1
|
Velho TR, Pinto F, Ferreira R, Pereira RM, Duarte A, Harada M, Willmann K, Pedroso D, Paixão T, Guerra NC, Neves-Costa A, Santos I, Gouveia E Melo R, Brito D, Almeida AG, Nobre Â, Wang-Sattler R, Köcher T, Pedro LM, Pinto F, Moita LF. Role of major cardiovascular surgery-induced metabolic reprogramming in acute kidney injury in critical care. Intensive Care Med 2025; 51:259-271. [PMID: 39869158 DOI: 10.1007/s00134-024-07770-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 12/19/2024] [Indexed: 01/28/2025]
Abstract
PURPOSE Major cardiovascular surgery imposes high physiologic stress, often causing severe organ dysfunction and poor outcomes. The underlying mechanisms remain unclear. This study investigated metabolic changes induced by major cardiovascular surgery and the potential role of identified metabolic signatures in postoperative acute kidney injury (AKI). METHODS A prospective observational study included 53 patients undergoing major cardiovascular surgery in 3 groups: cardiac surgery with cardiopulmonary bypass (CPB n = 33), without CPB (n = 10), and major vascular surgery (n = 10). For each patient, peripheral blood samples were collected pre-surgery, and at 6 h and 24 h post-surgery. Untargeted metabolomics using mass spectrometry quantified 8668 metabolic features in serum samples. Linear mixed-effect models (adjusted for age, sex, and body mass index) and pathway analyses were performed. RESULTS In the cardiac surgery with CPB group, 772 features were significantly altered (P < 2.8E - 05) across the 3 time points. These features were enriched in five classes, all related to protein metabolism, with glycine and serine metabolism being the most represented. Cardiac surgery with CPB showed a distinct metabolic signature compared to other groups. Patients who developed postoperative AKI exhibited increased protein catabolism (including valine, leucine, and isoleucine degradation), disruptions in the citric acid cycle, and plasmatic accumulation of acylcarnitines. CONCLUSION Major cardiovascular surgery, particularly with CPB, induces significant changes in protein metabolism. Patients developing postoperative AKI exhibited specific metabolic signatures. These findings may be critical for designing interventions to minimize organ dysfunction, including AKI, and improve outcomes in major cardiovascular surgery.
Collapse
Affiliation(s)
- Tiago R Velho
- Cardiothoracic Surgery Department, Hospital de Santa Maria, Unidade Local de Saúde de Santa Maria, Lisbon, Portugal.
- Cardiothoracic Surgery Research Unit, Centro Cardiovascular da Universidade de Lisboa (CCUL@RISE), Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal.
- Center for Disease Mechanisms Research, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal.
| | - Francisco Pinto
- Faculdade de Ciências da Universidade de Lisboa, Lisbon, Portugal
| | - Ricardo Ferreira
- Cardiothoracic Surgery Department, Hospital de Santa Maria, Unidade Local de Saúde de Santa Maria, Lisbon, Portugal
- Centro Cardiovascular da Universidade de Lisboa (CCUL@RISE), Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - Rafael Maniés Pereira
- Cardiothoracic Surgery Research Unit, Centro Cardiovascular da Universidade de Lisboa (CCUL@RISE), Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
- Escola Superior de Saúde da Cruz Vermelha Portuguesa, Lisbon, Portugal
| | - António Duarte
- Vascular Surgery Department, Hospital de Santa Maria, Unidade Local de Saúde de Santa Maria, Lisbon, Portugal
| | - Makoto Harada
- Institute of Translational Genomics, Helmholtz Zentrum München - German Research Centre for Environmental Health, Neuherberg, Germany
| | - Katharina Willmann
- Center for Disease Mechanisms Research, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
- GIMM - Gulbenkian Institute for Molecular Medicine, Lisbon, Portugal
| | - Dora Pedroso
- Center for Disease Mechanisms Research, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
- GIMM - Gulbenkian Institute for Molecular Medicine, Lisbon, Portugal
| | - Tiago Paixão
- GIMM - Gulbenkian Institute for Molecular Medicine, Lisbon, Portugal
| | - Nuno Carvalho Guerra
- Cardiothoracic Surgery Department, Hospital de Santa Maria, Unidade Local de Saúde de Santa Maria, Lisbon, Portugal
| | - Ana Neves-Costa
- Center for Disease Mechanisms Research, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - Isa Santos
- Center for Disease Mechanisms Research, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - Ryan Gouveia E Melo
- Vascular Surgery Department, Hospital de Santa Maria, Unidade Local de Saúde de Santa Maria, Lisbon, Portugal
| | - Dulce Brito
- Centro Cardiovascular da Universidade de Lisboa (CCUL@RISE), Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
- Department of Cardiology, Hospital de Santa Maria, Centro Hospitalar Lisboa Norte, Lisbon, Portugal
| | - Ana G Almeida
- Centro Cardiovascular da Universidade de Lisboa (CCUL@RISE), Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
- Department of Cardiology, Hospital de Santa Maria, Centro Hospitalar Lisboa Norte, Lisbon, Portugal
| | - Ângelo Nobre
- Cardiothoracic Surgery Department, Hospital de Santa Maria, Unidade Local de Saúde de Santa Maria, Lisbon, Portugal
- Centro Cardiovascular da Universidade de Lisboa (CCUL@RISE), Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - Rui Wang-Sattler
- Institute of Translational Genomics, Helmholtz Zentrum München - German Research Centre for Environmental Health, Neuherberg, Germany
| | - Thomas Köcher
- Vienna BioCenter Core Facilities GmbH, Vienna, Austria
| | - Luís Mendes Pedro
- Centro Cardiovascular da Universidade de Lisboa (CCUL@RISE), Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
- Vascular Surgery Department, Hospital de Santa Maria, Unidade Local de Saúde de Santa Maria, Lisbon, Portugal
| | - Fausto Pinto
- Centro Cardiovascular da Universidade de Lisboa (CCUL@RISE), Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
- Department of Cardiology, Hospital de Santa Maria, Centro Hospitalar Lisboa Norte, Lisbon, Portugal
| | - Luís Ferreira Moita
- Center for Disease Mechanisms Research, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal.
