1
|
Pafili K, Zaharia OP, Strassburger K, Knebel B, Herder C, Huttasch M, Karusheva Y, Kabisch S, Strom A, Nowotny B, Szendroedi J, Roden M. PNPLA3 gene variation modulates diet-induced improvement in liver lipid content in type 2 diabetes. Clin Nutr 2025; 48:6-15. [PMID: 40090039 DOI: 10.1016/j.clnu.2025.02.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Accepted: 02/28/2025] [Indexed: 03/18/2025]
Abstract
BACKGROUND&AIMS Lifestyle-induced weight reduction remains crucial for managing type 2 diabetes and steatotic liver disease, but its effectiveness varies. We postulated that the G allele in the rs738409 single nucleotide polymorphism within patatin-like phospholipase domain-containing protein 3 (PNPLA3), which associates with metabolic dysfunction-associated steatotic liver disease, also modulates diet-related metabolic effects. METHODS Participants with type 2 diabetes were randomized to 8-week hypocaloric diets (energy intake: -1,256 kJ/d of, <30 kcal% fat): high in cereal fiber and coffee excluding red meat (HF-RM + C; n = 16), or low in cereal fiber, devoid of coffee, but high in red meat (LF + RM-C; n = 15). Whole-body insulin sensitivity (M value) was assessed using [2H]glucose and hyperinsulinemic-normoglycemic clamps, hepatic lipid content (HCL) and body fat volumes by magnetic resonance spectroscopy/imaging before and after intervention. RESULTS Despite comparable weight loss, HCL decreased more in non-carriers (-65 %) than in G-allele carriers (-36 %) upon HF-RM + C diet (both p < 0.05 vs baseline and between groups), but only among non-carriers (-46 %, p < 0.05 vs baseline) upon LF + RM-C. Upon HF-RM + C diet, increase in insulin sensitivity was not different between carriers (+27 % p = 0.051 from baseline) and non-carriers (+21 %, p = 0.032 from baseline), p > 0.05 for between-group comparison. Upon LF + RM-C diet, both groups equally improved their whole-body insulin sensitivity (+42 % for non-carriers and +37 % for carriers, p < 0.05 vs baseline). Upon HF-RM + C diet, non-carriers decreased circulating interleukin-18 from baseline by -31 %, whereas, upon LF + RM-C diet, non-carriers decreased circulating anti-inflammatory interleukin-1 receptor antagonist levels by 14 % (both p < 0.05 vs baseline). CONCLUSIONS Humans with the PNPLA3 G-allele show modified dietary-induced effects on steatotic liver disease in type 2 diabetes despite body weight reduction. Registration at Clinicaltrials.gov, Identifier number: NCT01409330.
Collapse
Affiliation(s)
- Kalliopi Pafili
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany; Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, Auf'm Hennekamp 65, 40225 Düsseldorf, Germany; German Center for Diabetes Research (DZD), Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | - Oana-Patricia Zaharia
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany; Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, Auf'm Hennekamp 65, 40225 Düsseldorf, Germany; German Center for Diabetes Research (DZD), Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | - Klaus Strassburger
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, Auf'm Hennekamp 65, 40225 Düsseldorf, Germany; Institute for Biometrics and Epidemiology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, Auf'm Hennekamp 65, 40225 Düsseldorf, Germany
| | - Birgit Knebel
- German Center for Diabetes Research (DZD), Ingolstädter Landstr. 1, 85764 Neuherberg, Germany; Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Institute for Diabetes Research at Heinrich-Heine-University, Auf'm Hennekamp 65, 40225 Düsseldorf, Germany
| | - Christian Herder
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany; Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, Auf'm Hennekamp 65, 40225 Düsseldorf, Germany; German Center for Diabetes Research (DZD), Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | - Maximilian Huttasch
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, Auf'm Hennekamp 65, 40225 Düsseldorf, Germany; German Center for Diabetes Research (DZD), Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | - Yanislava Karusheva
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany; Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, Auf'm Hennekamp 65, 40225 Düsseldorf, Germany
| | - Stefan Kabisch
- German Center for Diabetes Research (DZD), Ingolstädter Landstr. 1, 85764 Neuherberg, Germany; Department of Endocrinology and Metabolic Medicine, Charité Universitätsmedizin Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Alexander Strom
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, Auf'm Hennekamp 65, 40225 Düsseldorf, Germany; German Center for Diabetes Research (DZD), Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | - Bettina Nowotny
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, Auf'm Hennekamp 65, 40225 Düsseldorf, Germany; Bayer AG, Research and Development Pharmaceuticals, Aprather Weg 42113 Wuppertal, Germany
| | - Julia Szendroedi
- German Center for Diabetes Research (DZD), Ingolstädter Landstr. 1, 85764 Neuherberg, Germany; Department for Internal Medicine I, University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Michael Roden
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany; Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, Auf'm Hennekamp 65, 40225 Düsseldorf, Germany; German Center for Diabetes Research (DZD), Ingolstädter Landstr. 1, 85764 Neuherberg, Germany.
| |
Collapse
|
2
|
Allende DS, Guy CD, Kleiner DE, Carpenter D, Gill RM, Cummings O, Contos M, Yeh M, Belt P, Wilson LA, Van Natta M, Behling C. Clinical associations of portal-based disease in MASLD: proposal of a new histological scoring system. Virchows Arch 2025:10.1007/s00428-025-04087-5. [PMID: 40210740 DOI: 10.1007/s00428-025-04087-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 03/08/2025] [Accepted: 03/23/2025] [Indexed: 04/12/2025]
Abstract
Portal inflammation (PI) and ductular reaction (DR) in metabolic dysfunction-associated steatotic liver disease (MASLD) have shown associations with disease severity. We developed a histologic categorization of these features to correlate with known features of MASLD. This study proposes a scoring schema for PI, PP and DR, and relates them to histologic and clinical features in children and adults. This expanded scoring system was developed to identify clinically relevant categories and defined criteria for scoring biopsies. In adults (N:483), more severe PI, PP, and DR were associated with older age (p ≤ 0.002), and PP and DR were associated with increased alkaline phosphatase (ALP) (p ≤ 0.003), GGT (p ≤ 0.001), and total bilirubin (p ≤ 0.01). More severe PI, PP, and DR were associated with higher NAFLD activity score (NAS), fibrosis stage, and diagnosis of metabolic dysfunction-associated steatohepatitis (MASH) (p ≤ 0.05). In children (N:151), PP and DR were associated with younger age (p ≤ 0.0001), and elevated AST, ALT, and ALP (p ≤ 0.05). More severe PI, PP, and DR were associated with advanced fibrosis stage, and PP and DR were associated with diagnosis of borderline or definite MASH in children (p ≤ 0.05). From multivariable ordinal logistic regression analysis, a higher fibrosis stage was independently associated with more severe PI in both adults and children. Interobserver agreement was substantial for PI, PP and DR. The proposed scoring system demonstrated reproducibility and associations between more severe portal-based disease and advanced liver histology, age, and elevated liver enzymes in adults and children. Evaluation of portal disease could provide insight into therapeutic response and disease progression.
Collapse
Affiliation(s)
| | | | | | | | - Ryan M Gill
- University of California San Francisco, San Francisco, CA, USA
| | | | | | | | - Patricia Belt
- Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Laura A Wilson
- Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Mark Van Natta
- Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | | |
Collapse
|
3
|
Vilar-Gomez E, Gawrieh S, Vuppalanchi R, Kettler C, Pike F, Samala N, Chalasani N. PNPLA3 rs738409, environmental factors and liver-related mortality in the US population. J Hepatol 2025; 82:571-581. [PMID: 39389267 DOI: 10.1016/j.jhep.2024.09.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 09/23/2024] [Accepted: 09/29/2024] [Indexed: 10/12/2024]
Abstract
BACKGROUND & AIMS Little is known about the interplay between patatin-like phospholipase domain-containing protein 3 (PNPLA3 rs738409 C>G), environmental factors, and the risk of liver-related death. METHODS A total of 4,361 adults were selected from NHANES III, 1991-1994. All participants were linked to the National Death Index until 2019 (mean follow-up: 23.2 years). Liver-related death was the study outcome. Associations of PNPLA3, diet, light alcohol intake, smoking, and BMI (kg/m2) with liver-related death were examined using competing risk regression models. RESULTS The PNPLA3 G-allele was significantly associated with liver-related death (adjusted subhazard ratio [adj.sHR] 2.9, 95% CI 1.4-5.8). Light alcohol intake (adj.sHR 2.2, 95% CI 1.1-4.5), top quartiles of monounsaturated fat (adj.sHR 0.43, 95% CI 0.12-0.99) and cholesterol (adj.sHR 2.6, 95% CI 1.00-8.8), coffee intake ≥3 cups/day (adj.sHR 0.05, 95% CI 0.06-0.10), former/current smoking (adj.sHR 1.8, 95% CI 1.2-2.6), BMI (adj.sHR 1.1, 95% CI 1.03-1.2), and healthy eating index (adj.sHR 0.96, 95% CI 0.93-0.98) were associated with liver-related death. Joint effects between PNPLA3 and environmental factors showed that the risk of liver-related death was significantly increased in carriers of the G-allele with light alcohol intake (adj.sHR 3.7), higher consumption (top quartile) of cholesterol (adj.sHR 4.1), former (adj.sHR 4.3) or current (adj.sHR 3.5) smoking, or BMI ≥30 (adj.sHR 4.0) kg/m2. The effects of the G-allele on the risk of LRD were significantly attenuated in those with top quartile consumption of monounsaturated fat (adj.sHR 0.5) or coffee intake ≥3 cups/day (adj.sHR 0.09). Healthy eating index was inversely associated with liver-related death across all PNPLA3 genotypes (adj.sHR 0.94, 0.96, and 0.97 for CC, CG, and GG, respectively). CONCLUSIONS PNPLA3 is associated with liver-related death and this relationship is significantly modified by anthropometric and environmental factors. IMPACT AND IMPLICATIONS Light alcohol intake, dietary factors (healthy eating index, monounsaturated fat, cholesterol), coffee intake, smoking status, and BMI are independently associated with the risk of liver-related death. The increased inherited risk of liver-related death associated with PNPLA3 rs738409 appears to be attenuated by healthy eating index, monounsaturated fat, and coffee intake, and exacerbated by light alcohol intake, smoking, and BMI. Reducing harmful environmental exposures and increasing healthy eating habits may help mitigate the risk of liver-specific mortality even in those with high genetic risk.
Collapse
Affiliation(s)
- Eduardo Vilar-Gomez
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Samer Gawrieh
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Raj Vuppalanchi
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Carla Kettler
- Department of Biostatistics, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Francis Pike
- Department of Biostatistics, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Niharika Samala
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Naga Chalasani
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States.
| |
Collapse
|
4
|
Seko Y, Lin H, Wong VWS, Okanoue T. Impact of PNPLA3 in Lean Individuals and in Cryptogenic Steatotic Liver Disease. Liver Int 2025; 45:e16164. [PMID: 39540675 DOI: 10.1111/liv.16164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/27/2024] [Accepted: 11/03/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Although metabolic dysfunction-associated steatotic liver disease (MASLD) is strongly associated with obesity, around 20% of individuals with hepatic steatosis may nonetheless have normal body mass index, a condition often referred to as lean nonalcoholic fatty liver disease (NAFLD). Under the new nomenclature and definition of MASLD, lean NAFLD can be further divided into lean MASLD (when there is one or more cardiometabolic risk factors) and cryptogenic steatotic liver disease (when there is no cardiometabolic risk factor). RESULTS Current studies suggest that the at-risk PNPLA3 rs738409 variant is more common among individuals with lean NAFLD than their overweight and obese counterparts. However, even in this group, cardiometabolic risk factors are often required for the development of hepatic steatosis and liver injury. In the general population, PNPLA3 gene polymorphism is associated with an increased risk of MASLD, more severe liver histology (i.e., the presence of steatohepatitis and fibrosis) and future development of hepatocellular carcinoma and cirrhotic complications. Emerging data also suggest that individuals carrying the PNPLA3 GG genotype might have a greater reduction in hepatic steatosis and liver enzymes with lifestyle intervention and metabolic treatments, such as glucagon-like peptide-1 receptor agonists. CONCLUSION Studies have not specifically examined the impact of PNPLA3 in lean individuals.
Collapse
Affiliation(s)
- Yuya Seko
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Huapeng Lin
- Department of Gastroenterology and Hepatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Vincent Wai-Sun Wong
- Department of Medicine and Therapeutics, Medical Data Analytics Center, The Chinese University of Hong Kong, Hong Kong, China
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China
| | - Takeshi Okanoue
- Department of Gastroenterology and Hepatology, Saiseikai Suita Hospital, Suita, Japan
| |
Collapse
|
5
|
Chen VL, Kuppa A, Oliveri A, Chen Y, Ponnandy P, Patel PB, Palmer ND, Speliotes EK. Human genetics of metabolic dysfunction-associated steatotic liver disease: from variants to cause to precision treatment. J Clin Invest 2025; 135:e186424. [PMID: 40166930 PMCID: PMC11957700 DOI: 10.1172/jci186424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is characterized by increased hepatic steatosis with cardiometabolic disease and is a leading cause of advanced liver disease. We review here the genetic basis of MASLD. The genetic variants most consistently associated with hepatic steatosis implicate genes involved in lipoprotein input or output, glucose metabolism, adiposity/fat distribution, insulin resistance, or mitochondrial/ER biology. The distinct mechanisms by which these variants promote hepatic steatosis result in distinct effects on cardiometabolic disease that may be best suited to precision medicine. Recent work on gene-environment interactions has shown that genetic risk is not fixed and may be exacerbated or attenuated by modifiable (diet, exercise, alcohol intake) and nonmodifiable environmental risk factors. Some steatosis-associated variants, notably those in patatin-like phospholipase domain-containing 3 (PNPLA3) and transmembrane 6 superfamily member 2 (TM6SF2), are associated with risk of developing adverse liver-related outcomes and provide information beyond clinical risk stratification tools, especially in individuals at intermediate to high risk for disease. Future work to better characterize disease heterogeneity by combining genetics with clinical risk factors to holistically predict risk and develop therapies based on genetic risk is required.
