1
|
Mahomed S, Pillay K, Hassan-Moosa R, Galvão BPGV, Burgers WA, Moore PL, Rose-Abrahams M, Williamson C, Garrett N. Clinical trials of broadly neutralizing monoclonal antibodies in people living with HIV - a review. AIDS Res Ther 2025; 22:44. [PMID: 40189566 PMCID: PMC11972490 DOI: 10.1186/s12981-025-00734-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 03/18/2025] [Indexed: 04/10/2025] Open
Abstract
INTRODUCTION HIV-1 remains a major global health challenge, impacting approximately 39 million people worldwide. Although antiretroviral therapy has substantially reduced HIV incidence and enhanced the quality of life for those living with HIV, adherence difficulties, limited access, and persistent stigma continue to exacerbate the disease burden. A curative or long-term immunological control strategy without continuous medication would significantly advance pandemic management. In the 2010s, technological progress led to the development of a new generation of broadly neutralizing antibodies (bNAbs) with improved potency and breadth, targeting conserved regions of the HIV-1 envelope and facilitating viral neutralization and clearance. METHODS This review evaluates the clinical outcomes and potential of bNAbs in people living with HIV, summarizing findings from a review of 154 registered trials, of which 62 met the inclusion criteria focusing on adult PLWH. RESULTS Early trials confirmed bNAbs' safety but revealed transient and limited viral suppression, often due to viral escape. Second-generation bNAbs like VRC01 and 3BNC117, as well as combination therapies such as 3BNC117 with 10-1074, extended viral suppression but continued to face resistance challenges. CONCLUSION More recent trials that paired bNAbs with latency-reversing agents or combined multiple bNAbs demonstrated promising results, including delayed viral rebound and enhanced CD8 + T-cell responses. While bNAbs show potential as an adjunct or alternative to ART, obstacles such as viral resistance, high production costs, and scalability must be addressed. Continued research is crucial to developing more potent, durable, and affordable bNAbs for sustainable HIV treatment and potential remission.
Collapse
Affiliation(s)
- Sharana Mahomed
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Durban, 4001, South Africa.
- Department of Medical Microbiology, University of Kwazulu-Natal, Durban, 4001, South Africa.
- Doris Duke Medical Research Institute, 719 Umbilo Road, CAPRISA, 2nd Floor,, Durban, 4041, South Africa.
| | - Kayla Pillay
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Durban, 4001, South Africa
| | - Razia Hassan-Moosa
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Durban, 4001, South Africa
| | - Bruna P G V Galvão
- Division of Medical Virology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, 7925, South Africa
| | - Wendy A Burgers
- Division of Medical Virology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, 7925, South Africa
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, 7925, South Africa
| | - Penny L Moore
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Durban, 4001, South Africa
- SA MRC Antibody Immunity Research Unit, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Parktown, Johannesburg, 2193, South Africa
- Centre for HIV and STIs, National Institute for Communicable Diseases (NICD), A Division of the National Health Laboratory Service, Johannesburg, 2192, South Africa
| | - Melissa Rose-Abrahams
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Durban, 4001, South Africa
- Division of Medical Virology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, 7925, South Africa
| | - Carolyn Williamson
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Durban, 4001, South Africa
- Division of Medical Virology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, 7925, South Africa
- National Health Laboratory Services of South Africa, Johannesburg, 2000, South Africa
| | - Nigel Garrett
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Durban, 4001, South Africa
- Department of Public Health Medicine, School of Nursing and Public Health, University of KwaZulu-Natal, Durban, 4001, South Africa
| |
Collapse
|
2
|
Rappaport AR, Bekerman E, Boucher GR, Sung J, Carr B, Corzo CA, Larson H, Kachura MA, Scallan CD, Geleziunas R, SenGupta D, Jooss K. Differential shaping of T cell responses elicited by heterologous ChAd68/self-amplifying mRNA SIV vaccine in macaques in combination with αCTLA4, αPD-1, or FLT3R agonist. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2025:vkae052. [PMID: 40073084 DOI: 10.1093/jimmun/vkae052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 12/03/2024] [Indexed: 03/14/2025]
Abstract
While therapeutic vaccines are a promising strategy for inducing human immunodeficiency virus (HIV) control, HIV vaccines tested to date have offered limited benefit to people living with HIV. The barriers to success may include the use of vaccine platforms and/or immunogens that drive weak or suboptimal immune responses, immune escape and/or immune dysfunction associated with chronic infection despite effective antiretroviral therapy. Combining vaccines with immune modulators in a safe manner may address some of the challenges and thus increase the efficacy of therapeutic HIV vaccines. We evaluated the immunogenicity of a ChAd68/samRNA-based simian immunodeficiency virus (SIV) vaccine regimen alone and in combination with a series of immune modulators in a preclinical rhesus macaque (M. mulatta) model. The vaccine was co-delivered with the checkpoint inhibitors αPD-1 or αCTLA-4, or with a FLT3 receptor agonist (FLT3Ra) shown to differentiate and expand dendritic cells and improve T cell priming. We demonstrate that the magnitude, breadth and functionality of SIV-specific vaccine-elicited CD8+ T cell responses were enhanced by combination with either αPD-1, αCTLA-4, or FLT3Ra. Combination with FLT3Ra also expanded polyfunctional CD4+ T cell responses. Our data demonstrate enhanced and distinct shaping of vaccine-elicited immune responses by immune modulators with implications for developing a functional HIV cure.