| |
Collapse
|
2
|
Verberk SGS, Hahn N, Heister D, Haverkamp J, Snelder KS, de Goede KE, Gorki FS, Hendriks JJA, Houtkooper RH, Visser G, Sjouke B, Langeveld M, Van den Bossche J. Monocyte and macrophage profiles in patients with inherited long-chain fatty acid oxidation disorders. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167524. [PMID: 39307292 DOI: 10.1016/j.bbadis.2024.167524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 09/17/2024] [Accepted: 09/17/2024] [Indexed: 09/28/2024]
Abstract
Patients with inherited disorders of the long-chain fatty acid oxidation (lcFAO) machinery present with a heterogeneous profile of disease manifestations and aggravation of symptoms is often triggered by inflammatory activation. Monocytes and macrophages are innate immune cells that play a major role in the onset and resolution of inflammation. These cells undergo metabolic rewiring upon activation including the regulation of the FAO rate. The rewiring of FAO and the effect of lcFAO disorders (lcFAOD) on human monocyte and macrophage phenotype and function remain largely unknown. Here, we performed extensive phenotyping of circulating monocytes and analyzed plasma cytokine levels in 11 lcFAOD patients and 11 matched control subjects. In patients with lcFAOD, we observed induced plasma levels of the inflammatory cytokines IL-1β and IL-6, and enhanced CD206 and CD62L surface marker expression in circulating monocyte subsets. To mimic the most common lcFAOD very-long-chain acyl-CoA dehydrogenase disorder (VLCADD), we used siRNA-mediated knockdown of the ACADVL gene (encoding VLCAD) in macrophages derived from healthy volunteers. Hereby, we found that siVLCAD affected IL-4-induced alternative macrophage activation while leaving LPS responses and cellular metabolism intact. In the same line, monocyte-derived macrophages from lcFAOD patients had elevated levels of the IL-4-induced alternative macrophage markers CD206 and CD200R. Still, they did not show major metabolic defects or changes in the LPS-induced inflammatory response. Our results indicate that monocytes and macrophages from lcFAOD patients present no major inflammatory or metabolic differences and show that IL-4-induced surface markers are intertwined with lcFAO in human macrophages.
Collapse
Affiliation(s)
- Sanne G S Verberk
- Department of Molecular Cell Biology and Immunology, Amsterdam Cardiovascular Sciences, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam Institute for Infection and Immunity, Cancer Centre Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Nico Hahn
- Department of Molecular Cell Biology and Immunology, Amsterdam Cardiovascular Sciences, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam Institute for Infection and Immunity, Cancer Centre Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Daan Heister
- Department of Molecular Cell Biology and Immunology, Amsterdam Cardiovascular Sciences, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam Institute for Infection and Immunity, Cancer Centre Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Jorien Haverkamp
- Department Endocrinology and Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Khya S Snelder
- Department Endocrinology and Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Kyra E de Goede
- Department of Molecular Cell Biology and Immunology, Amsterdam Cardiovascular Sciences, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam Institute for Infection and Immunity, Cancer Centre Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Friederieke S Gorki
- Department of Molecular Cell Biology and Immunology, Amsterdam Cardiovascular Sciences, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam Institute for Infection and Immunity, Cancer Centre Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Institute of Innate Immunity, University Hospital Bonn, University of Bonn, Bonn 53127, Germany
| | - Jerome J A Hendriks
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Riekelt H Houtkooper
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Emma Center for Personalized Medicine, Amsterdam UMC, Amsterdam, the Netherlands
| | - Gepke Visser
- Emma Children's Hospital, Department of Pediatrics, Division of Metabolic Diseases, Amsterdam Gastroenterology Endocrinology and Metabolism, Amsterdam UMC, location University of Amsterdam, Amsterdam, the Netherlands
| | - Barbara Sjouke
- Department Endocrinology and Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Department of Internal Medicine, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Mirjam Langeveld
- Department Endocrinology and Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Jan Van den Bossche
- Department of Molecular Cell Biology and Immunology, Amsterdam Cardiovascular Sciences, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam Institute for Infection and Immunity, Cancer Centre Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
3
|
Mosegaard S, Twayana KS, Denis SW, Kroon J, Schomakers BV, van Weeghel M, Houtkooper RH, Olsen RKJ, Holm CK. Human inborn errors of long-chain fatty acid oxidation show impaired inflammatory responses to TLR4-ligand LPS. FASEB Bioadv 2024; 6:337-350. [PMID: 39399475 PMCID: PMC11467727 DOI: 10.1096/fba.2024-00060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/28/2024] [Accepted: 07/21/2024] [Indexed: 10/15/2024] Open
Abstract