Collapse
Affiliation(s)
- Vincent L. Chen
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Annapurna Kuppa
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Antonino Oliveri
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Yanhua Chen
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Prabhu Ponnandy
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Puja B. Patel
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Nicholette D. Palmer
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Elizabeth K. Speliotes
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
6
|
Venu S, Gopalakrishna R, Pillai BV, Biswas L, Poojara R, Raj M. Assessment of dietary, genetic and metabolic factors in South Indian adolescents with metabolic dysfunction-associated steatotic liver disease: a case-control study protocol. BMJ Paediatr Open 2025; 9:e003138. [PMID: 40127963 PMCID: PMC11934355 DOI: 10.1136/bmjpo-2024-003138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 03/02/2025] [Indexed: 03/26/2025] Open
Abstract
INTRODUCTION Metabolic dysfunction-associated steatotic liver disease (MASLD) is a leading cause of liver disease among adolescents. The objectives of this study are to investigate the associations of dietary, genetic and metabolic factors with MASLD in South Indian adolescents. METHODS AND ANALYSIS The study will employ a case-control study design. We will recruit 280 adolescents (140 cases and 140 controls) from hospital and school settings. The hospital setting will be the paediatric gastroenterology outpatient department (OPD) at the study institution and the school setting will be selected urban schools from Ernakulam, Kerala. At the hospital, cases and controls will be selected from the patients who are attending the paediatric gastroenterology OPD with complaints of generalised abdominal pain or constipation with no other significant medical complaints or use of medications. A sensitisation programme on MASLD for parents of adolescents will be conducted in schools. All consenting parents along with their adolescent wards will be invited for study participation. Cases will be defined as adolescents having evidence of hepatic steatosis in ultrasound and meeting any one of the paediatric cardiometabolic criteria for MASLD. Those who fail to satisfy this criteria will be defined as controls. All participants will undergo nutritional and physical activity assessments using validated questionnaires along with blood sampling for biochemical analysis and genetic testing. We will examine the associations between MASLD and dietary parameters using Pearson's χ2 tests after stratifying dietary variables into categorical groups. Logistic regression will be used to assess the impact of dietary parameters and single-nucleotide polymorphisms (SNPs) on the risk of MASLD. ETHICS AND DISSEMINATION Ethics approval was obtained from the Ethics Committee of Amrita School of Medicine, Kochi. Informed consent will be obtained from participants and their legal guardians before enrolment. The study findings will provide valuable insights into the evolution of MASLD among adolescents in South India.
Collapse
Affiliation(s)
- Swathilakshmi Venu
- Amrita Institute of Medical Sciences and Research Centre, Ernakulam, Kerala, India
| | - Rajesh Gopalakrishna
- Department of Gastroenterology and Hepatology, Amrita Institute of Medical Sciences and Research Centre, Kochi, Kerala, India
| | - Bhanu Vikraman Pillai
- Department of Gastroenterology and Hepatology, Amrita Institute of Medical Sciences and Research Centre, Kochi, Kerala, India
| | - Lalitha Biswas
- Amrita Vishwa Vidyapeetham, Coimbatore, Tamil Nadu, India
| | - Rashmi Poojara
- Department of Home Science, St Teresa's College, Ernakulam, Kerala, India
| | - Manu Raj
- Department of Pediatrics, Amrita Institute of Medical Sciences and Research Centre, Kochi, Kerala, India
| |
Collapse
|
7
|
Kozlitina J, Sookoian S. Global Epidemiological Impact of PNPLA3 I148M on Liver Disease. Liver Int 2025; 45:e16123. [PMID: 39373119 PMCID: PMC11815610 DOI: 10.1111/liv.16123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/19/2024] [Accepted: 09/23/2024] [Indexed: 10/08/2024]
Abstract
The prevalence of metabolic dysfunction-associated steatotic liver disease (MASLD) has increased exponentially over the past three decades, in parallel with the global rise in obesity and type 2 diabetes. It is currently the most common cause of liver-related morbidity and mortality. Although obesity has been identified as a key factor in the increased prevalence of MASLD, individual differences in susceptibility are significantly influenced by genetic factors. PNPLA3 I148M (rs738409 C>G) is the variant with the greatest impact on the risk of developing progressive MASLD and likely other forms of steatotic liver disease. This variant is prevalent across the globe, with the risk allele (G) frequency exhibiting considerable variation. Here, we review the contribution of PNPLA3 I148M to global burden and regional differences in MASLD prevalence, focusing on recent evidence emerging from population-based sequencing studies and prevalence assessments. We calculated the population attributable fraction (PAF) as a means of quantifying the impact of the variant on MASLD. Furthermore, we employ quantitative trait locus (QTL) analysis to ascertain the associations between rs738409 and a range of phenotypic traits. This analysis suggests that these QTLs may underpin pleiotropic effects on extrahepatic traits. Finally, we outline potential avenues for further research and identify key areas for investigation in future studies.
Collapse
Affiliation(s)
- Julia Kozlitina
- Eugene McDermott Center for Human Growth and DevelopmentUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| | - Silvia Sookoian
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Buenos AiresArgentina
- Clinical and Molecular Hepatology, Translational Health Research Center (CENITRES)Maimónides UniversityBuenos AiresArgentina
| |
Collapse
|
8
|
Taesuwan S, Kouvari M, McKune AJ, Panagiotakos DB, Khemacheewakul J, Leksawasdi N, Rachtanapun P, Naumovski N. Total choline intake, liver fibrosis and the progression of metabolic dysfunction-associated steatotic liver disease: Results from 2017 to 2020 NHANES. Maturitas 2025; 191:108150. [PMID: 39536658 DOI: 10.1016/j.maturitas.2024.108150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 10/07/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
OBJECTIVES This study investigated the cross-sectional relationships of total choline intake with the prevalence of metabolic dysfunction-associated steatotic liver disease (MASLD) and its progression to liver fibrosis. STUDY DESIGN The study used data on total choline intake, hepatic steatosis, and liver fibrosis from the cross-sectional 2017-2020 National Health and Nutrition Examination Survey, including 24-h dietary recalls and liver ultrasound elastography (FibroScan®). MAIN OUTCOME MEASURES Steatosis was defined as a controlled attenuation parameter score ≥ 285dB/m. Fibrosis was defined as median liver stiffness ≥8 kPa. Complex survey-adjusted regression models were used in all analyses. Effect modification by sex, race, and cardiometabolic risk factors was investigated. RESULT Total choline intake was not associated with MASLD status (n = 5687; odds ratio per 100 mg/d [95 % confidence interval]: 0.96 [0.85,1.09]; P = 0.55). However, among people with MASLD, a higher total choline intake was associated with higher odds of fibrosis (n = 2019; 1.15 [1.01,1.30]; P = 0.03). This association was observed in men (P-interaction = 0.1; 1.23 [1.02,1.48]; P = 0.03), but not in women (1.05 [0.88,1.24]; P = 1.0). Choline intake also tended to be positively associated with fibrosis in people with MASLD who were overweight or had central obesity (P-interaction = 0.02; 1.15 [1.00,1.34]; P = 0.06). CONCLUSIONS Overall, no significant association was observed between total choline intake and the prevalence of MASLD. However, in people with MASLD, a higher choline intake was associated with higher odds of developing liver fibrosis. This association appeared to differ by sex and cardiometabolic risk factors.
Collapse
Affiliation(s)
- Siraphat Taesuwan
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; Functional Foods and Nutrition Research (FFNR) Laboratory, University of Canberra, Bruce, Ngunnawal Country, ACT 2617, Australia; Discipline of Nutrition and Dietetics, Faculty of Health, University of Canberra, Canberra, ACT 2601, Australia.
| | - Matina Kouvari
- Functional Foods and Nutrition Research (FFNR) Laboratory, University of Canberra, Bruce, Ngunnawal Country, ACT 2617, Australia; Discipline of Nutrition and Dietetics, Faculty of Health, University of Canberra, Canberra, ACT 2601, Australia; Department of Medicine, Division of Endocrinology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Department of Nutrition-Dietetics, Harokopio University, Athens, Greece
| | - Andrew J McKune
- Functional Foods and Nutrition Research (FFNR) Laboratory, University of Canberra, Bruce, Ngunnawal Country, ACT 2617, Australia; Research Institute for Sport and Exercise, University of Canberra, Canberra, ACT 2601, Australia; School of Health Sciences, University of Kwazulu-Natal, Durban 4000, South Africa
| | - Demosthenes B Panagiotakos
- Functional Foods and Nutrition Research (FFNR) Laboratory, University of Canberra, Bruce, Ngunnawal Country, ACT 2617, Australia; Discipline of Nutrition and Dietetics, Faculty of Health, University of Canberra, Canberra, ACT 2601, Australia; Department of Nutrition-Dietetics, Harokopio University, Athens, Greece
| | - Julaluk Khemacheewakul
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Noppol Leksawasdi
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Pornchai Rachtanapun
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Nenad Naumovski
- Functional Foods and Nutrition Research (FFNR) Laboratory, University of Canberra, Bruce, Ngunnawal Country, ACT 2617, Australia; Discipline of Nutrition and Dietetics, Faculty of Health, University of Canberra, Canberra, ACT 2601, Australia; Department of Nutrition-Dietetics, Harokopio University, Athens, Greece; Research Institute for Sport and Exercise, University of Canberra, Canberra, ACT 2601, Australia.
| |
Collapse
|
9
|
Zeng XF, Varady KA, Wang XD, Targher G, Byrne CD, Tayyem R, Latella G, Bergheim I, Valenzuela R, George J, Newberry C, Zheng JS, George ES, Spearman CW, Kontogianni MD, Ristic-Medic D, Peres WAF, Depboylu GY, Yang W, Chen X, Rosqvist F, Mantzoros CS, Valenti L, Yki-Järvinen H, Mosca A, Sookoian S, Misra A, Yilmaz Y, Kim W, Fouad Y, Sebastiani G, Wong VWS, Åberg F, Wong YJ, Zhang P, Bermúdez-Silva FJ, Ni Y, Lupsor-Platon M, Chan WK, Méndez-Sánchez N, de Knegt RJ, Alam S, Treeprasertsuk S, Wang L, Du M, Zhang T, Yu ML, Zhang H, Qi X, Liu X, Pinyopornpanish K, Fan YC, Niu K, Jimenez-Chillaron JC, Zheng MH. The role of dietary modification in the prevention and management of metabolic dysfunction-associated fatty liver disease: An international multidisciplinary expert consensus. Metabolism 2024; 161:156028. [PMID: 39270816 DOI: 10.1016/j.metabol.2024.156028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/25/2024] [Accepted: 09/08/2024] [Indexed: 09/15/2024]
Abstract
Metabolic dysfunction-associated fatty liver disease (MAFLD) or metabolic dysfunction-associated steatotic liver disease (MASLD), has become the leading cause of chronic liver disease worldwide. Optimal dietary intervention strategies for MAFLD are not standardized. This study aimed to achieve consensus on prevention of MAFLD through dietary modification. A multidisciplinary panel of 55 international experts, including specialists in hepatology, gastroenterology, dietetics, endocrinology and other medical specialties from six continents collaborated in a Delphi-based consensus development process. The consensus statements covered aspects ranging from epidemiology to mechanisms, management, and dietary recommendations for MAFLD. The recommended dietary strategies emphasize adherence to a balanced diet with controlled energy intake and personalized nutritional interventions, such as calorie restriction, high-protein, or low-carbohydrate diets. Specific dietary advice encouraged increasing the consumption of whole grains, plant-based proteins, fish, seafood, low-fat or fat-free dairy products, liquid plant oils, and deeply colored fruits and vegetables. Concurrently, it advised reducing the intake of red and processed meats, saturated and trans fats, ultra-processed foods, added sugars, and alcohol. Additionally, maintaining the Mediterranean or DASH diet, minimizing sedentary behavior, and engaging in regular physical activity are recommended. These consensus statements lay the foundation for customized dietary guidelines and proposing avenues for further research on nutrition and MAFLD.
Collapse
Affiliation(s)
- Xu-Fen Zeng
- Department of Clinical Nutrition, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Krista A Varady
- Department of Kinesiology and Nutrition, University of Illinois Chicago, Chicago, IL, USA
| | - Xiang-Dong Wang
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA
| | - Giovanni Targher
- Department of Medicine, University of Verona, Verona, Italy; Metabolic Diseases Research Unit, IRCCS Sacro Cuore-Don Calabria Hospital, Negrar di Valpolicella, Italy
| | - Christopher D Byrne
- Southampton National Institute for Health and Care Research Biomedical Research Centre, University Hospital Southampton, and University of Southampton, Southampton General Hospital, Southampton, UK
| | - Reema Tayyem
- Department of Human Nutrition, College of Health Science, Qatar University, Doha, Qatar
| | - Giovanni Latella
- Gastroenterology, Hepatology and Nutrition Division, Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Ina Bergheim
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, Vienna, Austria
| | - Rodrigo Valenzuela
- Department of Nutrition, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Jacob George
- Storr Liver Centre, The Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Sydney, NSW, Australia
| | - Carolyn Newberry
- Division of Gastroenterology, Weill Cornell Medical Center, New York, NY, USA
| | - Ju-Sheng Zheng
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China; School of Medicine, School of Life Sciences, Westlake University, Hangzhou, China
| | - Elena S George
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, VIC, Australia
| | - C Wendy Spearman
- Division of Hepatology, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Meropi D Kontogianni
- Department of Nutrition and Dietetics, School of Health Sciences & Education, Harokopio University of Athens, Athens, Greece
| | - Danijela Ristic-Medic
- Group for Nutritional Biochemistry and Dietology, Centre of Research Excellence in Nutrition and Metabolism, Institute for Medical Research, National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Wilza Arantes Ferreira Peres
- Department of Nutrition and Dietetics, Josué de Castro Institute of Nutrition, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Gamze Yurtdaş Depboylu
- Izmir Katip Celebi University, Faculty of Health Sciences, Department of Nutrition and Dietetics, İzmir, Türkiye
| | - Wanshui Yang
- Department of Nutrition, School of Public Health, Anhui Medical University, Hefei, China
| | - Xu Chen
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Fredrik Rosqvist
- Department of Public Health and Caring Sciences, Clinical Nutrition and Metabolism, Uppsala University, Uppsala, Sweden, and Department of Food Studies, Nutrition and Dietetics, Uppsala University, Uppsala, Sweden
| | - Christos S Mantzoros
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Luca Valenti
- Precision Medicine-Biological Resource Center, Transfusion Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico Milano, Milan, Italy; Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Hannele Yki-Järvinen
- Department of Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Antonella Mosca
- Hepatology and Liver Transplant Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Silvia Sookoian
- Clinical and Molecular Hepatology, Translational Health Research Center (CENITRES), Maimónides University, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina; Faculty of Health Science, Maimónides University, Buenos Aires, Argentina
| | - Anoop Misra
- Fortis-C-DOC Centre of Excellence for Diabetes, Metabolic Diseases and Endocrinology, New Delhi, India; National Diabetes, Obesity and Cholesterol Foundation (N-DOC), Diabetes Foundation (India) (DFI), New Delhi, India
| | - Yusuf Yilmaz
- Department of Gastroenterology, School of Medicine, Recep Tayyip Erdogan University, Rize, Türkiye
| | - Won Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea; Division of Gastroenterology and Hepatology, Department of Internal Medicine, Seoul Metropolitan Government Boramae Medical Center, Seoul, Republic of Korea
| | - Yasser Fouad
- Department of Gastroenterology, Hepatology and Endemic Medicine, Faculty of Medicine, Minia University, Minia, Egypt
| | - Giada Sebastiani
- Division of Gastroenterology and Hepatology and Chronic Viral Illness Service, McGill University Health Centre, Montreal, Canada; Division of Experimental Medicine, McGill University, Montreal, Canada
| | - Vincent Wai-Sun Wong
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - Fredrik Åberg
- Transplantation and Liver Surgery, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Yu Jun Wong
- Department of Gastroenterology and Hepatology, Changi General Hospital, Singapore; Duke-NUS Medical School, SingHealth, Singapore
| | - Pianhong Zhang
- Department of Clinical Nutrition, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Francisco-Javier Bermúdez-Silva
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Málaga, Spain; Clinical Unit of Endocrinology and Nutrition, University Regional Hospital of Málaga, Málaga, Spain; The Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| | - Yan Ni
- Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, China
| | - Monica Lupsor-Platon
- Department of Medical Imaging, Prof. Dr. Octavian Fodor Regional Institute of Gastroenterology and Hepathology, Iuliu Hațieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Wah Kheong Chan
- Gastroenterology and Hepatology Unit, Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Nahum Méndez-Sánchez
- Faculty of Medicine, National Autonomous University of Mexico, Mexico City, Mexico; Liver Research Unit, Medica Sur Clinic & Foundation, Mexico City, Mexico
| | - Robert J de Knegt
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Centre, Rotterdam, the Netherlands
| | - Shahinul Alam
- Department of Hepatology, Bangabandhu Sheikh Mujib Medical University, Dhaka, Bangladesh
| | - Sombat Treeprasertsuk
- Division of Gastroenterology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Li Wang
- School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Mulong Du
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Tiejun Zhang
- School of Public Health, the Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, Shanghai, China
| | - Ming-Lung Yu
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; College of Medicine and Center for Liquid Biopsy and Cohort Research, Kaohsiung Medical University, Kaohsiung, Taiwan; School of Medicine and Doctoral Program of Clinical and Experimental Medicine, College of Medicine and Center of Excellence for Metabolic Associated Fatty Liver, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Huijie Zhang
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xingshun Qi
- Department of Gastroenterology, General Hospital of Northern Theater Command, Shenyang, Liaoning, China
| | - Xin Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Global Health Institute, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Kanokwan Pinyopornpanish
- Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Yu-Chen Fan
- Department of Hepatology, Qilu Hospital, Shandong University, Jinan, China
| | - Kaijun Niu
- School of Public Health of Tianjin University of Traditional Chinese Medicine, Tianjin, China; Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin, China
| | - Josep C Jimenez-Chillaron
- Institut de Recerca Sant Joan de Déu, SJD-Barcelona Children's Hospital, Endocrine Division, Esplugues, Barcelona, Spain; Department of Physiological Sciences, School of Medicine, University of Barcelona, L'Hospitalet, Barcelona, Spain
| | - Ming-Hua Zheng
- MAFLD Research Center, Department of Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China; Key Laboratory of Diagnosis and Treatment for the Development of Chronic Liver Disease in Zhejiang Province, Wenzhou, China.
