1
|
Wang L, Zhai W, Jiang D, Jiang N, Yan J, Jiang H, Wang M. Tangeretin Suppresses Fumonisin Production by Modulating an NmrA- and HSCARG-like Protein in Fusarium verticillioides. J Fungi (Basel) 2025; 11:313. [PMID: 40278133 PMCID: PMC12028961 DOI: 10.3390/jof11040313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 03/27/2025] [Accepted: 03/31/2025] [Indexed: 04/26/2025] Open
Abstract
Fumonisins are polyketide-derived mycotoxins posing significant health threats to humans and animals. Among these, fumonisin B1 (FB1) is the most prevalent mycotoxin, primarily produced by Fusarium verticillioides, especially in maize and its derived products. Tangeretin, a polymethoxyflavonoid, has been identified as having potential medicinal properties, particularly as an antioxidant. To evaluate the antifungal and anti-mycotoxigenic properties of tangeretin and to elucidate the mechanisms underlying its inhibitory effects, assessments of fungal growth, FB1 production, conidial germination, and cellulase activity, antioxidant capacity and enzyme activities, transcriptomic analysis and gene deletion experiments were conducted. Consequently, tangeretin significantly curtailed fungal growth and FB1 production and provided protection against pathogenic infection on corn. It affected genes associated with fungal growth, conidial development, and antioxidant response. Furthermore, tangeretin interfered with the supply of biosynthetic substrate necessary for fumonisin production, particularly impacting pathways involved in alanine metabolism, pyruvate metabolism, fatty acid degradation, and sphingolipid metabolism. Notably, tangeretin downregulated four biosynthetic genes (Fum2, Fum3, Fum10 and Fum11) that are involved in the final steps of fumonisin formation. It likely disrupted the MAPK signaling pathway and targeted a putative NmrA- and HSCARG-like protein Fv_Tan1, which was identified as having positive effects on fungal growth and mycotoxin biosynthesis. This study presents a promising approach for controlling fumonisin contamination in agricultural settings.
Collapse
Affiliation(s)
- Liuqing Wang
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, No. 9 Middle Road of Shuguanghuayuan, Haidian District, Beijing 100097, China; (L.W.); (W.Z.); (D.J.); (N.J.); (H.J.)
| | - Wenlei Zhai
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, No. 9 Middle Road of Shuguanghuayuan, Haidian District, Beijing 100097, China; (L.W.); (W.Z.); (D.J.); (N.J.); (H.J.)
| | - Dongmei Jiang
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, No. 9 Middle Road of Shuguanghuayuan, Haidian District, Beijing 100097, China; (L.W.); (W.Z.); (D.J.); (N.J.); (H.J.)
| | - Nan Jiang
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, No. 9 Middle Road of Shuguanghuayuan, Haidian District, Beijing 100097, China; (L.W.); (W.Z.); (D.J.); (N.J.); (H.J.)
| | - Jiaqi Yan
- College of Horticulture, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China;
| | - Haoyun Jiang
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, No. 9 Middle Road of Shuguanghuayuan, Haidian District, Beijing 100097, China; (L.W.); (W.Z.); (D.J.); (N.J.); (H.J.)
| | - Meng Wang
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, No. 9 Middle Road of Shuguanghuayuan, Haidian District, Beijing 100097, China; (L.W.); (W.Z.); (D.J.); (N.J.); (H.J.)
| |
Collapse
|
2
|
Gherlone F, Jojić K, Huang Y, Hoefgen S, Valiante V, Janevska S. The palmitoyl-CoA ligase Fum16 is part of a Fusarium verticillioides fumonisin subcluster involved in self-protection. mBio 2025; 16:e0268124. [PMID: 39704544 PMCID: PMC11796371 DOI: 10.1128/mbio.02681-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 12/02/2024] [Indexed: 12/21/2024] Open
Abstract
Fusarium verticillioides produces the mycotoxin fumonisin B1 (FB1), which disrupts sphingolipid biosynthesis by inhibiting ceramide synthase and affects the health of plants, animals, and humans. The means by which F. verticillioides protects itself from its own mycotoxin are not completely understood. Some fumonisin (FUM) cluster genes do not contribute to the biosynthesis of the compound, but their function has remained enigmatic. Recently, we showed that FUM17, FUM18, and FUM19 encode two ceramide synthases and an ATP-binding cassette transporter, respectively, which play a role in antagonizing the toxicity mediated by FB1. In the present work, we uncovered functions of two adjacent genes, FUM15 and FUM16. Using homologous and heterologous expression systems, in F. verticillioides and Saccharomyces cerevisiae, respectively, we provide evidence that both contribute to protection against FB1. Our data indicate a potential role for the P450 monooxygenase Fum15 in the modification and detoxification of FB1 since the deletion and overexpression of the respective gene affected extracellular FB1 levels in both hosts. Furthermore, relative quantification of ceramide intermediates and an in vitro enzyme assay revealed that Fum16 is a functional palmitoyl-CoA ligase. It co-localizes together with the ceramide synthase Fum18 to the endoplasmic reticulum, where they contribute to sphingolipid biosynthesis. Thereby, FUM15-19 constitute a subcluster within the FUM biosynthetic gene cluster dedicated to the fungal self-protection against FB1.IMPORTANCEThe study identifies a five-gene FUM subcluster (FUM15-19) in Fusarium verticillioides involved in self-protection against FB1. FUM16 (palmitoyl-CoA ligase), FUM17, and FUM18 (ceramide synthases) enzymatically supplement ceramide biosynthesis, while FUM19 (ATP-binding cassette transporter) acts as a repressor of the FUM cluster. The evolutionary conservation of FUM15 (P450 monooxygenase) in Fusarium and Aspergillus FUM clusters is discussed, and its effect on extracellular FB1 levels in both native (F. verticillioides) and heterologous (Saccharomyces cerevisiae) hosts is highlighted. These findings enhance our understanding of mycotoxin self-protection mechanisms and could inform strategies for predicting biological activity of unknown secondary metabolites, managing mycotoxin contamination, and developing resistant crop cultivars.
