1
|
Shivshankar P, Mueller-Ortiz SL, Domozhirov AY, Bi W, Collum SD, Doursout MF, Patel M, LeFebvre IN, Akkanti B, Yau S, Huang HJ, Hussain R, Karmouty-Quintana H. Complement activity and autophagy are dysregulated in the lungs of patients with nonresolvable COVID-19 requiring lung transplantation. Respir Res 2025; 26:68. [PMID: 40016722 PMCID: PMC11866606 DOI: 10.1186/s12931-025-03152-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 02/11/2025] [Indexed: 03/01/2025] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-induced coronavirus disease 2019 (COVID-19) pandemic has challenged the current understanding of the complement cascade mechanisms of host immune responses during infection-induced nonresolvable lung disease. While the complement system is involved in opsonization and phagocytosis of the invading pathogens, uncontrolled complement activation also leads to aberrant autophagic response and tissue damage. Our recent study revealed unique pathologic and fibrotic signature genes associated with epithelial bronchiolization in the lung tissues of patients with nonresolvable COVID-19 (NR-COVID-19) requiring lung transplantation. However, there is a knowledge gap if complement components are modulated to contribute to tissue damage and the fibrotic phenotype during NR-COVID-19. We, therefore, aimed to study the role of the complement factors and their corresponding regulatory proteins in the pathogenesis of NR-COVID-19. We further examined the association of complement components with mediators of the host autophagic response. We observed significant upregulation of the expression of the classical pathway factor C1qrs and alternative complement factors C3 and C5a, as well as the anaphylatoxin receptor C5aR1, in NR-COVID-19 lung tissues. Of note, complement regulatory protein, decay accelerating factor (DAF; CD55) was significantly downregulated at both transcript and protein levels in the NR-COVID-19 lungs, indicating a dampened host protective response. Furthermore, we observed significantly decreased levels of the autophagy mediators PPARγ and LC3a/b, which was corroborated by decreased expression of factor P and the C3b receptor CR1, indicating impaired clearance of damaged cells that may contribute to the fibrotic phenotype in NR-COVID-19 patients. Thus, our study revealed previously unrecognized complement dysregulation associated with impaired cell death and clearance of damaged cells, which may promote NR-COVID-19 in patients, ultimately necessitating lung transplantation. The identified network of dysregulated complement cascade activity indicates the interplay of regulatory factors and the receptor-mediated modulation of host immune and autophagic responses as potential therapeutic targets for treating NR-COVID-19.
Collapse
Affiliation(s)
- Pooja Shivshankar
- Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, Houston, TX, USA.
- Hans J. Müller-Eberhard and Irma Gigli Center for Immunology and Autoimmune Diseases, Institute of Molecular Medicine, UTHealth-McGovern Medical School, Houston, TX, USA.
- Center for Metabolic and Degenerative Diseases, Institute of Molecular Medicine, UTHealth-McGovern Medical School, 1825 Pressler Street, #407-07, Houston, TX, 77030, USA.
| | - Stacey L Mueller-Ortiz
- Hans J. Müller-Eberhard and Irma Gigli Center for Immunology and Autoimmune Diseases, Institute of Molecular Medicine, UTHealth-McGovern Medical School, Houston, TX, USA
| | - Aleksey Y Domozhirov
- Hans J. Müller-Eberhard and Irma Gigli Center for Immunology and Autoimmune Diseases, Institute of Molecular Medicine, UTHealth-McGovern Medical School, Houston, TX, USA
| | - Weizhen Bi
- Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Scott D Collum
- Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, Houston, TX, USA
| | | | - Manish Patel
- Center for Advanced Cardiopulmonary Therapies and Transplantation at UTHealth/McGovern Medical School, Houston, TX, USA
| | - Isabella N LeFebvre
- Center for Advanced Cardiopulmonary Therapies and Transplantation at UTHealth/McGovern Medical School, Houston, TX, USA
| | - Bindu Akkanti
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin Street, Suite 6.214, Houston, TX, 77030, USA
| | - Simon Yau
- Houston Methodist DeBakey Transplant Center, Houston Methodist Hospital, Houston, TX, USA
| | - Howard J Huang
- Houston Methodist DeBakey Transplant Center, Houston Methodist Hospital, Houston, TX, USA
| | - Rahat Hussain
- Center for Advanced Cardiopulmonary Therapies and Transplantation at UTHealth/McGovern Medical School, Houston, TX, USA
| | - Harry Karmouty-Quintana
- Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, Houston, TX, USA.
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin Street, Suite 6.214, Houston, TX, 77030, USA.
| |
Collapse
|
2
|
Karsten CM, Köhl J. Decoding complement: Novel disease insights and therapeutic horizons. Eur J Immunol 2025; 55:e2350905. [PMID: 39460394 DOI: 10.1002/eji.202350905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/10/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024]
Affiliation(s)
- Christian M Karsten
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Jörg Köhl
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| |
Collapse
|
3
|
Rugg C, Schmid S, Zipperle J, Kreutziger J. Stress hyperglycaemia following trauma - a survival benefit or an outcome detriment? Curr Opin Anaesthesiol 2024; 37:131-138. [PMID: 38390910 DOI: 10.1097/aco.0000000000001350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
PURPOSE OF REVIEW Stress hyperglycaemia occur often in critically injured patients. To gain new consideration about it, this review compile current as well as known immunological and biochemical findings about causes and emergence. RECENT FINDINGS Glucose is the preferred energy substrate for fending immune cells, reparative tissue and the cardiovascular system following trauma. To fulfil these energy needs, the liver is metabolically reprogrammed to rebuild glucose from lactate and glucogenic amino acids (hepatic insulin resistance) at the expenses of muscles mass and - to a less extent - fat tissue (proteolysis, lipolysis, peripheral insulin resistance). This inevitably leads to stress hyperglycaemia, which is evolutionary preserved and seems to be an essential and beneficial survival response. It is initiated by damage-associated molecular patterns (DAMPs) and pathogen-associated molecular patterns (PAMPs), intensified by immune cells itself and mainly ruled by tumour necrosis factor (TNF)α and catecholamines with lactate and hypoxia inducible factor (HIF)-1α as intracellular signals and lactate as an energy shuttle. Important biochemical mechanisms involved in this response are the Warburg effect as an efficient metabolic shortcut and the extended Cori cycle. SUMMARY Stress hyperglycaemia is beneficial in an acute life-threatening situation, but further research is necessary, to prevent trauma patients from the detrimental effects of persisting hyperglycaemia.
Collapse
Affiliation(s)
- Christopher Rugg
- Department of Anaesthesia and Intensive Care Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Stefan Schmid
- Department of Anaesthesia and Intensive Care Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Johannes Zipperle
- Johannes Zipperle, Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, Vienna, Austria
| | - Janett Kreutziger
- Department of Anaesthesia and Intensive Care Medicine, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
4
|
Chen J, Zhang S. The Role of Inflammation in Cholestatic Liver Injury. J Inflamm Res 2023; 16:4527-4540. [PMID: 37854312 PMCID: PMC10581020 DOI: 10.2147/jir.s430730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 10/06/2023] [Indexed: 10/20/2023] Open
Abstract
Cholestasis is a common clinical event in which bile formation and excretion are blocked, leading to retention of bile acids or bile salts; whether it occurs intra- or extrahepatically, primary or secondary, its pathogenesis is still unclear and is influenced by a combination of factors. In a variety of inflammatory and immune cells such as neutrophils, macrophages (intrahepatic macrophages are also known as Kupffer cells), mast cells, NK cells, and even T cells in humoral immunity and B cells in cellular immunity, inflammation can be a "second strike" against cholestatic liver injury. These cells, stimulated by a variety of factors such as bile acids, inflammatory chemokines, and complement, can be activated and accumulate in the cholestatic liver, and with the involvement of inflammatory mediators and modulation by cytokines, can lead to destruction of hepatocytes and bile duct epithelial cells and exacerbate (and occasionally retard) the progression of cholestatic liver disease. In this paper, we summarized the new research advances proposed so far regarding the relationship between inflammation and cholestasis, aiming to provide reference for researchers and clinicians in the field of cholestatic liver injury research.
Collapse
Affiliation(s)
- Jie Chen
- Chongqing Key Laboratory of Infectious Diseases and Parasitic Diseases, Department of Infectious Diseases, the First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Shujun Zhang
- Chongqing Key Laboratory of Infectious Diseases and Parasitic Diseases, Department of Infectious Diseases, the First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| |
Collapse
|
5
|
Zhao F, Bai Y, Xiang X, Pang X. The role of fibromodulin in inflammatory responses and diseases associated with inflammation. Front Immunol 2023; 14:1191787. [PMID: 37483637 PMCID: PMC10360182 DOI: 10.3389/fimmu.2023.1191787] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 06/23/2023] [Indexed: 07/25/2023] Open
Abstract
Inflammation is an immune response that the host organism eliminates threats from foreign objects or endogenous signals. It plays a key role in the progression, prognosis as well as therapy of diseases. Chronic inflammatory diseases have been regarded as the main cause of death worldwide at present, which greatly affect a vast number of individuals, producing economic and social burdens. Thus, developing drugs targeting inflammation has become necessary and attractive in the world. Currently, accumulating evidence suggests that small leucine-rich proteoglycans (SLRPs) exhibit essential roles in various inflammatory responses by acting as an anti-inflammatory or pro-inflammatory role in different scenarios of diseases. Of particular interest was a well-studied member, termed fibromodulin (FMOD), which has been largely explored in the role of inflammatory responses in inflammatory-related diseases. In this review, particular focus is given to the role of FMOD in inflammatory response including the relationship of FMOD with the complement system and immune cells, as well as the role of FMOD in the diseases associated with inflammation, such as skin wounding healing, osteoarthritis (OA), tendinopathy, atherosclerosis, and heart failure (HF). By conducting this review, we intend to gain insight into the role of FMOD in inflammation, which may open the way for the development of new anti-inflammation drugs in the scenarios of different inflammatory-related diseases.
Collapse
Affiliation(s)
- Feng Zhao
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Yang Bai
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Xuerong Xiang
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaoxiao Pang
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
6
|
Lu S, Li Y, Qian Z, Zhao T, Feng Z, Weng X, Yu L. Role of the inflammasome in insulin resistance and type 2 diabetes mellitus. Front Immunol 2023; 14:1052756. [PMID: 36993972 PMCID: PMC10040598 DOI: 10.3389/fimmu.2023.1052756] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 02/27/2023] [Indexed: 03/18/2023] Open
Abstract
The inflammasome is a protein complex composed of a variety of proteins in cells and which participates in the innate immune response of the body. It can be activated by upstream signal regulation and plays an important role in pyroptosis, apoptosis, inflammation, tumor regulation, etc. In recent years, the number of metabolic syndrome patients with insulin resistance (IR) has increased year by year, and the inflammasome is closely related to the occurrence and development of metabolic diseases. The inflammasome can directly or indirectly affect conduction of the insulin signaling pathway, involvement the occurrence of IR and type 2 diabetes mellitus (T2DM). Moreover, various therapeutic agents also work through the inflammasome to treat with diabetes. This review focuses on the role of inflammasome on IR and T2DM, pointing out the association and utility value. Briefly, we have discussed the main inflammasomes, including NLRP1, NLRP3, NLRC4, NLRP6 and AIM2, as well as their structure, activation and regulation in IR were described in detail. Finally, we discussed the current therapeutic options-associated with inflammasome for the treatment of T2DM. Specially, the NLRP3-related therapeutic agents and options are widely developed. In summary, this article reviews the role of and research progress on the inflammasome in IR and T2DM.
Collapse
Affiliation(s)
- Shen Lu
- The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| | - Yanrong Li
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China
- Institute of Precision Medicine, Xinxiang Medical University, Xinxiang, Henan, China
| | - Zhaojun Qian
- The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| | - Tiesuo Zhao
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China
- Institute of Precision Medicine, Xinxiang Medical University, Xinxiang, Henan, China
- Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, Xinxiang Medical University, Xinxiang, Henan, China
| | - Zhiwei Feng
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China
- Institute of Precision Medicine, Xinxiang Medical University, Xinxiang, Henan, China
- Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, Xinxiang Medical University, Xinxiang, Henan, China
| | - Xiaogang Weng
- The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
- *Correspondence: Lili Yu, ; Xiaogang Weng,
| | - Lili Yu
- The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China
- Institute of Precision Medicine, Xinxiang Medical University, Xinxiang, Henan, China
- Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, Xinxiang Medical University, Xinxiang, Henan, China
- *Correspondence: Lili Yu, ; Xiaogang Weng,
| |
Collapse
|
7
|
Leiba J, Özbilgiç R, Hernández L, Demou M, Lutfalla G, Yatime L, Nguyen-Chi M. Molecular Actors of Inflammation and Their Signaling Pathways: Mechanistic Insights from Zebrafish. BIOLOGY 2023; 12:153. [PMID: 36829432 PMCID: PMC9952950 DOI: 10.3390/biology12020153] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/12/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023]
Abstract
Inflammation is a hallmark of the physiological response to aggressions. It is orchestrated by a plethora of molecules that detect the danger, signal intracellularly, and activate immune mechanisms to fight the threat. Understanding these processes at a level that allows to modulate their fate in a pathological context strongly relies on in vivo studies, as these can capture the complexity of the whole process and integrate the intricate interplay between the cellular and molecular actors of inflammation. Over the years, zebrafish has proven to be a well-recognized model to study immune responses linked to human physiopathology. We here provide a systematic review of the molecular effectors of inflammation known in this vertebrate and recapitulate their modes of action, as inferred from sterile or infection-based inflammatory models. We present a comprehensive analysis of their sequence, expression, and tissue distribution and summarize the tools that have been developed to study their function. We further highlight how these tools helped gain insights into the mechanisms of immune cell activation, induction, or resolution of inflammation, by uncovering downstream receptors and signaling pathways. These progresses pave the way for more refined models of inflammation, mimicking human diseases and enabling drug development using zebrafish models.