Stimulation of mammalian cells with inflammatory inducers such as lipopolysaccharide (LPS) leads to alterations in activity of central cellular metabolic pathways. Interestingly, these metabolic changes seem to be important for subsequent release of pro-inflammatory cytokines. This has become particularly clear for enzymes of tricarboxylic acid (TCA) cycle such as succinate dehydrogenase (SDH). LPS leads to inhibition of SDH activity and accumulation of succinate to enhance the LPS-induced formation of IL-1β. If enzymes involved in beta-oxidation of fatty acids are important for sufficient responses to LPS is currently not clear. Using cells from various patients with inborn long-chain fatty acid oxidation disorders (lcFAOD), we report that disease-causing deleterious variants of Electron Transfer Flavoprotein Dehydrogenase (ETFDH) and of Very Long Chain Acyl-CoA Dehydrogenase (ACADVL), both cause insufficient inflammatory responses to stimulation with LPS. The insufficiencies included reduced TLR4 expression levels, impaired TLR4 signaling, and reduced or absent induction of pro-inflammatory cytokines such as IL-6. The insufficient responses to LPS were reproduced in cells from healthy controls by targeted loss-of-function of either ETFDH or ACADVL, supporting that the deleterious ETFDH and ACADVL variants cause the attenuated responses to LPS. ETFDH and ACADVL encode two distinct enzymes both involved in fatty acid beta-oxidation, and patients with these deficiencies cannot sufficiently metabolize long-chain fatty acids. We report that genes important for beta-oxidation of long-chain fatty acids are also important for inflammatory responses to an acute immunogen trigger like LPS, which may have important implications for understanding infection and other metabolic stress induced disease pathology in lcFAODs.
Collapse
Affiliation(s)
- Signe Mosegaard
- Research Unit for Molecular Medicine, Department of Clinical MedicineAarhus University and Aarhus University HospitalAarhusDenmark
- Laboratory Genetic Metabolic Diseases, Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
- Amsterdam Gastroenterology, Endocrinology, and MetabolismAmsterdamThe Netherlands
- Amsterdam Cardiovascular SciencesAmsterdamThe Netherlands
| | - Krishna S. Twayana
- Department of Biomedicine, Aarhus Research Center for Innate ImmunologyAarhus UniversityAarhusDenmark
| | - Simone W. Denis
- Laboratory Genetic Metabolic Diseases, Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - Jeffrey Kroon
- Laboratory of Angiogenesis and Vascular MetabolismVIB‐KU Leuven Center for Cancer Biology, VIBLeuvenBelgium
- Laboratory of Angiogenesis and Vascular Metabolism, Department of OncologyKU Leuven and Leuven Cancer Institute (LKI)LeuvenBelgium
| | - Bauke V. Schomakers
- Laboratory Genetic Metabolic Diseases, Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
- Core Facility MetabolomicsAmsterdam University Medical Centers, University of AmsterdamAmsterdamThe Netherlands
| | - Michel van Weeghel
- Laboratory Genetic Metabolic Diseases, Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
- Amsterdam Gastroenterology, Endocrinology, and MetabolismAmsterdamThe Netherlands
- Amsterdam Cardiovascular SciencesAmsterdamThe Netherlands
- Core Facility MetabolomicsAmsterdam University Medical Centers, University of AmsterdamAmsterdamThe Netherlands
| | - Riekelt H. Houtkooper
- Laboratory Genetic Metabolic Diseases, Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
- Amsterdam Gastroenterology, Endocrinology, and MetabolismAmsterdamThe Netherlands
- Amsterdam Cardiovascular SciencesAmsterdamThe Netherlands
- Emma Center for Personalized MedicineAmsterdam UMCAmsterdamThe Netherlands
| | - Rikke K. J. Olsen
- Research Unit for Molecular Medicine, Department of Clinical MedicineAarhus University and Aarhus University HospitalAarhusDenmark
| | - Christian K. Holm
- Department of Biomedicine, Aarhus Research Center for Innate ImmunologyAarhus UniversityAarhusDenmark
| |
Collapse
|
4
|
Wijffels G, Sullivan ML, Stockwell S, Briscoe S, Pearson R, Li Y, Macs AM, Sejian V, McCulloch R, Olm JCW, Cawdell-Smith J, Gaughan JB. Comparing the responses of grain-fed feedlot cattle under moderate heat load and during subsequent recovery with those of feed-restricted thermoneutral counterparts: blood cells and inflammatory markers. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2024; 68:211-227. [PMID: 38092991 PMCID: PMC10794350 DOI: 10.1007/s00484-023-02584-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 11/15/2023] [Accepted: 11/19/2023] [Indexed: 01/18/2024]
Abstract
Given the climate projections for livestock rearing regions globally, understanding the inflammatory status of livestock under various heat loads will be informative to animal welfare and management. A survey of plasma inflammatory markers was conducted, and blood leucocyte counts followed to investigate the capacity of the ~ 500 kg grain fed Black Angus steer to respond to and recover from a moderate heat load challenge. Two sequential cohorts of 12 steers were housed in climate-controlled rooms (CCR) for 18 days. A thermally challenged (TC) group (n = 2 × 6) experienced five consecutive periods: PreChallenge, Challenge, and Recovery within the CCR, and 40 days in outdoor pens (PENS and Late PENS). PreChallenge (5 days) and Recovery (7 days) delivered thermoneutral conditions, whereas in Challenge the TC steers experienced a diurnal temperature range of 28-35 °C. A feed-restricted thermoneutral (FRTN) treatment (n = 2 × 6) was run concurrently to differentiate between responses to reduced feed intake alone and moderate heat stress. Blood neutrophil counts were particularly sensitive to moderate heat load with higher numbers during Challlenge and in PENs. The plasma concentrations of TNFα and IL-1β were depressed in the TC group compared to the FRTN counterparts and remained so for 40 days after Challenge. Linear relationships of the concentrations of IL-1β, IL-10, and haptoglobin with rumen temperature or dry matter intake detected in the FRTN group were altered or absent in the TC group. The findings suggest significant impacts of moderate heat load on the inflammatory status of feedlot cattle.