Collapse
Affiliation(s)
- Fabio Gherlone
- (Epi-)Genetic Regulation of Fungal Virulence, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (Leibniz-HKI), Jena, Germany
- Biobricks of Microbial Natural Product Syntheses, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (Leibniz-HKI), Jena, Germany
| | - Katarina Jojić
- Biobricks of Microbial Natural Product Syntheses, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (Leibniz-HKI), Jena, Germany
| | - Ying Huang
- Biobricks of Microbial Natural Product Syntheses, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (Leibniz-HKI), Jena, Germany
| | - Sandra Hoefgen
- Biobricks of Microbial Natural Product Syntheses, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (Leibniz-HKI), Jena, Germany
| | - Vito Valiante
- Biobricks of Microbial Natural Product Syntheses, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (Leibniz-HKI), Jena, Germany
| | - Slavica Janevska
- (Epi-)Genetic Regulation of Fungal Virulence, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (Leibniz-HKI), Jena, Germany
| |
Collapse
|
3
|
Lofton LW, Read QD, Hamilton HL, Glenn AE, Hawkins JA, Mitchell TR, Gold SE. Pyrrocidines A and B demonstrate synergistic inhibition of Fusarium verticillioides growth. Front Microbiol 2025; 15:1480920. [PMID: 39850132 PMCID: PMC11754276 DOI: 10.3389/fmicb.2024.1480920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 12/09/2024] [Indexed: 01/25/2025] Open
Abstract
Fusarium verticillioides-a mycotoxigenic fungus and food safety threat-coinhabits maize kernels with Sarocladium zeae. This protective endophyte produces secondary metabolites of interest, pyrrocidines A and B, which inhibit the growth of F. verticillioides and specifically block fumonisin biosynthesis. Previous transcriptomic analyses found FvZBD1 (FVEG_00314), a gene adjacent to the fumonisin biosynthetic gene cluster, to be induced over 4,000-fold in response to pyrrocidine challenge. Deletion of FvZBD1 resulted in dramatic increases in fumonisin production (FB1 >30-fold). Here, using pyrrocidine dose-response assays, we discovered a potent synergy between pyrrocidines A and B, where they functioned powerfully together to inhibit F. verticillioides growth. Further, results provided evidence that FvZBD1 confers partial tolerance to pyrrocidines, particularly pyrrocidine A, and that pyrrocidine functions through FvZBD1 to effectively eliminate fumonisin biosynthesis. Additionally, we showed that the FvABC3 (FVEG_11089) mutant, earlier described as hypersensitive to pyrrocidine, is particularly sensitive to pyrrocidine B. Thus, pyrrocidine A and B show different target specificity (FvZBD1 or FvABC3) and synergistic action. These findings will help inform the optimization of maximally efficacious S. zeae strains for eliminating F. verticillioides colonization and fumonisin contamination in maize cropping systems. This novel study contributes significantly to our knowledge of competitive microorganism relationships and the role of secondary metabolites in antagonistic fungal-fungal interactions.
Collapse
Affiliation(s)
- Lily W. Lofton
- Department of Plant Pathology, University of Georgia, Athens, GA, United States
- Toxicology and Mycotoxin Research Unit, United States National Poultry Research Center, Agricultural Research Service, United States Department of Agriculture, Athens, GA, United States
| | - Quentin D. Read
- Southeast Area, Agricultural Research Service, United States Department of Agriculture, Raleigh, NC, United States
| | - Hailey L. Hamilton
- Toxicology and Mycotoxin Research Unit, United States National Poultry Research Center, Agricultural Research Service, United States Department of Agriculture, Athens, GA, United States
| | - Anthony E. Glenn
- Toxicology and Mycotoxin Research Unit, United States National Poultry Research Center, Agricultural Research Service, United States Department of Agriculture, Athens, GA, United States
| | - Jaci A. Hawkins
- Toxicology and Mycotoxin Research Unit, United States National Poultry Research Center, Agricultural Research Service, United States Department of Agriculture, Athens, GA, United States
| | - Trevor R. Mitchell
- Toxicology and Mycotoxin Research Unit, United States National Poultry Research Center, Agricultural Research Service, United States Department of Agriculture, Athens, GA, United States
| | - Scott E. Gold
- Toxicology and Mycotoxin Research Unit, United States National Poultry Research Center, Agricultural Research Service, United States Department of Agriculture, Athens, GA, United States
| |
Collapse
|
4
|
Satterlee TR, Hawkins JA, Mitchell TR, Wei Q, Lohmar JM, Glenn AE, Gold SE. Fungal chemical warfare: the role of aflatoxin and fumonisin in governing the interaction between the maize pathogens, Aspergillus flavus and Fusarium verticillioides. Front Cell Infect Microbiol 2025; 14:1513134. [PMID: 39831105 PMCID: PMC11739330 DOI: 10.3389/fcimb.2024.1513134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 12/09/2024] [Indexed: 01/22/2025] Open
Abstract
The mycotoxigenic fungi, Aspergillus flavus and Fusarium verticillioides, commonly co-colonize maize in the field, yet their direct interactions at the chemical communication level have not been well characterized. Here, we examined if and how the two most infamous mycotoxins produced by these species, aflatoxin and fumonisin, respectively, govern interspecies growth and mycotoxin production. We showed that fumonisin producing strains of F. verticillioides suppressed the growth of A. flavus while non-producers did not. Additionally, while aflatoxin did not inhibit F. verticillioides growth, it did suppress fumonisin production. Fumonisin B1 concentration levels plummeted when challenged with a high dose of aflatoxin B1 or with an aflatoxin producing strain. With these findings, expression of the genetic regulators of secondary metabolism was investigated for both fungi. While no strong effect was seen on genes in the aflatoxin biosynthetic gene cluster when exposed to fumonisin B1, the fumonisin repressor FvZBD1, which is adjacent to the cluster, was induced with expression proportionate to concentration when F. verticillioides was challenged with aflatoxin B1. We also assessed the expression of the global regulators of fungal secondary metabolism, veA and laeA, and found that their expression is altered in both A. flavus and F. verticillioides when exposed to their competitor's mycotoxin. This work gives insight into the ecological roles of mycotoxins and why these fungi may produce them as weapons in the interspecies battle for resource acquisition.
