, 2100 Copenhagen, Denmark
| | - Christian W Wang
- Centre for Medical Parasitology, Department of International Health, Immunology and Microbiology, University of Copenhagen, 2200 Copenhagen, Denmark
- Department of Infectious Diseases, Rigshospitalet, 2100 Copenhagen, Denmark
| | - Paola Valenzuela-Leon
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, NIH, Rockville, MD 20852
| | - J Alexandra Rowe
- Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom
| | - Joseph D Smith
- Center for Global Infectious Disease Resesarch, Seattle Children's Research Institute, Seattle, WA 98109
- Department of Pediatrics, University of Washington, Seattle, WA 98195
- Department of Global Health, University of Washington, Seattle, WA 98195
| | - Thomas Lavstsen
- Centre for Medical Parasitology, Department of International Health, Immunology and Microbiology, University of Copenhagen, 2200 Copenhagen, Denmark
- Department of Infectious Diseases, Rigshospitalet, 2100 Copenhagen, Denmark
| | - Louise Turner
- Centre for Medical Parasitology, Department of International Health, Immunology and Microbiology, University of Copenhagen, 2200 Copenhagen, Denmark
- Department of Infectious Diseases, Rigshospitalet, 2100 Copenhagen, Denmark
| | - Eric Calvo
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, NIH, Rockville, MD 20852;
| | - Louis H Miller
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, NIH, Rockville, MD 20852;
| |
Collapse
|
20
|
Wichers JS, Tonkin-Hill G, Thye T, Krumkamp R, Kreuels B, Strauss J, von Thien H, Scholz JAM, Smedegaard Hansson H, Weisel Jensen R, Turner L, Lorenz FR, Schöllhorn A, Bruchhaus I, Tannich E, Fendel R, Otto TD, Lavstsen T, Gilberger TW, Duffy MF, Bachmann A. Common virulence gene expression in adult first-time infected malaria patients and severe cases. eLife 2021; 10:e69040. [PMID: 33908865 PMCID: PMC8102065 DOI: 10.7554/elife.69040] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 04/18/2021] [Indexed: 12/22/2022] Open
Abstract
Sequestration of Plasmodium falciparum(P. falciparum)-infected erythrocytes to host endothelium through the parasite-derived P. falciparum erythrocyte membrane protein 1 (PfEMP1) adhesion proteins is central to the development of malaria pathogenesis. PfEMP1 proteins have diversified and expanded to encompass many sequence variants, conferring each parasite a similar array of human endothelial receptor-binding phenotypes. Here, we analyzed RNA-seq profiles of parasites isolated from 32 P. falciparum-infected adult travellers returning to Germany. Patients were categorized into either malaria naive (n = 15) or pre-exposed (n = 17), and into severe (n = 8) or non-severe (n = 24) cases. For differential expression analysis, PfEMP1-encoding var gene transcripts were de novo assembled from RNA-seq data and, in parallel, var-expressed sequence tags were analyzed and used to predict the encoded domain composition of the transcripts. Both approaches showed in concordance that severe malaria was associated with PfEMP1 containing the endothelial protein C receptor (EPCR)-binding CIDRα1 domain, whereas CD36-binding PfEMP1 was linked to non-severe malaria outcomes. First-time infected adults were more likely to develop severe symptoms and tended to be infected for a longer period. Thus, parasites with more pathogenic PfEMP1 variants are more common in patients with a naive immune status, and/or adverse inflammatory host responses to first infections favor the growth of EPCR-binding parasites.
Collapse
Affiliation(s)
- J Stephan Wichers
- Molecular Biology and Immunology, Bernhard Nocht Institute for Tropical MedicineHamburgGermany
- Centre for Structural Systems BiologyHamburgGermany
- Biology Department, University of HamburgHamburgGermany
| | | | - Thorsten Thye
- Epidemiology and Diagnostics, Bernhard Nocht Institute for Tropical MedicineHamburgGermany
| | - Ralf Krumkamp
- Epidemiology and Diagnostics, Bernhard Nocht Institute for Tropical MedicineHamburgGermany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-RiemsHamburgGermany
| | - Benno Kreuels
- Department of Tropical Medicine, Bernhard Nocht Institute for Tropical Medicine, GermanyHamburgGermany
- Department of Medicine, College of MedicineBlantyreMalawi
- Department of Medicine, University Medical Center Hamburg-EppendorfHamburgGermany
| | - Jan Strauss
- Molecular Biology and Immunology, Bernhard Nocht Institute for Tropical MedicineHamburgGermany
- Centre for Structural Systems BiologyHamburgGermany
- Biology Department, University of HamburgHamburgGermany
| | - Heidrun von Thien
- Molecular Biology and Immunology, Bernhard Nocht Institute for Tropical MedicineHamburgGermany
- Centre for Structural Systems BiologyHamburgGermany
- Biology Department, University of HamburgHamburgGermany
| | - Judith AM Scholz
- Molecular Biology and Immunology, Bernhard Nocht Institute for Tropical MedicineHamburgGermany