| |
Collapse
|
10
|
Sookoian S, Rotman Y, Valenti L. Genetics of Metabolic Dysfunction-associated Steatotic Liver Disease: The State of the Art Update. Clin Gastroenterol Hepatol 2024; 22:2177-2187.e3. [PMID: 39094912 PMCID: PMC11512675 DOI: 10.1016/j.cgh.2024.05.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/18/2024] [Accepted: 05/28/2024] [Indexed: 08/04/2024]
Abstract
Recent advances in the genetics of metabolic dysfunction-associated steatotic liver disease (MASLD) are gradually revealing the mechanisms underlying the heterogeneity of the disease and have shown promising results in patient stratification. Genetic characterization of the disease has been rapidly developed using genome-wide association studies, exome-wide association studies, phenome-wide association studies, and whole exome sequencing. These advances have been powered by the increase in computational power, the development of new analytical algorithms, including some based on artificial intelligence, and the recruitment of large and well-phenotyped cohorts. This review presents an update on genetic studies that emphasize new biological insights from next-generation sequencing approaches. Additionally, we discuss innovative methods for discovering new genetic loci for MASLD, including rare variants. To comprehensively manage MASLD, it is important to stratify risks. Therefore, we present an update on phenome-wide association study associations, including extreme phenotypes. Additionally, we discuss whether polygenic risk scores and targeted sequencing are ready for clinical use. With particular focus on precision medicine, we introduce concepts such as the interplay between genetics and the environment in modulating genetic risk with lifestyle or standard therapies. A special chapter is dedicated to gene-based therapeutics. The limitations of approved pharmacological approaches are discussed, and the potential of gene-related mechanisms in therapeutic development is reviewed, including the decision to perform genetic testing in patients with MASLD.
Collapse
Affiliation(s)
- Silvia Sookoian
- Clinical and Molecular Hepatology. Translational Health Research Center (CENITRES). Maimónides University. Buenos Aires, Argentina
- Faculty of Health Science. Maimónides University. Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Yaron Rotman
- Liver & Energy Metabolism Section, Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Luca Valenti
- Precision Medicine - Biological Resource Center, Department of Transfusion Medicine, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
11
|
Chalasani N, Vilar-Gomez E, Loomba R, Yates KP, Diehl AM, Neuschwander-Tetri BA, Dasarathy S, Kowdley KV, Terrault N, Wilson LA, Tonascia J, Sanyal A. PNPLA3 rs738409, age, diabetes, sex, and advanced fibrosis jointly contribute to the risk of major adverse liver outcomes in metabolic dysfunction-associated steatotic liver disease. Hepatology 2024; 80:1212-1226. [PMID: 38652636 PMCID: PMC11798878 DOI: 10.1097/hep.0000000000000896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/18/2024] [Indexed: 04/25/2024]
Abstract
BACKGROUND AND AIMS The patatin-like phospholipase domain-containing protein 3 ( PNPLA3 ) rs738409 variant is associated with steatotic liver disease and its progression. We examined the association between PNPLA3 and the development of major adverse liver outcomes (MALOs) and how nonmodifiable and modifiable conditions modify this relationship. APPROACH AND RESULTS A total of 2075 adults with biopsy-confirmed metabolic dysfunction-associated steatotic liver disease (MASLD) were enrolled in the metabolic dysfunction-associated steatohepatitis Clinical Research Network (MASH CRN) studies and followed prospectively until death, transplant, or withdrawal of consent. One hundred four MALOs were recorded during an average of 4.3 years. PNPLA3 G-allele (Adj. sub-hazard ratio (sHR): 1.4, 95% CI: 1.07-1.8), advanced fibrosis (AF) (Adj. sHR: 7.8, 95% CI: 4.4-13.8), age >60 years (Adj. sHR: 2.9, 95% CI: 1.3-6.8), and type 2 diabetes mellitus (Adj. sHR: 2.8, 95% CI: 1.8-4.2) were associated with MALO. Among participants with AF, those carrying the G-allele displayed the highest cumulative incidence of MALO (85%) versus noncarriers (53%), p =0.03, and p -value for interaction <0.01. The strength of the association between PNPLA3 and MALO was statistically significantly greater among older than 60 years (sHR: 2.1, 95% CI: 1.5-2.8), women (sHR: 1.4, 95% CI: 1.1-1.9), and those with AF (sHR: 1.9, 95% CI: 1.5-2.4) or type 2 diabetes mellitus (sHR: 2.1, 95% CI: 1.5-2.8) as compared with their counterparts, p -value for interaction between PNPLA3 and each factor<0.01. CONCLUSIONS The deleterious effects of PNPLA3 rs738409 on the risk of MALO are significantly worsened by AF, age, type 2 diabetes mellitus, and sex.
Collapse
Affiliation(s)
- Naga Chalasani
- Division of Gastroenterology, and Hepatology, Indiana University School of Medicine, Indiana University Health, Indianapolis, IN
| | - Eduardo Vilar-Gomez
- Division of Gastroenterology, and Hepatology, Indiana University School of Medicine, Indiana University Health, Indianapolis, IN
| | - Rohit Loomba
- MASLD Research Center, Division of Gastroenterology, and Hepatology, University of California, San Diego School of Medicine, La Jolla, CA
| | | | - Anna Mae Diehl
- Division of Gastroenterology, Duke University Medical Center, Durham, North Carolina
| | | | | | | | - Norah Terrault
- Division of Gastrointestinal and Liver Diseases, University of Southern California, Los Angeles, California
| | - Laura A. Wilson
- Department of Epidemiology, Johns Hopkins University, Baltimore, MD
| | - James Tonascia
- Department of Biostatistics and Epidemiology, Johns Hopkins University, Baltimore, MD
| | - Arun Sanyal
- Division of Gastroenterology, and Hepatology, Virginia Commonwealth University, Richmond, VA
| |
Collapse
|
12
|
Hermanson JB, Tolba SA, Chrisler EA, Leone VA. Gut microbes, diet, and genetics as drivers of metabolic liver disease: a narrative review outlining implications for precision medicine. J Nutr Biochem 2024; 133:109704. [PMID: 39029595 PMCID: PMC11480923 DOI: 10.1016/j.jnutbio.2024.109704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/01/2024] [Accepted: 07/15/2024] [Indexed: 07/21/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is rapidly increasing in prevalence, impacting over a third of the global population. The advanced form of MASLD, Metabolic dysfunction-associated steatohepatitis (MASH), is on track to become the number one indication for liver transplant. FDA-approved pharmacological agents are limited for MASH, despite over 400 ongoing clinical trials, with only a single drug (resmetirom) currently on the market. This is likely due to the heterogeneous nature of disease pathophysiology, which involves interactions between highly individualized genetic and environmental factors. To apply precision medicine approaches that overcome interpersonal variability, in-depth insights into interactions between genetics, nutrition, and the gut microbiome are needed, given that each have emerged as dynamic contributors to MASLD and MASH pathogenesis. Here, we discuss the associations and molecular underpinnings of several of these factors individually and outline their interactions in the context of both patient-based studies and preclinical animal model systems. Finally, we highlight gaps in knowledge that will require further investigation to aid in successfully implementing precision medicine to prevent and alleviate MASLD and MASH.
Collapse
Affiliation(s)
- Jake B Hermanson
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Samar A Tolba
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA; Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Evan A Chrisler
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Vanessa A Leone
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA.
| |
Collapse
|
13
|
Vergères G, Bochud M, Jotterand Chaparro C, Moretti D, Pestoni G, Probst-Hensch N, Rezzi S, Rohrmann S, Brück WM. The future backbone of nutritional science: integrating public health priorities with system-oriented precision nutrition. Br J Nutr 2024; 132:651-666. [PMID: 39320518 PMCID: PMC11531940 DOI: 10.1017/s0007114524001466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/30/2024] [Accepted: 06/23/2024] [Indexed: 09/26/2024]
Abstract
Adopting policies that promote health for the entire biosphere (One Health) requires human societies to transition towards a more sustainable food supply as well as to deepen the understanding of the metabolic and health effects of evolving food habits. At the same time, life sciences are experiencing rapid and groundbreaking technological developments, in particular in laboratory analytics and biocomputing, placing nutrition research in an unprecedented position to produce knowledge that can be translated into practice in line with One Health policies. In this dynamic context, nutrition research needs to be strategically organised to respond to these societal expectations. One key element of this strategy is to integrate precision nutrition into epidemiological research. This position article therefore reviews the recent developments in nutrition research and proposes how they could be integrated into cohort studies, with a focus on the Swiss research landscape specifically.
Collapse
Affiliation(s)
| | - Murielle Bochud
- Unisanté, University Center for Primary Care and Public Health, University of Lausanne, Lausanne, Switzerland
| | - Corinne Jotterand Chaparro
- Department of Nutrition and Dietetics, Geneva School of Health Sciences, HES-SO University of Applied Sciences and Arts Western Switzerland, Geneva, Switzerland
| | - Diego Moretti
- Nutrition Group, Swiss Distance University of Applied Sciences (FFHS)/University of Applied Sciences and Arts of Southern Switzerland (SUPSI), Zurich, Switzerland
| | - Giulia Pestoni
- Nutrition Group, Swiss Distance University of Applied Sciences (FFHS)/University of Applied Sciences and Arts of Southern Switzerland (SUPSI), Zurich, Switzerland
| | - Nicole Probst-Hensch
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Serge Rezzi
- Swiss Nutrition and Health Foundation, Epalinges, Switzerland
| | - Sabine Rohrmann
- Epidemiology, Biostatistics and Prevention Institute (EBPI), University of Zurich, Zürich, Switzerland
| | - Wolfram M. Brück
- Institute for Life Sciences, University of Applied Sciences Western Switzerland Valais-Wallis, Sion, Switzerland
| |
Collapse
|
14
|
Chen VL, Du X, Oliveri A, Chen Y, Kuppa A, Halligan BD, Province MA, Speliotes EK. Genetic risk accentuates dietary effects on hepatic steatosis, inflammation and fibrosis in a population-based cohort. J Hepatol 2024; 81:379-388. [PMID: 38582304 PMCID: PMC11347099 DOI: 10.1016/j.jhep.2024.03.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 03/16/2024] [Accepted: 03/23/2024] [Indexed: 04/08/2024]
Abstract
BACKGROUND & AIMS Steatotic liver disease (SLD), characterized by elevated liver fat content (LFC), is influenced by genetics and diet. However, whether diet has a differential effect based on genetic risk is not well-characterized. We aimed to determine how genetic factors interact with diet to affect SLD in a large national biobank. METHODS We included UK Biobank participants with dietary intake measured by 24-hour recall and genotyping. The primary predictors were dietary pattern, PNPLA3-rs738409-G, TM6SF2-rs58542926-T, a 16-variant hepatic steatosis polygenic risk score (PRS), and gene-environment interactions. The primary outcome was LFC, and secondary outcomes were iron-controlled T1 time (cT1, a measure of liver inflammation and fibrosis) and liver-related events/mortality. RESULTS A total of 21,619 participants met inclusion criteria. In non-interaction models, Mediterranean diet and intake of fruit/vegetables/legumes and fish associated with lower LFC, while higher red/processed meat intake and all genetic predictors associated with higher LFC. In interaction models, all genetic predictors interacted with Mediterranean diet and fruit/vegetable/legume intake, while the steatosis PRS interacted with fish intake and the TM6SF2 genotype interacted with red/processed meat intake, to affect LFC. Dietary effects on LFC were up to 3.8-fold higher in PNPLA3-rs738409-GG vs. -CC individuals, and 1.4-3.0-fold higher in the top vs. bottom quartile of the steatosis PRS. Gene-diet interactions were stronger in participants with vs. without overweight. The steatosis PRS interacted with Mediterranean diet and fruit/vegetable/legume intake to affect cT1 and most dietary and genetic predictors associated with risk of liver-related events or mortality by age 70. CONCLUSIONS Effects of diet on LFC and cT1 were markedly accentuated in patients at increased genetic risk for SLD, implying dietary interventions may be more impactful in these populations. IMPACT AND IMPLICATIONS Genetic variants and diet both influence risk of hepatic steatosis, inflammation/fibrosis, and hepatic decompensation; however, how gene-diet interactions influence these outcomes has previously not been comprehensively characterized. We investigated this topic in the community-based UK Biobank and found that genetic risk and dietary quality interacted to influence hepatic steatosis and inflammation/fibrosis on liver MRI, so that the effects of diet were greater in people at elevated genetic risk. These results are relevant for patients and medical providers because they show that genetic risk is not fixed (i.e. modifiable factors can mitigate or exacerbate this risk) and realistic dietary changes may result in meaningful improvement in liver steatosis and inflammation/fibrosis. As genotyping becomes more routinely used in clinical practice, patients identified to be at high baseline genetic risk may benefit even more from intensive dietary counseling than those at lower risk, though future prospective studies are required.
