1
|
Li FJ, Zhang ZX, Li YDY, Li JY, Liu YN, Liu XJ, Zhang RY, Liu X, Zhang W, Xu CY, Cui GY. High bioavailable testosterone levels increase the incidence of isolated REM sleep behavior disorder: Results from multivariable and network Mendelian randomization analysis. Sleep Med 2024; 121:102-110. [PMID: 38959716 DOI: 10.1016/j.sleep.2024.06.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 06/09/2024] [Accepted: 06/24/2024] [Indexed: 07/05/2024]
Abstract
OBJECTIVES To explore the causal relationships between sex hormone levels and incidence of isolated REM sleep behavior disorder (iRBD). METHODS In our study, we utilized Genome-Wide Association Studies (GWAS) data for iRBD, including 9447 samples with 1061 cases of iRBD provided by the International RBD Study Group. Initially, we conducted a two-sample univariate MR analysis to explore the impact of sex hormone-related indicators on iRBD. This was followed by the application of multivariable MR methods to adjust for other hormone levels and potential confounders. Finally, we undertook a network MR analysis, employing brain structure Magnetic Resonance Imaging (MRI) characteristics as potential mediators, to examine whether sex hormones could indirectly influence the incidence of iRBD by affecting brain structure. RESULTS Bioavailable testosterone (BioT) is an independent risk factor for iRBD (Odds Ratio [95 % Confidence Interval] = 2.437 [1.308, 4.539], P = 0.005, corrected-P = 0.020), a finding that remained consistent even after adjusting for other sex hormone levels and potential confounders. Additionally, BioT appears to indirectly increase the risk of iRBD by reducing axial diffusivity and increasing the orientation dispersion index in the left cingulum and cingulate gyrus. CONCLUSIONS Our research reveals that elevated levels of BioT contribute to the development of iRBD. However, the specific impact of BioT on different sexes remains unclear. Furthermore, high BioT may indirectly lead to iRBD by impairing normal pathways in the left cingulum and cingulate gyrus and fostering abnormal pathway formation.
Collapse
Affiliation(s)
- Fu-Jia Li
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221006, People's Republic of China
| | - Zi-Xuan Zhang
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221006, People's Republic of China
| | - Yang-Dan-Yu Li
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221006, People's Republic of China
| | - Jin-Yu Li
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221006, People's Republic of China
| | - Yu-Ning Liu
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221006, People's Republic of China
| | - Xuan-Jing Liu
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221006, People's Republic of China
| | - Ru-Yu Zhang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221006, People's Republic of China
| | - Xu Liu
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221006, People's Republic of China
| | - Wei Zhang
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221006, People's Republic of China
| | - Chuan-Ying Xu
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221006, People's Republic of China
| | - Gui-Yun Cui
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221006, People's Republic of China.
| |
Collapse
|
2
|
Hilz EN, Gore AC. Sex-specific Effects of Endocrine-disrupting Chemicals on Brain Monoamines and Cognitive Behavior. Endocrinology 2022; 163:bqac128. [PMID: 35939362 PMCID: PMC9419695 DOI: 10.1210/endocr/bqac128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Indexed: 11/19/2022]
Abstract
The period of brain sexual differentiation is characterized by the development of hormone-sensitive neural circuits that govern the subsequent presentation of sexually dimorphic behavior in adulthood. Perturbations of hormones by endocrine-disrupting chemicals (EDCs) during this developmental period interfere with an organism's endocrine function and can disrupt the normative organization of male- or female-typical neural circuitry. This is well characterized for reproductive and social behaviors and their underlying circuitry in the hypothalamus and other limbic regions of the brain; however, cognitive behaviors are also sexually dimorphic, with their underlying neural circuitry potentially vulnerable to EDC exposure during critical periods of brain development. This review provides recent evidence for sex-specific changes to the brain's monoaminergic systems (dopamine, serotonin, norepinephrine) after developmental EDC exposure and relates these outcomes to sex differences in cognition such as affective, attentional, and learning/memory behaviors.
Collapse
Affiliation(s)
- Emily N Hilz
- Division of Pharmacology and Toxicology, The University of Texas at Austin, Austin, Texas, 78712, USA
| | - Andrea C Gore
- Correspondence: Andrea C. Gore, PhD, College of Pharmacy, The University of Texas at Austin, 107 W Dean Keeton St, Box C0875, Austin, TX, 78712, USA.
| |
Collapse
|
3
|
Nuclear Receptors in Myocardial and Cerebral Ischemia-Mechanisms of Action and Therapeutic Strategies. Int J Mol Sci 2021; 22:ijms222212326. [PMID: 34830207 PMCID: PMC8617737 DOI: 10.3390/ijms222212326] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/08/2021] [Accepted: 11/10/2021] [Indexed: 12/12/2022] Open
Abstract
Nearly 18 million people died from cardiovascular diseases in 2019, of these 85% were due to heart attack and stroke. The available therapies although efficacious, have narrow therapeutic window and long list of contraindications. Therefore, there is still an urgent need to find novel molecular targets that could protect the brain and heart against ischemia without evoking major side effects. Nuclear receptors are one of the promising targets for anti-ischemic drugs. Modulation of estrogen receptors (ERs) and peroxisome proliferator-activated receptors (PPARs) by their ligands is known to exert neuro-, and cardioprotective effects through anti-apoptotic, anti-inflammatory or anti-oxidant action. Recently, it has been shown that the expression of aryl hydrocarbon receptor (AhR) is strongly increased after brain or heart ischemia and evokes an activation of apoptosis or inflammation in injury site. We hypothesize that activation of ERs and PPARs and inhibition of AhR signaling pathways could be a promising strategy to protect the heart and the brain against ischemia. In this Review, we will discuss currently available knowledge on the mechanisms of action of ERs, PPARs and AhR in experimental models of stroke and myocardial infarction and future perspectives to use them as novel targets in cardiovascular diseases.
Collapse
|
4
|
Lenert ME, Avona A, Garner KM, Barron LR, Burton MD. Sensory Neurons, Neuroimmunity, and Pain Modulation by Sex Hormones. Endocrinology 2021; 162:bqab109. [PMID: 34049389 PMCID: PMC8237991 DOI: 10.1210/endocr/bqab109] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Indexed: 12/16/2022]
Abstract
The inclusion of women in preclinical pain studies has become more commonplace in the last decade as the National Institutes of Health (NIH) released its "Sex as a Biological Variable" mandate. Presumably, basic researchers have not had a comprehensive understanding about neuroimmune interactions in half of the population and how hormones play a role in this. To date, we have learned that sex hormones contribute to sexual differentiation of the nervous system and sex differences in behavior throughout the lifespan; however, the cycling of sex hormones does not always explain these differences. Here, we highlight recent advances in our understanding of sex differences and how hormones and immune interactions influence sensory neuron activity to contribute to physiology and pain. Neuroimmune mechanisms may be mediated by different cell types in each sex, as the actions of immune cells are sexually dimorphic. Unfortunately, the majority of studies assessing neuronal contributions to immune function have been limited to males, so it is unclear if the mechanisms are similar in females. Finally, pathways that control cellular metabolism, like nuclear receptors, have been shown to play a regulatory role both in pain and inflammation. Overall, communication between the neuroimmune and endocrine systems modulate pain signaling in a sex-dependent manner, but more research is needed to reveal nuances of these mechanisms.
Collapse
Affiliation(s)
- Melissa E Lenert
- Neuroimmunology and Behavior Laboratory, Center for Advanced Pain Studies (CAPS), Department of Neuroscience, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas 75080, USA
| | - Amanda Avona
- Neuroimmunology and Behavior Laboratory, Center for Advanced Pain Studies (CAPS), Department of Neuroscience, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas 75080, USA
| | - Katherine M Garner
- Neuroimmunology and Behavior Laboratory, Center for Advanced Pain Studies (CAPS), Department of Neuroscience, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas 75080, USA
| | - Luz R Barron
- Neuroimmunology and Behavior Laboratory, Center for Advanced Pain Studies (CAPS), Department of Neuroscience, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas 75080, USA
| | - Michael D Burton
- Neuroimmunology and Behavior Laboratory, Center for Advanced Pain Studies (CAPS), Department of Neuroscience, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas 75080, USA
| |
Collapse
|
5
|
Rintz E, Gaffke L, Podlacha M, Brokowska J, Cyske Z, Węgrzyn G, Pierzynowska K. Transcriptomic Changes Related to Cellular Processes with Particular Emphasis on Cell Activation in Lysosomal Storage Diseases from the Group of Mucopolysaccharidoses. Int J Mol Sci 2020; 21:ijms21093194. [PMID: 32366041 PMCID: PMC7246638 DOI: 10.3390/ijms21093194] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/27/2020] [Accepted: 04/28/2020] [Indexed: 12/13/2022] Open
Abstract
Although mucopolysaccharidoses (MPS), inherited metabolic diseases from the group of lysosomal storage diseases (LSD), are monogenic disorders, recent studies indicated that their molecular mechanisms are complicated. Storage of glycosaminoglycans (GAGs), arising from a deficiency in one of the enzymes involved in the degradation of these compounds, is the primary cause of each MPS type. However, dysfunctions of various cellular organelles and disturbance of cellular processes have been reported which contribute considerably to pathomechanisms of the disease. Here, we present a complex transcriptomic analysis in which all types and subtypes of MPS were investigated, with special emphasis on genes related to cell activation processes. Complex changes in expression of these genes were found in fibroblasts of all MPS types, with number of transcripts revealing higher or lower levels (relative to control fibroblasts) between 19 and over 50, depending on MPS type. Genes in which expression was significantly affected in most MPS types code for proteins involved in following processes, classified according to Gene Ontology knowledge database: cell activation, cell growth, cell recognition, and cell division. Levels of some transcripts (including CD9, CLU, MME and others) were especially significantly changed (over five times relative to controls). Our results are discussed in the light of molecular pathomechanisms of MPS, indicating that secondary and/or tertiary changes, relative to GAG storage, might significantly modulate cellular dysfunctions and contribute to molecular mechanisms of the disease. This may influence the efficacy of various therapies and suggests why various treatments are not fully effective in improving the complex symptoms of MPS.
