1
|
Bellido-Martín B, Rijnink WF, Iervolino M, Kuiken T, Richard M, Fouchier RAM. Evolution, spread and impact of highly pathogenic H5 avian influenza A viruses. Nat Rev Microbiol 2025:10.1038/s41579-025-01189-4. [PMID: 40404976 DOI: 10.1038/s41579-025-01189-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/24/2025] [Indexed: 05/24/2025]
Abstract
Since their first detection in 1996, highly pathogenic avian influenza viruses with H5 haemagglutinin of the A/Goose/Guangdong/1/1996 (Gs/Gd) lineage have caused outbreaks in domestic and wild animals associated with mass morbidity and mortality, and economic losses as well as sporadic human infections. These viruses have spread to hosts across the European, Asian, African, and North and South American continents, and most recently Antarctica, representing a major threat to wildlife, domestic animals and humans. Owing to continuous circulation in poultry, Gs/Gd lineage viruses have diversified into numerous distinct genetic and antigenic (sub)clades, and genetic diversity has further increased by extensive reassortment with low pathogenic avian influenza viruses of wild birds. In this Review, we discuss the historical emergence of Gs/Gd lineage viruses and their evolution and geographical spread. An overview of the major determinants of host range and cross-species transmission is provided to summarize phenotypic changes that may signal increased zoonotic or pandemic risks. The recent unusual outbreaks in wild carnivorous mammals and dairy cows is discussed, as well as the changing risk to humans. Countermeasures and mitigation strategies are described from the One Health perspective for future (pre-)pandemic preparedness.
Collapse
Affiliation(s)
| | | | - Matteo Iervolino
- Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands
| | - Thijs Kuiken
- Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands
| | - Mathilde Richard
- Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands
| | - Ron A M Fouchier
- Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands.
| |
Collapse
|
2
|
Onidje E, Oni OO, Kadja MC, Abraham MB, Burimuah V, Patrick Mensah A, Asare DA, Opoku Bannor J, Emikpe BO. Seroprevalence of H9N2 and H5 avian influenza in mixed-species poultry farms in Northern Benin. J Immunoassay Immunochem 2025:1-15. [PMID: 40270112 DOI: 10.1080/15321819.2025.2496480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2025]
Abstract
Avian influenza is one of the major threats to poultry and human health in northern Benin, while mixed-species farming systems increase the risks of viral transmission. The present study estimated the seroprevalence of avian influenza subtypes H9N2 and H5 in indigenous chickens and guinea fowls in the Atacora and Donga regions. A total of 300 birds including 191 indigenous chickens and 109 guinea fowls, from six districts were sampled through a cross-sectional survey using systematic random sampling. Hemagglutination inhibition assay was used to detect antibodies, revealing an overall H9N2 seroprevalence of 41%, with 17.5% of samples testing positive for H5. The seroprevalence of H9N2 was notably higher in guinea fowls (51.81% in Atacora and 52% in Donga) compared to chickens (34.95% in Atacora and 34.83% in Donga). H5 antibodies were found only in guinea fowls in Atacora (46.66%). The study also found that farms with both chickens and guinea fowls had a significantly higher odds ratio for H9N2 positivity (OR = 4.25, p < 0.001) compared to chicken-only farms. The results underscore the importance of mixed-species systems in the transmission of avian influenza, suggesting that targeted surveillance and biosecurity measures are essential for controlling the spread of these viruses.
Collapse
Affiliation(s)
- Edmond Onidje
- Avian Medicine, Pan African University Life and Earth Sciences Institute (Including Health and Agriculture), Ibadan, Nigeria
| | | | - Mireille Catherine Kadja
- Département de Santé Publique-Environnement, Ecole Inter-Etats des Sciences et Médecine Vétérinaires, Dakar, Sénégal
| | - Modupe Beatrice Abraham
- Avian Medicine, Pan African University Life and Earth Sciences Institute (Including Health and Agriculture), Ibadan, Nigeria
| | - Vitus Burimuah
- Département de Santé Publique-Environnement, Ecole Inter-Etats des Sciences et Médecine Vétérinaires, Dakar, Sénégal
| | | | - Derrick Adu Asare
- School of Veterinary Medicine, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Johnson Opoku Bannor
- School of Veterinary Medicine, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Benjamin Obukowho Emikpe
- School of Veterinary Medicine, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| |
Collapse
|
3
|
Abousenna MS, Shafik NG, Abotaleb MM. Evaluation of humoral immune response and milk antibody transfer in calves and lactating cows vaccinated with inactivated H5 avian influenza vaccine. Sci Rep 2025; 15:4637. [PMID: 39920177 PMCID: PMC11805999 DOI: 10.1038/s41598-025-87831-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 01/22/2025] [Indexed: 02/09/2025] Open
Abstract
The detection of Highly Pathogenic Avian Influenza (HPAI) A(H5N1) in dairy cattle in the United States has raised concerns about human exposure. This study evaluated the efficacy of various doses of an inactivated H5 AI vaccine in cattle and assessed antibody transfer in milk against a recent bovine isolate of HPAI A(H5N1, clade 2.3.4.4b). Calves were inoculated with different vaccine doses, while lactating cows received the vaccine four weeks later. The humoral immune response was measured using the Hemagglutination Inhibition (HI) test and ELISA. Results showed a dose-dependent immune response, with higher doses producing stronger and more sustained antibody levels. Group 1 maintained a stable HI titer of 6 log2, while Groups 2, 3, and 4 peaked at 8, 9, and 9 log2, respectively, by the fourth week post-vaccination. Milk antibody transfer was observed, with strong positive responses in milk samples by the second week post-vaccination. The ID Screen ELISA demonstrated higher sensitivity for detecting antibodies in milk compared to serum. The immune response to the AI vaccine differed from responses to other vaccines used in cattle such as Foot and Mouth Disease Virus (FMDV) and Lumpy Skin Disease Virus (LSDV), indicating the need for optimizing vaccine dosage and formulation, including adjuvant and antigen content. Future research should extend the monitoring period, increase sample sizes, and explore different vaccine formulations to develop effective vaccination strategies for cattle. These findings highlight the potential for using inactivated H5 AI vaccines in cattle to enhance immune protection and facilitate antibody transfer through milk.
