1
|
Chancharoenthana W, Kamolratanakul S, Rotcheewaphan S, Leelahavanichkul A, Schultz MJ. Recent advances in immunopathogenesis and clinical practice: mastering the challenge-managing of non-tuberculous mycobacteria. Front Immunol 2025; 16:1554544. [PMID: 40176807 PMCID: PMC11961655 DOI: 10.3389/fimmu.2025.1554544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Accepted: 02/26/2025] [Indexed: 04/04/2025] Open
Abstract
Non-tuberculous mycobacteria (NTM) are widespread environmental pathogens that can lead to significant disease burden, particularly in immunocompromised individuals, but also in those with a normal immune system. The global incidence of NTM is increasing rapidly, with Mycobacterium avium complex (MAC) being one of the most common types. The immunopathogenesis of the MAC involves a complex interaction between the bacteria and the host immune system. MAC survives and replicates within macrophages by preventing the fusion of phagosomes and lysosomes. The mycobacteria can neutralize reactive oxygen and nitrogen species produced by the macrophages through their own enzymes. Additionally, MAC modulates cytokine production, allowing it to suppress or regulate the immune response. Diagnosing MAC infections can be challenging, and the effectiveness of available treatments may be limited due to MAC's unpredictable resistance to various antimycobacterial drugs in different regions. Treating MAC infection requires a collaborative approach involving different healthcare professionals and ensuring patient compliance. This review aims to shed light on the complexities of MAC infection treatment, discussing the challenges of MAC infection diagnosis, pharmacological considerations, such as drug regimens, drug monitoring, drug interactions, and the crucial role of a multidisciplinary healthcare team in achieving the best possible treatment outcomes for patients.
Collapse
Affiliation(s)
- Wiwat Chancharoenthana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Tropical Immunology and Translational Research Unit (TITRU), Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Supitcha Kamolratanakul
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Tropical Immunology and Translational Research Unit (TITRU), Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | | | - Asada Leelahavanichkul
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence on Translational Research in Inflammatory and Immunology (CETRII), Department of Microbiology, Chulalongkorn University, Bangkok, Thailand
| | - Marcus J. Schultz
- Department of Intensive Care & Laboratory of Experimental Intensive Care and Anesthesiology (L.E.I.C.A), Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, Oxford University, Oxford, United Kingdom
- Mahidol–Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| |
Collapse
|
2
|
McCarrier KP, Hassan M, Yuen DW, Tsai JH, Touba N, Mange KC. Content Validation of the QOL-B-RD and PROMIS-F SF-7a to Measure Respiratory and Fatigue Symptoms of MAC Lung Disease. Adv Ther 2025; 42:935-976. [PMID: 39680310 PMCID: PMC11787195 DOI: 10.1007/s12325-024-03064-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 10/31/2024] [Indexed: 12/17/2024]
Abstract
INTRODUCTION The Quality of Life-Bronchiectasis (QOL-B) questionnaire and Patient Reported Outcome Measurement Information System Short Form v1.0-Fatigue 7a (PROMIS-F SF-7a) have the potential to measure respiratory and fatigue symptoms, respectively, in patients with Mycobacterium avium complex (MAC) lung disease but have not yet been evaluated for content validity in this population. METHODS Semi-structured qualitative interviews were conducted in United States patients with a current MAC lung disease diagnosis. Concept elicitation (CE) interviews were conducted (n = 25 participants) to identify key respiratory and fatigue symptoms expressed as important and relevant to patients with MAC lung disease and to evaluate the appropriateness of the QOL-B and PROMIS-F SF-7a to measure these symptoms. Cognitive interviews (CIs) were subsequently conducted (n = 20 participants) to evaluate the relevance, comprehensibility, and appropriateness of the QOL-B respiratory domain (QOL-B-RD) and PROMIS-F SF-7a. All interviews were recorded, transcribed, and coded for qualitative content analysis. RESULTS The most important or relevant respiratory symptom concepts to CE interview participants were "cough," "shortness of breath during activity," and "mucus/phlegm." The most important or relevant fatigue symptom concepts were "tiredness," "lack of energy," and "tire easily/low stamina." These symptoms are covered by existing items in the QOL-B-RD and PROMIS-F SF-7a. Cognitive interview participants' feedback confirmed the item content, response options, concept attributes, and recall period for each instrument were effective, relevant, and meaningful to most patients with MAC lung disease. Based on Wave 1 findings, the QOL-B instructions were revised for the Wave 2 interviews, where the text referencing "bronchiectasis" was replaced with "your lung condition." Participant feedback in Wave 2 confirmed the revised instruction wording was easily understood and appropriate. CONCLUSIONS The study results support the content validity of the QOL-B-RD and PROMIS-F SF-7a, which were shown to be relevant and appropriate to evaluate respiratory and fatigue symptoms, respectively, in patients with MAC lung disease.
Collapse
Affiliation(s)
| | - Mariam Hassan
- Insmed Incorporated, 700 US Highway 202/206, Bridgewater, NJ, 08807, USA.
| | - Dayton W Yuen
- Insmed Incorporated, 700 US Highway 202/206, Bridgewater, NJ, 08807, USA
| | - Jui-Hua Tsai
- OPEN Health Evidence and Access, Bethesda, MD, USA
| | - Nancy Touba
- OPEN Health Evidence and Access, Bethesda, MD, USA
| | - Kevin C Mange
- Insmed Incorporated, 700 US Highway 202/206, Bridgewater, NJ, 08807, USA
| |
Collapse
|
3
|
Wazahat R. Strategic diagnosis- Unraveling Tuberculosis- A comprehensive approach. Indian J Tuberc 2025; 72:112-132. [PMID: 39890361 DOI: 10.1016/j.ijtb.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/22/2024] [Accepted: 08/12/2024] [Indexed: 02/03/2025]
Abstract
Tuberculosis, an airborne-infectious disease caused by Mycobacterium tuberculosis remains a perpetual threat globally. It claims over 1.4 million lives per year. Various diagnostic strategies including smear microscopy, culture methods, immunochromatographic assays and molecular methods have paved the way for tuberculosis diagnosis. The Government of India has introduced National Strategic Plan (NSP) for TB elimination, aiming to achieve a rapid decline in the incidence, morbidity, and mortality of TB by the year 2030. In its quest for TB elimination, the plan is structured around four strategic pillars: "Detect-Treat-Prevent-Build." To achieve these pillars and progress towards TB elimination, the government encourages adoption of novel point-of- care diagnostics techniques.
Collapse
Affiliation(s)
- Rushna Wazahat
- Department of Biochemistry, Jamia Hamdard, New Delhi, 110062, India.
| |
Collapse
|
4
|
Chien YC, Chang CH, Huang CK, Chen YH, Liu CJ, Chen CY, Wang PH, Shu CC, Kuo LC, Wang JY, Ku SC, Wang HC, Yu CJ. The impact of nontuberculous mycobacterial lung disease in critically ill patients: Significance for survival and ventilator use. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2024; 57:328-336. [PMID: 38220536 DOI: 10.1016/j.jmii.2023.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/16/2023] [Accepted: 12/28/2023] [Indexed: 01/16/2024]
Abstract
BACKGROUND This study investigates the impact of nontuberculous mycobacterial lung disease (NTM-LD) on mortality and mechanical ventilation use in critically ill patients. METHODS We enrolled patients with NTM-LD or tuberculosis (TB) in intensive care units (ICU) and analysed their association with 30-day mortality and with mechanical ventilator-free survival (VFS) at 30 days after ICU admission. RESULTS A total of 5996 ICU-admitted patients were included, of which 541 (9.0 %) had TB and 173 (2.9 %) had NTM-LD. The overall 30-day mortality was 22.2 %. The patients with NTM-LD had an adjusted hazard ratio (aHR) of 1.49 (95 % CI, 1.06-2.05), and TB patients had an aHR of 2.33 (95 % CI, 1.68-3.24), compared to ICU patients with negative sputum mycobacterial culture by multivariable Cox proportional hazard (PH) regression. The aHR of age<65 years, obesity, idiopathic pulmonary fibrosis, end-stage kidney disease, active cancer and autoimmune disease and diagnosis of respiratory failure were also significantly positively associated with ICU 30-day mortality. In multivariable Cox PH regression for VFS at 30 days in patients requiring invasive mechanical ventilation, NTM-LD was negatively associated with VFS (aHR 0.71, 95 % CI: 0.56-0.92, p = 0.009), while TB showed no significant association. The diagnosis of respiratory failure itself predicted unfavourable outcome for 30-day mortality and a negative impact on VFS at 30 days. CONCLUSIONS NTM-LD and TB were not uncommon in ICU and both were correlated with increasing 30-day mortality in ICU patients. NTM-LD was associated with a poorer outcome in terms of VFS at 30 days.
Collapse
Affiliation(s)
- Ying-Chun Chien
- Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chin-Hao Chang
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Chun-Kai Huang
- Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yung-Hsuan Chen
- Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chia-Jung Liu
- Department of Internal Medicine, National Taiwan University Hospital Hsin-Chu Branch, Hsinchu, Taiwan
| | - Chung-Yu Chen
- Department of Internal Medicine, National Taiwan University, Hospital Yun-Lin Branch, Douliu City, Taiwan
| | - Ping-Huai Wang
- Department of Internal Medicine, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Chin-Chung Shu
- Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan.
| | - Lu-Cheng Kuo
- Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Jann-Yuan Wang
- Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Shih-Chi Ku
- Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Hao-Chien Wang
- Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan; Department of Medicine, National Taiwan University Cancer Center, Taipei, Taiwan
| | - Chong-Jen Yu
- Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan; Department of Internal Medicine, National Taiwan University Hospital Hsin-Chu Branch, Hsinchu, Taiwan
| |
Collapse
|
5
|
Marmor M, Sharifi H, Jacobs S, Fazeli K, Ruoss S. Variables associated with antibiotic treatment tolerance in patients with Mycobacterium avium complex pulmonary disease. Respir Res 2024; 25:123. [PMID: 38468274 DOI: 10.1186/s12931-024-02752-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 02/28/2024] [Indexed: 03/13/2024] Open
Abstract
BACKGROUND Treatment of Mycobacterium avium complex pulmonary disease (MAC-PD) involves prolonged courses of multiple antibiotics that are variably tolerated and commonly cause adverse drug reactions (ADR). The purpose of this retrospective, single-center study was to identify demographic and disease-related variables associated with significant ADRs among patients treated with antibiotics against MAC-PD. METHODS We reviewed all patients treated with antibiotic therapy for MAC-PD at a single center from 2000 to 2021. Patients were included if they met diagnostic criteria for MAC-PD, were prescribed targeted antibiotic therapy for any length of time and had their treatment course documented in their health record. We compared patients who completed antibiotics as originally prescribed (tolerant) with those whose antibiotic treatment course was modified or terminated secondary to an ADR (intolerant). RESULTS Over the study period, 235 patients were prescribed antibiotic treatment with their clinical course documented in our center's electronic health record, and 246 treatment courses were analyzed. One hundred forty-three (57%) tolerated therapy versus 108 (43%) experienced ADRs. Among the 108 intolerant courses, 67 (63%) required treatment modification and 49 (46%) required premature treatment termination. Treatment intolerance was associated more frequently with smear positive sputum cultures (34% vs. 20%, p = 0.009), a higher Charlson Comorbidity Index (CCI) (4 vs. 6, p = 0.007), and existing liver disease (7% vs. 1%, p = 0.03). There was no between-group difference in BMI (21 vs. 22), fibrocavitary disease (24 vs. 19%), or macrolide sensitivity (94 vs. 80%). The use of daily therapy was not associated with intolerance (77 vs. 79%). Intolerant patients were more likely to be culture positive after 6 months of treatment (44 vs. 25%). CONCLUSIONS Patients prescribed antibiotic therapy for MAC-PD are more likely to experience ADRs if they have smear positive sputum cultures at diagnosis, a higher CCI, or existing liver disease. Our study's rate of early treatment cessation due to ADR's was similar to that of other studies (20%) but is the first of its kind to evaluate patient and disease factors associated with ADR's. A systematic approach to classifying and addressing ADRs for patients undergoing treatment for MAC-PD is an area for further investigation.
Collapse
Affiliation(s)
- Meghan Marmor
- Division of Pulmonary, Allergy, and Critical Care Medicine, Stanford University School of Medicine, Stanford, CA, United States of America.
| | - Husham Sharifi
- Division of Pulmonary, Allergy, and Critical Care Medicine, Stanford University School of Medicine, Stanford, CA, United States of America
| | - Susan Jacobs
- Division of Pulmonary, Allergy, and Critical Care Medicine, Stanford University School of Medicine, Stanford, CA, United States of America
| | - Kiana Fazeli
- Division of Pulmonary, Allergy, and Critical Care Medicine, Stanford University School of Medicine, Stanford, CA, United States of America
| | - Stephen Ruoss
- Division of Pulmonary, Allergy, and Critical Care Medicine, Stanford University School of Medicine, Stanford, CA, United States of America
| |
Collapse
|
6
|
Tseng YH, Pan SW, Feng JY, Su WJ, Huang CYF, Chen YM. Detecting circulating microbial cell-free DNA by next-generation sequencing in patients with Mycobacterium avium complex-lung disease: A pilot study. Tzu Chi Med J 2024; 36:67-75. [PMID: 38406566 PMCID: PMC10887338 DOI: 10.4103/tcmj.tcmj_191_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/22/2023] [Accepted: 09/20/2023] [Indexed: 02/27/2024] Open
Abstract
Objectives Determining a diagnosis for non-Tuberculous mycobacterium (NTM)-lung disease (LD) remains difficult. The value of circulating cell-free DNA (cfDNA) secreted from microbes has been established in the detection of pathogens in septic patients. However, it is unknown whether NTM-derived cfDNA is detectable in plasma from patients with NTM-LD and whether this is associated with the disease status of NTM-LD, especially in patients with Mycobacterium avium complex (MAC)-LD. Materials and Methods In this pilot study, from 2018 to 2019, we enrolled adult patients with MAC-LD at Taipei Veterans General Hospital in Taiwan for the detection of circulating cfDNA. We performed cfDNA extraction from plasma, next-generation sequencing (NGS) for nonhuman cfDNA, and sequence matching to a microbial database and then assessed the association between pathogen cfDNA and MAC-LD. Results Two (40%) plasma samples from MAC-LD patients had detectable MAC-specific cfDNA, namely one instance of DNA polymerase III alpha subunit and one instance of ATP-binding cassette transporters permease. The plasma samples from the three other MAC-LD cases and the one tuberculosis control were negative for either NTM-derived cfDNA or tuberculosis-related cfDNA. In addition to MAC-specific cfDNA, Ralstonia solanacearum, Staphylococcus aureus, and Pasteurella multocida were the most observed bacteria in our patients. The two patients with MAC-cfDNA positivity yielded higher radiographic scores (P = 0.076) and presented a higher number of nonhuman reads than those without MAC-cfDNA positivity (P = 0.083). Conclusion Using NGS method, we demonstrated MAC-cfDNA was detectable in patients with MAC-LD. Further large-scale research is warranted to assess the clinical value of detecting MAC-specific cfDNA in MAC-LD patients.