Collapse
|
6
|
Day DB, Collett BR, Barrett ES, Bush NR, Swan SH, Wang C, Sathyanarayana S. Prenatal sex hormones and behavioral outcomes in children. Psychoneuroendocrinology 2020; 113:104547. [PMID: 31901731 PMCID: PMC7759302 DOI: 10.1016/j.psyneuen.2019.104547] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 12/12/2019] [Accepted: 12/12/2019] [Indexed: 01/07/2023]
Abstract
Abnormal sex hormone levels in utero have been associated with child behavioral problems, but it is unclear if normal variation in prenatal sex hormones is associated with subsequent behavior in childhood. We assessed maternal sex hormones, including serum estrone (E1), estradiol (E2), estriol (E3), free testosterone (FT), and total testosterone (TT), during early pregnancy (gestational week 6-21 (mean = 11.1)) and evaluated child behavior at ages 4-5 using the Behavioral Assessment System for Children (BASC-2) and Social Responsiveness Scale (SRS-2) in 404 mother/child pairs (211 girls, 193 boys) within The Infant Development and Environment Study, a multi-site pregnancy cohort study. Associations between hormones and composite scores were evaluated using multiple linear regressions in both sexes combined, and separate models assessed effect modification by sex with the addition of interaction terms. A 10-fold increase in maternal FT or TT was associated in both sexes with a 4.3-point (95 % CI: 0.5, 8.2) or 4.4-point (0.8, 8.0) higher BASC-2 internalizing composite T score, respectively. In addition, a 10-fold increase in FT or TT was associated with a 3.8-point (0.04, 7.5) or 4.0-point (0.5, 7.5) higher behavioral symptoms index composite score. In models evaluating effect modification by sex, a 10-fold increase in E1 was associated with a 4.3-point (1.2, 7.4) decrease in adaptive skills composite score in girls only (interaction p = 0.04). We observed associations between testosterone and internalizing behaviors and behavioral symptoms index in both sexes, as well as a female-specific association between E1 and adaptive skills. Sex hormones during pregnancy may play a key role in influencing later-life behavior, and additional studies should further examine different periods of susceptibility to hormonal signals.
Collapse
Affiliation(s)
- Drew B Day
- Seattle Children's Research Institute, Seattle, WA, United States.
| | - Brent R Collett
- Seattle Children’s Research Institute, Seattle, WA,University of Washington, Seattle, WA
| | | | - Nicole R Bush
- University of California, San Francisco, San Francisco, CA
| | - Shanna H Swan
- Icahn School of Medicine at Mount Sinai, New York, NY
| | - Christina Wang
- Lundquist Institute, Harbor-UCLA Medical Center, Torrance, CA
| | - Sheela Sathyanarayana
- Seattle Children’s Research Institute, Seattle, WA,University of Washington, Seattle, WA
| | | |
Collapse
|
7
|
Desai MK, Brinton RD. Autoimmune Disease in Women: Endocrine Transition and Risk Across the Lifespan. Front Endocrinol (Lausanne) 2019; 10:265. [PMID: 31110493 PMCID: PMC6501433 DOI: 10.3389/fendo.2019.00265] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 04/10/2019] [Indexed: 12/12/2022] Open
Abstract
Women have a higher incidence and prevalence of autoimmune diseases than men, and 85% or more patients of multiple autoimmune diseases are female. Women undergo sweeping endocrinological changes at least twice during their lifetime, puberty and menopause, with many women undergoing an additional transition: pregnancy, which may or may not be accompanied by breastfeeding. These endocrinological transitions exert significant effects on the immune system due to interactions between the hormonal milieu, innate, and adaptive immune systems as well as pro- and anti-inflammatory cytokines, and thereby modulate the susceptibility of women to autoimmune diseases. Conversely, pre-existing autoimmune diseases themselves impact endocrine transitions. Concentration-dependent effects of estrogen on the immune system; the role of progesterone, androgens, leptin, oxytocin, and prolactin; and the interplay between Th1 and Th2 immune responses together maintain a delicate balance between host defense, immunological tolerance and autoimmunity. In this review, multiple autoimmune diseases have been analyzed in the context of each of the three endocrinological transitions in women. We provide evidence from human epidemiological data and animal studies that endocrine transitions exert profound impact on the development of autoimmune diseases in women through complex mechanisms. Greater understanding of endocrine transitions and their role in autoimmune diseases could aid in prediction, prevention, and cures of these debilitating diseases in women.
Collapse
Affiliation(s)
- Maunil K. Desai
- School of Pharmacy, University of Southern California, Los Angeles, CA, United States
| | - Roberta Diaz Brinton
- Center for Innovation in Brain Science, University of Arizona, Tucson, AZ, United States
- Departments of Pharmacology and Neurology, College of Medicine, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
8
|
Wnuk A, Rzemieniec J, Litwa E, Lasoń W, Kajta M. Prenatal exposure to benzophenone-3 (BP-3) induces apoptosis, disrupts estrogen receptor expression and alters the epigenetic status of mouse neurons. J Steroid Biochem Mol Biol 2018; 182:106-118. [PMID: 29704544 DOI: 10.1016/j.jsbmb.2018.04.016] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 04/17/2018] [Accepted: 04/24/2018] [Indexed: 12/31/2022]
Abstract
Current evidence indicates that benzophenone-3 (BP-3) can pass through the placental and blood-brain barriers and thus can likely affect infant neurodevelopment. Despite widespread exposure, data showing the effects of BP-3 on the developing nervous system are scarce. This study revealed for the first time that prenatal exposure to BP-3 led to apoptosis and neurotoxicity, altered the levels of estrogen receptors (ERs) and changed the epigenetic status of mouse neurons. In the present study, subcutaneous injections of pregnant mice with BP-3 at 50 mg/kg, which is an environmentally relevant dose, evoked activation of caspase-3 and lactate dehydrogenase (LDH) release as well as substantial loss of mitochondrial membrane potential in neocortical cells of their embryonic offspring. Apoptosis-focused microarray analysis of neocortical cells revealed up-regulation of 22 genes involved in apoptotic cell death. This effect was supported by increased BAX and CASP3 mRNA and protein levels, as evidenced by qPCR, ELISAs and western blots. BP-3-induced apoptosis and neurotoxicity were accompanied by decreases in the mRNA and protein expression levels of ESR1 and ESR2 (also known as ERα and ERβ), with a simultaneous increase in GPER1 (also known as GPR30) expression. In addition to the demonstration that treatment of pregnant mice with BP-3 induced apoptosis, caused neurotoxicity and altered ERs expression levels in neocortical cells of their embryonic offspring, we showed that prenatal administration of BP-3 inhibited global DNA methylation as well as reduced DNMTs activity. BP-3 also caused specific hypomethylation of the genes Gper1 and Bax, an effect that was accompanied by increased mRNA and protein expression levels. In addition, BP-3 caused hypermethylation of the genes Esr1, Esr2 and Bcl2, which could explain the reduced mRNA and protein levels of the estrogen receptors. This study demonstrated for the first time that prenatal exposure to BP-3 caused severe neuronal apoptosis that was accompanied by impaired ESR1/ESR2 expression, enhanced GPER1 expression, global DNA hypomethylation and altered methylation statuses of apoptosis-related and ERs genes. We suggest that the effects of BP-3 in embryonic neurons may be the fetal basis of the adult onset of nervous system disease.
Collapse
Affiliation(s)
- Agnieszka Wnuk
- Institute of Pharmacology, Polish Academy of Sciences, Department of Experimental Neuroendocrinology, 31-343 Krakow, Smetna Street 12, Poland
| | - Joanna Rzemieniec
- Institute of Pharmacology, Polish Academy of Sciences, Department of Experimental Neuroendocrinology, 31-343 Krakow, Smetna Street 12, Poland
| | - Ewa Litwa
- Institute of Pharmacology, Polish Academy of Sciences, Department of Experimental Neuroendocrinology, 31-343 Krakow, Smetna Street 12, Poland
| | - Władysław Lasoń
- Institute of Pharmacology, Polish Academy of Sciences, Department of Experimental Neuroendocrinology, 31-343 Krakow, Smetna Street 12, Poland
| | - Małgorzata Kajta
- Institute of Pharmacology, Polish Academy of Sciences, Department of Experimental Neuroendocrinology, 31-343 Krakow, Smetna Street 12, Poland.
| |
Collapse
|
9
|
Wnuk A, Kajta M. Steroid and Xenobiotic Receptor Signalling in Apoptosis and Autophagy of the Nervous System. Int J Mol Sci 2017; 18:ijms18112394. [PMID: 29137141 PMCID: PMC5713362 DOI: 10.3390/ijms18112394] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 11/06/2017] [Accepted: 11/09/2017] [Indexed: 12/15/2022] Open
Abstract
Apoptosis and autophagy are involved in neural development and in the response of the nervous system to a variety of insults. Apoptosis is responsible for cell elimination, whereas autophagy can eliminate the cells or keep them alive, even in conditions lacking trophic factors. Therefore, both processes may function synergistically or antagonistically. Steroid and xenobiotic receptors are regulators of apoptosis and autophagy; however, their actions in various pathologies are complex. In general, the estrogen (ER), progesterone (PR), and mineralocorticoid (MR) receptors mediate anti-apoptotic signalling, whereas the androgen (AR) and glucocorticoid (GR) receptors participate in pro-apoptotic pathways. ER-mediated neuroprotection is attributed to estrogen and selective ER modulators in apoptosis- and autophagy-related neurodegenerative diseases, such as Alzheimer’s and Parkinson’s diseases, stroke, multiple sclerosis, and retinopathies. PR activation appeared particularly effective in treating traumatic brain and spinal cord injuries and ischemic stroke. Except for in the retina, activated GR is engaged in neuronal cell death, whereas MR signalling appeared to be associated with neuroprotection. In addition to steroid receptors, the aryl hydrocarbon receptor (AHR) mediates the induction and propagation of apoptosis, whereas the peroxisome proliferator-activated receptors (PPARs) inhibit this programmed cell death. Most of the retinoid X receptor-related xenobiotic receptors stimulate apoptotic processes that accompany neural pathologies. Among the possible therapeutic strategies based on targeting apoptosis via steroid and xenobiotic receptors, the most promising are the selective modulators of the ER, AR, AHR, PPARγ agonists, flavonoids, and miRNAs. The prospective therapies to overcome neuronal cell death by targeting autophagy via steroid and xenobiotic receptors are much less recognized.