Collapse
Affiliation(s)
- G Wijffels
- CSIRO Agriculture and Food, Queensland Bioscience Precinct, St Lucia, Qld, 4067, Australia.
| | - M L Sullivan
- School of Agriculture and Food, The University of Queensland, Gatton, Qld, 4343, Australia
| | - S Stockwell
- CSIRO Agriculture and Food, Queensland Bioscience Precinct, St Lucia, Qld, 4067, Australia
| | - S Briscoe
- CSIRO Agriculture and Food, Queensland Bioscience Precinct, St Lucia, Qld, 4067, Australia
| | - R Pearson
- CSIRO Agriculture and Food, Queensland Bioscience Precinct, St Lucia, Qld, 4067, Australia
| | - Y Li
- CSIRO Agriculture and Food, Queensland Bioscience Precinct, St Lucia, Qld, 4067, Australia
| | - A M Macs
- CSIRO Agriculture and Food, Queensland Bioscience Precinct, St Lucia, Qld, 4067, Australia
| | - V Sejian
- Rajiv Gandhi Institute of Veterinary Education and Research, Kurumbapet, Puducherry, 605009, India
| | - R McCulloch
- CSIRO Agriculture and Food, Queensland Bioscience Precinct, St Lucia, Qld, 4067, Australia
| | - J C W Olm
- School of Veterinary Science, The University of Queensland, Gatton, Qld, 4343, Australia
| | - J Cawdell-Smith
- School of Agriculture and Food, The University of Queensland, Gatton, Qld, 4343, Australia
| | - J B Gaughan
- School of Agriculture and Food, The University of Queensland, Gatton, Qld, 4343, Australia
| |
Collapse
|
5
|
Dambrova M, Liepinsh E. Acylcarnitines in health and disease: biomarkers and drug targets. MAKEDONSKO FARMACEVTSKI BILTEN 2022. [DOI: 10.33320/maced.pharm.bull.2022.68.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Affiliation(s)
- Maija Dambrova
- Latvian Institute of Organic Synthesis, Laboratory of Pharmaceutical Pharmacology, Aizkraukes Str. 21, LV1006 Riga, Latvia
| | - Edgars Liepinsh
- Latvian Institute of Organic Synthesis, Laboratory of Pharmaceutical Pharmacology, Aizkraukes Str. 21, LV1006 Riga, Latvia
| |
Collapse
|
6
|
Anthropometric Parameters in Patients with Fatty Acid Oxidation Disorders: A Case-Control Study, Systematic Review and Meta-Analysis. Healthcare (Basel) 2022; 10:healthcare10122405. [PMID: 36553929 PMCID: PMC9777909 DOI: 10.3390/healthcare10122405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/24/2022] [Accepted: 11/28/2022] [Indexed: 12/02/2022] Open
Abstract
This study compared the anthropometric parameters of patients with fatty acid oxidation disorders (FAOD) and healthy controls, showing an increased prevalence of abnormal body weight (overweight and obesity) in the FAOD group. First, differences in BMI, BMI percentiles and z-scores, and weight and weight percentiles were compared in a cohort of 39 patients with FAOD and 156 healthy controls, as well as between patients born before and after the introduction of a populational newborn screening programme (NBS) in 2014 in Poland. We also performed a systematic literature review yielding 12 studies mentioning anthropometric parameters in 80 FAOD patients and 121 control subjects, followed by a meta-analysis of data from 8 studies and our cohort. There were significant differences in body weight percentiles (p = 0.001), BMI (p = 0.022), BMI percentiles (p = 0.003) and BMI z-scores (p = 0.001) between FAOD patients and controls in our cohort but not between pre- and post-newborn-screening patients. The meta-analysis did not show any differences in weight and BMI in all tested subgroups, i.e., all FAOD patients vs. controls, medium-chain acyl-CoA dehydrogenase (MCADD) patients vs. controls and patients with FAOD types other than MCAD vs. controls. These results, however, should be interpreted with caution due to the overall low quality of evidence as assessed by GRADE, the small sample sizes and the significant heterogeneity of the included data.