Collapse
Affiliation(s)
- Yen-Han Tseng
- Department of Chest Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Program in Molecular Medicine, School of Life Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Sheng-Wei Pan
- Department of Chest Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Jia-Yih Feng
- Department of Chest Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Wei-Juin Su
- Division of Chest Medicine, Department of Internal Medicine, China Medical University Hospital, Taipei Branch, Taipei, Taiwan
| | - Chi-Ying F Huang
- Program in Molecular Medicine, School of Life Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Institute of Biopharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yuh-Min Chen
- Department of Chest Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
7
|
Gramegna A, Misuraca S, Lombardi A, Premuda C, Barone I, Ori M, Amati F, Retucci M, Nazzari E, Alicandro G, Ferrarese M, Codecasa L, Bandera A, Aliberti S, Daccò V, Blasi F. Treatable traits and challenges in the clinical management of non-tuberculous mycobacteria lung disease in people with cystic fibrosis. Respir Res 2023; 24:316. [PMID: 38104098 PMCID: PMC10725605 DOI: 10.1186/s12931-023-02612-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/17/2023] [Indexed: 12/19/2023] Open
Abstract
INTRODUCTION Over the last ten years an increasing prevalence and incidence of non-tuberculous mycobacteria (NTM) has been reported among patients with cystic fibrosis (CF) Viviani (J Cyst Fibros, 15(5):619-623, 2016). NTM pulmonary disease has been associated with negative clinical outcomes and often requires pharmacological treatment. Although specific guidelines help clinicians in the process of diagnosis and clinical management, the focus on the multidimensional assessment of concomitant problems is still scarce. MAIN BODY This review aims to identify the treatable traits of NTM pulmonary disease in people with CF and discuss the importance of a multidisciplinary approach in order to detect and manage all the clinical and behavioral aspects of the disease. The multidisciplinary complexity of NTM pulmonary disease in CF requires careful management of respiratory and extra-respiratory, including control of comorbidities, drug interactions and behavioral factors as adherence to therapies. CONCLUSIONS The treatable trait strategy can help to optimize clinical management through systematic assessment of all the aspects of the disease, providing a holistic treatment for such a multi-systemic and complex condition.
Collapse
Affiliation(s)
- Andrea Gramegna
- Department of Pathophysiology and Transplantation, University of Milan, Via Francesco Sforza 35, 20122, Milan, Italy.
- Respiratory Unit and Cystic Fibrosis Adult Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122, Milan, Italy.
| | - Sofia Misuraca
- Respiratory Unit and Cystic Fibrosis Adult Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122, Milan, Italy
| | - Andrea Lombardi
- Department of Pathophysiology and Transplantation, University of Milan, Via Francesco Sforza 35, 20122, Milan, Italy
- Infectious Diseases Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Chiara Premuda
- Department of Pathophysiology and Transplantation, University of Milan, Via Francesco Sforza 35, 20122, Milan, Italy
- Respiratory Unit and Cystic Fibrosis Adult Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122, Milan, Italy
| | - Ivan Barone
- Department of Pathophysiology and Transplantation, University of Milan, Via Francesco Sforza 35, 20122, Milan, Italy
- Respiratory Unit and Cystic Fibrosis Adult Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122, Milan, Italy
| | - Margherita Ori
- Respiratory Unit and Cystic Fibrosis Adult Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122, Milan, Italy
| | - Francesco Amati
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072, Milan, Italy
- Respiratory Unit, IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089, Milan, Italy
| | - Mariangela Retucci
- Respiratory Unit and Cystic Fibrosis Adult Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122, Milan, Italy
- Healthcare Professions Department, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Erica Nazzari
- Cystic Fibrosis Center, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Commenda 9, 20122, Milan, Italy
| | - Gianfranco Alicandro
- Department of Pathophysiology and Transplantation, University of Milan, Via Francesco Sforza 35, 20122, Milan, Italy
| | - Maurizio Ferrarese
- Regional TB Reference Centre, Villa Marelli Institute, Niguarda Hospital, Milan, Italy
| | - Luigi Codecasa
- Regional TB Reference Centre, Villa Marelli Institute, Niguarda Hospital, Milan, Italy
| | - Alessandra Bandera
- Department of Pathophysiology and Transplantation, University of Milan, Via Francesco Sforza 35, 20122, Milan, Italy
- Infectious Diseases Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Stefano Aliberti
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072, Milan, Italy
- Respiratory Unit, IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089, Milan, Italy
| | - Valeria Daccò
- Cystic Fibrosis Center, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Commenda 9, 20122, Milan, Italy
| | - Francesco Blasi
- Department of Pathophysiology and Transplantation, University of Milan, Via Francesco Sforza 35, 20122, Milan, Italy
- Respiratory Unit and Cystic Fibrosis Adult Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122, Milan, Italy
| |
Collapse
|
8
|
Park J, Kim LH, Lee JM, Choi S, Son YJ, Hwang HJ, Shin SJ. In vitro and intracellular activities of novel thiopeptide derivatives against macrolide-susceptible and macrolide-resistant Mycobacterium avium complex. Microbiol Spectr 2023; 11:e0182523. [PMID: 37594284 PMCID: PMC10580953 DOI: 10.1128/spectrum.01825-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 06/29/2023] [Indexed: 08/19/2023] Open
Abstract
Unsatisfactory outcomes following long-term multidrug treatment in patients with Mycobacterium avium complex (MAC) pulmonary disease have urged us to develop novel antibiotics. Thiopeptides, a class of peptide antibiotics derived from natural products, have potential as drug candidates that target bacterial ribosomes, but drug development has been hampered due to their extremely poor solubility. Here, we evaluated three new compounds (AJ-037, AJ-039, and AJ-206) derived from the thiopeptide micrococcin P2 with enhanced aqueous solubility; the derivatives were generated based on structure-activity relationship analysis. We conducted in vitro drug susceptibility and intracellular antimycobacterial activity testing of the three thiopeptide derivatives against various MAC strains, including macrolide-resistant MAC clinical isolates. These compounds showed low MICs against MAC, similar to that of clarithromycin (CLR). In particular, two compounds, AJ-037 and AJ-206, had intracellular antimycobacterial activities, along with synergistic effects with CLR, and inhibited the growth of MAC inside macrophages. Moreover, these two compounds showed in vitro and intracellular anti-MAC activities against macrolide-resistant MAC strains without showing cross-resistance with CLR. Taken together, the results of the current study suggest that AJ-037 and AJ-206 can be promising anti-MAC agents for the treatment of MAC infection, including for macrolide-resistant MAC strains. IMPORTANCE Novel antibiotics for the treatment of MAC infection are urgently needed because the treatment outcomes using the standard regimen for Mycobacterium avium complex (MAC) pulmonary disease remain unsatisfactory. Here, we evaluated three novel thiopeptide derivatives (AJ-037, AJ-039, and AJ-206) derived from the thiopeptide micrococcin P2, and they were confirmed to be effective against macrolide-susceptible and macrolide-resistant MAC. Our thiopeptide derivatives have enhanced aqueous solubility through structural modifications of poorly soluble thiopeptides. The thiopeptide derivatives showed minimal inhibitory concentrations against MAC that were comparable to clarithromycin (CLR). Notably, two compounds, AJ-037 and AJ-206, exhibited intracellular antimycobacterial activities and acted synergistically with CLR to hinder the growth of MAC within macrophages. Additionally, these compounds demonstrated in vitro and intracellular anti-MAC activities against macrolide-resistant MAC strains without showing any cross-resistance with CLR. We believe that AJ-037 and AJ-206 can be promising anti-MAC agents for the treatment of MAC infections, including macrolide-resistant MAC strains.
Collapse
Affiliation(s)
- Jiyun Park
- Department of Microbiology, Institute for Immunology and Immunological Disease, Brain Korea 21 Project for Graduate School of Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Lee-Han Kim
- Department of Microbiology, Institute for Immunology and Immunological Disease, Brain Korea 21 Project for Graduate School of Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Ju Mi Lee
- Department of Microbiology, Institute for Immunology and Immunological Disease, Brain Korea 21 Project for Graduate School of Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Sangwon Choi
- Department of Microbiology, Institute for Immunology and Immunological Disease, Brain Korea 21 Project for Graduate School of Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | | | | | - Sung Jae Shin
- Department of Microbiology, Institute for Immunology and Immunological Disease, Brain Korea 21 Project for Graduate School of Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
9
|
Roque S, de Sá-Calçada D, Cerqueira-Rodrigues B, Monteiro S, Guerreiro SG, Palha JA, Correia-Neves M. Chronic Mycobacterium avium infection differentially affects the cytokine expression profile of three mouse strains, but has no effect on behavior. Sci Rep 2023; 13:6199. [PMID: 37069180 PMCID: PMC10110542 DOI: 10.1038/s41598-023-33121-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 04/07/2023] [Indexed: 04/19/2023] Open
Abstract
One of the most remarkable findings in the immunology and neuroscience fields was the discovery of the bidirectional interaction between the immune and the central nervous systems. This interplay is tightly regulated to maintain homeostasis in physiological conditions. Disruption in this interplay has been suggested to be associated with several neuropsychiatric disorders. Most studies addressing the impact of an immune system disruption on behavioral alterations focus on acute pro-inflammatory responses. However, chronic infections are highly prevalent and associated with an altered cytokine milieu that persists over time. Studies addressing the potential effect of mycobacterial infections on mood behavior originated discordant results and this relationship needs to be further addressed. To increase our understanding on the effect of chronic infections on the central nervous system, we evaluated the role of Mycobacterium avium infection. A model of peripheral chronic infection with M. avium in female from three mouse strains (Balb/c, C57BL/6, and CD-1) was used. The effect of the infection was evaluated in the cytokine expression profile (spleen and hippocampus), hippocampal cell proliferation, neuronal plasticity, serum corticosterone production and mood behavior. The results show that M. avium peripheral chronic infection induces alterations not just in the peripheral immune system but also in the central nervous system, namely in the hippocampus. Interestingly, the cytokine expression profile alterations vary between mouse strains, and are not accompanied by hippocampal cell proliferation or neuronal plasticity changes. Accordingly, no differences were observed in locomotor, anxious and depressive-like behaviors, in any of the mouse strains used. We conclude that the M. avium 2447 infection-induced alterations in the cytokine expression profile, both in the periphery and the hippocampus, are insufficient to alter hippocampal plasticity and behavior.
Collapse
Affiliation(s)
- Susana Roque
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - Daniela de Sá-Calçada
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Bruno Cerqueira-Rodrigues
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Susana Monteiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Susana G Guerreiro
- Institute for Research and Innovation in Health (i3S), Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto-IPATIMUP, Porto, Portugal
- Biochemistry Unit, Department of Biomedicine, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Joana A Palha
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Margarida Correia-Neves
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
10
|
Ellis HC, Moffatt MF, Churchward C, Cuthbertson L, Cookson WO, Loebinger MR. Molecular assessment of mycobacterial burden in the treatment of nontuberculous mycobacterial disease. ERJ Open Res 2023; 9:00435-2022. [PMID: 36949959 PMCID: PMC10026000 DOI: 10.1183/23120541.00435-2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 10/16/2022] [Indexed: 11/12/2022] Open
Abstract
Introduction Nontuberculous pulmonary disease causes significant morbidity and mortality. Efforts to tackle infections are hampered by the lack of reliable biomarkers for diagnosis, assessment and prognostication. The aim of this study was to develop molecular assays capable of identifying and quantifying multiple nontuberculous mycobacterial (NTM) species and to examine their utility in following individual patients' clinical courses. Methods DNA was extracted from 410 sputum samples obtained longitudinally from a cohort of 38 patients who were commencing treatment for either Mycobacterium abscessus or Mycobacterium avium complex or who were patients with bronchiectasis who had never had positive cultures for mycobacteria. NTM quantification was performed with quantitative PCR assays developed in-house. Results The molecular assays had high in vitro sensitivity and specificity for the detection and accurate quantification of NTM species. The assays successfully identified NTM DNA from human sputum samples (in vivo sensitivity: 0.86-0.87%; specificity: 0.62-0.95%; area under the curve: 0.74-0.92). A notable association between NTM copy number and treatment (Friedman ANOVA (df)=22.8 (3), p≤0.01 for M. abscessus treatment group) was also demonstrated. Conclusion The quantitative PCR assays developed in this study provide affordable, real-time and rapid measurement of NTM burden, with significant implications for prompt management decisions.
Collapse
Affiliation(s)
- Huw C. Ellis
- Host Defence Unit, Royal Brompton Hospital, London, UK
- Imperial College London, London, UK
| | | | | | | | | | - Michael R. Loebinger
- Host Defence Unit, Royal Brompton Hospital, London, UK
- Imperial College London, London, UK
- Corresponding author: Michael Loebinger ()
| |
Collapse
|
11
|
Weathered C, Wei N, Pienaar E. Reduced macrophage killing of M. avium drives infection risk in post-menopausal patients. Tuberculosis (Edinb) 2023; 139:102304. [PMID: 36682272 DOI: 10.1016/j.tube.2023.102304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/22/2022] [Accepted: 01/04/2023] [Indexed: 01/08/2023]
Abstract
Non-tuberculous mycobacterial (NTM) infections, and Mycobacterium avium Complex (MAC) in particular, affect women at nearly twice the rate of men, and post-menopausal patients are at higher risk than pre-menopausal patients. The reasons for the disproportionate number of cases in women and post-menopausal patients remain unclear. One possibility is that menopause-associated immunological changes contribute to higher MAC prevalence post-menopause compared to pre-menopause. Menopause-associated immune disruption includes increased cytokine and chemokine production, and reduced cytotoxicity and phagocytosis in macrophages. Here we use an agent-based model of bacterial and host immune interactions in the airway to translate the combined impact of menopause-associated cellular immune disruptions to tissue scale outcomes. Our simulations indicate that menopause-associated immune disruptions can result in increased macrophage recruitment. However, this increase in macrophage number is unable to overcome functional deficits in macrophage phagocytosis and killing, since the post-menopausal simulations also show increased bacterial loads. Post-menopausal conditions are also associated with a lower number of cleared infections, and more simulations that have predominantly extracellular bacteria. Taken together, our work quantifies the potential impact of menopause-associated disruptions of innate immune functions on early MAC infection progression. Our findings will support the development of new therapies targeted to this high-risk group of patients.
Collapse
Affiliation(s)
- Catherine Weathered
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Ning Wei
- Department of Mathematics, Purdue University, West Lafayette, IN, USA
| | - Elsje Pienaar
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
12
|
The synergetic effect of sitafloxacin-arbekacin combination in the Mycobacterium abscessus species. Sci Rep 2023; 13:2027. [PMID: 36739345 PMCID: PMC9899205 DOI: 10.1038/s41598-023-29021-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Mycobacterium abscessus species (MABS) is the most commonly isolated rapidly growing mycobacteria (RGM) and is one of the most antibiotic-resistant RGM with rapid progression, therefore, treatment of MABS is still challenging. We here presented a new combination treatment with sitafloxacin that targeted rough morphotypes of MABS, causing aggressive infections. Thirty-four clinical strains of MABS were isolated from various clinical samples at the Juntendo university hospital from 2011 to 2020. The susceptibility to a combination of sitafloxacin and antimicrobial agents was compared to that of the antimicrobial agents alone. Out of 34 MABS, 8 strains treated with sitafloxacin-amikacin combination, 9 of sitafloxacin-imipenem combination, 19 of sitafloxacin-arbekacin combination, and 9 of sitafloxacin-clarithromycin combination showed synergistic effects, respectively. Sitafloxacin-arbekacin combination also exhibited the synergistic effects against 10 of 22 Mycobacterium abscessus subspecies massiliense (Mma) strains and 8 of 11 Mycobacterium abscessus subspecies abscessus (Mab) strains, a highly resistant subspecies of MABS. The sitafloxacin-arbekacin combination revealed more synergistic effects in rough morphotypes of MABS (p = 0.008). We demonstrated the synergistic effect of the sitafloxacin-arbekacin combination against MABS. Further, this combination regimen might be more effective against Mab or rough morphotypes of MABS.