Collapse
Affiliation(s)
- Agnieszka Wnuk
- Institute of Pharmacology, Polish Academy of Sciences, Department of Experimental Neuroendocrinology, Smetna Street 12, 31-343 Krakow, Poland.
| | - Małgorzata Kajta
- Institute of Pharmacology, Polish Academy of Sciences, Department of Experimental Neuroendocrinology, Smetna Street 12, 31-343 Krakow, Poland.
| |
Collapse
|
10
|
Wnuk A, Rzemieniec J, Lasoń W, Krzeptowski W, Kajta M. Apoptosis Induced by the UV Filter Benzophenone-3 in Mouse Neuronal Cells Is Mediated via Attenuation of Erα/Pparγ and Stimulation of Erβ/Gpr30 Signaling. Mol Neurobiol 2017; 55:2362-2383. [PMID: 28357806 PMCID: PMC5840254 DOI: 10.1007/s12035-017-0480-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 03/03/2017] [Indexed: 12/22/2022]
Abstract
Although benzophenone-3 (BP-3) has frequently been reported to play a role in endocrine disruption, there is insufficient data regarding the impact of BP-3 on the nervous system, including its possible adverse effects on the developing brain. Our study demonstrated that BP-3 caused neurotoxicity and activated apoptosis via an intrinsic pathway involving the loss of mitochondrial membrane potential and the activation of caspases-9 and -3 and kinases p38/MAPK and Gsk3β. These biochemical alterations were accompanied by ROS production, increased apoptotic body formation and impaired cell survival, and by an upregulation of the genes involved in apoptosis. The BP-3-induced effects were tissue-specific and age-dependent with the most pronounced effects observed in neocortical cells at 7 days in vitro. BP-3 changed the messenger RNA (mRNA) expression levels of Erα, Erβ, Gpr30, and Pparγ in a time-dependent manner. At 3 h of exposure, BP-3 downregulated estrogen receptor mRNAs but upregulated Pparγ mRNA. After prolonged exposures, BP-3 downregulated the receptor mRNAs except for Erβ mRNA that was upregulated. The BP-3-induced patterns of mRNA expression measured at 6 and 24 h of exposure reflected alterations in the protein levels of the receptors and paralleled their immunofluorescent labeling. Erα and Pparγ agonists diminished, but Erβ and Gpr30 agonists stimulated the BP-3-induced apoptotic and neurotoxic effects. Receptor antagonists caused the opposite effects, except for ICI 182,780. This is in line with a substantial reduction in the effects of BP-3 in cells with siRNA-silenced Erβ/Gpr30 and the maintenance of BP-3 effects in Erα- and Pparγ siRNA-transfected cells. We showed for the first time that BP-3-affected mRNA and protein expression levels of Erα, Erβ, Gpr30, and Pparγ, paralleled BP-3-induced apoptosis and neurotoxicity. Therefore, we suggest that BP-3-evoked apoptosis of neuronal cells is mediated via attenuation of Erα/Pparγ and stimulation of Erβ/Gpr30 signaling.
Collapse
Affiliation(s)
- A Wnuk
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, Smetna Street 12, 31-343, Krakow, Poland
| | - J Rzemieniec
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, Smetna Street 12, 31-343, Krakow, Poland
| | - W Lasoń
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, Smetna Street 12, 31-343, Krakow, Poland
| | - W Krzeptowski
- Department of Cell Biology and Imaging, Institute of Zoology, Jagiellonian University, Gronostajowa Street 9, 30-387, Krakow, Poland
| | - M Kajta
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, Smetna Street 12, 31-343, Krakow, Poland.
| |
Collapse
|
11
|
Windham GC, Lyall K, Anderson M, Kharrazi M. Autism Spectrum Disorder Risk in Relation to Maternal Mid-Pregnancy Serum Hormone and Protein Markers from Prenatal Screening in California. J Autism Dev Disord 2016; 46:478-88. [PMID: 26370672 DOI: 10.1007/s10803-015-2587-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
We examined prenatal screening markers and offspring autism spectrum disorder (ASD) using California statewide data on singleton births in 1996 and 2002. Second trimester levels of unconjugated estriol (uE3), human chorionic gonadotropin (hCG), and maternal serum alpha-fetoprotein (MSAFP) were compared between mothers of children with ASD (n = 2586) and of non-cases (n = 600,103). Adjusted odds ratios (AOR) were calculated by logistic regression. Lower uE3 (AOR for < 10th percentile vs. 25th-74th percentiles = 1.21, 95 % CI 1.06-1.37), and higher MSAFP (AOR = 1.21, 95 % CI 1.07-1.37 for > 90th percentile) were significantly associated with ASD. A U-shaped relationship was seen for hCG (AOR = 1.16, 95 % CI 1.02-1.32 for < 10th percentile; AOR = 1.19, 95 % CI 1.05-1.36 for > 90th percentile). Our results further support prenatal hormone involvement in ASD risk.
Collapse
Affiliation(s)
- Gayle C Windham
- California Department of Public Health, Division of Environmental and Occupational Disease Control, Environmental Health Investigations Branch, 850 Marina Bay Parkway, Richmond, CA, 94804, USA.
| | - Kristen Lyall
- California Department of Public Health, Division of Environmental and Occupational Disease Control, Environmental Health Investigations Branch, 850 Marina Bay Parkway, Richmond, CA, 94804, USA
- A. J. Drexel Autism Inst., Drexel University, Philadelphia, PA, 19104, USA
| | - Meredith Anderson
- Impact Assessment Inc., 2166 Avenida de la Playa, Suite F, La Jolla, CA, 92037, USA
| | - Martin Kharrazi
- California Department of Public Health, Genetics Disease Screening Program, 850 Marina Bay Parkway, Richmond, CA, 94804, USA
- California Department of Public Health, Division of Environmental and Occupational Disease Control, Environmental Health Investigations Branch, 850 Marina Bay Parkway, Richmond, CA, 94804, USA
| |
Collapse
|
12
|
Multiple sclerosis at menopause: Potential neuroprotective effects of estrogen. Maturitas 2014; 80:133-9. [PMID: 25544310 DOI: 10.1016/j.maturitas.2014.11.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 11/19/2014] [Accepted: 11/20/2014] [Indexed: 12/17/2022]
Abstract
Multiple sclerosis (MS) is an autoimmune demyelinating and neurodegenerative condition of the central nervous system that preferentially afflicts women more than men. Low estrogen states such as menopause and the postpartum period favor exacerbations of multiple sclerosis in women with the disease. Existing and emerging evidence suggests a role for estrogen in the alleviation of symptoms and reversal of pathology associated with MS. While clinical evidence is sparse regarding the benefit of estrogen therapy for women at risk for MS exacerbations, scientific data demonstrates that estrogen potentiates numerous neuroprotective effects on the central nervous system (CNS). Estrogens play a wide range of roles involved in MS disease pathophysiology, including increasing antiinflammatory cytokines, decreasing demyelination, and enhancing oxidative and energy producing processes in CNS cells.
Collapse
|
13
|
Impact of endocrine-disrupting chemicals on neural development and the onset of neurological disorders. Pharmacol Rep 2014; 65:1632-9. [PMID: 24553011 DOI: 10.1016/s1734-1140(13)71524-x] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 11/25/2013] [Indexed: 10/25/2022]
Abstract
Even though high doses of organic pollutants are toxic, relatively low concentrations have been reported to cause long-term alterations in functioning of individual organisms, populations and even next generations. Among these pollutants are dioxins, polychlorinated biphenyls, pesticides, brominated flame retardants, plasticizers (bisphenol A, nonylphenol, and phthalates) as well as personal care products and drugs. In addition to toxic effects, they are able to interfere with hormone receptors, hormone synthesis or hormone conversion. Because these chemicals alter hormone-dependent processes and disrupt functioning of the endocrine glands, they have been classified as endocrine-disrupting chemicals (EDCs). Because certain EDCs are able to alter neural transmission and the formation of neural networks, the term neural-disrupting chemicals has been introduced, thus implicating EDCs in the etiology of neurological disorders. Recently, public concern has been focused on the effects of EDCs on brain function, concomitantly with an increase in neuropsychiatric disorders, including autism, attention deficit and hyperactivity disorder as well as learning disabilities and aggressiveness. Several lines of evidence suggest that exposure to EDCs is associated with depression and could result in neural degeneration. EDCs act via several classes of receptors with the best documented mechanisms being reported for nuclear steroid and xenobiotic receptors. Low doses of EDCs have been postulated to cause incomplete methylation of specific gene regions in the young brain and to impair neural development and brain functions across generations. Efforts are needed to develop systematic epidemiological studies and to investigate the mechanisms of action of EDCs in order to fully understand their effects on wildlife and humans.
