1
|
Bordoni V, Cinicola BL, Piano Mortari E, Castilletti C, Guarracino F, Albano C, Accordini S, Baban A, Di Sabatino A, Rossi CM, Lenti MV, Zicari AM, Cirelli R, Spada M, Forni GL, Quinti I, Algeri M, Casale M, Perrotta S, Locatelli F, Agrati C, Carsetti R. Impairment of Innate Immunity and Depletion of Vaccine-Induced Memory B and T Cells in the Absence of the Spleen. Am J Hematol 2025; 100:770-784. [PMID: 39953916 PMCID: PMC11966361 DOI: 10.1002/ajh.27634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Accepted: 02/03/2025] [Indexed: 02/17/2025]
Abstract
Splenectomy or congenital asplenia is associated with severe reduction of memory B cells and increased risk of fulminant sepsis by encapsulated bacteria. Current guidelines recommend vaccinations against these pathogens before or after splenectomy, but the longevity of immunity acquired after splenectomy has not been determined. The impact of splenectomy on innate immune cells is unknown. We analyzed frequency, differentiation stage, and function of innate and adaptive immunity in the peripheral blood of adult (n = 41) and pediatric (n = 14) patients splenectomized or born asplenic and in spleens of solid organ donors. The absence of the spleen impacts the B-cell compartment, causing a significant increase of circulating immature transitional and depletion of memory B cells. Using SARS-CoV-2 vaccination as a model, we show that 1 year after the last immunization, despite normal levels of neutralizing antibodies, memory B and T cells were significantly reduced. Analysis of post-pandemic spleens shows that spike-specific memory B and T cells homed to the spleen. We also show a previously unrecognized role of the spleen in the homeostasis of innate NK and Vδ2 T cells. These populations showed altered phenotype and impaired function in the adults, but not in children, suggesting that other tissues may support innate cell development during early life. The reduced function of innate lymphocytes must be considered as an additional immune impairment and risk factor. These findings emphasize the spleen's irreplaceable role in maintaining immune memory across all ages and suggest that its absence contributes to dysfunctions of innate and adaptive immunity in adults.
Collapse
Affiliation(s)
- Veronica Bordoni
- Department of Hematology/Oncology, Cell and Gene TherapyBambino Gesù Children's HospitalRomeItaly
| | - Bianca Laura Cinicola
- Department of Molecular MedicineSapienza University of RomeRomeItaly
- Pediatric Unit, NESMOS Department, Sant'Andrea University HospitalSapienza University of RomeRomeItaly
| | - Eva Piano Mortari
- Research Area of Immunology, B‐Cell LabBambino Gesù Children's HospitalRomeItaly
| | - Concetta Castilletti
- Department of Infectious‐Tropical Diseases and MicrobiologyIRCCS Sacro Cuore Don Calabria HospitalVeronaItaly
| | - Federica Guarracino
- Department of Hematology/Oncology, Cell and Gene TherapyBambino Gesù Children's HospitalRomeItaly
| | - Christian Albano
- Research Area of Immunology, B‐Cell LabBambino Gesù Children's HospitalRomeItaly
| | - Silvia Accordini
- Department of Infectious‐Tropical Diseases and MicrobiologyIRCCS Sacro Cuore Don Calabria HospitalVeronaItaly
| | - Anwar Baban
- Cardiogenetic Centre, Rare Diseases and Medical Genetics UnitsBambino Gesù Children's HospitalRomeItaly
| | - Antonio Di Sabatino
- Department of Internal Medicine and Medical TherapeuticsUniversity of PaviaPaviaItaly
- First Department of Internal MedicineSan Matteo Hospital FoundationPaviaItaly
| | - Carlo Maria Rossi
- Department of Internal Medicine and Medical TherapeuticsUniversity of PaviaPaviaItaly
- First Department of Internal MedicineSan Matteo Hospital FoundationPaviaItaly
| | - Marco Vincenzo Lenti
- Department of Internal Medicine and Medical TherapeuticsUniversity of PaviaPaviaItaly
- First Department of Internal MedicineSan Matteo Hospital FoundationPaviaItaly
| | - Anna Maria Zicari
- Department of Maternal Infantile and Urological SciencesSapienza University of RomeRomeItaly
| | - Riccardo Cirelli
- Unit of Hepato‐Biliary‐Pancreatic Surgery, Liver and Kidney TransplantationBambino Gesù Children's HospitalRomeItaly
| | - Marco Spada
- Unit of Hepato‐Biliary‐Pancreatic Surgery, Liver and Kidney TransplantationBambino Gesù Children's HospitalRomeItaly
| | - Gian Luca Forni
- Unit of HematologyIRCCS Istituto Giannina GasliniGenoaItaly
- ForAnemia FoundationGenoaItaly
| | - Isabella Quinti
- Department of Molecular MedicineSapienza University of RomeRomeItaly
| | - Mattia Algeri
- Department of Hematology/Oncology, Cell and Gene TherapyBambino Gesù Children's HospitalRomeItaly
- Department of Health SciencesMagna Graecia UniversityCatanzaroItaly
| | - Maddalena Casale
- Department of Woman, Child and General and Specialized SurgeryUniversity of Campania Luigi VanvitelliNaplesItaly
| | - Silverio Perrotta
- Department of Woman, Child and General and Specialized SurgeryUniversity of Campania Luigi VanvitelliNaplesItaly
| | - Franco Locatelli
- Department of Hematology/Oncology, Cell and Gene TherapyBambino Gesù Children's HospitalRomeItaly
- Catholic University of the Sacred HeartRomeItaly
| | - Chiara Agrati
- Department of Hematology/Oncology, Cell and Gene TherapyBambino Gesù Children's HospitalRomeItaly
| | - Rita Carsetti
- Research Area of Immunology, B‐Cell LabBambino Gesù Children's HospitalRomeItaly
| |
Collapse
|
2
|
Semmes EC, Nettere DR, Nelson AN, Hurst JH, Cain DW, Burt TD, Kurtzberg J, Reeves RK, Coyne CB, Fouda GG, Pollara J, Permar SR, Walsh KM. In utero human cytomegalovirus infection expands NK-like FcγRIII+CD8+ T cells that mediate Fc antibody functions. J Clin Invest 2024; 135:e181342. [PMID: 39531313 PMCID: PMC11684805 DOI: 10.1172/jci181342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024] Open
Abstract
Human cytomegalovirus (HCMV) profoundly impacts host T and NK cells across the lifespan, yet how this common congenital infection modulates developing fetal immune cell compartments remains underexplored. Using cord blood from neonates with and without congenital HCMV (cCMV) infection, we identify an expansion of Fcγ receptor III-expressing (FcγRIII-expressing) CD8+ T cells following HCMV exposure in utero. Most FcγRIII+CD8+ T cells express the canonical αβ T cell receptor (TCR), but a proportion express noncanonical γδ TCR. FcγRIII+CD8+ T cells are highly differentiated and have increased expression of NK cell markers and cytolytic molecules. Transcriptional analysis reveals FcγRIII+CD8+ T cells upregulate T-bet and downregulate BCL11B, known transcription factors that govern T/NK cell fate. We show that FcγRIII+CD8+ T cells mediate antibody-dependent IFN-γ production and degranulation against IgG-opsonized target cells, similar to NK cell antibody-dependent cellular cytotoxicity (ADCC). FcγRIII+CD8+ T cell Fc effector functions were further enhanced by IL-15, as has been observed in neonatal NK cells. Our study reveals that FcγRIII+CD8+ T cells elicited in utero by HCMV infection can execute Fc-mediated effector functions bridging cellular and humoral immunity and may be a promising target for antibody-based therapeutics and vaccination in early life.