Collapse
|
8
|
King BC, Blom AM. Intracellular complement: Evidence, definitions, controversies, and solutions. Immunol Rev 2023; 313:104-119. [PMID: 36100972 PMCID: PMC10086947 DOI: 10.1111/imr.13135] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The term "intracellular complement" has been introduced recently as an umbrella term to distinguish functions of complement proteins that take place intracellularly, rather than in the extracellular environment. However, this rather undefined term leaves some confusion as to the classification of what intracellular complement really is, and as to which intracellular compartment(s) it should refer to. In this review, we will describe the evidence for both canonical and non-canonical functions of intracellular complement proteins, as well as the current controversies and unanswered questions as to the nature of the intracellular complement. We also suggest new terms to facilitate the accurate description and discussion of specific forms of intracellular complement and call for future experiments that will be required to provide more definitive evidence and a better understanding of the mechanisms of intracellular complement activity.
Collapse
Affiliation(s)
- Ben C King
- Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Anna M Blom
- Department of Translational Medicine, Lund University, Malmö, Sweden
| |
Collapse
|
9
|
Sierra DP, Tripathi A, Pillai A. Dysregulation of complement system in neuropsychiatric disorders: A mini review. Biomark Neuropsychiatry 2022; 7. [PMID: 37123465 PMCID: PMC10136364 DOI: 10.1016/j.bionps.2022.100056] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Complement system is one of the most important defense mechanisms of the innate immune system. In addition to their roles in immune regulation, complement proteins are also involved in neurodevelopment and adult brain plasticity. Complement dysregulation has been shown in neurodevelopmental disorders including schizophrenia and autism spectrum disorder as well as in mood disorders. A number of clinical as well as genetic studies suggest the role of complement proteins in the cortical thinning and excessive synaptic pruning frequently associated with schizophrenia. The changes in complement proteins are also associated with the pathophysiology of autism spectrum disorder, major depressive disorder and bipolar disorder, but warrant further research. In addition, rodent models suggest a strong case for complement system in anxiety-like behavior. In this article, we review the recent findings on the role of complement system in neuropsychiatric disorders. The possible uses for future complement targeted therapies are also discussed.
Collapse
Affiliation(s)
- Danny Perez Sierra
- Pathophysiology of Neuropsychiatric Disorders Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Ashutosh Tripathi
- Pathophysiology of Neuropsychiatric Disorders Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Anilkumar Pillai
- Pathophysiology of Neuropsychiatric Disorders Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
- Research and Development, Charlie Norwood VA Medical Center, Augusta, GA, USA
- Department of Psychiatry and Health Behavior, Medical College of Georgia, Augusta University, Augusta, GA, USA
- Correspondence to: Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA. (A. Pillai)
| |
Collapse
|
10
|
Janakiram NB, Valerio MS, Goldman SM, Dearth CL. The Role of the Inflammatory Response in Mediating Functional Recovery Following Composite Tissue Injuries. Int J Mol Sci 2021; 22:ijms222413552. [PMID: 34948349 PMCID: PMC8705789 DOI: 10.3390/ijms222413552] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/04/2021] [Accepted: 12/14/2021] [Indexed: 01/08/2023] Open
Abstract
Composite tissue injuries (CTI) are common among US Military Service members during combat operations, and carry a high potential of morbidity. Furthermore, CTI are often complicated due to an altered wound healing response, resulting in part from a dysregulation of the innate and adaptive immune responses. Unlike normal wound healing, in CTI, disruptions occur in innate immune responses, altering neutrophil functions, macrophage activation and polarization, further impacting the functions of T regulatory cells. Additionally, the biological underpinnings of these unfavorable wound healing conditions are multifactorial, including various processes, such as: ischemia, hypoxia, low nutrient levels, and altered cell metabolic pathways, among others, all of which are thought to trigger anergy in immune cells and destabilize adaptive immune responses. As a result, impaired wound healing is common in CTI. Herein, we review the altered innate and adaptive immune cells and their metabolic status and responses following CTI, and discuss the role a multi-pronged immunomodulatory approach may play in facilitating improved outcomes for afflicted patients.
Collapse
Affiliation(s)
- Naveena B. Janakiram
- Research & Surveillance Division, DoD-VA Extremity Trauma and Amputation Center of Excellence, Bethesda, MD 20889, USA; (N.B.J.); (M.S.V.); (S.M.G.)
- Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD 20889, USA
- Walter Reed National Military Medical Center, Bethesda, MD 20889, USA
| | - Michael S. Valerio
- Research & Surveillance Division, DoD-VA Extremity Trauma and Amputation Center of Excellence, Bethesda, MD 20889, USA; (N.B.J.); (M.S.V.); (S.M.G.)
- Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD 20889, USA
- Walter Reed National Military Medical Center, Bethesda, MD 20889, USA
| | - Stephen M. Goldman
- Research & Surveillance Division, DoD-VA Extremity Trauma and Amputation Center of Excellence, Bethesda, MD 20889, USA; (N.B.J.); (M.S.V.); (S.M.G.)
- Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD 20889, USA
- Walter Reed National Military Medical Center, Bethesda, MD 20889, USA
| | - Christopher L. Dearth
- Research & Surveillance Division, DoD-VA Extremity Trauma and Amputation Center of Excellence, Bethesda, MD 20889, USA; (N.B.J.); (M.S.V.); (S.M.G.)
- Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD 20889, USA
- Walter Reed National Military Medical Center, Bethesda, MD 20889, USA
- Correspondence: ; Tel.: +1-(301)-319-2461
| |
Collapse
|
11
|
Freiwald T, Afzali B. Renal diseases and the role of complement: Linking complement to immune effector pathways and therapeutics. Adv Immunol 2021; 152:1-81. [PMID: 34844708 PMCID: PMC8905641 DOI: 10.1016/bs.ai.2021.09.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The complement system is an ancient and phylogenetically conserved key danger sensing system that is critical for host defense against pathogens. Activation of the complement system is a vital component of innate immunity required for the detection and removal of pathogens. It is also a central orchestrator of adaptive immune responses and a constituent of normal tissue homeostasis. Once complement activation occurs, this system deposits indiscriminately on any cell surface in the vicinity and has the potential to cause unwanted and excessive tissue injury. Deposition of complement components is recognized as a hallmark of a variety of kidney diseases, where it is indeed associated with damage to the self. The provenance and the pathophysiological role(s) played by complement in each kidney disease is not fully understood. However, in recent years there has been a renaissance in the study of complement, with greater appreciation of its intracellular roles as a cell-intrinsic system and its interplay with immune effector pathways. This has been paired with a profusion of novel therapeutic agents antagonizing complement components, including approved inhibitors against complement components (C)1, C3, C5 and C5aR1. A number of clinical trials have investigated the use of these more targeted approaches for the management of kidney diseases. In this review we present and summarize the evidence for the roles of complement in kidney diseases and discuss the available clinical evidence for complement inhibition.
Collapse
Affiliation(s)
- Tilo Freiwald
- Immunoregulation Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), Bethesda, MD, United States; Department of Nephrology, University Hospital Frankfurt, Goethe-University, Frankfurt am Main, Germany
| | - Behdad Afzali
- Department of Nephrology, University Hospital Frankfurt, Goethe-University, Frankfurt am Main, Germany.
| |
Collapse
|
12
|
Alterations of Plasma Galectin-3 and C3 Levels in Patients with Parkinson's Disease. Brain Sci 2021; 11:brainsci11111515. [PMID: 34827514 PMCID: PMC8615685 DOI: 10.3390/brainsci11111515] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/10/2021] [Accepted: 11/13/2021] [Indexed: 12/03/2022] Open
Abstract
Parkinson’s disease (PD) is characterized by progressive neurodegeneration of dopaminergic neurons in the ventral midbrain. The complement-phagosome pathway is involved in the pathogenesis of PD. Here we measured levels of complement-phagocytosis molecules, including galectin-3, C3, C4, and cathepsin D, in the plasma of 56 patients with PD, and 46 normal controls (NCs). Plasma levels of galectin-3 (9.93 ± 3.94 ng/mL) were significantly higher in PD patients compared with NCs (8.39 ± 1.95 ng/mL, p = 0.012), and demonstrated a positive correlation with Hoehn and Yahr stages in PD patients (R2 = 0.218, p < 0.001). On the other hand, plasma C3 levels were significantly lower in PD patients (305.27 ± 205.16 μg/mL) compared with NCs (444.34 ± 245.54 μg/mL, p = 0.002). However, the levels did not correlate with Hoehn and Yahr stages (R2 = 0.010, p = 0.469). Plasma levels of C4 and cathepsin D in PD patients were similar to those in NCs. Our results show possible altered complement-phagocytosis signals in the peripheral blood of PD patients, highlighting the potential of galectin-3 as a biomarker of PD.
Collapse
|
13
|
Singhal A, Kumar S. Neutrophil and remnant clearance in immunity and inflammation. Immunology 2021; 165:22-43. [PMID: 34704249 DOI: 10.1111/imm.13423] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/18/2021] [Accepted: 10/21/2021] [Indexed: 12/13/2022] Open
Abstract
Neutrophil-centred inflammation and flawed clearance of neutrophils cause and exuberate multiple pathological conditions. These most abundant leukocytes exhibit very high daily turnover in steady-state and stress conditions. Various armours including oxidative burst, NETs and proteases function against pathogens, but also dispose neutrophils to spawn pro-inflammatory responses. Neutrophils undergo death through different pathways upon ageing, infection, executing the intruder's elimination. These include non-lytic apoptosis and other lytic deaths including NETosis, necroptosis and pyroptosis with distinct disintegration of the cellular membrane. This causes release and presence of different intracellular cytotoxic, and tissue-damaging content as cell remnants in the extracellular environment. The apoptotic cells and apoptotic bodies get cleared with non-inflammatory outcomes, while lytic deaths associated remnants including histones and cell-free DNA cause pro-inflammatory responses. Indeed, the enhanced frequencies of neutrophil-associated proteases, cell-free DNA and autoantibodies in diverse pathologies including sepsis, asthma, lupus and rheumatoid arthritis, imply disturbed neutrophil resolution programmes in inflammatory and autoimmune diseases. Thus, the clearance mechanisms of neutrophils and associated remnants are vital for therapeutics. Though studies focused on clearance mechanisms of senescent or apoptotic neutrophils so far generated a good understanding of the same, clearance of neutrophils undergoing distinct lytic deaths, including NETs, are being the subjects of intense investigations. Here, in this review, we are providing the current updates in the clearance mechanisms of apoptotic neutrophils and focusing on not so well-defined recognition, uptake and degradation of neutrophils undergoing lytic death and associated remnants that may provide new therapeutic approaches in inflammation and autoimmunity.