Collapse
|
7
|
Dambrova M, Makrecka-Kuka M, Kuka J, Vilskersts R, Nordberg D, Attwood MM, Smesny S, Sen ZD, Guo AC, Oler E, Tian S, Zheng J, Wishart DS, Liepinsh E, Schiöth HB. Acylcarnitines: Nomenclature, Biomarkers, Therapeutic Potential, Drug Targets, and Clinical Trials. Pharmacol Rev 2022; 74:506-551. [PMID: 35710135 DOI: 10.1124/pharmrev.121.000408] [Citation(s) in RCA: 236] [Impact Index Per Article: 78.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Acylcarnitines are fatty acid metabolites that play important roles in many cellular energy metabolism pathways. They have historically been used as important diagnostic markers for inborn errors of fatty acid oxidation and are being intensively studied as markers of energy metabolism, deficits in mitochondrial and peroxisomal β -oxidation activity, insulin resistance, and physical activity. Acylcarnitines are increasingly being identified as important indicators in metabolic studies of many diseases, including metabolic disorders, cardiovascular diseases, diabetes, depression, neurologic disorders, and certain cancers. The US Food and Drug Administration-approved drug L-carnitine, along with short-chain acylcarnitines (acetylcarnitine and propionylcarnitine), is now widely used as a dietary supplement. In light of their growing importance, we have undertaken an extensive review of acylcarnitines and provided a detailed description of their identity, nomenclature, classification, biochemistry, pathophysiology, supplementary use, potential drug targets, and clinical trials. We also summarize these updates in the Human Metabolome Database, which now includes information on the structures, chemical formulae, chemical/spectral properties, descriptions, and pathways for 1240 acylcarnitines. This work lays a solid foundation for identifying, characterizing, and understanding acylcarnitines in human biosamples. We also discuss the emerging opportunities for using acylcarnitines as biomarkers and as dietary interventions or supplements for many wide-ranging indications. The opportunity to identify new drug targets involved in controlling acylcarnitine levels is also discussed. SIGNIFICANCE STATEMENT: This review provides a comprehensive overview of acylcarnitines, including their nomenclature, structure and biochemistry, and use as disease biomarkers and pharmaceutical agents. We present updated information contained in the Human Metabolome Database website as well as substantial mapping of the known biochemical pathways associated with acylcarnitines, thereby providing a strong foundation for further clarification of their physiological roles.
Collapse
Affiliation(s)
- Maija Dambrova
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - Marina Makrecka-Kuka
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - Janis Kuka
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - Reinis Vilskersts
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - Didi Nordberg
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - Misty M Attwood
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - Stefan Smesny
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - Zumrut Duygu Sen
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - An Chi Guo
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - Eponine Oler
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - Siyang Tian
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - Jiamin Zheng
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - David S Wishart
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - Edgars Liepinsh
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - Helgi B Schiöth
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| |
Collapse
|
8
|
Karunanidhi A, Van’t Land C, Rajasundaram D, Grings M, Vockley J, Mohsen AW. Medium branched chain fatty acids improve the profile of tricarboxylic acid cycle intermediates in mitochondrial fatty acid β-oxidation deficient cells: A comparative study. J Inherit Metab Dis 2022; 45:541-556. [PMID: 35076099 PMCID: PMC9090965 DOI: 10.1002/jimd.12480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 01/09/2022] [Accepted: 01/24/2022] [Indexed: 12/06/2022]
Abstract
Inherited errors of mitochondrial fatty acid β-oxidation (FAO) are life threatening, even with optimum care. FAO is the major source of energy for heart and is critical for skeletal muscles especially during physiologic stress. Clinical trials revealed that triheptanoin (commercially known as Dojolvi; C7G), improved heart function and decreased hypoglycemia in long chain FAO disorders, but other symptoms including rhabdomyolysis persisted, suggesting suboptimal tissue distribution/utilization of heptanoic acid (C7) conjugates and/or rapid liver breakdown. In this study, medium branched chain fatty acids were tested as potential anaplerotic treatments in fibroblasts from patients deficient in very long chain acyl-CoA dehydrogenase (VLCAD), long chain 3-hydroxyacyl-CoA dehydrogenase (LCHAD), trifunctional protein (TFP), and carnitine palmitoyltransferase II (CPT II). Cells were cultured to near confluency and treated with C7, 2,6-dimethylheptanoic acid (dMC7), 6-amino-2,4-dimethylheptanoic acid (AdMC7), or 4,8-dimethylnonanoic acid (dMC9) for 72 h and targeted metabolomics performed. The profile of TCA cycle intermediates was improved in cells treated with these branched chain fatty acids compared with C7. Intracellular propionate was higher in AdMC7 treated cells compared with C7 in VLCAD, LCHAD, and TFP deficient cell lines. With AdMC7 treatment, succinate was higher in CPT II and VLCAD deficient cells, compared with C7. Malate and glutamate were consistently higher in AdMC7 treated VLCAD, LCHAD, TFP, and CPT II deficient cells compared with the C7 treatment. The results provide the impetus to further evaluate and consider branched chain fatty acids as viable anaplerotic therapy for fatty acid oxidation disorders and other diseases.