Collapse
Affiliation(s)
- Timothy R. Satterlee
- United States National Poultry Research Center, United States Department of Agriculture Toxicology and Mycotoxin Research Unit, Athens, GA, United States
| | - Jaci A. Hawkins
- United States National Poultry Research Center, United States Department of Agriculture Toxicology and Mycotoxin Research Unit, Athens, GA, United States
| | - Trevor R. Mitchell
- United States National Poultry Research Center, United States Department of Agriculture Toxicology and Mycotoxin Research Unit, Athens, GA, United States
| | - Qijian Wei
- Agricultural Research Service, United States Department of Agriculture, Food and Feed Safety Research Unit, New Orleans, LA, United States
| | - Jessica M. Lohmar
- Agricultural Research Service, United States Department of Agriculture, Food and Feed Safety Research Unit, New Orleans, LA, United States
| | - Anthony E. Glenn
- United States National Poultry Research Center, United States Department of Agriculture Toxicology and Mycotoxin Research Unit, Athens, GA, United States
| | - Scott E. Gold
- United States National Poultry Research Center, United States Department of Agriculture Toxicology and Mycotoxin Research Unit, Athens, GA, United States
| |
Collapse
|
5
|
Xia H, Xia X, Guo M, Liu W, Tang G. The MAP kinase FvHog1 regulates FB1 synthesis and Ca 2+ homeostasis in Fusarium verticillioides. JOURNAL OF HAZARDOUS MATERIALS 2024; 473:134682. [PMID: 38795487 DOI: 10.1016/j.jhazmat.2024.134682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/08/2024] [Accepted: 05/20/2024] [Indexed: 05/28/2024]
Abstract
The high osmolarity glycerol 1 mitogen-activated protein kinase (Hog1-MAPK) cascade genes are important for diverse biological processes. The activated Hog1 upon multiple environmental stress stimuli enters into the nucleus where it directly phosphorylates transcription factors to regulate various physiological processes in phytopathogenic fungi. However, their roles have not been well-characterized in Fusarium verticillioides. In this study, FvHog1 is identified and functionally analyzed. The findings reveal that the phosphorylation level and nuclear localization of FvHog1 are increased in Fumonisin B1 (FB1)-inducing condition to regulate the expression of FB1 biosynthesis FUM genes. More importantly, the deletion mutants of Hog1-MAPK pathway show increased sensitivity to Ca2+ stress and elevated intracellular Ca2+ content. The phosphorylation level and nuclear localization of FvHog1 are increased with Ca2+ treatment. Furthermore, our results show that FvHog1 can directly phosphorylate Ca2+-responsive zinc finger transcription factor 1 (FvCrz1) to regulate Ca2+ homeostasis. In conclusion, our findings indicate that FvHog1 is required for FB1 biosynthesis, pathogenicity and Ca2+ homeostasis in F. verticillioides. It provides a theoretical basis for effective prevention and control maize ear and stalk rot disease.
Collapse
Affiliation(s)
- Haoxue Xia
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, College of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Xinyao Xia
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Min Guo
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, College of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Wende Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Guangfei Tang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
6
|
Chen Y, Sewsurn S, Amand S, Kunz C, Pietrancosta N, Calabro K, Buisson D, Mann S. Metabolic Investigation and Auxiliary Enzyme Modelization of the Pyrrocidine Pathway Allow Rationalization of Paracyclophane-Decahydrofluorene Formation. ACS Chem Biol 2024; 19:886-895. [PMID: 38576157 DOI: 10.1021/acschembio.3c00684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
Fungal paracyclophane-decahydrofluorene-containing natural products are complex polycyclic metabolites derived from similar hybrid PKS-NRPS pathways. Herein we studied the biosynthesis of pyrrocidines, one representative of this family, by gene inactivation in the producer Sarocladium zeae coupled to thorough metabolic analysis and molecular modeling of key enzymes. We characterized nine pyrrocidines and analogues as well as in mutants a variety of accumulating metabolites with new structures including rare cis-decalin, cytochalasan, and fused 6/15/5 macrocycles. This diversity highlights the extraordinary plasticity of the pyrrocidine biosynthetic gene cluster. From accumulating metabolites, we delineated the scenario of pyrrocidine biosynthesis. The ring A of the decahydrofluorene is installed by PrcB, a membrane-bound cyclizing isomerase, on a PKS-NRPS-derived pyrrolidone precursor. Docking experiments in PrcB allowed us to characterize the active site suggesting a mechanism triggered by arginine-mediated deprotonation at the terminal methyl of the substrate. Next, two integral membrane proteins, PrcD and PrcE, each predicted as a four-helix bundle, perform hydroxylation of the pyrrolidone ring and paracyclophane formation, respectively. Modelization of PrcE highlights a topological homology with vitamin K oxido-reductase and the presence of a disulfide bond. Our results suggest a previously unsuspected coupling mechanism via a transient loss of aromaticity of tyrosine residue to form the strained paracyclophane motif. Finally, the lipocalin-like protein PrcX drives the exo-cycloaddition yielding ring B and C of the decahydrofluorene to afford pyrrocidine A, which is transformed by a reductase PrcI to form pyrrocidine B. These insights will greatly facilitate the microbial production of pyrrocidine analogues by synthetic biology.