Collapse
|
13
|
Aksamit T, Wu J, Hassan M, Achter E, Chatterjee A. Impact of initiation of amikacin liposome inhalation suspension on hospitalizations and other healthcare resource utilization measures: a retrospective cohort study in real-world settings. BMC Pulm Med 2022; 22:461. [PMID: 36463137 PMCID: PMC9719199 DOI: 10.1186/s12890-022-02257-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 11/21/2022] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Mycobacterium avium complex lung disease (MAC-LD) is an infection that is increasing in frequency, associated with substantial disease burden, and often refractory to treatment. Amikacin liposome inhalation suspension (ALIS) is the first therapy approved for refractory MAC-LD. In the CONVERT study of adult patients with refractory MAC-LD, adding ALIS to a multidrug background regimen showed evidence of MAC infection elimination in sputum by month 6, which was maintained in most patients through the end of treatment (≤ 12 months post-conversion). This study assessed changes in healthcare resource utilization (HCRU) among patients initiating ALIS in real-world settings. METHODS This retrospective cohort study of the All-Payer Claims Database (October 2018-April 2020) included patients aged ≥ 18 years with ≥ 1 pharmacy claim for ALIS and ≥ 12 months of continuous health plan enrollment pre- and post-ALIS initiation. Respiratory disease-related (and all-cause) HCRU (hospitalizations, length of stay [LOS], emergency department [ED] visits, and outpatient office visits) were compared 12 months pre- and post-ALIS initiation. Outcomes were reported at 6-month intervals; 0-6 months pre-ALIS initiation was the reference period for statistical comparisons. RESULTS A total of 331 patients received ALIS, with HCRU highest in the 6 months pre-ALIS initiation. Compared with 26.9% during the reference period, respiratory-related hospitalizations decreased to 19.3% (P < 0.01) and 15.4% (P < 0.0001) during 0-6 and 7-12 months post-ALIS initiation, respectively. Mean number of respiratory disease-related hospitalizations per patient/6-month period decreased from 1.0 (reference period) to 0.6 (P < 0.0005) at both timepoints post-ALIS initiation. A similar pattern was observed for all-cause hospitalizations and hospitalizations per patient/6-month period (both P < 0.005). Reductions in all-cause and respiratory disease-related LOS post-ALIS initiation were significant (both P < 0.05). ED visits were few and unchanged during the study. Significant reductions per patient/6-month period in all-cause and respiratory-related outpatient office visits were observed post-ALIS initiation (all P < 0.01). CONCLUSIONS In this first real-world study of ALIS, respiratory disease-related (and all-cause) hospitalizations and outpatient visits were reduced in the 12 months following ALIS initiation. The results of this study provide HCRU-related information to better understand the impact of initiating ALIS treatment. TRIAL REGISTRATION Not appliable.
Collapse
Affiliation(s)
- Timothy Aksamit
- grid.66875.3a0000 0004 0459 167XPulmonary Disease and Critical Care Medicine, Mayo Clinic, Rochester, MN USA
| | - Jasmanda Wu
- grid.418728.00000 0004 0409 8797Insmed Incorporated, Bridgewater, NJ USA
| | - Mariam Hassan
- grid.418728.00000 0004 0409 8797Insmed Incorporated, Bridgewater, NJ USA
| | | | - Anjan Chatterjee
- grid.418728.00000 0004 0409 8797Insmed Incorporated, Bridgewater, NJ USA
| |
Collapse
|
14
|
Lee JM, Park J, Reed SG, Coler RN, Hong JJ, Kim LH, Lee W, Kwon KW, Shin SJ. Vaccination inducing durable and robust antigen-specific Th1/Th17 immune responses contributes to prophylactic protection against Mycobacterium avium infection but is ineffective as an adjunct to antibiotic treatment in chronic disease. Virulence 2022; 13:808-832. [PMID: 35499090 PMCID: PMC9067471 DOI: 10.1080/21505594.2022.2068489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 04/01/2022] [Accepted: 04/18/2022] [Indexed: 11/13/2022] Open
Abstract
Mycobacterium avium complex (MAC) causing pulmonary disease in humanshas emerged worldwide. Thus, effective strategies simultaneously aiming to prevent MAC infection and accelerate therapeutic efficacy are required. To this end, subunit vaccine-induced protection against a well-defined virulent Mycobacterium avium (Mav) isolate was assessed as a preventative and therapeutic modality in murine models. Mav-derived culture filtrate antigen (CFA) was used as a vaccine antigen with glucopyranosyl lipid A stable emulsion (GLA-SE) or GLA-SE plus cyclic-di-GMP (GLA-SE/CDG), and we compared the immunogenicities, protective efficacies and immune correlates. Interestingly, CFA+GLA-SE/CDG immunization induced greater CFA-specific Th1/Th17 responses in both the lung and spleen than among the tested groups. Consequently, protective efficacy was optimally achieved with CFA+GLA-SE/CDG by significantly reducing bacterial loads along with long-lasting maintenance of antigen-specific Th1/Th17 cytokine-producing multifunctional T cell responses and relevant cytokine productions. Thus, we employed this subunit vaccine as an adjunct to antibiotic treatment. However, this vaccine was ineffective in further reducing bacterial loads. Collectively, our study demonstrates that strong Mav CFA-specific Th1/Th17 responses are critical for preventative protection against Mav infection but may be ineffective or even detrimental in an established and progressive chronic disease, indicating that different approaches to combating Mav infection are necessary according to vaccination purposes.
Collapse
Affiliation(s)
- Ju Mi Lee
- Department of Microbiology, Institute for Immunology and Immunological Disease, Graduate School of Medical science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
| | - Jiyun Park
- Department of Microbiology, Institute for Immunology and Immunological Disease, Graduate School of Medical science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
| | | | - Rhea N Coler
- Seattle Children’s Research Institute, Center for Global Infectious Disease Research, Seattle, WA, USA
- Department of Global Health, University of Washington, Seattle, WA, USA
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA
| | - Jung Joo Hong
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, South Korea
| | - Lee-Han Kim
- Department of Microbiology, Institute for Immunology and Immunological Disease, Graduate School of Medical science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
| | - Wonsik Lee
- School of Pharmacy, Sungkyunkwan University, Suwon, South Korea
| | - Kee Woong Kwon
- Department of Microbiology, Institute for Immunology and Immunological Disease, Graduate School of Medical science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
| | - Sung Jae Shin
- Department of Microbiology, Institute for Immunology and Immunological Disease, Graduate School of Medical science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
15
|
Ito M, Koga Y, Hachisu Y, Murata K, Sunaga N, Maeno T, Hisada T. Treatment strategies with alternative treatment options for patients with Mycobacterium avium complex pulmonary disease. Respir Investig 2022; 60:613-624. [PMID: 35781424 DOI: 10.1016/j.resinv.2022.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 05/06/2022] [Accepted: 05/29/2022] [Indexed: 10/17/2022]
Abstract
Diseases caused by Mycobacterium avium complex (MAC) infection in the lungs are increasing worldwide. The recurrence rate of MAC-pulmonary disease (PD) has been reported to be as high as 25-45%. A significant percentage of recurrences occurs because of reinfection with a new genotype from the environment. A focus on reducing exposure to MAC organisms from the environment is therefore an essential component of the management of this disease as well as standard MAC-PD treatment. A macrolide-containing three-drug regimen is recommended over a two-drug regimen as a standard treatment, and azithromycin is recommended rather than clarithromycin. Both the 2007 and 2020 guidelines recommend a treatment duration of MAC-PD of at least one year after the culture conversion. Previous clinical studies have reported that ethambutol could prevent macrolide resistance. Furthermore, the concomitant use of aminoglycoside, amikacin liposomal inhalation, clofazimine, linezolid, bedaquiline, and fluoroquinolone with modification of guideline-based therapy has been studied. Long-term management of MAC-PD remains challenging because of the discontinuation of multi-drug regimens and the acquisition of macrolide resistance. Moreover, the poor compliance of guideline-based therapy for MAC-PD treatment worldwide is concerning since it causes macrolide resistance. Therefore, in this review, we focus on MAC-PD treatment and summarize various treatment options when standard treatment cannot be maintained, with reference to the latest ATS/ERS/ESCMID/IDSA clinical practice guidelines revised in 2020.
Collapse
Affiliation(s)
- Masashi Ito
- Department of Respiratory Medicine, Gunma University Graduate School of Medicine, Gunma 371-8511, Japan
| | - Yasuhiko Koga
- Department of Respiratory Medicine, Gunma University Graduate School of Medicine, Gunma 371-8511, Japan.
| | - Yoshimasa Hachisu
- Department of Respiratory Medicine, Gunma University Graduate School of Medicine, Gunma 371-8511, Japan; Department of Respiratory Medicine, Maebashi Red Cross Hospital, Gunma 371-0813, Japan
| | - Keisuke Murata
- Department of Respiratory Medicine, Gunma University Graduate School of Medicine, Gunma 371-8511, Japan; Department of Respiratory Medicine, Shibukawa Medical Center, Gunma 377-0280, Japan
| | - Noriaki Sunaga
- Department of Respiratory Medicine, Gunma University Graduate School of Medicine, Gunma 371-8511, Japan
| | - Toshitaka Maeno
- Department of Respiratory Medicine, Gunma University Graduate School of Medicine, Gunma 371-8511, Japan
| | - Takeshi Hisada
- Gunma University Graduate School of Health Sciences, Gunma 371-8514, Japan
| |
Collapse
|
16
|
Kilinç G, Walburg KV, Franken KLMC, Valkenburg ML, Aubry A, Haks MC, Saris A, Ottenhoff THM. Development of Human Cell-Based In Vitro Infection Models to Determine the Intracellular Survival of Mycobacterium avium. Front Cell Infect Microbiol 2022; 12:872361. [PMID: 35811670 PMCID: PMC9263196 DOI: 10.3389/fcimb.2022.872361] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 05/24/2022] [Indexed: 11/21/2022] Open
Abstract
The Mycobacterium avium (Mav) complex accounts for more than 80% of all pulmonary diseases caused by non-tuberculous mycobacteria (NTM) infections, which have an alarming increase in prevalence and vary in different regions, currently reaching 0.3–9.8 per 100,000 individuals. Poor clinical outcomes, as a result of increasing microbial drug resistance and low treatment adherence due to drug-toxicities, emphasize the need for more effective treatments. Identification of more effective treatments, however, appears to be difficult, which may be due to the intracellular life of NTM and concomitant altered drug sensitivity that is not taken into account using traditional drug susceptibility testing screenings. We therefore developed human cell-based in vitro Mav infection models using the human MelJuSo cell line as well as primary human macrophages and a fluorescently labeled Mav strain. By testing a range of multiplicity of infection (MOI) and using flow cytometry and colony-forming unit (CFU) analysis, we found that an MOI of 10 was the most suitable for Mav infection in primary human macrophages, whereas an MOI of 50 was required to achieve similar results in MelJuSo cells. Moreover, by monitoring intracellular bacterial loads over time, the macrophages were shown to be capable of controlling the infection, while MelJuSo cells failed to do so. When comparing the MGIT system with the classical CFU counting assay to determine intracellular bacterial loads, MGIT appeared as a less labor-intensive, more precise, and more objective alternative. Next, using our macrophage Mav infection models, the drug efficacy of the first-line drug rifampicin and the more recently discovered bedaquiline on intracellular bacteria was compared to the activity on extracellular bacteria. The efficacy of the antibiotics inhibiting bacterial growth was significantly lower against intracellular bacteria compared to extracellular bacteria. This finding emphasizes the crucial role of the host cell during infection and drug susceptibility and highlights the usefulness of the models. Taken together, the human cell-based Mav infection models are reliable tools to determine the intracellular loads of Mav, which will enable researchers to investigate host–pathogen interactions and to evaluate the efficacy of (host-directed) therapeutic strategies against Mav.
Collapse
Affiliation(s)
- Gül Kilinç
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | - Kimberley V. Walburg
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | - Kees L. M. C. Franken
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | - Merel L. Valkenburg
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | - Alexandra Aubry
- Sorbonne Université, INSERM, Centre d’Immunologie et des Maladies Infectieuses, U1135, AP-HP, Hôpital Pitié-Salpêtrière, Centre National de Référence des Mycobactéries et de la Résistance des Mycobactéries aux Antituberculeux, Paris, France
| | - Mariëlle C. Haks
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | - Anno Saris
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
- *Correspondence: Anno Saris, ; orcid.org/0000-0003-0493-9501
| | - Tom H. M. Ottenhoff
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
17
|
Dartois V, Dick T. Drug development challenges in nontuberculous mycobacterial lung disease: TB to the rescue. J Exp Med 2022; 219:e20220445. [PMID: 35543723 PMCID: PMC9098649 DOI: 10.1084/jem.20220445] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Nontuberculous mycobacterial pulmonary disease (NTM-PD) is treated with multiple repurposed drugs. Chemotherapy is long and often toxic, includes parenteral drugs, and suffers from poor cure rates. There is an urgent need for more efficacious, tolerated, and oral antibiotics optimized towards the treatment of NTM-PD, adapted to the spectrum of disease. In contrast to the empty NTM pipeline, drug development for the related tuberculosis lung disease has experienced a renaissance. Here, we argue that applying lessons learned from tuberculosis will facilitate the discovery of curative oral regimens for NTM-PD.
Collapse
Affiliation(s)
- Véronique Dartois
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ
- Department of Medical Sciences, Hackensack Meridian School of Medicine, Nutley, NJ
| | - Thomas Dick
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ
- Department of Medical Sciences, Hackensack Meridian School of Medicine, Nutley, NJ
- Department of Microbiology and Immunology, Georgetown University, Washington, DC
| |
Collapse
|
18
|
Proctor C, Garner E, Hamilton KA, Ashbolt NJ, Caverly LJ, Falkinham JO, Haas CN, Prevost M, Prevots DR, Pruden A, Raskin L, Stout J, Haig SJ. Tenets of a holistic approach to drinking water-associated pathogen research, management, and communication. WATER RESEARCH 2022; 211:117997. [PMID: 34999316 PMCID: PMC8821414 DOI: 10.1016/j.watres.2021.117997] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 12/13/2021] [Accepted: 12/19/2021] [Indexed: 05/10/2023]
Abstract
In recent years, drinking water-associated pathogens that can cause infections in immunocompromised or otherwise susceptible individuals (henceforth referred to as DWPI), sometimes referred to as opportunistic pathogens or opportunistic premise plumbing pathogens, have received considerable attention. DWPI research has largely been conducted by experts focusing on specific microorganisms or within silos of expertise. The resulting mitigation approaches optimized for a single microorganism may have unintended consequences and trade-offs for other DWPI or other interests (e.g., energy costs and conservation). For example, the ecological and epidemiological issues characteristic of Legionella pneumophila diverge from those relevant for Mycobacterium avium and other nontuberculous mycobacteria. Recent advances in understanding DWPI as part of a complex microbial ecosystem inhabiting drinking water systems continues to reveal additional challenges: namely, how can all microorganisms of concern be managed simultaneously? In order to protect public health, we must take a more holistic approach in all aspects of the field, including basic research, monitoring methods, risk-based mitigation techniques, and policy. A holistic approach will (i) target multiple microorganisms simultaneously, (ii) involve experts across several disciplines, and (iii) communicate results across disciplines and more broadly, proactively addressing source water-to-customer system management.