| | | | | | | | | | - Anna Schöllhorn
- Institute of Tropical Medicine, University of TübingenTübingenGermany
| | - Iris Bruchhaus
- Molecular Biology and Immunology, Bernhard Nocht Institute for Tropical MedicineHamburgGermany
- Biology Department, University of HamburgHamburgGermany
| | - Egbert Tannich
- Epidemiology and Diagnostics, Bernhard Nocht Institute for Tropical MedicineHamburgGermany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-RiemsHamburgGermany
| | - Rolf Fendel
- Institute of Tropical Medicine, University of TübingenTübingenGermany
- German Center for Infection Research (DZIF), Partner Site TübingenTübingenGermany
| | - Thomas D Otto
- Institute of Infection, Immunity and Inflammation, University of GlasgowGlasgowUnited Kingdom
| | | | - Tim W Gilberger
- Molecular Biology and Immunology, Bernhard Nocht Institute for Tropical MedicineHamburgGermany
- Centre for Structural Systems BiologyHamburgGermany
- Biology Department, University of HamburgHamburgGermany
| | - Michael F Duffy
- Department of Microbiology and Immunology, University of MelbourneMelbourneAustralia
| | - Anna Bachmann
- Molecular Biology and Immunology, Bernhard Nocht Institute for Tropical MedicineHamburgGermany
- Centre for Structural Systems BiologyHamburgGermany
- Biology Department, University of HamburgHamburgGermany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-RiemsHamburgGermany
| |
Collapse
|
21
|
Milne K, Ivens A, Reid AJ, Lotkowska ME, O'Toole A, Sankaranarayanan G, Munoz Sandoval D, Nahrendorf W, Regnault C, Edwards NJ, Silk SE, Payne RO, Minassian AM, Venkatraman N, Sanders MJ, Hill AVS, Barrett M, Berriman M, Draper SJ, Rowe JA, Spence PJ. Mapping immune variation and var gene switching in naive hosts infected with Plasmodium falciparum. eLife 2021; 10:e62800. [PMID: 33648633 PMCID: PMC7924948 DOI: 10.7554/elife.62800] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 02/09/2021] [Indexed: 02/06/2023] Open
Abstract
Falciparum malaria is clinically heterogeneous and the relative contribution of parasite and host in shaping disease severity remains unclear. We explored the interaction between inflammation and parasite variant surface antigen (VSA) expression, asking whether this relationship underpins the variation observed in controlled human malaria infection (CHMI). We uncovered marked heterogeneity in the host response to blood challenge; some volunteers remained quiescent, others triggered interferon-stimulated inflammation and some showed transcriptional evidence of myeloid cell suppression. Significantly, only inflammatory volunteers experienced hallmark symptoms of malaria. When we tracked temporal changes in parasite VSA expression to ask whether variants associated with severe disease rapidly expand in naive hosts, we found no transcriptional evidence to support this hypothesis. These data indicate that parasite variants that dominate severe malaria do not have an intrinsic growth or survival advantage; instead, they presumably rely upon infection-induced changes in their within-host environment for selection.
Collapse
Affiliation(s)
- Kathryn Milne
- Institute of Immunology and Infection Research, University of EdinburghEdinburghUnited Kingdom
| | - Alasdair Ivens
- Institute of Immunology and Infection Research, University of EdinburghEdinburghUnited Kingdom
- Centre for Immunity, Infection and Evolution, University of EdinburghEdinburghUnited Kingdom
| | - Adam J Reid
- Wellcome Sanger InstituteCambridgeUnited Kingdom
| | | | - Aine O'Toole
- Centre for Immunity, Infection and Evolution, University of EdinburghEdinburghUnited Kingdom
- Institute of Evolutionary Biology, University of EdinburghEdinburghUnited Kingdom
| | | | - Diana Munoz Sandoval
- Institute of Immunology and Infection Research, University of EdinburghEdinburghUnited Kingdom
- Instituto de Microbiologia, Universidad San Francisco de QuitoQuitoEcuador
| | - Wiebke Nahrendorf
- Institute of Immunology and Infection Research, University of EdinburghEdinburghUnited Kingdom
| | - Clement Regnault
- Wellcome Centre for Integrative Parasitology, University of GlasgowGlasgowUnited Kingdom
- Glasgow Polyomics, University of GlasgowGlasgowUnited Kingdom
| | - Nick J Edwards
- The Jenner Institute, University of OxfordOxfordUnited Kingdom
| | - Sarah E Silk
- The Jenner Institute, University of OxfordOxfordUnited Kingdom
| | - Ruth O Payne
- The Jenner Institute, University of OxfordOxfordUnited Kingdom
| | | | | | | | - Adrian VS Hill
- The Jenner Institute, University of OxfordOxfordUnited Kingdom
| | - Michael Barrett
- Wellcome Centre for Integrative Parasitology, University of GlasgowGlasgowUnited Kingdom
- Glasgow Polyomics, University of GlasgowGlasgowUnited Kingdom
| | | | - Simon J Draper
- The Jenner Institute, University of OxfordOxfordUnited Kingdom
| | - J Alexandra Rowe
- Institute of Immunology and Infection Research, University of EdinburghEdinburghUnited Kingdom