Collapse
Affiliation(s)
- Youwei Chen
- Laboratoire Molécules de Communication et Adaptation des Micro-organismes UMR 7245, Muséum National d'Histoire Naturelle, CNRS, Sorbonne Universités; CP54, 57 rue Cuvier, 75005 Paris, France
| | - Steffi Sewsurn
- Laboratoire Molécules de Communication et Adaptation des Micro-organismes UMR 7245, Muséum National d'Histoire Naturelle, CNRS, Sorbonne Universités; CP54, 57 rue Cuvier, 75005 Paris, France
| | - Séverine Amand
- Laboratoire Molécules de Communication et Adaptation des Micro-organismes UMR 7245, Muséum National d'Histoire Naturelle, CNRS, Sorbonne Universités; CP54, 57 rue Cuvier, 75005 Paris, France
| | - Caroline Kunz
- Laboratoire Molécules de Communication et Adaptation des Micro-organismes UMR 7245, Muséum National d'Histoire Naturelle, CNRS, Sorbonne Universités; CP54, 57 rue Cuvier, 75005 Paris, France
- Sorbonne Université, Faculté des Sciences et Ingénierie, UFR 927, F-75005 Paris, France
| | - Nicolas Pietrancosta
- Laboratoire des Biomolécules, LBM, Sorbonne Université, École Normale Supérieure, PSL University, CNRS, F-75005 Paris, France
- Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), Sorbonne Université, INSERM, CNRS, F-75005 Paris, France
| | - Kevin Calabro
- Laboratoire Molécules de Communication et Adaptation des Micro-organismes UMR 7245, Muséum National d'Histoire Naturelle, CNRS, Sorbonne Universités; CP54, 57 rue Cuvier, 75005 Paris, France
| | - Didier Buisson
- Laboratoire Molécules de Communication et Adaptation des Micro-organismes UMR 7245, Muséum National d'Histoire Naturelle, CNRS, Sorbonne Universités; CP54, 57 rue Cuvier, 75005 Paris, France
| | - Stéphane Mann
- Laboratoire Molécules de Communication et Adaptation des Micro-organismes UMR 7245, Muséum National d'Histoire Naturelle, CNRS, Sorbonne Universités; CP54, 57 rue Cuvier, 75005 Paris, France
| |
Collapse
|
7
|
Perochon A, Doohan FM. Trichothecenes and Fumonisins: Key Players in Fusarium-Cereal Ecosystem Interactions. Toxins (Basel) 2024; 16:90. [PMID: 38393168 PMCID: PMC10893083 DOI: 10.3390/toxins16020090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/19/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
Fusarium fungi produce a diverse array of mycotoxic metabolites during the pathogenesis of cereals. Some, such as the trichothecenes and fumonisins, are phytotoxic, acting as non-proteinaceous effectors that facilitate disease development in cereals. Over the last few decades, we have gained some depth of understanding as to how trichothecenes and fumonisins interact with plant cells and how plants deploy mycotoxin detoxification and resistance strategies to defend themselves against the producer fungi. The cereal-mycotoxin interaction is part of a co-evolutionary dance between Fusarium and cereals, as evidenced by a trichothecene-responsive, taxonomically restricted, cereal gene competing with a fungal effector protein and enhancing tolerance to the trichothecene and resistance to DON-producing F. graminearum. But the binary fungal-plant interaction is part of a bigger ecosystem wherein other microbes and insects have been shown to interact with fungal mycotoxins, directly or indirectly through host plants. We are only beginning to unravel the extent to which trichothecenes, fumonisins and other mycotoxins play a role in fungal-ecosystem interactions. We now have tools to determine how, when and where mycotoxins impact and are impacted by the microbiome and microfauna. As more mycotoxins are described, research into their individual and synergistic toxicity and their interactions with the crop ecosystem will give insights into how we can holistically breed for and cultivate healthy crops.
Collapse
Affiliation(s)
| | - Fiona M. Doohan
- UCD School of Biology and Environmental Science, UCD Earth Institute and UCD Institute of Food and Health, University College Dublin, D04 V1W8 Dublin, Ireland
| |
Collapse
|
8
|
Ding Y, Ma N, Haseeb HA, Dai Z, Zhang J, Guo W. Genome-wide transcriptome analysis of toxigenic Fusarium verticillioides in response to variation of temperature and water activity on maize kernels. Int J Food Microbiol 2024; 410:110494. [PMID: 38006847 DOI: 10.1016/j.ijfoodmicro.2023.110494] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 11/08/2023] [Accepted: 11/13/2023] [Indexed: 11/27/2023]
Abstract
Fusarium verticillioides is one of the important mycotoxigenic pathogens of maize since it causes severe yield losses and produces fumonisins (FBs) to threaten human and animal health. Previous studies showed that temperature and water activity (aw) are two pivotal environmental factors affecting F. verticillioides growth and FBs production during maize storage. However, the genome-wide transcriptome analysis of differentially expressed genes (DEGs) in F. verticillioides under the stress combinations of temperature and aw has not been studied in detail. In this study, DEGs of F. verticillioides and their related regulatory pathways were analyzed in response to the stress of temperature and aw combinations using RNA-Seq. The results showed that the optimal growth conditions for F. verticillioides were 0.98 aw and 25 °C, whereas the highest per-unit yield of the fumonisin B1 (FB1) was observed at 0.98 aw and 15 °C. The RNA-seq analysis showed that 9648 DEGs were affected by temperature regardless of aw levels, whereas only 218 DEGs were affected by aw regardless of temperature variations. Gene Ontology (GO) analysis revealed that a decrease in temperature at both aw levels led to a significant upregulation of genes associated with 24 biological processes, while three biological processes were downregulated. Furthermore, when aw was decreased at both temperatures, seven biological processes were significantly upregulated and four were downregulated. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis revealed that the genes, whose expression was upregulated when the temperature decreased, were predominantly associated with the proteasome pathway, whereas the genes, whose expression was downregulated when the aw decreased, were mainly linked to amino acid metabolism. For the FB1, except for the FUM15 gene, the other 15 biosynthetic-related genes were highly expressed at 0.98 aw and 15 °C. In addition, the expression pattern analysis of other biosynthetic genes involved in secondary metabolite production and regulation of fumonisins production was conducted to explore how this fungus responds to the stress combinations of temperature and aw. Overall, this study primarily examines the impact of temperature and aw on the growth of F. verticillioides and its production of FB1 using transcriptome data. The findings presented here have the potential to contribute to the development of novel strategies for managing fungal diseases and offer valuable insights for preventing fumonisin contamination in food and feed storage.
Collapse
Affiliation(s)
- Yi Ding
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China
| | - Nini Ma
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China
| | - Hafiz Abdul Haseeb
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China; Directorate General of Pest Warning and Quality Control of Pesticides, Punjab, Lahore, Pakistan
| | - Zhaoji Dai
- Sanya Nanfan Research Institute, Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education), School of Plant Protection, Hainan University, Haikou, Hainan 570228, PR China
| | - Jun Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China
| | - Wei Guo
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China.
| |
Collapse
|
9
|
Krska T, Twaruschek K, Valente N, Mitterbauer R, Moll D, Wiesenberger G, Berthiller F, Adam G. Development of a fumonisin-sensitive Saccharomyces cerevisiae indicator strain and utilization for activity testing of candidate detoxification genes. Appl Environ Microbiol 2023; 89:e0121123. [PMID: 38054733 PMCID: PMC10746191 DOI: 10.1128/aem.01211-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 10/20/2023] [Indexed: 12/07/2023] Open
Abstract
IMPORTANCE Fumonisins can cause diseases in animals and humans consuming Fusarium-contaminated food or feed. The search for microbes capable of fumonisin degradation, or for enzymes that can detoxify fumonisins, currently relies primarily on chemical detection methods. Our constructed fumonisin B1-sensitive yeast strain can be used to phenotypically detect detoxification activity and should be useful in screening for novel fumonisin resistance genes and to elucidate fumonisin metabolism and resistance mechanisms in fungi and plants, and thereby, in the long term, help to mitigate the threat of fumonisins in feed and food.