Collapse
Affiliation(s)
- Caitlin Proctor
- Department of Agricultural and Biological Engineering, Division of Environmental and Ecological Engineering, Purdue University, West Lafayette, IN, USA
| | - Emily Garner
- Wadsworth Department of Civil & Environmental Engineering, West Virginia University, Morgantown, WV, USA
| | - Kerry A Hamilton
- School of Sustainable Engineering and the Built Environment and The Biodesign Centre for Environmental Health Engineering, Arizona State University, Tempe, AZ, USA
| | - Nicholas J Ashbolt
- Faculty of Science and Engineering, Southern Cross University, Gold Coast. Queensland, Australia
| | - Lindsay J Caverly
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI, USA
| | | | - Charles N Haas
- Department of Civil, Architectural & Environmental Engineering, Drexel University, Philadelphia, PA, USA
| | - Michele Prevost
- Department of Civil, Geological and Mining Engineering, Polytechnique Montreal, Montreal, Quebec, Canada
| | - D Rebecca Prevots
- Epidemiology Unit, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Amy Pruden
- Department of Civil & Environmental Engineering, Virginia Tech, Blacksburg, VA USA
| | - Lutgarde Raskin
- Department of Civil & Environmental Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Janet Stout
- Department of Civil & Environmental Engineering, University of Pittsburgh, and Special Pathogens Laboratory, Pittsburgh, PA, USA
| | - Sarah-Jane Haig
- Department of Civil & Environmental Engineering, and Department of Environmental & Occupational Health, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
19
|
Kojadinovic A, Mundi PS. Florid Pulmonary Mycobacterium avium-intracellulare Infection in a Patient With Large Granular Lymphocytic (LGL) Leukemia on Chronic Cyclophosphamide. Cureus 2021; 13:e19754. [PMID: 34812338 PMCID: PMC8604561 DOI: 10.7759/cureus.19754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2021] [Indexed: 11/17/2022] Open
Abstract
Large granular lymphocytic (LGL) leukemia is a rare form of incurable chronic leukemia frequently complicated by life-threatening cytopenias. The less common NK-cell variant of this disorder poses a diagnostic challenge and its etiologic basis is poorly understood. Here we present the case of an elderly man diagnosed with LGL leukemia after presenting with severe Coombs-negative hemolytic anemia, who had a robust durable response to oral cyclophosphamide. Close to two years after initial diagnosis, he developed a florid Mycobacterium avium-intracellulare (MAI) infection of the lungs. We discuss the clinical and pathologic features of this case, highlighting aspects common to this disorder and areas of clinical uncertainty. We hope to both raise awareness of the risk for pulmonary MAI infection in patients treated with lymphodepleting drugs and to motivate the prospective evaluation of strategies to prevent opportunistic infections in LGL leukemia.
Collapse
Affiliation(s)
| | - Prabhjot S Mundi
- Internal Medicine/Hematology-Oncology, Columbia University College of Physicians and Surgeons, New York, USA
| |
Collapse
|
20
|
Management of patients with pulmonary mycobacteriosis in France: a multicenter retrospective cohort study. BMC Pulm Med 2021; 21:333. [PMID: 34702233 PMCID: PMC8549171 DOI: 10.1186/s12890-021-01701-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 10/13/2021] [Indexed: 01/15/2023] Open
Abstract
Background Recent studies report very low adherence of practitioners to ATS/IDSA recommendations for the treatment of nontuberculous mycobacteria pulmonary disease (NTM-PD), as well as a great variability of practices. Type of management could impact prognosis. Methods To evaluate management and prognosis of patients with NTM-PD cases with respect to ATS recommendations, we conducted a multicenter retrospective cohort study (18 sentinel sites distributed throughout France), over a period of six years. We collected clinical, radiological, microbiological characteristics, management and outcome of the patients (especially death or not). Results 477 patients with NTM-PD were included. Respiratory comorbidities were found in 68% of cases, tuberculosis sequelae in 31.4% of patients, and immunosuppression in 16.8% of cases. The three most common NTM species were Mycobacterium avium complex (60%), M. xenopi (20%) and M. kansasii (5.7%). Smear-positive was found in one third of NTM-PD. Nodulobronchiectatic forms were observed in 54.3% of cases, and cavitary forms in 19.1% of patients. Sixty-three percent of patients were treated, 72.4% of patients with smear-positive samples, and 57.5% of patients with smear-negative samples. Treatment was in adequacy with ATS guidelines in 73.5%. The 2-year mortality was 14.4%. In the Cox regression, treatment (HR = 0.51), age (HR = 1.02), and M. abscessus (3.19) appeared as the 3 significant independent prognostic factors. Conclusion These findings highlight the adequacy between French practices and the ATS/IDSA guidelines. Treatment was associated with a better survival. Supplementary Information The online version contains supplementary material available at 10.1186/s12890-021-01701-5.
Collapse
|
21
|
Akapelwa ML, Kapalamula TF, Ouchi-Aizu Y, Hang'ombe BM, Nishiuchi Y, Gordon SV, Solo ES, Tamaru A, Nishimura T, Hasegawa N, Morimoto K, Fukushima Y, Suzuki Y, Nakajima C. Evaluation of IS1245 LAMP in Mycobacterium avium and the influence of host-related genetic diversity on its application. Diagn Microbiol Infect Dis 2021; 101:115494. [PMID: 34391980 DOI: 10.1016/j.diagmicrobio.2021.115494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 07/08/2021] [Accepted: 07/12/2021] [Indexed: 11/17/2022]
Abstract
Early detection and treatment are paramount for the timely control of Mycobacterium avium infections. Herein, we designed a LAMP assay targeting a widely used species-specific marker IS1245 for the rapid detection of M. avium and evaluated its applicability using human (n = 137) and pig (n = 91) M. avium isolates from Japan. The developed assay could detect as low as 1 genome copy of M. avium DNA within 30 minutes. All 91 (100%) M. avium isolates from pigs were detected positive while all other tested bacterial species were negative. Interestingly, among the 137 clinical M. avium isolates, 41 (30%) were undetectable with this LAMP assay as they lacked IS1245, the absence of which was revealed by PCR and whole-genome sequencing. These findings highlighted genotypic differences in M. avium strains from humans and pigs in Japan and how this diversity can influence the applicability of a detection tool across different geographic areas and hosts.
Collapse
Affiliation(s)
- Mwangala Lonah Akapelwa
- Division of Bioresources, Hokkaido University International Institute for Zoonosis Control, Sapporo, Hokkaido, Japan
| | - Thoko Flav Kapalamula
- Division of Bioresources, Hokkaido University International Institute for Zoonosis Control, Sapporo, Hokkaido, Japan
| | - Yuki Ouchi-Aizu
- Division of Bioresources, Hokkaido University International Institute for Zoonosis Control, Sapporo, Hokkaido, Japan
| | - Bernard Mudenda Hang'ombe
- Department of ParaClinicals, School of Veterinary Medicine, University of Zambia, Lusaka, Zambia; Africa Center of Excellence for Infectious Diseases of Humans and Animals, University of Zambia, Lusaka, Zambia
| | - Yukiko Nishiuchi
- Toneyama Institute for Tuberculosis Research, Osaka City University Medical School, Osaka, Japan
| | - Stephen V Gordon
- School of Veterinary Medicine, University College Dublin, Dublin, Ireland; International Collaboration Unit, Hokkaido University International Institute for Zoonosis Control, Sapporo, Japan
| | - Eddie Samuneti Solo
- Department of Pathology and Microbiology, University Teaching Hospital, Ministry of Health, Lusaka, Zambia
| | - Aki Tamaru
- Department of Microbiology, Osaka Institute of Public Health, Osaka, Japan
| | | | - Naoki Hasegawa
- Department of Infectious Diseases, Keio University School of Medicine, Tokyo, Japan
| | - Kozo Morimoto
- Respiratory Disease Center, Fukujuji Hospital, Japan Anti-Tuberculosis Association, Tokyo, Japan
| | - Yukari Fukushima
- Division of Bioresources, Hokkaido University International Institute for Zoonosis Control, Sapporo, Hokkaido, Japan
| | - Yasuhiko Suzuki
- Division of Bioresources, Hokkaido University International Institute for Zoonosis Control, Sapporo, Hokkaido, Japan; International Collaboration Unit, Hokkaido University International Institute for Zoonosis Control, Sapporo, Japan.
| | - Chie Nakajima
- Division of Bioresources, Hokkaido University International Institute for Zoonosis Control, Sapporo, Hokkaido, Japan; International Collaboration Unit, Hokkaido University International Institute for Zoonosis Control, Sapporo, Japan.
| |
Collapse
|
22
|
Abstract
Mycobacterium avium subsp. hominissuis (MAH) is one of the most common nontuberculous mycobacterial pathogens responsible for chronic lung disease in humans. It is widely distributed in biofilms in natural and living environments. It is considered to be transmitted from the environment. Despite its importance in public health, the ultrastructure of the MAH biofilm remains largely unknown. The ultrastructure of a MAH-containing multispecies biofilm that formed naturally in a bathtub inlet was herein reported along with those of monoculture biofilms developed from microcolonies and pellicles formed in the laboratory. Scanning electron microscopy revealed an essentially multilayered bathtub biofilm that was packed with cocci and short and long rods connected by an extracellular matrix (ECM). Scattered mycobacterium-like rod-shaped cells were observed around biofilm chunks. The MAH monoculture biofilms that developed from microcolonies in vitro exhibited an assembly of flat layers covered with thin film-like ECM membranes. Numerous small bacterial cells (0.76±0.19 μm in length) were observed, but not embedded in ECM. A glycopeptidolipid-deficient strain did not develop the layered ECM membrane architecture, suggesting its essential role in the development of biofilms. The pellicle biofilm also consisted of flat layered cells covered with an ECM membrane and small cells. MAH alone generated a flat layered biofilm covered with an ECM membrane. This unique structure may be suitable for resistance to water flow and disinfectants and the exclusion of fast-growing competitors, and small cells in biofilms may contribute to the formation and transmission of bioaerosols.
Collapse
Affiliation(s)
- Yukiko Nishiuchi
- Toneyama Institute for Tuberculosis Research, Osaka City University Graduate School of Medicine
| |
Collapse
|
23
|
Zhang Y, Hill AT. Amikacin liposome inhalation suspension as a treatment for patients with refractory mycobacterium avium complex lung infection. Expert Rev Respir Med 2021; 15:737-744. [PMID: 34039231 DOI: 10.1080/17476348.2021.1875821] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Introduction: Amikacin liposome inhalation suspension (ALIS) contains amikacin sulfate, an aminoglycoside antibacterial drug. It has been approved in the US as a combined antibiotic treatment for refractory MAC lung disease patients. ALIS, as an inhaled antibiotic, can deliver amikacin to the infected site effectively and reduce systemic toxicity.Areas covered: This article gives a summated review of the pharmacodynamics, pharmacokinetics, therapeutic efficacy, post-marketing surveillance, and regulatory affairs of ALIS as an add-on therapy for MAC lung disease in adults by analyzing data from preclinical studies, clinical trials and original studies. We systematically searched Medline/PubMed through October 2020.Expert opinion: Studies demonstrate that ALIS as an add-on treatment significantly improve the rate of sputum culture conversion in MAC lung disease patients compare to guideline-recommended therapy only. The ALIS treatment showed a similar risk of serious adverse events and a low chance of renal adverse events. However, ALIS was associated with more respiratory adverse events than guideline-recommended therapy only. There was not sufficient data to conclude that ALIS treatment can improve clinical outcomes; however, with the significant improvement in the microbiology outcome in MAC lung disease patients, ALIS showed its potential use as an adjunct treatment for treating MAC lung disease.
Collapse
Affiliation(s)
- Yang Zhang
- Centre for Inflammation Research, Centre for Inflammation Research at the University of Edinburgh, Queen's Medical Research Institute, Edinburgh BioQuarter, Edinburgh, Scotland
| | - Adam T Hill
- Centre for Inflammation Research, Centre for Inflammation Research at the University of Edinburgh, Queen's Medical Research Institute, Edinburgh BioQuarter, Edinburgh, Scotland.,Department of Respiratory Medicine, Royal Infirmary of Edinburgh, Edinburgh, Scotland
| |
Collapse
|
24
|
Thornton CS, Mellett M, Jarand J, Barss L, Field SK, Fisher DA. The respiratory microbiome and nontuberculous mycobacteria: an emerging concern in human health. Eur Respir Rev 2021; 30:30/160/200299. [PMID: 34039671 DOI: 10.1183/16000617.0299-2020] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 03/09/2021] [Indexed: 12/24/2022] Open
Abstract
Nontuberculous mycobacteria (NTM) are diverse microbial species encompassing commensals and pathogens with the ability to cause pulmonary disease in both immunocompetent and immunocompromised individuals. In contrast to Mycobacterium tuberculosis, which has seen a reduction in disease rates in developed countries, the incidence and prevalence of NTM disease is increasing. NTM are difficult to treat with standard antimicrobial regimens and may contain both virulence and antibiotic-resistance genes with potential for pathogenicity. With the advent of molecular techniques, it has been elucidated that these organisms do not reside in isolation and are rather part of a complex milieu of microorganisms within the host lung microbiome. Over the last decade, studies have highlighted the impact of the microbiome on host immunity, metabolism and cell-cell communication. This recognition of a broader community raises the possibility that the microbiome may disrupt the balance between infection and disease. Additionally, NTM disease progression and antimicrobial therapy may affect the healthy steady state of the host and function of the microbiome, contributing to further dysbiosis and clinical deterioration. There have been limited studies assessing how NTM may influence the relationship between microbiome and host. In this review, we highlight available studies about NTM and the microbiome, postulate on virulence mechanisms by which these microorganisms communicate and discuss implications for treatment.