Collapse
Affiliation(s)
- Eleanor C. Semmes
- Boston Children’s Hospital/Boston Medical Center, Boston, Massachusetts, USA
- Medical Scientist Training Program, and
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina, USA
| | - Danielle R. Nettere
- Medical Scientist Training Program, and
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, USA
| | - Ashley N. Nelson
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina, USA
| | - Jillian H. Hurst
- Children’s Health and Discovery Initiative
- Division of Infectious Diseases, and
| | - Derek W. Cain
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina, USA
| | - Trevor D. Burt
- Children’s Health and Discovery Initiative
- Division of Neonatology, Department of Pediatrics, Duke University, Durham, North Carolina, USA
| | - Joanne Kurtzberg
- Children’s Health and Discovery Initiative
- Carolinas Cord Blood Bank, Marcus Center for Cellular Cures, Durham, North Carolina, USA
| | - R. Keith Reeves
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, USA
- Center for Human Systems Immunology, and
- Department of Integrative Immunobiology, Duke University, Durham, North Carolina, USA
| | - Carolyn B. Coyne
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina, USA
- Department of Integrative Immunobiology, Duke University, Durham, North Carolina, USA
| | - Genevieve G. Fouda
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina, USA
- Children’s Health and Discovery Initiative
- Department of Pediatrics, Weill Cornell Medicine, New York City, New York, USA
| | - Justin Pollara
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina, USA
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, USA
| | - Sallie R. Permar
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina, USA
- Children’s Health and Discovery Initiative
- Division of Infectious Diseases, and
- Department of Pediatrics, Weill Cornell Medicine, New York City, New York, USA
| | - Kyle M. Walsh
- Children’s Health and Discovery Initiative
- Department of Neurosurgery, Duke University, Durham, North Carolina, USA
| |
Collapse
|
3
|
Tukwasibwe S, Lewis SN, Taremwa Y, van der Ploeg K, Press KD, Ty M, Namirimu Nankya F, Musinguzi K, Nansubuga E, Bach F, Chamai M, Okitwi M, Tumusiime G, Nakimuli A, Colucci F, Kamya MR, Nankabirwa JI, Arinaitwe E, Greenhouse B, Dorsey G, Rosenthal PJ, Ssewanyana I, Jagannathan P. Natural killer cell antibody-dependent cellular cytotoxicity to Plasmodium falciparum is impacted by cellular phenotypes, erythrocyte polymorphisms, parasite diversity and intensity of transmission. Clin Transl Immunology 2024; 13:e70005. [PMID: 39493859 PMCID: PMC11528551 DOI: 10.1002/cti2.70005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 08/09/2024] [Accepted: 09/12/2024] [Indexed: 11/05/2024] Open
Abstract
Objectives Natural killer (NK) cells make important contributions to anti-malarial immunity through antibody-dependent cellular cytotoxicity (ADCC), but the role of different components of this pathway in promoting NK cell activation remains unclear. Methods We compared the functions and phenotypes of NK cells from malaria-exposed and malaria-naive donors, and then varied the erythrocyte genetic background, Plasmodium falciparum strain and opsonising plasma used in ADCC to observe their impacts on NK cell degranulation as measured by CD107a mobilisation. Results Natural killer cells from malaria-exposed adult Ugandan donors had enhanced ADCC, but an impaired pro-inflammatory response to cytokine stimulation, compared to NK cells obtained from malaria-naive adult North American donors. Cellular phenotypes from malaria-exposed donors reflected this specialisation for ADCC, with a compartment-wide downregulation of the Fc receptor γ-chain and enrichment of highly differentiated CD56dim and CD56neg populations. NK cell degranulation was enhanced in response to opsonised P. falciparum schizonts cultured in sickle cell heterozygous erythrocytes relative to wild-type erythrocytes, and when using opsonising plasma collected from donors living in a high transmission area compared to a lower transmission area despite similar levels of 3D7 schizont-specific IgG levels. However, degranulation was lowered in response to opsonised field isolate P. falciparum schizonts isolated from clinical malaria infections, compared to the 3D7 laboratory strain typically used in these assays. Conclusion This work highlights important host and parasite factors that contribute to ADCC efficacy that should be considered in the design of ADCC assays.
Collapse
Affiliation(s)
- Stephen Tukwasibwe
- Infectious Diseases Research CollaborationKampalaUganda
- School of Medicine, Uganda Christian UniversityMukonoUganda
| | | | | | | | | | - Maureen Ty
- Department of MedicineStanford UniversityStanfordCAUSA
| | | | | | | | - Florian Bach
- Department of MedicineStanford UniversityStanfordCAUSA
| | - Martin Chamai
- Infectious Diseases Research CollaborationKampalaUganda
| | - Martin Okitwi
- Infectious Diseases Research CollaborationKampalaUganda
| | | | | | - Francesco Colucci
- Department of Obstetrics and GynaecologyUniversity of CambridgeCambridgeUK
| | - Moses R Kamya
- Infectious Diseases Research CollaborationKampalaUganda
- School of Medicine, Makerere UniversityKampalaUganda
| | - Joaniter I Nankabirwa
- Infectious Diseases Research CollaborationKampalaUganda
- School of Medicine, Makerere UniversityKampalaUganda
| | | | - Bryan Greenhouse
- Department of MedicineUniversity of California San FranciscoSan FranciscoCAUSA
| | - Grant Dorsey
- Department of MedicineUniversity of California San FranciscoSan FranciscoCAUSA
| | - Philip J Rosenthal
- Department of MedicineUniversity of California San FranciscoSan FranciscoCAUSA
| | | | | |
Collapse
|
4
|
Boyle MJ, Engwerda CR, Jagannathan P. The impact of Plasmodium-driven immunoregulatory networks on immunity to malaria. Nat Rev Immunol 2024; 24:637-653. [PMID: 38862638 PMCID: PMC11688169 DOI: 10.1038/s41577-024-01041-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2024] [Indexed: 06/13/2024]
Abstract
Malaria, caused by infection with Plasmodium parasites, drives multiple regulatory responses across the immune landscape. These regulatory responses help to protect against inflammatory disease but may in some situations hamper the acquisition of adaptive immune responses that clear parasites. In addition, the regulatory responses that occur during Plasmodium infection may negatively affect malaria vaccine efficacy in the most at-risk populations. Here, we discuss the specific cellular mechanisms of immunoregulatory networks that develop during malaria, with a focus on knowledge gained from human studies and studies that involve the main malaria parasite to affect humans, Plasmodium falciparum. Leveraging this knowledge may lead to the development of new therapeutic approaches to increase protective immunity to malaria during infection or after vaccination.