Collapse
|
14
|
Karki P, Webb A, Zerguine A, Choi J, Son DS, Lee E. Mechanism of raloxifene-induced upregulation of glutamate transporters in rat primary astrocytes. Glia 2014; 62:1270-83. [PMID: 24782323 DOI: 10.1002/glia.22679] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 04/03/2014] [Accepted: 04/07/2014] [Indexed: 12/19/2022]
Abstract
Raloxifene (RX), a selective estrogen receptor modulator (SERM), exerts neuroprotection in multiple clinical and experimental settings. Astrocytic glutamate transporters GLT-1 (EAAT2) and GLAST (EAAT1) are the main glutamate transporters in the central nervous system, taking up most of excess glutamate from the synaptic cleft to prevent excitotoxic neuronal death. Since drugs targeting astrocytic glutamate transporters to enhance their expression and function represent potential therapeutics for neurodegenerative disorders associated with excitotoxicity, we tested if RX modulates the expression and function of GLT-1 and GLAST in rat primary astrocytes. The results showed that RX significantly increased glutamate uptake and expression of GLT-1 mRNA and protein levels. RX enhanced GLT-1 expression by the activation of multiple signaling pathways including ERK, EGFR, and CREB mediated by estrogen receptors (ERs) ER-α, ER-β, and GPR30. At the transcriptional level, NF-κB played a critical role in RX-induced GLT-1 expression as RX increased NF-κB reporter activity and induced binding of NF-κB p65 and p50 to the GLT-1 promoter. RX attenuated the reduction of GLT-1 expression and glutamate uptake induced by manganese (Mn) whose chronic high levels of exposure cause manganism. RX also upregulated GLAST by increasing its promoter activity and protein levels via the NF-κB pathway and ERs. Our findings provide new insight into the mechanism of RX-induced enhancement of GLT-1 and GLAST expression, as well as the attenuation of Mn-reduced expression of these transporters. These findings will be highly valuable for developing therapeutics of neurodegenerative diseases associated with impaired astrocytic glutamate transporters.
Collapse
Affiliation(s)
- Pratap Karki
- Department of Physiology, Meharry Medical College, Nashville, Tennessee
| | | | | | | | | | | |
Collapse
|
15
|
Kipp M, Amor S, Krauth R, Beyer C. Multiple sclerosis: neuroprotective alliance of estrogen-progesterone and gender. Front Neuroendocrinol 2012; 33:1-16. [PMID: 22289667 DOI: 10.1016/j.yfrne.2012.01.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 12/19/2011] [Accepted: 01/04/2012] [Indexed: 12/19/2022]
Abstract
The potential of 17β-estradiol and progesterone as neuroprotective factors is well-recognized. Persuasive data comes from in vitro and animal models reflecting a wide range of CNS disorders. These studies have endeavored to translate findings into human therapies. Nonetheless, few human studies show promising results. Evidence for neuroprotection was obtained in multiple sclerosis (MS) patients. This chronic inflammatory and demyelinating disease shows a female-to-male gender prevalence and disturbances in sex steroid production. In MS-related animal models, steroids ameliorate symptoms and protect from demyelination and neuronal damage. Both hormones operate in dampening central and brain-intrinsic immune responses and regulating local growth factor supply, oligodendrocyte and astrocyte function. This complex modulation of cell physiology and system stabilization requires the gamut of steroid-dependent signaling pathways. The identification of molecular and cellular targets of sex steroids and the understanding of cell-cell interactions in the pathogenesis will offer promise of novel therapy strategies.
Collapse
Affiliation(s)
- Markus Kipp
- Institute of Neuroanatomy, RWTH Aachen University, 52074 Aachen, Germany
| | | | | | | |
Collapse
|
16
|
Gonadal steroids prevent cell damage and stimulate behavioral recovery after transient middle cerebral artery occlusion in male and female rats. Brain Behav Immun 2011; 25:715-26. [PMID: 21277368 DOI: 10.1016/j.bbi.2011.01.013] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Revised: 01/12/2011] [Accepted: 01/21/2011] [Indexed: 12/14/2022] Open
Abstract
17β-estradiol (E) and progesterone (P) are neuroprotective factors in the brain preventing neuronal death under different injury paradigms. Our previous work demonstrates that both steroids compensate neuronal damage and activate distinct neuroprotective strategies such as improving local energy metabolism and abating pro-inflammatory responses. The current study explored steroid hormone-mediated protection from brain damage and restoration of behavioral function after 1h transient middle cerebral artery occlusion (tMCAO). Male and ovariectomized female rats were studied 24h after stroke. Both steroid hormones reduced the cortical infarct area in males and females to a similar extent. A maximum effect of ~60-70% reduction of the infarct size was evident after P and a combined treatment with both hormones. No infarct protection was seen in the basal ganglia. Testing of motor and sensory behavioral revealed an equal high degree of functional recovery in all three hormone groups. Gene expression studies in the delineated penumbra revealed that estrogen receptor (ER) alpha and beta are locally up-regulated. tMCAO-mediated induction of the pro-inflammatory chemokines CCL2, CCL5 and interleukin 6 was attenuated by E and P, whereas the expression of vascular endothelial growth factor (VEGF) was fortified. Local expression of microglia/macrophage/lymphocyte markers, i.e. Iba1, CD68 and CD3, were significantly reduced in the penumbra after hormone treatment suggesting attenuation of microglia and lymphocyte attraction. These results demonstrate the neuroprotective potency of a combined treatment with E and P under ischemic conditions in both sexes and point at the regulation of chemokine-microglia/lymphocyte interactions as a supposable mechanism implicated in cell protection.
Collapse
|
17
|
Mao L, Lu J, Habteselassie M, Luo Q, Gao S, Cabrera M, Huang Q. Ligninase-mediated removal of natural and synthetic estrogens from water: II. Reactions of 17beta-estradiol. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2010; 44:2599-2604. [PMID: 20230031 DOI: 10.1021/es903058k] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
We have demonstrated in our earlier work that a few natural and synthetic estrogens can be effectively transformed through reactions mediated by lignin peroxidase (LiP). The behaviors of such reactions are variously influenced by the presence of natural organic matter (NOM) and/or veratryl alcohol (VA). Certain white rot fungi, e.g. Phanerochaete chrysosporium, produce VA as a secondary metabolite along with LiP in nature where NOM is ubiquitously present. Herein, we report a study on the products resulting from LiP-mediated oxidative coupling reactions of a representative estrogen, 17beta-estradiol (E2), and how the presence of NOM and/or VA impacts the formation and distribution of the products. A total of six products were found, and the major products appeared to be oligomers resulting from E2 coupling. Our experiments revealed that these products likely formed colloidal solids in water that can be removed via ultrafiltration or settled during ultracentrifugation. Such a colloidal nature of the products could have important implications in their treatability and environmental transport. In the presence of VA, the products tended to shift toward higher-degree of oligomers. When NOM was included in the reaction system, cross-coupling between E2 and NOM appeared to occur. Data obtained from E-SCREEN test confirmed that the estrogenicity of E2 can be effectively eliminated following sequential reactions mediated by LiP.
Collapse
Affiliation(s)
- Liang Mao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, P. R. China
| | | | | | | | | | | | | |
Collapse
|
18
|
Kipp M, Beyer C. Impact of sex steroids on neuroinflammatory processes and experimental multiple sclerosis. Front Neuroendocrinol 2009; 30:188-200. [PMID: 19393685 DOI: 10.1016/j.yfrne.2009.04.004] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Revised: 04/01/2009] [Accepted: 04/14/2009] [Indexed: 12/18/2022]
Abstract
Synthetic and natural estrogens as well as progestins modulate neuronal development and activity. Neurons and glia are endowed with high-affinity steroid receptors. Besides regulating brain physiology, both steroids conciliate neuroprotection against toxicity and neurodegeneration. The majority of data derive from in vitro studies, although more recently, animal models have proven the efficaciousness of steroids as neuroprotective factors. Indications for a safeguarding role also emerge from first clinical trials. Gender-specific prevalence of degenerative disorders might be associated with the loss of hormonal activity or steroid malfunctions. Our studies and evidence from the literature support the view that steroids attenuate neuroinflammation by reducing the pro-inflammatory property of astrocytes. This effect appears variable depending on the brain region and toxic condition. Both hormones can individually mediate protection, but they are more effective in cooperation. A second research line, using an animal model for multiple sclerosis, provides evidence that steroids achieve remyelination after demyelination. The underlying cellular mechanisms involve interactions with astroglia, insulin-like growth factor-1 responses, and the recruitment of oligodendrocytes.
Collapse
Affiliation(s)
- Markus Kipp
- Institute of Neuroanatomy, RWTH Aachen University, Aachen, Germany
| | | |
Collapse
|
19
|
Norkute A, Hieble A, Braun A, Johann S, Clarner T, Baumgartner W, Beyer C, Kipp M. Cuprizone treatment induces demyelination and astrocytosis in the mouse hippocampus. J Neurosci Res 2009; 87:1343-55. [PMID: 19021291 DOI: 10.1002/jnr.21946] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Memory impairment is outstanding within the spectrum of cognitive deficits in multiple sclerosis (MS) patients. Demyelination has been reported in the hippocampus formation of MS patients. The degree of hippocampus lesions in MS strongly correlates with progression of cognitive dysfunction. Because no appropriate animal model for the study of hippocampus demyelination has been established, we used the cuprizone mouse model to investigated demyelination in young adult and aged mice. The myelin status was analyzed by classical histological staining, immunocytochemistry for proteolipoprotein, and electron microscopy. Oligodendrocyte, astroglial, and microglia markers were studied. Cuprizone intoxication induced an almost complete demyelination of distinct hippocampus subregions to a similar extent in young adult and aged male mice. Demyelination was pronounced in a subset of white and gray matter areas, i.e., the stratum lacunosum moleculare containing the perforant path, medial alveus, stratum pyramidale in the cornu ammonis 2/3 region, and hilus region. Besides demyelination, affected areas displayed hypertrophic and hyperplastic astrocytosis. No significant effect on microglia invasion was detected at any investigated time point (0, 3, 5, and 7 weeks). We conclude that cuprizone-induced demyelination provides an adequate animal model to investigate appropriate therapy strategies for the prevention of hippocampus demyelination.