Collapse
Affiliation(s)
- Mohamed Samy Abousenna
- Central Laboratory for Evaluation of Veterinary Biologics, Agricultural Research Center, P.O. Box 131, Cairo, 11381, Egypt.
| | - Nermeen G Shafik
- Central Laboratory for Evaluation of Veterinary Biologics, Agricultural Research Center, P.O. Box 131, Cairo, 11381, Egypt
| | - Mahmoud M Abotaleb
- Central Laboratory for Evaluation of Veterinary Biologics, Agricultural Research Center, P.O. Box 131, Cairo, 11381, Egypt
| |
Collapse
|
4
|
Mahmoud SH, Khattab MS, Yehia N, Zanaty A, Arafa AES, Khalil AA. Pathogenicity of Highly Pathogenic Avian Influenza A/H5Nx Viruses in Avian and Murine Models. Pathogens 2025; 14:149. [PMID: 40005526 PMCID: PMC11858509 DOI: 10.3390/pathogens14020149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/29/2025] [Accepted: 02/02/2025] [Indexed: 02/27/2025] Open
Abstract
The evolution and adaptation of highly pathogenic avian influenza (HPAI) viruses pose ongoing challenges for animal and public health. We investigated the pathogenic characteristics of the newly emerged H5N1/2022 and H5N8/2022 of clade 2.3.4.4b compared to the previously circulating H5N1/2016 of clade 2.2.1.2 in Egypt using both avian and murine models. All strains demonstrated a 100% mortality in chickens after intranasal inoculation (106 EID50), while the H5N8/2022 strain showing significantly higher viral shedding (8.34 ± 0.55 log10 EID50). Contact transmission rates varied between strains (50% for the 2.3.4.4b clade and 100% for the 2.2.1.2 clade). In the mouse model, H5N1/2016 infection resulted in an 80% mortality rate with significant weight loss and virus replication in organs. In contrast, H5N8/2022 and H5N1/2022 had 60% and 40% mortality rates, respectively. An histopathological analysis revealed pronounced lesions in the tissues of the infected mice, with the most severe lesions found in the H5N1/2016 group. These findings suggest the decreased pathogenicity of the newer H5Nx strains in mammalian models, emphasizing the need for continued surveillance and adaptive control strategies.