Collapse
Affiliation(s)
- Michelle J Boyle
- Life Sciences Division, Burnet Institute, Melbourne, Victoria, Australia.
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia.
| | | | - Prasanna Jagannathan
- Department of Medicine, Stanford University, Stanford, CA, USA.
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA.
| |
Collapse
|
5
|
Rosenkranz M, Nkumama IN, Ogwang R, Kraker S, Blickling M, Mwai K, Odera D, Tuju J, Fürle K, Frank R, Chepsat E, Kapulu MC, Study Team CS, Osier FH. Full-length MSP1 is a major target of protective immunity after controlled human malaria infection. Life Sci Alliance 2024; 7:e202301910. [PMID: 38803222 PMCID: PMC11106525 DOI: 10.26508/lsa.202301910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 05/08/2024] [Accepted: 05/08/2024] [Indexed: 05/29/2024] Open
Abstract
The merozoite surface protein 1 (MSP1) is the most abundant protein on the surface of the invasive merozoite stages of Plasmodium falciparum and has long been considered a key target of protective immunity. We used samples from a single controlled human malaria challenge study to test whether the full-length version of MSP1 (MSP1FL) induced antibodies that mediated Fc-IgG functional activity in five independent assays. We found that anti-MSP1FL antibodies induced complement fixation via C1q, monocyte-mediated phagocytosis, neutrophil respiratory burst, and natural killer cell degranulation as well as IFNγ production. Activity in each of these assays was strongly associated with protection. The breadth of MSP1-specific Fc-mediated effector functions was more strongly associated with protection than the individual measures and closely mirrored what we have previously reported using the same assays against merozoites. Our findings suggest that MSP1FL is an important target of functional antibodies that contribute to a protective immune response against malaria.
Collapse
Affiliation(s)
- Micha Rosenkranz
- Centre of Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Irene N Nkumama
- B Cell Immunology, German Cancer Research Centre, Heidelberg, Germany
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Rodney Ogwang
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Sara Kraker
- Centre of Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Marie Blickling
- Centre of Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Kennedy Mwai
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
- Epidemiology and Biostatistics Division, School of Public Health, University of the Witwatersrand, Johannesburg, South Africa
| | - Dennis Odera
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
| | - James Tuju
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
- Department of Biotechnology and Biochemistry, Pwani University, Kilifi, Kenya
| | - Kristin Fürle
- Centre of Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Roland Frank
- Centre of Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Emily Chepsat
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Melissa C Kapulu
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Chmi-Sika Study Team
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Faith Ha Osier
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
- Department of Life Sciences, Imperial College London, London, UK
| |
Collapse
|
6
|
Pihl RMF, Smith-Mahoney EL, Olson A, Yuen RR, Asundi A, Lin N, Belkina AC, Snyder-Cappione JE. Vδ1 Effector and Vδ2 γδ T-Cell Subsets Shift in Frequency and Are Linked to Plasma Inflammatory Markers During Antiretroviral Therapy-Suppressed HIV Infection. J Infect Dis 2024; 229:1317-1327. [PMID: 38390982 PMCID: PMC11095541 DOI: 10.1093/infdis/jiae091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/18/2024] [Accepted: 02/21/2024] [Indexed: 02/24/2024] Open
Abstract
BACKGROUND Chronic inflammation is prevalent with antiretroviral therapy (ART)-suppressed human immunodeficiency virus (HIV) infection and one immune cell subset putatively driving this phenomenon is TIGIT+ γδ T cells. METHODS To elucidate γδ T-cell phenotypic diversity, spectral flow cytometry was performed on blood lymphocytes from individuals of a HIV and aging cohort and data were analyzed using bioinformatic platforms. Plasma inflammatory markers were measured and correlated with γδ T-cell subset frequencies. RESULTS Thirty-nine distinct γδ T-cell subsets were identified (22 Vδ1+, 14 Vδ2+, and 3 Vδ1-Vδ2-Vγ9+) and TIGIT was nearly exclusively found on the Vδ1+CD45RA+CD27- effector populations. People with ART-suppressed HIV infection (PWH) exhibited high frequencies of distinct clusters of Vδ1+ effectors distinguished via CD8, CD16, and CD38 expression. Among Vδ2+ cells, most Vγ9+ (innate-like) clusters were lower in PWH; however, CD27+ subsets were similar in frequency between participants with and without HIV. Comparisons by age revealed lower 'naive' Vδ1+CD45RA+CD27+ cells in older individuals, regardless of HIV status. Plasma inflammatory markers were selectively linked to subsets of Vδ1+ and Vδ2+ cells. CONCLUSIONS These results further elucidate γδ T-cell subset complexity and reveal distinct alterations and connections with inflammatory pathways of Vδ1+ effector and Vδ2+ innate-like subsets during ART-suppressed HIV infection.