Collapse
Affiliation(s)
- Akvile Norkute
- Institute of Neuroanatomy, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Aryl hydrocarbon receptor-mediated apoptosis of neuronal cells: A possible interaction with estrogen receptor signaling. Neuroscience 2009; 158:811-22. [DOI: 10.1016/j.neuroscience.2008.10.045] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2008] [Revised: 10/27/2008] [Accepted: 10/30/2008] [Indexed: 01/21/2023]
|
21
|
Araújo GW, Beyer C, Arnold S. Oestrogen influences on mitochondrial gene expression and respiratory chain activity in cortical and mesencephalic astrocytes. J Neuroendocrinol 2008; 20:930-41. [PMID: 18445124 DOI: 10.1111/j.1365-2826.2008.01747.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The regulation of mitochondrial energy metabolism plays an essential role in the central nervous system (CNS). Abnormalities of the mitochondrial respiratory chain often accompany neurodegenerative diseases. This makes mitochondria a perfect target for strategies of cellular protection against toxic compounds and pathological conditions. Steroid hormones, such as oestrogen, are well-known to fulfil a protective role in the brain during ischaemic and degenerative processes. Because astrocytes function as the major energy supplier in the CNS, we have analysed oestrogen effects on the mitochondrial respiratory chain of this cell type. In our studies, we applied semi- and quantitative polymerase chain reaction analysis of gene expression and polarographic measurements of the respiratory chain activity of mitochondria. We observed that structural and functional properties were regulated dependent on the oestrogen exposure time and the brain region, but independent of the nuclear oestrogen receptors. We could demonstrate that long-term oestrogen exposure increases the subunit gene expression of respiratory chain complexes and the mitochondrial DNA content, thereby indicating an up-regulation of the amount of mitochondria per cell together with an increase of mitochondrial energy production. This could represent an important indirect mechanism by which long-term oestrogen exposure protects neurones from cell death under neurotoxic conditions. On the other hand, we observed short-term effects of oestrogen on the activity of mitochondrial, proton-pumping respiratory chain complexes. In astrocytes from the cortex, respiratory chain activity was decreased, whereas it was increased in astrocytes from the mesencephalon. An increased production of reactive oxygen species would be the consequence of an increased respiratory chain activity in mesencephalic astrocytes. This could explain the different efficiencies of oestrogen-mediated short-term protection in distinct brain regions, but also indicates the limitations for a therapeutic short-term application of oestrogen.
Collapse
Affiliation(s)
- G W Araújo
- Institute for Neuroanatomy, Faculty of Medicine, RWTH, Aachen, Germany
| | | | | |
Collapse
|
22
|
Malyala A, Zhang C, Bryant DN, Kelly MJ, Rønnekleiv OK. PI3K signaling effects in hypothalamic neurons mediated by estrogen. J Comp Neurol 2008; 506:895-911. [PMID: 18085586 DOI: 10.1002/cne.21584] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Multiple mechanisms mediate the effects of estrogen in the central nervous system, including signal transduction pathways such as protein kinase A, protein kinase C, and phosphatidylinositol 3-kinase (PI3K) pathways. Previously we demonstrated that estrogen regulates a number of PI3K-related genes in the hypothalamus, including the PI3K p55gamma regulatory subunit. We hypothesized that PI3K activation is critical for the effects of estrogen and that the p55gamma subunit may be more prevalent than the p85alpha regulatory subunit in the hypothalamus. Therefore, in the present study, we compared the mRNA distribution of the p55gamma and p85alpha regulatory subunits by using in situ hybridization in guinea pig. Expression level of p55gamma mRNA was greater than p85alpha in most hypothalamic nuclei. Twenty-four hours of estrogen treatment increased p55gamma mRNA expression in the paraventricular, suprachiasmatic, arcuate, and ventromedial nuclei, and little or no change was observed for p85alpha mRNA. Quantitative real-time PCR confirmed the in situ hybridization results. Next, we investigated the general role of PI3K signaling in the estrogen-mediated changes of arcuate proopiomelanocortin (POMC) neuronal excitability by using whole-cell recording. One cellular mechanism by which estrogen increases neuronal excitability is to desensitize (uncouple) gamma-aminobutyric acid type B (GABA(B)) receptors from their G-protein-gated inwardly rectifying K(+) channels in hypothalamic neurons. We found that the PI3K inhibitors wortmannin and LY294002 significantly reduced the estrogen-mediated GABA(B) receptor desensitization in POMC arcuate neurons, suggesting that PI3K signaling is a critical downstream mediator of the estrogen-mediated rapid effects. Collectively, these data suggest that the interplay between estrogen and PI3K occurs at multiple levels, including transcriptional and membrane-initiated signaling events that ultimately lead to changes in homeostatic function.
Collapse
Affiliation(s)
- Anna Malyala
- Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, Oregon 97239, USA
| | | | | | | | | |
Collapse
|
23
|
Negri-Cesi P, Colciago A, Pravettoni A, Casati L, Conti L, Celotti F. Sexual differentiation of the rodent hypothalamus: hormonal and environmental influences. J Steroid Biochem Mol Biol 2008; 109:294-9. [PMID: 18403198 DOI: 10.1016/j.jsbmb.2008.03.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Brain sexual differentiation is a complex developmental phenomenon influenced by the genetic background, sex hormone secretions and environmental inputs, including pollution. The main hormonal drive to masculinize and defeminize the rodent brain is testosterone secreted by the testis. The hormone does not influence sex brain differentiation only in its native configuration, but it mostly needs local conversion into active metabolites (estradiol and DHT) through the action of specific enzymatic systems: the aromatase and 5alpha-reductase (5alpha-R), respectively. This allows the hormone to control target cell gene expression either through the estrogen (ER) or the androgen (AR) receptors. The developmental profile of testosterone metabolizing enzymes, different in the two sexes, is therefore of the utmost importance in affecting the bioavailability of the steroids active in brain differentiation. Widely diffused pollutants, like polychlorinated biphenyls (PCBs) are able to affect the production and/or action of testosterone metabolites, exerting detrimental influences on reproduction and sex behavior. The main studies performed in our and other laboratories concerning the pattern of expression and the control of the enzymatic systems involved in brain androgen action and metabolism are shortly reviewed. Some recent data on the influence exerted by PCBs on these metabolic systems are also reported.
Collapse
Affiliation(s)
- Paola Negri-Cesi
- Department of Endocrinology, University of Milano, via Balzaretti 9, 20133 Milano, Italy.
| | | | | | | | | | | |
Collapse
|
24
|
Kipp M, Karakaya S, Johann S, Kampmann E, Mey J, Beyer C. Oestrogen and progesterone reduce lipopolysaccharide-induced expression of tumour necrosis factor-alpha and interleukin-18 in midbrain astrocytes. J Neuroendocrinol 2007; 19:819-22. [PMID: 17850464 DOI: 10.1111/j.1365-2826.2007.01588.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Besides microglia, astrocytes exert an important regulatory function in the initiation and control of neuro-inflammatory processes in the central nervous system. Clinical and experimental data suggest that sex steroids are neuroprotective and that neurological/neurodegenerative disorders display sex-specific characteristics. Astroglia is known to respond to toxic stimuli by secretion of distinct pro-inflammatory/apoptotic cytokines. In the present study, we investigated the influence of oestrogen and progesterone on the expression of the cytokines tumour necrosis factor (TNF)-alpha and interleukin (IL)-18 in primary astrocytes obtained from neonatal mouse midbrain and cerebral cortex after the stimulation with lipopolysaccharides (LPS). LPS strongly induced the expression of TNF-alpha in astrocytes from both brain regions and IL-18 in those from midbrain. Oestrogen significantly attenuated LPS-induced TNF-alpha expression in the midbrain glia but not in the cortex glia. Combined treatment with oestrogen and progesterone together diminished LPS-induced IL-18 expression in the midbrain completely. Both steroid effects could be specifically antagonised by the steroid hormone receptor antagonists ICI 182 780 and mifepristone. We conclude that neuroprotective oestrogen and progesterone effects in the midbrain might be in part the consequence of a reduced pro-inflammatory response of astroglia.
Collapse
Affiliation(s)
- M Kipp
- Institute of Neuroanatomy, RWTH Aachen, Aachen, Germany
| | | | | | | | | | | |
Collapse
|
25
|
Miñano A, Cerbón MA, Xifró X, Malagelada C, Aguilera J, Rodríguez-Alvarez J. 17beta-estradiol does not protect cerebellar granule cells from excitotoxicity or apoptosis. J Neurochem 2007; 102:354-64. [PMID: 17596211 DOI: 10.1111/j.1471-4159.2007.04475.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mounting evidences have suggested that 17beta-estradiol (E2) could have a neuroprotective action in the CNS. In the present study, we wanted to study whether this estrogen was able to protect cerebellar granule cells (CGCs) from apoptosis or excitotoxicity. Our results suggest that E2 has no anti-apoptotic effect in CGCs cultures. The lack of phosphoinositide 3-kinase/Akt pathway activation in CGCs cultures could be on the basis of the failure of estradiol to protect CGCs from potassium-deprivation and ceramide-mediated apoptosis. Moreover, E2 does not protect CGCs from glutamate-mediated death despite activating the extracellular signal regulated kinase kinase/extracellular signal regulated kinase pathway, which suggests that extracellular signal regulated kinase kinase/extracellular signal regulated kinase pathway activation is not sufficient to sustain an estrogen-mediated neuroprotective effect in CGCs cultures. By contrast, we found that the estrogen had a significant neuroprotective effect against hydrogen peroxide-mediated neuronal death. This effect was due to the antioxidant properties of the chemical structure of estradiol, as the biological inactive isomer 17alpha-estradiol was also able to reduce hydrogen peroxide-mediated neuronal death.
Collapse
Affiliation(s)
- Alfredo Miñano
- Institut de Neurociencies i Department Bioquímica i Biología Molecular, Universitat Autònoma de Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
26
|
Karakaya S, Kipp M, Beyer C. Oestrogen regulates the expression and function of dopamine transporters in astrocytes of the nigrostriatal system. J Neuroendocrinol 2007; 19:682-90. [PMID: 17680883 DOI: 10.1111/j.1365-2826.2007.01575.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Dopamine is actively and specifically eliminated from the extracellular space by astrocytes and neurones through dopamine transporters (DAT) and, afterwards, either recycled into vesicles or metabolised. The availability of dopamine reflects a critical point in the regulation of dopamine activity within the nigrostriatal circuit under normal and pathological conditions. From previous studies, we know that oestrogen regulates the efficacy of dopaminergic neurones at the synaptic level and improves dopamine function during Parkinson's disease. Accordingly, we investigated the contribution of local astroglial for extracellular dopamine elimination and the impact of oestrogen on DAT expression and activity. Using neonatal striatal and midbrain astrocyte cultures, we could demonstrate that astrocytes possess a specific dopamine uptake machinery and express DAT at considerable levels. The application of 17beta-oestradiol decreased the expression of DAT by 80% and 60% in midbrain and striatal astroglia cultures, respectively. The unspecific dopamine transporters (OCT3, VMAT2) were not detected in astroglia. Functionally, oestrogen exposure inhibited the clearance of dopamine from the extracellular space by 45% and 35% compared to controls in midbrain and striatal astroglia, respectively. The effect on DAT expression and activity was completely antagonised by the oestrogen receptor antagonist ICI 182 780. In conclusion, our data suggest that the positive reinforcement of dopamine transmission under physiological conditions and the alleviative impact of oestrogen under pathological conditions may be the result of a decline in DAT expression and therefore delayed dopamine uptake by astroglia.