Collapse
Affiliation(s)
- Sara H. Mahmoud
- Center of Scientific Excellence for Influenza Viruses (CSEIV), National Research Centre (NRC), Dokki, Giza 12622, Egypt;
- Texas Biomedical Research Institute, San Antonio, TX 78245-0549, USA
| | - Marwa S. Khattab
- Pathology Department, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Nahed Yehia
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agricultural Research Center, Dokki, Giza 12618, Egypt
| | - Ali Zanaty
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agricultural Research Center, Dokki, Giza 12618, Egypt
| | - Abd El Sattar Arafa
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agricultural Research Center, Dokki, Giza 12618, Egypt
| | - Ahmed A. Khalil
- Veterinary Serum and Vaccine Research Institute (VSVRI), Agriculture Research Center (ARC), Cairo 11381, Egypt
| |
Collapse
|
5
|
Ko EA, Zhou T, Ko JH. Insight into noncanonical small noncoding RNAs in Influenza A virus infection. Virus Res 2024; 350:199474. [PMID: 39326700 PMCID: PMC11466576 DOI: 10.1016/j.virusres.2024.199474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/19/2024] [Accepted: 09/24/2024] [Indexed: 09/28/2024]
Abstract
Influenza A virus (IAV) induces acute respiratory infections in birds and various mammals, including humans, and presents a significant global public health concern, with considerable economic consequences. Recently, researchers have shown keen interest in noncanonical small noncoding RNAs (sncRNAs) as carriers of epigenetic information, including tRNA-derived small RNAs (tsRNAs), rRNA-derived small RNA (rsRNAs), and Y RNA-derived small RNAs (ysRNAs). Particularly, tsRNAs and rsRNAs are detected in diverse species and demonstrate evolutionary conservation. We analyzed sncRNAs sequencing data in the pulmonary tissue of two genetically distinct mouse strains, C57BL/6J and DBA/2J, to explore strain-specific variations of sncRNAs in response to IAV infection. We systematically compiled information on noncanonical sncRNAs in these two strains and investigated the tsRNAs/rsRNAs/ysRNAs profiles influenced by IAV infection. Specifically, four noncanonical sncRNA families, including rsRNA-12S, GtsRNA-Arg-CCT, GtsRNA-Arg-TCT, and GtsRNA-Lys-TTT, exhibited upregulation upon IAV infection. Notably, DBA/2J mice showed earlier systemic differential expression of noncanonical sncRNAs after IAV infection compared to C57BL/6J mice. Additionally, our study revealed a strain-specific biogenesis of MtsRNAs in response to IAV infection. Also, distinct co-expression patterns of MtsRNAs were observed between C57BL/6J and DBA/2J mice, with DBA/2J mice showing broader positive co-expression of MtsRNAs with various sncRNA families compared to C57BL/6J mice. Our study provides a novel insight into noncanonical sncRNAs and their implications in IAV pathology and mouse strain specificity.
Collapse
Affiliation(s)
- Eun-A Ko
- Department of Physiology, College of Medicine, Jeju National University, Jeju 63243, South Korea
| | - Tong Zhou
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV 89557, USA
| | - Jae-Hong Ko
- Department of Physiology, College of Medicine, Chung-Ang University, Seoul 06974, South Korea.
| |
Collapse
|
6
|
Cardenas M, Seibert B, Cowan B, Caceres CJ, Gay LC, Cargnin Faccin F, Perez DR, Baker AL, Anderson TK, Rajao DS. Modulation of human-to-swine influenza a virus adaptation by the neuraminidase low-affinity calcium-binding pocket. Commun Biol 2024; 7:1230. [PMID: 39354058 PMCID: PMC11445579 DOI: 10.1038/s42003-024-06928-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 09/19/2024] [Indexed: 10/03/2024] Open
Abstract
Frequent interspecies transmission of human influenza A viruses (FLUAV) to pigs contrasts with the limited subset that establishes in swine. While hemagglutinin mutations are recognized for their role in cross-species transmission, the contribution of neuraminidase remains understudied. Here, the NA's role in FLUAV adaptation was investigated using a swine-adapted H3N2 reassortant virus with human-derived HA and NA segments. Adaptation in pigs resulted in mutations in both HA (A138S) and NA (D113A). The D113A mutation abolished calcium (Ca2+) binding in the low-affinity Ca2+-binding pocket of NA, enhancing enzymatic activity and thermostability under Ca2+-depleted conditions, mirroring swine-origin FLUAV NA behavior. Structural analysis predicts that swine-adapted H3N2 viruses lack Ca2+ binding in this pocket. Further, residue 93 in NA (G93 in human, N93 in swine) also influences Ca2+ binding and impacts NA activity and thermostability, even when D113 is present. These findings demonstrate that mutations in influenza A virus surface proteins alter evolutionary trajectories following interspecies transmission and reveal distinct mechanisms modulating NA activity during FLUAV adaptation, highlighting the importance of Ca2+ binding in the low-affinity calcium-binding pocket.
Collapse
Affiliation(s)
- Matias Cardenas
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Brittany Seibert
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Brianna Cowan
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - C Joaquin Caceres
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - L Claire Gay
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Flavio Cargnin Faccin
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Daniel R Perez
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Amy L Baker
- National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, USA
| | - Tavis K Anderson
- National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, USA
| | - Daniela S Rajao
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA.