- Centre for Immunity, Infection and Evolution, University of EdinburghEdinburghUnited Kingdom
| | - Philip J Spence
- Institute of Immunology and Infection Research, University of EdinburghEdinburghUnited Kingdom
- Centre for Immunity, Infection and Evolution, University of EdinburghEdinburghUnited Kingdom
| |
Collapse
|
22
|
He Q, Pascual M. An antigenic diversification threshold for falciparum malaria transmission at high endemicity. PLoS Comput Biol 2021; 17:e1008729. [PMID: 33606682 PMCID: PMC7928509 DOI: 10.1371/journal.pcbi.1008729] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 03/03/2021] [Accepted: 01/20/2021] [Indexed: 01/05/2023] Open
Abstract
In malaria and several other important infectious diseases, high prevalence occurs concomitantly with incomplete immunity. This apparent paradox poses major challenges to malaria elimination in highly endemic regions, where asymptomatic Plasmodium falciparum infections are present across all age classes creating a large reservoir that maintains transmission. This reservoir is in turn enabled by extreme antigenic diversity of the parasite and turnover of new variants. We present here the concept of a threshold in local pathogen diversification that defines a sharp transition in transmission intensity below which new antigen-encoding genes generated by either recombination or migration cannot establish. Transmission still occurs below this threshold, but diversity of these genes can neither accumulate nor recover from interventions that further reduce it. An analytical expectation for this threshold is derived and compared to numerical results from a stochastic individual-based model of malaria transmission that incorporates the major antigen-encoding multigene family known as var. This threshold corresponds to an “innovation” number we call Rdiv; it is different from, and complementary to, the one defined by the classic basic reproductive number of infectious diseases, R0, which does not readily is better apply under large and dynamic strain diversity. This new threshold concept can be exploited for effective malaria control and applied more broadly to other pathogens with large multilocus antigenic diversity. The vast diversity of the falciparum malaria parasite, as seen by the immune system of hosts in high transmission regions, underlies both high prevalence of asymptomatic infections and partial protection to re-infection despite previous exposure. This large antigenic diversity of the parasite challenges control and elimination efforts. We propose a threshold quantity for antigenic innovation, we call Rdiv, measuring the potential of transmission to accumulate new antigenic variants over time. When Rdiv is pushed below one by reduced transmission intensity, new genes encoding this variation can no longer accumulate, resulting in a lower number of strains and facilitating further intervention. This innovation number can be applied to other infectious diseases with fast turnover of antigens, where large standing diversity similarly opposes successful intervention.
Collapse
Affiliation(s)
- Qixin He
- Department of Ecology and Evolution, University of Chicago, Chicago, Illinois, United States of America
| | - Mercedes Pascual
- Department of Ecology and Evolution, University of Chicago, Chicago, Illinois, United States of America
- Santa Fe Institute, Santa Fe, New Mexico, United States of America
- * E-mail:
| |
Collapse
|
23
|
Molehin AJ. Current Understanding of Immunity Against Schistosomiasis: Impact on Vaccine and Drug Development. Res Rep Trop Med 2020; 11:119-128. [PMID: 33173371 PMCID: PMC7646453 DOI: 10.2147/rrtm.s274518] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 09/29/2020] [Indexed: 12/17/2022] Open
Abstract
Schistosomiasis is a neglected tropical disease inflicting significant morbidity in humans worldwide. The disease is caused by infections with a parasitic trematode belonging to the genus Schistosoma. Over 250 million people are currently infected globally, with an estimated disability-adjusted life-years of 1.9 million attributed to the disease. Current understanding, based on several immunological studies using experimental and human models of schistosomiasis, reveals that complex immune mechanisms play off each other in the acquisition of immune resistance to infection/reinfection. Nevertheless, the precise characteristics of these responses, the specific antigens against which they are elicited, and how these responses are intricately regulated are still being investigated. What is apparent is that immunity to schistosome infections develops slowly and over a prolonged period of time, augmented by the death of adult worms occurring naturally or by praziquantel therapy. In this review, aspects of immunity to schistosomiasis, host–parasite interactions and their impact on schistosomiasis vaccine development are discussed.