Collapse
Affiliation(s)
- S Karakaya
- Institute of Neuroanatomy, RWTH Aachen, 52074 Aachen, Germany
| | | | | |
Collapse
|
27
|
Iranzo A, Santamaría J, Vilaseca I, de Osaba MJM. Absence of alterations in serum sex hormone levels in idiopathic REM sleep behavior disorder. Sleep 2007; 30:803-6. [PMID: 17580603 PMCID: PMC1978343 DOI: 10.1093/sleep/30.6.803] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
STUDY OBJECTIVES More than 85% of the patients presenting to sleep centers with idiopathic REM sleep behavior disorder (RBD) are men. It has been hypothesized that sex hormone abnormalities may be related to this male predominance. The aim of our study was to determine the serum sex hormone levels in consecutive idiopathic RBD male patients who presented to our sleep center. SETTING University hospital sleep disorders center. PARTICIPANTS Fourteen male idiopathic RBD patients and 16 healthy matched controls. INTERVENTIONS NA. MEASUREMENTS AND RESULTS Serum levels of total testosterone, calculated free testosterone, calculated bioavailable testosterone, luteinizing hormone, follicle stimulating hormone, estradiol-17 beta, sex-hormone binding globulin, and prolactin were not different between idiopathic RBD patients and controls. CONCLUSION Serum sex hormone levels are normal in idiopathic RBD, indicating that androgenic abnormalities may not account for its male predominance and pathophysiology.
Collapse
Affiliation(s)
- Alex Iranzo
- Neurology Service, Hospital Clinic and Institut D'Investigació Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.
| | | | | | | |
Collapse
|
28
|
Chiasson K, Lahaie-Collins V, Bournival J, Delapierre B, Gélinas S, Martinoli MG. Oxidative stress and 17-alpha- and 17-beta-estradiol modulate neurofilaments differently. J Mol Neurosci 2007; 30:297-310. [PMID: 17401155 DOI: 10.1385/jmn:30:3:297] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 11/11/2022]
Abstract
Oxidative stress plays an important role in the pathogenesis of neurodegenerative diseases such as Parkinson's disease (PD). Neuronal death in the substantia nigra of PD patients is partly caused by exacerbated oxidative damage. Our previous studies demonstrated that oxidative stress can alter the structure and stability of neurofilament (NF) proteins and that 17-alpha- and 17-beta-estradiol are potent neuroprotective agents. The aim of this study was to investigate the cytoskeletal target of neuroprotection by estrogens in neuronal PC12 cells. We induced oxidative stress by MPP+ administration for 24 h, and 17-alpha- and 17-beta-estradiol were used as neuroprotective drugs. We measured gene expression and protein expression of each NF subunit, NFL, NFM, and NFH, by semiquantitative RT-PCR, Western blot, and immunofluorescence. Our results demonstrate that NFL mRNA and protein levels are not modulated by MPP+ or estradiol isomers, whereas NFM gene expression, as well as protein expression, are strongly influenced by MPP+, 17-alpha-, and 17-beta-estradiol after a 24-h treatment. Finally, mRNA levels of the most phosphorylated subunits, NFH, are not changed by MPP+ or treatment with both estradiol isomers, whereas NFH protein expression is decreased by the same treatments. These results suggest that oxidative stress affects neuronal cytoskeleton, maybe though proteolysis and/or abnormal structural changes in NFs. Then, 17-alpha- and 17-beta-estradiol might help the neuronal cell in recovering after oxidative stress by inducing protein expression of NFM and NFH subunits.
Collapse
Affiliation(s)
- Keith Chiasson
- Department of Biochemistry and Research Group in Neuroscience, Université du Quebec à Trois-Rivieres, Quebec, Canada
| | | | | | | | | | | |
Collapse
|
29
|
Kajta M, Domin H, Grynkiewicz G, Lason W. Genistein inhibits glutamate-induced apoptotic processes in primary neuronal cell cultures: an involvement of aryl hydrocarbon receptor and estrogen receptor/glycogen synthase kinase-3beta intracellular signaling pathway. Neuroscience 2007; 145:592-604. [PMID: 17261353 DOI: 10.1016/j.neuroscience.2006.11.059] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2006] [Revised: 11/22/2006] [Accepted: 11/30/2006] [Indexed: 01/26/2023]
Abstract
Phytoestrogens prevent neuronal damage, however, mechanism of their neuroprotective action has not been fully elucidated. This study aimed to evaluate the effects of genistein on glutamate-induced apoptosis in mouse primary neuronal cell cultures. Glutamate (1 mM) enhanced caspase-3 activity and lactate dehydrogenase (LDH) release in the hippocampal, neocortical and cerebellar neurons in time-dependent manner, and these data were confirmed at the cellular level with Hoechst 33342 and calcein AM staining. Genistein (10-10,000 nM) significantly inhibited glutamate-induced apoptosis, and the effect of this isoflavone was most prominent in the hippocampal cells. Next, we studied an involvement of estrogen and aryl hydrocarbon receptors in anti-apoptotic effects of genistein. A high-affinity estrogen receptor antagonist, ICI 182, 780 (1 microM), reversed, whereas less specific antagonist/partial agonist, tamoxifen (1 microM), either intensified or partially inhibited genistein effects. Aryl hydrocarbon receptor antagonist, alpha-naphthoflavone (1 microM), exhibited a biphasic action: it enhanced genistein action toward a short-term exposure (3 h) to glutamate, but antagonized genistein action toward prolonged exposure (24 h) to that insult. SB 216763 (1 microM), which preferentially inhibits glycogen synthase kinase-3beta (GSK-3beta), potentiated genistein effects. These data point to strong effects of genistein at low micromolar concentrations in various brain tissues against glutamate-evoked apoptosis. Moreover, this study provided evidence for involvement of aryl hydrocarbon receptor and estrogen receptor/GSK-3beta intracellular signaling pathway in anti-apoptotic action of genistein.
Collapse
Affiliation(s)
- M Kajta
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, Smetna 12, 31-343 Krakow, Poland.
| | | | | | | |
Collapse
|
30
|
Chiappetta O, Gliozzi M, Siviglia E, Amantea D, Morrone LA, Berliocchi L, Bagetta G, Corasaniti MT. Evidence to Implicate Early Modulation of Interleukin‐1β Expression in the Neuroprotection Afforded by 17β‐Estradiol in Male Rats Undergone Transient Middle Cerebral Artery Occlusion. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2007; 82:357-72. [PMID: 17678971 DOI: 10.1016/s0074-7742(07)82019-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Neuroprotection exerted by 17beta-estradiol (17beta-E(2)) has been widely investigated in animal models of acute cerebral ischemia. Estrogens interact with intracellular receptors (ERalpha and ERbeta) to modulate the transcription of target genes, including those implicated in neuronal survival. Neuroprotection may also occur via interaction with ER-like membrane receptors mediating rapid, non-genomic, actions or via receptor-independent mechanisms. There is also evidence that blockade of inflammatory factors may represent an important mechanism involved in estrogenic neuroprotection. Here we investigate whether reduced brain damage by acute pharmacological treatment with 17beta-E(2) in male rats subjected to transient (2h) middle cerebral artery occlusion (tMCAo) involves modulation of interleukin-1beta (IL-1beta), a proinflammatory cytokine strongly implicated in the pathophysiology of ischemic stroke. Administration of 17beta-E(2) (0.2mg/kg, i.p., 1h before tMCAo) results in significant reduction of brain infarct volume, and this is reverted by the ER antagonist ICI 182,780 (0.25mg/kg, i.p.) administered 1h before 17beta-E(2). Two hours MCAo followed by 2-h reperfusion results in a significant, threefold increase of IL-1beta levels in the cortical tissue ipsilateral to the ischemic damage. Interestingly, a pretreatment with a neuroprotective dose of 17beta-E(2) attenuates the cytokine elevation and this appears to occur through ER activation. In addition, neuroprotection by 17beta-E(2) is accompanied by reduced cytochrome c translocation both in the striatum and in the cortex as revealed by Western blotting 3h after reperfusion. In conclusion, we report the original observation that neuroprotection exerted by 17beta-E(2) in a rat model of transient focal brain ischemia is accompanied by reduced cytochrome c translocation to the cytosol and involves early modulation of IL-1beta production.
Collapse
Affiliation(s)
- Olga Chiappetta
- Department of Pharmacobiology, University of Calabria, Via P. Bucci 87036 Arcavacata di Rende (CS), Italy
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Lee KY, Ahn YM, Joo EJ, Joo YH, Chang JS, Yoo HY, Kim YS. Partial evidence of an association between epidermal growth factor A61G polymorphism and age at onset in male schizophrenia. Neurosci Res 2006; 56:356-62. [PMID: 16979250 DOI: 10.1016/j.neures.2006.08.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2006] [Revised: 08/04/2006] [Accepted: 08/10/2006] [Indexed: 10/24/2022]
Abstract
Epidermal growth factor (EGF) is a well-known neurotrophic factor regulating the development of various neuronal cells, including dopaminergic neurons, and dysfunction of EGF signals has been demonstrated as a risk factor for schizophrenia. Recently, several researchers have investigated associations including age at onset (AAO) with EGF A61G functional polymorphism, but the results of these studies have been controversial. Thus, we investigated whether A61G plays a role in predisposition to schizophrenia and its effects on AAO. Our subjects included 190 patients with schizophrenia and 347 controls. We assessed three different points of AAO: age at first occurrence of positive psychotic symptoms, medication, and hospitalization as a patient with schizophrenia. We found no differences in allele and genotype frequencies between patients and controls or associations between A61G and AAOs across stratified points in the entire sample and in each gender. However, we found significant gender differences in patients with the AA genotype in all stratified points of AAOs. Subset analyses of G allele distribution between clinical subsets with an AAO cutoff of 20 years revealed that male patients with early onset schizophrenia were more likely to exhibit the common AA homozygote than male patients with adulthood onset schizophrenia. In conclusion, although we were unable to support an association between EGF A61G and schizophrenia, the AA genotype might play a disease-modifying role differentially according to gender.