| |
Collapse
|
7
|
Rivetti AV, Reischak D, de Oliveira CHS, Otaka JNP, Domingues CS, Freitas TDL, Cardoso FG, Montesino LO, da Silva ALS, Camillo SCA, Malta F, Amgarten D, Goés-Neto A, Aguiar ERGR, de Almeida IG, Pinto CA, Fonseca AA, Camargos MF. Phylodynamics of avian influenza A(H5N1) viruses from outbreaks in Brazil. Virus Res 2024; 347:199415. [PMID: 38880334 PMCID: PMC11239711 DOI: 10.1016/j.virusres.2024.199415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/23/2024] [Accepted: 06/05/2024] [Indexed: 06/18/2024]
Abstract
Our study identified strains of the A/H5N1 virus in analyzed samples of subsistence poultry, wild birds, and mammals, belonging to clade 2.3.4.4b, genotype B3.2, with very high genetic similarity to strains from Chile, Uruguay, and Argentina. This suggests a migratory route for wild birds across the Pacific, explaining the phylogenetic relatedness. The Brazilian samples displayed similarity to strains that had already been previously detected in South America. Phylogeographic analysis suggests transmission of US viruses from Europe and Asia, co-circulating with other lineages in the American continent. As mutations can influence virulence and host specificity, genomic surveillance is essential to detect those changes, especially in critical regions, such as hot spots in the HA, NA, and PB2 sequences. Mutations in the PB2 gene (D701N and Q591K) associated with adaptation and transmission in mammals were detected suggesting a potential zoonotic risk. Nonetheless, resistance to neuraminidase inhibitors (NAIs) was not identified, however, continued surveillance is crucial to detect potential resistance. Our study also mapped the spread of the virus in the Southern hemisphere, identifying possible entry routes and highlighting the importance of surveillance to prevent outbreaks and protect both human and animal populations.
Collapse
Affiliation(s)
- Anselmo Vasconcelos Rivetti
- Ministério da Agricultura e Pecuária, Laboratório Federal de Defesa Agropecuária/MG, Minas Gerais 33250220, Brazil.
| | - Dilmara Reischak
- Ministério da Agricultura e Pecuária, Laboratório Federal de Defesa Agropecuária/SP, São Paulo 13100-105, Brazil
| | | | - Juliana Nabuco Pereira Otaka
- Ministério da Agricultura e Pecuária, Laboratório Federal de Defesa Agropecuária/SP, São Paulo 13100-105, Brazil
| | - Christian Steffe Domingues
- Ministério da Agricultura e Pecuária, Laboratório Federal de Defesa Agropecuária/SP, São Paulo 13100-105, Brazil
| | - Talita de Lima Freitas
- Ministério da Agricultura e Pecuária, Laboratório Federal de Defesa Agropecuária/SP, São Paulo 13100-105, Brazil
| | - Fernanda Gomes Cardoso
- Ministério da Agricultura e Pecuária, Laboratório Federal de Defesa Agropecuária/SP, São Paulo 13100-105, Brazil
| | - Lucas Oliveira Montesino
- Ministério da Agricultura e Pecuária, Laboratório Federal de Defesa Agropecuária/SP, São Paulo 13100-105, Brazil
| | - Ana Luiza Savioli da Silva
- Ministério da Agricultura e Pecuária, Laboratório Federal de Defesa Agropecuária/SP, São Paulo 13100-105, Brazil
| | | | - Fernanda Malta
- Hospital Israelita Albert Einstein, São Paulo 05652-900, Brazil
| | - Deyvid Amgarten
- Hospital Israelita Albert Einstein, São Paulo 05652-900, Brazil
| | - Aristóteles Goés-Neto
- Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Minas Gerais 31270-901, Brazil
| | | | | | - Carla Amaral Pinto
- Ministério da Agricultura e Pecuária, Laboratório Federal de Defesa Agropecuária/MG, Minas Gerais 33250220, Brazil
| | - Antônio Augusto Fonseca
- Ministério da Agricultura e Pecuária, Laboratório Federal de Defesa Agropecuária/MG, Minas Gerais 33250220, Brazil
| | - Marcelo Fernandes Camargos
- Ministério da Agricultura e Pecuária, Laboratório Federal de Defesa Agropecuária/MG, Minas Gerais 33250220, Brazil
| |
Collapse
|
8
|
Kang M, Wang LF, Sun BW, Wan WB, Ji X, Baele G, Bi YH, Suchard MA, Lai A, Zhang M, Wang L, Zhu YH, Ma L, Li HP, Haerheng A, Qi YR, Wang RL, He N, Su S. Zoonotic infections by avian influenza virus: changing global epidemiology, investigation, and control. THE LANCET. INFECTIOUS DISEASES 2024; 24:e522-e531. [PMID: 38878787 DOI: 10.1016/s1473-3099(24)00234-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 03/21/2024] [Accepted: 04/07/2024] [Indexed: 07/28/2024]
Abstract
Avian influenza virus continues to pose zoonotic, epizootic, and pandemic threats worldwide, as exemplified by the 2020-23 epizootics of re-emerging H5 genotype avian influenza viruses among birds and mammals and the fatal jump to humans of emerging A(H3N8) in early 2023. Future influenza pandemic threats are driven by extensive mutations and reassortments of avian influenza viruses rooted in frequent interspecies transmission and genetic mixing and underscore the urgent need for more effective actions. We examine the changing global epidemiology of human infections caused by avian influenza viruses over the past decade, including dramatic increases in both the number of reported infections in humans and the spectrum of avian influenza virus subtypes that have jumped to humans. We also discuss the use of advanced surveillance, diagnostic technologies, and state-of-the-art analysis methods for tracking emerging avian influenza viruses. We outline an avian influenza virus-specific application of the One Health approach, integrating enhanced surveillance, tightened biosecurity, targeted vaccination, timely precautions, and timely clinical management, and fostering global collaboration to control the threats of avian influenza viruses.