Collapse
Affiliation(s)
- Apurwa Singhal
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Sachin Kumar
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India.,Academy of Scientific and Innovative Research (AcSIR), Postal Staff College Area, Ghaziabad, Uttar Pradesh, India
| |
Collapse
|
14
|
Sapio MR, Kim JJ, Loydpierson AJ, Maric D, Goto T, Vazquez FA, Dougherty MK, Narasimhan R, Muhly WT, Iadarola MJ, Mannes AJ. The Persistent Pain Transcriptome: Identification of Cells and Molecules Activated by Hyperalgesia. THE JOURNAL OF PAIN 2021; 22:1146-1179. [PMID: 33892151 PMCID: PMC9441406 DOI: 10.1016/j.jpain.2021.03.155] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 03/12/2021] [Accepted: 03/16/2021] [Indexed: 12/21/2022]
Abstract
During persistent pain, the dorsal spinal cord responds to painful inputs from the site of injury, but the molecular modulatory processes have not been comprehensively examined. Using transcriptomics and multiplex in situ hybridization, we identified the most highly regulated receptors and signaling molecules in rat dorsal spinal cord in peripheral inflammatory and post-surgical incisional pain models. We examined a time course of the response including acute (2 hours) and longer term (2 day) time points after peripheral injury representing the early onset and instantiation of hyperalgesic processes. From this analysis, we identify a key population of superficial dorsal spinal cord neurons marked by somatotopic upregulation of the opioid neuropeptide precursor prodynorphin, and 2 receptors: the neurokinin 1 receptor, and anaplastic lymphoma kinase. These alterations occur specifically in the glutamatergic subpopulation of superficial dynorphinergic neurons. In addition to specific neuronal gene regulation, both models showed induction of broad transcriptional signatures for tissue remodeling, synaptic rearrangement, and immune signaling defined by complement and interferon induction. These signatures were predominantly induced ipsilateral to tissue injury, implying linkage to primary afferent drive. We present a comprehensive set of gene regulatory events across 2 models that can be targeted for the development of non-opioid analgesics. PERSPECTIVE: The deadly impact of the opioid crisis and the need to replace morphine and other opioids in clinical practice is well recognized. Embedded within this research is an overarching goal of obtaining foundational knowledge from transcriptomics to search for non-opioid analgesic targets. Developing such analgesics would address unmet clinical needs.
Collapse
Affiliation(s)
- Matthew R Sapio
- Department of Perioperative Medicine, National Institutes of Health Clinical Center, NIH, Bethesda, Maryland
| | - Jenny J Kim
- Department of Perioperative Medicine, National Institutes of Health Clinical Center, NIH, Bethesda, Maryland
| | - Amelia J Loydpierson
- Department of Perioperative Medicine, National Institutes of Health Clinical Center, NIH, Bethesda, Maryland
| | - Dragan Maric
- National Institute of Neurological Disorders and Stroke, Flow and Imaging Cytometry Core Facility, NIH, Bethesda, Maryland
| | - Taichi Goto
- Department of Perioperative Medicine, National Institutes of Health Clinical Center, NIH, Bethesda, Maryland; National Institute of Nursing Research, Symptom Management Branch, NIH, Bethesda, Maryland; Japan Society for the Promotion of Science Overseas Research Fellowship, Tokyo, Japan
| | - Fernando A Vazquez
- Department of Perioperative Medicine, National Institutes of Health Clinical Center, NIH, Bethesda, Maryland
| | - Mary K Dougherty
- Department of Perioperative Medicine, National Institutes of Health Clinical Center, NIH, Bethesda, Maryland
| | - Radhika Narasimhan
- Department of Perioperative Medicine, National Institutes of Health Clinical Center, NIH, Bethesda, Maryland
| | - Wallis T Muhly
- National Institute of Nursing Research, Symptom Management Branch, NIH, Bethesda, Maryland; Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Michael J Iadarola
- Department of Perioperative Medicine, National Institutes of Health Clinical Center, NIH, Bethesda, Maryland.
| | - Andrew J Mannes
- Department of Perioperative Medicine, National Institutes of Health Clinical Center, NIH, Bethesda, Maryland
| |
Collapse
|
15
|
Ehrnthaller C, Braumüller S, Kellermann S, Gebhard F, Perl M, Huber-Lang M. Complement Factor C5a Inhibits Apoptosis of Neutrophils-A Mechanism in Polytrauma? J Clin Med 2021; 10:jcm10143157. [PMID: 34300323 PMCID: PMC8303460 DOI: 10.3390/jcm10143157] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/02/2021] [Accepted: 07/15/2021] [Indexed: 01/03/2023] Open
Abstract
Life-threatening polytrauma results in early activation of the complement and apoptotic system, as well as leukocytes, ultimately leading to the clearance of damaged cells. However, little is known about interactions between the complement and apoptotic systems in PMN (polymorphonuclear neutrophils) after multiple injuries. PMN from polytrauma patients and healthy volunteers were obtained and assessed for apoptotic events along the post-traumatic time course. In vitro studies simulated complement activation by the exposure of PMN to C3a or C5a and addressed both the intrinsic and extrinsic apoptotic pathway. Specific blockade of the C5a-receptor 1 (C5aR1) on PMN was evaluated for efficacy to reverse complement-driven alterations. PMN from polytrauma patients exhibited significantly reduced apoptotic rates up to 10 days post trauma compared to healthy controls. Polytrauma-induced resistance was associated with significantly reduced Fas-ligand (FasL) and Fas-receptor (FasR) on PMN and in contrast, significantly enhanced FasL and FasR in serum. Simulation of systemic complement activation revealed for C5a, but not for C3a, a dose-dependent abrogation of PMN apoptosis in both intrinsic and extrinsic pathways. Furthermore, specific blockade of the C5aR1 reversed C5a-induced PMN resistance to apoptosis. The data suggest an important regulatory and putative mechanistic and therapeutic role of the C5a/C5aR1 interaction on PMN apoptosis after polytrauma.
Collapse
Affiliation(s)
- Christian Ehrnthaller
- Institute of Clinical and Experimental Trauma-Immunology (ITI), University of Ulm, 89081 Ulm, Germany; (S.B.); (S.K.)
- Department of Orthopedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), University Hospital, LMU Munich, 81377 Munich, Germany
- Correspondence: (C.E.); (M.H.-L.)
| | - Sonja Braumüller
- Institute of Clinical and Experimental Trauma-Immunology (ITI), University of Ulm, 89081 Ulm, Germany; (S.B.); (S.K.)
| | - Stephanie Kellermann
- Institute of Clinical and Experimental Trauma-Immunology (ITI), University of Ulm, 89081 Ulm, Germany; (S.B.); (S.K.)
| | - Florian Gebhard
- Department of Traumatology, Hand-, Plastic-, and Reconstructive Surgery, Center of Surgery, University of Ulm, 89081 Ulm, Germany; (F.G.); (M.P.)
| | - Mario Perl
- Department of Traumatology, Hand-, Plastic-, and Reconstructive Surgery, Center of Surgery, University of Ulm, 89081 Ulm, Germany; (F.G.); (M.P.)
- Department of Traumatology and Orthopaedic Surgery, University Hospital Erlangen, 91054 Erlangen, Germany
| | - Markus Huber-Lang
- Institute of Clinical and Experimental Trauma-Immunology (ITI), University of Ulm, 89081 Ulm, Germany; (S.B.); (S.K.)
- Correspondence: (C.E.); (M.H.-L.)
| |
Collapse
|
16
|
Portilla D, Xavier S. Role of intracellular complement activation in kidney fibrosis. Br J Pharmacol 2021; 178:2880-2891. [PMID: 33555070 DOI: 10.1111/bph.15408] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/22/2021] [Accepted: 02/02/2021] [Indexed: 02/06/2023] Open
Abstract
Increased expression of complement C1r, C1s and C3 in kidney cells plays an important role in the pathogenesis of kidney fibrosis. Our studies suggest that activation of complement in kidney cells with increased generation of C3 and its fragments occurs by activation of classical and alternative pathways. Single nuclei RNA sequencing studies in kidney tissue from unilateral ureteral obstruction mice show that increased synthesis of complement C3 and C5 occurs primarily in renal tubular epithelial cells (proximal and distal), while increased expression of complement receptors C3ar1 and C5ar1 occurs in interstitial cells including immune cells like monocytes/macrophages suggesting compartmentalization of complement components during kidney injury. Although global deletion of C3 and macrophage ablation prevent inflammation and reduced kidney tissue scarring, the development of mice with cell-specific deletion of complement components and their regulators could bring further insights into the mechanisms by which intracellular complement activation leads to fibrosis and progressive kidney disease. LINKED ARTICLES: This article is part of a themed issue on Canonical and non-canonical functions of the complement system in health and disease. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.14/issuetoc.
Collapse
Affiliation(s)
- Didier Portilla
- Department of Medicine and Center for Immunity and Regenerative Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Sandhya Xavier
- Department of Medicine and Center for Immunity and Regenerative Medicine, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
17
|
Identification of significant potential signaling pathways and differentially expressed proteins in patients with wheat intolerance based on quantitative proteomics. J Proteomics 2021; 246:104317. [PMID: 34217887 DOI: 10.1016/j.jprot.2021.104317] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 06/18/2021] [Accepted: 06/28/2021] [Indexed: 11/24/2022]
Abstract
Wheat intolerance has various systemic manifestations that can affect people's quality of life, and few studies have focused on the mechanism of wheat intolerance and the signaling pathways involved in wheat intolerance have not been fully identified. We compared the protein profiles of patients with wheat intolerance with those of healthy controls using LASSO (least absolute shrinkage and selection operator) and PLS (partial least squares regression) to obtain DEPs (differentially expressed proteins) for GO (Gene Ontology) analysis, KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway enrichment analysis, and PPI (protein-protein interaction) network analysis. Internal validation and external validation were conducted for target proteomics testing. The correlation between differently expressed protein and the wheat-specific IgG antibody concentration was analyzed. Then ROC curve (receiver operating characteristic curve) was generated to validate the differentially expressed proteins. We identified 33 DEPs as significant candidate proteins of wheat intolerance. These proteins were mainly enriched in complement and coagulation cascade pathways, immune activation, and immune response-related pathways. After internal and external target proteomics validation, CFHR3 (complement factor H-related protein 3) was identified as a key protein that may have an important role in wheat intolerance. We found CFHR3 protein expression abundance and the wheat-specific IgG antibody concentration were significantly negatively correlated (P = 0.035; Spearman correlation coefficient r = -0.565). The AUC (median area under the ROC curve) of CFHR3 is 0.857 in external verification data. This study provides insights into wheat intolerance that can be used to further explore the pathogenesis of this condition. SIGNIFICANCE: Proteomics has performed important potential in food allergy research and is conducive to improving our comprehension on molecular mechanisms of food allergy. The present study identified significant signaling pathways and differentially expressed proteins in patients with wheat intolerance by means of bioinformatics from the viewpoint of mass spectrometry-based proteomics, which provided insights into further research on the pathogenesis and timely diagnosis of wheat intolerance.
Collapse
|
18
|
King BC, Blom AM. Complement in metabolic disease: metaflammation and a two-edged sword. Semin Immunopathol 2021; 43:829-841. [PMID: 34159399 PMCID: PMC8613079 DOI: 10.1007/s00281-021-00873-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 05/23/2021] [Indexed: 01/28/2023]
Abstract
We are currently experiencing an enduring global epidemic of obesity and diabetes. It is now understood that chronic low-grade tissue inflammation plays an important role in metabolic disease, brought upon by increased uptake of a so-called Western diet, and a more sedentary lifestyle. Many evolutionarily conserved links exist between metabolism and the immune system, and an imbalance in this system induced by chronic over-nutrition has been termed 'metaflammation'. The complement system is an important and evolutionarily ancient part of innate immunity, but recent work has revealed that complement not only is involved in the recognition of pathogens and induction of inflammation, but also plays important roles in cellular and tissue homeostasis. Complement can therefore contribute both positively and negatively to metabolic control, depending on the nature and anatomical site of its activity. This review will therefore focus on the interactions of complement with mechanisms and tissues relevant for metabolic control, obesity and diabetes.
Collapse
Affiliation(s)
- B C King
- Department of Translational Medicine, Lund University, Lund, Sweden.
| | - A M Blom
- Department of Translational Medicine, Lund University, Lund, Sweden
| |
Collapse
|
19
|
Duarte JN. Neuroinflammatory Mechanisms of Mitochondrial Dysfunction and Neurodegeneration in Glaucoma. J Ophthalmol 2021; 2021:4581909. [PMID: 33953963 PMCID: PMC8064803 DOI: 10.1155/2021/4581909] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 06/29/2020] [Accepted: 03/23/2021] [Indexed: 12/13/2022] Open
Abstract
The exact mechanism of retinal ganglion cell loss in the pathogenesis of glaucoma is yet to be understood. Mitochondrial damage-associated molecular patterns (DAMPs) resulting from mitochondrial dysfunction have been linked to Leber's hereditary optic neuropathy and autosomal dominant optic atrophy, as well as to brain neurodegenerative diseases. Recent evidence shows that, in conditions where mitochondria are damaged, a sustained inflammatory response and downstream pathological inflammation may ensue. Mitochondrial damage has been linked to the accumulation of age-related mitochondrial DNA mutations and mitochondrial dysfunction, possibly through aberrant reactive oxygen species production and defective mitophagy. The present review focuses on how mitochondrial dysfunction may overwhelm the ability of neurons and glial cells to adequately maintain homeostasis and how mitochondria-derived DAMPs trigger the immune system and induce neurodegeneration.