Collapse
Affiliation(s)
| | | | | | - Janette Sung
- Gilead Sciences, Inc, Foster City, CA, United States
| | - Brian Carr
- Gilead Sciences, Inc, Foster City, CA, United States
| | | | | | | | | | | | - Devi SenGupta
- Gilead Sciences, Inc, Foster City, CA, United States
| | - Karin Jooss
- Gritstone Bio, Inc, Emeryville, CA, United States
| |
Collapse
|
3
|
Sandel DA, Rutishauser RL, Peluso MJ. Post-intervention control in HIV immunotherapy trials. Curr Opin HIV AIDS 2025; 20:70-79. [PMID: 39494630 PMCID: PMC11620322 DOI: 10.1097/coh.0000000000000890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
PURPOSE OF REVIEW While post-treatment control following interruption of standard-of-care antiretroviral therapy (ART) is well described, post-intervention control following immunotherapy in HIV cure-related clinical trials is less well understood. We provide an overview of recent studies that have identified post-intervention controllers and review the mechanisms that may drive this biologically important phenotype. RECENT FINDINGS Post-intervention controllers have been identified in recent immunotherapy trials testing broadly neutralizing antibodies, immune modulators, modified T cells, checkpoint inhibitors, and gene therapy administered individually or in combination. Currently, there is substantial variability in how each trial defines post-intervention control, as well as in how the mechanisms underlying such control are evaluated. Such mechanisms include ongoing activity of both exogenous and autologous antibodies, as well as changes in HIV-specific T cell function. SUMMARY While no therapeutic strategy to date has succeeded in definitively inducing HIV control, many studies have identified at least a small number of post-intervention controllers. The field would benefit from a standardized approach to defining and reporting this phenotype, as well as standardization in the approach to assessment of how it is achieved. Such efforts would allow for comparisons across clinical trials and could help accelerate efforts toward an HIV cure.
Collapse
Affiliation(s)
| | | | - Michael J. Peluso
- Division of HIV, Infectious Diseases, and Global Medicine, University of California, San Francisco, San Francisco, California, USA
| |
Collapse
|
4
|
Nel C, Frater J. Enhancing broadly neutralising antibody suppression of HIV by immune modulation and vaccination. Front Immunol 2024; 15:1478703. [PMID: 39575236 PMCID: PMC11578998 DOI: 10.3389/fimmu.2024.1478703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 10/17/2024] [Indexed: 11/24/2024] Open
Abstract
Although HIV infection can be managed with antiretroviral drugs, there is no cure and therapy has to be taken for life. Recent successes in animal models with HIV-specific broadly neutralising antibodies (bNAbs) have led to long-term virological remission and even possible cures in some cases. This has resulted in substantial investment in human studies to explore bNAbs as a curative intervention for HIV infection. Emerging data are encouraging, but suggest that combinations of bNAbs with other immunomodulatory agents may be needed to induce and sustain long-term viral control. As a result, a number of clinical trials are currently underway exploring these combinations. If successful, the impact for the millions of people living with HIV could be substantial. Here, we review the background to the use of bNAbs in the search for an HIV cure and how different adjunctive agents might be used together to enhance their efficacy.
Collapse
Affiliation(s)
- Carla Nel
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - John Frater
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- The National Institute for Health and Care Research (NIHR) Oxford Biomedical Research Centre, Oxford, United Kingdom
| |
Collapse
|
5
|
King HAD, Lewin SR. Immune checkpoint inhibitors in infectious disease. Immunol Rev 2024; 328:350-371. [PMID: 39248154 PMCID: PMC11659942 DOI: 10.1111/imr.13388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
Following success in cancer immunotherapy, immune checkpoint blockade is emerging as an exciting potential treatment for some infectious diseases, specifically two chronic viral infections, HIV and hepatitis B. Here, we will discuss the function of immune checkpoints, their role in infectious disease pathology, and the ability of immune checkpoint blockade to reinvigorate the immune response. We focus on blockade of programmed cell death 1 (PD-1) to induce durable immune-mediated control of HIV, given that anti-PD-1 can restore function to exhausted HIV-specific T cells and also reverse HIV latency, a long-lived form of viral infection. We highlight several key studies and future directions of research in relation to anti-PD-1 and HIV persistence from our group, including the impact of immune checkpoint blockade on the establishment (AIDS, 2018, 32, 1491), maintenance (PLoS Pathog, 2016, 12, e1005761; J Infect Dis, 2017, 215, 911; Cell Rep Med, 2022, 3, 100766) and reversal of HIV latency (Nat Commun, 2019, 10, 814; J Immunol, 2020, 204, 1242), enhancement of HIV-specific T cell function (J Immunol, 2022, 208, 54; iScience, 2023, 26, 108165), and investigating the effects of anti-PD-1 and anti-CTLA-4 in vivo in people with HIV on ART with cancer (Sci Transl Med, 2022, 14, eabl3836; AIDS, 2021, 35, 1631; Clin Infect Dis, 2021, 73, e1973). Our future work will focus on the impact of anti-PD-1 in vivo in people with HIV on ART without cancer and potential combinations of anti-PD-1 with other interventions, including therapeutic vaccines or antibodies and less toxic immune checkpoint blockers.
Collapse
Affiliation(s)
- Hannah A. D. King
- Department of Infectious DiseasesThe University of Melbourne at The Peter Doherty Institute for Infection and ImmunityMelbourneVictoriaAustralia
| | - Sharon R. Lewin
- Department of Infectious DiseasesThe University of Melbourne at The Peter Doherty Institute for Infection and ImmunityMelbourneVictoriaAustralia
- Victorian Infectious Diseases ServiceRoyal Melbourne Hospital at The Peter Doherty Institute for Infection and ImmunityMelbourneVictoriaAustralia
- Department of Infectious DiseasesAlfred Hospital and Monash UniversityMelbourneVictoriaAustralia
| |
Collapse
|
6
|
Pincus SH, Cole FM, Ober K, Tokmina-Lukaszewska M, Marcotte T, Kovacs EW, Zhu T, Khasanov A, Copié V, Peters T. Conjugation of anti-HIV gp41 monoclonal antibody to a drug capable of targeting resting lymphocytes produces an effective cytotoxic anti-HIV immunoconjugate. J Virol 2024; 98:e0064724. [PMID: 39283123 PMCID: PMC11494876 DOI: 10.1128/jvi.00647-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 08/11/2024] [Indexed: 10/23/2024] Open
Abstract
HIV-infected cells persisting in the face of suppressive antiretroviral therapy are the barrier to curing infection. Cytotoxic immunoconjugates targeted to HIV antigens on the cell surface may clear these cells. We showed efficacy in mouse and macaque models using immunotoxins, but immunogenicity blunted the effect. As an alternative, we propose antibody drug conjugates (ADCs), as used in cancer immunotherapy. In cancer, the target is a dividing cell, whereas it may not be in HIV. We screened cytotoxic drugs on human primary cells and cell lines. An anthracycline derivative, PNU-159682 (PNU), was highly cytotoxic to both proliferating and resting cells. Human anti-gp41 mAb 7B2 was conjugated to ricin A chain or PNU. The conjugates were tested in vitro for cytotoxic efficacy and anti-viral effect, and in vivo for tolerability. The specificity of killing for both conjugates was demonstrated on Env+ and Env- cells. The toxin conjugate was more potent and killed more rapidly, but 7B2-PNU was effective at levels achievable in patients. The ricin conjugate was well tolerated in mice; 7B2-PNU was toxic when administered intraperitoneally but was tolerated intravenously. We have produced an ADC with potential to target the persistent HIV reservoir in both dividing and non-dividing cells while avoiding immunogenicity. Cytotoxic anti-HIV immunoconjugates may have greatest utility as part of an "activate and purge" regimen, involving viral activation in the reservoir. This is a unique comparison of an immunotoxin and ADC targeted by the same antibody and tested in the same systems.IMPORTANCEHIV infection can be controlled with anti-retroviral therapy, but it cannot be cured. Despite years of therapy that suppresses HIV, patients again become viremic shortly after discontinuing treatment. A long-lived population of memory T cells retain the genes encoding HIV, and these cells secrete infectious HIV when no longer suppressed by therapy. This is the persistent reservoir of HIV infection. The therapies described here use anti-HIV antibodies conjugated to poisons to kill the cells in this reservoir. These poisons may be of several types, including protein toxins (immunotoxins) or anti-cancer drugs (antibody drug conjugates, ADCs). We have previously shown that an anti-HIV immunotoxin had therapeutic effects in animal models, but it elicited an anti-drug immune response. Here, we have prepared an anti-HIV ADC, which would be less likely to provoke an immune response, and show its potential for use in eliminating the persistent reservoir of HIV infection.