Collapse
Affiliation(s)
- Mei Kang
- Shanghai Institute of Infectious Disease and Biosecurity, School of Public Health, Fudan University, Shanghai, China; Clinical Research Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li-Fang Wang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Bo-Wen Sun
- Shanghai Institute of Infectious Disease and Biosecurity, School of Public Health, Fudan University, Shanghai, China
| | - Wen-Bo Wan
- Shanghai Institute of Infectious Disease and Biosecurity, School of Public Health, Fudan University, Shanghai, China
| | - Xiang Ji
- Department of Mathematics, School of Science and Engineering, Tulane University, New Orleans, LA, USA
| | - Guy Baele
- Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory for Clinical and Epidemiological Virology, KU Leuven, Leuven, Belgium
| | - Yu-Hai Bi
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Marc A Suchard
- Department of Biostatistics, Fielding School of Public Health, University of California Los Angeles, Los Angeles, CA, USA; Department of Biomathematics, David Geffen School of Medicine at UCLA, University of California, Los Angeles, Los Angeles, CA, USA
| | - Alexander Lai
- School of Science, Technology, Engineering, and Mathematics, Kentucky State University, Frankfort, KY, USA
| | - Min Zhang
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lin Wang
- Department of Laboratory Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan-Hong Zhu
- Department of Scientific Research Management, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lei Ma
- Department of Scientific Research Management, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hai-Peng Li
- Shanghai Institute of Infectious Disease and Biosecurity, School of Public Health, Fudan University, Shanghai, China
| | - Ayidana Haerheng
- Shanghai Institute of Infectious Disease and Biosecurity, School of Public Health, Fudan University, Shanghai, China
| | - Yang-Rui Qi
- Shanghai Institute of Infectious Disease and Biosecurity, School of Public Health, Fudan University, Shanghai, China
| | - Rui-Lan Wang
- Department of Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Na He
- Shanghai Institute of Infectious Disease and Biosecurity, School of Public Health, Fudan University, Shanghai, China
| | - Shuo Su
- Shanghai Institute of Infectious Disease and Biosecurity, School of Public Health, Fudan University, Shanghai, China.
| |
Collapse
|
9
|
Zhirnov OP, Lvov DK. Avian flu: «for whom the bell tolls»? Vopr Virusol 2024; 69:101-118. [PMID: 38843017 DOI: 10.36233/10.36233/0507-4088-213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Indexed: 06/14/2024]
Abstract
The family Orthomyxoviridae consists of 9 genera, including Alphainfluenzavirus, which contains avian influenza viruses. In two subtypes H5 and H7 besides common low-virulent strains, a specific type of highly virulent avian virus have been described to cause more than 60% mortality among domestic birds. These variants of influenza virus are usually referred to as «avian influenza virus». The difference between high (HPAI) and low (LPAI) virulent influenza viruses is due to the structure of the arginine-containing proteolytic activation site in the hemagglutinin (HA) protein. The highly virulent avian influenza virus H5 was identified more than 100 years ago and during this time they cause outbreaks among wild and domestic birds on all continents and only a few local episodes of the disease in humans have been identified in XXI century. Currently, a sharp increase in the incidence of highly virulent virus of the H5N1 subtype (clade h2.3.4.4b) has been registered in birds on all continents, accompanied by the transmission of the virus to various species of mammals. The recorded global mortality rate among wild, domestic and agricultural birds from H5 subtype is approaching to the level of 1 billion cases. A dangerous epidemic factor is becoming more frequent outbreaks of avian influenza with high mortality among mammals, in particular seals and marine lions in North and South America, minks and fur-bearing animals in Spain and Finland, domestic and street cats in Poland. H5N1 avian influenza clade h2.3.4.4b strains isolated from mammals have genetic signatures of partial adaptation to the human body in the PB2, NP, HA, NA genes, which play a major role in regulating the aerosol transmission and the host range of the virus. The current situation poses a real threat of pre-adaptation of the virus in mammals as intermediate hosts, followed by the transition of the pre-adapted virus into the human population with catastrophic consequences.