Collapse
Affiliation(s)
- Joao N. Duarte
- Neuroinflammation Unit, Biotech Research & Innovation Center, University of Copenhagen, Copenhagen, Denmark
- Department of Ophthalmology, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Immunology, Section 7631, Rigshospitalet, Copenhagen, Denmark
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
20
|
Heat-Inactivation of Human Serum Destroys C1 Inhibitor, Pro-motes Immune Complex Formation, and Improves Human T Cell Function. Int J Mol Sci 2021; 22:ijms22052646. [PMID: 33808005 PMCID: PMC7961502 DOI: 10.3390/ijms22052646] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/24/2021] [Accepted: 03/01/2021] [Indexed: 12/22/2022] Open
Abstract
Heat-inactivation of sera is used to reduce possible disturbing effects of complement factors in cell-culture experiments, but it is controversially discussed whether this procedure is appropriate or could be neglected. Here, we report a strong impact of heat-inactivation of human sera on the activation and effector functions of human CD4+ T cells. While T cells cultured with native sera were characterized by a higher proliferation rate and higher expression of CD28, heat-inactivated sera shaped T cells towards on-blast formation, higher cytokine secretion (interferon γ, tumor necrosis factor, and interleukin-17), stronger CD69 and PD-1 expression, and increased metabolic activity. Heat-inactivated sera contained reduced amounts of complement factors and regulators like C1 inhibitor, but increased concentrations of circulating immune complexes. Substitution of C1 inhibitor reduced the beneficial effect of heat-inactivation in terms of cytokine release, whereas surface-molecule expression was affected by the addition of complex forming anti-C1q antibody. Our data clearly demonstrate a beneficial effect of heat-inactivation of human sera for T cell experiments but indicate that beside complement regulators and immune complexes other components might be relevant. Beyond that, this study further underpins the strong impact of the complement system on T cell function.
Collapse
|
21
|
Smole U, Kratzer B, Pickl WF. Soluble pattern recognition molecules: Guardians and regulators of homeostasis at airway mucosal surfaces. Eur J Immunol 2020; 50:624-642. [PMID: 32246830 PMCID: PMC7216992 DOI: 10.1002/eji.201847811] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 02/25/2020] [Accepted: 03/31/2020] [Indexed: 01/08/2023]
Abstract
Maintenance of homeostasis at body barriers that are constantly challenged by microbes, toxins and potentially bioactive (macro)molecules requires complex, highly orchestrated mechanisms of protection. Recent discoveries in respiratory research have shed light on the unprecedented role of airway epithelial cells (AEC), which, besides immune cells homing to the lung, also significantly contribute to host defence by expressing membrane‐bound and soluble pattern recognition receptors (sPRR). Recent evidence suggests that distinct, evolutionary ancient, sPRR secreted by AEC might become activated by usually innocuous proteins, commonly referred to as allergens. We here provide a systematic overview on sPRR detectable in the mucus lining of AEC. Some of them become actively produced and secreted by AECs (like the pentraxins C‐reactive protein and pentraxin 3; the collectins mannose binding protein and surfactant proteins A and D; H‐ficolin; serum amyloid A; and the complement components C3 and C5). Others are elaborated by innate and adaptive immune cells such as monocytes/macrophages and T cells (like the pentraxins C‐reactive protein and pentraxin 3; L‐ficolin; serum amyloid A; and the complement components C3 and C5). Herein we discuss how sPRRs may contribute to homeostasis but sometimes also to overt disease (e.g. airway hyperreactivity and asthma) at the alveolar–air interface.
Collapse
Affiliation(s)
- Ursula Smole
- Institute of ImmunologyCenter for PathophysiologyInfectiology and ImmunologyMedical University of ViennaViennaAustria
| | - Bernhard Kratzer
- Institute of ImmunologyCenter for PathophysiologyInfectiology and ImmunologyMedical University of ViennaViennaAustria
| | - Winfried F. Pickl
- Institute of ImmunologyCenter for PathophysiologyInfectiology and ImmunologyMedical University of ViennaViennaAustria
| |
Collapse
|
22
|
King BC, Kulak K, Colineau L, Blom AM. Outside in: Roles of complement in autophagy. Br J Pharmacol 2020; 178:2786-2801. [PMID: 32621514 DOI: 10.1111/bph.15192] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/17/2020] [Accepted: 06/24/2020] [Indexed: 12/12/2022] Open
Abstract
The complement system is a well-characterized cascade of extracellular serum proteins that is activated by pathogens and unwanted waste material. Products of activated complement signal to the host cells via cell surface receptors, eliciting responses such as removal of the stimulus by phagocytosis. The complement system therefore functions as a warning system, resulting in removal of unwanted material. This review describes how extracellular activation of the complement system can also trigger autophagic responses within cells, up-regulating protective homeostatic autophagy in response to perceived stress, but also initiating targeted anti-microbial autophagy in order to kill intracellular cytoinvasive pathogens. In particular, we will focus on recent discoveries that indicate that complement may also have roles in detection and autophagy-mediated disposal of unwanted materials within the intracellular environment. We therefore summarize the current evidence for complement involvement in autophagy, both by transducing signals across the cell membrane, as well as roles within the cellular environment. LINKED ARTICLES: This article is part of a themed issue on Canonical and non-canonical functions of the complement system in health and disease. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.14/issuetoc.
Collapse
Affiliation(s)
- Ben C King
- Section of Medical Protein Chemistry, Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Klaudia Kulak
- Section of Medical Protein Chemistry, Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Lucie Colineau
- Section of Medical Protein Chemistry, Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Anna M Blom
- Section of Medical Protein Chemistry, Department of Translational Medicine, Lund University, Malmö, Sweden
| |
Collapse
|
23
|
Briukhovetska D, Ohm B, Mey FT, Aliberti J, Kleingarn M, Huber-Lang M, Karsten CM, Köhl J. C5aR1 Activation Drives Early IFN-γ Production to Control Experimental Toxoplasma gondii Infection. Front Immunol 2020; 11:1397. [PMID: 32733463 PMCID: PMC7362728 DOI: 10.3389/fimmu.2020.01397] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 06/01/2020] [Indexed: 12/11/2022] Open
Abstract
Toxoplasma gondii (T. gondii) is a parasite infecting animals and humans. In intermediate hosts, such as humans or rodents, rapidly replicating tachyzoites drive vigorous innate and adaptive immune responses resulting in bradyzoites that survive within tissue cysts. Activation of the innate immune system is critical during the early phase of infection to limit pathogen growth and to instruct parasite-specific adaptive immunity. In rodents, dendritic cells (DCs) sense T. gondii through TLR11/12, leading to IL-12 production, which activates NK cells to produce IFN-γ as an essential mechanism for early parasite control. Further, C3 can bind to T. gondii resulting in limited complement activation. Here, we determined the role of C5a/C5aR1 axis activation for the early innate immune response in a mouse model of peritoneal T. gondii infection. We found that C5ar1−/− animals suffered from significantly higher weight loss, disease severity, mortality, and parasite burden in the brain than wild type control animals. Severe infection in C5ar1−/− mice was associated with diminished serum concentrations of IL-12, IL-27, and IFN-γ. Importantly, the serum levels of pro-inflammatory cytokines, including IL-1α, IL-6, and TNF-α, as well as several CXC and CC chemokines, were decreased in comparison to wt animals, whereas anti-inflammatory IL-10 was elevated. The defect in IFN-γ production was associated with diminished Ifng mRNA expression in the spleen and the brain, reduced frequency of IFN-γ+ NK cells in the spleen, and decreased Nos2 expression in the brain of C5ar1−/− mice. Mechanistically, DCs from the spleen of C5ar1−/− mice produced significantly less IL-12 in response to soluble tachyzoite antigen (STAg) stimulation in vivo and in vitro. Our findings suggest a model in which the C5a/C5aR1 axis promotes IL-12 induction in splenic DCs that is critical for IFN-γ production from NK cells and subsequent iNOS expression in the brain as a critical mechanism to control acute T. gondii infection.
Collapse
Affiliation(s)
- Daria Briukhovetska
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Birte Ohm
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Fabian T Mey
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Julio Aliberti
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Marie Kleingarn
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Markus Huber-Lang
- Institute of Clinical and Experimental Trauma-Immunology, University Hospital of Ulm, Ulm, Germany
| | - Christian M Karsten
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Jörg Köhl
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany.,Division of Immunobiology, Cincinnati Children's Hospital and College of Medicine, University of Cincinnati, Cincinnati, OH, United States
| |
Collapse
|
24
|
West EE, Kunz N, Kemper C. Complement and human T cell metabolism: Location, location, location. Immunol Rev 2020; 295:68-81. [PMID: 32166778 PMCID: PMC7261501 DOI: 10.1111/imr.12852] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 02/19/2020] [Accepted: 02/25/2020] [Indexed: 12/26/2022]
Abstract
The complement system represents one of the evolutionary oldest arms of our immune system and is commonly recognized as a liver-derived and serum-active system critical for providing protection against invading pathogens. Recent unexpected findings, however, have defined novel and rather "uncommon" locations and activities of complement. Specifically, the discovery of an intracellularly active complement system-the complosome-and its key role in the regulation of cell metabolic pathways that underly normal human T cell responses have taught us that there is still much to be discovered about this system. Here, we summarize the current knowledge about the emerging functions of the complosome in T cell metabolism. We further place complosome activities among the non-canonical roles of other intracellular innate danger sensing systems and argue that a "location-centric" view of complement evolution could logically justify its close connection with the regulation of basic cell physiology.
Collapse
Affiliation(s)
- Erin E. West
- Complement and Inflammation Research Section, National Heart, Lung and Blood Institute, Bethesda, MD, USA
| | - Natalia Kunz
- Complement and Inflammation Research Section, National Heart, Lung and Blood Institute, Bethesda, MD, USA
| | - Claudia Kemper
- Complement and Inflammation Research Section, National Heart, Lung and Blood Institute, Bethesda, MD, USA
- Faculty of Life Sciences and Medicine, King’s College London, London, UK
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| |
Collapse
|
25
|
Yang J, Wise L, Fukuchi KI. TLR4 Cross-Talk With NLRP3 Inflammasome and Complement Signaling Pathways in Alzheimer's Disease. Front Immunol 2020; 11:724. [PMID: 32391019 PMCID: PMC7190872 DOI: 10.3389/fimmu.2020.00724] [Citation(s) in RCA: 228] [Impact Index Per Article: 45.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 03/30/2020] [Indexed: 01/02/2023] Open
Abstract
Amyloid plaques, mainly composed of abnormally aggregated amyloid β-protein (Aβ) in the brain parenchyma, and neurofibrillary tangles (NFTs), consisting of hyperphosphorylated tau protein aggregates in neurons, are two pathological hallmarks of Alzheimer's disease (AD). Aβ fibrils and tau aggregates in the brain are closely associated with neuroinflammation and synapse loss, characterized by activated microglia and dystrophic neurites. Genome-wide genetic association studies revealed important roles of innate immune cells in the pathogenesis of late-onset AD by recognizing a dozen genetic risk loci that modulate innate immune activities. Furthermore, microglia, brain resident innate immune cells, have been increasingly recognized to play key, opposing roles in AD pathogenesis by either eliminating toxic Aβ aggregates and enhancing neuronal plasticity or producing proinflammatory cytokines, reactive oxygen species, and synaptotoxicity. Aggregated Aβ binds to toll-like receptor 4 (TLR4) and activates microglia, resulting in increased phagocytosis and cytokine production. Complement components are associated with amyloid plaques and NFTs. Aggregated Aβ can activate complement, leading to synapse pruning and loss by microglial phagocytosis. Systemic inflammation can activate microglial TLR4, NLRP3 inflammasome, and complement in the brain, leading to neuroinflammation, Aβ accumulation, synapse loss and neurodegeneration. The host immune response has been shown to function through complex crosstalk between the TLR, complement and inflammasome signaling pathways. Accordingly, targeting the molecular mechanisms underlying the TLR-complement-NLRP3 inflammasome signaling pathways can be a preventive and therapeutic approach for AD.
Collapse
Affiliation(s)
- Junling Yang
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, Peoria, IL, United States
| | - Leslie Wise
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, Peoria, IL, United States
| | - Ken-Ichiro Fukuchi
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, Peoria, IL, United States
| |
Collapse
|
26
|
Abstract
The recognition of microbial or danger-associated molecular patterns by complement proteins initiates a cascade of events that culminates in the activation of surface complement receptors on immune cells. Such signalling pathways converge with those activated downstream of pattern recognition receptors to determine the type and magnitude of the immune response. Intensive investigation in the field has uncovered novel pathways that link complement-mediated signalling with homeostatic and pathological T cell responses. More recently, the observation that complement proteins also act in the intracellular space to shape T cell fates has added a new layer of complexity. Here, we consider fundamental mechanisms and novel concepts at the interface of complement biology and immunity and discuss how these affect the maintenance of homeostasis and the development of human pathology.