Collapse
Affiliation(s)
- Kyu Young Lee
- Clinical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
32
|
Kipp M, Karakaya S, Pawlak J, Araujo-Wright G, Arnold S, Beyer C. Estrogen and the development and protection of nigrostriatal dopaminergic neurons: concerted action of a multitude of signals, protective molecules, and growth factors. Front Neuroendocrinol 2006; 27:376-90. [PMID: 16949139 DOI: 10.1016/j.yfrne.2006.07.001] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2006] [Revised: 07/03/2006] [Accepted: 07/10/2006] [Indexed: 01/03/2023]
Abstract
The nigrostriatal dopamine system comprises the dopaminergic neurons located in the ventral midbrain, their axonal connections to the forebrain, and their direct cellular target cells in the striatal complex, i.e. GABAergic neurons. The major function of the nigrostriatal dopaminergic unit is the coordination and fine tuning of motor functions at the extrapyramidal level. Numerous biologically active factors including different types of growth factors (neurotrophins, members of the TGFbeta family, IGFs) and peptide/steroid hormones have been identified in the past to be implicated in the regulation of developmental aspects of this neural system. Some of these developmentally active determinants have in addition been found to play a crucial role in the mediation of neuroprotection concerning dopaminergic neurons. Estrogen was identified as such a compound interfering with embryonic neuronal differentiation and cell survival. The physiological mechanisms underlying these effects are very complex and include interactions with other developmental signals (growth factors), inflammatory processes as well as apoptotic events, but also require the activation of nonneuronal cells such as astrocytes. It appears that estrogen is assuming control over or at least influences a multitude of developmental and protective cellular mechanisms rather than taking over the part of a singular protagonist.
Collapse
Affiliation(s)
- Markus Kipp
- Institute of Neuroanatomy, University Hospital RWTH Aachen, 52074 Aachen, Germany
| | | | | | | | | | | |
Collapse
|
33
|
von Schassen C, Fester L, Prange-Kiel J, Lohse C, Huber C, Böttner M, Rune GM. Oestrogen synthesis in the hippocampus: role in axon outgrowth. J Neuroendocrinol 2006; 18:847-56. [PMID: 17026534 DOI: 10.1111/j.1365-2826.2006.01484.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Ovarian oestrogens have been postulated to be neuroprotective. It has also been shown that considerable amounts of oestrogens are synthesised in hippocampal neurones. In the present study, we focused on a potential role of hippocampus-derived oestradiol compared to gonad-derived oestradiol on axon outgrowth of hippocampal neurones. To address the role of hippocampus-derived oestradiol, we inhibited oestrogen synthesis by treatment of neonatal hippocampal cell cultures with letrozole, a specific aromatase inhibitor. As an alternative, we used siRNA against steroidogenic acute regulatory protein (StAR). Axon outgrowth and GAP-43 expression were significantly down-regulated in response to letrozole and in siRNA-StAR transfected cells. The effects after inhibition of oestrogen synthesis in response to letrozole and in siRNA-StAR transfected cells were reversed by oestrogen supplementation. No difference was found between ovariectomised animals, cycling animals at pro-oestrus and ovariectomised and subsequently oestradiol-treated animals. However, high pharmacological doses of oestradiol promoted axon outgrowth, which was possible to abolish by the oestrogen receptor antagonist ICI 182,780. Our results show that oestradiol-induced neurite outgrowth is very likely mediated by genomic oestrogen receptors and requires higher doses of oestradiol than physiological serum concentrations derived from the gonads.
Collapse
Affiliation(s)
- C von Schassen
- Institute of Anatomy I, Cellular Neurobiology, University Medical Center, Hamburg, Germany
| | | | | | | | | | | | | |
Collapse
|
34
|
Kajta M, Trotter A, Lasoń W, Beyer C. Impact of 17beta-estradiol on cytokine-mediated apoptotic effects in primary hippocampal and neocortical cell cultures. Brain Res 2006; 1116:64-74. [PMID: 16949056 DOI: 10.1016/j.brainres.2006.07.105] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2006] [Revised: 04/26/2006] [Accepted: 07/28/2006] [Indexed: 11/18/2022]
Abstract
Estrogens are developmental regulators of mitochondrial apoptotic pathway in the central nervous system, but little is known about their involvement in cytokine-induced apoptosis. In the present study, we evaluated effects of 17beta-estradiol on pro-inflammatory cytokine- and staurosporine-mediated activation of caspase-3 and LDH-release in primary neuronal/glial cell cultures of mouse hippocampal and neocortical cells at different stages of their development in vitro. Enzyme activities were determined with colorimetric methods 6 h, 14 h, 24 h, and 48 h after exposure to the apoptotic agents. Biochemical data were supported at the cellular level by Hoechst 33342 and MAP-2 stainings, which were carried out 48 h after the treatment. Cytokines (co-treatment with Il-1beta and TNFalpha; 1 ng/ml) increased caspase-3 activity in the hippocampal and neocortical cells up to over 200% of control values, and these effects were mostly observed on 2 and 7 days in vitro (DIV). Moderate, but significant cytokine-mediated increase in LDH-release was demonstrated in both tissues, especially on 7 and 12 DIV. Estradiol (100 nM) inhibited the activation of caspase-3 at early stage of development (2 DIV) in the hippocampal, but not in the neocortical cultures. The cytokine-induced activation of caspase-3 and LDH-release was inhibited by estradiol in estrogen receptor-independent way. These data point to a possible role of estrogens as non-estrogen receptor-related inhibitors of cytokine-activated apoptotic pathway in the developing central nervous system.
Collapse
Affiliation(s)
- Malgorzata Kajta
- Department of Anatomy and Cell Biology, University of Ulm, Albert-Einstein-Alle 11, 89061 Ulm, Germany.
| | | | | | | |
Collapse
|
35
|
Szymczak S, Kalita K, Jaworski J, Mioduszewska B, Savonenko A, Markowska A, Merchenthaler I, Kaczmarek L. Increased estrogen receptor beta expression correlates with decreased spine formation in the rat hippocampus. Hippocampus 2006; 16:453-63. [PMID: 16526034 DOI: 10.1002/hipo.20172] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Estrogens play an important role in the brain function acting through two receptor types, ERalpha and ERbeta, both well-recognized as transcription factors. In this study, we investigated the ERbeta mRNA and protein levels in the rat hippocampus by using two in vivo models that are known to affect synapse formation. Natural estrous-proestrous cycle was used as a model in which a marked decrease in the density of hippocampal synapses was previously observed between proestrus and estrus. We have found that ERbeta mRNA and protein were displayed in high levels in the estrus and in low levels in the proestrous phase. By applying kainic acid (KA) to adult rats, we demonstrated that up-regulation of ERbeta mRNA and protein in hippocampal CA regions was vulnerable to KA-induced excitotoxicity. Furthermore, we note a concomitant decrease of ERbeta in the excitotoxicity-resistant denate gyrus that undergoes intense plastic changes, including synaptogenesis. These data suggested that decreases in ERbeta expression correlated with increase in synapse formation. This notion has been tested in vitro in hippocampal cultures, in which overexpression of ERbeta by means of gene transfection resulted in the lowering of the dendritic spine density that was elevated by estrogen. In summary, our results suggest that ERbeta inhibits synapse formation in hippocampal neurons.
Collapse
|
36
|
Abstract
Estrogens influence many physiological processes in mammals, including but not limited to reproduction, cardiovascular health, bone integrity, cognition, and behavior. Given this widespread role for estrogen in human physiology, it is not surprising that estrogen is also implicated in the development or progression of numerous diseases, which include but are not limited to various types of cancer (breast, ovarian, colorectal, prostate, endometrial), osteoporosis, neurodegenerative diseases, cardiovascular disease, insulin resistance, lupus erythematosus, endometriosis, and obesity. In many of these diseases, estrogen mediates its effects through the estrogen receptor (ER), which serves as the basis for many therapeutic interventions. This Review will describe diseases in which estrogen, through the ER, plays a role in the development or severity of disease.
Collapse
Affiliation(s)
- Bonnie J Deroo
- Receptor Biology Section, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina 27709, USA
| | | |
Collapse
|
37
|
Rune GM, Lohse C, Prange-Kiel J, Fester L, Frotscher M. Synaptic plasticity in the hippocampus: effects of estrogen from the gonads or hippocampus? Neurochem Res 2006; 31:145-55. [PMID: 16673174 DOI: 10.1007/s11064-005-9004-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2005] [Indexed: 10/25/2022]
Abstract
Different effects of estrogen on synaptic plasticity have [corrected] been reported. Here, we summarise effects of low, gonad-derived serum estrogen concentrations, of intermediate concentrations, provided by hippocampal cells, and of pharmacological doses of estrogen on synapses and spines and on the expression of synaptic proteins. No effects of low concentrations were found. To study the effects of hippocampus-derived estradiol, we inhibited hippocampal estrogen synthesis by treatment of hippocampal cell cultures with letrozole, an aromatase inhibitor. Alternatively, we used siRNA against Steroidogenic acute regulatory protein (StAR). Spines, synapses, and synaptic proteins were significantly down regulated in response to letrozole and in siRNA-StAR transfected cells. Application of high pharmacological doses of estradiol promoted only synaptophysin expression, a presynaptic protein, but did not increase the number of boutons. Our results point to an essential role of endogenous hippocampal estrogen in hippocampal synaptic plasticity rather than to a direct influence of estrogens derived from peripheral sources, such as the gonads.