Collapse
Affiliation(s)
- O P Zhirnov
- The D.I. Ivaovsky Institute of Virology, The N.F. Gamaleya Research Center of Epidemiology and Microbiology, The Russian Ministry of Health
- The Russian-German Academy of Medical-Social and Biotechnological Sciences, Skolkovo Innovation Center
| | - D K Lvov
- The D.I. Ivaovsky Institute of Virology, The N.F. Gamaleya Research Center of Epidemiology and Microbiology, The Russian Ministry of Health
| |
Collapse
|
10
|
Taesuji M, Rattanamas K, Yim PB, Ruenphet S. Stability and Detection Limit of Avian Influenza, Newcastle Disease Virus, and African Horse Sickness Virus on Flinders Technology Associates Card by Conventional Polymerase Chain Reaction. Animals (Basel) 2024; 14:1242. [PMID: 38672390 PMCID: PMC11047397 DOI: 10.3390/ani14081242] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/09/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024] Open
Abstract
The Flinders Technology Associates (FTA) card, a cotton-based cellulose membrane impregnated with a chaotropic agent, effectively inactivates infectious microorganisms, lyses cellular material, and fixes nucleic acid. The aim of this study is to assess the stability and detection limit of various RNA viruses, especially the avian influenza virus (AIV), Newcastle disease virus (NDV), and African horse sickness virus (AHSV), on the FTA card, which could significantly impact virus storage and transport practices. To achieve this, each virus dilution was inoculated onto an FTA card and stored at room temperature in plastic bags for durations ranging from 1 week to 6 months. Following storage, the target genome was detected using conventional reverse transcription polymerase chain reaction. The present study demonstrated that the detection limit of AIV ranged from 1.17 to 6.17 EID50 values over durations ranging from 1 week to 5 months, while for NDV, it ranged from 2.83 to 5.83 ELD50 over the same duration. Additionally, the detection limit of AHSV was determined as 4.01 PFU for both 1 and 2 weeks, respectively. Based on the demonstrated effectiveness, stability, and safety implications observed in the study, FTA cards are recommended for virus storage and transport, thus facilitating the molecular detection and identification of RNA viral pathogens.
Collapse
Affiliation(s)
- Machimaporn Taesuji
- Clinic for Horse, Faculty of Veterinary Medicine, Mahanakorn University of Technology, Bangkok 10530, Thailand;
| | - Khate Rattanamas
- Master of Science Program in Animal Biotechnology, Mahanakorn University of Technology, Bangkok 10530, Thailand; (K.R.); (P.B.Y.)
| | - Peter B. Yim
- Master of Science Program in Animal Biotechnology, Mahanakorn University of Technology, Bangkok 10530, Thailand; (K.R.); (P.B.Y.)
| | - Sakchai Ruenphet
- Master of Science Program in Animal Biotechnology, Mahanakorn University of Technology, Bangkok 10530, Thailand; (K.R.); (P.B.Y.)
- Immunology and Virology Department, Mahanakorn University of Technology, Bangkok 10530, Thailand
| |
Collapse
|
11
|
Wen F, Yan Z, Chen G, Chen Y, Wang N, Li Z, Guo J, Yu H, Liu Q, Huang S. Recent H9N2 avian influenza virus lost hemagglutination activity due to a K141N substitution in hemagglutinin. J Virol 2024; 98:e0024824. [PMID: 38466094 PMCID: PMC11019909 DOI: 10.1128/jvi.00248-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 02/20/2024] [Indexed: 03/12/2024] Open
Abstract
The H9N2 avian influenza virus (AIV) represents a significant risk to both the poultry industry and public health. Our surveillance efforts in China have revealed a growing trend of recent H9N2 AIV strains exhibiting a loss of hemagglutination activity at 37°C, posing challenges to detection and monitoring protocols. This study identified a single K141N substitution in the hemagglutinin (HA) glycoprotein as the culprit behind this diminished hemagglutination activity. The study evaluated the evolutionary dynamics of residue HA141 and studied the impact of the N141K substitution on aspects such as virus growth, thermostability, receptor-binding properties, and antigenic properties. Our findings indicate a polymorphism at residue 141, with the N variant becoming increasingly prevalent in recent Chinese H9N2 isolates. Although both wild-type and N141K mutant strains exclusively target α,2-6 sialic acid receptors, the N141K mutation notably impedes the virus's ability to bind to these receptors. Despite the mutation exerting minimal influence on viral titers, antigenicity, and pathogenicity in chicken embryos, it significantly enhances viral thermostability and reduces plaque size on Madin-Darby canine kidney (MDCK) cells. Additionally, the N141K mutation leads to decreased expression levels of HA protein in both MDCK cells and eggs. These findings highlight the critical role of the K141N substitution in altering the hemagglutination characteristics of recent H9N2 AIV strains under elevated temperatures. This emphasizes the need for ongoing surveillance and genetic analysis of circulating H9N2 AIV strains to develop effective control and prevention measures.IMPORTANCEThe H9N2 subtype of avian influenza virus (AIV) is currently the most prevalent low-pathogenicity AIV circulating in domestic poultry globally. Recently, there has been an emerging trend of H9N2 AIV strains acquiring increased affinity for human-type receptors and even losing their ability to bind to avian-type receptors, which raises concerns about their pandemic potential. In China, there has been a growing number of H9N2 AIV strains that have lost their ability to agglutinate chicken red blood cells, leading to false-negative results during surveillance efforts. In this study, we identified a K141N mutation in the HA protein of H9N2 AIV to be responsible for the loss of hemagglutination activity. This finding provides insight into the development of effective surveillance, prevention, and control strategies to mitigate the threat posed by H9N2 AIV to both animal and human health.