Collapse
Affiliation(s)
- Christina S Thornton
- Division of Respirology, University of Calgary, Calgary, Canada .,Dept of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Canada.,Joint first authors
| | - Madeline Mellett
- Dept of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Canada.,Joint first authors
| | - Julie Jarand
- Division of Respirology, University of Calgary, Calgary, Canada.,Dept of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Canada.,TB Services, University of Calgary, Calgary, Canada
| | - Leila Barss
- Division of Respirology, University of Calgary, Calgary, Canada.,Dept of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Canada.,TB Services, University of Calgary, Calgary, Canada
| | - Stephen K Field
- Division of Respirology, University of Calgary, Calgary, Canada.,Dept of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Canada.,TB Services, University of Calgary, Calgary, Canada
| | - Dina A Fisher
- Division of Respirology, University of Calgary, Calgary, Canada.,Dept of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Canada.,TB Services, University of Calgary, Calgary, Canada.,Dept of Community Health Sciences, University of Calgary, Calgary, Canada
| |
Collapse
|
25
|
Faverio P, De Giacomi F, Bodini BD, Stainer A, Fumagalli A, Bini F, Luppi F, Aliberti S. Nontuberculous mycobacterial pulmonary disease: an integrated approach beyond antibiotics. ERJ Open Res 2021; 7:00574-2020. [PMID: 34046491 PMCID: PMC8141831 DOI: 10.1183/23120541.00574-2020] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 01/24/2021] [Indexed: 01/11/2023] Open
Abstract
Nontuberculous mycobacterial (NTM) pulmonary disease (PD) is an emerging condition with heterogeneous manifestations from both the microbiological and the clinical point of view. Diagnostic and therapeutic guidelines are available but there are still unmet patients' and physicians' needs, including therapy-related adverse events, symptom control, management of comorbidities, risk of re-exposure to the pathogen and unfavourable outcomes. In the present review, we provide currently available evidence for an integrated approach to NTM-PD beyond antibiotic therapy. This includes 1) avoiding exposure to environments where mycobacteria are present and careful evaluation of lifestyle and habits; 2) implementing a personalised pulmonary rehabilitation plan and airway clearance techniques to improve symptoms, exercise capacity, health-related quality of life (QoL) and functional capacity in daily living activities; 3) a nutritional evaluation and intervention to improve health-related QoL and to control gastrointestinal side-effects during antimicrobial therapy, particularly in those with low body mass index and history of weight loss; and 4) managing comorbidities that affect disease outcomes, including structural lung diseases, immune status evaluation and psychological support when appropriate. An integrated approach, including risk factor prevention, management of comorbidities, nutritional evaluation and intervention and pulmonary rehabilitation, should be considered in the optimal management of nontuberculous mycobacterial pulmonary diseasehttps://bit.ly/2YEqvQg
Collapse
Affiliation(s)
- Paola Faverio
- School of Medicine and Surgery, University of Milano Bicocca, Monza, Italy.,Respiratory Unit, San Gerardo Hospital, ASST Monza, Monza, Italy
| | - Federica De Giacomi
- School of Medicine and Surgery, University of Milano Bicocca, Monza, Italy.,Respiratory Unit, San Gerardo Hospital, ASST Monza, Monza, Italy
| | - Bruno Dino Bodini
- Pulmonary Rehabilitation, ASST Rhodense, Casati Hospital, Garbagnate Milanese, Italy
| | - Anna Stainer
- School of Medicine and Surgery, University of Milano Bicocca, Monza, Italy.,Respiratory Unit, San Gerardo Hospital, ASST Monza, Monza, Italy
| | - Alessia Fumagalli
- Pulmonary Rehabilitation Unit - Research Hospital of Casatenovo, Italian National Research Centre on Aging, Casatenovo, Italy
| | - Francesco Bini
- Respiratory Unit, Internal Medicine Dept, ASST Rhodense, G. Salvini Hospital, Garbagnate Milanese, Italy
| | - Fabrizio Luppi
- School of Medicine and Surgery, University of Milano Bicocca, Monza, Italy.,Respiratory Unit, San Gerardo Hospital, ASST Monza, Monza, Italy
| | - Stefano Aliberti
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Respiratory Unit and Cystic Fibrosis Adult Center, Milan, Italy.,Dept of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
26
|
Walker CM, Zhou CY, Pathak V. Adenocarcinoma of the lung with concurrent Mycobacterium avium complex infection. Lung India 2021; 38:365-367. [PMID: 34259177 PMCID: PMC8272413 DOI: 10.4103/lungindia.lungindia_470_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Nontuberculous mycobacterial infection, particularly Mycobacterium avium complex (MAC), which is also known as Lady Windermere syndrome usually presents with chronic cough, typically seen in elderly caucasian women who chronically suppress the normal cough reflex. Computerized tomography of the chest in patients with MAC infection can present as a tree in bud nodules, pulmonary nodules, cavity, or consolidation. However, other coexisting diseases such as lung cancer should be kept in mind while investigating these radiographic changes in patients with suspected MAC infection, more so if they have underlying risk factors for malignancy. We present a patient with suspected MAC infection who had co-existing lung adenocarcinoma.
Collapse
Affiliation(s)
- Christopher M Walker
- Department of Medicine, School of Osteopathic Medicine, Campbell University, Lillington, NC, USA
| | - Christine Y Zhou
- Department of Medicine, School of Osteopathic Medicine, Campbell University, Lillington, NC, USA
| | - Vikas Pathak
- Department of Medicine, School of Osteopathic Medicine, Campbell University, Lillington, NC; Department of Pulmonary and Critical Care, Riverside Health System, Newport News, VA, USA
| |
Collapse
|
27
|
Pravosud V, Mannino DM, Prieto D, Zhang Q, Choate R, Malanga E, Aksamit TR. Symptom Burden and Medication Use Among Patients with Nontuberculous Mycobacterial Lung Disease. CHRONIC OBSTRUCTIVE PULMONARY DISEASES-JOURNAL OF THE COPD FOUNDATION 2021; 8:243-254. [PMID: 33610137 DOI: 10.15326/jcopdf.2020.0184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Purpose Respiratory diseases caused by nontuberculous mycobacteria (NTM) have become a significant concern for patients and health care providers. We aimed to compare symptoms experienced during the 2 week period, at a single point in time, by patients with NTM lung disease (NTMLD) who were currently on any medication to treat their NTMLD versus those not on any therapies. Methods We analyzed responses to a "Burden of NTM Survey" developed by the COPD Foundation. The study population included 266 individuals with NTMLD. Using adjusted penalized logistic regression models, we determined associations between the self-reported symptoms and the use of any medication to treat NTMLD. Results Based on available data, most respondents were aged 50 and older (95.1%), of female gender (93.1%), and had been living with NTMLD for more than 5 years (55.7%). Many respondents reported symptoms that bother them very often or daily. After adjustment for age and gender, duration of living with NTMLD, and other respiratory illnesses, patients on medication had significantly larger odds of reporting difficulty in walking 500 meters without stopping, difficulty in interacting with others, fatigue or lack of energy, feelings of sadness or depression related to illness, and shortness of breath, wheezing or other difficulties. Conclusion In this study, patients currently on any medication to treat their NTMLD reported more symptoms associated with their NTMLD. Further investigations are needed to explore whether increased symptoms are related to differences in disease severity and/or medication effects.
Collapse
Affiliation(s)
- Vira Pravosud
- College of Public Health, University of Kentucky, Lexington, Kentucky, United States
| | - David M Mannino
- College of Public Health, University of Kentucky, Lexington, Kentucky, United States.,COPD Foundation, Washington, DC, United States
| | | | - Quan Zhang
- School of Public Health, Rutgers University, Piscataway, New Jersey, United States
| | - Radmila Choate
- College of Public Health, University of Kentucky, Lexington, Kentucky, United States.,COPD Foundation, Washington, DC, United States
| | | | - Timothy R Aksamit
- Pulmonary Disease and Critical Care Medicine, Mayo Clinic, Rochester, Minnesota, United States
| |
Collapse
|
28
|
Sharma SK, Upadhyay V. Epidemiology, diagnosis & treatment of non-tuberculous mycobacterial diseases. Indian J Med Res 2020; 152:185-226. [PMID: 33107481 PMCID: PMC7881820 DOI: 10.4103/ijmr.ijmr_902_20] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Indexed: 12/13/2022] Open
Abstract
Non-tuberculous mycobacteria (NTM) are ubiquitously present in the environment, but NTM diseases occur infrequently. NTM are generally considered to be less virulent than Mycobacterium tuberculosis, however, these organisms can cause diseases in both immunocompromised and immunocompetent hosts. As compared to tuberculosis, person-to-person transmission does not occur except with M. abscessus NTM species among cystic fibrosis patients. Lung is the most commonly involved organ, and the NTM-pulmonary disease (NTM-PD) occurs frequently in patients with pre-existing lung disease. NTM may also present as localized disease involving extrapulmonary sites such as lymph nodes, skin and soft tissues and rarely bones. Disseminated NTM disease is rare and occurs in individuals with congenital or acquired immune defects such as HIV/AIDS. Rapid molecular tests are now available for confirmation of NTM diagnosis at species and subspecies level. Drug susceptibility testing (DST) is not routinely done except in non-responsive disease due to slowly growing mycobacteria ( M. avium complex, M. kansasii) or infection due to rapidly growing mycobacteria, especially M. abscessus. While the decision to treat the patients with NTM-PD is made carefully, the treatment is given for 12 months after sputum culture conversion. Additional measures include pulmonary rehabilitation and correction of malnutrition. Treatment response in NTM-PD is variable and depends on isolated NTM species and severity of the underlying PD. Surgery is reserved for patients with localized disease with good pulmonary functions. Future research should focus on the development and validation of non-culture-based rapid diagnostic tests for early diagnosis and discovery of newer drugs with greater efficacy and lesser toxicity than the available ones.
Collapse
Affiliation(s)
- Surendra K. Sharma
- Department of Molecular Medicine, Jamia Hamdard Institute of Molecular Medicine, Jamia Hamdard (Deemed-to-be-University), New Delhi, India
| | - Vishwanath Upadhyay
- Department of Molecular Medicine, Jamia Hamdard Institute of Molecular Medicine, Jamia Hamdard (Deemed-to-be-University), New Delhi, India
| |
Collapse
|
29
|
Silva CADME, Rojony R, Bermudez LE, Danelishvili L. Short-Chain Fatty Acids Promote Mycobacterium avium subsp. hominissuis Growth in Nutrient-Limited Environments and Influence Susceptibility to Antibiotics. Pathogens 2020; 9:pathogens9090700. [PMID: 32859077 PMCID: PMC7559849 DOI: 10.3390/pathogens9090700] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/19/2020] [Accepted: 08/21/2020] [Indexed: 12/13/2022] Open
Abstract
Mycobacterium avium subsp. hominissuis (MAH) is a common intracellular pathogen that infects immunocompromised individuals and patients with pre-existing chronic lung diseases, such as cystic fibrosis, who develop chronic and persistent pulmonary infections. The metabolic remodeling of MAH in response to host environmental stresses or within biofilms formed in bronchial airways plays an important role in development of the persistence phenotype contributing to the pathogen’s tolerance to antibiotic treatment. Recent studies suggest a direct relationship between bacterial metabolic state and antimicrobial susceptibility, and improved antibiotic efficacy has been associated with the enhanced metabolism in bacteria. In the current study, we tested approximately 200 exogenous carbon source-dependent metabolites and identified short-chain fatty acid (SCFA) substrates (propionic, butyric and caproic acids) that MAH can utilize in different physiological states. Selected SCFA enhanced MAH metabolic activity in planktonic and sessile states as well as in the static and established biofilms during nutrient-limited condition. The increased bacterial growth was observed in all conditions except in established biofilms. We also evaluated the influence of SCFA on MAH susceptibility to clinically used antibiotics in established biofilms and during infection of macrophages and found significant reduction in viable bacterial counts in vitro and in cultured macrophages, suggesting improved antibiotic effectiveness against persistent forms of MAH.
Collapse
Affiliation(s)
- Carlos Adriano de Matos e Silva
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA; (C.A.d.M.e.S.); (R.R.); (L.E.B.)
| | - Rajoana Rojony
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA; (C.A.d.M.e.S.); (R.R.); (L.E.B.)
| | - Luiz E. Bermudez
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA; (C.A.d.M.e.S.); (R.R.); (L.E.B.)
- Department of Microbiology, College of Sciences, Oregon State University, Corvallis, OR 97331, USA
| | - Lia Danelishvili
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA; (C.A.d.M.e.S.); (R.R.); (L.E.B.)
- Correspondence: ; Tel.: +1-(541)-737-6544; Fax: +1-(541)-737-2730
| |
Collapse
|
30
|
Daley CL, Iaccarino JM, Lange C, Cambau E, Wallace RJ, Andrejak C, Böttger EC, Brozek J, Griffith DE, Guglielmetti L, Huitt GA, Knight SL, Leitman P, Marras TK, Olivier KN, Santin M, Stout JE, Tortoli E, van Ingen J, Wagner D, Winthrop KL. Treatment of Nontuberculous Mycobacterial Pulmonary Disease: An Official ATS/ERS/ESCMID/IDSA Clinical Practice Guideline. Clin Infect Dis 2020; 71:e1-e36. [PMID: 32628747 PMCID: PMC7768748 DOI: 10.1093/cid/ciaa241] [Citation(s) in RCA: 459] [Impact Index Per Article: 91.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 03/05/2020] [Indexed: 12/14/2022] Open
Abstract
Nontuberculous mycobacteria (NTM) represent over 190 species and subspecies, some of which can produce disease in humans of all ages and can affect both pulmonary and extrapulmonary sites. This guideline focuses on pulmonary disease in adults (without cystic fibrosis or human immunodeficiency virus infection) caused by the most common NTM pathogens such as Mycobacterium avium complex, Mycobacterium kansasii, and Mycobacterium xenopi among the slowly growing NTM and Mycobacterium abscessus among the rapidly growing NTM. A panel of experts was carefully selected by leading international respiratory medicine and infectious diseases societies (ATS, ERS, ESCMID, IDSA) and included specialists in pulmonary medicine, infectious diseases and clinical microbiology, laboratory medicine, and patient advocacy. Systematic reviews were conducted around each of 22 PICO (Population, Intervention, Comparator, Outcome) questions and the recommendations were formulated, written, and graded using the GRADE (Grading of Recommendations Assessment, Development, and Evaluation) approach. Thirty-one evidence-based recommendations about treatment of NTM pulmonary disease are provided. This guideline is intended for use by healthcare professionals who care for patients with NTM pulmonary disease, including specialists in infectious diseases and pulmonary diseases.