Collapse
Affiliation(s)
- Vincent L Chen
- Division of Gastroenterology and Hepatology, University of Michigan Health System, Ann Arbor, MI, USA
| | - Xiaomeng Du
- Division of Gastroenterology and Hepatology, University of Michigan Health System, Ann Arbor, MI, USA
| | - Antonino Oliveri
- Division of Gastroenterology and Hepatology, University of Michigan Health System, Ann Arbor, MI, USA
| | - Yanhua Chen
- Division of Gastroenterology and Hepatology, University of Michigan Health System, Ann Arbor, MI, USA
| | - Annapurna Kuppa
- Division of Gastroenterology and Hepatology, University of Michigan Health System, Ann Arbor, MI, USA
| | - Brian D Halligan
- Division of Gastroenterology and Hepatology, University of Michigan Health System, Ann Arbor, MI, USA
| | - Michael A Province
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Elizabeth K Speliotes
- Division of Gastroenterology and Hepatology, University of Michigan Health System, Ann Arbor, MI, USA; Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
15
|
Samala N, Xin Y, Wilson LA, Yates K, Loomba R, Hoofnagle JH, Chalasani N. Non-Hispanic Black Persons With Nonalcoholic Fatty Liver Disease Have Lower Rates of Advanced Fibrosis, Cirrhosis, and Liver-Related Events Even After Controlling for Clinical Risk Factors and PNPLA3 Genotype. Am J Gastroenterol 2024; 119:1857-1865. [PMID: 38483303 PMCID: PMC11399313 DOI: 10.14309/ajg.0000000000002756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 03/01/2024] [Indexed: 04/21/2024]
Abstract
INTRODUCTION Nonalcoholic fatty liver disease (NAFLD) is less frequent in non-Hispanic persons (NHB), but there are knowledge gaps in our understanding of disease severity and outcomes of NAFLD in NHB. We compared liver histology and clinical outcomes of NAFLD in non-Hispanic Black persons (NHB) and non-Hispanic White persons (NHW). METHODS We compared liver histology and outcomes of 109 NHB and 1,910 NHW adults with biopsy-proven NAFLD participating in the Nonalcoholic Steatohepatitis Clinical Research Network observational studies. The relationship between self-reported NHB race/ethnicity and advanced fibrosis was assessed through multivariable logistic regression after controlling for clinical covariates and PNPLA3 genotype. RESULTS NHB and NHW with NAFLD had similar NAFLD activity scores (NAS, 4.4 vs 4.3, P = 0.87) and proportions with definite metabolic dysfunction-associated steatohepatitis (59% vs 58%, P = 1.0), but NHB had significantly lower rates of advanced fibrosis (22% vs 34%, P = 0.01) or cirrhosis (4.6% vs 12.1%, P = 0.010). Compared with NHW, NHB had significantly lower frequency of advanced fibrosis (Odds Ratio: 0.48, 95% Confidence Interval: 27-0.86, P = 0.01). In a comparison between 24 NHB and 655 NHW with advanced fibrosis, the NAS (5.6 vs 4.9, P = 0.01) and lobular inflammation grade (2.2 vs 1.7, P < 0.002) were significantly higher among NHB with advanced fibrosis. One NHB and 23 NHW died during follow-up (0.30 vs 0.28 per 100 person-year follow-up). Seven and zero liver-related deaths occurred in NHW and NHB with NAFLD, respectively. DISCUSSION The risk of advanced fibrosis in NHB with NAFLD is significantly lower, after controlling for clinical risk factors and PNPLA3 genotype. Although their risk of advanced fibrosis was low, NHB with NAFLD and advanced fibrosis had higher NAS and lobular inflammation, indicating a difference in their relationship between necroinflammation and fibrosis.
Collapse
Grants
- UL1 TR002649 NCATS NIH HHS
- U01 DK061732 NIDDK NIH HHS
- U01 DK061731 NIDDK NIH HHS
- U01 DK061718 NIDDK NIH HHS
- UL1 TR000006 NCATS NIH HHS
- UL1 TR000436 NCATS NIH HHS
- U01 DK061728 NIDDK NIH HHS
- U01 DK061738 NIDDK NIH HHS
- UL1 TR000448 NCATS NIH HHS
- U01 DK061734 NIDDK NIH HHS
- UL1 TR000004 NCATS NIH HHS
- UL1 TR002345 NCATS NIH HHS
- U01 DK061737 NIDDK NIH HHS
- U01 DK061713 NIDDK NIH HHS
- U01 DK061730 NIDDK NIH HHS
- U24 DK061730 NIDDK NIH HHS
- UL1 TR000439 NCATS NIH HHS
- grants U01DK061713, U01DK061718, U01DK061728, U01DK061732, U01DK061734, U01DK061737, U01DK061738, U01DK061730, U24DK061730). Additional support is received from the National Center for Advancing Translational Sciences (NCATS) (grants UL1TR000439, UL1TR000436, UL1TR000006, UL1TR000448, UL1TR000100, UL1TR000004, UL1TR000423, UL1TR002649 NIDDK NIH HHS
- UL1 TR000423 NCATS NIH HHS
- UL1 TR000100 NCATS NIH HHS
Collapse
Affiliation(s)
- Niharika Samala
- Division of Gastroenterology and Hepatology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Yuchen Xin
- Johns Hopkins University, Baltimore, Maryland, USA
| | | | | | - Rohit Loomba
- Division of Gastroenterology and Hepatology, University of California at San Diego, La Jolla, California, USA
| | - Jay H. Hoofnagle
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Naga Chalasani
- Division of Gastroenterology and Hepatology, Indiana University School of Medicine, Indianapolis, IN, USA
| | | |
Collapse
|
16
|
Johnson SM, Bao H, McMahon CE, Chen Y, Burr SD, Anderson AM, Madeyski-Bengtson K, Lindén D, Han X, Liu J. PNPLA3 is a triglyceride lipase that mobilizes polyunsaturated fatty acids to facilitate hepatic secretion of large-sized very low-density lipoprotein. Nat Commun 2024; 15:4847. [PMID: 38844467 PMCID: PMC11156938 DOI: 10.1038/s41467-024-49224-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 05/22/2024] [Indexed: 06/09/2024] Open
Abstract
The I148M variant of PNPLA3 is closely associated with hepatic steatosis. Recent evidence indicates that the I148M mutant functions as an inhibitor of PNPLA2/ATGL-mediated lipolysis, leaving the role of wild-type PNPLA3 undefined. Despite showing a triglyceride hydrolase activity in vitro, PNPLA3 has yet to be established as a lipase in vivo. Here, we show that PNPLA3 preferentially hydrolyzes polyunsaturated triglycerides, mobilizing polyunsaturated fatty acids for phospholipid desaturation and enhancing hepatic secretion of triglyceride-rich lipoproteins. Under lipogenic conditions, mice with liver-specific knockout or acute knockdown of PNPLA3 exhibit aggravated liver steatosis and reduced plasma VLDL-triglyceride levels. Similarly, I148M-knockin mice show decreased hepatic triglyceride secretion during lipogenic stimulation. Our results highlight a specific context whereby the wild-type PNPLA3 facilitates the balance between hepatic triglyceride storage and secretion, and suggest the potential contribution of a loss-of-function by the I148M variant to the development of fatty liver disease in humans.
Collapse
Affiliation(s)
- Scott M Johnson
- Department of Biochemistry and Molecular Biology; Mayo Clinic College of Medicine & Science, Rochester, MN, 55905, USA
- Mayo Clinic Graduate School of Biomedical Sciences; Mayo Clinic College of Medicine & Science, Rochester, MN, 55905, USA
- Department of Cell Biology; University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Hanmei Bao
- Barshop Institute for Longevity and Aging Studies and Department of Medicine, Division of Diabetes; University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Cailin E McMahon
- Molecular Biology and Genetics Department; Cornell College of Agriculture and Life Sciences, Ithaca, NY, 14853, USA
| | - Yongbin Chen
- Department of Biochemistry and Molecular Biology; Mayo Clinic College of Medicine & Science, Rochester, MN, 55905, USA
| | - Stephanie D Burr
- Department of Biochemistry and Molecular Biology; Mayo Clinic College of Medicine & Science, Rochester, MN, 55905, USA
| | - Aaron M Anderson
- Department of Developmental Biology; Washington University School of Medicine in St. Louis, St. Louis, MO, 63110, USA
| | - Katja Madeyski-Bengtson
- Translational Genomics, Discovery Sciences; BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Daniel Lindén
- Bioscience Metabolism, Research and Early Development Cardiovascular, Renal and Metabolism (CVRM); BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
- Division of Endocrinology, Department of Neuroscience and Physiology; Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Xianlin Han
- Barshop Institute for Longevity and Aging Studies and Department of Medicine, Division of Diabetes; University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Jun Liu
- Department of Biochemistry and Molecular Biology; Mayo Clinic College of Medicine & Science, Rochester, MN, 55905, USA.
- Division of Endocrinology, Diabetes, Metabolism and Nutrition; Mayo Clinic in Rochester, Rochester, MN, 55905, USA.
| |
Collapse
|
17
|
Alvares-da-Silva MR, Ivancovsky-Wajcman D, Oliveira CP, Rabie S, Longo L, Uribe-Cruz C, Yoshimura SM, Joveleviths D, Ben-Yehoyada M, Grinshpan LS, Shibolet O, Kariv R, Zelber-Sagi S. High red meat consumption among PNPLA3 polymorphism carriers is associated with NAFLD in a multi-center cross-sectional study. Eur J Clin Nutr 2024; 78:442-448. [PMID: 38403728 DOI: 10.1038/s41430-024-01416-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 02/10/2024] [Accepted: 02/14/2024] [Indexed: 02/27/2024]
Abstract
BACKGROUND & AIM Patatin-like phospholipase domain-containing 3 gene (PNPLA3) polymorphism has been implicated in susceptibility to non-alcoholic fatty liver disease (NAFLD), with evidence for potential interaction with nutrition. However, the combination of meat consumption with genetic polymorphism has not been tested. Therefore, this study aims to test the association between the joint presence of PNPLA3 rs738409 G-allele with high meat consumption and NAFLD in populations with diverse meat consumption. METHODS A cross-sectional study among Israeli screening and Brazilian primary healthcare populations. Food consumption was assessed by a food-frequency questionnaire. PNPLA3 polymorphism was defined as homozygous (GG) or heterozygous (GC). Inconclusive/probable NAFLD was defined as a fatty liver index (FLI) ≥ 30 and probable NAFLD as FLI ≥ 60. RESULTS The sample included 511 subjects from the screening and primary healthcare populations (n = 213 and n = 298, respectively). Genetic polymorphism (homozygous GG or heterozygous GC) combined with high consumption of total meat, red and/or processed meat, unprocessed red meat, and processed meat was associated with the highest odds for inconclusive/probable NAFLD (OR = 2.75, 95%CI 1.27-5.97, p = 0.011; OR = 3.24, 1.43-7.34, p = 0.005; OR = 2.92, 1.32-6.47, p = 0.008; OR = 3.16, 1.46-6.83, p = 0.003, respectively), adjusting for age, gender, BMI, alcohol consumption, carbohydrate, and saturated fat intake. In addition, genetic polymorphism combined with high processed meat consumption was associated with the highest odds for probable NAFLD (OR = 2.40, 95%CI 1.04-5.56, p = 0.040). CONCLUSIONS High red meat intake may confer a greater risk for NAFLD among PNPLA3 polymorphism carriers. Prospective studies are needed to confirm these findings and consider minimizing red and processed meat consumption among PNPLA3 polymorphism carriers.
Collapse
Affiliation(s)
- Mario Reis Alvares-da-Silva
- GI/Liver Unit, Hospital de Clinicas de Porto Alegre, School of Medicine, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2350, Porto Alegre, 90035-903, Brazil
- CNPq researcher, Brasília, Brazil
| | | | - Claudia P Oliveira
- CNPq researcher, Brasília, Brazil
- Division of Clinical Gastroenterology and Hepatology (LIM-07), Hospital das Clinicas, Department of Gastroenterology, University of São Paulo School of Medicine, Av. Dr. Arnaldo 455, 3115, Cerqueira Cesar, 01246-903, Sao Paulo, Brazil
| | - Soheyla Rabie
- GI/Liver Unit, Hospital de Clinicas de Porto Alegre, School of Medicine, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2350, Porto Alegre, 90035-903, Brazil
| | - Larisse Longo
- GI/Liver Unit, Hospital de Clinicas de Porto Alegre, School of Medicine, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2350, Porto Alegre, 90035-903, Brazil
| | - Carolina Uribe-Cruz
- GI/Liver Unit, Hospital de Clinicas de Porto Alegre, School of Medicine, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2350, Porto Alegre, 90035-903, Brazil
| | - Silvia Massami Yoshimura
- Division of Clinical Gastroenterology and Hepatology (LIM-07), Hospital das Clinicas, Department of Gastroenterology, University of São Paulo School of Medicine, Av. Dr. Arnaldo 455, 3115, Cerqueira Cesar, 01246-903, Sao Paulo, Brazil
| | - Dvora Joveleviths
- GI/Liver Unit, Hospital de Clinicas de Porto Alegre, School of Medicine, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2350, Porto Alegre, 90035-903, Brazil
| | - Merav Ben-Yehoyada
- Department of Gastroenterology Tel-Aviv Medical Center, 6 Weizman St., Tel-Aviv, 6423906, Israel
| | - Laura Sol Grinshpan
- School of Public Health, University of Haifa, 199 Aba Khoushy Ave., Haifa, 3498838, Israel
| | - Oren Shibolet
- Department of Gastroenterology Tel-Aviv Medical Center, 6 Weizman St., Tel-Aviv, 6423906, Israel
- Sackler Faculty of Medicine, Tel-Aviv University, 30 Haim Lebanon St., Tel-Aviv, 6139601, Israel
| | - Revital Kariv
- Department of Gastroenterology Tel-Aviv Medical Center, 6 Weizman St., Tel-Aviv, 6423906, Israel
- Sackler Faculty of Medicine, Tel-Aviv University, 30 Haim Lebanon St., Tel-Aviv, 6139601, Israel
| | - Shira Zelber-Sagi
- School of Public Health, University of Haifa, 199 Aba Khoushy Ave., Haifa, 3498838, Israel.