Collapse
Affiliation(s)
- Riley M F Pihl
- Department of Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts, USA
| | - Erika L Smith-Mahoney
- Department of Virology, Immunology, and Microbiology, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts, USA
| | - Alex Olson
- Department of Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts, USA
- Section of Infectious Diseases, Boston Medical Center, Boston, Massachusetts, USA
| | - Rachel R Yuen
- Department of Virology, Immunology, and Microbiology, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts, USA
| | - Archana Asundi
- Department of Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts, USA
- Section of Infectious Diseases, Boston Medical Center, Boston, Massachusetts, USA
| | - Nina Lin
- Department of Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts, USA
- Section of Infectious Diseases, Boston Medical Center, Boston, Massachusetts, USA
| | - Anna C Belkina
- Flow Cytometry Core Facility, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts, USA
- Department of Pathology and Laboratory Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts, USA
| | - Jennifer E Snyder-Cappione
- Department of Virology, Immunology, and Microbiology, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
7
|
Hviid L, Jensen AR, Deitsch KW. PfEMP1 and var genes - Still of key importance in Plasmodium falciparum malaria pathogenesis and immunity. ADVANCES IN PARASITOLOGY 2024; 125:53-103. [PMID: 39095112 DOI: 10.1016/bs.apar.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
The most severe form of malaria, caused by infection with Plasmodium falciparum parasites, continues to be an important cause of human suffering and poverty. The P. falciparum erythrocyte membrane protein 1 (PfEMP1) family of clonally variant antigens, which mediates the adhesion of infected erythrocytes to the vascular endothelium in various tissues and organs, is a central component of the pathogenesis of the disease and a key target of the acquired immune response to malaria. Much new knowledge has accumulated since we published a systematic overview of the PfEMP1 family almost ten years ago. In this chapter, we therefore aim to summarize research progress since 2015 on the structure, function, regulation etc. of this key protein family of arguably the most important human parasite. Recent insights regarding PfEMP1-specific immune responses and PfEMP1-specific vaccination against malaria, as well as an outlook for the coming years are also covered.
Collapse
Affiliation(s)
- Lars Hviid
- Centre for translational Medicine and Parasitology, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark; Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark.
| | - Anja R Jensen
- Centre for translational Medicine and Parasitology, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Kirk W Deitsch
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY, United States
| |
Collapse
|
8
|
Jalali S, Stankovic S, Westall GP, Reading PC, Sullivan LC, Brooks AG. Examining the impact of immunosuppressive drugs on antibody-dependent cellular cytotoxicity (ADCC) of human peripheral blood natural killer (NK) cells and gamma delta (γδ) T cells. Transpl Immunol 2024; 82:101962. [PMID: 38007172 DOI: 10.1016/j.trim.2023.101962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 11/20/2023] [Accepted: 11/20/2023] [Indexed: 11/27/2023]
Abstract
BACKGROUND Human natural killer (NK) cells and gamma delta (γδ) T cells may impact outcomes of solid organ transplantation (SOT) such as lung transplantation (LTx) following the differential engagement of an array of activating and inhibitory receptors. Amongst these, CD16 may be particularly important due to its capacity to bind IgG to trigger antibody-dependent cellular cytotoxicity (ADCC) and the production of proinflammatory cytokines. While the use of immunosuppressive drugs (ISDs) is an integral component of SOT practice, their relative impact on various immune cells, especially γδT cells and CD16-induced functional responses, is still unclear. METHODS The ADCC responses of peripheral blood NK cells and γδT cells from both healthy blood donors and adult lung transplant recipients (LTRs) were assessed by flow cytometry. Specifically, the degranulation response, as reflected in the expression of CD107a, and the capacity of both NK cells and γδT cells to produce IFN-γ and TNF-α was assessed following rituximab (RTX)-induced activation. Additionally, the effect of cyclosporine A (CsA), tacrolimus (TAC), prednisolone (Prdl) and azathioprine (AZA) at the concentration of 1 ng/ml, 10 ng/ml, 100 ng/ml, and 1000 ng/ml on these responses was also compared in both cell types. RESULTS Flow cytometric analyses of CD16 expresion showed that its expression on γδT cells was both at lower levels and more variable than that on peripheral blood NK cells. Nevertheless functional analyses showed that despite these differences, γδT cells like NK cells can be readily activated by engagement with RTX to degranulate and produce cytokines such as IFNg and TNF-a. RTX-induced degranulation by either NK cells or γδT cells from healthy donors was not impacted by co-culture with individual ISDs. However, CsA and TAC but not Prdl and AZA did inhibit the production of IFN-γ and TNF-α by both cell types. Flow cytometric analyses of RTX-induced activation of NK cells and γδT cells from LTRs suggested their capacity to degranulate was not markedly impacted by transplantation with similar levels of cells expressing CD107 pre- and post-LTx. However an impairment in the ability of NK cells to produce cytokines was observed in samples obtained post LTx whereas γδT cell cytokine responses were not significantly impacted. CONCLUSIONS In conclusion, the findings show that despite differences in the expression levels of CD16, γδT cells like NK cells can be readily activated by engagement with RTX and that in vitro exposure to CsA and TAC (calcineurin inhibitors) had a measurable effect on cytokine production but not degranulation by both NK cells and gdT cells from healthy donors. Finally the observation that in PBMC obtained from LTx recipients, NK cells but not γδT cells exhibited impaired cytokine reponses suggests that transplantation or chronic exposure to ISDs differentially impacts their potential to respond to the introduction of an allograft and/or transplant-associated infections.
Collapse
Affiliation(s)
- Sedigheh Jalali
- Murdoch Children's Research Institute, The Royal Children's Hospital, Parkville, Victoria 3052, Australia; Department of Paediatrics, University of Melbourne, Parkville, Victoria 3010, Australia; Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute, Parkville, Victoria 3010, Australia
| | - Sanda Stankovic
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute, Parkville, Victoria 3010, Australia
| | - Glen P Westall
- Lung Transplant Service, The Alfred Hospital and Monash University, Melbourne, Victoria 3000, Australia
| | - Patrick C Reading
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute, Parkville, Victoria 3010, Australia
| | - Lucy C Sullivan
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute, Parkville, Victoria 3010, Australia
| | - Andrew G Brooks
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute, Parkville, Victoria 3010, Australia.
| |
Collapse
|
9
|
Hsu H, Zanettini C, Coker M, Boudova S, Rach D, Mvula G, Divala TH, Mungwira RG, Boldrin F, Degiacomi G, Mazzabò LC, Manganelli R, Laufer MK, Zhang Y, Marchionni L, Cairo C. Concomitant assessment of PD-1 and CD56 expression identifies subsets of resting cord blood Vδ2 T cells with disparate cytotoxic potential. Cell Immunol 2024; 395-396:104797. [PMID: 38157646 DOI: 10.1016/j.cellimm.2023.104797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/17/2023] [Accepted: 12/22/2023] [Indexed: 01/03/2024]
Abstract
Vγ9Vδ2 T lymphocytes are programmed for broad antimicrobial responses with rapid production of Th1 cytokines even before birth, and thus thought to play key roles against pathogens in infants. The process regulating Vδ2 cell acquisition of cytotoxic potential shortly after birth remains understudied. We observed that perforin production in cord blood Vδ2 cells correlates with phenotypes defined by the concomitant assessment of PD-1 and CD56. Bulk RNA sequencing of sorted Vδ2 cell fractions indicated that transcripts related to cytotoxic activity and NK function are enriched in the subset with the highest proportion of perforin+ cells. Among differentially expressed transcripts, IRF8, previously linked to CD8 T cell effector differentiation and NK maturation, has the potential to mediate Vδ2 cell differentiation towards cytotoxic effectors. Our current and past results support the hypothesis that distinct mechanisms regulate Vδ2 cell cytotoxic function before and after birth, possibly linked to different levels of microbial exposure.