Collapse
Affiliation(s)
- Tamara Krska
- Department of Applied Genetics and Cell Biology, Institute of Microbial Genetics, University of Natural Resources and Life Sciences, Vienna (BOKU), Tulln, Austria
- Austrian Competence Centre for Feed and Food Quality, Safety & Innovation, FFoQSI GmbH, Tulln, Austria
| | - Krisztian Twaruschek
- Department of Applied Genetics and Cell Biology, Institute of Microbial Genetics, University of Natural Resources and Life Sciences, Vienna (BOKU), Tulln, Austria
- Austrian Competence Centre for Feed and Food Quality, Safety & Innovation, FFoQSI GmbH, Tulln, Austria
| | - Nina Valente
- Department of Applied Genetics and Cell Biology, Institute of Microbial Genetics, University of Natural Resources and Life Sciences, Vienna (BOKU), Tulln, Austria
| | - Rudolf Mitterbauer
- Department of Applied Genetics and Cell Biology, Institute of Microbial Genetics, University of Natural Resources and Life Sciences, Vienna (BOKU), Tulln, Austria
| | - Dieter Moll
- dsm-firmenich ANH Research Center Tulln, Tulln, Austria
| | - Gerlinde Wiesenberger
- Department of Applied Genetics and Cell Biology, Institute of Microbial Genetics, University of Natural Resources and Life Sciences, Vienna (BOKU), Tulln, Austria
- Department of Agrobiotechnology, Institute of Bioanalytics and Agro-Metabolomics, IFA-Tulln, University of Natural Resources and Life Sciences, Vienna (BOKU), Tulln, Austria
| | - Franz Berthiller
- Department of Agrobiotechnology, Institute of Bioanalytics and Agro-Metabolomics, IFA-Tulln, University of Natural Resources and Life Sciences, Vienna (BOKU), Tulln, Austria
| | - Gerhard Adam
- Department of Applied Genetics and Cell Biology, Institute of Microbial Genetics, University of Natural Resources and Life Sciences, Vienna (BOKU), Tulln, Austria
| |
Collapse
|
10
|
Moore GG, Chalivendra S, Mack BM, Gilbert MK, Cary JW, Rajasekaran K. Microbiota of maize kernels as influenced by Aspergillus flavus infection in susceptible and resistant inbreds. Front Microbiol 2023; 14:1291284. [PMID: 38029119 PMCID: PMC10657875 DOI: 10.3389/fmicb.2023.1291284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
Background Nearly everything on Earth harbors a microbiome. A microbiome is a community of microbes (bacteria, fungi, and viruses) with potential to form complex networks that involve mutualistic and antagonistic interactions. Resident microbiota on/in an organism are determined by the external environment, both biotic and abiotic, and the intrinsic adaptability of each organism. Although the maize microbiome has been characterized, community changes that result from the application of fungal biocontrol strains, such as non-aflatoxigenic Aspergillus flavus, have not. Methods We silk channel inoculated field-grown maize separately with a non-aflatoxigenic biocontrol strain (K49), a highly toxigenic strain (Tox4), and a combination of both A. flavus strains. Two maize inbreds were treated, A. flavus-susceptible B73 and A. flavus-resistant CML322. We then assessed the impacts of A. flavus introduction on the epibiota and endobiota of their maize kernels. Results We found that the native microbial communities were significantly affected, irrespective of genotype or sampled tissue. Overall, bacteriomes exhibited greater diversity of genera than mycobiomes. The abundance of certain genera was unchanged by treatment, including genera of bacteria (e.g., Enterobacter, Pantoea) and fungi (e.g., Sarocladium, Meyerozyma) that are known to be beneficial, antagonistic, or both on plant growth and health. Conclusion Beneficial microbes like Sarocladium that responded well to A. flavus biocontrol strains are expected to enhance biocontrol efficacy, while also displacing/antagonizing harmful microbes.
Collapse
Affiliation(s)
- Geromy G. Moore
- Southern Regional Research Center, USDA-ARS, New Orleans, LA, United States
| | - Subbaiah Chalivendra
- Department of Plant Pathology and Crop Physiology, College of Agriculture, Louisiana State University, Baton Rouge, LA, United States
| | - Brian M. Mack
- Southern Regional Research Center, USDA-ARS, New Orleans, LA, United States
| | - Matthew K. Gilbert
- Southern Regional Research Center, USDA-ARS, New Orleans, LA, United States
| | - Jeffrey W. Cary
- Southern Regional Research Center, USDA-ARS, New Orleans, LA, United States
| | | |
Collapse
|
11
|
Gwinn KD, Leung MCK, Stephens AB, Punja ZK. Fungal and mycotoxin contaminants in cannabis and hemp flowers: implications for consumer health and directions for further research. Front Microbiol 2023; 14:1278189. [PMID: 37928692 PMCID: PMC10620813 DOI: 10.3389/fmicb.2023.1278189] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 10/04/2023] [Indexed: 11/07/2023] Open
Abstract
Medicinal and recreational uses of Cannabis sativa, commonly known as cannabis or hemp, has increased following its legalization in certain regions of the world. Cannabis and hemp plants interact with a community of microbes (i.e., the phytobiome), which can influence various aspects of the host plant. The fungal composition of the C. sativa phytobiome (i.e., mycobiome) currently consists of over 100 species of fungi, which includes phytopathogens, epiphytes, and endophytes, This mycobiome has often been understudied in research aimed at evaluating the safety of cannabis products for humans. Medical research has historically focused instead on substance use and medicinal uses of the plant. Because several components of the mycobiome are reported to produce toxic secondary metabolites (i.e., mycotoxins) that can potentially affect the health of humans and animals and initiate opportunistic infections in immunocompromised patients, there is a need to determine the potential health risks that these contaminants could pose for consumers. This review discusses the mycobiome of cannabis and hemp flowers with a focus on plant-infecting and toxigenic fungi that are most commonly found and are of potential concern (e.g., Aspergillus, Penicillium, Fusarium, and Mucor spp.). We review current regulations for molds and mycotoxins worldwide and review assessment methods including culture-based assays, liquid chromatography, immuno-based technologies, and emerging technologies for these contaminants. We also discuss approaches to reduce fungal contaminants on cannabis and hemp and identify future research needs for contaminant detection, data dissemination, and management approaches. These approaches are designed to yield safer products for all consumers.