Collapse
MESH Headings
- Animals
- Chick Embryo
- Dogs
- Humans
- Chickens/virology
- Hemagglutination
- Hemagglutinin Glycoproteins, Influenza Virus/chemistry
- Hemagglutinin Glycoproteins, Influenza Virus/genetics
- Hemagglutinin Glycoproteins, Influenza Virus/metabolism
- Influenza A Virus, H9N2 Subtype/genetics
- Influenza A Virus, H9N2 Subtype/growth & development
- Influenza A Virus, H9N2 Subtype/immunology
- Influenza A Virus, H9N2 Subtype/metabolism
- Influenza A Virus, H9N2 Subtype/pathogenicity
- Influenza in Birds/virology
- Poultry
- Female
- Mice
- Cell Line
- Amino Acid Substitution
- Evolution, Molecular
- Mutation
- Temperature
- Receptors, Virus/metabolism
Collapse
Affiliation(s)
- Feng Wen
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, College of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
| | - Zhanfei Yan
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
| | - Gaojie Chen
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
| | - Yao Chen
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
| | - Nina Wang
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
| | - Zhili Li
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
| | - Jinyue Guo
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
| | - Hai Yu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Quan Liu
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
| | - Shujian Huang
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
| |
Collapse
|
12
|
De Conto F. Avian Influenza A Viruses Modulate the Cellular Cytoskeleton during Infection of Mammalian Hosts. Pathogens 2024; 13:249. [PMID: 38535592 PMCID: PMC10975405 DOI: 10.3390/pathogens13030249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/08/2024] [Accepted: 03/12/2024] [Indexed: 02/11/2025] Open
Abstract
Influenza is one of the most prevalent causes of death worldwide. Influenza A viruses (IAVs) naturally infect various avian and mammalian hosts, causing seasonal epidemics and periodic pandemics with high morbidity and mortality. The recent SARS-CoV-2 pandemic showed how an animal virus strain could unpredictably acquire the ability to infect humans with high infection transmissibility. Importantly, highly pathogenic avian influenza A viruses (AIVs) may cause human infections with exceptionally high mortality. Because these latter infections pose a pandemic potential, analyzing the ecology and evolution features of host expansion helps to identify new broad-range therapeutic strategies. Although IAVs are the prototypic example of molecular strategies that capitalize on their coding potential, the outcome of infection depends strictly on the complex interactions between viral and host cell factors. Most of the studies have focused on the influenza virus, while the contribution of host factors remains largely unknown. Therefore, a comprehensive understanding of mammals' host response to AIV infection is crucial. This review sheds light on the involvement of the cellular cytoskeleton during the highly pathogenic AIV infection of mammalian hosts, allowing a better understanding of its modulatory role, which may be relevant to therapeutic interventions for fatal disease prevention and pandemic management.
Collapse
Affiliation(s)
- Flora De Conto
- Department of Medicine and Surgery, University of Parma, Viale Antonio Gramsci 14, 43126 Parma, Italy
| |
Collapse
|
13
|
Liu L, Chen G, Huang S, Wen F. Receptor Binding Properties of Neuraminidase for influenza A virus: An Overview of Recent Research Advances. Virulence 2023; 14:2235459. [PMID: 37469130 PMCID: PMC10361132 DOI: 10.1080/21505594.2023.2235459] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/20/2023] [Accepted: 07/06/2023] [Indexed: 07/21/2023] Open
Abstract
Influenza A viruses (IAVs) pose a serious risk to both human and animal health. IAVs' receptor binding characteristics account for a major portion of their host range and tissue tropism. While the function of neuraminidase (NA) in promoting the release of progeny virus is well-known, its role in the virus entry process remains poorly understood. Studies have suggested that certain subtypes of NA can act as receptor-binding proteins, either alone or in conjunction with haemagglutinin (HA). An important distinction is that NA from the avian influenza virus have a second sialic acid-binding site (2SBS) that is preserved in avian strains but missing in human or swine strains. Those observations suggest that the 2SBS may play a key role in the adaptation of the avian influenza virus to mammalian hosts. In this review, we provide an update of the recent research advances in the receptor-binding role of NA and highlight its underestimated importance during the early stages of the IAV life cycle. By doing so, we aim to provide new insights into the mechanisms underlying IAV host adaptation and pathogenesis.