Collapse
Affiliation(s)
- Seth H. Pincus
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, USA
| | - Frances M. Cole
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, USA
| | - Kelli Ober
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, USA
| | | | - Tamera Marcotte
- Animal Resource Center, Montana State University, Bozeman, Montana, USA
| | | | - Tong Zhu
- Levena Biopharma, San Diego, California, USA
| | | | - Valérie Copié
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, USA
| | - Tami Peters
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, USA
| |
Collapse
|
7
|
Symmonds J, Gaufin T, Xu C, Raehtz KD, Ribeiro RM, Pandrea I, Apetrei C. Making a Monkey out of Human Immunodeficiency Virus/Simian Immunodeficiency Virus Pathogenesis: Immune Cell Depletion Experiments as a Tool to Understand the Immune Correlates of Protection and Pathogenicity in HIV Infection. Viruses 2024; 16:972. [PMID: 38932264 PMCID: PMC11209256 DOI: 10.3390/v16060972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/31/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Understanding the underlying mechanisms of HIV pathogenesis is critical for designing successful HIV vaccines and cure strategies. However, achieving this goal is complicated by the virus's direct interactions with immune cells, the induction of persistent reservoirs in the immune system cells, and multiple strategies developed by the virus for immune evasion. Meanwhile, HIV and SIV infections induce a pandysfunction of the immune cell populations, making it difficult to untangle the various concurrent mechanisms of HIV pathogenesis. Over the years, one of the most successful approaches for dissecting the immune correlates of protection in HIV/SIV infection has been the in vivo depletion of various immune cell populations and assessment of the impact of these depletions on the outcome of infection in non-human primate models. Here, we present a detailed analysis of the strategies and results of manipulating SIV pathogenesis through in vivo depletions of key immune cells populations. Although each of these methods has its limitations, they have all contributed to our understanding of key pathogenic pathways in HIV/SIV infection.
Collapse
Affiliation(s)
- Jen Symmonds
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA; (J.S.); (C.X.); (K.D.R.); (I.P.)
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Thaidra Gaufin
- Tulane National Primate Research Center, Tulane University, Covington, LA 70433, USA;
| | - Cuiling Xu
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA; (J.S.); (C.X.); (K.D.R.); (I.P.)
- Division of Infectious Diseases, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Kevin D. Raehtz
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA; (J.S.); (C.X.); (K.D.R.); (I.P.)
- Division of Infectious Diseases, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Ruy M. Ribeiro
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Ivona Pandrea
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA; (J.S.); (C.X.); (K.D.R.); (I.P.)
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Cristian Apetrei
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Division of Infectious Diseases, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| |
Collapse
|
8
|
Thavarajah JJ, Hønge BL, Wejse CM. The Use of Broadly Neutralizing Antibodies (bNAbs) in HIV-1 Treatment and Prevention. Viruses 2024; 16:911. [PMID: 38932203 PMCID: PMC11209272 DOI: 10.3390/v16060911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/24/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND Although antiretroviral therapy (ART) effectively halts disease progression in HIV infection, the complete eradication of the virus remains elusive. Additionally, challenges such as long-term ART toxicity, drug resistance, and the demanding regimen of daily and lifelong adherence required by ART highlight the imperative need for alternative therapeutic and preventative approaches. In recent years, broadly neutralizing antibodies (bNAbs) have emerged as promising candidates, offering potential for therapeutic, preventative, and possibly curative interventions against HIV infection. OBJECTIVE This review aims to provide a comprehensive overview of the current state of knowledge regarding the passive immunization of bNAbs in HIV-1-infected individuals. MAIN FINDINGS Recent findings from clinical trials have highlighted the potential of bNAbs in the treatment, prevention, and quest for an HIV-1 cure. While monotherapy with a single bNAb is insufficient in maintaining viral suppression and preventing viral escape, ultimately leading to viral rebound, combination therapy with potent, non-overlapping epitope-targeting bNAbs have demonstrated prolonged viral suppression and delayed time to rebound by effectively restricting the emergence of escape mutations, albeit largely in individuals with bNAb-sensitive strains. Additionally, passive immunization with bNAb has provided a "proof of concept" for antibody-mediated prevention against HIV-1 acquisition, although complete prevention has not been obtained. Therefore, further research on the use of bNAbs in HIV-1 treatment and prevention remains imperative.
Collapse
Affiliation(s)
- Jannifer Jasmin Thavarajah
- Faculty of Health, Aarhus University, 8000 Aarhus C, Denmark
- Clinical Medicine, Department of Infectious Diseases, Aarhus University Hospital, 8200 Aarhus N, Denmark; (B.L.H.); (C.M.W.)
| | - Bo Langhoff Hønge
- Clinical Medicine, Department of Infectious Diseases, Aarhus University Hospital, 8200 Aarhus N, Denmark; (B.L.H.); (C.M.W.)
| | - Christian Morberg Wejse
- Clinical Medicine, Department of Infectious Diseases, Aarhus University Hospital, 8200 Aarhus N, Denmark; (B.L.H.); (C.M.W.)