Collapse
|
27
|
Liszewski MK, Kemper C. Complement in Motion: The Evolution of CD46 from a Complement Regulator to an Orchestrator of Normal Cell Physiology. THE JOURNAL OF IMMUNOLOGY 2020; 203:3-5. [PMID: 31209141 DOI: 10.4049/jimmunol.1900527] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- M Kathryn Liszewski
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110;
| | - Claudia Kemper
- Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892; .,School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, London SE1 9RT, United Kingdom; and.,Institute for Systemic Inflammation Research, University of Lübeck, 23562 Lübeck, Germany
| |
Collapse
|
28
|
Thomas AM, Gerogianni A, McAdam MB, Fløisand Y, Lau C, Espevik T, Nilsson PH, Mollnes TE, Barratt-Due A. Complement Component C5 and TLR Molecule CD14 Mediate Heme-Induced Thromboinflammation in Human Blood. THE JOURNAL OF IMMUNOLOGY 2019; 203:1571-1578. [PMID: 31413105 DOI: 10.4049/jimmunol.1900047] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 07/14/2019] [Indexed: 12/25/2022]
Abstract
Heme is a critical danger molecule liberated from hemeproteins in various conditions, including from hemoglobin in hemolytic diseases. Heme may cause thromboinflammatory damage by activating inflammatory and hemostatic pathways, such as complement, the TLRs, coagulation, and platelets. In this study, we explored the effect of single and dual inhibition of complement component C5 and TLR coreceptor CD14 on heme-induced thromboinflammation in an ex vivo human whole blood model. Heme induced a dose-dependent activation of complement via the alternative pathway. Single inhibition of C5 by eculizumab attenuated the release of IL-6, IL-8, TNF, MCP-1, MIP-1α, IFN-γ, LTB-4, MMP-8 and -9, and IL-1Ra with more than 60% (p < 0.05 for all) reduced the upregulation of CD11b on granulocytes and monocytes by 59 and 40%, respectively (p < 0.05), and attenuated monocytic tissue factor expression by 33% (p < 0.001). Blocking CD14 attenuated IL-6 and TNF by more than 50% (p < 0.05). In contrast to single inhibition, combined C5 and CD14 was required for a significantly attenuated prothrombin cleavage (72%, p < 0.05). Markers of thromboinflammation were also quantified in two patients admitted to the hospital with sickle cell disease (SCD) crisis. Both SCD patients had pronounced hemolysis and depleted plasma hemopexin and haptoglobin. Plasma heme and complement activation was markedly increased in one patient, a coinciding observation as demonstrated ex vivo. In conclusion, heme-induced thromboinflammation was largely attenuated by C5 inhibition alone, with a beneficial effect of adding a CD14 inhibitor to attenuate prothrombin activation. Targeting C5 has the potential to reduce thromboinflammation in SCD crisis patients.
Collapse
Affiliation(s)
- Anub M Thomas
- Department of Immunology, Oslo University Hospital and K.G. Jebsen Inflammation Research Centre, University of Oslo, 0318 Oslo, Norway
| | - Alexandra Gerogianni
- Linnaeus Centre for Biomaterials Chemistry, Linnaeus University, 391 82 Kalmar, Sweden
| | - Martin B McAdam
- Department of Immunology, Oslo University Hospital and K.G. Jebsen Inflammation Research Centre, University of Oslo, 0318 Oslo, Norway
| | - Yngvar Fløisand
- Department of Haematology, Oslo University Hospital, Rikshospitalet, 0424 Oslo, Norway
| | - Corinna Lau
- Research Laboratory, Nordland Hospital, 8092 Bodo, Norway
| | - Terje Espevik
- Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, 7491 Trondheim, Norway.,Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Per H Nilsson
- Department of Immunology, Oslo University Hospital and K.G. Jebsen Inflammation Research Centre, University of Oslo, 0318 Oslo, Norway.,Linnaeus Centre for Biomaterials Chemistry, Linnaeus University, 391 82 Kalmar, Sweden
| | - Tom Eirik Mollnes
- Department of Immunology, Oslo University Hospital and K.G. Jebsen Inflammation Research Centre, University of Oslo, 0318 Oslo, Norway.,Research Laboratory, Nordland Hospital, 8092 Bodo, Norway.,K.G. Jebsen Thrombosis Research and Expertise Centre, University of Tromso, 9037 Tromso, Norway; and
| | - Andreas Barratt-Due
- Department of Immunology, Oslo University Hospital and K.G. Jebsen Inflammation Research Centre, University of Oslo, 0318 Oslo, Norway; .,Division of Emergencies and Critical Care, Oslo University Hospital, Rikshospitalet, 0027 Oslo, Norway
| |
Collapse
|
29
|
Kumar V. The complement system, toll-like receptors and inflammasomes in host defense: three musketeers’ one target. Int Rev Immunol 2019; 38:131-156. [PMID: 31066339 DOI: 10.1080/08830185.2019.1609962] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Vijay Kumar
- Children’s Health Queensland Clinical Unit, School of Clinical Medicine, Faculty of Medicine, Mater Research, University of Queensland, St Lucia, Brisbane, QLD, Australia
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, ST Lucia, Brisbane, QLD, Australia
| |
Collapse
|
30
|
Li Y, Zhao Q, Liu B, Dixon A, Cancio L, Dubick M, Dalle Lucca J. Early complementopathy predicts the outcomes of patients with trauma. Trauma Surg Acute Care Open 2019; 4:e000217. [PMID: 31058236 PMCID: PMC6461142 DOI: 10.1136/tsaco-2018-000217] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 02/08/2019] [Accepted: 02/28/2019] [Indexed: 01/04/2023] Open
Abstract
Background Complementopathy (rapid complement activation and consumption after trauma) has been reported in trauma patients, but the underlying mechanism of these phenomena and their clinical significance remain unclear. This study aimed to determine the complement/complement pathway activation and identify the association of complement activation with clinical outcomes in trauma patients. Methods We studied 33 trauma patients with mean Injury Severity Score of 25, and 25 healthy volunteers. Sera were collected on patients’ arrival at the emergency department, as well as 1, 2, 3, 5, and 7 days after trauma, to measure the levels of terminal complement activation product soluble C5b-9 (sC5b-9) by ELISA. In addition, the functional complement activation pathway was evaluated using a commercial complement system screening kit. Results Serum concentrations of sC5b-9 (complement terminal pathway activity) were significantly increased in trauma patients throughout the entire observation period except on day 1. Complement terminal activities were significantly higher in 27 of 33 patients with systemic inflammatory response syndrome (SIRS) than non-SIRS patients on day 2, day 5, and day 7. Increased serum levels of sC5b-9 positively correlated with SIRS. Functional complement analysis revealed that the classical pathway was the predominant pathway responsible for complement activation. Burn patients tended to have a greater and prolonged classical pathway activation than non-burn patients, and burn injury and blunt injury were associated with higher blood levels of sC5b-9 than penetrating injury. Discussion Early complement activation through the classical pathway after trauma is observed and positively correlated with the development of SIRS. Thus, monitoring of the complement system might be beneficial in the care of critically injured patients. Level of evidence III. Study type Prognostic.
Collapse
Affiliation(s)
- Yansong Li
- Multiple Organ Support Technology, US Army Institute of Surgical Research, Fort Sam Houston, Texas, USA
| | - Qingwei Zhao
- Burn Research, US Army Institute of Surgical Research, Fort Sam Houston, Texas, USA
| | - Bin Liu
- Blood Research, US Army Institute of Surgical Research, Fort Sam Houston, Texas, USA
| | - Alexander Dixon
- Multiple Organ Support Technology, US Army Institute of Surgical Research, Fort Sam Houston, Texas, USA
| | - Leopoldo Cancio
- Multiple Organ Support Technology, US Army Institute of Surgical Research, Fort Sam Houston, Texas, USA
| | - Michael Dubick
- Damage Control Resuscitation, US Army Institute of Surgical Research, Fort Sam Houston, Texas, USA
| | - Jurandir Dalle Lucca
- Viral Therapeutics, Chemical and Biological Technologies, Fort Belvoir, Virginia, USA
| |
Collapse
|
31
|
Carroll JA, Race B, Williams K, Chesebro B. Toll-like receptor 2 confers partial neuroprotection during prion disease. PLoS One 2018; 13:e0208559. [PMID: 30596651 PMCID: PMC6312208 DOI: 10.1371/journal.pone.0208559] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 11/19/2018] [Indexed: 02/07/2023] Open
Abstract
Neuroinflammation and neurodegeneration are common during prion infection, but the mechanisms that underlie these pathological features are not well understood. Several components of innate immunity, such as Toll-like receptor (TLR) 4 and Complement C1q, have been shown to influence prion disease. To identify additional components of innate immunity that might impact prion disease within the central nervous system (CNS), we screened RNA from brains of pre-clinical and clinical 22L-infected mice for alterations in genes associated with innate immunity. Transcription of several genes encoding damage-associated molecular pattern (DAMP) proteins and receptors were increased in the brains of prion-infected mice. To investigate the role of some of these proteins in prion disease of the CNS, we infected mice deficient in DAMP receptor genes Tlr2, C3ar1, and C5ar1 with 22L scrapie. Elimination of TLR2 accelerated disease by a median of 10 days, while lack of C3aR1 or C5aR1 had no effect on disease tempo. Histopathologically, all knockout mouse strains tested were similar to infected control mice in gliosis, vacuolation, and PrPSc deposition. Analysis of proinflammatory markers in the brains of infected knockout mice indicated only a few alterations in gene expression suggesting that C5aR1 and TLR2 signaling did not act synergistically in the brains of prion-infected mice. These results indicate that signaling through TLR2 confers partial neuroprotection during prion infection.
Collapse
Affiliation(s)
- James A. Carroll
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States of America
| | - Brent Race
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States of America
| | - Katie Williams
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States of America
| | - Bruce Chesebro
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States of America
| |
Collapse
|
32
|
Hansen CB, Willer A, Bayarri-Olmos R, Kemper C, Garred P. Expression of complement C3, C5, C3aR and C5aR1 genes in resting and activated CD4 + T cells. Immunobiology 2018; 224:307-315. [PMID: 30612786 DOI: 10.1016/j.imbio.2018.12.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 12/21/2018] [Accepted: 12/21/2018] [Indexed: 01/02/2023]
Abstract
Complement activation is traditionally thought to occur in the extracellular space. However, it has been suggested that complement proteins are activated and function at additional locations. T cells contain intracellular stores of C3 and C5 that can be cleaved into C3a and C5a and bind to intracellular receptors, which have been shown to be of vital importance for the differentiation and function of these cells. However, whether the origin of the complement proteins located within T cells is derived from endogenous produced complement or from an uptake dependent mechanism is unknown. The presence of intracellular C3 in T cells from normal donors was investigated by fluorescence microscopy and flow cytometry. Moreover, mRNA expression levels of several genes encoding for complement proteins with primary focus on C3, C3aR, C5 and C5aR1 during resting state and upon activation of CD4+ T cells were investigated by a quantitative PCR technique. Furthermore, the gene expression level was evaluated at different time points. We confirmed the presence of intracellular C3 protein in normal T-cells. However, we could not see any increase in mRNA levels using any activation strategy tested. On the contrary, we observed a slight increase in C3 and C5aR1 mRNA only in the non-activated T-cells compared to the activated T cells, and a decrease in the activated T-cells at different incubation time points. Our results show that there is a baseline intracellular expression of the complement C3, C5, C3aR and C5aR1 genes in normal CD4+ T cells, but that expression is not increased during T-cell activation, but rather down regulated. Thus, the pool of intracellular complement in CD4+ T cells may either be due to accumulated complement due low-grade expression or arise from the circulation from an uptake dependent mechanism, but these possibilities are not mutually exclusive.
Collapse
Affiliation(s)
- Cecilie Bo Hansen
- Laboratory of Molecular Medicine, Department of Clinical Immunology Section 7631, Faculty of Health and Medical Sciences, University Hospital of Copenhagen, Denmark
| | - Anton Willer
- Laboratory of Molecular Medicine, Department of Clinical Immunology Section 7631, Faculty of Health and Medical Sciences, University Hospital of Copenhagen, Denmark
| | - Rafael Bayarri-Olmos
- Laboratory of Molecular Medicine, Department of Clinical Immunology Section 7631, Faculty of Health and Medical Sciences, University Hospital of Copenhagen, Denmark
| | - Claudia Kemper
- National Heart, Lung and Blood Institute, National Institute of Health, Bethesda, MD, 20814, USA
| | - Peter Garred
- Laboratory of Molecular Medicine, Department of Clinical Immunology Section 7631, Faculty of Health and Medical Sciences, University Hospital of Copenhagen, Denmark.
| |
Collapse
|
33
|
Younger D, Murugan M, Rama Rao KV, Wu LJ, Chandra N. Microglia Receptors in Animal Models of Traumatic Brain Injury. Mol Neurobiol 2018; 56:5202-5228. [PMID: 30554385 DOI: 10.1007/s12035-018-1428-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 11/13/2018] [Indexed: 02/07/2023]
|
34
|
Abstract
The complement system is an evolutionarily ancient key component of innate immunity required for the detection and removal of invading pathogens. It was discovered more than 100 years ago and was originally defined as a liver-derived, blood-circulating sentinel system that classically mediates the opsonization and lytic killing of dangerous microbes and the initiation of the general inflammatory reaction. More recently, complement has also emerged as a critical player in adaptive immunity via its ability to instruct both B and T cell responses. In particular, work on the impact of complement on T cell responses led to the surprising discoveries that the complement system also functions within cells and is involved in regulating basic cellular processes, predominantly those of metabolic nature. Here, we review current knowledge about complement's role in T cell biology, with a focus on the novel intracellular and noncanonical activities of this ancient system.