Collapse
Affiliation(s)
- Kimberly D. Gwinn
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN, United States
| | - Maxwell C. K. Leung
- School of Mathematical and Natural Sciences, Arizona State University, Glendale, AZ, United States
| | - Ariell B. Stephens
- School of Mathematical and Natural Sciences, Arizona State University, Glendale, AZ, United States
| | - Zamir K. Punja
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
| |
Collapse
|
12
|
Sherif M, Kirsch N, Splivallo R, Pfohl K, Karlovsky P. The Role of Mycotoxins in Interactions between Fusarium graminearum and F. verticillioides Growing in Saprophytic Cultures and Co-Infecting Maize Plants. Toxins (Basel) 2023; 15:575. [PMID: 37756001 PMCID: PMC10538043 DOI: 10.3390/toxins15090575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/10/2023] [Accepted: 09/15/2023] [Indexed: 09/28/2023] Open
Abstract
Fusarium graminearum (FG) and Fusarium verticillioides (FV) co-occur in infected plants and plant residues. In maize ears, the growth of FV is stimulated while FG is suppressed. To elucidate the role of mycotoxins in these effects, we used FG mutants with disrupted synthesis of nivalenol (NIV) and deoxynivalenol (DON) and a FV mutant with disrupted synthesis of fumonisins to monitor fungal growth in mixed cultures in vitro and in co-infected plants by real-time PCR. In autoclaved grains as well as in maize ears, the growth of FV was stimulated by FG regardless of the production of DON or NIV by the latter, whereas the growth of FG was suppressed. In autoclaved grains, fumonisin-producing FV suppressed FG more strongly than a fumonisin-nonproducing strain, indicating that fumonisins act as interference competition agents. In co-infected maize ears, FG suppression was independent of fumonisin production by FV, likely due to heterogeneous infection and a lower level of fumonisins in planta. We conclude that (i) fumonisins are agents of interference competition of FV, and (ii) trichothecenes play no role in the interaction between FG and FV. We hypothesize the following: (i) In vitro, FG stimulates the FV growth by secreting hydrolases that mobilize nutrients. In planta, suppression of plant defense by FG may additionally play a role. (ii) The biological function of fumonisin production in planta is to protect kernels shed on the ground by accumulating protective metabolites before competitors become established. Therefore, to decipher the biological function of mycotoxins, the entire life history of mycotoxin producers must be considered.
Collapse
Affiliation(s)
- Mohammed Sherif
- Molecular Phytopathology and Mycotoxin Research, University of Göttingen, 37077 Göttingen, Germany
- Institute for Molecular Biosciences, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
- Phytopathology Unit, Plant Protection Department, Desert Research Center, Cairo 11753, Egypt
| | - Nadine Kirsch
- Molecular Phytopathology and Mycotoxin Research, University of Göttingen, 37077 Göttingen, Germany
- Institute for National and International Plant Health, Julius Kühn-Institut, 38104 Braunschweig, Germany
| | - Richard Splivallo
- Molecular Phytopathology and Mycotoxin Research, University of Göttingen, 37077 Göttingen, Germany
- Institute for Molecular Biosciences, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
- Nectariss Grasse SAS, 06130 Grasse, France
| | - Katharina Pfohl
- Molecular Phytopathology and Mycotoxin Research, University of Göttingen, 37077 Göttingen, Germany
- Institute for National and International Plant Health, Julius Kühn-Institut, 38104 Braunschweig, Germany
| | - Petr Karlovsky
- Molecular Phytopathology and Mycotoxin Research, University of Göttingen, 37077 Göttingen, Germany
| |
Collapse
|
13
|
Satterlee TR, Williams FN, Nadal M, Glenn AE, Lofton LW, Duke MV, Scheffler BE, Gold SE. Transcriptomic Response of Fusarium verticillioides to Variably Inhibitory Environmental Isolates of Streptomyces. FRONTIERS IN FUNGAL BIOLOGY 2022; 3:894590. [PMID: 37746240 PMCID: PMC10512263 DOI: 10.3389/ffunb.2022.894590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/31/2022] [Indexed: 09/26/2023]
Abstract
Fusarium verticillioides is a mycotoxigenic fungus that is a threat to food and feed safety due to its common infection of maize, a global staple crop. A proposed strategy to combat this threat is the use of biological control bacteria that can inhibit the fungus and reduce mycotoxin contamination. In this study, the effect of multiple environmental isolates of Streptomyces on F. verticillioides was examined via transcriptome analysis. The Streptomyces strains ranged from inducing no visible response to dramatic growth inhibition. Transcriptionally, F. verticillioides responded proportionally to strain inhibition with either little to no transcript changes to thousands of genes being differentially expressed. Expression changes in multiple F. verticillioides putative secondary metabolite gene clusters was observed. Interestingly, genes involved in the fusaric acid gene cluster were suppressed by inhibitory strains of Streptomyces. A F. verticillioides beta-lactamase encoding gene (FVEG_13172) was found to be highly induced by specific inhibitory Streptomyces strains and its deletion increased visible response to those strains. This study demonstrates that F. verticillioides does not have an all or nothing response to bacteria it encounters but rather a measured response that is strain specific and proportional to the strength of inhibition.