- GloHAU, Center of Global Health, Department of Public Health, Aarhus University, 8000 Aarhus C, Denmark
| |
Collapse
|
9
|
King HAD, Pokkali S, Kim D, Brammer D, Song K, McCarthy E, Lehman C, Todd JP, Foulds KE, Darrah PA, Seder RA, Bolton DL, Roederer M. Immune Activation Profiles Elicited by Distinct, Repeated TLR Agonist Infusions in Rhesus Macaques. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:1643-1655. [PMID: 37861342 PMCID: PMC10656433 DOI: 10.4049/jimmunol.2300424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/28/2023] [Indexed: 10/21/2023]
Abstract
TLR agonists are a promising class of immune system stimulants investigated for immunomodulatory applications in cancer immunotherapy and viral diseases. In this study, we sought to characterize the safety and immune activation achieved by different TLR agonists in rhesus macaques (Macaca mulatta), a useful preclinical model of complex immune interactions. Macaques received one of three TLR agonists, followed by plasma cytokine, immune cell subset representation, and blood cell activation measurements. The TLR4 agonist LPS administered i.v. induced very transient immune activation, including TNF-α expression and monocyte activation. The TLR7/8 agonist 2BXy elicited more persistent cytokine expression, including type I IFN, IL-1RA, and the proinflammatory IL-6, along with T cell and monocyte activation. Delivery of 2BXy i.v. and i.m. achieved comparable immune activation, which increased with escalating dose. Finally, i.v. bacillus Calmette-Guérin (BCG) vaccination (which activates multiple TLRs, especially TLR2/4) elicited the most pronounced and persistent innate and adaptive immune response, including strong induction of IFN-γ, IL-6, and IL-1RA. Strikingly, monocyte, T cell, and NK cell expression of the proliferation marker Ki67 increased dramatically following BCG vaccination. This aligned with a large increase in total and BCG-specific cells measured in the lung. Principal component analysis of the combined cytokine expression and cellular activation responses separated animals by treatment group, indicating distinct immune activation profiles induced by each agent. In sum, we report safe, effective doses and routes of administration for three TLR agonists that exhibit discrete immunomodulatory properties in primates and may be leveraged in future immunotherapeutic strategies.
Collapse
Affiliation(s)
- Hannah A. D. King
- Vaccine Research Center, National Institutes of Health, Bethesda, MD
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD
| | - Supriya Pokkali
- Vaccine Research Center, National Institutes of Health, Bethesda, MD
| | - Dohoon Kim
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD
| | - Daniel Brammer
- Vaccine Research Center, National Institutes of Health, Bethesda, MD
| | - Kaimei Song
- Vaccine Research Center, National Institutes of Health, Bethesda, MD
| | | | - Chelsea Lehman
- Vaccine Research Center, National Institutes of Health, Bethesda, MD
| | - John-Paul Todd
- Vaccine Research Center, National Institutes of Health, Bethesda, MD
| | - Kathryn E. Foulds
- Vaccine Research Center, National Institutes of Health, Bethesda, MD
| | | | - Robert A. Seder
- Vaccine Research Center, National Institutes of Health, Bethesda, MD
| | - Diane L. Bolton
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD
| | - Mario Roederer
- Vaccine Research Center, National Institutes of Health, Bethesda, MD
| |
Collapse
|
10
|
Pincus SH, Stackhouse M, Watt C, Ober K, Cole FM, Chen HC, Smith III AB, Peters T. Soluble CD4 and low molecular weight CD4-mimetic compounds sensitize cells to be killed by anti-HIV cytotoxic immunoconjugates. J Virol 2023; 97:e0115423. [PMID: 37772823 PMCID: PMC10617435 DOI: 10.1128/jvi.01154-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 08/13/2023] [Indexed: 09/30/2023] Open
Abstract
IMPORTANCE HIV infection can be effectively treated to prevent the development of AIDS, but it cannot be cured. We have attached poisons to anti-HIV antibodies to kill the infected cells that persist even after years of effective antiviral therapy. Here we show that the killing of infected cells can be markedly enhanced by the addition of soluble forms of the HIV receptor CD4 or by mimics of CD4.
Collapse
Affiliation(s)
- Seth H. Pincus
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, USA
| | - Megan Stackhouse
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, USA
| | - Connie Watt
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, USA
| | - Kelli Ober
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, USA
| | - Frances M. Cole
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, USA
| | - Hung-Ching Chen
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Amos B. Smith III
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Tami Peters
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, USA
| |
Collapse
|
11
|
Dashti A, Sukkestad S, Horner AM, Neja M, Siddiqi Z, Waller C, Goldy J, Monroe D, Lin A, Schoof N, Singh V, Mavigner M, Lifson JD, Deleage C, Tuyishime M, Falcinelli SD, King HAD, Ke R, Mason RD, Archin NM, Dunham RM, Safrit JT, Jean S, Perelson AS, Margolis DM, Ferrari G, Roederer M, Silvestri G, Chahroudi A. AZD5582 plus SIV-specific antibodies reduce lymph node viral reservoirs in antiretroviral therapy-suppressed macaques. Nat Med 2023; 29:2535-2546. [PMID: 37783968 PMCID: PMC10579098 DOI: 10.1038/s41591-023-02570-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 08/25/2023] [Indexed: 10/04/2023]
Abstract
The main barrier to HIV cure is a persistent reservoir of latently infected CD4+ T cells harboring replication-competent provirus that fuels rebound viremia upon antiretroviral therapy (ART) interruption. A leading approach to target this reservoir involves agents that reactivate latent HIV proviruses followed by direct clearance of cells expressing induced viral antigens by immune effector cells and immunotherapeutics. We previously showed that AZD5582, an antagonist of inhibitor of apoptosis proteins and mimetic of the second mitochondrial-derived activator of caspases (IAPi/SMACm), induces systemic reversal of HIV/SIV latency but with no reduction in size of the viral reservoir. In this study, we investigated the effects of AZD5582 in combination with four SIV Env-specific Rhesus monoclonal antibodies (RhmAbs) ± N-803 (an IL-15 superagonist) in SIV-infected, ART-suppressed rhesus macaques. Here we confirm the efficacy of AZD5582 in inducing SIV reactivation, demonstrate enhancement of latency reversal when AZD5582 is used in combination with N-803 and show a reduction in total and replication-competent SIV-DNA in lymph-node-derived CD4+ T cells in macaques treated with AZD5582 + RhmAbs. Further exploration of this therapeutic approach may contribute to the goal of achieving an HIV cure.