Collapse
Affiliation(s)
- Adebayo J Molehin
- Department of Internal Medicine, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.,Center for Tropical Medicine and Infectious Diseases, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| |
Collapse
|
24
|
Su XZ, Zhang C, Joy DA. Host-Malaria Parasite Interactions and Impacts on Mutual Evolution. Front Cell Infect Microbiol 2020; 10:587933. [PMID: 33194831 PMCID: PMC7652737 DOI: 10.3389/fcimb.2020.587933] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 09/22/2020] [Indexed: 12/22/2022] Open
Abstract
Malaria is the most deadly parasitic disease, affecting hundreds of millions of people worldwide. Malaria parasites have been associated with their hosts for millions of years. During the long history of host-parasite co-evolution, both parasites and hosts have applied pressure on each other through complex host-parasite molecular interactions. Whereas the hosts activate various immune mechanisms to remove parasites during an infection, the parasites attempt to evade host immunity by diversifying their genome and switching expression of targets of the host immune system. Human intervention to control the disease such as antimalarial drugs and vaccination can greatly alter parasite population dynamics and evolution, particularly the massive applications of antimalarial drugs in recent human history. Vaccination is likely the best method to prevent the disease; however, a partially protective vaccine may have unwanted consequences that require further investigation. Studies of host-parasite interactions and co-evolution will provide important information for designing safe and effective vaccines and for preventing drug resistance. In this essay, we will discuss some interesting molecules involved in host-parasite interactions, including important parasite antigens. We also discuss subjects relevant to drug and vaccine development and some approaches for studying host-parasite interactions.
Collapse
Affiliation(s)
- Xin-Zhuan Su
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Cui Zhang
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Deirdre A Joy
- Parasitology and International Programs Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
25
|
Nyarko PB, Claessens A. Understanding Host-Pathogen-Vector Interactions with Chronic Asymptomatic Malaria Infections. Trends Parasitol 2020; 37:195-204. [PMID: 33127332 DOI: 10.1016/j.pt.2020.09.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/28/2020] [Accepted: 09/30/2020] [Indexed: 01/06/2023]
Abstract
The last malaria parasite standing will display effective adaptations to selective forces. While substantial progress has been made in reducing malaria mortality, eradication will require elimination of all Plasmodium parasites, including those in asymptomatic infections. These typically chronic, low-density infections are difficult to detect, yet can persist for months. We argue that asymptomatic infection is the parasite's best asset for survival but it can be exploited if studied as a new model for host-pathogen-vector interactions. Regular sampling from cohorts of asymptomatic individuals can provide a means to investigate continuous parasite development within its natural host. State-of-the-art techniques can now be applied to such infections. This approach may reveal key molecular drivers of chronic infections - a critical step for malaria eradication.
Collapse
Affiliation(s)
- Prince B Nyarko
- Laboratory of Pathogen-Host Interaction (LPHI), CNRS, University of Montpellier, France
| | | |
Collapse
|
26
|
Andrade CM, Fleckenstein H, Thomson-Luque R, Doumbo S, Lima NF, Anderson C, Hibbert J, Hopp CS, Tran TM, Li S, Niangaly M, Cisse H, Doumtabe D, Skinner J, Sturdevant D, Ricklefs S, Virtaneva K, Asghar M, Homann MV, Turner L, Martins J, Allman EL, N'Dri ME, Winkler V, Llinás M, Lavazec C, Martens C, Färnert A, Kayentao K, Ongoiba A, Lavstsen T, Osório NS, Otto TD, Recker M, Traore B, Crompton PD, Portugal S. Increased circulation time of Plasmodium falciparum underlies persistent asymptomatic infection in the dry season. Nat Med 2020; 26:1929-1940. [PMID: 33106664 DOI: 10.1038/s41591-020-1084-0] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 08/27/2020] [Indexed: 12/25/2022]
Abstract
The dry season is a major challenge for Plasmodium falciparum parasites in many malaria endemic regions, where water availability limits mosquito vectors to only part of the year. How P. falciparum bridges two transmission seasons months apart, without being cleared by the human host or compromising host survival, is poorly understood. Here we show that low levels of P. falciparum parasites persist in the blood of asymptomatic Malian individuals during the 5- to 6-month dry season, rarely causing symptoms and minimally affecting the host immune response. Parasites isolated during the dry season are transcriptionally distinct from those of individuals with febrile malaria in the transmission season, coinciding with longer circulation within each replicative cycle of parasitized erythrocytes without adhering to the vascular endothelium. Low parasite levels during the dry season are not due to impaired replication but rather to increased splenic clearance of longer-circulating infected erythrocytes, which likely maintain parasitemias below clinical and immunological radar. We propose that P. falciparum virulence in areas of seasonal malaria transmission is regulated so that the parasite decreases its endothelial binding capacity, allowing increased splenic clearance and enabling several months of subclinical parasite persistence.