Collapse
Affiliation(s)
- Haoting Hsu
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Claudio Zanettini
- Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, United States
| | - Modupe Coker
- Department of Oral Biology, Rutgers School of Dental Medicine, Rutgers State University of New Jersey, Newark, NJ, United States
| | - Sarah Boudova
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
| | - David Rach
- Molecular Microbiology and Immunology Graduate Program, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Godfrey Mvula
- Blantyre Malaria Project, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Titus H Divala
- Blantyre Malaria Project, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Randy G Mungwira
- Blantyre Malaria Project, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Francesca Boldrin
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Giulia Degiacomi
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | | | | | - Miriam K Laufer
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Yuji Zhang
- Division of Biostatistics and Bioinformatics, Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD, United States; University of Maryland Marlene and Stewart Greenbaum Comprehensive Cancer Center, Baltimore, MD, United States
| | - Luigi Marchionni
- Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, United States
| | - Cristiana Cairo
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, United States.
| |
Collapse
|
10
|
Dooley NL, Chabikwa TG, Pava Z, Loughland JR, Hamelink J, Berry K, Andrew D, Soon MSF, SheelaNair A, Piera KA, William T, Barber BE, Grigg MJ, Engwerda CR, Lopez JA, Anstey NM, Boyle MJ. Single cell transcriptomics shows that malaria promotes unique regulatory responses across multiple immune cell subsets. Nat Commun 2023; 14:7387. [PMID: 37968278 PMCID: PMC10651914 DOI: 10.1038/s41467-023-43181-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 11/02/2023] [Indexed: 11/17/2023] Open
Abstract
Plasmodium falciparum malaria drives immunoregulatory responses across multiple cell subsets, which protects from immunopathogenesis, but also hampers the development of effective anti-parasitic immunity. Understanding malaria induced tolerogenic responses in specific cell subsets may inform development of strategies to boost protective immunity during drug treatment and vaccination. Here, we analyse the immune landscape with single cell RNA sequencing during P. falciparum malaria. We identify cell type specific responses in sub-clustered major immune cell types. Malaria is associated with an increase in immunosuppressive monocytes, alongside NK and γδ T cells which up-regulate tolerogenic markers. IL-10-producing Tr1 CD4 T cells and IL-10-producing regulatory B cells are also induced. Type I interferon responses are identified across all cell types, suggesting Type I interferon signalling may be linked to induction of immunoregulatory networks during malaria. These findings provide insights into cell-specific and shared immunoregulatory changes during malaria and provide a data resource for further analysis.
Collapse
Affiliation(s)
- Nicholas L Dooley
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- School of Environment and Sciences, Griffith University, Brisbane, QLD, Australia
| | | | - Zuleima Pava
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | | | - Julianne Hamelink
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- University of Queensland, Brisbane, QLD, Australia
| | - Kiana Berry
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- Queensland University of Technology, Brisbane, QLD, Australia
| | - Dean Andrew
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Megan S F Soon
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Arya SheelaNair
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Kim A Piera
- Menzies School of Health Research, Charles Darwin University, Darwin, NT, Australia
| | - Timothy William
- Infectious Diseases Society Kota Kinabalu Sabah-Menzies School of Health Research Program, Kota Kinabalu, Sabah, Malaysia
- Subang Jaya Medical Centre, Selangor, Malaysia
| | - Bridget E Barber
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- Menzies School of Health Research, Charles Darwin University, Darwin, NT, Australia
- Infectious Diseases Society Kota Kinabalu Sabah-Menzies School of Health Research Program, Kota Kinabalu, Sabah, Malaysia
| | - Matthew J Grigg
- Menzies School of Health Research, Charles Darwin University, Darwin, NT, Australia
- Infectious Diseases Society Kota Kinabalu Sabah-Menzies School of Health Research Program, Kota Kinabalu, Sabah, Malaysia
| | | | - J Alejandro Lopez
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- School of Environment and Sciences, Griffith University, Brisbane, QLD, Australia
| | - Nicholas M Anstey
- Menzies School of Health Research, Charles Darwin University, Darwin, NT, Australia
- Infectious Diseases Society Kota Kinabalu Sabah-Menzies School of Health Research Program, Kota Kinabalu, Sabah, Malaysia
| | - Michelle J Boyle
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia.
- School of Environment and Sciences, Griffith University, Brisbane, QLD, Australia.
- University of Queensland, Brisbane, QLD, Australia.
- Queensland University of Technology, Brisbane, QLD, Australia.
- Burnet Institute, Melbourne, VIC, Australia.
| |
Collapse
|
11
|
Ty M, Sun S, Callaway PC, Rek J, Press KD, van der Ploeg K, Nideffer J, Hu Z, Klemm S, Greenleaf W, Donato M, Tukwasibwe S, Arinaitwe E, Nankya F, Musinguzi K, Andrew D, de la Parte L, Mori DM, Lewis SN, Takahashi S, Rodriguez-Barraquer I, Greenhouse B, Blish C, Utz PJ, Khatri P, Dorsey G, Kamya M, Boyle M, Feeney M, Ssewanyana I, Jagannathan P. Malaria-driven expansion of adaptive-like functional CD56-negative NK cells correlates with clinical immunity to malaria. Sci Transl Med 2023; 15:eadd9012. [PMID: 36696483 PMCID: PMC9976268 DOI: 10.1126/scitranslmed.add9012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 01/05/2023] [Indexed: 01/26/2023]
Abstract
Natural killer (NK) cells likely play an important role in immunity to malaria, but the effect of repeated malaria on NK cell responses remains unclear. Here, we comprehensively profiled the NK cell response in a cohort of 264 Ugandan children. Repeated malaria exposure was associated with expansion of an atypical, CD56neg population of NK cells that differed transcriptionally, epigenetically, and phenotypically from CD56dim NK cells, including decreased expression of PLZF and the Fc receptor γ-chain, increased histone methylation, and increased protein expression of LAG-3, KIR, and LILRB1. CD56neg NK cells were highly functional and displayed greater antibody-dependent cellular cytotoxicity than CD56dim NK cells. Higher frequencies of CD56neg NK cells were associated with protection against symptomatic malaria and high parasite densities. After marked reductions in malaria transmission, frequencies of these cells rapidly declined, suggesting that continuous exposure to Plasmodium falciparum is required to maintain this modified, adaptive-like NK cell subset.