Collapse
Affiliation(s)
- Timothy R. Satterlee
- United States Department of Agriculture (USDA), Agricultural Research Service (ARS), Toxicology and Mycotoxin Research Unit, United States (US) National Poultry Research Center, Athens, GA, United States
| | - Felicia N. Williams
- United States Department of Agriculture (USDA), Agricultural Research Service (ARS), Toxicology and Mycotoxin Research Unit, United States (US) National Poultry Research Center, Athens, GA, United States
| | - Marina Nadal
- United States Department of Agriculture (USDA), Agricultural Research Service (ARS), Toxicology and Mycotoxin Research Unit, United States (US) National Poultry Research Center, Athens, GA, United States
| | - Anthony E. Glenn
- United States Department of Agriculture (USDA), Agricultural Research Service (ARS), Toxicology and Mycotoxin Research Unit, United States (US) National Poultry Research Center, Athens, GA, United States
| | - Lily W. Lofton
- United States Department of Agriculture (USDA), Agricultural Research Service (ARS), Toxicology and Mycotoxin Research Unit, United States (US) National Poultry Research Center, Athens, GA, United States
| | - Mary V. Duke
- United States Department of Agriculture (USDA), Agricultural Research Service (ARS), Genomics and Bioinformatics Research Unit, Stoneville, MS, United States
| | - Brian E. Scheffler
- United States Department of Agriculture (USDA), Agricultural Research Service (ARS), Genomics and Bioinformatics Research Unit, Stoneville, MS, United States
| | - Scott E. Gold
- United States Department of Agriculture (USDA), Agricultural Research Service (ARS), Toxicology and Mycotoxin Research Unit, United States (US) National Poultry Research Center, Athens, GA, United States
| |
Collapse
|
14
|
Liu Q, Johnson LJ, Applegate ER, Arfmann K, Jauregui R, Larking A, Mace WJ, Maclean P, Walker T, Johnson RD. Identification of Genetic Diversity, Pyrrocidine-Producing Strains and Transmission Modes of Endophytic Sarocladium zeae Fungi from Zea Crops. Microorganisms 2022; 10:microorganisms10071415. [PMID: 35889134 PMCID: PMC9316807 DOI: 10.3390/microorganisms10071415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/12/2022] [Accepted: 07/12/2022] [Indexed: 12/10/2022] Open
Abstract
Genotyping by sequencing (GBS) was used to reveal the inherent genetic variation within the haploid fungi Sarocladium zeae isolated from diverse Zea germplasm, including modern Zea mays and its wild progenitors—the teosintes. In accordance with broad host relationship parameters, GBS analysis revealed significant host lineages of S. zeae genetic diversity, indicating that S. zeae genetic variation may associate with different evolutionary histories of host species or varieties. Based on a recently identified PKS-NRPS gene responsible for pyrrocidine biosynthesis in S. zeae fungi, a novel PCR assay was developed to discriminate pyrrocidine-producing S. zeae strains. This molecular method for screening bioactive strains of S. zeae is complementary to other approaches, such as chemical analyses. An eGFP-labelled S. zeae strain was also developed to investigate the endophytic transmission of S. zeae in Z. mays seedlings, which has further improved our understanding of the transmission modes of S. zeae endophytes in maize tissues.
Collapse
|
15
|
Bartholomew HP, Bradshaw MJ, Macarisin O, Gaskins VL, Fonseca JM, Jurick WM. More than a Virulence Factor: Patulin Is a Non-Host-Specific Toxin that Inhibits Postharvest Phytopathogens and Requires Efflux for Penicillium Tolerance. PHYTOPATHOLOGY 2022; 112:1165-1174. [PMID: 35365059 DOI: 10.1094/phyto-09-21-0371-r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Mycotoxin contamination is a leading cause of food spoilage and waste on a global scale. Patulin, a mycotoxin produced by Penicillium spp. during postharvest pome fruit decay, causes acute and chronic effects in humans, withstands pasteurization, and is not eliminated by fermentation. While much is known about the impact of patulin on human health, there are significant knowledge gaps concerning the effect of patulin during postharvest fruit-pathogen interactions. Application of patulin on six apple cultivars reproduced some blue mold symptoms that were cultivar-independent and dose-dependent. Identical symptoms were also observed in pear and mandarin orange. Six Penicillium isolates exposed to exogenous patulin exhibited delayed germination after 24 h, yet all produced viable colonies in 7 days. However, four common postharvest phytopathogenic fungi were completely inhibited by patulin during conidial germination and growth, suggesting the toxin is important for Penicillium to dominate the postharvest niche. Using clorgyline, a broad-spectrum efflux pump inhibitor, we demonstrated that efflux plays a role in Penicillium auto-resistance to patulin during conidial germination. The work presented here contributes new knowledge of patulin auto-resistance, its mode of action, and inhibitory role in fungal-fungal interactions. Our findings provide a solid foundation to develop toxin and decay mitigation approaches.
Collapse
Affiliation(s)
- Holly P Bartholomew
- Food Quality Laboratory, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD 20705
| | - Michael J Bradshaw
- Food Quality Laboratory, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD 20705
| | - Otilia Macarisin
- Food Quality Laboratory, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD 20705
| | - Verneta L Gaskins
- Food Quality Laboratory, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD 20705
| | - Jorge M Fonseca
- Food Quality Laboratory, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD 20705
| | - Wayne M Jurick
- Food Quality Laboratory, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD 20705
| |
Collapse
|
16
|
Rangel LI, Hamilton O, de Jonge R, Bolton MD. Fungal social influencers: secondary metabolites as a platform for shaping the plant-associated community. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 108:632-645. [PMID: 34510609 DOI: 10.1111/tpj.15490] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 09/01/2021] [Accepted: 09/03/2021] [Indexed: 06/13/2023]
Abstract
Fungal secondary metabolites (FSMs) are capable of manipulating plant community dynamics by inhibiting or facilitating the establishment of co-habitating organisms. Although production of FSMs is not crucial for survival of the producer, their absence can indirectly impair growth and/or niche competition of these fungi on the plant. The presence of FSMs with no obvious consequence on the fitness of the producer leaves questions regarding ecological impact. This review investigates how fungi employ FSMs as a platform to mediate fungal-fungal, fungal-bacterial and fungal-animal interactions associated with the plant community. We discuss how the biological function of FSMs may indirectly benefit the producer by altering the dynamics of surrounding organisms. We introduce several instances where FSMs influence antagonistic- or alliance-driven interactions. Part of our aim is to decipher the meaning of the FSM 'language' as it is widely noted to impact the surrounding community. Here, we highlight the contribution of FSMs to plant-associated interaction networks that affect the host either broadly or in ways that may have previously been unclear.