Collapse
Affiliation(s)
- Amir Dashti
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Sophia Sukkestad
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Anna M Horner
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Margaret Neja
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Zain Siddiqi
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Chevaughn Waller
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Jordan Goldy
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Dominique Monroe
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Alice Lin
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Nils Schoof
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Vidisha Singh
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Maud Mavigner
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Emory National Primate Research Center, Emory University, Atlanta, GA, USA
- Center for Childhood Infections and Vaccines of Children's Healthcare of Atlanta and Emory University, Atlanta, GA, USA
| | - Jeffrey D Lifson
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Claire Deleage
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Marina Tuyishime
- Department of Surgery, Duke University Medical Center, Durham, NC, USA
| | - Shane D Falcinelli
- UNC HIV Cure Center and Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Hannah A D King
- Vaccine Research Center, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, USA
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Ruian Ke
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Rosemarie D Mason
- Vaccine Research Center, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, USA
| | - Nancie M Archin
- UNC HIV Cure Center and Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Richard M Dunham
- UNC HIV Cure Center and Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- HIV Drug Discovery, ViiV Healthcare, Research Traingle Park, NC, USA
| | | | - Sherrie Jean
- Emory National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Alan S Perelson
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - David M Margolis
- UNC HIV Cure Center and Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Guido Ferrari
- Department of Surgery, Duke University Medical Center, Durham, NC, USA
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, USA
| | - Mario Roederer
- Vaccine Research Center, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, USA
| | - Guido Silvestri
- Emory National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Ann Chahroudi
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA.
- Emory National Primate Research Center, Emory University, Atlanta, GA, USA.
- Center for Childhood Infections and Vaccines of Children's Healthcare of Atlanta and Emory University, Atlanta, GA, USA.
| |
Collapse
|
12
|
Gunst JD, Højen JF, Pahus MH, Rosás-Umbert M, Stiksrud B, McMahon JH, Denton PW, Nielsen H, Johansen IS, Benfield T, Leth S, Gerstoft J, Østergaard L, Schleimann MH, Olesen R, Støvring H, Vibholm L, Weis N, Dyrhol-Riise AM, Pedersen KBH, Lau JSY, Copertino DC, Linden N, Huynh TT, Ramos V, Jones RB, Lewin SR, Tolstrup M, Rasmussen TA, Nussenzweig MC, Caskey M, Reikvam DH, Søgaard OS. Impact of a TLR9 agonist and broadly neutralizing antibodies on HIV-1 persistence: the randomized phase 2a TITAN trial. Nat Med 2023; 29:2547-2558. [PMID: 37696935 PMCID: PMC10579101 DOI: 10.1038/s41591-023-02547-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 08/15/2023] [Indexed: 09/13/2023]
Abstract
Inducing antiretroviral therapy (ART)-free virological control is a critical step toward a human immunodeficiency virus type 1 (HIV-1) cure. In this phase 2a, placebo-controlled, double-blinded trial, 43 people (85% males) with HIV-1 on ART were randomized to (1) placebo/placebo, (2) lefitolimod (TLR9 agonist)/placebo, (3) placebo/broadly neutralizing anti-HIV-1 antibodies (bNAbs) or (4) lefitolimod/bNAb. ART interruption (ATI) started at week 3. Lefitolimod was administered once weekly for the first 8 weeks, and bNAbs were administered twice, 1 d before and 3 weeks after ATI. The primary endpoint was time to loss of virologic control after ATI. The median delay in time to loss of virologic control compared to the placebo/placebo group was 0.5 weeks (P = 0.49), 12.5 weeks (P = 0.003) and 9.5 weeks (P = 0.004) in the lefitolimod/placebo, placebo/bNAb and lefitolimod/bNAb groups, respectively. Among secondary endpoints, viral doubling time was slower for bNAb groups compared to non-bNAb groups, and the interventions were overall safe. We observed no added benefit of lefitolimod. Despite subtherapeutic plasma bNAb levels, 36% (4/11) in the placebo/bNAb group compared to 0% (0/10) in the placebo/placebo group maintained virologic control after the 25-week ATI. Although immunotherapy with lefitolimod did not lead to ART-free HIV-1 control, bNAbs may be important components in future HIV-1 curative strategies. ClinicalTrials.gov identifier: NCT03837756 .
Collapse
Affiliation(s)
- Jesper D Gunst
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Jesper F Højen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Marie H Pahus
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Miriam Rosás-Umbert
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Birgitte Stiksrud
- Department of Infectious Diseases, Oslo University Hospital, Oslo, Norway
| | - James H McMahon
- Department of Infectious Diseases, Alfred Hospital, Melbourne, VIC, Australia
| | - Paul W Denton
- Department of Biology, University of Nebraska at Omaha, Omaha, NE, USA
| | - Henrik Nielsen
- Department of Infectious Diseases, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Isik S Johansen
- Department of Infectious Diseases, Odense University Hospital, University of Southern Denmark, Odense, Denmark
| | - Thomas Benfield
- Department of Infectious Diseases, Copenhagen University Hospital - Amager and Hvidovre, Hvidovre, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Steffen Leth
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Internal Medicine, Gødstrup Hospital, Gødstrup, Denmark
| | - Jan Gerstoft
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Viro-Immunology Research Unit, Department of Infectious Diseases, Rigshospitalet, Copenhagen, Denmark
| | - Lars Østergaard
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Mariane H Schleimann
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Rikke Olesen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Henrik Støvring
- Department of Public Health, Clinical Pharmacology, Pharmacy and Environmental Medicine, University of Southern Denmark, Odense, Denmark
| | - Line Vibholm
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Nina Weis
- Department of Infectious Diseases, Copenhagen University Hospital - Amager and Hvidovre, Hvidovre, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Anne M Dyrhol-Riise
- Department of Infectious Diseases, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Karen B H Pedersen
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Jillian S Y Lau
- Department of Infectious Diseases, Alfred Hospital, Melbourne, VIC, Australia
- Department of Infectious Diseases, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
- Victorian Infectious Diseases Service, Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Dennis C Copertino
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medical College, New York, NY, USA
- Department of Microbiology and Immunology, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Noemi Linden
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medical College, New York, NY, USA
- Department of Microbiology and Immunology, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Tan T Huynh
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medical College, New York, NY, USA
- Department of Microbiology and Immunology, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Victor Ramos
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
| | - R Brad Jones
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medical College, New York, NY, USA
- Department of Microbiology and Immunology, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Sharon R Lewin
- Department of Infectious Diseases, Alfred Hospital, Melbourne, VIC, Australia
- Department of Infectious Diseases, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
- Victorian Infectious Diseases Service, Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Martin Tolstrup
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Thomas A Rasmussen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
- Department of Infectious Diseases, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Michel C Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| | - Marina Caskey
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
| | - Dag Henrik Reikvam
- Department of Infectious Diseases, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Ole S Søgaard
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark.