Collapse
Affiliation(s)
- Lian Liu
- School of Medicine, Foshan University, Foshan, China
| | - Gaojie Chen
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Shujian Huang
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Feng Wen
- School of Life Science and Engineering, Foshan University, Foshan, China
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, College of Life Science and Engineering, Foshan University, Foshan, China
| |
Collapse
|
14
|
Charostad J, Rezaei Zadeh Rukerd M, Mahmoudvand S, Bashash D, Hashemi SMA, Nakhaie M, Zandi K. A comprehensive review of highly pathogenic avian influenza (HPAI) H5N1: An imminent threat at doorstep. Travel Med Infect Dis 2023; 55:102638. [PMID: 37652253 DOI: 10.1016/j.tmaid.2023.102638] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/13/2023] [Accepted: 08/27/2023] [Indexed: 09/02/2023]
Abstract
Avian influenza viruses (AIVs) are globally challenging due to widespread circulation and high mortality rates. Highly pathogenic avian influenza (HPAI) strains like H5N1 have caused significant outbreaks in birds. Since 2003 to 14 July 2023, the World Health Organization (WHO) has documented 878 cases of HPAI H5N1 infection in humans and 458 (52.16%) fatalities in 23 countries. Recent outbreaks in wild birds, domestic birds, sea lions, minks, and etc., and the occurrence of genetic variations among HPAI H5N1 strains raise concerns about potential transmission and public health risks. This paper aims to provide a comprehensive overview of the current understanding and new insights into HPAI H5N1. It begins with an introduction to the significance of studying this virus and highlighting the need for updated knowledge. The origin and evaluation of HPAI H5N1 are examined, shedding light on its emergence, and spread across different geographic regions. The genome organization and structural biology of the H5N1 virus are explored, providing insights into its molecular composition and key structural features. This manuscript also delves into the phylogeny, evolution, mutational trends, reservoirs, and transmission routes of HPAI H5N1. The immune response against HPAI H5N1 and its implications for vaccine development are analyzed, along with an exploration of the pathogenesis and clinical manifestations of HPAI H5N1 in human cases. Furthermore, diagnostic tools and preventive and therapeutic strategies are discussed, highlighting the current approaches and potential future directions for better management of the potential pandemic.
Collapse
Affiliation(s)
- Javad Charostad
- Department of Microbiology, Faculty of Medicine, Shahid Sadoghi University of Medical Science, Yazd, Iran
| | - Mohammad Rezaei Zadeh Rukerd
- Gastroenterology and Hepatology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran; Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Shahab Mahmoudvand
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran; Department of Virology, School of Medicine, Hamadan University of Medical Science, Hamadan, Iran
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Mohammad Ali Hashemi
- Department of Bacteriology & Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohsen Nakhaie
- Gastroenterology and Hepatology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran.
| | - Keivan Zandi
- Arrowhead Pharmaceuticals, San Diego, CA, USA; Tropical Infectious Diseases Research and Education Center (TIDREC), University of Malaya, Kuala Lumpur, Malaysia.
| |
Collapse
|
15
|
Liu S, Liu S, Yu Z, Zhou W, Zheng M, Gu R, Hong J, Yang Z, Chi X, Guo G, Li X, Chen N, Huang S, Wang S, Chen JL. STAT3 regulates antiviral immunity by suppressing excessive interferon signaling. Cell Rep 2023; 42:112806. [PMID: 37440406 DOI: 10.1016/j.celrep.2023.112806] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 05/03/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
This study identifies interleukin-6 (IL-6)-independent phosphorylation of STAT3 Y705 at the early stage of infection with several viruses, including influenza A virus (IAV). Such activation of STAT3 is dependent on the retinoic acid-induced gene I/mitochondrial antiviral-signaling protein/spleen tyrosine kinase (RIG-I/MAVS/Syk) axis and critical for antiviral immunity. We generate STAT3Y705F/+ knockin mice that display a remarkably suppressed antiviral response to IAV infection, as evidenced by impaired expression of several antiviral genes, severe lung tissue injury, and poor survival compared with wild-type animals. Mechanistically, STAT3 Y705 phosphorylation restrains IAV pathogenesis by repressing excessive production of interferons (IFNs). Blocking phosphorylation significantly augments the expression of type I and III IFNs, potentiating the virulence of IAV in mice. Importantly, knockout of IFNAR1 or IFNLR1 in STAT3Y705F/+ mice protects the animals from lung injury and reduces viral load. The results indicate that activation of STAT3 by Y705 phosphorylation is vital for establishment of effective antiviral immunity by suppressing excessive IFN signaling induced by viral infection.
Collapse
Affiliation(s)
- Shasha Liu
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Siya Liu
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ziding Yu
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wenzhuo Zhou
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Meichun Zheng
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Rongrong Gu
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jinxuan Hong
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhou Yang
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiaojuan Chi
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Guijie Guo
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xinxin Li
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Na Chen
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shile Huang
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA
| | - Song Wang
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ji-Long Chen
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China.
| |
Collapse
|