Collapse
Affiliation(s)
- Anuradha Karunanidhi
- Department of Pediatrics, School of Medicine, UPMC Children’s Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Clinton Van’t Land
- Department of Pediatrics, School of Medicine, UPMC Children’s Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Dhivyaa Rajasundaram
- Department of Pediatrics, School of Medicine, UPMC Children’s Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Mateus Grings
- Department of Pediatrics, School of Medicine, UPMC Children’s Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- PPG Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Jerry Vockley
- Department of Pediatrics, School of Medicine, UPMC Children’s Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Al-Walid Mohsen
- Department of Pediatrics, School of Medicine, UPMC Children’s Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
9
|
Strittmatter N, Kanvatirth P, Inglese P, Race AM, Nilsson A, Dannhorn A, Kudo H, Goldin RD, Ling S, Wong E, Seeliger F, Serra MP, Hoffmann S, Maglennon G, Hamm G, Atkinson J, Jones S, Bunch J, Andrén PE, Takats Z, Goodwin RJA, Mastroeni P. Holistic Characterization of a Salmonella Typhimurium Infection Model Using Integrated Molecular Imaging. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:2791-2802. [PMID: 34767352 DOI: 10.1021/jasms.1c00240] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A more complete and holistic view on host-microbe interactions is needed to understand the physiological and cellular barriers that affect the efficacy of drug treatments and allow the discovery and development of new therapeutics. Here, we developed a multimodal imaging approach combining histopathology with mass spectrometry imaging (MSI) and same section imaging mass cytometry (IMC) to study the effects of Salmonella Typhimurium infection in the liver of a mouse model using the S. Typhimurium strains SL3261 and SL1344. This approach enables correlation of tissue morphology and specific cell phenotypes with molecular images of tissue metabolism. IMC revealed a marked increase in immune cell markers and localization in immune aggregates in infected tissues. A correlative computational method (network analysis) was deployed to find metabolic features associated with infection and revealed metabolic clusters of acetyl carnitines, as well as phosphatidylcholine and phosphatidylethanolamine plasmalogen species, which could be associated with pro-inflammatory immune cell types. By developing an IMC marker for the detection of Salmonella LPS, we were further able to identify and characterize those cell types which contained S. Typhimurium.
Collapse
Affiliation(s)
- Nicole Strittmatter
- Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| | - Panchali Kanvatirth
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, U.K
| | - Paolo Inglese
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London SW7 2AZ, U.K
| | - Alan M Race
- Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| | - Anna Nilsson
- Medical Mass Spectrometry Imaging, Department of Pharmaceutical Biosciences, Uppsala University, 751 24 Uppsala, Sweden
- Science for Life Laboratory, Spatial Mass Spectrometry, Uppsala University, 751 24 Uppsala, Sweden
| | - Andreas Dannhorn
- Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| | - Hiromi Kudo
- Division of Digestive Diseases, Section of Pathology, Imperial College London, St. Mary's Hospital, London W2 1NY, U.K
| | - Robert D Goldin
- Division of Digestive Diseases, Section of Pathology, Imperial College London, St. Mary's Hospital, London W2 1NY, U.K
- Department of Cellular Pathology, Charing Cross Hospital, London W6 8RF, U.K
| | - Stephanie Ling
- Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| | - Edmond Wong
- Biologics Engineering, R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| | - Frank Seeliger
- Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| | - Maria Paola Serra
- Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| | - Scott Hoffmann
- Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, U.K
- BHF Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, U.K
| | - Gareth Maglennon
- Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| | - Gregory Hamm
- Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| | - James Atkinson
- Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| | - Stewart Jones
- Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| | - Josephine Bunch
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London SW7 2AZ, U.K
- National Centre of Excellence in Mass Spectrometry Imaging (NiCE-MSI), National Physical Laboratory, Teddington TW11 0LW, U.K
| | - Per E Andrén
- Medical Mass Spectrometry Imaging, Department of Pharmaceutical Biosciences, Uppsala University, 751 24 Uppsala, Sweden
- Science for Life Laboratory, Spatial Mass Spectrometry, Uppsala University, 751 24 Uppsala, Sweden
| | - Zoltan Takats
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London SW7 2AZ, U.K
| | - Richard J A Goodwin
- Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, U.K
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, U.K
| | - Pietro Mastroeni
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, U.K
| |
Collapse
|
10
|
Wu Y, Li Q, Liu J, Liu Y, Xu Y, Zhang R, Yu Y, Wang Y, Yang C. Integrating Serum Metabolome and Gut Microbiome to Evaluate the Benefits of Lauric Acid on Lipopolysaccharide- Challenged Broilers. Front Immunol 2021; 12:759323. [PMID: 34721434 PMCID: PMC8554146 DOI: 10.3389/fimmu.2021.759323] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 09/27/2021] [Indexed: 12/23/2022] Open
Abstract
Lauric acid (LA) is a crucial medium-chain fatty acid (MCFA) that has many beneficial effects on humans and animals. This study aimed to investigate the effects of LA on the intestinal barrier, immune functions, serum metabolism, and gut microbiota of broilers under lipopolysaccharide (LPS) challenge. A total of 384 one-day-old broilers were randomly divided into four groups, and fed with a basal diet, or a basal diet supplemented with 75 mg/kg antibiotic (ANT), or a basal diet supplemented with 1000 mg/kg LA. After 42 days of feeding, three groups were intraperitoneally injected with 0.5 mg/kg Escherichia coli- derived LPS (LPS, ANT+LPS and LA+LPS groups) for three consecutive days, and the control (CON) group was injected with the same volume of saline. Then, the birds were sacrificed. Results showed that LA pretreatment significantly alleviated the weight loss and intestinal mucosal injuries caused by LPS challenge. LA enhanced immune functions and inhibited inflammatory responses by upregulating the concentrations of immunoglobulins (IgA, IgM, and IgY), decreasing IL-6 and increasing IL-4 and IL-10. Metabolomics analysis revealed a significant difference of serum metabolites by LA pretreatment. Twenty-seven serum metabolic biomarkers were identified and mostly belong to lipids. LA also markedly modulated the pathway for sphingolipid metabolism, suggesting its ability to regulate lipid metabolism. Moreover,16S rRNA analysis showed that LA inhibited LPS-induced gut dysbiosis by altering cecal microbial composition (reducing Escherichia-Shigella, Barnesiella and Alistipes, and increasing Lactobacillus and Bacteroides), and modulating the production of volatile fatty acids (VFAs). Pearson’s correlation assays showed that alterations in serum metabolism and gut microbiota were strongly correlated to the immune factors; there were also strong correlations between serum metabolites and microbiota composition. The results highlight the potential of LA as a dietary supplement to combat bacterial LPS challenge in animal production and to promote food safety.