| |
Collapse
|
13
|
Carmona-Pérez L, Dagenais-Lussier X, Mai LT, Stögerer T, Swaminathan S, Isnard S, Rice MR, Barnes BJ, Routy JP, van Grevenynghe J, Stäger S. The TLR7/IRF-5 axis sensitizes memory CD4+ T cells to Fas-mediated apoptosis during HIV-1 infection. JCI Insight 2023; 8:e167329. [PMID: 37227774 PMCID: PMC10371351 DOI: 10.1172/jci.insight.167329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 05/23/2023] [Indexed: 05/27/2023] Open
Abstract
HIV-1 infection is characterized by inflammation and a progressive decline in CD4+ T cell count. Despite treatment with antiretroviral therapy (ART), the majority of people living with HIV (PLWH) maintain residual levels of inflammation, a low degree of immune activation, and higher sensitivity to cell death in their memory CD4+ T cell compartment. To date, the mechanisms responsible for this high sensitivity remain elusive. We have identified the transcription factor IRF-5 to be involved in impairing the maintenance of murine CD4+ T cells during chronic infection. Here, we investigate whether IRF-5 also contributes to memory CD4+ T cell loss during HIV-1 infection. We show that TLR7 and IRF-5 were upregulated in memory CD4+ T cells from PLWH, when compared with naturally protected elite controllers and HIVfree participants. TLR7 was upstream of IRF-5, promoting Caspase 8 expression in CD4+ T cells from ART HIV-1+ but not from HIVfree donors. Interestingly, the TLR7/IRF-5 axis acted synergistically with the Fas/FasL pathway, suggesting that TLR7 and IRF-5 expression in ART HIV-1+ memory CD4+ T cells represents an imprint that predisposes cells to Fas-mediated apoptosis. This predisposition could be blocked using IRF-5 inhibitory peptides, suggesting IRF-5 blockade as a possible therapy to prevent memory CD4+ T cell loss in PLWH.
Collapse
Affiliation(s)
- Liseth Carmona-Pérez
- Institut National de la Recherche Scientifique, Centre Armand-Frappier Santé Biotechnologie, and Infectiopôle-INRS, Laval, Quebec, Canada
| | - Xavier Dagenais-Lussier
- Institut National de la Recherche Scientifique, Centre Armand-Frappier Santé Biotechnologie, and Infectiopôle-INRS, Laval, Quebec, Canada
| | - Linh T. Mai
- Institut National de la Recherche Scientifique, Centre Armand-Frappier Santé Biotechnologie, and Infectiopôle-INRS, Laval, Quebec, Canada
| | - Tanja Stögerer
- Institut National de la Recherche Scientifique, Centre Armand-Frappier Santé Biotechnologie, and Infectiopôle-INRS, Laval, Quebec, Canada
| | - Sharada Swaminathan
- Institut National de la Recherche Scientifique, Centre Armand-Frappier Santé Biotechnologie, and Infectiopôle-INRS, Laval, Quebec, Canada
| | - Stéphane Isnard
- Division of Hematology and Chronic Viral Illness Service, McGill University Health Centre, Montreal, Quebec, Canada
| | - Matthew R. Rice
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Betsy J. Barnes
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Jean-Pierre Routy
- Division of Hematology and Chronic Viral Illness Service, McGill University Health Centre, Montreal, Quebec, Canada
| | - Julien van Grevenynghe
- Institut National de la Recherche Scientifique, Centre Armand-Frappier Santé Biotechnologie, and Infectiopôle-INRS, Laval, Quebec, Canada
| | - Simona Stäger
- Institut National de la Recherche Scientifique, Centre Armand-Frappier Santé Biotechnologie, and Infectiopôle-INRS, Laval, Quebec, Canada
| |
Collapse
|
14
|
Abstract
PURPOSE OF REVIEW This review summarizes recent studies reporting the induction of vaccinal effects by human immunodeficiency virus (HIV-1) antibody therapy. It also puts into perspective preclinical studies that have identified mechanisms involved in the immunomodulatory properties of antiviral antibodies. Finally, it discusses potential therapeutic interventions to enhance host adaptive immune responses in people living with HIV (PLWH) treated with broadly neutralizing antibodies (bNAbs). RECENT FINDINGS Recent studies in promising clinical trials have shown that, in addition to controlling viremia, anti-HIV-1 bNAbs are able to enhance the host's humoral and cellular immune response. Such vaccinal effects, in particular the induction of HIV-1-specific CD8 + T-cell responses, have been observed upon treatment with two potent bNAbs (3BNC117 and 10-1074) alone or in combination with latency-reversing agents (LRA). While these studies reinforce the idea that bNAbs can induce protective immunity, the induction of vaccinal effects is not systematic and might depend on both the virological status of the patient as well as the therapeutic strategy chosen. SUMMARY HIV-1 bNAbs can enhance adaptive host immune responses in PLWH. The challenge now is to exploit these immunomodulatory properties to design optimized therapeutic interventions to promote and enhance the induction of protective immunity against HIV-1 infection during bNAbs therapy.