Collapse
Affiliation(s)
- Charles L Daley
- Department of Medicine, National Jewish Health, Denver, Colorado, USA
- Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Jonathan M Iaccarino
- Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Christoph Lange
- Division of Clinical Infectious Diseases, Research Center Borstel, Borstel, Germany
- German Center for Infection Research (DZIF), Clinical Tuberculosis Unit, Borstel, Germany
- Respiratory Medicine & International Health, University of Lübeck, Lübeck, Germany
- Department of Medicine, Karolinska Institute, Stockholm, Sweden
| | - Emmanuelle Cambau
- National Reference Center for Mycobacteria and Antimycobacterial Resistance, APHP -Hôpital Lariboisière, Bacteriology; Inserm, University Paris Diderot, IAME UMR1137, Paris, France
| | - Richard J Wallace
- Mycobacteria/Nocardia Laboratory, Department of Microbiology, The University of Texas Health Science Center, Tyler, Texas, USA
| | - Claire Andrejak
- Respiratory and Intensive Care Unit, University Hospital Amiens, Amiens, France
- EA 4294, AGIR, Jules Verne Picardy University, Amiens, France
| | - Erik C Böttger
- Institute of Medical Microbiology, National Reference Center for Mycobacteria, University of Zurich, Zurich, Switzerland
| | - Jan Brozek
- Department of Clinical Epidemiology & Biostatistics, McMaster University Health Sciences Centre, Hamilton, Ontario, Canada
| | - David E Griffith
- Pulmonary Infectious Disease Section, University of Texas Health Science Center, Tyler, Texas, USA
| | - Lorenzo Guglielmetti
- National Reference Center for Mycobacteria and Antimycobacterial Resistance, APHP -Hôpital Lariboisière, Bacteriology; Inserm, University Paris Diderot, IAME UMR1137, Paris, France
- Team E13 (Bactériologie), Centre d’Immunologie et des Maladies Infectieuses, Sorbonne Université, Université Pierre et Marie Curie, Université Paris 06, Centre de Recherche 7, INSERM, IAME UMR1137, Paris, France
| | - Gwen A Huitt
- Department of Medicine, National Jewish Health, Denver, Colorado, USA
- Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Shandra L Knight
- Library and Knowledge Services, National Jewish Health, Denver, Colorado, USA
| | | | - Theodore K Marras
- Department of Medicine, University of Toronto and University Health Network, Toronto, Ontario, Canada
| | - Kenneth N Olivier
- Pulmonary Branch, National Heart, Lung and Blood Institute, Bethesda, Maryland, USA
| | - Miguel Santin
- Service of Infectious Diseases, Bellvitge University Hospital-IDIBELL, University of Barcelona, L’Hospitalet de Llobregat, Barcelona, Spain
| | - Jason E Stout
- Division of Infectious Diseases and International Health, Duke University Medical Center, Durham, North Carolina, USA
| | - Enrico Tortoli
- Emerging Bacterial Pathogens Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Jakko van Ingen
- Radboud Center for Infectious Diseases, Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Dirk Wagner
- Division of Infectious Diseases, Department of Medicine II, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Kevin L Winthrop
- Divisions of Infectious Diseases, Schools of Public Health and Medicine, Oregon Health and Science University, Portland, Oregon, USA
| |
Collapse
|
31
|
Daley CL, Iaccarino JM, Lange C, Cambau E, Wallace RJ, Andrejak C, Böttger EC, Brozek J, Griffith DE, Guglielmetti L, Huitt GA, Knight SL, Leitman P, Marras TK, Olivier KN, Santin M, Stout JE, Tortoli E, van Ingen J, Wagner D, Winthrop KL. Treatment of nontuberculous mycobacterial pulmonary disease: an official ATS/ERS/ESCMID/IDSA clinical practice guideline. Eur Respir J 2020; 56:2000535. [PMID: 32636299 PMCID: PMC8375621 DOI: 10.1183/13993003.00535-2020] [Citation(s) in RCA: 488] [Impact Index Per Article: 97.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 03/03/2020] [Indexed: 12/28/2022]
Abstract
Nontuberculous mycobacteria (NTM) represent over 190 species and subspecies, some of which can produce disease in humans of all ages and can affect both pulmonary and extrapulmonary sites. This guideline focuses on pulmonary disease in adults (without cystic fibrosis or human immunodeficiency virus infection) caused by the most common NTM pathogens such as Mycobacterium avium complex, Mycobacterium kansasii, and Mycobacterium xenopi among the slowly growing NTM and Mycobacterium abscessus among the rapidly growing NTM. A panel of experts was carefully selected by leading international respiratory medicine and infectious diseases societies (ATS, ERS, ESCMID, IDSA) and included specialists in pulmonary medicine, infectious diseases and clinical microbiology, laboratory medicine, and patient advocacy. Systematic reviews were conducted around each of 22 PICO (Population, Intervention, Comparator, Outcome) questions and the recommendations were formulated, written, and graded using the GRADE (Grading of Recommendations Assessment, Development, and Evaluation) approach. Thirty-one evidence-based recommendations about treatment of NTM pulmonary disease are provided. This guideline is intended for use by healthcare professionals who care for patients with NTM pulmonary disease, including specialists in infectious diseases and pulmonary diseases.
Collapse
Affiliation(s)
- Charles L. Daley
- National Jewish Health and University of Colorado Health
Sciences, Denver, Colorado, USA
| | | | - Christoph Lange
- Division of Clinical Infectious Diseases, Research Center
Borstel, Borstel, Germany, German Center for Infection Research (DZIF), Respiratory
Medicine & International Health, University of Lübeck, Lübeck,
Germany, and Dept of Medicine, Karolinska Institute, Stockholm, Sweden
| | - Emmanuelle Cambau
- National Reference Center for Mycobacteria and
Antimycobacterial Resistance, APHP -Hôpital Lariboisière,
Bacteriology; Inserm University Paris Diderot, IAME UMR1137, Bacteriology, Paris,
France
| | - Richard J. Wallace
- Mycobacteria/Nocardia Laboratory, Dept of Microbiology, The
University of Texas Health Science Center, Tyler, TX, USA
| | - Claire Andrejak
- Respiratory and Intensive Care Unit, University Hospital
Amiens, Amiens, France and EA 4294, AGIR, Jules Verne Picardy University, Amiens,
France
| | - Erik C. Böttger
- Institute of Medical Microbiology, National Reference
Center for Mycobacteria, University of Zurich, Zurich, Switzerland
| | - Jan Brozek
- Department of Clinical Epidemiology & Biostatistics,
McMaster University Health Sciences Centre, 1200 Main Street West, Hamilton, ON L8N
3Z5 Canada
| | - David E. Griffith
- Pulmonary Infectious Disease Section, University of Texas
Health Science Center, Tyler, TX, USA
| | - Lorenzo Guglielmetti
- National Reference Center for Mycobacteria and
Antimycobacterial Resistance, APHP -Hôpital Lariboisière,
Bacteriology; Inserm University Paris Diderot, IAME UMR1137, Bacteriology, Paris,
France
- Team E13 (Bactériologie), Centre
d’Immunologie et des Maladies Infectieuses, Sorbonne Université,
Université Pierre et Marie Curie, Université Paris 06, Centre de
Recherche 7, INSERM, IAME UMR1137, Paris, Francis
| | - Gwen A. Huitt
- Library and Knowledge Services, National Jewish Health,
Denver, Colorado, USA
| | - Shandra L. Knight
- Library and Knowledge Services, National Jewish Health,
Denver, Colorado, USA
| | | | - Theodore K. Marras
- Dept of Medicine, University of Toronto and University
Health Network, Toronto, ON, Canada
| | - Kenneth N. Olivier
- Pulmonary Branch, National Heart, Lung and Blood
Institute, Bethesda, MD, USA
| | - Miguel Santin
- Service of Infectious Diseases, Bellvitge University
Hospital-IDIBELL, University of Barcelona, L’Hospitalet de Llobregat,
Barcelona, Spain
| | - Jason E. Stout
- Division of Infectious Diseases and International Health,
Duke University Medical Center, Durham, NC, USA
| | - Enrico Tortoli
- Emerging Bacterial Pathogens Unit, IRCCS San Raffaele
Scientific Institute, Milan, Italy
| | - Jakko van Ingen
- Radboud Center for Infectious Diseases, Dept of Medical
Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Dirk Wagner
- Division of Infectious Diseases, Dept of Medicine II,
Medical Center - University of Freiburg, Faculty of Medicine, University of
Freiburg, Freiburg, Germany
| | - Kevin L. Winthrop
- Divisions of Infectious Diseases, Schools of Public
Health and Medicine, Oregon Health and Science University, Portland, OR, USA
| |
Collapse
|
32
|
Extensive Lung Resection for Nontuberculous Mycobacterial Lung Disease With Multilobar Lesions. Ann Thorac Surg 2020; 111:253-260. [PMID: 32621813 DOI: 10.1016/j.athoracsur.2020.05.067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 04/17/2020] [Accepted: 05/08/2020] [Indexed: 01/15/2023]
Abstract
BACKGROUND Nontuberculous mycobacterial lung disease often spreads to multiple lobes, and extensive lung resection (ELR) is sometimes required to control the disease. The safety and feasibility of ELR for nontuberculous mycobacterial lung disease remain unclear, however. METHODS This retrospective study included patients with nontuberculous mycobacterial lung disease who underwent adjuvant lung resection. Characteristics were compared between patients who underwent ELR and those who underwent simple anatomic lung resection (SALR). The outcome data were analyzed by a Cox regression analysis. RESULTS A total of 146 patients underwent ELR (n = 54) or SALR (n = 92). ELR was associated with a longer operative time (306 vs 237 minutes; P < .001) and higher incidence of prolonged air leak (17% vs 3.3%; P = .016) than SALR. Rates of mortality, sputum culture conversion (positive to negative), and microbiological recurrence did not differ markedly between the groups. In the multivariate analysis, ELR was not a significant risk factor for an unfavorable outcome after nontuberculous mycobacterial lung disease surgery (hazard ratio, 2.23; 95% confidence interval, 0.82-6.03; P= .11). CONCLUSIONS ELR for nontuberculous mycobacterial lung disease has some drawbacks compared with SALR but seems as safe and feasible as SALR. ELR may provide improved disease control in some cases of nontuberculous mycobacterial lung disease with multilobar lesions.
Collapse
|
33
|
Ly A, Liu J. Mycobacterial Virulence Factors: Surface-Exposed Lipids and Secreted Proteins. Int J Mol Sci 2020; 21:ijms21113985. [PMID: 32498243 PMCID: PMC7312605 DOI: 10.3390/ijms21113985] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/22/2020] [Accepted: 06/01/2020] [Indexed: 01/15/2023] Open
Abstract
The clinically important Mycobacterium tuberculosis (M. tb) and related mycobacterial pathogens use various virulence mechanisms to survive and cause disease in their hosts. Several well-established virulence factors include the surface-exposed lipids in the mycobacterial outer membrane, as well as the Esx family proteins and the Pro-Glu (PE)/ Pro-Pro-Glu (PPE) family proteins secreted by type VII secretion systems (T7SS). Five ESX T7SS exist in M. tb and three—EsxA secretion system-1 (ESX-1), ESX-3, and ESX-5—have been implicated in virulence, yet only the structures of ESX-3 and ESX-5 have been solved to date. Here, we summarize the current research on three outer membrane lipids—phthiocerol dimycocerosates, phenolic glycolipids, and sulfolipids—as well as the secretion machinery and substrates of three mycobacterial T7SS—ESX-1, ESX-3, and ESX-5. We propose a structural model of the M. tb ESX-1 system based on the latest structural findings of the ESX-3 and ESX-5 secretion apparatuses to gain insight into the transport mechanism of ESX-associated virulence factors.
Collapse
Affiliation(s)
| | - Jun Liu
- Correspondence: ; Tel.: +1-416-946-5067
| |
Collapse
|
34
|
Pan SW, Shu CC, Feng JY, Su WJ. Treatment for Mycobacterium avium complex lung disease. J Formos Med Assoc 2020; 119 Suppl 1:S67-S75. [DOI: 10.1016/j.jfma.2020.05.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 05/04/2020] [Accepted: 05/05/2020] [Indexed: 12/16/2022] Open
|
35
|
Ansari-Gilani K, Chalian H, Rassouli N, Bedayat A, Kalisz K. Chronic airspace disease: Review of the causes and key computed tomography findings. World J Radiol 2020; 12:29-47. [PMID: 32368328 PMCID: PMC7191307 DOI: 10.4329/wjr.v12.i4.29] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/09/2019] [Accepted: 01/28/2020] [Indexed: 02/06/2023] Open
Abstract
Chronic airspace diseases are commonly encountered by chest, body or general radiologists in everyday practice. Even though there is significant overlap in the imaging findings of different causes of chronic airspace disease, some key clinical, laboratory and imaging findings can be used to guide the radiologist to the correct diagnosis. The goal of this article is to review and compare these features.
Collapse
Affiliation(s)
- Kianoush Ansari-Gilani
- Department of Radiology, University Hospitals, Cleveland Medical Center, Cleveland, OH 44106, United States
| | - Hamid Chalian
- Department of Radiology, Duke University Medical Center, Durham, NC 27705, United States
| | - Negin Rassouli
- Department of Radiology, University Hospitals, Cleveland Medical Center, Cleveland, OH 44106, United States
| | - Arash Bedayat
- Department of Radiological Sciences, University of California-Los Angeles, Los Angeles, CA 90095, United States
| | - Kevin Kalisz
- Department of Radiology, Northwestern University, Chicago, IL 60611, United States
| |
Collapse
|
36
|
Khadawardi H, Marras TK, Mehrabi M, Brode SK. Clinical efficacy and safety of fluoroquinolone containing regimens in patients with Mycobacterium avium complex pulmonary disease. Eur Respir J 2020; 55:13993003.01240-2019. [PMID: 31980493 DOI: 10.1183/13993003.01240-2019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Accepted: 12/29/2019] [Indexed: 01/15/2023]
Affiliation(s)
- Hadeel Khadawardi
- Dept of Medicine, University of Toronto, Toronto, ON, Canada.,Joint Division of Respirology, Dept of Medicine, University Health Network and Sinai Health System, Toronto, ON, Canada.,West Park Healthcare Centre, Toronto, ON, Canada
| | - Theodore K Marras
- Dept of Medicine, University of Toronto, Toronto, ON, Canada.,Joint Division of Respirology, Dept of Medicine, University Health Network and Sinai Health System, Toronto, ON, Canada
| | - Mahtab Mehrabi
- Joint Division of Respirology, Dept of Medicine, University Health Network and Sinai Health System, Toronto, ON, Canada
| | - Sarah K Brode
- Dept of Medicine, University of Toronto, Toronto, ON, Canada.,Joint Division of Respirology, Dept of Medicine, University Health Network and Sinai Health System, Toronto, ON, Canada.,West Park Healthcare Centre, Toronto, ON, Canada
| |
Collapse
|
37
|
Minakshi P, Ghosh M, Brar B, Kumar R, Lambe UP, Ranjan K, Manoj J, Prasad G. Nano-antimicrobials: A New Paradigm for Combating Mycobacterial Resistance. Curr Pharm Des 2020; 25:1554-1579. [PMID: 31218956 DOI: 10.2174/1381612825666190620094041] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 06/11/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Mycobacterium group contains several pathogenic bacteria including M. tuberculosis where the emergence of multidrug-resistant tuberculosis (MDR-TB) and extensively drug-resistant tuberculosis (XDR-TB) is alarming for human and animal health around the world. The condition has further aggravated due to the speed of discovery of the newer drugs has been outpaced by the rate of resistance developed in microorganisms, thus requiring alternative combat strategies. For this purpose, nano-antimicrobials have emerged as a potential option. OBJECTIVE The current review is focused on providing a detailed account of nanocarriers like liposome, micelles, dendrimers, solid lipid NPs, niosomes, polymeric nanoparticles, nano-suspensions, nano-emulsion, mesoporous silica and alginate-based drug delivery systems along with the recent updates on developments regarding nanoparticle-based therapeutics, vaccines and diagnostic methods developed or under pipeline with their potential benefits and limitations to combat mycobacterial diseases for their successful eradication from the world in future. RESULTS Distinct morphology and the underlying mechanism of pathogenesis and resistance development in this group of organisms urge improved and novel methods for the early and efficient diagnosis, treatment and vaccination to eradicate the disease. Recent developments in nanotechnology have the potential to meet both the aspects: nano-materials are proven components of several efficient targeted drug delivery systems and the typical physicochemical properties of several nano-formulations have shown to possess distinct bacteriocidal properties. Along with the therapeutic aspects, nano-vaccines and theranostic applications of nano-formulations have grown in popularity in recent times as an effective alternative means to combat different microbial superbugs. CONCLUSION Nanomedicine holds a bright prospect to perform a key role in global tuberculosis elimination program.