Collapse
Affiliation(s)
- Erin E West
- Laboratory of Molecular Immunology and Immunology Center, National Heart, Lung and Blood Institute, Bethesda, Maryland 20892, United States; ,
| | - Martin Kolev
- Division of Transplant Immunology and Mucosal Biology, King's College London, London SE1 9RT, United Kingdom;
| | - Claudia Kemper
- Laboratory of Molecular Immunology and Immunology Center, National Heart, Lung and Blood Institute, Bethesda, Maryland 20892, United States; ,
- Division of Transplant Immunology and Mucosal Biology, King's College London, London SE1 9RT, United Kingdom;
- Institute for Systemic Inflammation Research, University of Lübeck, 23562 Lübeck, Germany
| |
Collapse
|
35
|
West EE, Afzali B, Kemper C. Unexpected Roles for Intracellular Complement in the Regulation of Th1 Responses. Adv Immunol 2018; 138:35-70. [PMID: 29731006 DOI: 10.1016/bs.ai.2018.02.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The complement system is generally recognized as an evolutionarily ancient and critical part of innate immunity required for the removal of pathogens that have breached the protective host barriers. It was originally defined as a liver-derived serum surveillance system that induces the opsonization and killing of invading microbes and amplifies the general inflammatory reactions. However, studies spanning the last four decades have established complement also as a vital bridge between innate and adaptive immunity. Furthermore, recent work on complement, and in particular its impact on human T helper 1 (Th1) responses, has led to the unexpected findings that the complement system also functions within cells and that it participates in the regulation of basic processes of the cell, including metabolism. These recent new insights into the unanticipated noncanonical activities of this ancient system suggest that the functions of complement extend well beyond mere host protection and into cellular physiology.
Collapse
Affiliation(s)
- Erin E West
- Laboratory of Molecular Immunology and Immunology Center, National Heart, Lung and Blood Institute, Bethesda, MD, United States
| | - Behdad Afzali
- Laboratory of Molecular Immunology and Immunology Center, National Heart, Lung and Blood Institute, Bethesda, MD, United States; Lymphocyte Cell Biology Section (Molecular Immunology and Inflammation Branch), National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Claudia Kemper
- Laboratory of Molecular Immunology and Immunology Center, National Heart, Lung and Blood Institute, Bethesda, MD, United States; Division of Transplant Immunology and Mucosal Biology, King's College London, London, United Kingdom; Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany.
| |
Collapse
|
36
|
Abstract
B-1 cells constitute a unique subpopulation of lymphocytes residing mainly in body cavities like the peritoneal cavity (PerC) but are also found in spleen and bone marrow (BM). As innate-like B cells, they mediate first line immune defense through low-affinity natural IgM (nIgM) antibodies. PerC B-1 cells can egress to the spleen and differentiate into nIgM antibody-secreting plasma cells that recognize conserved exogenous and endogenous cellular structures. Homing to and homeostasis within the PerC are regulated by the chemokine CXCL13 released by PerC macrophages and stroma cells. However, the exact mechanisms underlying the regulation of CXCL13 and B-1 homeostasis are not fully explored. B-1 cells play important roles in the inflammatory response to infection, autoimmunity, ischemia/reperfusion injury, obesity, and atherosclerosis. Remarkably, this list of inflammatory entities has a strong overlap with diseases that are regulated by complement suggesting a link between B-1 cells and the complement system. Interestingly, up to now, no data exist regarding the role of complement in B-1 cell biology. Here, we demonstrate for the first time that C5a regulates B-1 cell steady-state dynamics within the peritoneum, the spleen, and the BM. We found decreased B-1a cell numbers in the peritoneum and the spleen of C5aR1−/− mice associated with increased B1-a and B1-b numbers in the spleen and high serum titers of nIgM antibodies directed against phosphorylcholine and several pneumococcal polysaccharides. Similarly, peritoneal B-1a cells were decreased in the peritoneum and splenic B-1a and B-1b cells were increased in C5aR2−/− mice. The decrease in peritoneal B-1 cell numbers was associated with decreased peritoneal CXCL13 levels in C5aR1−/− and C5aR2−/− mice. In search for mechanisms, we found that combined TLR2 and IL-10 receptor activation in PerC macrophages induced strong CXCL13 production, which was significantly reduced in cells from C5aR1- and C5aR2-deficient mice and after combined C5aR-targeting. Such stimulation also induced marked local C5 production by PerC macrophages and C5a generation. Importantly, peritoneal in vivo administration of C5a increased CXCL13 production. Taken together, our findings suggest that local non-canonical C5 activation in PerC macrophages fuels CXCL13 production as a novel mechanism to control B-1 cell homeostasis.
Collapse
Affiliation(s)
- Katharina Bröker
- Brandenburg Medical School, University Hospital Brandenburg, Center of Internal Medicine II, Brandenburg a. d. Havel, Germany
| | - Julia Figge
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Albert F Magnusen
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Rudolf A Manz
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Jörg Köhl
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany.,Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Christian M Karsten
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| |
Collapse
|
37
|
Verschoor A, Karsten CM, Broadley SP, Laumonnier Y, Köhl J. Old dogs-new tricks: immunoregulatory properties of C3 and C5 cleavage fragments. Immunol Rev 2017; 274:112-126. [PMID: 27782330 DOI: 10.1111/imr.12473] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The activation of the complement system by canonical and non-canonical mechanisms results in the generation of multiple C3 and C5 cleavage fragments including anaphylatoxins C3a and C5a as well as opsonizing C3b/iC3b. It is now well appreciated that anaphylatoxins not only act as pro-inflammatory mediators but as immunoregulatory molecules that control the activation status of cells and tissue at several levels. Likewise, C3b/iC3b is more than the opsonizing fragment that facilitates engulfment and destruction of targets by phagocytes. In the circulation, it also facilitates the transport and delivery of bacteria and immune complexes to phagocytes, through a process known as immune adherence, with consequences for adaptive immunity. Here, we will discuss non-classical immunoregulatory properties of C3 and C5 cleavage fragments. We highlight the influence of anaphylatoxins on Th2 and Th17 cell development during allergic asthma with a particular emphasis on their role in the modulation of CD11b+ conventional dendritic cells and monocyte-derived dendritic cells. Furthermore, we discuss the control of anaphylatoxin-mediated activation of dendritic cells and allergic effector cells by adaptive immune mechanisms that involve allergen-specific IgG1 antibodies and plasma or regulatory T cell-derived IL-10 production. Finally, we take a fresh look at immune adherence with a particular focus on the development of antibacterial cytotoxic T-cell responses.
Collapse
Affiliation(s)
- Admar Verschoor
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany.
| | - Christian M Karsten
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Steven P Broadley
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Yves Laumonnier
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Jörg Köhl
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany. .,Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| |
Collapse
|
38
|
Holt BA, Bellavia MC, Potter D, White D, Stowell SR, Sulchek T. Fc microparticles can modulate the physical extent and magnitude of complement activity. Biomater Sci 2017; 5:463-474. [PMID: 28067347 PMCID: PMC5330945 DOI: 10.1039/c6bm00608f] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The complement system is an integral component of the humoral immune system, and describes a cascade of interacting proteins responsible for the opsonization and lysis of foreign pathogens, in addition to the recruitment of immune cells. However, complement activation is also implicated in the progression and complication of immune dysfunctions such as sepsis. Microparticle (MP) biomaterials capable of tuning the local magnitude of serum complement activation could improve complement-mediated cytotoxicity to serum-resistant bacteria or calm an overactive immune response during sepsis. We demonstrate that model Fc-functionalized microparticles can be designed to either enhance or diminish the local cytotoxic effect of complement activation in human serum. The particles were formed with either the antibody Fc domains oriented outward from the particle surface or randomly adsorbed in a non-oriented fashion. In the oriented Fc form, complement products were directly sequestered to the particle surface, including C5a, a potent anaphylatoxin that, when elevated, is associated with poor sepsis prognosis. The oriented particle also lowered the cytotoxicity of serum and thus decreased the antibiotic effect when compared to serum alone. Conversely, the non-oriented microparticles were found to sequester similar levels of C5a, but much lower levels of iC3b and TCC on the microparticle surface, thereby increasing the amount of the soluble terminal complement complex. In addition, the non-oriented microparticles extend the distance over which TCC forms and enhance serum cytotoxicity to bacteria. Together, these two types of complement-modulating particles provide the first biomaterial that can functionally modify the range of complement activation at sites distant from the particle surface. Thus, biomaterials that exploit Fc presentation provide new possibilities to functionally modulate complement activation to achieve a desired clinical result.
Collapse
Affiliation(s)
- Brandon Alexander Holt
- Wallace H. Coulter Department of Biomedical Engineering at the Georgia Institute of Technology and Emory University, Atlanta, GA, USA. and The Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Michael C Bellavia
- Wallace H. Coulter Department of Biomedical Engineering at the Georgia Institute of Technology and Emory University, Atlanta, GA, USA. and The Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Daniel Potter
- The Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA and The G. W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - David White
- United States Department of Agriculture, National Centers for Animal Health, Ames, Iowa, USA
| | - Sean R Stowell
- Center for Transfusion and Cellular Therapies, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Todd Sulchek
- Wallace H. Coulter Department of Biomedical Engineering at the Georgia Institute of Technology and Emory University, Atlanta, GA, USA. and The G. W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
39
|
Heftrig D, Sturm R, Oppermann E, Kontradowitz K, Jurida K, Schimunek L, Woschek M, Marzi I, Relja B. Impaired Surface Expression of HLA-DR, TLR2, TLR4, and TLR9 in Ex Vivo-In Vitro Stimulated Monocytes from Severely Injured Trauma Patients. Mediators Inflamm 2017; 2017:2608349. [PMID: 28255201 PMCID: PMC5309437 DOI: 10.1155/2017/2608349] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 11/08/2016] [Accepted: 11/27/2016] [Indexed: 12/14/2022] Open
Abstract
Objective. Trauma patients (TP) frequently develop an imbalanced immune response that often causes infectious postinjury complications. Monocytes show a diminished capability of both producing proinflammatory cytokines and antigen presentation after trauma. TLR2, TLR4, and TLR9 recognize pathogens and subsequently activate monocytes. While there are conflictive data about TLR2 and TLR4 expression after trauma, no studies about the expression of TLR2, TLR4, TLR9, and HLA-DR on monocytes from TP after their secondary ex vivo-in vitro "hit" have been reported. Methods/Results. Ex vivo-in vitro lipopolysaccharide- (LPS-) stimulated blood from TP showed diminished interleukin- (IL-) 1β-release in TP for five postinjury days compared to healthy volunteers (HV). The recovery was observed at day 5. In parallel, monocytes from TP showed an impaired capability of TLR2, TLR4, and TLR9 expression after secondary stimulation compared to HV, while the measurement of unstimulated samples showed significant reduction of TLR4 and TLR9 at ED. Furthermore, HLA-DR decreased after trauma and was even more profound by stimulation of monocytes. Ratio of monocytes to leukocytes was significantly increased at days 6 and 7 after trauma compared to HV. Conclusion. Impaired expression of TLRs and HLA-DR in acute inflammatory conditions may be responsible for the well-described monocyte paralysis after severe trauma.