Collapse
|
15
|
Cong Z, Sun Y, Dang C, Yang C, Zhang J, Lu J, Chen T, Wei Q, Wang W, Xue J. TLR7 Agonist GS-9620 Combined with Nicotinamide Generate Viral Reactivation in Seronegative SHIV SF162P3-Infected Rhesus Monkeys. Biomedicines 2023; 11:1707. [PMID: 37371802 DOI: 10.3390/biomedicines11061707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/01/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Antiretroviral therapy is capable of inhibiting HIV replication, but it fails to completely achieve a cure due to HIV persistence. The commonly used HIV cure approach is the "shock and kill" strategy, which employs latency-reversing agents to trigger viral reactivation and boost cellular immunity. Finding the appropriate drug combination for the "shock and kill" strategy would greatly facilitate clinical trials. The toll-like receptor (TLR) 7 agonist GS-9620 and nicotinamide (NAM) are reported as potential latency-reversing agents. Herein, we found the absence of viral reactivation when SHIVSF162P3-aviremic rhesus macaques were treated with GS-9620 monotherapy. However, our findings demonstrate that viral blips emerged in half of the macaques treated with the combination therapy of GS-9620 and NAM. Notably, an increase in the reactivation of the replication-competent latent virus was measured in monkeys treated with the combination therapy. These findings suggest that the GS-9620 and NAM combination could be used as a multipronged HIV latency stimulation approach, with potential for optimizing antiviral therapy design.
Collapse
Affiliation(s)
- Zhe Cong
- MOH Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Comparative Medicine Center, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
- Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Yuting Sun
- MOH Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Comparative Medicine Center, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Cui Dang
- MOH Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Comparative Medicine Center, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Chenbo Yang
- MOH Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Comparative Medicine Center, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Jingjing Zhang
- MOH Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Comparative Medicine Center, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Jiahan Lu
- MOH Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Comparative Medicine Center, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Ting Chen
- MOH Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Comparative Medicine Center, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Qiang Wei
- MOH Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Comparative Medicine Center, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
- Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Wei Wang
- MOH Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Comparative Medicine Center, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Jing Xue
- MOH Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Comparative Medicine Center, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
- Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
16
|
Mataramvura H, Bunders MJ, Duri K. Human immunodeficiency virus and antiretroviral therapy-mediated immune cell metabolic dysregulation in children born to HIV-infected women: potential clinical implications. Front Immunol 2023; 14:1182217. [PMID: 37350953 PMCID: PMC10282157 DOI: 10.3389/fimmu.2023.1182217] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 05/25/2023] [Indexed: 06/24/2023] Open
Abstract
Commencing lifelong antiretroviral therapy (ART) immediately following HIV diagnosis (Option B+) has dramatically improved the health of HIV-infected women and their children, with the majority being of HIV-exposed children born uninfected (HEU). This success has led to an increasing population of HIV-infected women receiving ART during pregnancy and children exposed to ART in utero. Nonetheless, a small proportion of children are still infected with HIV (HEI) each year. HEI children suffer from reduced immunocompetence and host-defence, due to CD4+ T lymphocyte depletion, but also dysregulation of other immune cells including CD8+ T lymphocytes, natural killer (NK) cells, macrophages including B lymphocytes. Furthermore, although HEU children are uninfected, altered immune responses are observed and associated with increased vulnerability to infections. The mechanisms underlying immune dysregulation in HEU children remain poorly described. Building on early studies, emerging data suggests that HIV/ART exposure early in life affects cell metabolic function of HEU children. Prenatal HIV/ART exposure has been associated with dysregulation of mitochondria, including impaired DNA polymerase activity. Furthermore, dysregulation of oxidative phosphorylation (OXPHOS) causes a decreased generation of adenosine triphosphate (ATP) and increased production of reactive oxygen species (ROS), resulting in oxidative stress. These altered metabolic processes can affect immune cell viability and immune responses. Recent studies have indicated that immune-metabolic dysregulation may contribute to HIV-associated pathogenesis and clinical observations associated with HIV and ART exposure in HEU/HEI children. Given the critical role metabolic processes in immune cell functioning, immune-metabolic dysregulation in HEU and HEI children may have implications in effective host-defence responses against pathogens, as well as efficacy of standard ART regimens and future novel HIV cure approaches in HEI children. At the same time, targeting metabolic pathways of immune cells may provide safer and novel approaches for HIV cure strategies. Here, we review the current literature investigating immune-metabolic dysregulation in paediatric HIV pathogenesis.
Collapse
Affiliation(s)
- Hope Mataramvura
- Immunology Unit, University of Zimbabwe Faculty of Medicine and Health Sciences (UZ-FMHS), Harare, Zimbabwe
| | - Madeleine J. Bunders
- III. Medical Department, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
- Department of Virus Immunology, Leibniz Institute of Virology, Hamburg, Germany
| | - Kerina Duri
- Immunology Unit, University of Zimbabwe Faculty of Medicine and Health Sciences (UZ-FMHS), Harare, Zimbabwe
| |
Collapse
|
17
|
Klug G, Cole FM, Hicar MD, Watt C, Peters T, Pincus SH. Identification of Anti-gp41 Monoclonal Antibodies That Effectively Target Cytotoxic Immunoconjugates to Cells Infected with Human Immunodeficiency Virus, Type 1. Vaccines (Basel) 2023; 11:vaccines11040829. [PMID: 37112741 PMCID: PMC10144985 DOI: 10.3390/vaccines11040829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/30/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
We are developing cytotoxic immunoconjugates (CICs) targeting the envelope protein (Env) of the Human Immunodeficiency Virus, type 1 (HIV) to purge the persistent reservoirs of viral infection. We have previously studied the ability of multiple monoclonal antibodies (mAbs) to deliver CICs to an HIV-infected cell. We have found that CICs targeted to the membrane-spanning gp41 domain of Env are most efficacious, in part because their killing is enhanced in the presence of soluble CD4. The ability of a mAb to deliver a CIC does not correlate with its ability to neutralize nor mediate Ab-dependent cellular cytotoxicity. In the current study, we seek to define the most effective anti-gp41 mAbs for delivering CICs to HIV-infected cells. To do this, we have evaluated a panel of human anti-gp41 mAbs for their ability to bind and kill two different Env-expressing cell lines: persistently infected H9/NL4-3 and constitutively transfected HEK293/92UG. We measured the binding and cytotoxicity of each mAb in the presence and absence of soluble CD4. We found that mAbs to the immunodominant helix-loop-helix region (ID-loop) of gp41 are most effective, whereas neutralizing mAbs to the fusion peptide, gp120/gp41 interface, and the membrane proximal external region (MPER) are relatively ineffective at delivering CICs. There was only a weak correlation between antigen exposure and killing activity. The results show that the ability to deliver an effective IC and neutralization are distinct functions of mAbs.