Collapse
Affiliation(s)
- Maureen Ty
- Department of Medicine, Stanford University, Stanford, CA, USA
| | - Shenghuan Sun
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Perri C Callaway
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - John Rek
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | | | | | - Jason Nideffer
- Department of Medicine, Stanford University, Stanford, CA, USA
| | - Zicheng Hu
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Sandy Klemm
- Department of Genetics, Stanford University, Stanford, CA, USA
| | | | - Michele Donato
- Institute for Immunity, Transplantation, and Infection, Stanford University, Stanford, CA, USA
| | | | | | | | | | - Dean Andrew
- Queensland Institute for Medical Research, Queensland, Australia
| | | | | | | | - Saki Takahashi
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | | | - Bryan Greenhouse
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Catherine Blish
- Department of Medicine, Stanford University, Stanford, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - P J Utz
- Department of Medicine, Stanford University, Stanford, CA, USA
| | - Purvesh Khatri
- Institute for Immunity, Transplantation, and Infection, Stanford University, Stanford, CA, USA
| | - Grant Dorsey
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Moses Kamya
- Infectious Diseases Research Collaboration, Kampala, Uganda
- Department of Medicine, Makerere University, Kampala, Uganda
| | - Michelle Boyle
- Queensland Institute for Medical Research, Queensland, Australia
| | - Margaret Feeney
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA, USA
| | | | - Prasanna Jagannathan
- Department of Medicine, Stanford University, Stanford, CA, USA
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA
| |
Collapse
|
12
|
Ridgley LA, Caron J, Dalgleish A, Bodman-Smith M. Releasing the restraints of Vγ9Vδ2 T-cells in cancer immunotherapy. Front Immunol 2023; 13:1065495. [PMID: 36713444 PMCID: PMC9880221 DOI: 10.3389/fimmu.2022.1065495] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 12/16/2022] [Indexed: 01/15/2023] Open
Abstract
Objectives Vγ9Vδ2 T-cells are a subset of T-cells with a crucial role in immunosurveillance which can be activated and expanded by multiple means to stimulate effector responses. Little is known about the expression of checkpoint molecules on this cell population and whether the ligation of these molecules can regulate their activity. The aim of this study was to assess the expression of both activatory and inhibitory receptors on Vγ9Vδ2 T-cells to assess potential avenues of regulation to target with immunotherapy. Methods Expression of various activatory and inhibitory receptors was assessed on Vγ9Vδ2 T-cells by flow cytometry following activation and expansion using zoledronic acid (ZA) and Bacillus Calmette-Guérin (BCG). Expression of these markers and production of effector molecules was also examined following co-culture with various tumour cell targets. The effect of immune checkpoint blockade on Vγ9Vδ2 T-cells was also explored. Results Vγ9Vδ2 T-cells expressed high levels of activatory markers both at baseline and following stimulation. Vγ9Vδ2 T-cells expressed variable levels of inhibitory checkpoint receptors with many being upregulated following stimulation. Expression of these markers is further modulated upon co-culture with tumour cells with changes reflecting activation and effector functions. Despite their high expression of inhibitory receptors when cultured with tumour cells expressing cognate ligands there was no effect on Vδ2+ T-cell cytotoxic capacity or cytokine production with immune checkpoint blockade. Conclusions Our work suggests the expression of checkpoint receptors present on Vγ9Vδ2 T-cells which may provide a mechanism with the potential to be utilised by tumour cells to subvert Vγ9Vδ2 T-cell cytotoxicity. This work suggests important candidates for blockade by ICI therapy in order to increase the successful use of Vγ9Vδ2 T-cells in immunotherapy.
Collapse
|
13
|
Wiarda JE, Loving CL. Intraepithelial lymphocytes in the pig intestine: T cell and innate lymphoid cell contributions to intestinal barrier immunity. Front Immunol 2022; 13:1048708. [PMID: 36569897 PMCID: PMC9772029 DOI: 10.3389/fimmu.2022.1048708] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/25/2022] [Indexed: 12/12/2022] Open
Abstract
Intraepithelial lymphocytes (IELs) include T cells and innate lymphoid cells that are important mediators of intestinal immunity and barrier defense, yet most knowledge of IELs is derived from the study of humans and rodent models. Pigs are an important global food source and promising biomedical model, yet relatively little is known about IELs in the porcine intestine, especially during formative ages of intestinal development. Due to the biological significance of IELs, global importance of pig health, and potential of early life events to influence IELs, we collate current knowledge of porcine IEL functional and phenotypic maturation in the context of the developing intestinal tract and outline areas where further research is needed. Based on available findings, we formulate probable implications of IELs on intestinal and overall health outcomes and highlight key findings in relation to human IELs to emphasize potential applicability of pigs as a biomedical model for intestinal IEL research. Review of current literature suggests the study of porcine intestinal IELs as an exciting research frontier with dual application for betterment of animal and human health.
Collapse
Affiliation(s)
- Jayne E. Wiarda
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, United States,Immunobiology Graduate Program, Iowa State University, Ames, IA, United States,Department of Veterinary Microbiology and Preventative Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Crystal L. Loving
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, United States,Immunobiology Graduate Program, Iowa State University, Ames, IA, United States,*Correspondence: Crystal L. Loving,
| |
Collapse
|
14
|
Olatunde AC, Cornwall DH, Roedel M, Lamb TJ. Mouse Models for Unravelling Immunology of Blood Stage Malaria. Vaccines (Basel) 2022; 10:1525. [PMID: 36146602 PMCID: PMC9501382 DOI: 10.3390/vaccines10091525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 11/16/2022] Open
Abstract
Malaria comprises a spectrum of disease syndromes and the immune system is a major participant in malarial disease. This is particularly true in relation to the immune responses elicited against blood stages of Plasmodium-parasites that are responsible for the pathogenesis of infection. Mouse models of malaria are commonly used to dissect the immune mechanisms underlying disease. While no single mouse model of Plasmodium infection completely recapitulates all the features of malaria in humans, collectively the existing models are invaluable for defining the events that lead to the immunopathogenesis of malaria. Here we review the different mouse models of Plasmodium infection that are available, and highlight some of the main contributions these models have made with regards to identifying immune mechanisms of parasite control and the immunopathogenesis of malaria.