Collapse
Affiliation(s)
- David Heftrig
- Department of Trauma, Hand and Reconstructive Surgery, Goethe University, Frankfurt, Germany
| | - Ramona Sturm
- Department of Trauma, Hand and Reconstructive Surgery, Goethe University, Frankfurt, Germany
| | - Elsie Oppermann
- Department of General and Visceral Surgery, Goethe University, Frankfurt, Germany
| | - Kerstin Kontradowitz
- Department of Trauma, Hand and Reconstructive Surgery, Goethe University, Frankfurt, Germany
| | - Katrin Jurida
- Department of Trauma, Hand and Reconstructive Surgery, Goethe University, Frankfurt, Germany
| | - Lukas Schimunek
- Department of Trauma, Hand and Reconstructive Surgery, Goethe University, Frankfurt, Germany
| | - Mathias Woschek
- Department of Trauma, Hand and Reconstructive Surgery, Goethe University, Frankfurt, Germany
| | - Ingo Marzi
- Department of Trauma, Hand and Reconstructive Surgery, Goethe University, Frankfurt, Germany
| | - Borna Relja
- Department of Trauma, Hand and Reconstructive Surgery, Goethe University, Frankfurt, Germany
| |
Collapse
|
40
|
Niyonzima N, Halvorsen B, Sporsheim B, Garred P, Aukrust P, Mollnes TE, Espevik T. Complement activation by cholesterol crystals triggers a subsequent cytokine response. Mol Immunol 2016; 84:43-50. [PMID: 27692470 DOI: 10.1016/j.molimm.2016.09.019] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 09/23/2016] [Indexed: 12/11/2022]
Abstract
In the host a diverse collection of endogenous danger signals is constantly generated consisting of waste material as protein aggregates or crystalline materials that are recognized and handled by soluble pattern recognition receptors and phagocytic cells of the innate immune system. These signals may under certain circumstances drive processes leading to adverse inflammation. One example is cholesterol crystals (CC) that accumulate in the vessel wall during early phases of atherogenesis and represent an important endogenous danger signal promoting inflammation. CC is recognized by the lectin- and classical pathways of the complement system resulting in activation of C3 and C5 with release of inflammatory mediators like the potent C5a fragment. Complement activation by CC leads to crosstalk with the NLRP3 inflammasome-caspase-1 pathway and production of IL-1β. Neutralization of IL-1β may have beneficial effects on atherosclerosis and a large clinical trial with an IL-1β inhibitor is currently in progress (the CANTOS study). However, upstream inhibition of CC-induced inflammation by using a complement inhibitor may be more efficient in treating atherosclerosis since this will block initiation of inflammation processes before downstream release of cytokines including IL-1β. Another therapeutic candidate can be broad-acting 2-hydroxypropyl-β-cyclodextrin, a compound that targets several mechanisms such as cholesterol efflux, complement gene expression, and the NLRP3 pathway. In summary, emerging evidence show that complement is a key upstream player in the pathophysiology of atherosclerosis and that therapy aiming at inhibiting complement could be effective in controlling atherosclerosis.
Collapse
Affiliation(s)
- Nathalie Niyonzima
- Centre of Molecular Inflammation Research, Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, 7491 Trondheim, Norway; MRC Centre for Transplantation, Division of Transplant Immunology and Mucosal Biology, King's College London, SE1 9RT London, UK
| | - Bente Halvorsen
- Research Institute of Internal Medicine, University Hospital Rikshospitalet, 0424 Oslo, Norway; K.J. Jebsen Inflammation Research Centre, University of Oslo, 0318 Oslo, Norway
| | - Bjørnar Sporsheim
- Centre of Molecular Inflammation Research, Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Peter Garred
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Pål Aukrust
- Research Institute of Internal Medicine, University Hospital Rikshospitalet, 0424 Oslo, Norway; K.J. Jebsen Inflammation Research Centre, University of Oslo, 0318 Oslo, Norway; Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital Rikshospitalet, 0424 Oslo, Norway; Institute of clinical medicine, University of Oslo, 0424 Oslo, Norway
| | - Tom Eirik Mollnes
- Centre of Molecular Inflammation Research, Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, 7491 Trondheim, Norway; K.J. Jebsen Inflammation Research Centre, University of Oslo, 0318 Oslo, Norway; Institute of Clinical Medicine and K.J. Jebsen TREC University of Tromsø, 9037 Tromsø, Norway; Research Laboratory, Nordland Hospital, 8092 Bodø, Norway; Department of Immunology, Oslo University Hospital Rikshospitalet, 0027 Oslo, Norway
| | - Terje Espevik
- Centre of Molecular Inflammation Research, Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, 7491 Trondheim, Norway.
| |
Collapse
|
41
|
Barratt-Due A, Pischke SE, Nilsson PH, Espevik T, Mollnes TE. Dual inhibition of complement and Toll-like receptors as a novel approach to treat inflammatory diseases-C3 or C5 emerge together with CD14 as promising targets. J Leukoc Biol 2016; 101:193-204. [PMID: 27581539 PMCID: PMC5166441 DOI: 10.1189/jlb.3vmr0316-132r] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 07/01/2016] [Accepted: 07/25/2016] [Indexed: 12/22/2022] Open
Abstract
Review of how targeting key upstream molecules at the recognition phase of innate immunity exert anti-inflammatory effects; a potential therapeutic regimen for inflammatory diseases. The host is protected by pattern recognition systems, including complement and TLRs, which are closely cross-talking. If improperly activated, these systems might induce tissue damage and disease. Inhibition of single downstream proinflammatory cytokines, such as TNF, IL-1β, and IL-6, have failed in clinical sepsis trials, which might not be unexpected, given the substantial amounts of mediators involved in the pathogenesis of this condition. Instead, we have put forward a hypothesis of inhibition at the recognition phase by “dual blockade” of bottleneck molecules of complement and TLRs. By acting upstream and broadly, the dual blockade could be beneficial in conditions with improper or uncontrolled innate immune activation threatening the host. Key bottleneck molecules in these systems that could be targets for inhibition are the central complement molecules C3 and C5 and the important CD14 molecule, which is a coreceptor for several TLRs, including TLR4 and TLR2. This review summarizes current knowledge of inhibition of complement and TLRs alone and in combination, in both sterile and nonsterile inflammatory processes, where activation of these systems is of crucial importance for tissue damage and disease. Thus, dual blockade might provide a general, broad-acting therapeutic regimen against a number of diseases where innate immunity is improperly activated.
Collapse
Affiliation(s)
- Andreas Barratt-Due
- Department of Immunology, Oslo University Hospital, and K. G. Jebsen Inflammation Research Centre, University of Oslo, Oslo, Norway.,Department of Emergencies and Critical Care, Oslo University Hospital, Oslo, Norway
| | - Søren Erik Pischke
- Department of Immunology, Oslo University Hospital, and K. G. Jebsen Inflammation Research Centre, University of Oslo, Oslo, Norway.,Department of Emergencies and Critical Care, Oslo University Hospital, Oslo, Norway
| | - Per H Nilsson
- Department of Immunology, Oslo University Hospital, and K. G. Jebsen Inflammation Research Centre, University of Oslo, Oslo, Norway
| | - Terje Espevik
- Centre of Molecular Inflammation Research and Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Tom Eirik Mollnes
- Department of Immunology, Oslo University Hospital, and K. G. Jebsen Inflammation Research Centre, University of Oslo, Oslo, Norway; .,Centre of Molecular Inflammation Research and Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway.,Research Laboratory Nordland Hospital, Bodø, Norway; and.,K. G. Jebsen Thrombosis Research and Expertise Center, University of Tromsø, Tromsø, Norway
| |
Collapse
|
42
|
Hess C, Kemper C. Complement-Mediated Regulation of Metabolism and Basic Cellular Processes. Immunity 2016; 45:240-54. [PMID: 27533012 PMCID: PMC5019180 DOI: 10.1016/j.immuni.2016.08.003] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 07/25/2016] [Accepted: 08/01/2016] [Indexed: 02/07/2023]
Abstract
Complement is well appreciated as a critical arm of innate immunity. It is required for the removal of invading pathogens and works by directly destroying them through the activation of innate and adaptive immune cells. However, complement activation and function is not confined to the extracellular space but also occurs within cells. Recent work indicates that complement activation regulates key metabolic pathways and thus can impact fundamental cellular processes, such as survival, proliferation, and autophagy. Newly identified functions of complement include a key role in shaping metabolic reprogramming, which underlies T cell effector differentiation, and a role as a nexus for interactions with other effector systems, in particular the inflammasome and Notch transcription-factor networks. This review focuses on the contributions of complement to basic processes of the cell, in particular the integration of complement with cellular metabolism and the potential implications in infection and other disease settings.
Collapse
Affiliation(s)
- Christoph Hess
- Department of Biomedicine, Immunobiology, University of Basel, 20 Hebelstrasse, 4031 Basel, Switzerland.
| | - Claudia Kemper
- Division of Transplant Immunology and Mucosal Biology, Medical Reseaerch Council Centre for Transplantation, King's College London, Guy's Hospital, Great Maze Pond, London SE1 9RT, UK; Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
43
|
Abstract
C3 glomerulopathy (C3G) describes a spectrum of glomerular diseases defined by shared renal biopsy pathology: a predominance of C3 deposition on immunofluorescence with electron microscopy permitting disease sub-classification. Complement dysregulation underlies the observed pathology, a causal relationship that is supported by well described studies of genetic and acquired drivers of disease. In this article, we provide an overview of the features of C3G, including a discussion of disease definition and a review of the causal role of complement. We discuss molecular markers of disease and how biomarkers are informing our evolving understanding of underlying pathology. Research advances are laying the foundation for complement inhibition as a targeted approach to treatment of C3G.
Collapse
|
44
|
Arbore G, Kemper C. A novel "complement-metabolism-inflammasome axis" as a key regulator of immune cell effector function. Eur J Immunol 2016; 46:1563-73. [PMID: 27184294 PMCID: PMC5025719 DOI: 10.1002/eji.201546131] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 04/27/2016] [Accepted: 05/13/2016] [Indexed: 12/20/2022]
Abstract
The inflammasomes are intracellular multiprotein complexes that induce and regulate the generation of the key pro‐inflammatory cytokines IL‐1β and IL‐18 in response to infectious microbes and cellular stress. The activation of inflammasomes involves several upstream signals including classic pattern or danger recognition systems such as the TLRs. Recently, however, the activation of complement receptors, such as the anaphylatoxin C3a and C5a receptors and the complement regulator CD46, in conjunction with the sensing of cell metabolic changes, for instance increased amino acid influx and glycolysis (via mTORC1), have emerged as additional critical activators of the inflammasome. This review summarizes recent advances in our knowledge about complement‐mediated inflammasome activation, with a specific focus on a novel “complement – metabolism – NLRP3 inflammasome axis.”
Collapse
Affiliation(s)
- Giuseppina Arbore
- MRC Centre for Transplantation, Division of Transplant Immunology and Mucosal Biology, King's College London, London, UK
| | - Claudia Kemper
- MRC Centre for Transplantation, Division of Transplant Immunology and Mucosal Biology, King's College London, London, UK.,Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD, USA
| |
Collapse
|
45
|
Ricklin D, Reis ES, Lambris JD. Complement in disease: a defence system turning offensive. Nat Rev Nephrol 2016; 12:383-401. [PMID: 27211870 DOI: 10.1038/nrneph.2016.70] [Citation(s) in RCA: 407] [Impact Index Per Article: 45.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Although the complement system is primarily perceived as a host defence system, a more versatile, yet potentially more harmful side of this innate immune pathway as an inflammatory mediator also exists. The activities that define the ability of the complement system to control microbial threats and eliminate cellular debris - such as sensing molecular danger patterns, generating immediate effectors, and extensively coordinating with other defence pathways - can quickly turn complement from a defence system to an aggressor that drives immune and inflammatory diseases. These host-offensive actions become more pronounced with age and are exacerbated by a variety of genetic factors and autoimmune responses. Complement can also be activated inappropriately, for example in response to biomaterials or transplants. A wealth of research over the past two decades has led to an increasingly finely tuned understanding of complement activation, identified tipping points between physiological and pathological behaviour, and revealed avenues for therapeutic intervention. This Review summarizes our current view of the key activating, regulatory, and effector mechanisms of the complement system, highlighting important crosstalk connections, and, with an emphasis on kidney disease and transplantation, discusses the involvement of complement in clinical conditions and promising therapeutic approaches.