Collapse
Affiliation(s)
- G M Rune
- Zentrum für Experimentelle Medizin, Institut für Anatomie I: Zelluläre Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Martinistr. 52, D-20246 Hamburg, Germany.
| | | | | | | | | |
Collapse
|
38
|
Pawlak J, Brito V, Küppers E, Beyer C. Regulation of glutamate transporter GLAST and GLT-1 expression in astrocytes by estrogen. ACTA ACUST UNITED AC 2005; 138:1-7. [PMID: 15896872 DOI: 10.1016/j.molbrainres.2004.10.043] [Citation(s) in RCA: 139] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2004] [Revised: 10/11/2004] [Accepted: 10/24/2004] [Indexed: 11/18/2022]
Abstract
Estrogen influences neuronal development and a broad spectrum of neural functions. In addition, several lines of evidence suggest a role as neuroprotective factor for estrogen in the CNS. Neuroprotection can result from direct estrogen-neuron interactions or be mediated indirectly involving the regulation of physiological properties of nonneuronal cells, such as astrocytes and microglia. Increased l-glutamate levels are associated with neurotoxic and neurodegenerative processes in the brain. Thus, the removal of l-glutamate from the extracellular space by astrocytes through the astroglial glutamate transporters GLT-1 and GLAST appears essential for maintaining a homeostatic milieu for neighboring neurons. We have therefore studied the influence of 17beta-estradiol on l-glutamate metabolism in cultured astrocytes from the neonate mouse midbrain using quantitative RT-PCR and Western blotting for both transporters as well as functional l-glutamate uptake studies. The administration of estrogen significantly increased the expression of GLT-1 and GLAST on the mRNA and protein level. Likewise, specific l-glutamate uptake by astrocytes was elevated after estrogen exposure and mimicked by dbcAMP stimulation. Induction of transporter expression and l-glutamate uptake were sensitive to ICI 182,780 treatment suggesting estrogen action through nuclear estrogen receptors. These findings indicate that estrogen can prevent l-glutamate-related cell death by decreasing extracellular l-glutamate levels through an increased l-glutamate uptake capacity by astrocytes.
Collapse
Affiliation(s)
- Justyna Pawlak
- Anatomisches Institut, Universität Tübingen, Osterbergstr. 3, 72074 Tübingen, Germany
| | | | | | | |
Collapse
|
39
|
Pawlak J, Karolczak M, Krust A, Chambon P, Beyer C. Estrogen receptor-alpha is associated with the plasma membrane of astrocytes and coupled to the MAP/Src-kinase pathway. Glia 2005; 50:270-5. [PMID: 15712205 DOI: 10.1002/glia.20162] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Estrogens influence CNS development and a broad spectrum of neural functions. Several lines of evidence also suggest a neuroprotective role for estrogen. Different modes of estrogen action have been described at the cellular level involving classical nuclear estrogen receptor (ER)-dependent and nonclassical membrane ER-mediated rapid signaling. We have previously shown that nonclassical estrogen signaling is implicated in the control of dopamine cell function and protection. Since nonclassical interactions between estrogens and glia may contribute to these effects, our aim was to demonstrate the presence of membrane-associated ERs and their putative coupling to intracellular signaling pathways in astrocytes. Confocal image analysis and fluorescence-activated cell sorting (FACS) studies indicated the attachment of ER-alpha but not ER-beta to the plasma membrane of astrocytes. ERs were located in the cell soma region and glial processes. FACS analysis revealed that only a subpopulation of midbrain astrocytes possesses membrane ER-alpha. In FACS studies on ER-alpha knockout astrocytes, only a few membrane ER-positive cells were detected. The activation of membrane ERs appears to be coupled to the MAP-kinase/Src signaling pathway as shown by Western blotting. In conclusion, our data provide good evidence that nonclassical estrogen action in astrocytes is mediated by membrane ER-alpha. The physiological consequence of this phenomenon is not yet understood, but it might have a pivotal role in estrogen-mediated protective effects on midbrain dopamine neurons.
Collapse
Affiliation(s)
- Justyna Pawlak
- Anatomisches Institut, Universität Tübingen, D-72047 Tübingen, Germany
| | | | | | | | | |
Collapse
|
40
|
Desaulniers D, Xiao GH, Leingartner K, Chu I, Musicki B, Tsang BK. Comparisons of brain, uterus, and liver mRNA expression for cytochrome p450s, DNA methyltransferase-1, and catechol-o-methyltransferase in prepubertal female Sprague-Dawley rats exposed to a mixture of aryl hydrocarbon receptor agonists. Toxicol Sci 2005; 86:175-84. [PMID: 15858227 DOI: 10.1093/toxsci/kfi178] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Non-ortho polychlorinated biphenyls (PCBs), polychlorinated dibenzodioxins (PCDDs), and polychlorinated dibenzofurans (PCDFs) are ubiquitous environmental contaminants that exert their toxicity mostly through activation of the aryl-hydrocarbon receptor (AhR), and are referred to as AhR agonists. The objective was to study, by real time reverse-transcriptase-polymerase chain reaction (RT-PCR), the effects of postnatal exposure to a reconstituted mixture of AhR agonists present in breast milk (3 non-ortho PCBs, 6 PCDDs, and 7 PCDFs, referred to here-in-after as AhRM) on mRNA expression of estrogen receptor (ERalpha), enzymes involved with the metabolism of estrogens [catechol-o-methyltransferase (Comt), cytochrome P450 (Cyp)1A1, 1B1 and 2B1], and DNA methyltransferase-1 (Dnmt1), in brain areas, liver and uterus of immature female rats. Neonates were exposed by gavage during postnatal day (PND) 1-20 with dosages equivalent to 1, 10, 100, and 1000 times the estimated average human exposure level, and were sacrificed at PND 21. None of the end points were affected in uterine cross-sections, or in samples of uterine tissue layers collected by laser capture microdissection. At 1000x, the AhRM reduced Dnmt1 mRNA abundance to 28% and 32% of control in the liver and hypothalamus, respectively. In the brain, Cyp1A1 was increased (409%) but ERalpha was reduced (66%). Similarly, mRNA abundance for Comt isoforms was reduced in the liver (45%) and brain areas (55-70%). AhRM at 100x, the lowest effective dose, exerted a 220% increase in brain cortex Comt [membrane bound (Mb)], a 219% increase in hepatic Cyp1B1, and a 63% decrease in hepatic Comt (soluble (S)+Mb). These results support the possibility that early exposure to environmental contaminants could lead to effects mediated by changes in DNA methylation and/or estrogen metabolism and signaling.
Collapse
Affiliation(s)
- D Desaulniers
- Health Canada, Healthy Environments and Consumer Safety Branch, Environmental & Occupational Toxicology Division, Ottawa, Ontario, Canada K1A 0L2.
| | | | | | | | | | | |
Collapse
|
41
|
Pezzella A, Lista L, Napolitano A, D'Ischia M. Oxidative Coupling of 17β-Estradiol: Inventory of Oligomer Products and Configuration Assignment of Atropoisomeric C4-Linked Biphenyl-Type Dimers and Trimers. J Org Chem 2004; 69:5652-9. [PMID: 15307736 DOI: 10.1021/jo0492665] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The oxidation chemistry of 17beta-estradiol (1) is of central relevance to the nongenomic effects of estrogens and offers valuable prospects in the search for novel steroidal scaffolds of academic and industrial interest. Herein, we report the results of a detailed investigation into the nature of the oligomer products formed by phenolic oxidation of 1. Of the oxidants tested, the peroxidase/H2O2 system proved to be the most effective in inducing conversion of 1 to a complex mixture of oligomer species. Repeated chromatographic fractionation followed by extensive 2D NMR and mass spectrometric analysis allowed identification of a series of phenolic coupling products comprising, besides the C2-symmetric dimers 2 and 3, a 2,4' dimer (4), two O-linked dimers (5, 6), and the novel trimers 7-9. All 4-linked biphenyl-type oligomers, i.e., 3 and 7-9, occurred as couples of atropoisomers, reflecting steric hindrance at biphenyl linkages. For all atropoisomers, absolute configuration was established by the exciton chirality method and the interconversion energy was determined by dynamic NMR. These results provide the first systematic inventory of oxidative coupling products of 1 and lay the foundation for future studies aimed to develop novel estrogen derivatives based on oligomeric scaffolds.
Collapse
Affiliation(s)
- Alessandro Pezzella
- Department of Organic Chemistry and Biochemistry, University of Naples "Federico II" Complesso Universitario Monte S. Angelo, Via Cinthia 4, I-80126 Naples, Italy.
| | | | | | | |
Collapse
|
42
|
Beyer C, Pawlak J, Brito V, Karolczak M, Ivanova T, Kuppers E. Regulation of Gene Expression in the Developing Midbrain by Estrogen: Implication of Classical and Nonclassical Steroid Signaling. Ann N Y Acad Sci 2003; 1007:17-28. [PMID: 14993036 DOI: 10.1196/annals.1286.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Estrogen plays an important role during midbrain development. This is indicated by the presence of nuclear estrogen receptors and the transient expression of the estrogen-forming enzyme aromatase. A number of recent studies have shown that estrogen promotes the differentiation and survival, as well as physiological performance, of midbrain dopaminergic cells. In addition, we have reported that both ways of cellular estrogen signaling (classical and nonclassical) as well as interactions with nonneuronal target cells are involved in the transmission of intra- and intercellular estrogen effects in this brain region. This study provides additional evidence that (i) estrogen is capable of regulating gene expression in cultured embryonic neurons and astrocytes differently and (ii) both signaling mechanisms, i.e., classically through nuclear receptors and nonclassically through the stimulation of membrane-estrogen receptors, which are coupled to distinct intracellular signal transduction cascades, contribute diversely to gene regulation. These data reveal a high degree of complexity of estrogen action at the genomic level in the developing brain. Further studies are warranted to unravel the exact contribution of the differently regulated genes for developmental estrogen action.
Collapse
Affiliation(s)
- Cordian Beyer
- Abteilung Anatomie und Zellbiologie, Universität Ulm, D-89069 Ulm, Germany.
| | | | | | | | | | | |
Collapse
|