Collapse
Affiliation(s)
- Prasad Minakshi
- Department of Animal Biotechnology, LLR University of Veterinary and Animal Sciences, Hisar-125 004, Haryana, India
| | - Mayukh Ghosh
- Department of Veterinary Biochemistry, Ranchi Veterinary College, Birsa Agricultural University, Ranchi-834 006, Jharkhand, India
| | - Basanti Brar
- Department of Animal Biotechnology, LLR University of Veterinary and Animal Sciences, Hisar-125 004, Haryana, India
| | - Rajesh Kumar
- Department of Veterinary Physiology, COVAS, KVASU, Pookode, Wayanad- 673576, Kerala, India
| | - Upendra P Lambe
- Department of Animal Biotechnology, LLR University of Veterinary and Animal Sciences, Hisar-125 004, Haryana, India
| | | | - Jinu Manoj
- RVDEC Mahendergarh, LUVAS, Haryana, India
| | - Gaya Prasad
- SVP University of Agriculture and Technology, Meerut, India
| |
Collapse
|
38
|
Kwon YS, Han M, Kwon BS, Kim OH, Lee HY, Shim TS, Chong YP, Jo KW. Discontinuation rates attributed to adverse events and treatment outcomes between clarithromycin and azithromycin in Mycobacterium avium complex lung disease: A propensity score analysis. J Glob Antimicrob Resist 2020; 22:106-112. [PMID: 32004723 DOI: 10.1016/j.jgar.2020.01.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 01/02/2020] [Accepted: 01/08/2020] [Indexed: 01/15/2023] Open
Abstract
OBJECTIVES This study aimed to compare the discontinuation rates attributed to adverse events and treatment outcomes between clarithromycin (CLR) and azithromycin (AZM) in patients with Mycobacterium avium complex lung disease (MAC-LD). METHODS Among patients diagnosed with MAC-LD during 2001-2013, 560 for whom treatment was initiated as a guideline-based therapy until May 2018 were selected for adverse event analysis. Of them, 316 who underwent treatment for ≥12 months were selected for outcome analysis. Their medical records were retrospectively reviewed. The discontinuation and treatment success rates were analysed after adjustments using the inverse probability of treatment weighted (IPTW) method. RESULTS Among the 560 patients, 466 (83.2%) and 94 (16.8%) started CLR-containing and AZM-containing regimens, respectively. The IPTW method using propensity scoring revealed that the discontinuation rate attributed to adverse events was significantly higher with CLR than AZM use (24.6% vs. 9.6%; P=0.001). The overall treatment success rate of the 316 patients who received guideline-based therapy for ≥12 months was 83.2%. Analysis adjusted by the IPTW method showed no significant difference in the treatment success rate between the use of CLR and AZM. Furthermore, 1-year and 3-year recurrence rates were similar with the two drugs (6.8% vs. 6.0%; P>0.999 and 31.0% vs. 37.5%; P=0.482, respectively). CONCLUSIONS These findings suggest that an AZM-containing regimen may be the better initial treatment choice for MAC-LD as it resulted in lesser discontinuation rates attributed to adverse events while offering similar patient outcomes when compared with CLR.
Collapse
Affiliation(s)
- Yong Shik Kwon
- Department of Internal Medicine, Keimyung University School of Medicine, Dongsan Medical Center, Daegu, South Korea
| | - Minkyu Han
- Department of Clinical Epidemiology and Biostatistics, Asan Medical Center, Seoul, South Korea
| | - Byoung Soo Kwon
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University Colleage of Medicine, Seongnam, Gyeonggi-do, South Korea
| | - Ock-Hwa Kim
- Division of Pulmonology and Critical Care Medicine, Department of Internal Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul, South Korea
| | - Ho-Young Lee
- Division of Pulmonology and Critical Care Medicine, Department of Internal Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul, South Korea
| | - Tae Sun Shim
- Division of Pulmonology and Critical Care Medicine, Department of Internal Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul, South Korea
| | - Yong Pil Chong
- Department of Infectious Diseases, University of Ulsan College of Medicine, Asan Medical Center, Seoul, South Korea.
| | - Kyung-Wook Jo
- Division of Pulmonology and Critical Care Medicine, Department of Internal Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul, South Korea.
| |
Collapse
|
39
|
Nontuberculous Mycobacterium. Respir Med 2020. [DOI: 10.1007/978-3-030-42382-7_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
40
|
Abstract
Infectious diseases are one of the main causes of morbidity and mortality worldwide. With new pathogens continuously emerging, known infectious diseases reemerging, increasing microbial resistance to antimicrobial agents, global environmental change, ease of world travel, and an increasing immunosuppressed population, recognition of infectious diseases plays an ever-important role in surgical pathology. This becomes particularly significant in cases where infectious disease is not suspected clinically and the initial diagnostic workup fails to include samples for culture. As such, it is not uncommon that a lung biopsy becomes the only material available in the diagnostic process of an infectious disease. Once the infectious nature of the pathological process is established, careful search for the causative agent is advised. This can often be achieved by examination of the hematoxylin and eosin-stained sections alone as many organisms or their cytopathic effects are visible on routine staining. However, ancillary studies such as histochemical stains, immunohistochemistry, in situ hybridization, or molecular techniques may be needed to identify the organism in tissue sections or for further characterization, such as speciation.
Collapse
Affiliation(s)
- Annikka Weissferdt
- Associate Professor, Department of Pathology, Division of Pathology and Laboratory Medicinec, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| |
Collapse
|
41
|
Rojony R, Martin M, Campeau A, Wozniak JM, Gonzalez DJ, Jaiswal P, Danelishvili L, Bermudez LE. Quantitative analysis of Mycobacterium avium subsp . hominissuis proteome in response to antibiotics and during exposure to different environmental conditions. Clin Proteomics 2019; 16:39. [PMID: 31749666 PMCID: PMC6852889 DOI: 10.1186/s12014-019-9260-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 11/04/2019] [Indexed: 01/08/2023] Open
Abstract
Mycobacterium avium subsp. hominissuis (MAH) belongs to the clinically important non-tuberculous mycobacterial group that infects immunocompromised patients and individuals with underling lung conditions. The need for prolonged therapy is a major challenge of MAH treatment, influencing the development of persistent and drug-resistant infections. The reason why bactericidal drugs take several months to eliminate MAH is unknown. To investigate MAH proteome remodeling under aerobic, anaerobic and biofilm conditions (as it is encountered in patient lungs) and identify metabolic changes potentially associated with bacterial persistent state, we performed the relative protein quantitative analysis using Tandem Mass Tag Mass Spectrometry sequencing. MAH was exposed to amikacin (4 μg/ml) and clarithromycin (16 μg/ml) under aerobic, anaerobic or biofilm condition for 24 h and the response was compared with bacterial proteomics of the corresponding conditions. Overall, 4000 proteins were identified out of 5313 MAH proteome of across all experimental groups. Numerous sets of de novo synthesized proteins belonging to metabolic pathways not evidenced in aerobic condition were found commonly enriched in both anaerobic and biofilm conditions, including pantothenate and CoA biosynthesis, glycerolipid metabolism, nitrogen metabolism and chloroalkene degradation, known to be associated with bacterial tolerance in M. tuberculosis. The common pathways observed in anaerobic and biofilm conditions following drug treatments were peptidoglycan biosynthesis, glycerophospholipid metabolism and protein export. The LprB lipoprotein, highly synthesized in MAH biofilms during drug treatments and shown to be essential for M. tuberculosis virulence and survival in vivo, was selected and overexpressed in MAH. Results demonstrate that LprB is secreted in MAH biofilms and the overexpression clone is more tolerant to antimicrobials than the wild-type strain. Our study identified promising metabolic pathways that can be targeted to prevent the bacterial tolerance mechanism and, subsequently, reduce the length of MAH therapy.
Collapse
Affiliation(s)
- Rajoana Rojony
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, USA
| | - Matthew Martin
- Department of Botany and Plant Pathology, College of Agricultural Sciences, Oregon State University, Corvallis, USA
| | - Anaamika Campeau
- Department of Pharmacology, School of Medicine, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, USA
| | - Jacob M. Wozniak
- Department of Pharmacology, School of Medicine, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, USA
| | - David J. Gonzalez
- Department of Pharmacology, School of Medicine, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, USA
| | - Pankaj Jaiswal
- Department of Botany and Plant Pathology, College of Agricultural Sciences, Oregon State University, Corvallis, USA
| | - L. Danelishvili
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, USA
| | - Luiz E. Bermudez
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, USA
- Department of Microbiology, College of Sciences, Oregon State University, Corvallis, USA
| |
Collapse
|
42
|
Kim HJ, Lee JS, Kwak N, Cho J, Lee CH, Han SK, Yim JJ. Role of ethambutol and rifampicin in the treatment of Mycobacterium avium complex pulmonary disease. BMC Pulm Med 2019; 19:212. [PMID: 31711459 PMCID: PMC6849249 DOI: 10.1186/s12890-019-0982-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 10/31/2019] [Indexed: 12/18/2022] Open
Abstract
Background A three-drug regimen (macrolide, ethambutol, and rifampicin) is recommended for the treatment of Mycobacterium avium complex pulmonary disease (MAC-PD). Although macrolide has proven efficacy, the role of ethambutol and rifampicin in patients without acquired immune deficiency syndrome is not proven with clinical studies. We aimed to clarify the roles of ethambutol and rifampicin in the treatment of MAC-PD. Methods Patients treated for MAC-PD between March 1st, 2009 and October 31st, 2018 were reviewed retrospectively. Rates of culture conversion, microbiological cure, treatment failure, and recurrence were compared according to the maintenance (≥6 months) of ethambutol or rifampicin with macrolide. Results Among the 237 patients, 122 (51.5%) maintained ethambutol and rifampicin with macrolide, 58 (24.5%) maintained ethambutol and macrolide, 32 (13.5%) maintained rifampicin and macrolide, and 25 (10.6%) maintained macrolide only. Culture conversion was reached for 190/237 (80.2%) patients and microbiological cure was achieved for 129/177 (72.9%) who completed the treatment. Treatment failure despite ≥12 months of treatment was observed in 66/204 (32.4%), and recurrence was identified in 16/129 (12.4%) who achieved microbiological cure. Compared with maintenance of macrolide only, maintenance of ethambutol, rifampicin or both with macrolide were associated with higher odds of culture conversion [odds ratio (OR), 95% confidence interval (CI): 18.06, 3.67–88.92; 15.82, 2.38–105.33; and 17.12, 3.93–74.60, respectively]. Higher odds of microbiological cure were associated with maintenance of both ethambutol and rifampicin with macrolide (OR, 95% CI: 5.74, 1.54–21.42) and macrolide and ethambutol (OR, 95% CI: 5.12, 1.72–15.24) but not macrolide and rifampicin. Maintenance of both ethambutol and rifampicin with macrolide was associated with lower odds of treatment failure (OR, 95% CI: 0.09, 0.01–0.53) compared with macrolide only, while maintenance of one of these with macrolide was not. Maintenance of both ethambutol and rifampicin or one of these with macrolide did not decrease the probability of recurrence when compared with macrolide only. Conclusions Maintenance (≥6 months) of ethambutol and rifampicin with macrolide was associated with the most favorable treatment outcomes among patients with MAC-PD. Given the association between ongoing ethambutol use and microbiological cure, clinicians should maintain ethambutol unless definite adverse events develop.
Collapse
Affiliation(s)
- Hyung-Jun Kim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University College of Medicine, 101 Daehak-ro Jongno-gu, Seoul, 03080, Republic of Korea
| | - Jong Sik Lee
- Division of Pulmonary Medicine, Department of Internal Medicine, Mediplex Sejong Hospital, 20 Gyeyangmunhwa-ro Gyeyang-gu, Incheon, 21080, Republic of Korea
| | - Nakwon Kwak
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University College of Medicine, 101 Daehak-ro Jongno-gu, Seoul, 03080, Republic of Korea
| | - Jaeyoung Cho
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University College of Medicine, 101 Daehak-ro Jongno-gu, Seoul, 03080, Republic of Korea
| | - Chang-Hoon Lee
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University Hospital, 101 Daehak-ro Jongno-gu, Seoul, 03080, Republic of Korea
| | - Sung Koo Han
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University College of Medicine, 101 Daehak-ro Jongno-gu, Seoul, 03080, Republic of Korea
| | - Jae-Joon Yim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University College of Medicine, 101 Daehak-ro Jongno-gu, Seoul, 03080, Republic of Korea.
| |
Collapse
|
43
|
Gharbi R, Mhenni B, Ben Fraj S, Mardassi H. Nontuberculous mycobacteria isolated from specimens of pulmonary tuberculosis suspects, Northern Tunisia: 2002-2016. BMC Infect Dis 2019; 19:819. [PMID: 31533664 PMCID: PMC6751674 DOI: 10.1186/s12879-019-4441-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 09/04/2019] [Indexed: 01/15/2023] Open
Abstract
Background Reports on the worldwide ascending trend of pulmonary nontuberculous mycobacteria (NTM) isolation rates and their effective role in respiratory tract infections are compelling. However, as yet, there are no such data relating to Tunisia. Methods Here we carried out a retrospective review of mycobacterial cultures originating from Northern Tunisia, which have been processed in the laboratory of mycobacteria of the Institut Pasteur de Tunis, during the time period 2002–2016. All pulmonary NTM (PNTM) isolates available for culture were characterized phenotypically and their taxonomic status was further established based on polymorphisms in rpoB, 16S rRNA, hsp65, and sodA DNA gene sequences. Results Of the 10,466 specimens collected from HIV-negative Tunisian patients with presumptive clinical pulmonary TB, 60 (0.6%) yielded PNTM isolates. An overall annual PNTM isolation prevalence of 0.2/100,000 was estimated. As far as could be ascertained, this isolation rate accounts amongst the lowest reported hitherto throughout the world. Among the 30 NTM isolates that were available for culture, 27 (90.0%) have been identified to the species level. The most commonly encountered species was Mycobacterium kansasii (23.3%) subtype 1. Strikingly, all M. kansasii cases were male patients originating from Bizerte, an industrialized region particularly known for iron industry. The remaining NTM species were M. fortuitum (16.6%), M. novocastrense (16.6%), M. chelonae (10.0%), M. gordonae (6.6%), M. gadium (6.6%), M. peregrinum (3.3%), M. porcinum (3.3%), and M. flavescens (3.3%). There were no bacteria of the M. avium complex, the most frequently isolated NTM globally, and the main driver of the rise of NTM-lung diseases. Conclusions This study uncovered an exceptional low prevalence of PNTM isolation among HIV-negative TB suspects in Northern Tunisia, suggesting a very low burden of NTM pulmonary disease. However, the frequent isolation of M. kansasii subtype 1, the most pathogenic subtype, particularly from the industrialized region of Bizerte, strongly suggests its effective involvement in a typical pulmonary disease. Supplementary information Supplementary information accompanies this paper at 10.1186/s12879-019-4441-1.