- Department of Gastroenterology Tel-Aviv Medical Center, 6 Weizman St., Tel-Aviv, 6423906, Israel.
| |
Collapse
|
18
|
Liu Y, Li W, Zhang J, Yan Y, Zhou Q, Liu Q, Guan Y, Zhao Z, An J, Cheng X, He M. Associations of arsenic exposure and arsenic metabolism with the risk of non-alcoholic fatty liver disease. Int J Hyg Environ Health 2024; 257:114342. [PMID: 38401403 DOI: 10.1016/j.ijheh.2024.114342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 01/29/2024] [Accepted: 02/20/2024] [Indexed: 02/26/2024]
Abstract
Growing evidences supported that arsenic exposure contributes to non-alcoholic fatty liver disease (NAFLD) risk, but findings were still inconsistent. Additionally, once absorbed, arsenic is methylated into monomethyl and dimethyl arsenicals. However, no studies investigated the association of arsenic metabolism with NAFLD. Our objectives were to evaluate the associations of arsenic exposure and arsenic metabolism with NAFLD prevalence. We conducted a case-control study with 1790 participants derived from Dongfeng-Tongji cohort and measured arsenic species (arsenite, arsenate, monomethylarsonate [MMA], dimethylarsinate [DMA], and arsenobetaine) in urine. Arsenic exposure (∑As) was defined as the sum of inorganic arsenic (iAs), MMA, and DMA. Arsenic metabolism was evaluated as the proportions of inorganic-related species (iAs%, MMA%, and DMA%) and methylation efficiency ratios (primary methylation index [PMI], secondary methylation index [SMI]). NAFLD was diagnosed by liver ultrasound. Logistic regression was used to evaluate the associations. The median of ∑As was 13.24 μg/g creatinine. The ∑As showed positive and nonlinear association with moderate/severe NAFLD (OR: per log-SD = 1.33, 95% CI: [1.03,1.71]; Pfor nonlinearity = 0.021). The iAs% (OR: per SD = 1.16, 95% CI: [1.03,1.30]) and SMI (OR: per log-SD = 1.16, 95% CI: [1.03,1.31]) showed positive while MMA% (OR: per SD = 0.80, 95% CI: [0.70,0.91]) and PMI (OR: per log-SD = 0.86, 95% CI: [0.77,0.96]) showed inverse associations with NAFLD. Moreover, the ORs (95% CI) of NAFLD for each 5% increase in iAs% was 1.36 (1.17,1.58) when MMA% decreased and 1.07 (1.01,1.13) when DMA% decreased; and for each 5% increase in MMA%, it was 0.74 (0.63,0.86) and 0.79 (0.69,0.91) when iAs% and DMA% decreased, respectively. The results suggest that inorganic arsenic exposure is positively associated with NAFLD risk and arsenic methylation efficiency plays a role in the NAFLD. The findings provide clues to explore potential interventions for the prevention of NAFLD. Prospective studies are needed to validate our findings.
Collapse
Affiliation(s)
- Yuenan Liu
- Department of Occupational and Environmental Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Weiya Li
- Department of Occupational and Environmental Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jiazhen Zhang
- Department of Occupational and Environmental Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yan Yan
- Department of Occupational and Environmental Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qihang Zhou
- Department of Occupational and Environmental Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qianying Liu
- Department of Occupational and Environmental Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Youbin Guan
- Department of Occupational and Environmental Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhuoya Zhao
- Department of Occupational and Environmental Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jun An
- Department of Occupational and Environmental Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xu Cheng
- Department of Occupational and Environmental Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Meian He
- Department of Occupational and Environmental Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
19
|
Cernea S. NAFLD Fibrosis Progression and Type 2 Diabetes: The Hepatic-Metabolic Interplay. Life (Basel) 2024; 14:272. [PMID: 38398781 PMCID: PMC10890557 DOI: 10.3390/life14020272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/13/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024] Open
Abstract
The bidirectional relationship between type 2 diabetes and (non-alcoholic fatty liver disease) NAFLD is indicated by the higher prevalence and worse disease course of one condition in the presence of the other, but also by apparent beneficial effects observed in one, when the other is improved. This is partly explained by their belonging to a multisystemic disease that includes components of the metabolic syndrome and shared pathogenetic mechanisms. Throughout the progression of NAFLD to more advanced stages, complex systemic and local metabolic derangements are involved. During fibrogenesis, a significant metabolic reprogramming occurs in the hepatic stellate cells, hepatocytes, and immune cells, engaging carbohydrate and lipid pathways to support the high-energy-requiring processes. The natural history of NAFLD evolves in a variable and dynamic manner, probably due to the interaction of a variable number of modifiable (diet, physical exercise, microbiota composition, etc.) and non-modifiable (genetics, age, ethnicity, etc.) risk factors that may intervene concomitantly, or subsequently/intermittently in time. This may influence the risk (and rate) of fibrosis progression/regression. The recognition and control of the factors that determine a rapid progression of fibrosis (or its regression) are critical, as the fibrosis stages are associated with the risk of liver-related and all-cause mortality.
Collapse
Affiliation(s)
- Simona Cernea
- Department M3, Internal Medicine I, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureş, 540142 Târgu Mureş, Romania; or
- Diabetes, Nutrition and Metabolic Diseases Outpatient Unit, Emergency County Clinical Hospital, 540136 Târgu Mureş, Romania
| |
Collapse
|
20
|
Liu Z, Huang H, Ruan J, Wang Z, Xu C. The sulfur microbial diet and risk of nonalcoholic fatty liver disease: a prospective gene-diet study from the UK Biobank. Am J Clin Nutr 2024; 119:417-424. [PMID: 38000660 DOI: 10.1016/j.ajcnut.2023.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 11/15/2023] [Accepted: 11/21/2023] [Indexed: 11/26/2023] Open
Abstract
BACKGROUND The gut microbiota is closely related to liver diseases. The dietary pattern associated with sulfur-metabolizing bacteria in stool has been found to influence intestinal health. OBJECTIVE We aimed to investigate whether consuming the sulfur microbial diet is associated with nonalcoholic fatty liver disease (NAFLD). METHODS We included 143,918 participants of European descent from the UK Biobank. Information on serving sizes used per diet component was recorded by an online 24-h dietary assessment tool (Oxford WebQ). The total sulfur microbial diet score was constructed by summing the product of β-coefficients and corresponding serving sizes. NAFLD was ascertained using hospital inpatient and death records. Cox proportional hazard models were used to estimate the adjusted hazard ratio (HR) and 95% confidence interval (CI). Mediation analyses were used to investigate underlying mediators including body mass index, waist circumference, glucose, triglyceride, urate, and C-reactive protein. A polygenic risk score for NAFLD was constructed and stratified to assess whether the association is modified by genetic predisposition. RESULTS After a median follow-up of 11.7 y (interquartile range: 11.3-12.5 y), we documented 1540 incident cases of NAFLD. After adjustment for covariates, we observed an overall J-shaped relationship between the sulfur microbial diet and risk of NAFLD. Those in the highest quartile of sulfur microbial diet score had a 46% increased risk of NAFLD [HRQ4vsQ1 (95% CI): 1.46 (1.26, 1.69)]. We also found that this association is partly mediated by metabolic disorders and systemic inflammation. In addition, the positive association was stronger among individuals at higher genetic risk for NAFLD (Pinteraction = 0.044). CONCLUSIONS The sulfur microbial diet had adverse associations with incident NAFLD, particularly in those at a higher genetic risk. Our study may provide evidence on the role of sulfur-metabolizing bacteria in the diet-NAFLD association.
Collapse
Affiliation(s)
- Zhening Liu
- Department of Gastroenterology, Zhejiang Provincial Clinical Research Centre for Digestive Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hangkai Huang
- Department of Gastroenterology, Zhejiang Provincial Clinical Research Centre for Digestive Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiaqi Ruan
- Department of Gastroenterology, Zhejiang Provincial Clinical Research Centre for Digestive Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zejun Wang
- Department of Gastroenterology, Hospital of Integrated Traditional Chinese and Western Medicine of Linping District, Hangzhou, China
| | - Chengfu Xu
- Department of Gastroenterology, Zhejiang Provincial Clinical Research Centre for Digestive Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
21
|
Tai J, Hsu C, Chen W, Yang S, Chiu C, Chien R, Chang M. Association of liver fibrosis with extrahepatic cancer in steatotic liver disease patients with PNPLA3 I148M GG genotype. Cancer Sci 2024; 115:564-574. [PMID: 38083881 PMCID: PMC10859614 DOI: 10.1111/cas.16042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/17/2023] [Accepted: 11/23/2023] [Indexed: 02/13/2024] Open
Abstract
The impacts of patatin-like phospholipase domain-containing protein 3 (PNPLA3) I148M-rs738409, methylenetetrahydrofolate reductase (MTHFR) Ala222Val-rs1801133, and aldehyde dehydrogenase 2 (ALDH2) Glu504Lys-rs671 on the outcomes of Taiwanese patients with steatotic liver disease (SLD) have remained elusive. An 8-year prospective cohort study of patients with (n = 546) and without (n = 580) SLD (controls) was undertaken in a Taiwanese tertiary care center. The 546 SLD patients comprised 306 (56.0%) men and 240 (44.0%) women with mean ages of 53.3 and 56.4 years, respectively. Compared with the controls, SLD patients had an increased frequency of the PNPLA3 I148M-rs738409 GG genotype (25.5 vs. 5.9%, p = 0.001). Among the SLD patients, 236 (43.1%) suffered cardiovascular events, 52 (9.5%) showed extrahepatic cancers, 13 (2.38%) experienced hepatic events, including hepatocellular carcinoma (n = 3, 0.5%) and liver cirrhosis (n = 8, 1.47%), and none died. The Fibrosis-4 (FIB-4) scores were associated with extrahepatic cancer (hazard ratio [HR] 1.325; 95% confidence interval [CI], 1.038-1.691) and cirrhosis development (HR 1.532; 95% CI, 1.055-2.224), and the PNPLA3 I148M-rs738409 G allele (β = 0.158, 95% CI, 0.054-0.325) was associated with the FIB-4 score. Stratified analyses showed that the impact of the FIB-4 score on extrahepatic cancer development was evident only in SLD patients with the PNPLA3 I148M-rs738409 GG genotype (HR 1.543; 95% CI, 1.195-1.993) and not in patients with the GC or CC genotype. Moreover, the ALDH2 Glu504Lys-rs671 G allele had a dose-dependent effect on alcoholism, and the MTHFR and ALDH2 genotypes were not significantly associated with SLD patient outcomes. In conclusion, special vigilance should be exercised for emerging extrahepatic cancer in SLD patients with the PNPLA3 I148M-rs738409 GG genotype and high FIB-4 scores.
Collapse
Affiliation(s)
- Jennifer Tai
- Department of Medicine, College of MedicineChang Gung UniversityTaoyuanTaiwan
- Department of Gastroenterology and HepatologyChang Gung Memorial HospitalLinkouTaiwan
| | - Chao‐Wei Hsu
- Department of Medicine, College of MedicineChang Gung UniversityTaoyuanTaiwan
- Department of Gastroenterology and HepatologyChang Gung Memorial HospitalLinkouTaiwan
| | - Wei‐Ting Chen
- Department of Medicine, College of MedicineChang Gung UniversityTaoyuanTaiwan
- Department of Gastroenterology and HepatologyChang Gung Memorial HospitalLinkouTaiwan
| | - Sien‐Sing Yang
- Liver Center, Cathay General Hospital Medical CenterTaipeiTaiwan
| | - Cheng‐Hsun Chiu
- Molecular Infectious Disease Research CenterChang Gung Memorial Hospital at LinkouTaoyuanTaiwan
- Division of Pediatric Infectious Diseases, Department of PediatricsChang Gung Memorial Hospital at LinkouTaoyuanTaiwan
| | - Rong‐Nan Chien
- Department of Medicine, College of MedicineChang Gung UniversityTaoyuanTaiwan
- Department of Gastroenterology and HepatologyChang Gung Memorial HospitalLinkouTaiwan
| | - Ming‐Ling Chang
- Department of Medicine, College of MedicineChang Gung UniversityTaoyuanTaiwan
- Department of Gastroenterology and HepatologyChang Gung Memorial HospitalLinkouTaiwan
| |
Collapse
|
22
|
Younossi ZM, Zelber-Sagi S, Henry L, Gerber LH. Lifestyle interventions in nonalcoholic fatty liver disease. Nat Rev Gastroenterol Hepatol 2023; 20:708-722. [PMID: 37402873 DOI: 10.1038/s41575-023-00800-4] [Citation(s) in RCA: 117] [Impact Index Per Article: 58.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/26/2023] [Indexed: 07/06/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a dynamic chronic liver disease that develops in close association with metabolic irregularities. Between 2016 and 2019, the global prevalence among adults was reported as 38% and among children and adolescents it was about 10%. NAFLD can be progressive and is associated with increased mortality from cardiovascular disease, extrahepatic cancers and liver complications. Despite these numerous adverse outcomes, no pharmacological treatments currently exist to treat nonalcoholic steatohepatitis, the progressive form of NAFLD. Therefore, the main treatment is the pursuit of a healthy lifestyle for both children and adults, which includes a diet rich in fruits, nuts, seeds, whole grains, fish and chicken and avoiding overconsumption of ultra-processed food, red meat, sugar-sweetened beverages and foods cooked at high heat. Physical activity at a level where one can talk but not sing is also recommended, including leisure-time activities and structured exercise. Avoidance of smoking and alcohol is also recommended. Policy-makers, community and school leaders need to work together to make their environments healthy by developing walkable and safe spaces with food stores stocked with culturally appropriate and healthy food items at affordable prices as well as providing age-appropriate and safe play areas in both schools and neighbourhoods.
Collapse
Affiliation(s)
- Zobair M Younossi
- Betty and Guy Beatty Center for Integrated Research, Inova Health System, Falls Church, VA, USA.