Collapse
Affiliation(s)
- Yanping Wu
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agricultural and Forestry University, Hangzhou, China
| | - Qing Li
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agricultural and Forestry University, Hangzhou, China
| | - Jinsong Liu
- Institute of Animal Health Products, Zhejiang Vegamax Biotechnology Co., Ltd., Anji, China
| | - Yulan Liu
- Institute of Animal Health Products, Zhejiang Vegamax Biotechnology Co., Ltd., Anji, China
| | - Yinglei Xu
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agricultural and Forestry University, Hangzhou, China
| | - Ruiqiang Zhang
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agricultural and Forestry University, Hangzhou, China
| | - Yang Yu
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agricultural and Forestry University, Hangzhou, China
| | - Yongxia Wang
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agricultural and Forestry University, Hangzhou, China
| | - Caimei Yang
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agricultural and Forestry University, Hangzhou, China
| |
Collapse
|
11
|
Arnold GL, Yester J, McCracken E, Feingold BD, Vockley J. Successful orthotopic heart transplantation in CPTII deficiency. Mol Genet Metab 2021; 133:182-184. [PMID: 34020866 PMCID: PMC8899800 DOI: 10.1016/j.ymgme.2021.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/15/2021] [Accepted: 04/16/2021] [Indexed: 11/23/2022]
Abstract
Carnitine palmitoyl transferase II (CPT II) catalyzes the release of activated long-chain fatty acids from acylcarnitines into mitochondria for subsequent fatty acid oxidation. Depending on residual enzyme activity, deficiency of this enzyme leads to a spectrum of symptoms from early onset hypoglycemia, hyperammonemia, cardiomyopathy and death to onset of recurrent rhabdomyolysis in adolescents and young adults. We present a case of successful orthotopic heart transplantation in a patient with severe infantile onset cardiomyopathy due to CPT II deficiency identified through newborn screening. Excellent cardiac function is preserved 12 years post-transplantation; however, the patient has developed intermittent episodes of hyperammonemia and rhabdomyolysis later in childhood and early adolescence readily resolved with intravenous glucose. Successful heart transplant in this patient demonstrates the feasibility of this management option in patients with even severe forms of long chain fatty acid oxidation disorders.
Collapse
|
12
|
Different Lipid Signature in Fibroblasts of Long-Chain Fatty Acid Oxidation Disorders. Cells 2021; 10:cells10051239. [PMID: 34069977 PMCID: PMC8157847 DOI: 10.3390/cells10051239] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/15/2021] [Accepted: 05/17/2021] [Indexed: 12/16/2022] Open
Abstract
Long-chain fatty acid oxidation disorders (lc-FAOD) are a group of diseases affecting the degradation of long-chain fatty acids. In order to investigate the disease specific alterations of the cellular lipidome, we performed undirected lipidomics in fibroblasts from patients with carnitine palmitoyltransferase II, very long-chain acyl-CoA dehydrogenase, and long-chain 3-hydroxyacyl-CoA dehydrogenase. We demonstrate a deep remodeling of mitochondrial cardiolipins. The aberrant phosphatidylcholine/phosphatidylethanolamine ratio and the increased content of plasmalogens and of lysophospholipids support the theory of an inflammatory phenotype in lc-FAOD. Moreover, we describe increased ratios of sphingomyelin/ceramide and sphingomyelin/hexosylceramide in LCHAD deficiency which may contribute to the neuropathic phenotype of LCHADD/mitochondrial trifunctional protein deficiency.
Collapse
|
13
|
Abstract
Fatty acid oxidation disorders (FAOD) are a group of rare, autosomal recessive, metabolic disorders caused by variants of the genes for the enzymes and proteins involved in the transport and metabolism of fatty acids in the mitochondria. Those affected by FAOD are unable to convert fatty acids into tricarboxylic acid cycle intermediates such as acetyl-coenzyme A, resulting in decreased adenosine triphosphate and glucose for use as energy in a variety of high-energy-requiring organ systems. Signs and symptoms may manifest in infants but often also appear in adolescents or adults during times of increased metabolic demand, such as fasting, physiologic stress, and prolonged exercise. Patients with FAOD present with a highly heterogeneous clinical spectrum. The most common clinical presentations include hypoketotic hypoglycemia, liver dysfunction, cardiomyopathy, rhabdomyolysis, and skeletal myopathy, as well as peripheral neuropathy and retinopathy in some subtypes. Despite efforts to detect FAOD through newborn screening and manage patients early, symptom onset can be sudden and serious, even resulting in death. Therefore, it is critical to identify quickly and accurately the key signs and symptoms of patients with FAOD to manage metabolic decompensations and prevent serious comorbidities.