Collapse
Affiliation(s)
- Reem Gharbi
- Unit of Typing & Genetics of Mycobacteria, Laboratory of Molecular Microbiology, Vaccinology, and Biotechnology Development, Institut Pasteur de Tunis, Université de Tunis El Manar, 13 Place Pasteur, BP74, 1002, Tunis, Tunisia
| | - Besma Mhenni
- Unit of Typing & Genetics of Mycobacteria, Laboratory of Molecular Microbiology, Vaccinology, and Biotechnology Development, Institut Pasteur de Tunis, Université de Tunis El Manar, 13 Place Pasteur, BP74, 1002, Tunis, Tunisia
| | - Saloua Ben Fraj
- Unit of Typing & Genetics of Mycobacteria, Laboratory of Molecular Microbiology, Vaccinology, and Biotechnology Development, Institut Pasteur de Tunis, Université de Tunis El Manar, 13 Place Pasteur, BP74, 1002, Tunis, Tunisia
| | - Helmi Mardassi
- Unit of Typing & Genetics of Mycobacteria, Laboratory of Molecular Microbiology, Vaccinology, and Biotechnology Development, Institut Pasteur de Tunis, Université de Tunis El Manar, 13 Place Pasteur, BP74, 1002, Tunis, Tunisia.
| |
Collapse
|
44
|
Rokadiya S, Millar FR, Tiberi S. Non-tuberculous mycobacterial pulmonary disease: a clinical update. Br J Hosp Med (Lond) 2019; 79:C118-C122. [PMID: 30070955 DOI: 10.12968/hmed.2018.79.8.c118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- S Rokadiya
- Infectious Diseases and General Medicine Specialist Registrar, Royal London Hospital, Bart's Health NHS Trust, London E1 1BB
| | - F R Millar
- ECAT Clinical Research Fellow and Respiratory Specialist Registrar, University of Edinburgh, Edinburgh
| | - S Tiberi
- Infectious Diseases Consultant, Royal London Hospital, Bart's Health NHS Trust, London
| |
Collapse
|
45
|
Abstract
Free-living bacteria can assemble into multicellular structures called biofilms. Biofilms help bacteria tolerate multiple stresses, including antibiotics and the host immune system. Nontuberculous mycobacteria are a group of emerging opportunistic pathogens that utilize biofilms to adhere to household plumbing and showerheads and to avoid phagocytosis by host immune cells. Typically, bacteria regulate biofilm formation by controlling expression of adhesive structures to attach to surfaces and other bacterial cells. Mycobacteria harbor a unique cell wall built chiefly of long-chain mycolic acids that confers hydrophobicity and has been thought to cause constitutive aggregation in liquid media. Here we show that aggregation is instead a regulated process dictated by the balance of available carbon and nitrogen. Understanding that mycobacteria utilize metabolic cues to regulate the transition between planktonic and aggregated cells reveals an inroad to controlling biofilm formation through targeted therapeutics. Nontuberculous mycobacteria (NTM) are emerging opportunistic pathogens that colonize household water systems and cause chronic lung infections in susceptible patients. The ability of NTM to form surface-attached biofilms in the nonhost environment and corded aggregates in vivo is important to their ability to persist in both contexts. Underlying the development of these multicellular structures is the capacity of mycobacterial cells to adhere to one another. Unlike most other bacteria, NTM spontaneously and constitutively aggregate in vitro, hindering our ability to understand the transition between planktonic and aggregated cells. While culturing a model NTM, Mycobacterium smegmatis, in rich medium, we fortuitously discovered that planktonic cells accumulate after ∼3 days of growth. By providing selective pressure for bacteria that disperse earlier, we isolated a strain with two mutations in the oligopeptide permease operon (opp). A mutant lacking the opp operon (Δopp) disperses earlier than wild type (WT) due to a defect in nutrient uptake. Experiments with WT M. smegmatis revealed that growth as aggregates is favored when carbon is replete, but under conditions of low available carbon relative to available nitrogen, M. smegmatis grows as planktonic cells. By adjusting carbon and nitrogen sources in defined medium, we tuned the cellular C/N ratio such that M. smegmatis grows either as aggregates or as planktonic cells. C/N-mediated aggregation regulation is widespread among NTM with the possible exception of rough-colony Mycobacterium abscessus isolates. Altogether, we show that NTM aggregation is a controlled process that is governed by the relative availability of carbon and nitrogen for metabolism.
Collapse
|
46
|
Inhaled Antibiotics for Mycobacterial Lung Disease. Pharmaceutics 2019; 11:pharmaceutics11070352. [PMID: 31331119 PMCID: PMC6680843 DOI: 10.3390/pharmaceutics11070352] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 07/09/2019] [Accepted: 07/15/2019] [Indexed: 12/22/2022] Open
Abstract
Mycobacterial lung diseases are an increasing global health concern. Tuberculosis and nontuberculous mycobacteria differ in disease severity, epidemiology, and treatment strategies, but there are also a number of similarities. Pathophysiology and disease progression appear to be relatively similar between these two clinical diagnoses, and as a result these difficult to treat pulmonary infections often require similarly extensive treatment durations of multiple systemic drugs. In an effort to improve treatment outcomes for all mycobacterial lung diseases, a significant body of research has investigated the use of inhaled antibiotics. This review discusses previous research into inhaled development programs, as well as ongoing research of inhaled therapies for both nontuberculous mycobacterial lung disease, and tuberculosis. Due to the similarities between the causative agents, this review will also discuss the potential cross-fertilization of development programs between these similar-yet-different diseases. Finally, we will discuss some of the perceived difficulties in developing a clinically utilized inhaled antibiotic for mycobacterial diseases, and potential arguments in favor of the approach.
Collapse
|
47
|
Mycobacterium avium complex pulmonary disease: new epidemiology and management concepts. Curr Opin Infect Dis 2019; 31:199-207. [PMID: 29346118 DOI: 10.1097/qco.0000000000000437] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
PURPOSE OF REVIEW The prevalence of Mycobacterium avium complex (MAC)-related pulmonary disease has been increasing because of environmental factors, changes in organism virulence, and evolving host susceptibility. Treatment is often complicated by adverse effects, development of drug resistance, and refractory disease, with recurrence rates as high as 25-45%. RECENT FINDINGS Aerosolization of water, soil, or dusts are the likely sources of MAC-related pulmonary disease in susceptible individuals. The management of MAC-related pulmonary disease requires a multimodality approach, including antimicrobial therapy in appropriate patients, employment of mucus clearance techniques, instituting changes in the individual's home environment and personal habits to reduce environmental exposure to MAC, prevention of reflux, and maintenance of a healthy body weight. When the standard treatment for MAC-related pulmonary disease is not possible because of drug intolerance, antibiotic resistance, or progression of disease, second-line agents such as inhaled amikacin, clofazimine, bedaquiline, and delamanid must be considered, despite limited experience and few studies to guide their use. SUMMARY Individuals who have proven to be susceptible to MAC-related pulmonary disease should institute measures to reduce exposure to environmental sources of infection. Further research is needed to assess the impact of such preventive strategies on the incidence of new infection and disease recurrence. The efficacy of new medications for MAC-related pulmonary disease and their use in different combinations also requires further study.
Collapse
|
48
|
Aznar ML, Marras TK, Elshal AS, Mehrabi M, Brode SK. Safety and effectiveness of low-dose amikacin in nontuberculous mycobacterial pulmonary disease treated in Toronto, Canada. BMC Pharmacol Toxicol 2019; 20:37. [PMID: 31159865 PMCID: PMC6547538 DOI: 10.1186/s40360-019-0302-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 04/17/2019] [Indexed: 01/15/2023] Open
Abstract
Background Treatment guidelines suggest either a low-dose or high-dose approach when prescribing amikacin for nontuberculous mycobacterial pulmonary disease (NTM PD), but data supporting the low-dose approach are limited. The purpose of this study was to describe the safety and efficacy of the use of a low-dose of intravenous amikacin in a cohort of patients with NTM PD. Methods We retrospectively reviewed all patients with NTM PD who received amikacin at our institution between July 1, 2003 and February 28, 2017. Demographics, clinical, microbiological and radiological data, indication and dose of amikacin, and adverse drug effects were recorded. Results A total of 107 patients received a regimen containing amikacin for a median (IQR) of 7 (4–11) months. Seventy (65.4%) were female and the mean age (SD) was 58.3 (14.9) years. Amikacin was started at a median dose of 9.9 (2.5) mg/kg/day. Ototoxicity was observed in 30/77 (39%) patients and it was related to female sex (OR 4.96, 95%CI 1.24–19.87), and total dose of amikacin per bodyweight (OR 1.62, 95%CI 1.08–2.43). Patients of East Asian ethnicity were less likely to develop ototoxicity (0.24, 95%CI 0.06–0.95). Out of 96 patients who received amikacin for more than 3 months, 65 (67.7%) experienced symptom improvement and 30/62 (49.2%) converted their sputum to culture negative within a year. Conclusions Patients with NTM PD treated with low-dose intravenous amikacin frequently developed ototoxicity, which was associated with female sex, and total dose of amikacin per bodyweight. Physicians should carefully consider dose, treatment duration, and long term prognosis in balancing risks and benefits of intravenous amikacin in NTM PD.
Collapse
Affiliation(s)
- Maria Luisa Aznar
- Joint Division of Respirology, Department of Medicine, University Health Network and Sinai Health System, 399 Bathurst Street, Toronto, M5T 2S8, ON, Canada. .,Medicine Department, Vall d'Hebron University Hospital, PROSICS Barcelona, Universitat Autònoma de Barcelona, Barcelona, Spain.
| | - Theodore K Marras
- Joint Division of Respirology, Department of Medicine, University Health Network and Sinai Health System, 399 Bathurst Street, Toronto, M5T 2S8, ON, Canada
| | - Ahmed Said Elshal
- Joint Division of Respirology, Department of Medicine, University Health Network and Sinai Health System, 399 Bathurst Street, Toronto, M5T 2S8, ON, Canada.,Gastroenterology Department, National Hepatology and Tropical Medicine Institute, Cairo, Egypt
| | - Mahtab Mehrabi
- Joint Division of Respirology, Department of Medicine, University Health Network and Sinai Health System, 399 Bathurst Street, Toronto, M5T 2S8, ON, Canada
| | - Sarah K Brode
- Joint Division of Respirology, Department of Medicine, University Health Network and Sinai Health System, 399 Bathurst Street, Toronto, M5T 2S8, ON, Canada.,West Park Healthcare Centre, Toronto, Canada
| |
Collapse
|
49
|
Headley CA, Gerberick A, Mehta S, Wu Q, Yu L, Fadda P, Khan M, Ganesan LP, Turner J, Rajaram MVS. Nontuberculous mycobacterium M. avium infection predisposes aged mice to cardiac abnormalities and inflammation. Aging Cell 2019; 18:e12926. [PMID: 30834643 PMCID: PMC6516181 DOI: 10.1111/acel.12926] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 12/12/2018] [Accepted: 01/20/2019] [Indexed: 12/14/2022] Open
Abstract
Biological aging dynamically alters normal immune and cardiac function, favoring the production of pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α) and increased instances of cardiac distress. Cardiac failure is the primary reason for hospitalization of the elderly (65+ years). The elderly are also increasingly susceptible to developing chronic bacterial infections due to aging associated immune abnormalities. Since bacterial infections compound the rates of cardiac failure in the elderly, and this phenomenon is not entirely understood, the interplay between the immune system and cardiovascular function in the elderly is of great interest. Using Mycobacterium avium, an opportunistic pathogen, we investigated the effect of mycobacteria on cardiac function in aged mice. Young (2-3 months) and old (18-20 months) C57BL/6 mice were intranasally infected with M. avium strain 104, and we compared the bacterial burden, immune status, cardiac electrical activity, pathology, and function of infected mice against uninfected age-matched controls. Herein, we show that biological aging may predispose old mice infected with M. avium to mycobacterial dissemination into the heart tissue and this leads to cardiac dysfunction. M. avium infected old mice had significant dysrhythmia, cardiac hypertrophy, increased recruitment of CD45+ leukocytes, cardiac fibrosis, and increased expression of inflammatory genes in isolated heart tissue. This is the first study to report the effect of mycobacteria on cardiac function in an aged model. Our findings are critical to understanding how nontuberculous mycobacterium (NTM) and other mycobacterial infections contribute to cardiac dysfunction in the elderly population.
Collapse
Affiliation(s)
- Colwyn A. Headley
- Department of Microbial Infection and Immunity, College of MedicineThe Ohio State University Wexner Medical CenterColumbusOhio
- Texas Biomedical Research Institute8715 W. Military Dr.San AntonioTX 78227
| | - Abigail Gerberick
- Department of Microbiology, College of MedicineThe Ohio State University Wexner Medical CenterColumbusOhio
| | - Sumiran Mehta
- Department of Microbiology, College of MedicineThe Ohio State University Wexner Medical CenterColumbusOhio
| | - Qian Wu
- Department of Microbial Infection and Immunity, College of MedicineThe Ohio State University Wexner Medical CenterColumbusOhio
| | - Lianbo Yu
- Department of Biomedical Informatics, College of MedicineThe Ohio State University Wexner Medical CenterColumbusOhio
| | - Paolo Fadda
- Department of Biomedical Informatics, College of MedicineThe Ohio State University Wexner Medical CenterColumbusOhio
- Genomics Shared Resource‐Comprehensive Cancer Center, College of MedicineThe Ohio State University Wexner Medical CenterColumbusOhio
| | - Mahmood Khan
- Department Emergency Medicine & Physiology and Cell Biology, College of MedicineThe Ohio State University Wexner Medical CenterColumbusOhio
| | - Latha Prabha Ganesan
- Department of Internal Medicine, College of MedicineThe Ohio State University Wexner Medical CenterColumbusOhio
| | - Joanne Turner
- Department of Microbial Infection and Immunity, College of MedicineThe Ohio State University Wexner Medical CenterColumbusOhio
- Texas Biomedical Research Institute8715 W. Military Dr.San AntonioTX 78227
| | - Murugesan V. S. Rajaram
- Department of Microbial Infection and Immunity, College of MedicineThe Ohio State University Wexner Medical CenterColumbusOhio
| |
Collapse
|
50
|
Lewis MS, Danelishvili L, Rose SJ, Bermudez LE. MAV_4644 Interaction with the Host Cathepsin Z Protects Mycobacterium avium subsp. hominissuis from Rapid Macrophage Killing. Microorganisms 2019; 7:microorganisms7050144. [PMID: 31117286 PMCID: PMC6560410 DOI: 10.3390/microorganisms7050144] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 05/03/2019] [Accepted: 05/10/2019] [Indexed: 01/15/2023] Open
Abstract
Mycobacterium avium subspecies hominissuis (MAH) is an opportunistic pathogen that is ubiquitous in the environment and often isolated from faucets and showerheads. MAH mostly infects humans with an underlying disease, such as chronic pulmonary disorder, cystic fibrosis, or individuals that are immunocompromised. In recent years, MAH infections in patients without concurrent disease are increasing in prevalence as well. This pathogen is resistant to many antibiotics due to the impermeability of its envelope and due to the phenotypic resistance established within the host macrophages, making difficult to treat MAH infections. By screening a MAH transposon library for mutants that are susceptible to killing by reactive nitrogen intermediaries, we identified the MAV_4644 (MAV_4644:Tn) gene knockout clone that was also significantly attenuated in growth within the host macrophages. Complementation of the mutant restored the wild-type phenotype. The MAV_4644 gene encodes a dual-function protein with a putative pore-forming function and ADP-ribosyltransferase activity. Protein binding assay suggests that MAV_4644 interacts with the host lysosomal peptidase cathepsin Z (CTSZ), a key regulator of the cell signaling and inflammation. Pathogenic mycobacteria have been shown to suppress the action of many cathepsins to establish their intracellular niche. Our results demonstrate that knocking-down the cathepsin Z in human macrophages rescues the attenuated phenotype of MAV_4644:Tn clone. Although, the purified cathepsin Z by itself does not have any killing effect on MAH, it contributes to bacterial killing in the presence of the nitric oxide (NO). Our data suggest that the cathepsin Z is involved in early macrophage killing of MAH, and the virulence factor MAV_4644 protects the pathogen from this process.
Collapse
Affiliation(s)
- Matthew S Lewis
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA.
| | - Lia Danelishvili
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA.
| | - Sasha J Rose
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA.
| | - Luiz E Bermudez
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA.
- Department of Microbiology, College of Science, Oregon State University, Corvallis, OR 97331, USA.
| |
Collapse
|