- Center for Liver Disease, Department of Medicine, Inova Fairfax Medical Campus, Falls Church, VA, USA.
- Inova Medicine, Inova Health System, Falls Church, VA, USA.
| | | | - Linda Henry
- Betty and Guy Beatty Center for Integrated Research, Inova Health System, Falls Church, VA, USA
- Inova Medicine, Inova Health System, Falls Church, VA, USA
| | - Lynn H Gerber
- Betty and Guy Beatty Center for Integrated Research, Inova Health System, Falls Church, VA, USA
- Inova Medicine, Inova Health System, Falls Church, VA, USA
| |
Collapse
|
23
|
Perez-Diaz-Del-Campo N, Dileo E, Castelnuovo G, Nicolosi A, Guariglia M, Caviglia GP, Rosso C, Armandi A, Bugianesi E. A nutrigenetic precision approach for the management of non-alcoholic fatty liver disease. Clin Nutr 2023; 42:2181-2187. [PMID: 37788561 DOI: 10.1016/j.clnu.2023.09.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 08/03/2023] [Accepted: 09/21/2023] [Indexed: 10/05/2023]
Abstract
BACKGROUND & AIMS The Patatin-like phospholipase domain-containing 3 (PNPLA3) rs738409 single nucleotide polymorphism (SNP) is one of the major genetic determinant of non-alcoholic fatty liver disease (NAFLD) and is strongly regulated by changes in energy balance and dietary factors. We aimed to investigate the association between the PNPLA3 rs738409 SNP, nutrient intake and NAFLD severity. METHOD PNPLA3-rs738409 SNP was genotyped in 181 patients with NAFLD who completed the EPIC Food Frequency Questionnaire. Liver steatosis was evaluated by Controlled Attenuation Parameter (CAP) (Fibroscan®530, Echosens). According to the established cut-off, a CAP value ≥ 300 dB/m was used to identify severe steatosis (S3). An independent group of 46 biopsy-proven NAFLD subjects was used as validation cohort. RESULTS Overall, median age was 53 years (range 44; 62) and 60.2% of patients were male. Most subjects (56.3%) had S3 and showed increased liver stiffness (p < 0.001), AST (p = 0.003) and ALT levels (p < 0.001) compared to those with CAP<300 dB/m. At logistic regression analyses we found that the interaction between carbohydrates intake and the carriers of the PNPLA3 G risk allele was significantly associated with S3 (p = 0.001). The same result was confirmed in the validation cohort, were the interaction between high carbohydrate intake (48%) and PNPLA3 SNP was significantly associated with steatosis ≥33% (p = 0.038). CONCLUSION The intake of greater than or equal to 48% carbohydrate in NAFLD patients carriers of the CG/GG allele of PNPLA3 rs738409 may increase the risk of significant steatosis.
Collapse
Affiliation(s)
| | - Eleonora Dileo
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy
| | | | - Aurora Nicolosi
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy
| | - Marta Guariglia
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy
| | | | - Chiara Rosso
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy
| | - Angelo Armandi
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy; Metabolic Liver Disease Research Program, I. Department of Medicine, University Medical Center of the Johannes Gutenberg-University, 55131 Mainz, Germany
| | - Elisabetta Bugianesi
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy; Gastroenterology Unit, Città della Salute e della Scienza-Molinette Hospital, 10126 Turin, Italy.
| |
Collapse
|
24
|
Johnson S, Bao H, McMahon C, Chen Y, Burr S, Anderson A, Madeyski-Bengtson K, Lindén D, Han X, Liu J. Substrate-Specific Function of PNPLA3 Facilitates Hepatic VLDL-Triglyceride Secretion During Stimulated Lipogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.30.553213. [PMID: 37693552 PMCID: PMC10491159 DOI: 10.1101/2023.08.30.553213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
The I148M variant of PNPLA3 is strongly linked to hepatic steatosis. Evidence suggests a gain-of-function role for the I148M mutant as an ATGL inhibitor, leaving the physiological relevance of wild-type PNPLA3 undefined. Here we show that PNPLA3 selectively degrades triglycerides (TGs) enriched in polyunsaturated fatty acids (PUFAs) independently of ATGL in cultured cells and mice. Lipidomics and metabolite tracing analyses demonstrated that PNPLA3 mobilizes PUFAs from intracellular TGs for phospholipid desaturation, supporting hepatic secretion of TG-rich lipoproteins. Consequently, mice with liver-specific knockout or acute knockdown of PNPLA3 both exhibited aggravated liver steatosis and concomitant decreases in plasma VLDL-TG, phenotypes that manifest only under lipogenic conditions. I148M-knockin mice similarly displayed impaired hepatic TG secretion during lipogenic stimulation. Our results highlight a specific context whereby PNPLA3 facilitates the balance between hepatic TG storage and secretion and suggest the potential contributions of I148M variant loss-of-function to the development of hepatic steatosis in humans. Summary Statement We define the physiological role of wild type PNPLA3 in maintaining hepatic VLDL-TG secretion.
Collapse
|
25
|
Jin K, Shi Y, Zhang H, Zhangyuan G, Wang F, Li S, Chen C, Zhang J, Wang H, Zhang W, Sun B. A TNFα/Miz1-positive feedback loop inhibits mitophagy in hepatocytes and propagates non-alcoholic steatohepatitis. J Hepatol 2023; 79:403-416. [PMID: 37040844 DOI: 10.1016/j.jhep.2023.03.039] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 04/13/2023]
Abstract
BACKGROUND & AIMS Non-alcoholic steatohepatitis (NASH) is a chronic inflammatory disease that can further progress to cirrhosis and hepatocellular carcinoma. However, the key molecular mechanisms behind this process have not been clarified. METHODS We analyzed human NASH and normal liver tissue samples by RNA-sequencing and liquid chromatography-mass spectrometry, identifying hepatocyte cytosolic protein Myc-interacting zinc-finger protein 1 (Miz1) as a potential target in NASH progression. We established a Western diet+fructose-induced NASH model in hepatocyte-specific Miz1 knockout and adeno-associated virus type 8-overexpressing mice. Human NASH liver organoids were used to confirm the mechanism, and immunoprecipitation and mass spectrometry were used to detect proteins that could interact with Miz1. RESULTS We demonstrate that Miz1 is reduced in hepatocytes in human NASH. Miz1 is shown to bind to peroxiredoxin 6 (PRDX6), retaining it in the cytosol, blocking its interaction with mitochondrial Parkin at Cys431, and inhibiting Parkin-mediated mitophagy. In NASH livers, loss of hepatocyte Miz1 results in PRDX6-mediated inhibition of mitophagy, increased dysfunctional mitochondria in hepatocytes, and production of proinflammatory cytokines, including TNFα, by hepatic macrophages. Crucially, the increased production of TNFα results in a further reduction in hepatocyte Miz1 by E3-ubiquitination. This produces a positive feedback loop of TNFα-mediated hepatocyte Miz1 degradation, resulting in PRDX6-mediated inhibition of hepatocyte mitophagy, with the accumulation of dysfunctional mitochondria in hepatocytes and increased macrophage TNFα production. CONCLUSIONS Our study identified hepatocyte Miz1 as a suppressor of NASH progression via its role in mitophagy; we also identified a positive feedback loop by which TNFα production induces degradation of cytosolic Miz1, which inhibits mitophagy and thus leads to increased macrophage TNFα production. Interruption of this positive feedback loop could be a strategy to inhibit the progression of NASH. IMPACT AND IMPLICATIONS Non-alcoholic steatohepatitis (NASH) is a chronic inflammatory disease that can further develop into cirrhosis and hepatocellular carcinoma. However, the key molecular mechanism of this process has not been fully clarified. Herein, we identified a positive feedback loop of macrophage TNFα-mediated hepatocyte Miz1 degradation, resulting in PRDX6-mediated inhibition of hepatocyte mitophagy, aggravation of mitochondrial damage and increased macrophage TNFα production. Our findings not only provide mechanistic insight into NASH progression but also provide potential therapeutic targets for patients with NASH. Our human NASH liver organoid culture is therefore a useful platform for exploring treatment strategies for NASH development.
Collapse
Affiliation(s)
- Kangpeng Jin
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Anhui Medical University & Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing 210008, Jiangsu Province, China
| | - Yuze Shi
- Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing 210008, Jiangsu Province, China
| | - Haitian Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Anhui Medical University & Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing 210008, Jiangsu Province, China
| | - Guangyan Zhangyuan
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Fei Wang
- Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing 210008, Jiangsu Province, China
| | - Shuo Li
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210008, Jiangsu Province, China
| | - Chen Chen
- Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing 210008, Jiangsu Province, China
| | - Jinyao Zhang
- Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Peking Union Medical College Graduate School, Nanjing 210008, Jiangsu Province, China
| | - Hua Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Anhui Medical University & Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing 210008, Jiangsu Province, China
| | - Wenjie Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Anhui Medical University & Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing 210008, Jiangsu Province, China; Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing 210008, Jiangsu Province, China.
| | - Beicheng Sun
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Anhui Medical University & Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing 210008, Jiangsu Province, China; Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing 210008, Jiangsu Province, China.
| |
Collapse
|
26
|
DiStefano JK. The Role of Choline, Soy Isoflavones, and Probiotics as Adjuvant Treatments in the Prevention and Management of NAFLD in Postmenopausal Women. Nutrients 2023; 15:2670. [PMID: 37375574 DOI: 10.3390/nu15122670] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a prevalent condition among postmenopausal women that can lead to severe liver dysfunction and increased mortality. In recent years, research has focused on identifying potential lifestyle dietary interventions that may prevent or treat NAFLD in this population. Due to the complex and multifactorial nature of NAFLD in postmenopausal women, the disease can present as different subtypes, with varying levels of clinical presentation and variable treatment responses. By recognizing the significant heterogeneity of NAFLD in postmenopausal women, it may be possible to identify specific subsets of individuals who may benefit from targeted nutritional interventions. The purpose of this review was to examine the current evidence supporting the role of three specific nutritional factors-choline, soy isoflavones, and probiotics-as potential nutritional adjuvants in the prevention and treatment of NAFLD in postmenopausal women. There is promising evidence supporting the potential benefits of these nutritional factors for NAFLD prevention and treatment, particularly in postmenopausal women, and further research is warranted to confirm their effectiveness in alleviating hepatic steatosis in this population.
Collapse
Affiliation(s)
- Johanna K DiStefano
- Diabetes and Metabolic Disease Research Unit, Translational Genomics Research Institute, Phoenix, AZ 85004, USA
| |
Collapse
|
27
|
Frankowski R, Kobierecki M, Wittczak A, Różycka-Kosmalska M, Pietras T, Sipowicz K, Kosmalski M. Type 2 Diabetes Mellitus, Non-Alcoholic Fatty Liver Disease, and Metabolic Repercussions: The Vicious Cycle and Its Interplay with Inflammation. Int J Mol Sci 2023; 24:ijms24119677. [PMID: 37298632 DOI: 10.3390/ijms24119677] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/26/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023] Open
Abstract
The prevalence of metabolic-related disorders, such as non-alcoholic fatty liver disease (NAFLD) and type 2 diabetes mellitus (DM2), has been increasing. Therefore, developing improved methods for the prevention, treatment, and detection of these two conditions is also necessary. In this study, our primary focus was on examining the role of chronic inflammation as a potential link in the pathogenesis of these diseases and their interconnections. A comprehensive search of the PubMed database using keywords such as "non-alcoholic fatty liver disease", "type 2 diabetes mellitus", "chronic inflammation", "pathogenesis", and "progression" yielded 177 relevant papers for our analysis. The findings of our study revealed intricate relationships between the pathogenesis of NAFLD and DM2, emphasizing the crucial role of inflammatory processes. These connections involve various molecular functions, including altered signaling pathways, patterns of gene methylation, the expression of related peptides, and up- and downregulation of several genes. Our study is a foundational platform for future research into the intricate relationship between NAFLD and DM2, allowing for a better understanding of the underlying mechanisms and the potential for introducing new treatment standards.
Collapse
Affiliation(s)
- Rafał Frankowski
- Students' Research Club, Department of Clinical Pharmacology, Medical University of Lodz, 90-153 Lodz, Poland
| | - Mateusz Kobierecki
- Students' Research Club, Department of Clinical Pharmacology, Medical University of Lodz, 90-153 Lodz, Poland
| | - Andrzej Wittczak
- Students' Research Club, Department of Clinical Pharmacology, Medical University of Lodz, 90-153 Lodz, Poland
| | | | - Tadeusz Pietras
- Department of Clinical Pharmacology, Medical University of Lodz, 90-153 Lodz, Poland
| | - Kasper Sipowicz
- Department of Interdisciplinary Disability Studies, The Maria Grzegorzewska University in Warsaw, 02-353 Warsaw, Poland
| | - Marcin Kosmalski
- Department of Clinical Pharmacology, Medical University of Lodz, 90-153 Lodz, Poland
| |
Collapse
|
28
|
Shelley K, Articolo A, Luthra R, Charlton M. Clinical characteristics and management of patients with nonalcoholic steatohepatitis in a real-world setting: analysis of the Ipsos NASH therapy monitor database. BMC Gastroenterol 2023; 23:160. [PMID: 37208593 DOI: 10.1186/s12876-023-02794-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 04/30/2023] [Indexed: 05/21/2023] Open
Abstract
BACKGROUND Nonalcoholic steatohepatitis (NASH) is the more severe, inflammatory type of nonalcoholic fatty liver disease (NAFLD). NASH, a leading indication for liver transplantation, is growing in prevalence. The extent of liver fibrosis, ranging from fibrosis stage (FS) of none (F0) to cirrhosis (F4), is a strong predictor of health outcomes. There is little information on patient demographics and clinical characteristics by fibrosis stage and NASH treatment outside of academic medical centers. METHODS We conducted a cross-sectional observational study using Ipsos' syndicated NASH Therapy Monitor database, consisting of medical chart audits provided by sampled NASH-treating physicians in the United States in 2016 (n = 174) and 2017 (n = 164). Data was collected online. RESULTS Of 2,366 patients reported on by participating physicians and included in the analysis, 68% had FS F0-F2, 21% had bridging fibrosis (F3), and 9% had cirrhosis (F4). Common comorbidities were type 2 diabetes (56%), hyperlipidemia (44%), hypertension (46%), and obesity (42%). Patients with more advanced fibrosis scores (F3-F4) had higher comorbidity rates than patients with F0-F2. Commonly used diagnostic tests included ultrasound (80%), liver biopsy (78%), AST/ALT ratio (43%), NAFLD fibrosis score (25%), transient elastography (23%), NAFLD liver fat score (22%), and Fatty Liver Index (19%). Most commonly prescribed medications were vitamin E (53%), statins (51%), metformin (47%), angiotensin converting enzyme inhibitors (28%), and beta blockers (22%). Medications were commonly prescribed for reasons other than their known effects. CONCLUSION Physicians in this study, drawn from a spectrum of practice settings, relied on ultrasound and liver biopsy for diagnosis and vitamin E, statins, and metformin for pharmacological treatment of NASH. These findings imply poor adherence to guidelines in the diagnosis and management of NAFLD and NASH. Nonalcoholic steatohepatitis (NASH) is a liver disease caused by excess fat in the liver which can lead to liver inflammation and scarring (fibrosis), ranging from stage F0 (no scarring) to F4 (advanced scarring). The stage of liver scarring can predict the likelihood of future health problems, including liver failure and liver cancer. However, we do not fully understand how patient characteristics may vary at different stages of liver scarring. We looked at medical information from physicians treating patients diagnosed with NASH to understand how patient characteristics might differ based on the severity of their liver scarring. The majority (68%) of patients were stage F0-F2, with 30% having advanced scarring (F3-F4). In addition to NASH, many patients also had type 2 diabetes, high cholesterol, high blood pressure, and obesity. Patients with more advanced scarring (F3-F4) were more likely to have these diseases than patients with less severe disease (F0-F2). Diagnosis of NASH by participating physicians was based on tests including imaging (ultrasound, CT scan, MRI), liver biopsy, blood tests, and whether patients had other conditions that would put them at risk for NASH. The medications that the doctors prescribed most often to their patients included vitamin E and drugs to treat high cholesterol, high blood pressure, or diabetes. Medications were frequently prescribed for reasons other than their known effects. By understanding how patient characteristics vary by stages of liver scarring and how NASH is currently managed may help guide the evaluation and treatment of NASH when NASH-specific therapies become available.