Collapse
Affiliation(s)
- Grant Klug
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA
| | - Frances M Cole
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA
| | - Mark D Hicar
- Department of Pediatrics, Jacobs School of Medicine and Biomedical Sciences, The University at Buffalo, Buffalo, NY 14203, USA
| | - Connie Watt
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA
| | - Tami Peters
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA
| | - Seth H Pincus
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA
| |
Collapse
|
18
|
Abstract
OBJECTIVES Despite suppressive antiretroviral therapy (ART), HIV can persist in a diverse range of CD4+ T-cell subsets. Through longitudinal env sampling from people with HIV (PWH) on ART, we characterized the persistence and phenotypic properties of HIV envs over two time-points (T1 and T2). METHODS Longitudinal blood and lymphoid tissue samples were obtained from eight PWH on suppressive ART. Single genome amplification (SGA) was performed on env to understand the genetic diversity and degree of clonal expansions over time. A subset of envs were used to generate pseudovirus particles to assess sensitivity to autologous plasma IgG and broadly neutralizing antibodies (bNAbs). RESULTS Identical env sequences indicating clonal expansion persisted between T1 and T2 and within multiple T-cell subsets. At both time-points, CXCR4-tropic (X4) Envs were more prevalent in naive and central memory cells; the proportion of X4 Envs did not significantly change in each subset between T1 and T2. Autologous purified plasma IgG showed variable neutralization of Envs, with no significant difference in neutralization between R5 and X4 Envs. X4 Envs were more sensitive to neutralization with clinical bNAbs, with CD4-binding site bNAbs demonstrating high breadth and potency against Envs. CONCLUSION Our data suggest the viral reservoir in PWH on ART was predominantly maintained over time through proliferation and potentially differentiation of infected cells. We found the humoral immune response to Envs within the latent reservoir was variable between PWH. Finally, we identified coreceptor usage can influence bNAb sensitivity and may need to be considered for future bNAb immunotherapy approaches.
Collapse
|
19
|
Role of TLRs in HIV-1 Infection and Potential of TLR Agonists in HIV-1 Vaccine Development and Treatment Strategies. Pathogens 2023; 12:pathogens12010092. [PMID: 36678440 PMCID: PMC9866513 DOI: 10.3390/pathogens12010092] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/28/2022] [Accepted: 01/04/2023] [Indexed: 01/09/2023] Open
Abstract
Toll-like receptors (TLRs), as a family of pattern recognition receptors, play an important role in the recognition of HIV-1 molecular structures by various cells of the innate immune system, but also provide a functional association with subsequent mechanisms of adaptive immunity. TLR7 and TLR8 play a particularly important role in the innate immune response to RNA viruses due to their ability to recognise GU-rich single-stranded RNA molecules and subsequently activate intracellular signalling pathways resulting in expression of genes coding for various biological response modifiers (interferons, proinflammatory cytokines, chemokines). The aim of this review is to summarise the most recent knowledge on the role of TLRs in the innate immune response to HIV-1 and the role of TLR gene polymorphisms in the biology and in the clinical aspects of HIV infections. In addition, the role of TLR agonists as latency reversing agents in research to treat HIV infections and as immunomodulators in HIV vaccine research will be discussed.
Collapse
|
20
|
Khetan P, Liu Y, Dhummakupt A, Persaud D. Advances in Pediatric HIV-1 Cure Therapies and Reservoir Assays. Viruses 2022; 14:v14122608. [PMID: 36560612 PMCID: PMC9787749 DOI: 10.3390/v14122608] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 11/25/2022] Open
Abstract
Significant advances in the field of HIV-1 therapeutics to achieve antiretroviral treatment (ART)-free remission and cure for persons living with HIV-1 are being made with the advent of broadly neutralizing antibodies and very early ART in perinatal infection. The need for HIV-1 remission and cure arises due to the inability of ART to eradicate the major reservoir for HIV-1 in resting memory CD4+ T cells (the latent reservoir), and the strict adherence to lifelong treatment. To measure the efficacy of these cure interventions on reservoir size and to dissect reservoir dynamics, assays that are sensitive and specific to intact proviruses are critical. In this review, we provided a broad overview of some of the key interventions underway to purge the reservoir in adults living with HIV-1 and ones under study in pediatric populations to reduce and control the latent reservoir, primarily focusing on very early treatment in combination with broadly neutralizing antibodies. We also summarized assays currently in use to measure HIV-1 reservoirs and their feasibility and considerations for studies in children.
Collapse
Affiliation(s)
- Priya Khetan
- Division of Infectious Diseases, Department of Pediatrics, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Yufeng Liu
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Adit Dhummakupt
- Division of Infectious Diseases, Department of Pediatrics, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Deborah Persaud
- Division of Infectious Diseases, Department of Pediatrics, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
- Correspondence: ; Tel.: +1-443-287-3735
| |
Collapse
|
21
|
Tanaka K, Kim Y, Roche M, Lewin SR. The role of latency reversal in HIV cure strategies. J Med Primatol 2022; 51:278-283. [PMID: 36029233 PMCID: PMC9514955 DOI: 10.1111/jmp.12613] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/11/2022] [Accepted: 08/13/2022] [Indexed: 12/03/2022]
Abstract
One strategy to eliminate latently infected cells that persist in people with HIV on antiretroviral therapy is to activate virus transcription and virus production to induce virus or immune‐mediated cell death. This is called latency reversal. Despite clear activity of multiple latency reversal agents in vitro, clinical trials of latency‐reversing agents have not shown significant reduction in latently infected cells. We review new insights into the biology of HIV latency and discuss novel approaches to enhance the efficacy of latency reversal agents.
Collapse
Affiliation(s)
- Kiho Tanaka
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Youry Kim
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Michael Roche
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Sharon R Lewin
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia.,Victorian Infectious Diseases Service, Royal Melbourne Hospital at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia.,Department of Infectious Diseases, Alfred Hospital and Monash University, Melbourne, Victoria, Australia
| |
Collapse
|