Collapse
Affiliation(s)
| | - Erin MacLeod
- Children's National Hospital, Washington, DC, USA
| | | | - Bryan Hainline
- Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
14
|
Amaral AU, Wajner M. Recent Advances in the Pathophysiology of Fatty Acid Oxidation Defects: Secondary Alterations of Bioenergetics and Mitochondrial Calcium Homeostasis Caused by the Accumulating Fatty Acids. Front Genet 2020; 11:598976. [PMID: 33329744 PMCID: PMC7729159 DOI: 10.3389/fgene.2020.598976] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 11/03/2020] [Indexed: 12/18/2022] Open
Abstract
Deficiencies of medium-chain acyl-CoA dehydrogenase, mitochondrial trifunctional protein, isolated long-chain 3-hydroxyacyl-CoA dehydrogenase, and very long-chain acyl-CoA dehydrogenase activities are considered the most frequent fatty acid oxidation defects (FAOD). They are biochemically characterized by the accumulation of medium-chain, long-chain hydroxyl, and long-chain fatty acids and derivatives, respectively, in tissues and biological fluids of the affected patients. Clinical manifestations commonly include hypoglycemia, cardiomyopathy, and recurrent rhabdomyolysis. Although the pathogenesis of these diseases is still poorly understood, energy deprivation secondary to blockage of fatty acid degradation seems to play an important role. However, recent evidence indicates that the predominant fatty acids accumulating in these disorders disrupt mitochondrial functions and are involved in their pathophysiology, possibly explaining the lactic acidosis, mitochondrial morphological alterations, and altered mitochondrial biochemical parameters found in tissues and cultured fibroblasts from some affected patients and also in animal models of these diseases. In this review, we will update the present knowledge on disturbances of mitochondrial bioenergetics, calcium homeostasis, uncoupling of oxidative phosphorylation, and mitochondrial permeability transition induction provoked by the major fatty acids accumulating in prevalent FAOD. It is emphasized that further in vivo studies carried out in tissues from affected patients and from animal genetic models of these disorders are necessary to confirm the present evidence mostly achieved from in vitro experiments.
Collapse
Affiliation(s)
- Alexandre Umpierrez Amaral
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Departamento de Ciências Biológicas, Universidade Regional Integrada do Alto Uruguai e das Missões, Erechim, Brazil
| | - Moacir Wajner
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| |
Collapse
|
15
|
McCoin CS, Gillingham MB, Knotts TA, Vockley J, Ono-Moore KD, Blackburn ML, Norman JE, Adams SH. Blood cytokine patterns suggest a modest inflammation phenotype in subjects with long-chain fatty acid oxidation disorders. Physiol Rep 2020; 7:e14037. [PMID: 30912279 PMCID: PMC6434073 DOI: 10.14814/phy2.14037] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/04/2019] [Accepted: 03/05/2019] [Indexed: 12/17/2022] Open
Abstract
Excessive cellular accumulation or exposure to lipids such as long‐chain acylcarnitines (LCACs), ceramides, and others is implicated in cell stress and inflammation. Such a situation might manifest when there is a significant mismatch between long‐chain fatty acid (LCFA) availability versus storage and oxidative utilization; for example, in cardiac ischemia, increased LCACs may contribute to tissue cell stress and infarct damage. Perturbed LCFAβ‐oxidation is also seen in fatty acid oxidation disorders (FAODs). FAODs typically manifest with fasting‐ or stress‐induced symptoms, and patients can manage many symptoms through control of diet and physical activity. However, episodic clinical events involving cardiac and skeletal muscle myopathies are common and can present without an obvious molecular trigger. We have speculated that systemic or tissue‐specific lipotoxicity and activation of inflammation pathways contribute to long‐chain FAOD pathophysiology. With this in mind, we characterized inflammatory phenotype (14 blood plasma cytokines) in resting, overnight‐fasted (~10 h), or exercise‐challenged subjects with clinically well‐controlled long‐chain FAODs (n = 12; 10 long‐chain 3‐hydroxyacyl‐CoA dehydrogenase [LCHAD]; 2 carnitine palmitoyltransferase 2 [CPT2]) compared to healthy controls (n = 12). Across experimental conditions, concentrations of three cytokines were modestly but significantly increased in FAOD (IFNγ, IL‐8, and MDC), and plasma levels of IL‐10 (considered an inflammation‐dampening cytokine) were significantly decreased. These novel results indicate that while asymptomatic FAOD patients do not display gross body‐wide inflammation even after moderate exercise, β‐oxidation deficiencies might be associated with chronic and subtle activation of “sterile inflammation.” Further studies are warranted to determine if inflammation is more apparent in poorly controlled long‐chain FAOD or when long‐chain FAOD‐associated symptoms are present.
Collapse
Affiliation(s)
- Colin S McCoin
- Department of Molecular and Integrative Physiology, Medical Center, University of Kansas, Kansas City, Kansas
| | - Melanie B Gillingham
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, Oregon
| | - Trina A Knotts
- School of Medicine Department of Anatomy, Physiology and Cell Biology, University of California, Davis, School of Veterinary Medicine, Davis, California
| | - Jerry Vockley
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | | - Michael L Blackburn
- Arkansas Children's Nutrition Center, Little Rock, Arkansas.,Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Jennifer E Norman
- Department of Internal Medicine, University of California, Davis, School of Medicine, Davis, California
| | - Sean H Adams
- Arkansas Children's Nutrition Center, Little Rock, Arkansas.,Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| |
Collapse
|