Collapse
Affiliation(s)
| | | | | | - Tracey J. Lamb
- Department of Pathology, University of Utah, Emma Eccles Jones Medical Research Building, 15 N Medical Drive E, Room 1420A, Salt Lake City, UT 84112, USA
| |
Collapse
|
15
|
Lautenbach MJ, Yman V, Silva CS, Kadri N, Broumou I, Chan S, Angenendt S, Sondén K, Plaza DF, Färnert A, Sundling C. Systems analysis shows a role of cytophilic antibodies in shaping innate tolerance to malaria. Cell Rep 2022; 39:110709. [PMID: 35443186 DOI: 10.1016/j.celrep.2022.110709] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 03/01/2022] [Accepted: 03/29/2022] [Indexed: 12/15/2022] Open
Abstract
Natural immunity to malaria develops over time with repeated malaria episodes, but protection against severe malaria and immune regulation limiting immunopathology, called tolerance, develops more rapidly. Here, we comprehensively profile the blood immune system in patients, with or without prior malaria exposure, over 1 year after acute symptomatic Plasmodium falciparum malaria. Using a data-driven analysis approach to describe the immune landscape over time, we show that a dampened inflammatory response is associated with reduced γδ T cell expansion, early expansion of CD16+ monocytes, and parasite-specific antibodies of IgG1 and IgG3 isotypes. This also coincided with reduced parasitemia and duration of hospitalization. Our data indicate that antibody-mediated phagocytosis during the blood stage infection leads to lower parasitemia and less inflammatory response with reduced γδ T cell expansion. This enhanced control and reduced inflammation points to a potential mechanism on how tolerance is established following repeated malaria exposure.
Collapse
Affiliation(s)
- Maximilian Julius Lautenbach
- Division of Infectious Diseases, Department of Medicine Solna and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden; Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Victor Yman
- Division of Infectious Diseases, Department of Medicine Solna and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden; Department of Infectious Diseases, South Stockholm Hospital, Stockholm, Sweden
| | - Carolina Sousa Silva
- Division of Infectious Diseases, Department of Medicine Solna and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden; Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden; Life and Health Sciences Research Institute, School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's, PT Government Associate Laboratory, Braga, Portugal
| | - Nadir Kadri
- Division of Infectious Diseases, Department of Medicine Solna and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden; Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden; Department of Medicine Solna, Science for Life Laboratory, Karolinska Institute, Stockholm, Sweden
| | - Ioanna Broumou
- Division of Infectious Diseases, Department of Medicine Solna and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden; Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Sherwin Chan
- Department of Oncology-Pathology, Science for Life Laboratories, Karolinska Institutet, Stockholm, Sweden
| | - Sina Angenendt
- Division of Infectious Diseases, Department of Medicine Solna and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden; Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Klara Sondén
- Division of Infectious Diseases, Department of Medicine Solna and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden; Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - David Fernando Plaza
- Division of Infectious Diseases, Department of Medicine Solna and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden; Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Anna Färnert
- Division of Infectious Diseases, Department of Medicine Solna and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden; Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Christopher Sundling
- Division of Infectious Diseases, Department of Medicine Solna and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden; Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
16
|
Hviid L, Lopez-Perez M, Larsen MD, Vidarsson G. No sweet deal: the antibody-mediated immune response to malaria. Trends Parasitol 2022; 38:428-434. [DOI: 10.1016/j.pt.2022.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 10/18/2022]
|
17
|
Jhita N, Raikar SS. Allogeneic gamma delta T cells as adoptive cellular therapy for hematologic malignancies. EXPLORATION OF IMMUNOLOGY 2022; 2:334-350. [PMID: 35783107 PMCID: PMC9249101 DOI: 10.37349/ei.2022.00054] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 03/28/2022] [Indexed: 05/22/2023]
Abstract
Cancer immunotherapy, especially T-cell driven targeting, has significantly evolved and improved over the past decade, paving the way to treat previously refractory cancers. Hematologic malignancies, given their direct tumor accessibility and less immunosuppressive microenvironment compared to solid tumors, are better suited to be targeted by cellular immunotherapies. Gamma delta (γδ) T cells, with their unique attributes spanning the entirety of the immune system, make a tantalizing therapeutic platform for cancer immunotherapy. Their inherent anti-tumor properties, ability to act like antigen-presenting cells, and the advantage of having no major histocompatibility complex (MHC) restrictions, allow for greater flexibility in their utility to target tumors, compared to their αβ T cell counterpart. Their MHC-independent anti-tumor activity, coupled with their ability to be easily expanded from peripheral blood, enhance their potential to be used as an allogeneic product. In this review, the potential of utilizing γδ T cells to target hematologic malignancies is described, with a specific focus on their applicability as an allogeneic adoptive cellular therapy product.
Collapse
Affiliation(s)
| | - Sunil S. Raikar
- Correspondence: Sunil S. Raikar, Cell and Gene Therapy Program, Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Emory University School of Medicine, 1760 Haygood Drive NE, Atlanta, GA 30322, USA.
| |
Collapse
|
18
|
von Borstel A, Chevour P, Arsovski D, Krol JMM, Howson LJ, Berry AA, Day CL, Ogongo P, Ernst JD, Nomicos EYH, Boddey JA, Giles EM, Rossjohn J, Traore B, Lyke KE, Williamson KC, Crompton PD, Davey MS. Repeated Plasmodium falciparum infection in humans drives the clonal expansion of an adaptive γδ T cell repertoire. Sci Transl Med 2021; 13:eabe7430. [PMID: 34851691 DOI: 10.1126/scitranslmed.abe7430] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Anouk von Borstel
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Priyanka Chevour
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Daniel Arsovski
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Jelte M M Krol
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia.,University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Lauren J Howson
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Andrea A Berry
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Cheryl L Day
- Department of Microbiology and Immunology, Emory Vaccine Center and Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Paul Ogongo
- Division of Experimental Medicine, Department of Medicine, UCSF School of Medicine, San Francisco, CA, USA.,Department of Tropical and Infectious Diseases, Institute of Primate Research, National Museums of Kenya, P.O Box 24481-00502, Nairobi, Kenya
| | - Joel D Ernst
- Division of Experimental Medicine, Department of Medicine, UCSF School of Medicine, San Francisco, CA, USA
| | - Effie Y H Nomicos
- Parasitology and International Programs Branch, Division of Microbiology and Infectious Diseases, NIAID, NIH, Bethesda, MD, USA
| | - Justin A Boddey
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia.,University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Edward M Giles
- Department of Paediatrics, Monash University, and Centre for Innate Immunity and Infectious Disease, Hudson Institute of Medicine, Clayton, Victoria 3168, Australia
| | - Jamie Rossjohn
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia.,Institute of Infection and Immunity, Cardiff University School of Medicine, Heath Park, CF14 4XN Cardiff, UK
| | - Boubacar Traore
- Malaria Research and Training Center, Department of Epidemiology of Parasitic Diseases, International Center of Excellence in Research, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Kirsten E Lyke
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Kim C Williamson
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Peter D Crompton
- Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Disease, National Institutes of Health, Rockville, MD, USA
| | - Martin S Davey
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
19
|
Martini F, Champagne E. The Contribution of Human Herpes Viruses to γδ T Cell Mobilisation in Co-Infections. Viruses 2021; 13:v13122372. [PMID: 34960641 PMCID: PMC8704314 DOI: 10.3390/v13122372] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 12/12/2022] Open
Abstract
γδ T cells are activated in viral, bacterial and parasitic infections. Among viruses that promote γδ T cell mobilisation in humans, herpes viruses (HHVs) occupy a particular place since they infect the majority of the human population and persist indefinitely in the organism in a latent state. Thus, other infections should, in most instances, be considered co-infections, and the reactivation of HHV is a serious confounding factor in attributing γδ T cell alterations to a particular pathogen in human diseases. We review here the literature data on γδ T cell mobilisation in HHV infections and co-infections, and discuss the possible contribution of HHVs to γδ alterations observed in various infectious settings. As multiple infections seemingly mobilise overlapping γδ subsets, we also address the concept of possible cross-protection.