Collapse
Affiliation(s)
- Carolina M Andrade
- Center for Infectious Diseases, Parasitology, Heidelberg University Hospital, Heidelberg, Germany
| | - Hannah Fleckenstein
- Center for Infectious Diseases, Parasitology, Heidelberg University Hospital, Heidelberg, Germany
| | - Richard Thomson-Luque
- Center for Infectious Diseases, Parasitology, Heidelberg University Hospital, Heidelberg, Germany
| | - Safiatou Doumbo
- Mali International Center of Excellence in Research, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Nathalia F Lima
- Center for Infectious Diseases, Parasitology, Heidelberg University Hospital, Heidelberg, Germany
| | - Carrie Anderson
- Center for Infectious Diseases, Parasitology, Heidelberg University Hospital, Heidelberg, Germany
| | - Julia Hibbert
- Center for Infectious Diseases, Parasitology, Heidelberg University Hospital, Heidelberg, Germany
| | - Christine S Hopp
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Tuan M Tran
- Division of Infectious Diseases, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Shanping Li
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Moussa Niangaly
- Mali International Center of Excellence in Research, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Hamidou Cisse
- Mali International Center of Excellence in Research, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Didier Doumtabe
- Mali International Center of Excellence in Research, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Jeff Skinner
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Dan Sturdevant
- Rocky Mountain Laboratory Research Technologies Section, Genomics Unit, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Stacy Ricklefs
- Rocky Mountain Laboratory Research Technologies Section, Genomics Unit, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Kimmo Virtaneva
- Rocky Mountain Laboratory Research Technologies Section, Genomics Unit, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Muhammad Asghar
- Department of Medicine Solna, Division of Infectious Diseases, Karolinska Institutet, Stockholm, Sweden.,Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Manijeh Vafa Homann
- Department of Medicine Solna, Division of Infectious Diseases, Karolinska Institutet, Stockholm, Sweden.,Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Louise Turner
- Department of Immunology and Microbiology, Centre for Medical Parasitology, Faculty of Health and Medical Sciences, University of Copenhagen, København N, Denmark.,Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| | - Joana Martins
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Portugal and ICVS/3B's -PT Government Associate Laboratory, Braga, Portugal
| | - Erik L Allman
- Department of Biochemistry and Molecular Biology, Huck Center for Malaria Research, The Pennsylvania State University, State College, PA, USA
| | | | - Volker Winkler
- Institute of Global Health, Heidelberg University Hospital, Heidelberg, Germany
| | - Manuel Llinás
- Department of Biochemistry and Molecular Biology, Huck Center for Malaria Research, The Pennsylvania State University, State College, PA, USA.,Department of Chemistry, The Pennsylvania State University, State College, PA, USA
| | | | - Craig Martens
- Rocky Mountain Laboratory Research Technologies Section, Genomics Unit, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Anna Färnert
- Department of Medicine Solna, Division of Infectious Diseases, Karolinska Institutet, Stockholm, Sweden.,Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Kassoum Kayentao
- Mali International Center of Excellence in Research, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Aissata Ongoiba
- Mali International Center of Excellence in Research, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Thomas Lavstsen
- Department of Immunology and Microbiology, Centre for Medical Parasitology, Faculty of Health and Medical Sciences, University of Copenhagen, København N, Denmark.,Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| | - Nuno S Osório
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Portugal and ICVS/3B's -PT Government Associate Laboratory, Braga, Portugal
| | - Thomas D Otto
- Institute of Infection, Immunity & Inflammation, MVLS, University of Glasgow, Glasgow, UK
| | - Mario Recker
- Centre for Mathematics & the Environment, University of Exeter, Penryn Campus, Penryn, UK
| | - Boubacar Traore
- Mali International Center of Excellence in Research, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Peter D Crompton
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Silvia Portugal
- Center for Infectious Diseases, Parasitology, Heidelberg University Hospital, Heidelberg, Germany. .,German Center for Infection Research (DZIF), Heidelberg, Heidelberg, Germany. .,Max Planck Institute for Infection Biology, Berlin, Germany.
| |
Collapse
|
27
|
Osii RS, Otto TD, Garside P, Ndungu FM, Brewer JM. The Impact of Malaria Parasites on Dendritic Cell-T Cell Interaction. Front Immunol 2020; 11:1597. [PMID: 32793231 PMCID: PMC7393936 DOI: 10.3389/fimmu.2020.01597] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 06/16/2020] [Indexed: 12/13/2022] Open
Abstract
Malaria is caused by apicomplexan parasites of the genus Plasmodium. While infection continues to pose a risk for the majority of the global population, the burden of disease mainly resides in Sub-Saharan Africa. Although immunity develops against disease, this requires years of persistent exposure and is not associated with protection against infection. Repeat infections occur due to the parasite's ability to disrupt or evade the host immune responses. However, despite many years of study, the mechanisms of this disruption remain unclear. Previous studies have demonstrated a parasite-induced failure in dendritic cell (DCs) function affecting the generation of helper T cell responses. These T cells fail to help B cell responses, reducing the production of antibodies that are necessary to control malaria infection. This review focuses on our current understanding of the effect of Plasmodium parasite on DC function, DC-T cell interaction, and T cell activation. A better understanding of how parasites disrupt DC-T cell interactions will lead to new targets and approaches to reinstate adaptive immune responses and enhance parasite immunity.