Collapse
Affiliation(s)
| | - Amy Articolo
- Novo Nordisk Inc, 800 Scudders Mill Road, Plainsboro, NJ, USA
| | - Rakesh Luthra
- Novo Nordisk Inc, 800 Scudders Mill Road, Plainsboro, NJ, USA.
| | - Michael Charlton
- Transplant Institute, Center for Liver Diseases, University of Chicago Biological Sciences, Chicago, IL, USA
| |
Collapse
|
29
|
Rinella ME, Neuschwander-Tetri BA, Siddiqui MS, Abdelmalek MF, Caldwell S, Barb D, Kleiner DE, Loomba R. AASLD Practice Guidance on the clinical assessment and management of nonalcoholic fatty liver disease. Hepatology 2023; 77:1797-1835. [PMID: 36727674 PMCID: PMC10735173 DOI: 10.1097/hep.0000000000000323] [Citation(s) in RCA: 955] [Impact Index Per Article: 477.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 01/18/2023] [Indexed: 02/03/2023]
Affiliation(s)
- Mary E. Rinella
- University of Chicago Pritzker School of Medicine, Chicago, Illinois, USA
| | | | | | | | - Stephen Caldwell
- School of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Diana Barb
- University of Florida College of Medicine, Gainesville, Florida, USA
| | | | - Rohit Loomba
- University of California, San Diego, San Diego, California, USA
| |
Collapse
|
30
|
Semmler G, Datz C, Trauner M. Eating, diet, and nutrition for the treatment of non-alcoholic fatty liver disease. Clin Mol Hepatol 2023; 29:S244-S260. [PMID: 36517001 PMCID: PMC10029946 DOI: 10.3350/cmh.2022.0364] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/06/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022] Open
Abstract
Nutrition and dietary interventions are a central component in the pathophysiology, but also a cornerstone in the management of patients with non-alcoholic fatty liver disease (NAFLD). Summarizing our rapidly advancing understanding of how our diet influences our metabolism and focusing on specific effects on the liver, we provide a comprehensive overview of dietary concepts to counteract the increasing burden of NAFLD. Specifically, we emphasize the importance of dietary calorie restriction independently of the macronutrient composition together with adherence to a Mediterranean diet low in added fructose and processed meat that seems to exert favorable effects beyond calorie restriction. Also, we discuss intermittent fasting as a type of diet specifically tailored to decrease liver fat content and increase ketogenesis, awaiting future study results in NAFLD. Finally, personalized dietary recommendations could be powerful tools to increase the effectiveness of dietary interventions in patients with NAFLD considering the genetic background and the microbiome, among others.
Collapse
Affiliation(s)
- Georg Semmler
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Christian Datz
- Department of Internal Medicine, General Hospital Oberndorf, Teaching Hospital of the Paracelsus Medical University Salzburg, Oberndorf, Austria
| | - Michael Trauner
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
31
|
Sookoian S, Pirola CJ. Genetics in non-alcoholic fatty liver disease: The role of risk alleles through the lens of immune response. Clin Mol Hepatol 2023; 29:S184-S195. [PMID: 36472053 PMCID: PMC10029961 DOI: 10.3350/cmh.2022.0318] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
The knowledge on the genetic component of non-alcoholic fatty liver disease (NAFLD) has grown exponentially over the last 10 to 15 years. This review summarizes the current evidence and the latest developments in the genetics of NAFLD and non-alcoholic steatohepatitis (NASH) from the immune system's perspective. Activation of innate and or adaptive immune response is an essential driver of NAFLD disease severity and progression. Lipid and immune pathways are crucial in the pathophysiology of NAFLD and NASH. Here, we highlight novel applications of genomic techniques, including single-cell sequencing and the genetics of gene expression, to elucidate the potential involvement of NAFLD/NASH-risk alleles in modulating immune system cells. Together, our focus is to provide an overview of the potential involvement of the NAFLD/NASH-related risk variants in mediating the immune-driven liver disease severity and diverse systemic pleiotropic effects.
Collapse
Affiliation(s)
- Silvia Sookoian
- Clinical and Molecular Hepatology. Centro de Altos Estudios en Ciencias Humanas y de la Salud (CAECIHS), Universidad Abierta Interamericana, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Carlos J Pirola
- Systems Biology of Complex Diseases, Centro de Altos Estudios en Ciencias Humanas y de la Salud (CAECIHS), Universidad Abierta Interamericana, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
32
|
Vasconcellos C, Ferreira O, Lopes MF, Ribeiro AF, Vasques J, Guerreiro CS. Nutritional Genomics in Nonalcoholic Fatty Liver Disease. Biomedicines 2023; 11:biomedicines11020319. [PMID: 36830856 PMCID: PMC9953045 DOI: 10.3390/biomedicines11020319] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 01/24/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a common chronic condition associated with genetic and environmental factors in which fat abnormally accumulates in the liver. NAFLD is epidemiologically associated with obesity, type 2 diabetes, and dyslipidemia. Environmental factors, such as physical inactivity and an unbalanced diet, interact with genetic factors, such as epigenetic mechanisms and polymorphisms for the genesis and development of the condition. Different genetic polymorphisms seem to be involved in this context, including variants in PNPLA3, TM6SF2, PEMT, and CHDH genes, playing a role in the disease's susceptibility, development, and severity. From carbohydrate intake and weight loss to omega-3 supplementation and caloric restriction, different dietary and nutritional factors appear to be involved in controlling the onset and progression of NAFLD conditions influencing metabolism, gene, and protein expression. The polygenic risk score represents a sum of trait-associated alleles carried by an individual and seems to be associated with NAFLD outcomes depending on the dietary context. Understanding the exact extent to which lifestyle interventions and genetic predispositions can play a role in the prevention and management of NAFLD can be crucial for the establishment of a personalized and integrative approach to patients.
Collapse
Affiliation(s)
- Carolina Vasconcellos
- Laboratório de Nutrição, Faculdade de Medicina, Centro Académico de Medicina de Lisboa, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Oureana Ferreira
- Laboratório de Nutrição, Faculdade de Medicina, Centro Académico de Medicina de Lisboa, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Marta Filipa Lopes
- Laboratório de Nutrição, Faculdade de Medicina, Centro Académico de Medicina de Lisboa, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - André Filipe Ribeiro
- Laboratório de Nutrição, Faculdade de Medicina, Centro Académico de Medicina de Lisboa, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - João Vasques
- Laboratório de Nutrição, Faculdade de Medicina, Centro Académico de Medicina de Lisboa, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Catarina Sousa Guerreiro
- Laboratório de Nutrição, Faculdade de Medicina, Centro Académico de Medicina de Lisboa, Universidade de Lisboa, 1649-028 Lisboa, Portugal
- Instituto de Saúde Ambiental, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
- Correspondence:
| |
Collapse
|
33
|
What do we know about nutrient-based strategies targeting molecular mechanisms associated with obesity-related fatty liver disease? Ann Hepatol 2023; 28:100874. [PMID: 36371078 DOI: 10.1016/j.aohep.2022.100874] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/20/2022] [Indexed: 11/11/2022]
Abstract
Obesity is a risk factor for developing nonalcoholic fatty liver disease (NAFLD), and the associated molecular mechanisms could be targeted with nutrient-based strategies. Therefore, it is necessary to review the current mechanisms to propose further treatments. Obesity facilitates the onset of insulin resistance, lipidic abnormalities, hepatic fat accumulation, lipid peroxidation, mitochondrial dysfunction, excessive reactive oxygen species (ROS) production, and inflammation, all related to further steatosis progression and fibrosis. Microbiota alterations can also influence liver disease by the translocation of pathogenic bacteria, energy extraction from short chain fatty acids (SCFAs), intestinal suppression of the expression of fasting-induced adipose factor (FIAF), reduction of bile acids, and altered choline metabolism. There are also genetic polymorphisms in metabolic proteins that predispose to a higher risk of liver diseases, such as those found in the patatin-like phospholipase domain-containing 3 (PNPLA3), transmembrane 6 superfamily member 2 (TM6SF2), membrane-bound O-acyltransferase domain-containing 7 (MBOAT7) or also known as lysophosphatidylinositol acyltransferase 1 (LPIAT1), transmembrane channel-like 4 genes (TMC4), fat mass and obesity-associated protein (FTO), the b Klotho (KLB) and carboxylesterase (CES1). No clear dietary guidelines target all mechanisms related to NAFLD development and progression. However, energy and carbohydrate intake restriction, regular physical exercise, supplementation of antioxidants, and restoration of gut microbiota seem to have beneficial effects on the new proposed features of NAFLD.
Collapse
|
34
|
Oh S, Lee J, Chun S, Choi JE, Kim MN, Chon YE, Ha Y, Hwang SG, Choi SW, Hong KW. Interaction between the PNPLA3 Gene and Nutritional Factors on NAFLD Development: The Korean Genome and Epidemiology Study. Nutrients 2022; 15:152. [PMID: 36615809 PMCID: PMC9824262 DOI: 10.3390/nu15010152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/18/2022] [Accepted: 12/21/2022] [Indexed: 12/31/2022] Open
Abstract
Genetic and nutritional factors contribute to the development of non-alcoholic fatty liver disease (NAFLD); however, gene-diet interactions in NAFLD development are poorly understood. In this case-control study, a large dataset from the Korean Genome and Epidemiology Study cohort (n = 72,299) comprising genomic data, medical records, social history, and dietary data was used. We investigated the interactions between the PNPLA3 rs738409 genotype and nutritional factors and their possible effect on the risk of NAFLD development in 2950 patients with NAFLD and 12,907 controls. In the PNPLA3 risk allele group, high protein, fat, sodium, phosphorus, niacin, and vitamin B6 intakes were associated with a decreased risk of NAFLD. In the non-risk allele group, only high fat intake was associated with a decreased risk of NAFLD. Among these nutrients, high sodium intake had a significant protective interaction with the PNPLA3 genotype against NAFLD (p = 0.002). Among salty foods, only kimchi had a significant protective effect against the PNPLA3 genotype (p = 0.012). Thus, the PNPLA3 genotype is differentially associated with nutritional factors. In particular, it interacts with kimchi, a fermented vegetable dish. Therefore, fermented vegetables may serve as a tailored therapeutic food for people with the PNPLA3 risk allele.
Collapse
Affiliation(s)
- Sooyeon Oh
- Chaum Life Center, CHA University School of Medicine, Seoul 06062, Republic of Korea
| | - Jooho Lee
- Department of Gastroenterology, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam 13496, Republic of Korea
| | - Sukyung Chun
- Department of Gastroenterology, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam 13496, Republic of Korea
| | - Ja-Eun Choi
- Healthcare R&D Division, Theragen Bio Co., Ltd., Suwon 16229, Republic of Korea
| | - Mi Na Kim
- Department of Gastroenterology, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam 13496, Republic of Korea
| | - Young Eun Chon
- Department of Gastroenterology, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam 13496, Republic of Korea
| | - Yeonjung Ha
- Department of Gastroenterology, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam 13496, Republic of Korea
| | - Seong-Gyu Hwang
- Department of Gastroenterology, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam 13496, Republic of Korea
| | - Sang-Woon Choi
- Chaum Life Center, CHA University School of Medicine, Seoul 06062, Republic of Korea
| | - Kyung-Won Hong
- Healthcare R&D Division, Theragen Bio Co., Ltd., Suwon 16229, Republic of Korea
| |
Collapse
|
35
|
Ramos-Lopez O. Multi-Omics Nutritional Approaches Targeting Metabolic-Associated Fatty Liver Disease. Genes (Basel) 2022; 13:2142. [PMID: 36421817 PMCID: PMC9690481 DOI: 10.3390/genes13112142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 10/29/2023] Open
Abstract
Currently, metabolic-associated fatty liver disease (MAFLD) is a leading global cause of chronic liver disease, and is expected to become one of the most common indications of liver transplantation. MAFLD is associated with obesity, involving multiple mechanisms such as alterations in lipid metabolism, insulin resistance, hyperinflammation, mitochondrial dysfunction, cell apoptosis, oxidative stress, and extracellular matrix formation. However, the onset and progression of MAFLD is variable among individuals, being influenced by intrinsic (personal) and external environmental factors. In this context, sequence structural variants across the human genome, epigenetic phenomena (i.e., DNA methylation, histone modifications, and long non-coding RNAs) affecting gene expression, gut microbiota dysbiosis, and metabolomics/lipidomic fingerprints may account for differences in MAFLD outcomes through interactions with nutritional features. This knowledge may contribute to gaining a deeper understanding of the molecular and physiological processes underlying MAFLD pathogenesis and phenotype heterogeneity, as well as facilitating the identification of biomarkers of disease progression and therapeutic targets for the implementation of tailored nutritional strategies. This comprehensive literature review highlights the potential of nutrigenetic, nutriepigenetic, nutrimetagenomic, nutritranscriptomics, and nutrimetabolomic approaches for the prevention and management of MAFLD in humans through the lens of precision nutrition.