Collapse
|
20
|
Gunn BM, Bai S. Building a better antibody through the Fc: advances and challenges in harnessing antibody Fc effector functions for antiviral protection. Hum Vaccin Immunother 2021; 17:4328-4344. [PMID: 34613865 PMCID: PMC8827636 DOI: 10.1080/21645515.2021.1976580] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 08/23/2021] [Accepted: 08/30/2021] [Indexed: 12/15/2022] Open
Abstract
Antibodies can provide antiviral protection through neutralization and recruitment of innate effector functions through the Fc domain. While neutralization has long been appreciated for its role in antibody-mediated protection, a growing body of work indicates that the antibody Fc domain also significantly contributes to antiviral protection. Recruitment of innate immune cells such as natural killer cells, neutrophils, monocytes, macrophages, dendritic cells and the complement system by antibodies can lead to direct restriction of viral infection as well as promoting long-term antiviral immunity. Monoclonal antibody therapeutics against viruses are increasingly incorporating Fc-enhancing features to take advantage of the Fc domain, uncovering a surprising breadth of mechanisms through which antibodies can control viral infection. Here, we review the recent advances in our understanding of antibody-mediated innate immune effector functions in protection from viral infection and review the current approaches and challenges to effectively leverage innate immune cells via antibodies.
Collapse
Affiliation(s)
- Bronwyn M. Gunn
- Paul G. Allen School of Global Health, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| | - Shuangyi Bai
- Paul G. Allen School of Global Health, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| |
Collapse
|
21
|
Digitale JC, Callaway PC, Martin M, Nelson G, Viard M, Rek J, Arinaitwe E, Dorsey G, Kamya M, Carrington M, Rodriguez-Barraquer I, Feeney ME. Association of Inhibitory Killer Cell Immunoglobulin-like Receptor Ligands With Higher Plasmodium falciparum Parasite Prevalence. J Infect Dis 2021; 224:175-183. [PMID: 33165540 PMCID: PMC8491837 DOI: 10.1093/infdis/jiaa698] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 11/05/2020] [Indexed: 01/01/2023] Open
Abstract
Killer cell immunoglobulin-like receptors (KIRs) and their HLA ligands influence the outcome of many infectious diseases. We analyzed the relationship of compound KIR-HLA genotypes with risk of Plasmodium falciparum infection in a longitudinal cohort of 890 Ugandan individuals. We found that presence of HLA-C2 and HLA-Bw4, ligands for inhibitory KIR2DL1 and KIR3DL1, respectively, increased the likelihood of P. falciparum parasitemia in an additive manner. Individuals homozygous for HLA-C2, which mediates strong inhibition via KIR2DL1, had the highest odds of parasitemia, HLA-C1/C2 heterozygotes had intermediate odds, and individuals homozygous for HLA-C1, which mediates weaker inhibition through KIR2DL2/3, had the lowest odds of parasitemia. In addition, higher surface expression of HLA-C, the ligand for inhibitory KIR2DL1/2/3, was associated with a higher likelihood of parasitemia. Together these data indicate that stronger KIR-mediated inhibition confers a higher risk of P. falciparum parasitemia and suggest that KIR-expressing effector cells play a role in mediating antiparasite immunity.
Collapse
Affiliation(s)
- Jean C Digitale
- Department of Medicine, University of California, San
Francisco, San Francisco, California, USA
- Department of Epidemiology and Biostatistics, University
of California, San Francisco, San Francisco, California, USA
| | - Perri C Callaway
- Department of Medicine, University of California, San
Francisco, San Francisco, California, USA
- Infectious Disease and Immunity Graduate Group, University
of California, Berkeley, Berkeley, California, USA
| | - Maureen Martin
- Basic Science Program, Frederick National Laboratory for
Cancer Research in the Laboratory of Integrative Cancer Immunology, National
Cancer Institute, Bethesda, Maryland, USA
| | - George Nelson
- Advanced Biomedical Computational Science, Frederick
National Laboratory for Cancer Research, Frederick, Maryland,
USA
| | - Mathias Viard
- Basic Science Program, Frederick National Laboratory for
Cancer Research in the Laboratory of Integrative Cancer Immunology, National
Cancer Institute, Bethesda, Maryland, USA
| | - John Rek
- Infectious Diseases Research Collaboration,
Kampala, Uganda
| | - Emmanuel Arinaitwe
- Infectious Diseases Research Collaboration,
Kampala, Uganda
- London School of Hygiene and Tropical
Medicine, London, United
Kingdom
| | - Grant Dorsey
- Department of Medicine, University of California, San
Francisco, San Francisco, California, USA
| | - Moses Kamya
- Infectious Diseases Research Collaboration,
Kampala, Uganda
- Department of Medicine, Makerere University,
Kampala, Uganda
| | - Mary Carrington
- Basic Science Program, Frederick National Laboratory for
Cancer Research in the Laboratory of Integrative Cancer Immunology, National
Cancer Institute, Bethesda, Maryland, USA
- Ragon Institute of MGH MIT and Harvard,
Cambridge, Massachusetts, USA
| | | | - Margaret E Feeney
- Department of Medicine, University of California, San
Francisco, San Francisco, California, USA
- Department of Pediatrics, University of California San
Francisco, San Francisco, California, USA
| |
Collapse
|