Collapse
Affiliation(s)
- Rowland S Osii
- Institute of Infection, Immunity & Inflammation, University of Glasgow, Glasgow, United Kingdom.,KEMRI-CGMRC/Wellcome Trust Research Programme, Kilifi, Kenya
| | - Thomas D Otto
- Institute of Infection, Immunity & Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Paul Garside
- Institute of Infection, Immunity & Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Francis M Ndungu
- Institute of Infection, Immunity & Inflammation, University of Glasgow, Glasgow, United Kingdom.,KEMRI-CGMRC/Wellcome Trust Research Programme, Kilifi, Kenya.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - James M Brewer
- Institute of Infection, Immunity & Inflammation, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
28
|
Schmaler M, Orlova-Fink N, Rutishauser T, Abdulla S, Daubenberger C. Human unconventional T cells in Plasmodium falciparum infection. Semin Immunopathol 2020; 42:265-277. [PMID: 32076813 PMCID: PMC7223888 DOI: 10.1007/s00281-020-00791-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 02/07/2020] [Indexed: 12/22/2022]
Abstract
Malaria is an old scourge of humankind and has a large negative impact on the economic development of affected communities. Recent success in malaria control and reduction of mortality seems to have stalled emphasizing that our current intervention tools need to be complemented by malaria vaccines. Different populations of unconventional T cells such as mucosal-associated invariant T (MAIT) cells, invariant natural killer T (iNKT) cells and γδ T cells are gaining attention in the field of malaria immunology. Significant advances in our basic understanding of unconventional T cell biology in rodent malaria models have been made, however, their roles in humans during malaria are less clear. Unconventional T cells are abundant in skin, gut and liver tissues, and long-lasting expansions and functional alterations were observed upon malaria infection in malaria naïve and malaria pre-exposed volunteers. Here, we review the current understanding of involvement of unconventional T cells in anti-Plasmodium falciparum immunity and highlight potential future research avenues.
Collapse
Affiliation(s)
- Mathias Schmaler
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, University of Basel, Basel, Switzerland
| | - Nina Orlova-Fink
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, University of Basel, Basel, Switzerland
| | - Tobias Rutishauser
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, University of Basel, Basel, Switzerland
| | - Salim Abdulla
- Ifakara Health Institute, Bagamoyo Clinical Trial Unit, Bagamoyo, Tanzania
| | - Claudia Daubenberger
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, University of Basel, Basel, Switzerland.
| |
Collapse
|
29
|
Dimonte S, Bruske EI, Enderes C, Otto TD, Turner L, Kremsner P, Frank M. Identification of a conserved var gene in different Plasmodium falciparum strains. Malar J 2020; 19:194. [PMID: 32471507 PMCID: PMC7260770 DOI: 10.1186/s12936-020-03257-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 05/15/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The multicopy var gene family of Plasmodium falciparum is of crucial importance for pathogenesis and antigenic variation. So far only var2csa, the var gene responsible for placental malaria, was found to be highly conserved among all P. falciparum strains. Here, a new conserved 3D7 var gene (PF3D7_0617400) is identified in several field isolates. METHODS DNA sequencing, transcriptional analysis, Cluster of Differentiation (CD) 36-receptor binding, indirect immunofluorescence with PF3D7_0617400-antibodies and quantification of surface reactivity against semi-immune sera were used to characterize an NF54 clone and a Gabonese field isolate clone (MOA C3) transcribing the gene. A population of 714 whole genome sequenced parasites was analysed to characterize the conservation of the locus in African and Asian isolates. The genetic diversity of two var2csa fragments was compared with the genetic diversity of 57 microsatellites fragments in field isolates. RESULTS PFGA01_060022400 was identified in a Gabonese parasite isolate (MOA) from a chronic infection and found to be 99% identical with PF3D7_0617400 of the 3D7 genome strain. Transcriptional analysis and immunofluorescence showed expression of the gene in an NF54 and a MOA clone but CD36 binding assays and surface reactivity to semi-immune sera differed markedly in the two clones. Long-read Pacific bioscience whole genome sequencing showed that PFGA01_060022400 is located in the internal cluster of chromosome 6. The full length PFGA01_060022400 was detected in 36 of 714 P. falciparum isolates and 500 bp fragments were identified in more than 100 isolates. var2csa was in parts highly conserved (He = 0) but in other parts as variable (He = 0.86) as the 57 microsatellites markers (He = 0.8). CONCLUSIONS Individual var gene sequences exhibit conservation in the global parasite population suggesting that purifying selection may limit overall genetic diversity of some var genes. Notably, field and laboratory isolates expressing the same var gene exhibit markedly different phenotypes.