Collapse
Affiliation(s)
- Daniel Ricklin
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, 401 Stellar Chance, 422 Curie Boulevard, Philadelphia, Pennsylvania 19104, USA
| | - Edimara S Reis
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, 401 Stellar Chance, 422 Curie Boulevard, Philadelphia, Pennsylvania 19104, USA
| | - John D Lambris
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, 401 Stellar Chance, 422 Curie Boulevard, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
46
|
Kumagai T, Yamaguchi N, Hirai H, Kojima S, Kodani Y, Hashiguchi A, Haida M, Nakamura M. Loxoprofen sodium induces the production of complement C5a in human serum. Int Immunopharmacol 2016; 33:55-62. [DOI: 10.1016/j.intimp.2016.01.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 01/08/2016] [Accepted: 01/26/2016] [Indexed: 12/27/2022]
|
47
|
Lynch AM, Wagner BD, Deterding RR, Giclas PC, Gibbs RS, Janoff EN, Holers VM, Santoro NF. The relationship of circulating proteins in early pregnancy with preterm birth. Am J Obstet Gynecol 2016; 214:517.e1-517.e8. [PMID: 26576488 DOI: 10.1016/j.ajog.2015.11.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 10/01/2015] [Accepted: 11/05/2015] [Indexed: 10/22/2022]
Abstract
BACKGROUND Preterm birth (PTB) (< 37 completed weeks' gestation) is a pathological outcome of pregnancy and a major global health problem. Babies born preterm have an elevated risk for long-term adverse medical and neurodevelopmental sequelae. Substantial evidence implicates intrauterine infection and/or inflammation in PTB. However, these are often relatively late findings in the process, when PTB is inevitable. Identification of earlier markers of PTB may make successful intervention possible. Although select proteins, notably those related to the inflammatory pathways, have been associated with PTB, there has been a lack of research into the role of other protein pathways in the development of PTB. The purpose of this study was to investigate, using a previously described biomarker discovery approach, a subset of circulating proteins and their association with PTB focusing on samples from early pregnancy. OBJECTIVES The objectives of the study were as follows: (1) to perform a large-scale biomarker discovery, utilizing an innovative platform to identify proteins associated with preterm birth in plasma taken between 10 and 15 weeks' gestation and, (2) to determine which protein pathways are most strongly associated with preterm birth. To address these aims, we measured 1129 proteins in a plasma sample from early pregnancy using a multiplexed aptamer-based proteomic technology developed in Colorado by SomaLogic. STUDY DESIGN Using a nested case-control approach, we measured proteins at a single time point in early pregnancy in 41 women who subsequently delivered preterm and 88 women who had term uncomplicated deliveries. We measured 1129 proteins using a multiplexed aptamer-based proteomic technology developed by SomaLogic. Logistic regressions and random forests were used to compare protein levels. RESULTS The complement factors B and H and the coagulation factors IX and IX ab were the highest-ranking proteins distinguishing cases of preterm birth from term controls. The top 3 pathways associated with preterm birth were the complement cascade, the immune system, and the clotting cascade. CONCLUSION Using a discovery approach, these data provide further confirmation that there is an association of immune- and coagulation-related events in early pregnancy with preterm birth. Thus, plasma protein profiles at 10-15 weeks of gestation are related to the development of preterm birth later in pregnancy.
Collapse
|
48
|
Egge KH, Barratt-Due A, Nymo S, Lindstad JK, Pharo A, Lau C, Espevik T, Thorgersen EB, Mollnes TE. The anti-inflammatory effect of combined complement and CD14 inhibition is preserved during escalating bacterial load. Clin Exp Immunol 2015; 181:457-67. [PMID: 25907631 DOI: 10.1111/cei.12645] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/19/2015] [Indexed: 01/06/2023] Open
Abstract
Combined inhibition of complement and CD14 is known to attenuate bacterial-induced inflammation, but the dependency of the bacterial load on this effect is unknown. Thus, we investigated whether the effect of such combined inhibition on Escherichia coli- and Staphylococcus aureus-induced inflammation was preserved during increasing bacterial concentrations. Human whole blood was preincubated with anti-CD14, eculizumab (C5-inhibitor) or compstatin (C3-inhibitor), or combinations thereof. Then heat-inactivated bacteria were added at final concentrations of 5 × 10(4) -1 × 10(8) /ml (E. coli) or 5 × 10(7) -4 × 10(8) /ml (S. aureus). Inflammatory markers were measured using enzyme-linked immunosorbent assay (ELISA), multiplex technology and flow cytometry. Combined inhibition of complement and CD14 significantly (P < 0.05) reduced E. coli-induced interleukin (IL)-6 by 40-92% at all bacterial concentrations. IL-1β, IL-8 and macrophage inflammatory protein (MIP)-1α were significantly (P < 0.05) inhibited by 53-100%, and the effect was lost only at the highest bacterial concentration. Tumour necrosis factor (TNF) and MIP-1β were significantly (P < 0.05) reduced by 80-97% at the lowest bacterial concentration. Monocyte and granulocyte CD11b were significantly (P < 0.05) reduced by 63-91% at all bacterial doses. Lactoferrin was significantly (P < 0.05) attenuated to the level of background activity at the lowest bacterial concentration. Similar effects were observed for S. aureus, but the attenuation was, in general, less pronounced. Compared to E. coli, much higher concentrations of S. aureus were required to induce the same cytokine responses. This study demonstrates generally preserved effects of combined complement and CD14 inhibition on Gram-negative and Gram-positive bacterial-induced inflammation during escalating bacterial load. The implications of these findings for future therapy of sepsis are discussed.
Collapse
Affiliation(s)
- Kjetil H Egge
- Department of Immunology, Oslo University Hospital Rikshospitalet, and K. G. Jebsen IRC, University of Oslo, Oslo, Norway
| | - Andreas Barratt-Due
- Department of Immunology, Oslo University Hospital Rikshospitalet, and K. G. Jebsen IRC, University of Oslo, Oslo, Norway
| | - Stig Nymo
- Research Laboratory, Nordland Hospital and Faculty of Health Sciences, K. G. Jebsen TREC, University of Tromsø, Tromsø, Norway
| | - Julie K Lindstad
- Department of Immunology, Oslo University Hospital Rikshospitalet, and K. G. Jebsen IRC, University of Oslo, Oslo, Norway
| | - Anne Pharo
- Department of Immunology, Oslo University Hospital Rikshospitalet, and K. G. Jebsen IRC, University of Oslo, Oslo, Norway
| | - Corinna Lau
- Research Laboratory, Nordland Hospital and Faculty of Health Sciences, K. G. Jebsen TREC, University of Tromsø, Tromsø, Norway
| | - Terje Espevik
- Centre of Molecular Inflammation Research and Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Ebbe B Thorgersen
- Department of Immunology, Oslo University Hospital Rikshospitalet, and K. G. Jebsen IRC, University of Oslo, Oslo, Norway
| | - Tom E Mollnes
- Department of Immunology, Oslo University Hospital Rikshospitalet, and K. G. Jebsen IRC, University of Oslo, Oslo, Norway.,Research Laboratory, Nordland Hospital and Faculty of Health Sciences, K. G. Jebsen TREC, University of Tromsø, Tromsø, Norway.,Centre of Molecular Inflammation Research and Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
49
|
Egge KH, Thorgersen EB, Pischke SE, Lindstad JK, Pharo A, Bongoni AK, Rieben R, Nunn MA, Barratt-Due A, Mollnes TE. Organ inflammation in porcine Escherichia coli sepsis is markedly attenuated by combined inhibition of C5 and CD14. Immunobiology 2015; 220:999-1005. [PMID: 25956456 DOI: 10.1016/j.imbio.2015.04.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Revised: 03/05/2015] [Accepted: 04/18/2015] [Indexed: 12/28/2022]
Abstract
Sepsis is an infection-induced systemic inflammatory syndrome, potentially causing organ failure. We previously showed attenuating effects on inflammation, thrombogenicity and haemodynamics by inhibiting the Toll-like receptor co-factor CD14 and complement factor C5 in a porcine Escherichia coli-induced sepsis model. The present study explored the effect on organ inflammation in these pigs. Tissue samples were examined from the combined treatment group (n = 8), the positive (n = 8) and negative (n = 6) control groups after 4h of sepsis. Inflammatory biomarkers were measured using ELISA, multiplex and qPCR analysis. Combined inhibition of C5 and CD14 markedly attenuated IL-1β by 31-66% (P < 0.05) and IL-6 by 54-96% (P < 0.01) in liver, kidney, lung and spleen; IL-8 by 65-100% in kidney, lung, spleen, and heart (P < 0.05) and MCP-1 by 46-69% in liver, kidney, spleen and heart (P < 0.05). Combined inhibition significantly attenuated tissue factor mRNA upregulation in spleen (P < 0.05) and IP-10 mRNA upregulation in four out of five organs. Finally, C5aR mRNA downregulation was prevented in heart and kidney (P < 0.05). Combined inhibition of C5 and CD14 thus markedly attenuated inflammatory responses in all organs examined. The anti-inflammatory effects observed in lung and heart may explain the delayed haemodynamic disturbances observed in septic pigs receiving combined inhibition of C5 and CD14.
Collapse
Affiliation(s)
- Kjetil H Egge
- Department of Immunology, Oslo University Hospital Rikshospitalet, Oslo, Norway; K. G. Jebsen IRC, University of Oslo, Oslo, Norway
| | - Ebbe B Thorgersen
- Department of Immunology, Oslo University Hospital Rikshospitalet, Oslo, Norway; K. G. Jebsen IRC, University of Oslo, Oslo, Norway; Department of Transplantation Medicine, Section for Transplant Surgery, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Søren E Pischke
- Interventional Center, Oslo University Hospital Rikshospitalet and University of Oslo, Oslo, Norway
| | - Julie K Lindstad
- Department of Immunology, Oslo University Hospital Rikshospitalet, Oslo, Norway; K. G. Jebsen IRC, University of Oslo, Oslo, Norway
| | - Anne Pharo
- Department of Immunology, Oslo University Hospital Rikshospitalet, Oslo, Norway; K. G. Jebsen IRC, University of Oslo, Oslo, Norway
| | - Anjan K Bongoni
- Department of Clinical Research, University of Bern, Bern, Switzerland
| | - Robert Rieben
- Department of Clinical Research, University of Bern, Bern, Switzerland
| | - Miles A Nunn
- Volution Immuno Pharmaceuticals Limited SA, London, United Kingdom
| | - Andreas Barratt-Due
- Department of Immunology, Oslo University Hospital Rikshospitalet, Oslo, Norway; K. G. Jebsen IRC, University of Oslo, Oslo, Norway
| | - Tom E Mollnes
- Department of Immunology, Oslo University Hospital Rikshospitalet, Oslo, Norway; K. G. Jebsen IRC, University of Oslo, Oslo, Norway; Research Laboratory, Nordland Hospital and Faculty of Health Sciences, K. G. Jebsen TREC, University of Tromsø, Tromsø, Norway; Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway.
| |
Collapse
|
50
|
Hengartner NE, Fiedler J, Schrezenmeier H, Huber-Lang M, Brenner RE. Crucial role of IL1beta and C3a in the in vitro-response of multipotent mesenchymal stromal cells to inflammatory mediators of polytrauma. PLoS One 2015; 10:e0116772. [PMID: 25562599 PMCID: PMC4285554 DOI: 10.1371/journal.pone.0116772] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 12/13/2014] [Indexed: 12/22/2022] Open
Abstract
Multipotent mesenchymal stromal cells (MSC) exert immune-modulatory effects and support tissue regeneration in various local trauma models. In case of a polytrauma, high amounts of danger-associated molecular patterns are released, leading to a systemic increase of inflammatory mediators. The influence of such a complex inflammatory microenvironment on human MSC is mainly unknown so far. Therefore, we investigated the effects of a defined serum-free polytrauma “cocktail” containing ILͳbeta, IL6, IL8 and the anaphylatoxins C3a and C5a, in concentrations corresponding to those measured in the blood of polytrauma patients, on human MSC in vitro. The polytrauma cocktail induced directed migration of MSC with C3a representing its major soluble chemoattractive agent. Furthermore, the polytrauma cocktail and IL1beta upregulated the expression of MMP1 indicating a potential role of IL1beta to enhance MSC migration in the tissue context. COX2, PTGES and TSG6 were also found to be upregulated upon stimulation with the polytrauma cocktail or IL1beta, but not through other single factors of the polytrauma cocktail in pathophysiologically relevant concentrations. An RNA expression array of 84 inflammation-related genes revealed that both the polytrauma cocktail and IL1beta induced C3, CSF1, TLR3 and various chemokines without major qualitative or quantitative differences. These results indicate that IL1beta is a crucial mediator of the polytrauma cocktail in terms of immune-modulation and MMP1 expression. Thus, upon encountering the primary sterile, inflammatory milieu of a polytrauma, endogenous or systemically transfused MSC might be able to migrate to sites of injury, secrete TSG6 and PGE2 and to influence macrophage biology as observed in local trauma models.
Collapse
Affiliation(s)
- Nina-Emily Hengartner
- Orthopedic Department, Division for Biochemistry of Joint and Connective Tissue Diseases, University of Ulm, Ulm, Germany
| | - Jörg Fiedler
- Orthopedic Department, Division for Biochemistry of Joint and Connective Tissue Diseases, University of Ulm, Ulm, Germany
| | - Hubert Schrezenmeier
- Institute of Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service Baden-Württemberg—Hessen and University Hospital Ulm, University of Ulm, Ulm, Germany
| | - Markus Huber-Lang
- Department of Orthopedic Trauma, Hand-, Plastic and Reconstructive Surgery, University of Ulm, Ulm, Germany
| | - Rolf E. Brenner
- Orthopedic Department, Division for Biochemistry of Joint and Connective Tissue Diseases, University of Ulm, Ulm, Germany
- * E-mail:
| |
Collapse
|