Collapse
Affiliation(s)
- Lorena I Rangel
- Northern Crop Science Laboratory, US Dept. Agriculture, Fargo, ND, USA
| | - Olivia Hamilton
- Northern Crop Science Laboratory, US Dept. Agriculture, Fargo, ND, USA
- Department of Plant Pathology, North Dakota State University, Fargo, ND, USA
| | - Ronnie de Jonge
- Department of Plant-Microbe Interactions, Utrecht University, Utrecht, The Netherlands
| | - Melvin D Bolton
- Northern Crop Science Laboratory, US Dept. Agriculture, Fargo, ND, USA
- Department of Plant Pathology, North Dakota State University, Fargo, ND, USA
| |
Collapse
|
17
|
Li T, Su X, Qu H, Duan X, Jiang Y. Biosynthesis, regulation, and biological significance of fumonisins in fungi: current status and prospects. Crit Rev Microbiol 2021; 48:450-462. [PMID: 34550845 DOI: 10.1080/1040841x.2021.1979465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Fumonisins are one of the most important mycotoxin classes due to their widespread occurrence and potential health threat to humans and animals. Currently, most of the research focuses on the control of fumonisin contamination in the food supply chain. In recent years, significant progress in biochemistry, enzymology, and genetic regulation of fumonisin biosynthesis has been achieved using molecular technology. Furthermore, new insights into the roles of fumonisins in the interaction between fungi and plant hosts have been reported. This review provides an overview of the current understanding of the biosynthesis and regulation of fumonisins. The ecological significance of fumonisins to Fusarium species that produce the toxins is discussed, and the complex regulatory networks of fumonisin synthesis is proposed.
Collapse
Affiliation(s)
- Taotao Li
- Key Laboratory of Plant Resource Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Xinguo Su
- Tropical Agriculture and Forestry Department, Guangdong AIB Polytechnic College, Guangzhou, China
| | - Hongxia Qu
- Key Laboratory of Plant Resource Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Xuewu Duan
- Key Laboratory of Plant Resource Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Yueming Jiang
- Key Laboratory of Plant Resource Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.,College of Life Sciences, Gannan Normal University, Ganzhou, China
| |
Collapse
|
18
|
Bioprospecting for Biomolecules from Different Fungal Communities: An Introduction. Fungal Biol 2021. [DOI: 10.1007/978-3-030-85603-8_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
19
|
Harris JM, Balint-Kurti P, Bede JC, Day B, Gold S, Goss EM, Grenville-Briggs LJ, Jones KM, Wang A, Wang Y, Mitra RM, Sohn KH, Alvarez ME. What are the Top 10 Unanswered Questions in Molecular Plant-Microbe Interactions? MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2020; 33:1354-1365. [PMID: 33106084 DOI: 10.1094/mpmi-08-20-0229-cr] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
This article is part of the Top 10 Unanswered Questions in MPMI invited review series.The past few decades have seen major discoveries in the field of molecular plant-microbe interactions. As the result of technological and intellectual advances, we are now able to answer questions at a level of mechanistic detail that we could not have imagined possible 20 years ago. The MPMI Editorial Board felt it was time to take stock and reassess. What big questions remain unanswered? We knew that to identify the fundamental, overarching questions that drive our research, we needed to do this as a community. To reach a diverse audience of people with different backgrounds and perspectives, working in different areas of plant-microbe interactions, we queried the more than 1,400 participants at the 2019 International Congress on Molecular Plant-Microbe Interactions meeting in Glasgow. This group effort resulted in a list of ten, broad-reaching, fundamental questions that influence and inform our research. Here, we introduce these Top 10 unanswered questions, giving context and a brief description of the issues. Each of these questions will be the subject of a detailed review in the coming months. We hope that this process of reflecting on what is known and unknown and identifying the themes that underlie our research will provide a framework to use going forward, giving newcomers a sense of the mystery of the big questions and inspiring new avenues and novel insights.[Formula: see text] Copyright © 2020 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.
Collapse
Affiliation(s)
- Jeanne M Harris
- Department of Plant Biology, University of Vermont, Burlington, VT 05405, U.S.A
| | - Peter Balint-Kurti
- USDA-ARS, Plant Science Research Unit, Raleigh NC, and Dept. of Entomology and Plant Pathology, NC State University, Raleigh, NC 27695-7613, U.S.A
| | - Jacqueline C Bede
- Department of Plant Science, McGill University, Ste-Anne-de-Bellevue, Quebec H9X 3V9, Canada
| | - Brad Day
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, U.S.A
| | - Scott Gold
- Plant Pathology Department, University of Georgia, USDA-ARS, Athens, GA 30605-2720, U.S.A
| | - Erica M Goss
- Plant Pathology Department and Emerging Pathogens Institute, University of Florida, Gainesville, FL 32611, U.S.A
| | - Laura J Grenville-Briggs
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, SE-230 53 Alnarp, Sweden
| | - Kathryn M Jones
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, U.S.A
| | - Aiming Wang
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON N5V 4T3, Canada
| | - Yuanchao Wang
- Department of Plant Pathology, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing 210095, China
| | - Raka M Mitra
- Biology Department, Carleton College, Northfield, MN 55057, U.S.A
| | - Kee Hoon Sohn
- Department of Life Sciences, Pohang University of Science and Technology and School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang 37673, Korea
| | - Maria Elena Alvarez
- Centro de Investigaciones en Química Biológica de Córdoba, CIQUIBIC, CONICET, Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba X5000HUA, Argentina
| |
Collapse
|
20
|
Zeng HY, Li CY, Yao N. Fumonisin B1: A Tool for Exploring the Multiple Functions of Sphingolipids in Plants. FRONTIERS IN PLANT SCIENCE 2020; 11:600458. [PMID: 33193556 PMCID: PMC7652989 DOI: 10.3389/fpls.2020.600458] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 10/05/2020] [Indexed: 05/25/2023]
Abstract
Fumonisin toxins are produced by Fusarium fungal pathogens. Fumonisins are structural analogs of sphingosine and potent inhibitors of ceramide synthases (CerSs); they disrupt sphingolipid metabolism and cause disease in plants and animals. Over the past three decades, researchers have used fumonisin B1 (FB1), the most common fumonisin, as a probe to investigate sphingolipid metabolism in yeast and animals. Although the physiological effects of FB1 in plants have yet to be investigated in detail, forward and reverse genetic approaches have revealed many genes involved in these processes. In this review, we discuss the intricate network of signaling pathways affected by FB1, including changes in sphingolipid metabolism and the effects of these changes, with a focus on our current understanding of the multiple effects of FB1 on plant cell death and plant growth. We analyze the major findings that highlight the connections between sphingolipid metabolism and FB1-induced signaling, and we point out where additional research is needed to fill the gaps in our understanding of FB1-induced signaling pathways in plants.
Collapse
Affiliation(s)
- Hong-Yun Zeng
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resource, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Chun-Yu Li
- Institution of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Nan Yao
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resource, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|