Collapse
Affiliation(s)
- Sandra Dimonte
- Institute of Tropical Medicine, University of Tuebingen, Wilhelmstr. 27, 72074, Tuebingen, Germany
| | - Ellen I Bruske
- Institute of Tropical Medicine, University of Tuebingen, Wilhelmstr. 27, 72074, Tuebingen, Germany
| | - Corinna Enderes
- Institute of Tropical Medicine, University of Tuebingen, Wilhelmstr. 27, 72074, Tuebingen, Germany
| | - Thomas D Otto
- Malaria Programme, Wellcome Trust Sanger Institute, Hinxton, CB10 1SA, UK.,Centre of Immunobiology, Institute of Infection, Immunity & Inflammation, College of MVLS, University of Glasgow, Glasgow, UK
| | - Louise Turner
- Centre for Medical Parasitology, Department of Immunology and Microbiology (ISIM), Faculty of Health and Medical Sciences, University of Copenhagen, 1165, Copenhagen, Denmark.,Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), 2100, Copenhagen, Denmark
| | - Peter Kremsner
- Institute of Tropical Medicine, University of Tuebingen, Wilhelmstr. 27, 72074, Tuebingen, Germany
| | - Matthias Frank
- Institute of Tropical Medicine, University of Tuebingen, Wilhelmstr. 27, 72074, Tuebingen, Germany.
| |
Collapse
|
30
|
Oli AN, Obialor WO, Ifeanyichukwu MO, Odimegwu DC, Okoyeh JN, Emechebe GO, Adejumo SA, Ibeanu GC. Immunoinformatics and Vaccine Development: An Overview. Immunotargets Ther 2020; 9:13-30. [PMID: 32161726 PMCID: PMC7049754 DOI: 10.2147/itt.s241064] [Citation(s) in RCA: 136] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 01/25/2020] [Indexed: 12/11/2022] Open
Abstract
The use of vaccines have resulted in a remarkable improvement in global health. It has saved several lives, reduced treatment costs and raised the quality of animal and human lives. Current traditional vaccines came empirically with either vague or completely no knowledge of how they modulate our immune system. Even at the face of potential vaccine design advance, immune-related concerns (as seen with specific vulnerable populations, cases of emerging/re-emerging infectious disease, pathogens with complex lifecycle and antigenic variability, need for personalized vaccinations, and concerns for vaccines' immunological safety -specifically vaccine likelihood to trigger non-antigen-specific responses that may cause autoimmunity and vaccine allergy) are being raised. And these concerns have driven immunologists toward research for a better approach to vaccine design that will consider these challenges. Currently, immunoinformatics has paved the way for a better understanding of some infectious disease pathogenesis, diagnosis, immune system response and computational vaccinology. The importance of this immunoinformatics in the study of infectious diseases is diverse in terms of computational approaches used, but is united by common qualities related to host–pathogen relationship. Bioinformatics methods are also used to assign functions to uncharacterized genes which can be targeted as a candidate in vaccine design and can be a better approach toward the inclusion of women that are pregnant into vaccine trials and programs. The essence of this review is to give insight into the need to focus on novel computational, experimental and computation-driven experimental approaches for studying of host–pathogen interactions and thus making a case for its use in vaccine development.
Collapse
Affiliation(s)
- Angus Nnamdi Oli
- Department of Pharmaceutical Microbiology and Biotechnology, Faculty of Pharmaceutical Sciences, Nnamdi Azikiwe University, Awka, Nigeria
| | - Wilson Okechukwu Obialor
- Department of Pharmaceutical Microbiology and Biotechnology, Faculty of Pharmaceutical Sciences, Nnamdi Azikiwe University, Awka, Nigeria
| | - Martins Ositadimma Ifeanyichukwu
- Department of Immunology, College of Health Sciences, Faculty of Medicine, Nnamdi Azikiwe University, Anambra, Nigeria.,Department of Medical Laboratory Science,Faculty of Health Science and Technology, College of Health Sciences, Nnamdi Azikiwe University,Nnewi Campus, Nnewi, Nigeria
| | - Damian Chukwu Odimegwu
- Department of Pharmaceutical Microbiology and Biotechnology, Faculty of Pharmaceutical Sciences, University of Nigeria Nsukka, Enugu, Nigeria
| | - Jude Nnaemeka Okoyeh
- Department of Biology and Clinical Laboratory Science, Division of Arts and Sciences, Neumann University, Aston, PA 19014-1298, USA
| | - George Ogonna Emechebe
- Department of Pediatrics, Faculty of Clinical Medicine, Chukwuemeka Odumegwu Ojukwu University, Awka, Nigeria
| | - Samson Adedeji Adejumo
- Department of Pharmaceutical Microbiology and Biotechnology, Faculty of Pharmaceutical Sciences, Nnamdi Azikiwe University, Awka, Nigeria
| | - Gordon C Ibeanu
- Department of Pharmaceutical Science, North Carolina Central University, Durham, NC 27707, USA
| |
Collapse
|
31
|
Schistosomiasis-from immunopathology to vaccines. Semin Immunopathol 2020; 42:355-371. [PMID: 32076812 PMCID: PMC7223304 DOI: 10.1007/s00281-020-00789-x] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 02/05/2020] [Indexed: 12/18/2022]
Abstract
Schistosomiasis (bilharzia) is a neglected tropical disease caused by trematode worms of the genus Schistosoma. The transmission cycle involves human (or other mammalian) water contact with surface water contaminated by faeces or urine, as well as specific freshwater snails acting as intermediate hosts. The main disease-causing species are S. haematobium, S. mansoni and S. japonicum. According to the World Health Organisation, over 250 million people are infected worldwide, leading to considerable morbidity and the estimated loss of 1.9 million disability-adjusted life years (DALYs), a likely underestimated figure. Schistosomiasis is characterised by focal epidemiology and an over-dispersed population distribution, with higher infection rates in children. Complex immune mechanisms lead to the slow acquisition of immune resistance, but innate factors also play a part. Acute schistosomiasis, a feverish syndrome, is most evident in travellers following a primary infection. Chronic schistosomiasis affects mainly individuals with long-standing infections residing in poor rural areas. Immunopathological reactions against schistosome eggs trapped in host tissues lead to inflammatory and obstructive disease in the urinary system (S. haematobium) or intestinal disease, hepatosplenic inflammation and liver fibrosis (S. mansoni and S. japonicum). An effective drug—praziquantel—is available for treatment but, despite intensive efforts, no schistosomiasis vaccines have yet been accepted for public use. In this review, we briefly introduce the schistosome parasites and the immunopathogenic manifestations resulting from schistosomiasis. We then explore aspects of the immunology and host-parasite interplay in schistosome infections paying special attention to the current status of schistosomiasis vaccine development highlighting the advancement of a new controlled human challenge infection model for testing schistosomiasis vaccines.