Collapse
Affiliation(s)
- Omar Ramos-Lopez
- Medicine and Psychology School, Autonomous University of Baja California, Tijuana 22390, Mexico
| |
Collapse
|
36
|
Pirola CJ, Sookoian S. Personalized medicine in nonalcoholic fatty liver disease. Clin Mol Hepatol 2022; 28:935-938. [PMID: 35748062 PMCID: PMC9597218 DOI: 10.3350/cmh.2022.0175] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 06/23/2022] [Indexed: 01/05/2023] Open
Affiliation(s)
- Carlos J. Pirola
- Institute of Medical Research A Lanari, School of Medicine, University of Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina,Department of Molecular Genetics and Biology of Complex Diseases, National Scientific and Technical Research Council (CONICET)-University of Buenos Aires, Institute of Medical Research (IDIM), Ciudad Autónoma de Buenos Aires, Argentina,Corresponding author : Carlos J. Pirola Institute of Medical Research A Lanari, School of Medicine, University of Buenos Aires, Combatientes de Malvinas 3150, Ciudad Autónoma de Buenos Aires 1427, Argentina Tel: +54-11-52873888, Fax: +54-11-52873888, E-mail:
| | - Silvia Sookoian
- Institute of Medical Research A Lanari, School of Medicine, University of Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina,Department of Clinical and Molecular Hepatology, National Scientific and Technical Research Council (CONICET)-University of Buenos Aires, Institute of Medical Research (IDIM), Ciudad Autónoma de Buenos Aires, Argentina,Silvia Sookoian Institute of Medical Research A Lanari, School of Medicine, University of Buenos Aires, Combatientes de Malvinas 3150, Ciudad Autónoma de Buenos Aires 1427, Argentina Tel: +54-11-52873905, Fax: +54-11-52873905, E-mail:
| |
Collapse
|
37
|
Zelber-Sagi S, Grinshpan LS, Ivancovsky-Wajcman D, Goldenshluger A, Gepner Y. One size does not fit all; practical, personal tailoring of the diet to NAFLD patients. Liver Int 2022; 42:1731-1750. [PMID: 35675167 DOI: 10.1111/liv.15335] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/03/2022] [Accepted: 06/06/2022] [Indexed: 02/13/2023]
Abstract
Different dietary regimens for weight loss have developed over the years. Since the most evidenced treatment for non-alcoholic fatty liver disease (NAFLD) is weight reduction, it is not surprising that more diets targeting obesity are also utilized for NAFLD treatment. However, beyond the desired weight loss effects, one should not ignore the dietary composition of each diet, which may not necessarily be healthy or safe over the long term for hepatic and extrahepatic outcomes, especially cardiometabolic outcomes. Some of these diets are rich in saturated fat and red meat, are very strict, and require close medical supervision. Some may also be very difficult to adhere to for long periods, thus reducing the patient's motivation. The evidence for a direct benefit to NAFLD by restrictive diets such as very-low-carb, ketogenic, very-low-calorie diets, and intermittent fasting is scarce, and the long-term safety has not been tested. Nowadays, the approach is that the diet should be tailored to the patient's cultural and personal preferences. There is strong evidence for the independent protective association of NAFLD with a diet based on healthy eating patterns of minimally-processed foods, low in sugar and saturated fat, high in polyphenols, and healthy types of fats. This leads to the conclusion that a Mediterranean diet should serve as a basis that can be restructured into other kinds of diets. This review will elaborate on the different diets and their role in NAFLD. It will provide a practical guide to tailor the diet to the patients without compromising its composition and safety.
Collapse
Affiliation(s)
- Shira Zelber-Sagi
- School of Public Health, Faculty of Social Welfare and Health Sciences, University of Haifa, Haifa, Israel.,Department of Gastroenterology Tel Aviv Medical Center, Tel Aviv, Israel
| | - Laura Sol Grinshpan
- School of Public Health, Faculty of Social Welfare and Health Sciences, University of Haifa, Haifa, Israel.,Department of Gastroenterology Tel Aviv Medical Center, Tel Aviv, Israel
| | - Dana Ivancovsky-Wajcman
- School of Public Health, Faculty of Social Welfare and Health Sciences, University of Haifa, Haifa, Israel.,Department of Gastroenterology Tel Aviv Medical Center, Tel Aviv, Israel
| | - Ariela Goldenshluger
- Department of Epidemiology and Preventive Medicine, School of Public Health, Sackler Faculty of Medicine, and Sylvan Adams Sports Institute, Tel-Aviv University, Tel-Aviv, Israel
| | - Yftach Gepner
- Department of Epidemiology and Preventive Medicine, School of Public Health, Sackler Faculty of Medicine, and Sylvan Adams Sports Institute, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
38
|
Wang H, Wu Y, Tang W. Methionine cycle in nonalcoholic fatty liver disease and its potential applications. Biochem Pharmacol 2022; 200:115033. [PMID: 35395242 DOI: 10.1016/j.bcp.2022.115033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/31/2022] [Accepted: 03/31/2022] [Indexed: 11/25/2022]
Abstract
As a chronic metabolic disease affecting epidemic proportions worldwide, the pathogenesis of Nonalcoholic Fatty Liver Disease (NAFLD) is not clear yet. There is also a lack of precise biomarkers and specific medicine for the diagnosis and treatment of NAFLD. Methionine metabolic cycle, which is critical for the maintaining of cellular methylation and redox state, is involved in the pathophysiology of NAFLD. However, the molecular basis and mechanism of methionine metabolism in NAFLD are not completely understood. Here, we mainly focus on specific enzymes that participates in methionine cycle, to reveal their interconnections with NAFLD, in order to recognize the pathogenesis of NAFLD from a new angle and at the same time, explore the clinical characteristics and therapeutic strategies.
Collapse
Affiliation(s)
- Haoyu Wang
- University of Chinese Academy of Sciences, Beijing, 100049, PR China; Laboratory of Anti-inflammation, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, PR China
| | - Yanwei Wu
- Laboratory of Anti-inflammation, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, PR China
| | - Wei Tang
- University of Chinese Academy of Sciences, Beijing, 100049, PR China; Laboratory of Anti-inflammation, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, PR China.
| |
Collapse
|
39
|
Pirola CJ, Sookoian S. Metabolic dysfunction-associated fatty liver disease: advances in genetic and epigenetic implications. Curr Opin Lipidol 2022; 33:95-102. [PMID: 34966133 DOI: 10.1097/mol.0000000000000814] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW Fatty liver associated with metabolic dysfunction, also known under the acronym NAFLD (nonalcoholic fatty liver disease) is the leading global cause of chronic liver disease. In this review, we address the state of research on genetics and epigenetics of NAFLD with focus on key discoveries and conceptual advances over the past 2 years. RECENT FINDINGS The analysis of NAFLD-associated genetic variant effects on the whole-transcriptome, including quantitative trait loci (QTL) associated with gene expression (eQTL) or splicing (sQTL) may explain pleiotropic effects. Functional experiments on NAFLD-epigenetics, including profiling of liver chromatin accessibility quantitative trait loci (caQTL) show co-localization with numerous genome-wide association study signals linked to metabolic and cardiovascular traits. Novel studies provide insights into the modulation of the hepatic transcriptome and epigenome by tissue microbiotas. Genetic variation of components of the liver cellular respirasome may result in broad cellular and metabolic effects. Mitochondrial noncoding RNAs may regulate liver inflammation and fibrogenesis. RNA modifications as N6-methyladenosine may explain sex-specific differences in liver gene transcription linked to lipid traits. SUMMARY The latest developments in the field of NAFLD-genomics can be leveraged for identifying novel disease mechanisms and therapeutic targets that may prevent the morbidity and mortality associated with disease progression. VIDEO ABSTRACT http://links.lww.com/COL/A23.
Collapse
Affiliation(s)
- Carlos J Pirola
- Institute of Medical Research A Lanari, University of Buenos Aires, School of Medicine
- Department of Molecular Genetics and Biology of Complex Diseases, Institute of Medical Research (IDIM), National Scientific and Technical Research Council (CONICET) - University of Buenos Aires
| | - Silvia Sookoian
- Institute of Medical Research A Lanari, University of Buenos Aires, School of Medicine
- Department of Clinical and Molecular Hepatology, Institute of Medical Research (IDIM), National Scientific and Technical Research Council (CONICET) - University of Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
40
|
Sweeny KF, Lee CK. Nonalcoholic Fatty Liver Disease in Children. Gastroenterol Hepatol (N Y) 2021; 17:579-587. [PMID: 35465068 PMCID: PMC9021174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease worldwide. It represents a spectrum of disease from simple hepatic steatosis to steatohepatitis that may develop into progressive hepatic fibrosis and even cirrhosis. NAFLD is the most rapidly increasing indication for liver transplantation in adults. In children, the incidence of NAFLD has also increased over the past decade. Although the majority of children with NAFLD are overweight or obese, there is an increasing subset of children with normal body mass index with so-called lean NAFLD. NAFLD in children is associated with several extrahepatic manifestations, including hyperlipidemia, insulin resistance, and obstructive sleep apnea. The pathogenesis of NAFLD in children involves a multifactorial interaction among genetics, in utero exposures, early childhood exposures, and ongoing nutritional exposures. Although there are some similarities between pediatric NAFLD and adult NAFLD, liver biopsies in children show histologic differences between the two. The current standard-of-care treatment of NAFLD in children is lifestyle change to decrease caloric intake and increase physical activity. There are no medications currently approved for the treatment of NAFLD in children. This article aims to summarize the current understanding of pediatric NAFLD and future directions for intervention and therapeutic aims.
Collapse
Affiliation(s)
- Katherine F. Sweeny
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, Boston Children’s Hospital, Boston, Massachusetts
| | - Christine K. Lee
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, Boston Children’s Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
41
|
Semmler G, Datz C, Reiberger T, Trauner M. Diet and exercise in NAFLD/NASH: Beyond the obvious. Liver Int 2021; 41:2249-2268. [PMID: 34328248 PMCID: PMC9292198 DOI: 10.1111/liv.15024] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 07/06/2021] [Accepted: 07/10/2021] [Indexed: 12/12/2022]
Abstract
Lifestyle represents the most relevant factor for non-alcoholic fatty liver disease (NAFLD) as the hepatic manifestation of the metabolic syndrome. Although a tremendous body of clinical and preclinical data on the effectiveness of dietary and lifestyle interventions exist, the complexity of this topic makes firm and evidence-based clinical recommendations for nutrition and exercise in NAFLD difficult. The aim of this review is to guide readers through the labyrinth of recent scientific findings on diet and exercise in NAFLD and non-alcoholic steatohepatitis (NASH), summarizing "obvious" findings in a holistic manner and simultaneously highlighting stimulating aspects of clinical and translational research "beyond the obvious". Specifically, the importance of calorie restriction regardless of dietary composition and evidence from low-carbohydrate diets to target the incidence and severity of NAFLD are discussed. The aspect of ketogenesis-potentially achieved via intermittent calorie restriction-seems to be a central aspect of these diets warranting further investigation. Interactions of diet and exercise with the gut microbiota and the individual genetic background need to be comprehensively understood in order to develop personalized dietary concepts and exercise strategies for patients with NAFLD/NASH.
Collapse
Affiliation(s)
- Georg Semmler
- Division of Gastroenterology and HepatologyDepartment of Internal Medicine IIIMedical University of ViennaViennaAustria
| | - Christian Datz
- Department of Internal MedicineGeneral Hospital OberndorfTeaching Hospital of the Paracelsus Medical University SalzburgSalzburgAustria
| | - Thomas Reiberger
- Division of Gastroenterology and HepatologyDepartment of Internal Medicine IIIMedical University of ViennaViennaAustria
| | - Michael Trauner
- Division of Gastroenterology and HepatologyDepartment of Internal Medicine IIIMedical University of ViennaViennaAustria
| |
Collapse
|
42
|
Vilar-Gomez E, Pirola CJ, Sookoian S, Wilson LA, Liang T, Chalasani N. The Protection Conferred by HSD17B13 rs72613567 Polymorphism on Risk of Steatohepatitis and Fibrosis May Be Limited to Selected Subgroups of Patients With NAFLD. Clin Transl Gastroenterol 2021; 12:e00400. [PMID: 34506332 PMCID: PMC8437218 DOI: 10.14309/ctg.0000000000000400] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 08/05/2021] [Indexed: 12/11/2022] Open
Abstract
INTRODUCTION Our study aimed to explore how PNPLA3 rs738409 or phenotypic risk factors may moderate the relationship between HSD17B13 rs72613567 and risk of steatohepatitis and fibrosis. METHODS This analysis consisted of 1,153 non-Hispanic whites with biopsy-proven nonalcoholic fatty liver disease enrolled in the nonalcoholic steatohepatitis Clinical Research Network studies. Nonalcoholic fatty liver disease severity was determined by liver histology scored centrally according to the nonalcoholic steatohepatitis Clinical Research Network criteria. Moderation and logistic regression analyses were performed to identify the influence of moderators (PNPLA3 rs738409, age, sex, body mass index, and diabetes) on the relationship between HSD17B13 rs72613567 and risk of steatohepatitis and fibrosis. RESULTS HSD17B13 rs72613567 genotype frequency was as follows: (-/-), 64%; (-/A), 30%; (A/A), 6%. Moderation analysis showed that the protective effect of HSD17B13 rs72613567 A-allele on risk of steatohepatitis remained only significant among patients with PNPLA3 rs738409 genotype CC (β coeff: -0.19, P = 0.019), women (β coeff: -0.18, P < 0.001), patients of age ≥ 45 years (β coeff: -0.18, P < 0.001), patients with body mass index ≥ 35 kg/m2 (β coeff: -0.17, P < 0.001), and patients with diabetes (β coeff: -0.18, P = 0.020). Among women, the protective effect of HSD17B131 rs72613567 A-allele on risk of steatohepatitis was stronger in those aged ≥ 51 years. Logistic regression-based sensitivity analysis including various important subgroups confirmed our observations. DISCUSSION The protection conferred by HSD17B13 rs72613567 A-allele on risk of steatohepatitis and fibrosis may be limited to selected subgroups of individuals who are aged ≥ 45 years, women and have class ≥ 2 obesity or diabetes, and those with PNPLA3 rs738409 CC genotype.
Collapse
Affiliation(s)
- Eduardo Vilar-Gomez
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Carlos J. Pirola
- Molecular Genetics and Biology of Complex Diseases, University of Buenos Aires-National Scientific and Technical Research Council (CONICET), Ciudad Autonoma de Buenos Aires, Argentina;
| | - Silvia Sookoian
- Department of Clinical and Molecular Hepatology, Institute of Medical Research (IDIM), University of Buenos Aires-National Scientific and Technical Research Council (CONICET), Ciudad Autonoma de Buenos Aires, Argentina
| | - Laura A. Wilson
- Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Tiebing Liang
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Naga Chalasani
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|