Collapse
|
32
|
Hoo R, Bruske E, Dimonte S, Zhu L, Mordmüller B, Sim BKL, Kremsner PG, Hoffman SL, Bozdech Z, Frank M, Preiser PR. Transcriptome profiling reveals functional variation in Plasmodium falciparum parasites from controlled human malaria infection studies. EBioMedicine 2019; 48:442-452. [PMID: 31521613 PMCID: PMC6838377 DOI: 10.1016/j.ebiom.2019.09.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/29/2019] [Accepted: 09/01/2019] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND The transcriptome of Plasmodium falciparum clinical isolates varies according to strain, mosquito bites, disease severity and clinical history. Therefore, it remains a challenge to directly interpret the parasite's transcriptomic information into a more general biological signature in a natural human malaria infection. These confounding variations can be potentially overcome with parasites derived from controlled-human malaria infection (CHMI) studies. METHODS We performed CHMI studies in healthy and immunologically naïve volunteers receiving the same P. falciparum strain ((Sanaria® PfSPZ Challenge (NF54)), but with different sporozoite dosage and route of infection. Parasites isolated from these volunteers at the day of patency were subjected to in vitro culture for several generations and synchronized ring-stage parasites were subjected to transcriptome profiling. FINDINGS We observed clear deviations between CHMI-derived parasites from volunteer groups receiving different PfSPZ dose and route. CHMI-derived parasites and the pre-mosquito strain used for PfSPZ generation showed significant transcriptional variability for gene clusters associated with malaria pathogenesis, immune evasion and transmission. These transcriptional variation signature clusters were also observed in the transcriptome of P. falciparum isolates from acute clinical infections. INTERPRETATION Our work identifies a previously unrecognized transcriptional pattern in malaria infections in a non-immune background. Significant transcriptome heterogeneity exits between parasites derived from human infections and the pre-mosquito strain, implying that the malaria parasites undergo a change in functional state to adapt to its host environment. Our work also highlights the potential use of transcriptomics data from CHMI study advance our understanding of malaria parasite adaptation and transmission in humans. FUND: This work is supported by German Israeli Foundation, German ministry for education and research, MOE Tier 1 from the Singapore Ministry of Education Academic Research Fund, Singapore Ministry of Health's National Medical Research Council, National Institute of Allergy and Infectious Diseases, National Institutes of Health, USA and the German Centre for Infection Research (Deutsches Zentrum für Infektionsforschung-DZIF).
Collapse
Affiliation(s)
- Regina Hoo
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Ellen Bruske
- Institute of Tropical Medicine, Wilhelmstr. 27, University of Tübingen, 72074 Tübingen, Germany
| | - Sandra Dimonte
- Institute of Tropical Medicine, Wilhelmstr. 27, University of Tübingen, 72074 Tübingen, Germany
| | - Lei Zhu
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Benjamin Mordmüller
- Institute of Tropical Medicine, Wilhelmstr. 27, University of Tübingen, 72074 Tübingen, Germany; German Center for Infection Research, partner site Tübingen, Germany
| | - B Kim Lee Sim
- Sanaria Inc, 9800 Medical Center Dr A209, Rockville, MD 20850, USA
| | - Peter G Kremsner
- Institute of Tropical Medicine, Wilhelmstr. 27, University of Tübingen, 72074 Tübingen, Germany; Centre de Recherches Médicales de Lambaréné, BP 242 Lambaréné, Gabon
| | | | - Zbynek Bozdech
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Matthias Frank
- Institute of Tropical Medicine, Wilhelmstr. 27, University of Tübingen, 72074 Tübingen, Germany.
| | - Peter R Preiser
- School of Biological Sciences, Nanyang Technological University, Singapore.
| |
Collapse
|